1
|
Liu X, Lv M, Feng B, Gong Y, Min Q, Wang Y, Wu Q, Chen J, Zhao D, Li J, Zhang W, Zhan Q. SQLE amplification accelerates esophageal squamous cell carcinoma tumorigenesis and metastasis through oncometabolite 2,3-oxidosqualene repressing Hippo pathway. Cancer Lett 2025; 621:217528. [PMID: 39924077 DOI: 10.1016/j.canlet.2025.217528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 01/17/2025] [Accepted: 02/02/2025] [Indexed: 02/11/2025]
Abstract
Esophageal squamous cell carcinoma (ESCC) is one of the most prevalent cancers worldwide, characterized by a dismal prognosis and elusive therapeutic targets. Dysregulated cholesterol metabolism is a critical hallmark of cancer cells, facilitating tumor progression. Here, we used whole genome sequencing data from several ESCC cohorts to identify the important role of squalene epoxidase (SQLE) in promoting ESCC tumorigenesis and metastasis. Specifically, our findings highlight the significance of 2,3-oxidosqualene, an intermediate metabolite of cholesterol biosynthesis, synthesized by SQLE and metabolized by lanosterol synthase (LSS), as a key regulator of ESCC progression. Mechanistically, the interaction between 2,3-oxidosqualene and vinculin enhances the nuclear accumulation of Yes-associated protein 1 (YAP), thereby increasing YAP/TEAD-dependent gene expression and accelerating both tumor growth and metastasis. In a 4-nitroquinoline 1-oxide (4-NQO)-induced ESCC mouse model, overexpression of Sqle resulted in accelerated tumorigenesis compared to wild-type controls, highlighting the pivotal role of SQLE in vivo. Furthermore, elevated SQLE expression in ESCC patients correlates with a poorer prognoses, suggesting potential therapeutic avenues for treatment. In conclusion, our study elucidates the oncogenic function of 2,3-oxidosqualene as a naturally occurring metabolite and proposes modulation of its levels as a promising therapeutic strategy for ESCC.
Collapse
Affiliation(s)
- Xuesong Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China; Peking University International Cancer Institute, Beijing, 100191, China; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Mengzhu Lv
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Bicong Feng
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Ying Gong
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China; Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Department of Breast Oncology, Peking University Cancer Hospital and Institute, Beijing, 100142, China; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Qingjie Min
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Yan Wang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Qingnan Wu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Jie Chen
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Dongyu Zhao
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Jinting Li
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Weimin Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518107, China; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China.
| | - Qimin Zhan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China; Peking University International Cancer Institute, Beijing, 100191, China; Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518107, China; Soochow University Cancer Institute, Suzhou, 215127, China; Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China.
| |
Collapse
|
2
|
Yuan Q, Xia X, Yuan Y, Chen Q, Feng X. A YAP-derived peptide blocks YAP-TEAD signaling and suppresses cell proliferation. Cell Signal 2025; 131:111738. [PMID: 40081550 DOI: 10.1016/j.cellsig.2025.111738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/06/2025] [Accepted: 03/10/2025] [Indexed: 03/16/2025]
Abstract
Yes-associated protein (YAP), a pivotal transcriptional co-activator in cell growth regulation, exerts its function through interactions with transcriptional factors like TEAD. Ectopic activation of YAP causes excessive cell proliferation, leading to multiple human diseases, including cancers. However, current pharmacological YAP inhibition lacks specificity and may have unintended effects, necessitating the development of direct YAP-derived inhibitors. In this study, we designed a novel YAP-derived peptide, TBDi, that specifically disrupted YAP-TEAD interaction and exhibited robust inhibition of TEAD activity. Mechanistically, TBDi directly binds to TEAD, blocking the physical interaction between YAP and TEAD. Transcriptomic analysis revealed that TBDi significantly altered gene expression profiles associated with TEAD activity, including downregulation of signature genes like CYR61 and CTGF. Functionally, TBDi emerged as a potent suppressor of cell proliferation, inhibiting cell proliferation to a degree comparable to YAP/TAZ knockdown. Altogether, our study not only identifies TBDi as a promising tool to block YAP-TEAD axis, but also offers insights for potential therapeutic interventions in diseases.
Collapse
Affiliation(s)
- Qiuyun Yuan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xiaoqiang Xia
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yao Yuan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China
| | - Qianming Chen
- Key Laboratory of Oral Biomedical Research of Zhejiang Province, Affiliated Stomatology Hospital, Zhejiang University School of Stomatology, Hangzhou, Zhejiang 310006, China
| | - Xiaodong Feng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Research Unit of Oral Carcinogenesis and Management, Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
3
|
Li C, Zhang Y, Zhang Z, Zhang Y, Song Y, Wang L, Yuan C, Hao G, Sun N, Li H, Zhang Z, He Y, Wang S. Discovery and biological evaluation of carborane-containing derivatives as TEAD auto palmitoylation inhibitors. Bioorg Med Chem Lett 2025; 121:130155. [PMID: 40010443 DOI: 10.1016/j.bmcl.2025.130155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Revised: 02/13/2025] [Accepted: 02/21/2025] [Indexed: 02/28/2025]
Abstract
Transcriptional enhanced associate domain (TEAD) proteins are key downstream effectors of the Hippo signaling pathway that play a crucial role in various cell processes including tissue development, regeneration, cell proliferation and cancer. TEADs contain a hydrophobic auto-palmitoylation pocket that can bind palmitic acid and stabilize TEADs from being degraded. Inhibitors targeting this palmitoylation pocket typically consist of hydrophobic pharmacophores. Carboranes is a cage-shaped molecule exhibiting superior hydrophobicity compared to adamantane or phenyl groups. Herein, we incorporated carborane into known TEAD inhibitors for better interaction with the hydrophobic palmitate pocket. Compounds 1f and 1l are identified as TEAD transcription inhibitors with strong anti-proliferation and anti-migration activities toward prostate cancer cell lines. They also significantly reduced TEAD-regulated downstream gene expressions.
Collapse
Affiliation(s)
- Chaofan Li
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Yingshuang Zhang
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Ziyin Zhang
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Yirong Zhang
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Yuxuan Song
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China
| | - Linyuan Wang
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Changxian Yuan
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Guanxiang Hao
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Nan Sun
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Hongjing Li
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China
| | - Zhiguang Zhang
- College of Chemical and Pharmaceutical Engineering, Hebei University of Science and Technology, Shijiazhuang 050018, China
| | - Yundong He
- Shanghai Key Laboratory of Regulatory Biology, The Institute of Biomedical Sciences, School of Life Sciences, East China Normal University, Shanghai, 200241, China.
| | - Sinan Wang
- School of Biomedical Engineering & State Key Laboratory of Advanced Medical Materials and Devices, ShanghaiTech University, Shanghai 201210, China.
| |
Collapse
|
4
|
Simerzin A, Ackerman EE, Fujimaki K, Kohler RH, Iwamoto Y, Heltberg MS, Jambhekar A, Weissleder R, Lahav G. Cell confluency affects p53 dynamics in response to DNA damage. Mol Biol Cell 2025; 36:br16. [PMID: 40202833 DOI: 10.1091/mbc.e24-09-0394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025] Open
Abstract
The tumor suppressor protein p53 plays a key role in the cellular response to DNA damage. In response to DNA double-strand breaks (DSB), cultured cells exhibit oscillations of p53 levels, which impact gene expression and cell fate. The dynamics of p53 in vivo have only been studied in fixed tissues or using reporters for p53's transcriptional activity. Here we established breast tumors expressing a fluorescent reporter for p53 levels and employed intravital imaging to quantify its dynamics in response to DSB in vivo. Our findings revealed large heterogeneity among individual cells, with most cells exhibiting a single prolonged pulse. We then tested how p53 dynamics might change under high cell confluency, one factor that differs between cell culture and tissues. We revealed that highly confluent cultured breast cancer cells also show one broad p53 pulse instead of oscillations. Through mathematical modeling, sensitivity analysis, and live-cell imaging, we identified low levels of the phosphatase Wip1, a transcriptional target and negative regulator of p53, as a key contributor to these dynamics. Because high cell confluency better reflects the microenvironment of tissues, the impact of cell confluency on p53 dynamics may have important consequences for cancerous tissues responding to DNA damage-inducing therapies.
Collapse
Affiliation(s)
- Alina Simerzin
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115
| | - Emily E Ackerman
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115
| | - Kotaro Fujimaki
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115
| | - Rainer H Kohler
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114
| | - Yoshiko Iwamoto
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114
| | - Mathias S Heltberg
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115
- Niels Bohr Institute, University of Copenhagen, Copenhagen, Denmark 2100
| | - Ashwini Jambhekar
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115
| | - Ralph Weissleder
- Center for Systems Biology, Massachusetts General Hospital, Boston, MA 02114
| | - Galit Lahav
- Department of Systems Biology, Blavatnik Institute at Harvard Medical School, Boston, MA 02115
| |
Collapse
|
5
|
Tang L, Wang Y, Mao S, Yu Z, Chen Y, Xu X, Cai W, Lai K, Yang G, Huang T. Engineered bone-targeting apoptotic vesicles as a minimally invasive nanotherapy for heterotopic ossification. J Nanobiotechnology 2025; 23:348. [PMID: 40369573 PMCID: PMC12077018 DOI: 10.1186/s12951-025-03431-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 05/01/2025] [Indexed: 05/16/2025] Open
Abstract
Heterotopic Ossification (HO), refers to pathological extra skeletal bone formation, and there are currently no reliable methods except surgery to reverse these unexpected calcified tissues. Apoptotic vesicles (ApoEVs) are membrane-bound vesicles released by apoptotic cells, which are involved in metabolism regulation and intercellular communication. Due to its superior trauma-healing ability, the hard palate mucosa is expected to become an essential resource for tissue engineering. This work presents a minimally invasive nanotherapy based on an engineered apoEV. Briefly, apoEVs were extracted from hard palate mucosa and engineered with bone-targeting peptide SDSSD to treat HO. This engineered apoEV not only can achieve directed localization of heterotopic bones but also has the compelling dual function of promoting osteoclastic differentiation while inhibiting osteogenic differentiation. The underlying mechanism involves the activation of Hippo and Notch pathways, as well as the regulation of pyrimidine metabolism. We envision that this engineered apoEV may be a feasible and effective strategy for reversing HO.
Collapse
Affiliation(s)
- Like Tang
- Stomatology Hospital, School of Stomatology, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Hangzhou, 310000, China
| | - Yuchen Wang
- Stomatology Hospital, School of Stomatology, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Hangzhou, 310000, China
| | - Shihua Mao
- Stomatology Hospital, School of Stomatology, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Hangzhou, 310000, China
| | - Zhou Yu
- Stomatology Hospital, School of Stomatology, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Hangzhou, 310000, China
| | - Yitong Chen
- Stomatology Hospital, School of Stomatology, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Hangzhou, 310000, China
| | - Xiaoqiao Xu
- The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Wenjin Cai
- Stomatology Hospital, School of Stomatology, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Hangzhou, 310000, China
| | - Kaichen Lai
- Stomatology Hospital, School of Stomatology, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Hangzhou, 310000, China
- Department of Implantology, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China
| | - Guoli Yang
- Stomatology Hospital, School of Stomatology, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Hangzhou, 310000, China.
- Department of Implantology, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China.
| | - Tingben Huang
- Stomatology Hospital, School of Stomatology, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Engineering Research Center of Oral Biomaterials and Devices of Zhejiang Province, Zhejiang University School of Medicine, Cancer Center of Zhejiang University, Hangzhou, 310000, China.
- Department of Implantology, The Affiliated Stomatology Hospital, Zhejiang University School of Medicine, Hangzhou, 310000, China.
| |
Collapse
|
6
|
Pascual-Vargas P, Arias-Garcia M, Roumeliotis TI, Choudhary JS, Bakal C. Integration of focal adhesion morphogenesis and polarity by DOCK5 promotes YAP/TAZ-driven drug resistance in TNBC. Mol Omics 2025. [PMID: 40353692 PMCID: PMC12068046 DOI: 10.1039/d4mo00154k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Accepted: 04/04/2025] [Indexed: 05/14/2025]
Abstract
YAP and TAZ are transcriptional co-activators that are inhibited by sequestration in the cytoplasm. Cellular signalling pathways integrate soluble, mechanical (cytoskeleton, adhesion), and geometric (cell size, morphology) cues to regulate the translocation of YAP/TAZ to the nucleus. In triple-negative breast cancer (TNBC) cells, both signalling and morphogenesis are frequently rewired, leading to increased YAP/TAZ translocation, which drives proliferation, invasion, and drug resistance. However, whether this increased YAP/TAZ translocation is due to alterations in upstream signalling events or changes in cell morphology remains unclear. To gain insight into YAP/TAZ regulation in TNBC cells, we performed multiplexed quantitative genetic screens for YAP/TAZ localisation and cell shape, enabling us to determine whether changes in YAP/TAZ localisation following gene knockdown could be explained by alterations in cell morphology. These screens revealed that the focal adhesion (FA)-associated RhoGEF DOCK5 is essential for YAP/TAZ nuclear localisation in TNBC cells. DOCK5-defective cells exhibit defects in FA morphogenesis and fail to generate a stable, polarised leading edge, which we propose contributes to impaired YAP/TAZ translocation. Mechanistically, we implicate DOCK5's ability to act as a RacGEF and as a scaffold for NCK/AKT as key to its role in FA morphogenesis. Importantly, DOCK5 is essential for promoting the resistance of LM2 cells to the clinically used MEK inhibitor Binimetinib. Taken together, our findings suggest that DOCK5's role in TNBC cell shape determination drives YAP/TAZ upregulation and drug resistance.
Collapse
Affiliation(s)
- Patricia Pascual-Vargas
- Chester Beatty Laboratories, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| | - Mar Arias-Garcia
- Chester Beatty Laboratories, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| | - Theodoros I Roumeliotis
- Chester Beatty Laboratories, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| | - Jyoti S Choudhary
- Chester Beatty Laboratories, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| | - Chris Bakal
- Chester Beatty Laboratories, Division of Cancer Biology, Institute of Cancer Research, 237 Fulham Road, London SW3 6JB, UK.
| |
Collapse
|
7
|
Li H, Li S, Kanamori Y, Liu S, Moroishi T. Auranofin resensitizes ferroptosis-resistant lung cancer cells to ferroptosis inducers. Biochem Biophys Res Commun 2025; 770:151992. [PMID: 40373379 DOI: 10.1016/j.bbrc.2025.151992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/23/2025] [Accepted: 05/09/2025] [Indexed: 05/17/2025]
Abstract
Lung cancer, a major cause of cancer-related mortality, has limited therapeutic options, especially for advanced cases. Ferroptosis, an iron-dependent form of cell death, is a potential therapeutic strategy for this disease; however, resistance mechanisms in the tumor microenvironment impede its effectiveness. Therefore, in this study, we aimed to investigate the efficacy of sulfasalazine (SAS), a ferroptosis inducer, and auranofin (AUR), a Food and Drug Administration-approved anti-inflammatory agent, combination to counteract ferroptosis resistance in lung cancer. SAS induced ferroptosis in vitro; however, its efficacy in vivo was limited, possibly because of factors, such as nutrient deprivation and high cell density, in the microenvironment that suppressed the activities of Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), key regulators of ferroptosis resistance. Screening of 2483 drugs revealed AUR as a compound resensitizing the YAP/TAZ-deficient lung cancer cells to ferroptosis. Moreover, SAS and AUR combination significantly enhanced lipid peroxidation and reactive oxygen species accumulation, further driving ferroptosis in cells. This combination effectively inhibited tumor growth and enhanced survival in a murine lung cancer model. Overall, our findings suggest that AUR potentiates ferroptosis-based therapies, serving as an effective candidate to overcome ferroptosis resistance in lung cancer.
Collapse
Affiliation(s)
- Hao Li
- Department of Molecular and Medical Pharmacology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Shuran Li
- Department of Molecular and Medical Pharmacology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Yohei Kanamori
- Department of Molecular and Medical Pharmacology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Saisai Liu
- Department of Molecular and Medical Pharmacology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan
| | - Toshiro Moroishi
- Department of Molecular and Medical Pharmacology, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan; Center for Metabolic Regulation of Healthy Aging, Faculty of Life Sciences, Kumamoto University, 1-1-1 Honjo, Kumamoto, 860-8556, Japan; Division of Cellular Dynamics, Medical Research Laboratory, Institute of Integrated Research, Institute of Science Tokyo, 1-5-45 Yushima, Tokyo, 113-8510, Japan.
| |
Collapse
|
8
|
Wu KP, Yan ZJ, Zhuang XX, Hua JL, Li MX, Huang K, Qi YX. Dynamic structure and function of nuclear pore protein complex: Potential roles of lipid and lamins regulated nuclear membrane curvature. Int J Biol Macromol 2025:144104. [PMID: 40350114 DOI: 10.1016/j.ijbiomac.2025.144104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 05/05/2025] [Accepted: 05/08/2025] [Indexed: 05/14/2025]
Abstract
The nuclear pore complex (NPC), a massive and highly sophisticated protein assembly, forms a channel embedded in the nuclear envelope (NE) of eukaryotic cells. As a critical gateway, the NPC mediates the bidirectional transport of macromolecules between the cytoplasm and the nucleus. Here, we overview the structure and transport function of this protein complex, and highlight the selective barrier model of NPC transport functional modules. Nuclear membrane curvature (NMC) is a critical parameter for quantifying nuclear deformation. We discuss the mechanism by which NMC regulates dynamic NPC structure, function and distribution. Furthermore we highlight the role of two key factors, i.e. lipid composition and lamins distribution, in NPC dynamics while elucidating their regulatory mechanisms. The investigations on the dynamic structure and function of NPC modulated by NMC provide a new avenue for understanding the role of NPC in different pathological conditions. This knowledge could contribute to the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Kun-Peng Wu
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, 200240 Shanghai, China
| | - Zhi-Jie Yan
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, 200240 Shanghai, China
| | - Xiao-Xi Zhuang
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, 200240 Shanghai, China
| | - Jin-Liang Hua
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, 200240 Shanghai, China
| | - Meng-Xiao Li
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, 200240 Shanghai, China
| | - Kai Huang
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, 200240 Shanghai, China.
| | - Ying-Xin Qi
- Institute of Mechanobiology & Medical Engineering, School of Life Sciences & Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, 200240 Shanghai, China.
| |
Collapse
|
9
|
Guan X, Wu D, Zhu H, Zhu B, Wang Z, Xing H, Zhang X, Yan J, Guo Y, Lu Y. 3D pancreatic ductal adenocarcinoma desmoplastic model: Glycolysis facilitating stemness via ITGAV-PI3K-AKT-YAP1. BIOMATERIALS ADVANCES 2025; 170:214215. [PMID: 39889369 DOI: 10.1016/j.bioadv.2025.214215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 11/14/2024] [Accepted: 01/27/2025] [Indexed: 02/03/2025]
Abstract
The distinctive desmoplastic tumor microenvironment (TME) of pancreatic ductal adenocarcinoma (PDAC) is crucial in determining the stemness of tumor cells. And the conventional two-dimensional (2D) culture does not adequately mimic the TME. Therefore, a three-dimensional (3D) PDAC desmoplastic model was constructed using GelMA and HAMA, which provides benefits in terms of simulating both the main components (COL and HA) and the crosslinking of the extracellular matrix. We found that the 3D PDAC desmoplastic model upregulated the expression of the markers for stemness (NANOG and OCT4) and glycolysis (HK2 and GLUT2), and elevated the level of glycolysis, including increased glucose consumption and lactic acid production. Additionally, YAP1 played a crucial role in promoting glycolysis, which boosted stemness. Furthermore, RNA sequencing (RNA-seq) was employed to explore the underlying mechanisms associated with stemness within the 3D desmoplastic model. Subsequent KEGG pathway analysis indicated the activation of the PI3K-AKT signaling pathway, providing insights into the molecular processes at play. Using bioinformatics, qRT-PCR and western blot, we proposed that ITGAV-PI3K-AKT-YAP1 axis may account for the glycolysis mediated the stemness. Collectively, the 3D desmoplastic model may serve as a new platform for understanding the underlying mechanism by which the TME induces stemness.
Collapse
Affiliation(s)
- Xiaoqi Guan
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, 226001 Nantong, Jiangsu, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, 226001 Nantong, Jiangsu, China
| | - Di Wu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, 226001 Nantong, Jiangsu, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, 226001 Nantong, Jiangsu, China
| | - Hongyu Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, 226001 Nantong, Jiangsu, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, 226001 Nantong, Jiangsu, China
| | - Biwen Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, 226001 Nantong, Jiangsu, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, 226001 Nantong, Jiangsu, China
| | - Zhen Wang
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, 226001 Nantong, Jiangsu, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, 226001 Nantong, Jiangsu, China
| | - Haowei Xing
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, 226001 Nantong, Jiangsu, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, 226001 Nantong, Jiangsu, China
| | - Xue Zhang
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, 226001 Nantong, Jiangsu, China; Key Laboratory of Neuro-regeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuro-regeneration, Nantong University, 226001 Nantong, Jiangsu, China
| | - Jiashuai Yan
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, 226001 Nantong, Jiangsu, China; Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, 226001 Nantong, Jiangsu, China
| | - Yibing Guo
- Research Center of Clinical Medicine, Affiliated Hospital of Nantong University, Medical School of Nantong University, 226001 Nantong, Jiangsu, China.
| | - Yuhua Lu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Nantong University, Medical School of Nantong University, 226001 Nantong, Jiangsu, China.
| |
Collapse
|
10
|
Hou X, Ren C, Jin J, Chen Y, Lyu X, Bi K, Carrillo ND, Cryns VL, Anderson RA, Sun J, Chen M. Phosphoinositide signalling in cell motility and adhesion. Nat Cell Biol 2025; 27:736-748. [PMID: 40169755 DOI: 10.1038/s41556-025-01647-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Accepted: 02/28/2025] [Indexed: 04/03/2025]
Abstract
Cell motility and adhesion are fundamental components for diverse physiological functions, including embryonic development, immune responses and tissue repair. Dysregulation of these processes can lead to a range of diseases, including cancer. Cell motility and adhesion are complex and often require regulation by an intricate network of signalling pathways, with phosphatidylinositol phosphates (PIPs) having a central role. PIPs are derived from phosphatidylinositol phosphorylation and are instrumental in mediating membrane dynamics, intracellular trafficking, cytoskeletal organization and signal transduction, all of which are crucial for cellular responses to environmental stimuli. Here we discuss the mechanisms through which PIPs modulate cell motility and adhesion by examining their roles at focal adhesions, within the cytoskeleton, at protein scaffolds and in the nucleus. By providing a comprehensive overview of PIP signalling, this Review underscores their significance in maintaining cellular homeostasis and highlights their potential as therapeutic targets in diseases characterized by aberrant cell motility and adhesion.
Collapse
Affiliation(s)
- Xiaoting Hou
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- SUSTech Homeostatic Medicine Institute, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Chang Ren
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- SUSTech Homeostatic Medicine Institute, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Jing Jin
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Department of Critical Care Medicine, Shenzhen People's Hospital (The Second Clinical Medical College at Jinan University and The First Affiliated Hospital at the Southern University of Science and Technology), Shenzhen, China
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, Shenzhen, China
| | - Yu Chen
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- SUSTech Homeostatic Medicine Institute, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xinyu Lyu
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Kangle Bi
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- SUSTech Homeostatic Medicine Institute, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Noah D Carrillo
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Vincent L Cryns
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
- University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Richard A Anderson
- University of Wisconsin Carbone Cancer Center, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA
| | - Jichao Sun
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China.
- Department of Critical Care Medicine, Shenzhen People's Hospital (The Second Clinical Medical College at Jinan University and The First Affiliated Hospital at the Southern University of Science and Technology), Shenzhen, China.
- Guangdong Provincial Clinical Research Center for Geriatrics, Shenzhen Clinical Research Center for Geriatrics, Shenzhen People's Hospital, Shenzhen, China.
| | - Mo Chen
- Department of Pharmacology, Joint Laboratory of Guangdong-Hong Kong Universities for Vascular Homeostasis and Diseases, School of Medicine, Southern University of Science and Technology, Shenzhen, China.
- SUSTech Homeostatic Medicine Institute, School of Medicine, Southern University of Science and Technology, Shenzhen, China.
| |
Collapse
|
11
|
Huang L, Yuan W, Li X, Liu Y, Wan R, Ma X, Liu T, Liang J, Zhu Y. CDK4/6-mediated phosphorylation of DUB3 promotes YAP1 stability and hepatocellular carcinoma progression. Cell Death Discov 2025; 11:212. [PMID: 40307228 PMCID: PMC12044017 DOI: 10.1038/s41420-025-02493-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 04/04/2025] [Accepted: 04/14/2025] [Indexed: 05/02/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most lethal malignancies, frequently characterized by high expression and activation of Yes-associated protein 1 (YAP1), a key effector in the Hippo signaling pathway. Despite its crucial role in HCC progression, effective therapies directly targeting YAP1 remain challenging, underscoring the need to explore the regulatory mechanisms underlying its aberrant expression and activation. In this study, we identify cyclin-dependent kinase 4 and 6 (CDK4/6) as uncharacterized regulators of YAP1 in HCC. Genetic ablation or pharmacological inhibition of CDK4/6 significantly destabilizes YAP1 and attenuates its oncogenic functions both in vitro and in vivo. Furthermore, we establish DUB3 as a bona fide deubiquitinase of YAP1. Mechanistically, CDK4/6 directly phosphorylates DUB3, enhancing its deubiquitinase activity towards YAP1, which promotes tumor growth and contributes to chemo-resistance in HCC. Collectively, our findings unveil the previously unrecognized function and significance of the CDK4/6-DUB3 axis in stabilizing YAP1 and provide a rationale for potential therapeutic interventions in the treatment of HCC.
Collapse
Grants
- National Natural Science Foundation of China (Grant No. 81603133), Guangdong Basic and Applied Basic Research Foundation (Grant No. 2022A1515012371 and 2024A1515010450), Guangzhou Basic Research Program Basic and Applied Basic Research Project (Grant No. 2023A04J0645)
- National Natural Science Foundation of China (Grant No. 82473109), Guangdong Basic and Applied Basic Research Foundation (Grant No. 2024A1515013266 and 2024B1515040007), Guangdong Major Project of Basic and Applied Basic Research (Grant No. 2023B0303000026), Major Talent Program of Guangdong Provincial (Grant No. 2019QN01Y933), the project of State Key Laboratory of Functions and Applications of Medicinal Plants, Guizhou Medicinal University (Grant No. QJJ[2022]420), Fundamental Research Funds for the Central Universities (Grant No. 21622102), Medical Joint Fund of Jinan University (Grant No. YXJC2022006)
- Medical Joint Fund of Jinan University (Grant No. YXZY2024018), the Science and Technology Project of Guangzhou (Grant No. 2025A03J4261)
Collapse
Affiliation(s)
- Lei Huang
- College of Pharmacy / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangdong, 510632, China
| | - Wenying Yuan
- Heze Traditional Chinese Medicine Hospital, Shandong, 274000, China
| | - Xinying Li
- College of Pharmacy / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangdong, 510632, China
| | - Yixia Liu
- College of Pharmacy / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangdong, 510632, China
| | - Rui Wan
- College of Pharmacy / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangdong, 510632, China
| | - Xiuqing Ma
- College of Pharmacy / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangdong, 510632, China
| | - Tongzheng Liu
- College of Pharmacy / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangdong, 510632, China.
| | - Junjie Liang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Jinan University, Guangdong, 510630, China.
| | - Yingjie Zhu
- College of Pharmacy / International Cooperative Laboratory of Traditional Chinese Medicine Modernization and Innovative Drug Development of Ministry of Education (MOE) of China, Jinan University, Guangdong, 510632, China.
| |
Collapse
|
12
|
Pele KG, Calderón-Villalba A, Amaveda H, Mora M, Zhang-Zhou J, Pérez MÁ, García-Aznar JM, Alamán-Díez P, García-Gareta E. Novel hydrogel-based cancer-on-a-chip models for growth of 3D multi-cellular structures and investigation of early angiogenesis in pancreatic ductal adenocarcinoma. Colloids Surf B Biointerfaces 2025; 253:114736. [PMID: 40315572 DOI: 10.1016/j.colsurfb.2025.114736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 03/27/2025] [Accepted: 04/23/2025] [Indexed: 05/04/2025]
Abstract
Cancer-on-a-chip models have enormous potential for the study of tumour development events. Here, we investigated hydrogels of egg white (EW) and gelatin for growth of 3D multi-cellular structures and investigation of early angiogenesis inside microfluidic devices. We focused on pancreatic ductal adenocarcinoma (PDAC), a devastating gastrointestinal malignancy. EW/gelatin hydrogels were stiffer and showed porous globular structures compared to the fibrous network of collagen I molecules. PANC-1 cells preferentially formed significantly larger spheroids in collagen I than in EW/gelatin hydrogels, whilst cell aggregates in the shape of grape-like clusters were significantly larger and more abundant in EW/gelatin. Cells inside the aggregates showed active cell unions, secreted matrix, and formed active unions with the surrounding EW/gelatin hydrogel. Early stages of PDAC were recreated by co-culture of two different microenvironments, one for PANC-1 and another one for fibroblasts, for investigating the secretion of soluble angiogenic factors, which depended on the role of each factor in the angiogenic and tumorigenic processes. Overall, cancer cell proliferation and establishment of a tumour vasculature were favoured. This study demonstrates the importance of the microenvironment in tumour cells behaviour as well as the complex interplay between the different cells present in PDAC to establish a tumoural vasculature.
Collapse
Affiliation(s)
- Karinna Georgiana Pele
- Multiscale in Mechanical & Biological Engineering Research Group, Aragon Institute of Engineering Research (I3A),School of Engineering & Architecture, University of Zaragoza, Zaragoza, Aragon 50018, Spain
| | - Alejandro Calderón-Villalba
- Multiscale in Mechanical & Biological Engineering Research Group, Aragon Institute of Engineering Research (I3A),School of Engineering & Architecture, University of Zaragoza, Zaragoza, Aragon 50018, Spain
| | - Hippolyte Amaveda
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC and University of Zaragoza, Zaragoza, Aragon 50018, Spain
| | - Mario Mora
- Instituto de Nanociencia y Materiales de Aragón (INMA), CSIC and University of Zaragoza, Zaragoza, Aragon 50018, Spain
| | - Jack Zhang-Zhou
- Multiscale in Mechanical & Biological Engineering Research Group, Aragon Institute of Engineering Research (I3A),School of Engineering & Architecture, University of Zaragoza, Zaragoza, Aragon 50018, Spain
| | - María Ángeles Pérez
- Multiscale in Mechanical & Biological Engineering Research Group, Aragon Institute of Engineering Research (I3A),School of Engineering & Architecture, University of Zaragoza, Zaragoza, Aragon 50018, Spain; Aragon Institute for Health Research (IIS Aragon), Miguel Servet University Hospital, Zaragoza, Aragon 50009, Spain
| | - José Manuel García-Aznar
- Multiscale in Mechanical & Biological Engineering Research Group, Aragon Institute of Engineering Research (I3A),School of Engineering & Architecture, University of Zaragoza, Zaragoza, Aragon 50018, Spain; Aragon Institute for Health Research (IIS Aragon), Miguel Servet University Hospital, Zaragoza, Aragon 50009, Spain
| | - Pilar Alamán-Díez
- Multiscale in Mechanical & Biological Engineering Research Group, Aragon Institute of Engineering Research (I3A),School of Engineering & Architecture, University of Zaragoza, Zaragoza, Aragon 50018, Spain
| | - Elena García-Gareta
- Multiscale in Mechanical & Biological Engineering Research Group, Aragon Institute of Engineering Research (I3A),School of Engineering & Architecture, University of Zaragoza, Zaragoza, Aragon 50018, Spain; Aragon Institute for Health Research (IIS Aragon), Miguel Servet University Hospital, Zaragoza, Aragon 50009, Spain; Division of Biomaterials & Tissue Engineering, UCL Eastman Dental Institute, University College London, London NW3 2QG, United Kingdom.
| |
Collapse
|
13
|
Ke A, Yang W, Zhang W, Chen Y, Meng X, Liu J, Dai D. The cardiac glycoside periplocymarin sensitizes gastric cancer to ferroptosis via the ATP1A1-Src-YAP/TAZ-TFRC axis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 142:156804. [PMID: 40311597 DOI: 10.1016/j.phymed.2025.156804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 04/15/2025] [Accepted: 04/23/2025] [Indexed: 05/03/2025]
Abstract
BACKGROUND Targeting ferroptosis vulnerabilities in tumors has become an increasingly promising therapeutic strategy. While the regulatory effects of natural products on ferroptosis are progressively being elucidated, the role of cardiac glycosides in modulating ferroptosis remains poorly understood. PURPOSE This study aims to investigate the ferroptosis-sensitizing effects of periplocymarin (PPM), a cardiac glycoside derived from the traditional plant Periploca sepium, and to elucidate the underlying molecular mechanisms. METHODS The effects of PPM on ferroptosis regulation were comprehensively assessed through functional assays, followed by sequencing analysis to identify associated signaling pathways. Subsequent mechanistic validation experiments were conducted to confirm the upstream and downstream regulatory components involved in this ferroptosis-modulating axis. RESULTS PPM induced slow and mild apoptosis in gastric cancer cells through the inhibition of glycolysis. However, when combined with ferroptosis inducers, it promoted rapid and robust ferroptosis. In vivo, PPM sensitized gastric cancer xenografts to cisplatin-induced ferroptosis with no observable cardiotoxicity or renal impairment. Mechanistically, PPM targeted the α1 subunit of the Na+/K+-ATPase (ATP1A1), leading to the activation of Src, which subsequently induced tyrosine phosphorylation of YAP/TAZ in a Hippo-independent manner, promoting their nuclear translocation. The YAP/TAZ-TEAD transcriptional complex directly bound to the TFRC promoter region between nucleotides 401-409 upstream of the transcription start site, thereby activating TFRC transcription. This resulted in increased iron influx, elevated lipid peroxidation, and heightened sensitivity to ferroptosis. Notably, ATP1A1 was essential for ferroptosis resistance, as its knockdown mimicked the sensitizing effect of PPM on ferroptosis. Moreover, the oncogenic Src-YAP/TAZ-TFRC axis may have represented a ferroptosis vulnerability and a potential biomarker in ferroptosis therapy for cancer. Importantly, other cardiac glycosides targeting Na+/K+-ATPase, such as digitoxin and bufalin, also enhanced ferroptosis sensitivity in gastric cancer cells through activation of YAP/TAZ signaling. CONCLUSION Our findings establish the cardiac glycoside PPM as a novel ferroptosis sensitizer that targets ATP1A1 to activate the Src-YAP/TAZ-TFRC axis, providing mechanistic insights for repurposing cardiac glycosides as ferroptosis modulators in precision combinatorial cancer therapy.
Collapse
Affiliation(s)
- Angting Ke
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Weiguang Yang
- Department of Nephrology, the First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Wanchuan Zhang
- Department of Gastroenterology, Endoscopic Center, Shengjing Hospital of China Medical University, Shenyang 110004, China
| | - Yibin Chen
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China
| | - Xiangyu Meng
- Department of Gastric Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital, Shenyang 110042, China
| | - Jie Liu
- Translational Research Experiment Department, Science Experiment Center, China Medical University, Shenyang 110122, China
| | - Dongqiu Dai
- Department of Surgical Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China; Cancer Center, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, China.
| |
Collapse
|
14
|
Yu M, Wang J, Zhang X, Zhang H, Li C, Li J, Lin J, Zheng J, Huang L, Li Y, Sun S. The mechanism of YAP/TAZ transactivation and dual targeting for cancer therapy. Nat Commun 2025; 16:3855. [PMID: 40274828 PMCID: PMC12022045 DOI: 10.1038/s41467-025-59309-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 04/17/2025] [Indexed: 04/26/2025] Open
Abstract
Transcriptional coactivators Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) play key roles in cancers through transcriptional outputs. However, their transactivation mechanisms remain unclear, and effective targeting strategies are lacking. Here, we show that YAP/TAZ possess a hydrophobic transactivation domain (TAD). TAD knockout prevents tumor establishment due to growth defects and enhances immune attack. Mechanistically, TADs facilitate preinitiation complex (PIC) assembly by recruiting the TATA-binding protein-associated factor 4 (TAF4)-dependent TFIID complex and enhance RNA polymerase II (Pol II) elongation through mediator complex subunit 15 (MED15)-dependent mediator recruitment for the expressions of oncogenic/immune-suppressive programs. The synthesized peptide TJ-M11 selectively disrupts TAD interactions with MED15 and TAF4, suppressing tumor growth and sensitizing tumors to immunotherapy. Our findings demonstrate that YAP/TAZ TADs exhibit dual functions in PIC assembly and Pol II elongation via hydrophobic interactions, which represent actionable targets for cancer therapy and combination immunotherapy.
Collapse
Affiliation(s)
- Man Yu
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Jingning Wang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Xiao Zhang
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Haoran Zhang
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Chaoqiang Li
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
| | - Juebei Li
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Jiaming Lin
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China
| | - Jie Zheng
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, UCAS, Hangzhou, China
| | - Liu Huang
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yan Li
- Department of Pathogen Biology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China.
- Hubei Key Laboratory of Drug Target Research and Pharmacodynamic Evaluation, Wuhan, China.
| | - Shuguo Sun
- Department of Human Anatomy, Histology and Embryology, School of Basic Medicine, Tongji Medical College and State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
15
|
Miao Z, Sha Z, He J, Liang Y, Tan L, Zhao Y, Cui X, Zhong J, Zhong R, Liang H, Yue W, Qiu B, Gao Y, Zhang L, Teng Z, He Z, Chen L, Xiao R, Pei X, He C. Long non-coding RNA LRTOR drives osimertinib resistance in non-small cell lung cancer by boosting YAP positive feedback loop. Drug Resist Updat 2025:101245. [PMID: 40316465 DOI: 10.1016/j.drup.2025.101245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 04/02/2025] [Accepted: 04/15/2025] [Indexed: 05/04/2025]
Abstract
The therapeutic efficacy of osimertinib (OSI) in EGFR-mutant lung cancer is ultimately limited by the onset of acquired resistance, of which the mechanisms remain poorly understood. Here, we identify a novel long non-coding RNA, LRTOR, as a key driver of OSI resistance in non-small cell lung cancer (NSCLC). Clinical data indicate that elevated LRTOR expression correlates with poor prognosis in OSI-resistant patients. Functionally, LRTOR promotes tumor growth and confers OSI resistance both in vitro and in vivo. Mechanistically, LRTOR shields YAP from LATS-mediated phosphorylation at Ser127 and Ser381, preventing its proteasomal degradation. Furthermore, LRTOR facilitates the interaction between YAP and KCMF1, promoting K63-linked ubiquitination, nuclear translocation of YAP, and formation of the YAP/TEAD1 transcriptional complex, which in turn triggers the transcription of LRTOR, establishing a positive feedback loop that amplifies oncogenic signaling of YAP and consequently induces OSI resistance. LRTOR depletion by siRNA restores OSI sensitivity in resistant tumors, as demonstrated in patient-derived organoid xenograft models. Our findings unveil LRTOR as a central regulator of OSI resistance in NSCLC and propose it as a promising therapeutic and prognostic target for overcoming acquired OSI resistance in EGFR-mutant lung cancer.
Collapse
Affiliation(s)
- Zhimin Miao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Zhou Sha
- Department of Thoracic Oncology, The Cancer Center of The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Jianzhong He
- Department of Pathology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Yongkai Liang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Lihua Tan
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Yuxin Zhao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Xiaobing Cui
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Jinmiao Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Ruting Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Huijun Liang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Wendi Yue
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Boyang Qiu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Yunzhen Gao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Lan Zhang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Zixin Teng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Zeen He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Li Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Rufei Xiao
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China
| | - Xiaofeng Pei
- Department of Thoracic Oncology, The Cancer Center of The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China.
| | - Chengwei He
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macao SAR 999078, China; Department of Pharmaceutical Sciences, Faculty of Health Sciences, University of Macau, Taipa, Macao SAR 999078, China.
| |
Collapse
|
16
|
Yanar S, Bal Albayrak MG, Korak T, Deveci Ozkan A, Arabacı Tamer S, Kasap M. Targeting the Hippo Pathway in Breast Cancer: A Proteomic Analysis of Yes-Associated Protein Inhibition. Int J Mol Sci 2025; 26:3943. [PMID: 40362184 PMCID: PMC12071972 DOI: 10.3390/ijms26093943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 05/15/2025] Open
Abstract
The dysregulation of the Hippo signaling pathway leads to the aberrant activation of oncogenic YAP and TAZ, driving tumor progression. In breast cancer, this disruption promotes proliferation and metastasis. This study investigates the effects of CA3, a selective YAP inhibitor, on the proteome of triple-negative breast cancer MDA-MB-231 and luminal-A-like MCF7 cells. Proteomic changes were analyzed via nano-LC-MS/MS, while cytotoxicity, apoptosis, and autophagy were assessed through WST-1 assays, flow cytometry, and Western blot analyses. Bioinformatics tools were employed to identify enriched pathways. MDA-MB-231 cells exhibited an increased expression of DNA repair proteins (p < 0.05), indicating a compensatory response to maintain genomic stability. In contrast, MCF7 cells showed a downregulation of DNA repair factors (p < 0.005). Additionally, metabolic reprogramming was apparent in MCF7 cells (p < 0.001). Apoptosis assays revealed a rise in cell death, while cell cycle analysis indicated pronounced G1-phase arrest in MDA-MB-231 cells (p < 0.01). Moreover, autophagic suppression was particularly evident in MCF7 cells. This study, for the first time, provides evidence that breast cancer subtypes exhibit distinct dependencies on YAP-driven pathways, revealing potential therapeutic vulnerabilities. Targeting Hippo signaling alongside DNA repair in triple-negative breast cancer or combining YAP inhibition with metabolic blockade in luminal breast cancer holds significant potential to enhance treatment efficacy.
Collapse
Affiliation(s)
- Sevinc Yanar
- Department of Histology and Embryology, Faculty of Medicine, Sakarya University, 54187 Sakarya, Turkey
| | - Merve Gulsen Bal Albayrak
- Department of Medical Biology, Faculty of Medicine, Kocaeli University, 41380 Kocaeli, Turkey; (M.G.B.A.); (T.K.); (M.K.)
| | - Tuğcan Korak
- Department of Medical Biology, Faculty of Medicine, Kocaeli University, 41380 Kocaeli, Turkey; (M.G.B.A.); (T.K.); (M.K.)
| | - Asuman Deveci Ozkan
- Department of Medical Biology, Faculty of Medicine, Sakarya University, 54187 Sakarya, Turkey;
| | - Sevil Arabacı Tamer
- Department of Physiology, Faculty of Medicine, Sakarya University, 54187 Sakarya, Turkey;
| | - Murat Kasap
- Department of Medical Biology, Faculty of Medicine, Kocaeli University, 41380 Kocaeli, Turkey; (M.G.B.A.); (T.K.); (M.K.)
| |
Collapse
|
17
|
Zhang K, Li H, Wang T, Li F, Xie Z, Luo H, Zhu X, Kang P, Kang Q, Fei Z, Peng W. Mechanisms of bone regeneration repair and potential and efficacy of small molecule drugs. Biomed Pharmacother 2025; 187:118070. [PMID: 40262235 DOI: 10.1016/j.biopha.2025.118070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/09/2025] [Accepted: 04/17/2025] [Indexed: 04/24/2025] Open
Abstract
Bone regeneration and repair is a complex physiological process of bone formation. To date, existing research has greatly enhanced our understanding of bone regeneration and repair, achieving significant success in treating bone injuries. However, extensive bone defects, bone nonunion, and metabolic bone diseases remain incompletely solved challenges in modern medicine. With the emergence of High-Throughput Screening (HTS) technology, previous studies have identified numerous small molecule compounds with potential for inducing bone formation and enhancing bone metabolism. However, the effects of these small molecules on bone regeneration and repair through related signaling pathways have not been systematically elaborated. Therefore, in this literature review, we focus on summarizing the classical signaling pathways affecting bone regeneration and repair, as well as the research progress and applications of related small molecule drugs.
Collapse
Affiliation(s)
- Ke Zhang
- Department of Orthopedics and Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China; School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Hao Li
- Department of Orthopedics and Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China; School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Tao Wang
- Department of Orthopedics and Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Fanchao Li
- Department of Orthopedics and Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China; School of Clinical Medicine, Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Zhihong Xie
- Department of Orthopedics and Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China
| | - Hong Luo
- Department of Orthopedics,The Affiliated Wudang Hospital of Guizhou Medical University, Guiyang, Guizhou 550018, China
| | - Xuesong Zhu
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215000, China
| | - Pengde Kang
- Department of Orthopedics, Orthopedic Research Institute, West China Hospital, Sichuan University, No. 37 Guoxue Road, Chengdu, Sichuan 610041, China
| | - Qinglin Kang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai 200233, China
| | - Zhang Fei
- Department of Orthopedics and Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China.
| | - Wuxun Peng
- Department of Orthopedics and Emergency, The Affiliated Hospital of Guizhou Medical University, Guiyang, Guizhou 550004, China.
| |
Collapse
|
18
|
Hao Z, Zhou Y, Zhang Y, Wang D, Wei Y, Ji X, Sun WR, Wang P, Li Y, Lopez IB, Pedraz JL, Ramalingam M, Xie S, Wang R. Celastrol loaded nanocomplex for painless tumor therapy via YAP inhibition. Sci Rep 2025; 15:13133. [PMID: 40240779 PMCID: PMC12003811 DOI: 10.1038/s41598-025-97055-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Accepted: 04/02/2025] [Indexed: 04/18/2025] Open
Abstract
Cancer-related pain is prevalent and severely impairs patients' quality of life. However, conventional cancer therapies primarily target tumor cell destruction, often overlooking the management of cancer pain. Thus, there is an immediate necessity to develop therapeutic agents that can both suppress tumor growth and alleviate cancer pain. In this study, we report a celastrol (CEL)-based nanocomposites (PDA-BSA-MnO2-CEL) for pain-less cancer immunotherapy. Results from in vitro and in vivo experiments demonstrate the efficacy and mechanism of the nanocomposites in pain-less immunotherapy. MnO2 and CEL induce immunogenic cell death (ICD), mediating immunotherapy. Additionally, CEL significantly reduces the secretion of the immunosuppressive factor Yes-associated protein (YAP) within the tumor microenvironment, thereby enhancing the efficacy of immunotherapy. The downregulation of YAP leads to reduced expression of vascular endothelial growth factor (VEGF), inhibiting tumor growth and decreasing activation of the pain-associated VEGF receptor 1 (VEGFR1), thus providing an analgesic effect. Moreover, CEL reduces inflammatory pain by lowering levels of inflammatory factors in tumors. The design of this nanocomposites system integrates immunotherapy with cancer pain inhibition, offering a novel approach to patient-centered tumor therapy.
Collapse
Affiliation(s)
- Zhaokun Hao
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai, 264003, People's Republic of China
- Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai, 264000, People's Republic of China
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Yuming Zhou
- Department of Clinical Laboratory, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, People's Republic of China
| | - Yuqiang Zhang
- Department of Clinical Laboratory, Yantai Affiliated Hospital of Binzhou Medical University, Yantai, 264100, People's Republic of China
| | - Danyang Wang
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Yiying Wei
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Xiaopu Ji
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Wan Ru Sun
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Pingyu Wang
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - YouJie Li
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai, 264003, People's Republic of China
| | - Irene Bautista Lopez
- NanoBioCel Group, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/ EHU), 01006, Vitoria-Gasteiz, Spain
| | - José Luis Pedraz
- NanoBioCel Group, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/ EHU), 01006, Vitoria-Gasteiz, Spain
- Bioaraba Health Research Institute, Jose Atxotegi, s/n, 01009, Vitoria-Gasteiz, Spain
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III (ISCIII), 28029, Madrid, Spain
- Joint Research Laboratory (JRL) on Bioprinting and Advanced Pharma Development, Centro de investigació n Lascaray Ikergunea, A Joined Venture of TECNALIA, Basque Research & Technology Alliance (BRTA), Avenida Miguel de Unamuno, 01006, Vitoria-Gasteiz, Spain
| | - Murugan Ramalingam
- NanoBioCel Group, Department of Pharmacy and Food Science, Faculty of Pharmacy, University of the Basque Country (UPV/ EHU), 01006, Vitoria-Gasteiz, Spain.
- Bioaraba Health Research Institute, Jose Atxotegi, s/n, 01009, Vitoria-Gasteiz, Spain.
- Biomedical Research Networking Center in Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III (ISCIII), 28029, Madrid, Spain.
- Joint Research Laboratory (JRL) on Bioprinting and Advanced Pharma Development, Centro de investigació n Lascaray Ikergunea, A Joined Venture of TECNALIA, Basque Research & Technology Alliance (BRTA), Avenida Miguel de Unamuno, 01006, Vitoria-Gasteiz, Spain.
- IKERBASQUE, Basque Foundation for Science, 48013, Bilbao, Spain.
- School of Basic Medical Sciences, Binzhou Medical University, Yantai, 264003, People's Republic of China.
| | - Shuyang Xie
- Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai, 264000, People's Republic of China.
- Key Laboratory of Tumor Molecular Biology, Binzhou Medical University, Yantai, 264003, People's Republic of China.
| | - Ranran Wang
- Institute of Rehabilitation Medicine, School of Rehabilitation Medicine, Binzhou Medical University, Yantai, 264003, People's Republic of China.
- Shandong Laboratory of Advanced Materials and Green Manufacturing, Yantai, 264000, People's Republic of China.
| |
Collapse
|
19
|
Zhao G, Zeng Y, Cheng W, Karkampouna S, Papadopoulou P, Hu B, Zang S, Wezenberg E, Forn-Cuní G, Lopes-Bastos B, Julio MKD, Kros A, Snaar-Jagalska BE. Peptide-Modified Lipid Nanoparticles Boost the Antitumor Efficacy of RNA Therapeutics. ACS NANO 2025; 19:13685-13704. [PMID: 40176316 PMCID: PMC12004924 DOI: 10.1021/acsnano.4c14625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 03/25/2025] [Accepted: 03/26/2025] [Indexed: 04/04/2025]
Abstract
RNA therapeutics offer a promising approach to cancer treatment by precisely regulating cancer-related genes. While lipid nanoparticles (LNPs) are currently the most advanced nonviral clinically approved vectors for RNA therapeutics, their antitumor efficacy is limited by their unspecific hepatic accumulation after systemic administration. Thus, there is an urgent need to enhance the delivery efficiency of LNPs to target tumor-residing tissues. Here, we conjugated the cluster of differentiation 44 (CD44)-specific targeting peptide A6 (KPSSPPEE) to the cholesterol of LNPs via PEG, named AKPC-LNP, enabling specific tumor delivery. This modification significantly improved delivery to breast cancer cells both in vitro and in vivo, as shown by flow cytometry and confocal microscopy. We further used AKPC-siYT to codeliver siRNAs targeting the transcriptional coactivators YAP and TAZ, achieving potent gene silencing and increased cell death in both 2D cultures and 3D tumor spheroids, outperforming unmodified LNPs. In a breast tumor cell xenografted zebrafish model, systemically administered AKPC-siYT induced robust silencing of YAP/TAZ and downstream genes and significantly enhanced tumor suppression compared to unmodified LNPs. Additionally, AKPC-siYT effectively reduced proliferation in prostate cancer organoids and tumor growth in a patient-derived xenograft (PDX) model. Overall, we developed highly efficient AKPC-LNPs carrying RNA therapeutics for targeted cancer therapy.
Collapse
Affiliation(s)
- Gangyin Zhao
- Department
of Cellular Tumor Biology, Leiden Institute of Biology, Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands
- Shenzhen
Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 51800, China
| | - Ye Zeng
- Department
of Supramolecular & Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands
| | - Wanli Cheng
- Urology
Research Laboratory, Department for BioMedical Research, University of Bern, Bern 3010, Switzerland
| | - Sofia Karkampouna
- Urology
Research Laboratory, Department for BioMedical Research, University of Bern, Bern 3010, Switzerland
- Department
of Urology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| | - Panagiota Papadopoulou
- Department
of Supramolecular & Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands
| | - Bochuan Hu
- Department
of Supramolecular & Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands
| | - Shuya Zang
- Department
of Supramolecular & Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands
| | - Emma Wezenberg
- Department
of Supramolecular & Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands
| | - Gabriel Forn-Cuní
- Department
of Cellular Tumor Biology, Leiden Institute of Biology, Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands
| | - Bruno Lopes-Bastos
- Department
of Cellular Tumor Biology, Leiden Institute of Biology, Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands
| | - Marianna Kruithof-de Julio
- Department
of Urology, Inselspital, Bern University Hospital, University of Bern, Bern 3010, Switzerland
| | - Alexander Kros
- Department
of Supramolecular & Biomaterials Chemistry, Leiden Institute of
Chemistry, Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands
| | - B. Ewa Snaar-Jagalska
- Department
of Cellular Tumor Biology, Leiden Institute of Biology, Leiden University, Einsteinweg 55, Leiden 2333 CC, the Netherlands
| |
Collapse
|
20
|
Lv X, Liu J, Islam K, Ruan J, He C, Chen P, Huang C, Wang H, Dhar A, Moness M, Shi D, Murphy S, Zhao X, Yang S, Montoute I, Polakkattil A, Chung A, Ruiz E, Carbajal B, Padavala A, Chen L, Hua G, Chen X, Davis JS, Wang C. Hyperactivated YAP1 is essential for sustainable progression of renal clear cell carcinoma. Oncogene 2025:10.1038/s41388-025-03354-8. [PMID: 40210757 DOI: 10.1038/s41388-025-03354-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 02/12/2025] [Accepted: 03/17/2025] [Indexed: 04/12/2025]
Abstract
The most notable progress in renal clear cell carcinoma (ccRCC) in the past decades is the introduction of drugs targeting the VHL-HIF signaling pathway-associated angiogenesis. However, mechanisms underlying the development of VHL mutation-independent ccRCC are unclear. Here we provide evidence that the disrupted Hippo-YAP signaling contributes to the development of ccRCC independent of VHL alteration. We found that YAP1 and its primary target genes are frequently upregulated in ccRCC and the upregulation of these genes is associated with unfavorable patient outcomes. Research results derived from our in vitro and in vivo experimental models demonstrated that, under normoxic conditions, hyperactivated YAP1 drives the expression of FGFs to stimulate the proliferation of tumor and tumor-associated endothelial cells in an autocrine/paracrine manner. When rapidly growing cancer cells create a hypoxic environment, hyperactivated YAP1 in cancer cells induces the production of VEGF, which promotes the angiogenesis of tumor-associated endothelial cells, leading to improved tumor microenvironment and continuous tumor growth. Our study indicates that hyperactivated YAP1 is essential for maintaining ccRCC progression, and targeting the dual role of hyperactivated YAP1 represents a novel strategy to improve renal carcinoma therapy.
Collapse
Affiliation(s)
- Xiangmin Lv
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jiyuan Liu
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Kazi Islam
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jinpeng Ruan
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Chunbo He
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Obstetrics and Gynecology, Olson Center for Women's Health, University of Nebraska Medical Center, Omaha, NE, USA
| | - Peichao Chen
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Cong Huang
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Hongbo Wang
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Anjali Dhar
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Chemistry, Dartmouth College, Hanover, NH, USA
| | - Madelyn Moness
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Davie Shi
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Savannah Murphy
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Xingeng Zhao
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Siyi Yang
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Isabelle Montoute
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Aneeta Polakkattil
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Andie Chung
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Emily Ruiz
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA
| | - Brianna Carbajal
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Department of Stem cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Alekhya Padavala
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Li Chen
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Guohua Hua
- Department of Obstetrics and Gynecology, Olson Center for Women's Health, University of Nebraska Medical Center, Omaha, NE, USA
| | - Xingcheng Chen
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
| | - John S Davis
- Department of Obstetrics and Gynecology, Olson Center for Women's Health, University of Nebraska Medical Center, Omaha, NE, USA
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, USA
- Veterans Affairs Nebraska-Western Iowa Health Care System, Omaha, NE, USA
| | - Cheng Wang
- Department of Obstetrics and Gynecology, Vincent Center for Reproductive Biology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
21
|
Zhang M, Zhang B. Extracellular matrix stiffness: mechanisms in tumor progression and therapeutic potential in cancer. Exp Hematol Oncol 2025; 14:54. [PMID: 40211368 PMCID: PMC11984264 DOI: 10.1186/s40164-025-00647-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2025] [Accepted: 03/23/2025] [Indexed: 04/14/2025] Open
Abstract
Tumor microenvironment (TME) is a complex ecosystem composed of both cellular and non-cellular components that surround tumor tissue. The extracellular matrix (ECM) is a key component of the TME, performing multiple essential functions by providing mechanical support, shaping the TME, regulating metabolism and signaling, and modulating immune responses, all of which profoundly influence cell behavior. The quantity and cross-linking status of stromal components are primary determinants of tissue stiffness. During tumor development, ECM stiffness not only serves as a barrier to hinder drug delivery but also promotes cancer progression by inducing mechanical stimulation that activates cell membrane receptors and mechanical sensors. Thus, a comprehensive understanding of how ECM stiffness regulates tumor progression is crucial for identifying potential therapeutic targets for cancer. This review examines the effects of ECM stiffness on tumor progression, encompassing proliferation, migration, metastasis, drug resistance, angiogenesis, epithelial-mesenchymal transition (EMT), immune evasion, stemness, metabolic reprogramming, and genomic stability. Finally, we explore therapeutic strategies that target ECM stiffness and their implications for tumor progression.
Collapse
Affiliation(s)
- Meiling Zhang
- School of Basic Medicine, China Three Gorges University, 8 Daxue Road, Yichang, 443002, Hubei, China
- Central Laboratory, The First Affiliated Hospital of Jinan University, No. 613 Huangpu West Road, Tianhe District, Guangzhou, 510627, Guangdong, China
| | - Bin Zhang
- School of Basic Medicine, China Three Gorges University, 8 Daxue Road, Yichang, 443002, Hubei, China.
- Central Laboratory, The First Affiliated Hospital of Jinan University, No. 613 Huangpu West Road, Tianhe District, Guangzhou, 510627, Guangdong, China.
| |
Collapse
|
22
|
Marcelis L, Folpe AL. "Putting the cart before the horse": an update on promiscuous gene fusions in soft tissue tumors. Virchows Arch 2025:10.1007/s00428-025-04099-1. [PMID: 40205020 DOI: 10.1007/s00428-025-04099-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/31/2025] [Accepted: 04/02/2025] [Indexed: 04/11/2025]
Abstract
The ever-increasing availability and affordability of molecular genetic testing has revolutionized our understanding of the pathogenesis and proper classification of soft tissue tumors but has also brought new challenges. As is known, many soft tissue tumors harbor gene fusion events, and while it was initially thought that individual entities would be defined by single, specific fusions, it quickly became clear that some entities could be caused by several different fusion events (e.g., EWSR1::FLI1, EWSR1::ERG, EWSR1:FEV and others in Ewing sarcoma). More recently, it has become apparent that these fusion events themselves are "promiscuous", appearing in more than one discrete entity (e.g., EWSR1::CREB1 in clear cell sarcoma, angiomatoid fibrous histiocytoma and others). This review article will briefly discuss the best known examples of genetic promiscuity, the EWSR1/FUS::ATF1/CREB1 and ETV6::NTRK3 fusions, and more comprehensively cover recently discovered and less well-known examples of genetic promiscuity, including EWSR1::WT1, MALAT1::GLI1, YAP1::TFE3 and fusions involving members of the FET and ETS gene families.
Collapse
Affiliation(s)
- Lukas Marcelis
- Department of Pathology, University Hospitals Leuven, (UZ Leuven), 3000, Leuven, Belgium.
| | - Andrew L Folpe
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, 55902, USA
| |
Collapse
|
23
|
Passi M, Stöckl JB, Fröhlich T, Moser S, Vollmar AM, Zahler S. CDK5 interacts with MST2 and modulates the Hippo signalling pathway. FEBS Open Bio 2025; 15:647-660. [PMID: 39739588 PMCID: PMC11961382 DOI: 10.1002/2211-5463.13962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025] Open
Abstract
MST2 (STK3) is a major upstream kinase in the Hippo signalling pathway, an evolutionary conserved pathway in regulation of organ size, self-renewal and tissue homeostasis. Its downstream effectors are the transcriptional regulators YAP and TAZ. This pathway is regulated by a variety of factors, such as substrate stiffness or cell-cell contacts. Using a yeast two-hybrid screen, we detected a novel interaction between the kinases MST2 and CDK5, which we further confirmed by co-immunoprecipitation experiments. Cyclin-dependent kinase 5 (CDK5) is an unusual member of the family of cyclin-dependent kinases, involved in tumour growth and angiogenesis. Although a link between CDK5 and Hippo has been previously postulated, the mode of action is still elusive. Here, we show that knockdown of CDK5 causes reduced transcriptional activity of YAP and that CDK5 influences the phosphorylation levels of the Hippo upstream kinase LATS1. Moreover, a phosphoproteomics approach revealed that CDK5 interferes with the phosphorylation of DLG5, another upstream kinase, which regulates the Hippo pathway. Hence, CDK5 seems to act as a signalling hub for integrating the Hippo pathway and other signalling cascades. These interactions might have important implications for the use of CDK5 inhibitors, which are already in clinical use for tumour diseases.
Collapse
Affiliation(s)
- Mehak Passi
- Center for Drug ResearchLudwig‐Maximilians‐University MunichGermany
| | - Jan B. Stöckl
- Laboratory for Functional Genome Analysis, Gene Center MunichLudwig‐Maximilians‐University MunichGermany
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis, Gene Center MunichLudwig‐Maximilians‐University MunichGermany
| | - Simone Moser
- Center for Drug ResearchLudwig‐Maximilians‐University MunichGermany
- Institute of PharmacyUniversity of InnsbruckAustria
| | | | - Stefan Zahler
- Center for Drug ResearchLudwig‐Maximilians‐University MunichGermany
| |
Collapse
|
24
|
Wu Y, Jiang Y, Jiang L, Peng Y, Zhou T, Xia X, Hou F, Yuan Q, Ye L, Wei W, Zhang J, Chen Q, Feng X. Phospho-cofilin predicts efficiency of Fasudil for oral squamous cell carcinoma treatment through Yes-associated protein inhibition. Arch Oral Biol 2025; 172:106185. [PMID: 39893996 DOI: 10.1016/j.archoralbio.2025.106185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Revised: 01/26/2025] [Accepted: 01/29/2025] [Indexed: 02/04/2025]
Abstract
OBJECTIVES This study evaluates Fasudil, a Rho-associated coiled-coil-containing protein kinase (ROCK) inhibitor, for its potential to inhibit oral squamous cell carcinoma (OSCC) growth and explores phospho-cofilin as a potential biomarker for prediction treatment efficiency of Fasudil in OSCC. DESIGN A cohort of 109 OSCC patients provided tissue samples for phospho-cofilin expression analysis and survival analysis. The study examined the effect of Fasudil on OSCC cell lines HSC-3, UM1, and CAL33, assessing tumor growth inhibition through various in vitro and in vivo experiments. ROCK inhibition response and downstream mechanisms were explored by RNA sequencing, q-PCR, and immunofluorescence. RESULTS High phospho-cofilin expression in OSCC tissues correlated with poor patient outcomes and was a reliable biomarker for ROCK activity. Fasudil inhibited growth in OSCC cell lines, particularly those with high phospho-cofilin expression. ROCK inhibition led to downregulation of Yes-associated protein (YAP) activity, resulting in suppressed tumor proliferation and increased apoptosis both in vitro and in vivo. CONCLUSIONS Inhibition of ROCK/phospho-cofilin/YAP by Fasudil could suppress OSCC proliferation, while phospho-cofilin served as a potential biomarker of OSCC.
Collapse
Affiliation(s)
- Ying Wu
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yuchen Jiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Lanxin Jiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Yang Peng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Tong Zhou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Xiaoqiang Xia
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Feifei Hou
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Qiuyun Yuan
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Lu Ye
- School of Basic Medicine, Chengdu University, Chengdu, Sichuan 610106, PR China
| | - Weideng Wei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Jiuge Zhang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China
| | - Qianming Chen
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China; Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Zhejiang Provincial Clinical Research Center for Oral Diseases, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, Zhejiang 310000, PR China.
| | - Xiaodong Feng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Chinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and Management, Department of Oral Medicine, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan 610041, PR China.
| |
Collapse
|
25
|
Pu X, Zhang C, Jin J, Jin Y, Ren J, Zhou S, Patel H, Chen J, Wu B, Chen L, Qian H, Lin T. Phase separation of EEF1E1 promotes tumor stemness via PTEN/AKT-mediated DNA repair in hepatocellular carcinoma. Cancer Lett 2025; 613:217508. [PMID: 39884379 DOI: 10.1016/j.canlet.2025.217508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 01/15/2025] [Accepted: 01/27/2025] [Indexed: 02/01/2025]
Abstract
This study aimed to investigate the associations of liquid-liquid phase separation (LLPS) and tumor stemness in hepatocellular carcinomas (HCC). LLPS-related genes were extracted from DrLLPS, LLPSDB and PhaSepDB databases. Stemness index (mRNAsi) was calculated based on the data from TCGA and Progenitor Cell Biology Consortium. Through some series of bioinformatics methods, we first found that stemness index mRNAsi was associated with worse survival outcomes, immune infiltration and therapy sensitivity in HCC. G2M checkpoint and DNA repair pathways were significantly activated with high mRNAsi. Totally, 71 differentially expressed LLPS genes in HCC were correlated with mRNAsi, and a mRNAsi-associated LLPS gene signature (KPNA2, EEF1E1 and ATIC) was identified to predict prognosis for HCC patients. mRNAsi-associated LLPS genes contributed to cluster HCC patients into four molecular clusters that markedly differed on survival, immune infiltration and therapy sensitivity. Further in vivo and in vitro experiments showed that EEF1E1 was highly expressed in HepG2 and HCCLM3 cells, and EEF1E1 silencing observably inhibited tumor cell growth, liver cancer stem cells (CSCs) markers (CD133, EpCAM and SOX2) expression, enhanced DNA damage marker γH2AX expression by activating PTEN/AKT pathway. EEF1E1 could undergo LLPS condensates, and roles of EEF1E1 on tumor cells were partly reversed after inhibiting LLPS using 1, 6-hexanediol. In conclusion, EEF1E1 was identified as a phase separation protein and involves in tumor stemness and DNA damage repair in HCC. EEF1E1 and its LLPS condensate may be novel targets to elaborate the underlying mechanisms of CSCs propagation in HCC.
Collapse
Affiliation(s)
- Xiaofan Pu
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Chaolei Zhang
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Junbin Jin
- Department of Hepatobiliary Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, 312000, Zhejiang, China
| | - Yifeng Jin
- Department of Hepatobiliary Surgery, Shaoxing People's Hospital (Shaoxing Hospital, Zhejiang University School of Medicine), Shaoxing, 312000, Zhejiang, China
| | - Jianghao Ren
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Senhao Zhou
- Department of Otolaryngology Head and Neck Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Harsh Patel
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, New York, NY 11439, USA
| | - Jingyun Chen
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Bicheng Wu
- The First School of Medicine, School of Information and Engieering, Wenzhou Medical University, Wenzhou, 325000, China
| | - Leyi Chen
- School of Medicine, Zhejiang University, Hangzhou, 310000, China
| | - Haoran Qian
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China.
| | - Tianyu Lin
- Department of General Surgery, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, 310000, China.
| |
Collapse
|
26
|
Aloisi M, Deloriea J, Casey C, Pino A, Morciano P, Grifoni D, Gamberi C. DROSOPHILA: THE CENTURY-LONG FLIGHT FROM THE WILD TO THE PATIENT. MEDICAL SCIENCE PULSE 2025; 19:1-15. [PMID: 40276781 PMCID: PMC12021435 DOI: 10.5604/01.3001.0054.9627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2025] Open
Abstract
Background: Evolutionary conservation of key biological pathways between the fruit fly Drosophila melanogaster and humans and reduced genetic redundancy have long made flies a valuable genetic model organism. Thanks to the arsenal of sophisticated genetic tools developed and refined by the fly community, the use of Drosophila has expanded well beyond basic research. From the fundamental notion that genes are located on chromosomes to modeling human complex diseases such as cancer and neurological disorders, to designing fly "avatar" lines that precisely reproduce the specific mutations found in single cancer patients for personalized medicine, Drosophila continues to fuel biomedical advances. Numerous examples of drug testing in flies have yielded novel drug candidates, new uses for approved drugs, and applications for rapid drug optimization in modern approaches combining biology with medicinal chemistry. Thanks to the effectiveness of "fly pharmacology" approaches, Drosophila is also proficiently used to study the mechanism of action of environmental pollutants that represent a serious concern to human health. This review traces the history of some of the main advances in Drosophila biomedical and cancer research.
Collapse
Affiliation(s)
- Massimo Aloisi
- Department of Biology, Coastal Carolina University, Conway, South Carolina, USA
- Department of Life, Health and Environmental Sciences, L'Aquila University, Italy
| | - Jay Deloriea
- Department of Biology, Coastal Carolina University, Conway, South Carolina, USA
| | - Cody Casey
- Department of Biology, Coastal Carolina University, Conway, South Carolina, USA
| | - Alexia Pino
- Department of Biology, Coastal Carolina University, Conway, South Carolina, USA
| | - Patrizia Morciano
- Department of Life, Health and Environmental Sciences, L'Aquila University, Italy
- INFN-Laboratori Nazionali del Gran Sasso, Assergi, L'Aquila, Italy
| | - Daniela Grifoni
- Department of Life, Health and Environmental Sciences, L'Aquila University, Italy
| | - Chiara Gamberi
- Department of Biology, Coastal Carolina University, Conway, South Carolina, USA
| |
Collapse
|
27
|
Liu X, Moamer A, Gomes da Silva R, Shoham-Amizlev A, Hamam D, Shams A, Lebrun JJ, Ali S. A novel clinically relevant antagonistic interplay between prolactin and oncogenic YAP-CCN2 pathways as a differentiation therapeutic target in breast cancer. Cell Death Dis 2025; 16:221. [PMID: 40157909 PMCID: PMC11954952 DOI: 10.1038/s41419-025-07547-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 02/11/2025] [Accepted: 03/17/2025] [Indexed: 04/01/2025]
Abstract
Cellular differentiation limits cellular plasticity allowing cells to attain their specialized functional characteristics and phenotypes, whereas loss of differentiation is a hallmark of cancer. Thus, characterizing mechanisms underlying differentiation is key to discover new cancer therapeutics. We report a novel functional antagonistic relationship between the prolactin (PRL)/prolactin receptor (PRLR) differentiation pathway and YAP-CCN2 oncogenic pathway in normal mammary epithelial cells and breast cancer cells that is essential for establishing/maintaining acinar morphogenesis, cell-cell junctions and the intracellular localization of apical-basal polarity protein complexes (Par, Crumb and Scrib). Importantly, using CRISPR knockout of the PRLR in MCF7, HR+ breast cancer cells, further revealed that the negative relationship between PRL/PRLR pathway and YAP-CCN2 pathway is critical in suppressing luminal-to-basal stem-like lineage plasticity. Furthermore, the clinical relevance of this interplay was evaluated using bioinformatics approaches on several human datasets, including samples from normal breast epithelium, breast cancer, and 33 other cancer types. This analysis revealed a positive correlation between PRLR and the YAP suppressor Hippo pathway and a co-expression gene network driving favourable patients' survival outcomes in breast cancer. The therapeutic potential of this interplay was also evaluated in vitro using MDA-MB-231 cells, a preclinical model of human triple-negative breast cancer, where treatment with PRL and Verteporfin, an FDA-approved pharmacological YAP-inhibitor, alone or their combination suppressed the expression of the mesenchymal marker vimentin and the stem cell marker CD44 as well as reduced their Ki67 proliferative marker expression. Collectively, our results emphasize the pro-differentiation role of PRL/PRLR pathway in mammary and breast cancer cells and highlight that promoting PRL/PRLR signaling while inhibiting the YAP-CCN2 oncogenic pathway can be exploited as a differentiation-based combination therapeutic strategy in breast cancer.
Collapse
Affiliation(s)
- Xueqing Liu
- Department of Medicine, Cancer Research Program, Centre for Translational Biology, McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Alaa Moamer
- Department of Medicine, Cancer Research Program, Centre for Translational Biology, McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Roger Gomes da Silva
- Department of Medicine, Cancer Research Program, Centre for Translational Biology, McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Aidan Shoham-Amizlev
- Department of Medicine, Cancer Research Program, Centre for Translational Biology, McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Dana Hamam
- Department of Medicine, Cancer Research Program, Centre for Translational Biology, McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Anwar Shams
- Department of Medicine, Cancer Research Program, Centre for Translational Biology, McGill University Health Centre, McGill University, Montreal, QC, Canada
- Department of Pharmacology, College of Medicine, Taif University, Taif, Saudi Arabia
| | - Jean-Jacques Lebrun
- Department of Medicine, Cancer Research Program, Centre for Translational Biology, McGill University Health Centre, McGill University, Montreal, QC, Canada
| | - Suhad Ali
- Department of Medicine, Cancer Research Program, Centre for Translational Biology, McGill University Health Centre, McGill University, Montreal, QC, Canada.
| |
Collapse
|
28
|
Yang F, Zhou Y, Zhang Y, Wei W, Huang F, Yang D, Zhang Y, Zhang R, Xia X, Chen Q, Jiang Y, Feng X. PDLIM3 Regulates Migration and Invasion of Head and Neck Squamous Cell Carcinoma via YAP-Mediated Epithelial-Mesenchymal Transition. Int J Mol Sci 2025; 26:3147. [PMID: 40243891 PMCID: PMC11988593 DOI: 10.3390/ijms26073147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 03/25/2025] [Accepted: 03/25/2025] [Indexed: 04/18/2025] Open
Abstract
Despite significant progress in characterizing the omics landscape of head and neck squamous cell carcinoma (HNSCC), the development of precision therapies remains limited. One key factor contributing to this challenge is the marked molecular heterogeneity of HNSCC. Further investigation of molecular profiles within HNSCC may facilitate the improvement in more effective precision treatments. Here, we focus on the dysregulation of PDZ and LIM domain protein 3 (PDLIM3) in HNSCC. The expression levels of PDLIM3 were analyzed using public datasets to assess its potential role in tumor progression. We found that PDLIM3 was downregulated in pan-cancer and HNSCC. The prognostic significance of PDLIM3 was evaluated through tissue microarray, and the downregulation of PDLIM3 was correlated with poor HNSCC prognosis. Investigating the implications of PDLIM3 for tumor metastatic ability in vitro, we found that PDLIM3 suppressed the migration and invasion of HNSCC, accompanied by partially impeding the process of epithelial-mesenchymal transition (EMT). Furthermore, PDLIM3 inhibited the transcriptional activity of Yes-associated protein (YAP), suggesting that YAP may be involved in the PDLIM3-mediated suppression of HNSCC metastatic ability. Our findings identify a potential signaling axis wherein PDLIM3 regulates YAP-EMT, thereby influencing tumor metastatic ability, and suggest the potential role of PDLIM3 as a tumor suppressor and prognostic biomarker for HNSCC.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Yuchen Jiang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (F.Y.); (Y.Z.); (Y.Z.); (W.W.); (F.H.); (D.Y.); (Y.Z.); (R.Z.); (X.X.); (Q.C.)
| | - Xiaodong Feng
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases & Frontier Innovation Center for Dental Medicine Plus & Research Unit of Oral Carcinogenesis and Management & Chinese Academy of Medical Sciences, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China; (F.Y.); (Y.Z.); (Y.Z.); (W.W.); (F.H.); (D.Y.); (Y.Z.); (R.Z.); (X.X.); (Q.C.)
| |
Collapse
|
29
|
Yang JL, Ma JJ, Qu TY, Dai Q, Leng J, Fang L, Wu J, Li YJ, Yu HF. Glycolysis-related lncRNA FTX upregulates YAP1 to facilitate colorectal cancer progression via sponging miR-215-3p. Sci Rep 2025; 15:9929. [PMID: 40121300 PMCID: PMC11929783 DOI: 10.1038/s41598-025-94638-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2024] [Accepted: 03/17/2025] [Indexed: 03/25/2025] Open
Abstract
Increased evidence reveals that glycolysis is one of the key metabolic hallmarks of cancer cells. However, the roles of lncRNA FTX in energy metabolism and cancer progression remain unclear. In this study we aim to show that lncRNA FTX was significantly upregulated in cancer tissues and serum of CRC patients and CRC cell lines. Function study indicated that it could promote aerobic glycolysis, cell proliferation, migration and invasion in colorectal cancer cells. Further mechanistic studies showed, lncRNA FTX was found to function as a sponge for miR-215-3p, which reduced the ability of miR-215-3p to repress the YAP1 oncoprotein. Additionally, a negative correlation was observed between lncRNA FTX and miR-215-3p expression, and the knockdown of lncRNA FTX or miR-215-3p overexpression yielded opposite effects. In conclusion, this study demonstrates that FTX could directly combine with miR-215-3p as a competitive endogenous RNA, thus promoting the aerobic glycolysis and progression of CRC in vitro and in vivo.
Collapse
Affiliation(s)
- Jin-Lan Yang
- Department of Oncology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, 563000, Guizhou Province, China
- Cancer Disease Research Institute, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), 98# Fenghuang Road, Zunyi, 563003, Guizhou Province, China
| | - Jing-Jing Ma
- Department of Clinical Laboratory, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, 563000, Guizhou Province, China
| | - Tian-Yin Qu
- Department of Oncology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, 563000, Guizhou Province, China
- Cancer Disease Research Institute, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), 98# Fenghuang Road, Zunyi, 563003, Guizhou Province, China
| | - Qing Dai
- Department of Oncology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, 563000, Guizhou Province, China
- Cancer Disease Research Institute, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), 98# Fenghuang Road, Zunyi, 563003, Guizhou Province, China
| | - Jing Leng
- Department of Oncology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, 563000, Guizhou Province, China
- Cancer Disease Research Institute, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), 98# Fenghuang Road, Zunyi, 563003, Guizhou Province, China
| | - Lin Fang
- Department of Oncology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, 563000, Guizhou Province, China
- Cancer Disease Research Institute, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), 98# Fenghuang Road, Zunyi, 563003, Guizhou Province, China
| | - Jie Wu
- Scientific Research Center, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University, Zunyi, 563000, Guizhou Province, China
| | - Ya-Jun Li
- Department of Oncology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, 563000, Guizhou Province, China
| | - Huang-Fei Yu
- Department of Oncology, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), Zunyi, 563000, Guizhou Province, China.
- Cancer Disease Research Institute, The First People's Hospital of Zunyi (The Third Affiliated Hospital of Zunyi Medical University), 98# Fenghuang Road, Zunyi, 563003, Guizhou Province, China.
| |
Collapse
|
30
|
Silver FH. The Role of Connections Between Cellular and Tissue Mechanical Elements and the Importance of Applied Energy in Mechanotransduction in Cancerous Tissue. Biomolecules 2025; 15:457. [PMID: 40305177 PMCID: PMC12025281 DOI: 10.3390/biom15040457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2025] [Revised: 03/08/2025] [Accepted: 03/13/2025] [Indexed: 05/02/2025] Open
Abstract
In the presence of cellular mutations and impaired mechanisms of energy transmission to the attached cells and tissues, excess energy is available to upregulate some of the mechanotransduction pathways that maintain cell and tissue structure and function. The ability to transfer applied energy through integrin-mediated pathways, cell ion channels, cell membrane, cytoskeleton-nucleoskeleton connections, cell junctions, and cell-extracellular matrix attachments provides an equilibrium for energy storage, transmission, and dissipation in tissues. Disruption in energy storage, transmission, or dissipation via genetic mutations blocks mechanical communication between cells and tissues and impairs the mechanical energy equilibrium that exists between cells and tissues. This results in local structural changes through altered regulatory pathways, which produce cell clustering, collagen encapsulation, and an epithelial-mesenchymal transition (EMT), leading to increased cellular motility along newly reorganized collagen fibers (fibrosis). The goal of this review is to postulate how changes in energy transfer between cells and the extracellular matrix may alter local energy equilibrium and mechanotransduction pathways. The changes along with cellular mutations lead to cell and ECM changes reported in cancer, which is postulated to modify mechanical equilibria between cells and their ECM. This leads to uncontrolled cancer cellular proliferation and collagen remodeling.
Collapse
Affiliation(s)
- Frederick H Silver
- Department of Pathology and Laboratory Medicine, Robert Wood Johnson Medical School, Rutgers, The State University of New Jersey, New Brunswick, NJ 08854, USA
| |
Collapse
|
31
|
Meng Y, Ge J, Zhou C, Ma H, Chen C, Zhou Y, Hu X, Xu Y, Wang X, Shi G, Yu W, Zhang J. Elevated VRK1 levels after androgen deprivation therapy promote prostate cancer progression by upregulating YAP1 expression. J Cancer Res Clin Oncol 2025; 151:116. [PMID: 40111564 PMCID: PMC11926012 DOI: 10.1007/s00432-025-06168-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Accepted: 03/12/2025] [Indexed: 03/22/2025]
Abstract
PURPOSE Vaccinia-related kinase 1 (VRK1) is a serine-threonine kinase involved in the proliferation and migration of various cancer cells. However, its role in prostate cancer (PCa), particularly in the development of therapeutic resistance, remains unclear. METHODS We established an androgen-independent PCa cell line derived from LNCaP prostate cancer cells and conducted transcriptome and proteome sequencing together with bioinformatic analyses of large clinical sample databases to investigate the potential role of VRK1 in PCa progression. The correlation between VRK1 and androgen receptor (AR) signaling was evaluated under simulated clinical treatment conditions. The effects of VRK1 on cell proliferation were assessed in vitro and in vivo using Cell Counting Kit-8 and colony formation assays. Additionally, proteome and transcriptome sequencing, combined with rescue experiments were performed to explore VRK1-regulated signaling pathways related to cell proliferation and therapeutic resistance. RESULTS VRK1 expression was elevated during the progression of androgen-dependent prostate cancer to castration-resistant prostate cancer under therapeutic conditions, and high VRK1 expression was associated with a poor prognosis in patients with PCa. VRK1 was regulated by AR signaling, and its silencing suppressed PCa cell proliferation both in vitro and in vivo. VRK1 drove cell proliferation and therapeutic resistance in PCa by modulating yes-associated protein 1 (YAP1). CONCLUSIONS VRK1 serves as a prognostic marker in PCa, regulated by AR signaling. VRK1 depletion inhibited cell proliferation both in vitro and in vivo, while elevated VRK1 upregulated YAP1, promoting cell proliferation and therapeutic resistance.
Collapse
MESH Headings
- Humans
- Male
- YAP-Signaling Proteins
- Disease Progression
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/metabolism
- Adaptor Proteins, Signal Transducing/biosynthesis
- Animals
- Cell Proliferation
- Transcription Factors/genetics
- Transcription Factors/metabolism
- Mice
- Protein Serine-Threonine Kinases/metabolism
- Protein Serine-Threonine Kinases/genetics
- Prostatic Neoplasms/pathology
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/drug therapy
- Up-Regulation
- Receptors, Androgen/metabolism
- Intracellular Signaling Peptides and Proteins/metabolism
- Intracellular Signaling Peptides and Proteins/genetics
- Gene Expression Regulation, Neoplastic
- Cell Line, Tumor
- Prostatic Neoplasms, Castration-Resistant/pathology
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Prostatic Neoplasms, Castration-Resistant/drug therapy
- Prognosis
- Mice, Nude
- Androgen Antagonists/pharmacology
- Signal Transduction
- Xenograft Model Antitumor Assays
Collapse
Affiliation(s)
- Yibo Meng
- Department of Urology, The Fifth People'S Hospital of Shanghai, Fudan University, No. 801, Heqing Road, Minhang District, Shanghai, 200240, People's Republic of China
| | - Jianchao Ge
- Department of Urology, The Fifth People'S Hospital of Shanghai, Fudan University, No. 801, Heqing Road, Minhang District, Shanghai, 200240, People's Republic of China
| | - Cheng Zhou
- Department of Urology, The Fifth People'S Hospital of Shanghai, Fudan University, No. 801, Heqing Road, Minhang District, Shanghai, 200240, People's Republic of China
| | - Hangbin Ma
- Department of Urology, The Fifth People'S Hospital of Shanghai, Fudan University, No. 801, Heqing Road, Minhang District, Shanghai, 200240, People's Republic of China
| | - Chenchen Chen
- Department of Urology, The Fifth People'S Hospital of Shanghai, Fudan University, No. 801, Heqing Road, Minhang District, Shanghai, 200240, People's Republic of China
| | - Yinghao Zhou
- Department of Urology, The Fifth People'S Hospital of Shanghai, Fudan University, No. 801, Heqing Road, Minhang District, Shanghai, 200240, People's Republic of China
| | - Xuetao Hu
- Department of Urology, The Fifth People'S Hospital of Shanghai, Fudan University, No. 801, Heqing Road, Minhang District, Shanghai, 200240, People's Republic of China
| | - Yaozong Xu
- Department of Urology, The Fifth People'S Hospital of Shanghai, Fudan University, No. 801, Heqing Road, Minhang District, Shanghai, 200240, People's Republic of China
| | - Xilong Wang
- Department of Urology, The Fifth People'S Hospital of Shanghai, Fudan University, No. 801, Heqing Road, Minhang District, Shanghai, 200240, People's Republic of China
| | - Guowei Shi
- Department of Urology, The Fifth People'S Hospital of Shanghai, Fudan University, No. 801, Heqing Road, Minhang District, Shanghai, 200240, People's Republic of China.
| | - Wandong Yu
- Department of Urology, The Fifth People'S Hospital of Shanghai, Fudan University, No. 801, Heqing Road, Minhang District, Shanghai, 200240, People's Republic of China.
| | - Jun Zhang
- Department of Urology, The Fifth People'S Hospital of Shanghai, Fudan University, No. 801, Heqing Road, Minhang District, Shanghai, 200240, People's Republic of China.
| |
Collapse
|
32
|
ZHANG P, ZHAN Y. [Research Advances in Targeting the YAP/TAZ Signaling Pathway
to Improve Cancer Immunotherapy]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2025; 28:221-229. [PMID: 40210482 PMCID: PMC11986679 DOI: 10.3779/j.issn.1009-3419.2025.102.08] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Indexed: 04/12/2025]
Abstract
Despite the groundbreaking advances in cancer immunotherapy achieved by immune checkpoint inhibitors (ICIs), their efficacy remains limited by the immunosuppressive tumor microenvironment (TME). Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ), key effectors of the Hippo signaling pathway, play pivotal roles in tumor immune evasion. They directly regulate the expression of immune checkpoints, mediate the formation of an immunosuppressive microenvironment, inhibit T cell function, and interact with other signaling pathways to promote immune escape. Diverse strategies targeting YAP/TAZ have been developed, including direct inhibition, modulation of upstream regulators, and suppression of downstream target genes. Preclinical studies have demonstrated that combining YAP/TAZ inhibition with ICIs significantly enhances therapeutic efficacy across various tumor models. This review summarizes recent advances in understanding the role of YAP/TAZ in immune evasion within the TME and explores the potential of targeting this pathway to improve immunotherapy outcomes. Furthermore, it discusses the translational value of combination therapies based on YAP/TAZ inhibition, providing a theoretical framework and practical guidance for the development of innovative immunotherapeutic strategies and precision medicine approaches.
.
Collapse
|
33
|
Li X, Cho YS, Han Y, Zhou M, Liu Y, Yang Y, Zhuo S, Jiang J. The Hippo pathway effector YAP inhibits NF-κB signaling and ccRCC growth by opposing ZHX2. J Biol Chem 2025; 301:108430. [PMID: 40120683 PMCID: PMC12018991 DOI: 10.1016/j.jbc.2025.108430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 03/07/2025] [Accepted: 03/18/2025] [Indexed: 03/25/2025] Open
Abstract
The prevailing view in the cancer field is that Hippo (Hpo) signaling pathway functions as a tumor suppressor pathway by blocking the oncogenic potential of the pathway effectors Yes1-associated transcriptional regulator (YAP)/transcriptional coactivator with PDZ-binding motif. However, YAP can also function as a context-dependent tumor suppressor in several types of cancer including clear cell renal cell carcinomas (ccRCCs). We find that, in addition to inhibiting hypoxia-inducible factor 2α, a major oncogenic driver in Von Hippel-Lindau-/- ccRCC, YAP also blocks nuclear factor κB (NF-κB) signaling in ccRCC to inhibit cancer cell growth under conditions where hypoxia-inducible factor 2α is dispensable. Mechanistically, YAP inhibits the expression of Zinc fingers and homeoboxes 2 (ZHX2), a Von Hippel-Lindau substrate and critical cofactor of NF-κB in ccRCC. Furthermore, YAP competes with ZHX2 for binding to the NF-κB subunit p65. Consequently, elevated nuclear YAP blocks the cooperativity between ZHX2 and the NF-κB subunit p65, leading to diminished NF-κB target gene expression. Pharmacological inhibition of Hpo kinase blocked NF-κB transcriptional program and suppressed ccRCC cell growth, which can be rescued by overexpression of ZHX2 or p65. Our study uncovers a crosstalk between the Hpo and NF-κB/ZHX2 pathways and its involvement in ccRCC growth inhibition, suggesting that targeting the Hpo pathway may provide a therapeutical opportunity for ccRCC treatment.
Collapse
Affiliation(s)
- Xu Li
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| | - Yong Suk Cho
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Department of Math and Sciences, Tarrant County College-NE Campus, Hurst, Texas, USA
| | - Yuhong Han
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Mengmeng Zhou
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Yuchen Liu
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts, USA; Harvard Stem Cell Institute, Boston, Massachusetts, USA; Dana-Farber/Harvard Cancer Center, Boston, Massachusetts, USA
| | - Yingzi Yang
- Department of Developmental Biology, Harvard School of Dental Medicine, Boston, Massachusetts, USA; Harvard Stem Cell Institute, Boston, Massachusetts, USA; Dana-Farber/Harvard Cancer Center, Boston, Massachusetts, USA
| | - Shu Zhuo
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Jin Jiang
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, Texas, USA; Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, Texas, USA.
| |
Collapse
|
34
|
Liu H, Liu Y, Wang X, Xiao Z, Ni Q, Yu X, Luo G. Antitumor potential of polyamines in cancer. Acta Biochim Biophys Sin (Shanghai) 2025. [PMID: 40103487 DOI: 10.3724/abbs.2025030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2025] Open
Abstract
The dysregulation of polyamines in tumors has made polyamine metabolism an appealing target for cancer therapy. Gene mutations drive the reprogramming of polyamine metabolism in tumors, presenting promising opportunities for clinical treatment. The proposed strategies involve inhibiting polyamine biosynthesis while also targeting the polyamine transport system as antitumor approaches. A growing number of drugs aimed at polyamine biosynthesis and transport systems are undergoing clinical trials. Polyamine metabolism plays a role in regulating cancer signaling pathways, suggesting potential combination therapies for cancer treatment. Furthermore, supplemental polyamine substances have demonstrated antitumor activity, indicating that combining polyamines with downstream targets or immunotherapy could offer significant clinical benefits. These discoveries open new avenues for leveraging polyamine metabolism in anticancer therapy.
Collapse
Affiliation(s)
- He Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Yi Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Xinyue Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Zhiwen Xiao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Quanxing Ni
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| | - Guopei Luo
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
- Shanghai Pancreatic Cancer Institute, Shanghai 200032, China
- Shanghai Key Laboratory of Precision Medicine for Pancreatic Cancer, Shanghai 200032, China
- Pancreatic Cancer Institute, Fudan University, Shanghai 200032, China
| |
Collapse
|
35
|
Ding R, Sun Y, Ma T, Yin H, Bi Y, Li S, Wang L, Wang X. Mechanism of Lung Fibrosis Caused by Rare Earth Samarium Oxide Through Hippo Signaling Pathway and the Intervention of GBE. Biol Trace Elem Res 2025:10.1007/s12011-025-04571-8. [PMID: 40102356 DOI: 10.1007/s12011-025-04571-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2025] [Accepted: 03/04/2025] [Indexed: 03/20/2025]
Abstract
With the ongoing advancement and utilization of rare earth elements, human and environmental exposure to these materials has risen substantially. Samarium oxide (Sm₂O₃), a rare earth element, has been shown to induce pulmonary fibrosis, but the mechanisms are not clear. This study aimed to investigate the primary mechanisms by which rare earth Sm2O3 contributes to pulmonary fibrosis in relation to the Hippo signaling pathway and to assess the interventional effects of Ginkgo biloba extract (GBE). A mouse model of pulmonary fibrosis was established through intratracheal administration of a Sm2O3 suspension, while human embryonic lung fibroblasts were also treated for intervention studies. The results indicated that compared with the control group, the expression of SAV1, LATS1/2, MST1, YAP1, and TEAD1 genes was significantly up-regulated in the Sm2O3 group, while the expression of TAZ gene was down-regulated. Additionally, the levels of p-LATS1, LATS1, YAP, and p-YAP were elevated, suggesting that Sm2O3 promotes pulmonary fibrosis through an imbalance and abnormal regulation of the Hippo signaling pathway. Furthermore, human embryonic lung fibroblasts stained with Sm2O3 were treated with different dose gradients of GBE, and the expression level of p-LATS1, LATS1, YAP, and p-YAP was decreased as the dose of Sm2O3 increased, whereas treatment with GBE increased the expression of these proteins. GBE can mitigate the fibrotic response induced by Sm₂O₃ exposure. These findings demonstrate that Sm₂O₃ induces pulmonary fibrosis, at least in part, by inactivating the Hippo signaling pathway. Further investigation is warranted to fully elucidate the protective mechanisms of GBE and its therapeutic potential in this context.
Collapse
Affiliation(s)
- Ruixia Ding
- School of Public Health, Baotou Medical College, Inner Mongolia Autonomous Region, Baotou, 014040, China
| | - Ying Sun
- School of Public Health, Baotou Medical College, Inner Mongolia Autonomous Region, Baotou, 014040, China
| | - Teng Ma
- School of Public Health, Baotou Medical College, Inner Mongolia Autonomous Region, Baotou, 014040, China
| | - Haijing Yin
- School of Public Health, Baotou Medical College, Inner Mongolia Autonomous Region, Baotou, 014040, China
| | - Yannan Bi
- School of Public Health, Baotou Medical College, Inner Mongolia Autonomous Region, Baotou, 014040, China
| | - Sheng Li
- School of Public Health, Baotou Medical College, Inner Mongolia Autonomous Region, Baotou, 014040, China
| | - Li Wang
- School of Public Health, Baotou Medical College, Inner Mongolia Autonomous Region, Baotou, 014040, China.
| | - Xiaohui Wang
- School of Public Health, Baotou Medical College, Inner Mongolia Autonomous Region, Baotou, 014040, China.
| |
Collapse
|
36
|
Li J, Ma J, Cao R, Zhang Q, Li M, Wang W, Wang Y, Li W, Zhu Y, Leng L. A skin organoid-based infection platform identifies an inhibitor specific for HFMD. Nat Commun 2025; 16:2513. [PMID: 40082449 PMCID: PMC11906866 DOI: 10.1038/s41467-025-57610-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Accepted: 02/27/2025] [Indexed: 03/16/2025] Open
Abstract
The EV-A71 poses a serious threat to the health and lives of children. The EV-A71 can be transmitted by direct and indirect skin contact. Therefore, there is an urgent need to create novel skin models using human-derived cells to study the biology and pathogenesis of the virus and facilitate drug screening. Here, we use human induced pluripotent stem cells-derived skin organoids (hiPSC-SOs) as a model for EV-A71 infection and find that multiple cell types within the skin organoids, including epidermal cells, hair follicle cells, fibroblasts, and nerve cells, express EV-A71 receptors and are susceptible to EV-A71 infection. We elucidate the specific response of different cell types to EV-A71 and reveal that EV-A71 infection can degrade extracellular collagen and affect fibroblasts. We find that EV-A71 can mediate epidermal cell damage through autophagy and Integrin/Hippo-YAP/TAZ signaling pathways, thereby promoting hyperproliferation of progenitor cells. Based on this finding, we identify an autophagy-associated protein as a drug target of EV-A71 and discover an EV-A71 replication inhibitor. Altogether, these data suggest that hiPSC-SOs can be used as an infectious disease model to study skin infectious diseases, providing a valuable resource for drug screening to identify candidate virus therapeutics.
Collapse
Affiliation(s)
- Jun Li
- Stem cell and Regenerative Medicine Lab, Institute of Clinical Medicine, State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Department of Dermatology, Institute of Clinical Medicine, State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, 100730, China
| | - Jie Ma
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Ruiyuan Cao
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Qiyu Zhang
- Stem cell and Regenerative Medicine Lab, Institute of Clinical Medicine, State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Department of Dermatology, Institute of Clinical Medicine, State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, 100730, China
| | - Mansheng Li
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Wenwen Wang
- Stem cell and Regenerative Medicine Lab, Institute of Clinical Medicine, State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
- Department of Dermatology, Institute of Clinical Medicine, State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, 100730, China
| | - Yujie Wang
- Stem cell and Regenerative Medicine Lab, Institute of Clinical Medicine, State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Wei Li
- National Engineering Research Center for the Emergency Drug, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Yunping Zhu
- State Key Laboratory of Medical Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, 102206, China
| | - Ling Leng
- Stem cell and Regenerative Medicine Lab, Institute of Clinical Medicine, State Key Laboratory of Complex, Severe, and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
37
|
Myeong J, Lee M, Lee B, Kim JH, Nam Y, Choi Y, Kim J, Jeon SY, Shim H, Jung DR, Shin Y, Jeong M, Oh B, Jung J, Kim CS, Han HS, Shin JH, Lee YH, Park NJY, Chong GO, Jeong Y. Microbial metabolites control self-renewal and precancerous progression of human cervical stem cells. Nat Commun 2025; 16:2327. [PMID: 40057497 PMCID: PMC11890575 DOI: 10.1038/s41467-025-57323-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 02/18/2025] [Indexed: 05/13/2025] Open
Abstract
Cervical cancer is the fourth most common female cancer, with the uterine ectocervix being the most commonly affected site. However, cervical stem cells, their differentiation, and their regulation remain poorly understood. Here, we report the isolation of a population enriched for human cervical stem cells and their regulatory mechanisms. Using single-cell RNA sequencing, we characterize the cellular heterogeneity of the human ectocervix and identify cluster-specific cell surface markers. By establishing normal and precancerous cervical organoids and an intralingual transplantation system, we show that ITGB4 and CD24 enable enrichment of human and murine ectocervical stem cells. We discover that Lactobacilli-derived lactic acid regulates cervical stem cells' self-renewal and early tumorigenesis through the PI3K-AKT pathway and YAP1. Finally, we show that D-lactic acid suppresses growth of normal and precancerous organoids, while L-lactic acid does not. Our findings reveal roles of human cervical stem cells and microbial metabolites in cervical health and diseases.
Collapse
Affiliation(s)
| | - Minho Lee
- Department of Life Science, Dongguk University, Gyeonggi-do, Korea
| | - Bawool Lee
- Department of New Biology, DGIST, Daegu, Korea
- New Biology Research Center, DGIST, Daegu, Korea
| | - Joon Hyung Kim
- Department of Life Science, Dongguk University, Gyeonggi-do, Korea
| | - Yeji Nam
- School of Undergraduate Studies, DGIST, Daegu, Korea
| | - Yeseul Choi
- Graduate Program, Department of Biomedical Science, Kyungpook National University School of Medicine, Daegu, Korea
- BK21 Four Program, Kyungpook National University School of Medicine, Daegu, Korea
| | | | - Se Young Jeon
- Department of Obstetrics and Gynecology, Kyungpook National University Chilgok Hospital, Daegu, Korea
- Clinical Omics Institute, Kyungpook National University, Daegu, Korea
| | - Haewon Shim
- Department of Life Science, Dongguk University, Gyeonggi-do, Korea
| | - Da-Ryung Jung
- Department of Applied Biosciences, Kyungpook National University, Daegu, Korea
| | - Youngjin Shin
- Department of Life Science, Dongguk University, Gyeonggi-do, Korea
| | - Minsoo Jeong
- Department of Applied Biosciences, Kyungpook National University, Daegu, Korea
| | - Byungmoo Oh
- Department of New Biology, DGIST, Daegu, Korea
- New Biology Research Center, DGIST, Daegu, Korea
| | - Jaehun Jung
- Department of Life Science, Dongguk University, Gyeonggi-do, Korea
| | - Christine S Kim
- Department of New Biology, DGIST, Daegu, Korea
- New Biology Research Center, DGIST, Daegu, Korea
| | - Hyung Soo Han
- Graduate Program, Department of Biomedical Science, Kyungpook National University School of Medicine, Daegu, Korea
- BK21 Four Program, Kyungpook National University School of Medicine, Daegu, Korea
- Clinical Omics Institute, Kyungpook National University, Daegu, Korea
- Department of Physiology, Kyungpook National University School of Medicine, Daegu, Korea
| | - Jae-Ho Shin
- Department of Applied Biosciences, Kyungpook National University, Daegu, Korea
| | - Yoon Hee Lee
- Department of Obstetrics and Gynecology, Kyungpook National University Chilgok Hospital, Daegu, Korea
- Clinical Omics Institute, Kyungpook National University, Daegu, Korea
- Department of Obstetrics and Gynecology, Kyungpook National University School of Medicine, Daegu, Korea
| | - Nora Jee-Young Park
- Clinical Omics Institute, Kyungpook National University, Daegu, Korea
- Department of Pathology, Kyungpook National University Chilgok Hospital, Daegu, Korea
- Department of Pathology, Kyungpook National University School of Medicine, Daegu, Korea
| | - Gun Oh Chong
- Department of Obstetrics and Gynecology, Kyungpook National University Chilgok Hospital, Daegu, Korea.
- Clinical Omics Institute, Kyungpook National University, Daegu, Korea.
- Department of Obstetrics and Gynecology, Kyungpook National University School of Medicine, Daegu, Korea.
| | - Youngtae Jeong
- Department of New Biology, DGIST, Daegu, Korea.
- New Biology Research Center, DGIST, Daegu, Korea.
| |
Collapse
|
38
|
Su JX, Zhou HX, Zhang ZJ, Zhou XF, Zou QM, Li SJ, Zhuang XS, Lai JQ, Yang SY, Cui K, Liu YQ, Yuan RJ, Pan HX, Li ZS, Tu HY, Cheng M, Yan Y, Qi Q, Zhang YB. Gracillin suppresses cancer progression through inducing Merlin/LATS protein-protein interaction and activating Hippo signaling pathway. Acta Pharmacol Sin 2025:10.1038/s41401-025-01514-w. [PMID: 40055528 DOI: 10.1038/s41401-025-01514-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 02/13/2025] [Indexed: 03/12/2025]
Abstract
Gene therapy, epigenetic therapies, natural compounds targeted therapy, photodynamic therapy, nanoparticles, and precision medicines are becoming available to diagnose and treat cancer. Gracillin, a natural steroidal saponin extracted from herbs, has shown potent efficacy against a range of malignancies. In this study, we investigated the molecular anticancer mechanisms of gracillin. We showed that gracillin dose-dependently suppressed proliferation, migration, and invasion in breast cancer, liver cancer, and glioblastoma cells with IC50 values around 1 μM, which were associated with MST-independent activation of Hippo signaling pathway and subsequent decreased YAP activity. We demonstrated that gracillin activated the Hippo signaling by inducing Merlin/LATS protein-protein interaction (PPI). A competitive inhibitory peptide (SP) derived from the binding interface of the PPI, disrupted the interaction, abolishing the anticancer activity of gracillin. In nude mice bearing MDA-MB-231, HCCLM3, or U87MG xenograft tumor, administration of gracillin (5, 10 mg·kg-1·d-1, i.g. for 21 days) dose-dependently suppressed the tumor growth, associated with the induced Merlin/LATS PPI, activated Hippo signaling, as well as decreased YAP activity in tumor tissues. Our data demonstrate that gracillin is an efficacious therapeutic agent for cancer treatment, induction of Merlin/LATS PPI might provide proof-of-concept in developing therapeutic agent for cancer treatment.
Collapse
Affiliation(s)
- Jin-Xuan Su
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Hai-Xia Zhou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Zhi-Jing Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Department of General Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510632, China
| | - Xiao-Feng Zhou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Qiu-Ming Zou
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Si-Jia Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Xiao-Song Zhuang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Jian-Qin Lai
- Department of Colorectal & Anal Surgery, Guangzhou First People's Hospital, Guangzhou, 510632, China
| | - Si-Yu Yang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Kai Cui
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Yong-Qi Liu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
- Department of Respiratory and Critical Care, The First Hospital of China Medical University, Shenyang, 110001, China
| | - Rui-Jie Yuan
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Heng-Xin Pan
- Bioinformatics Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Zi-Sheng Li
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Han-Yun Tu
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China
| | - Mei Cheng
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China.
| | - Yu Yan
- Functional Experimental Teaching Center, School of Medicine, Jinan University, Guangzhou, 510632, China.
| | - Qi Qi
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China.
| | - Yu-Bo Zhang
- State Key Laboratory of Bioactive Molecules and Druggability Assessment, MOE Key Laboratory of Tumor Molecular Biology, Guangdong Province Key Laboratory of Pharmacodynamic Constituents of TCM and New Drugs Research, Department of Pharmacology, School of Medicine, Jinan University, Guangzhou, 510632, China.
| |
Collapse
|
39
|
Yunshan L, Chengli X, Peiming Z, Haocheng Q, Xudong L, Liming L. Integrative research on the mechanisms of acupuncture mechanics and interdisciplinary innovation. Biomed Eng Online 2025; 24:30. [PMID: 40055719 PMCID: PMC11889876 DOI: 10.1186/s12938-025-01357-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 02/20/2025] [Indexed: 05/13/2025] Open
Abstract
As a traditional therapeutic approach, acupuncture benefits from modern biomechanics, which offers a unique perspective for understanding its mechanisms by investigating the mechanical properties of biological tissues and cells under force, deformation, and movement. This review summarizes recent advancements in the biomechanics of acupuncture, focusing on three main areas: the mechanical effects of acupuncture, the transmission mechanisms of mechanical signals, and the personalization and precision of acupuncture treatments. First, the review introduces the structural basis of the tissues involved in acupuncture; analyzes the mechanical responses of the skin, dermis, and subcutaneous tissues from needle insertion to point activation; and discusses how these responses impact acupuncture efficacy. Second, the phenomenon of mechanical coupling during acupuncture is discussed in detail, especially the role of connective tissues, including the wrapping and self-locking of collagen fibers, the remodeling of the cytoskeleton and the regulation of mitochondrial function triggered by acupuncture. Third, this article examines the mechanisms of mechanical signal transmission in acupuncture, explaining how mechanosensitive ion channels are activated during the procedure and subsequently initiate a cascade of biochemical responses. Finally, the review highlights the numerical simulation methods used in acupuncture, including the mechanical modeling of skin tissues, the exploration of the mechanical mechanisms of acupuncture, and visualization studies of the needling process. By integrating multidisciplinary research findings, this paper delves into the entire mechanical process of acupuncture, from skin penetration to point stimulation, and analyzes tissue responses to provide a solid theoretical foundation for the scientific study of acupuncture. In addition, directions for future research to further refine acupuncture techniques for clinical applications are proposed.
Collapse
Affiliation(s)
- Liang Yunshan
- Clinical Medical College of Acupuncture moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Xu Chengli
- School of Science, Harbin Institute of Technology(Shenzhen), Shenzhen, 518055, Guangdong , China
| | - Zhang Peiming
- Clinical Medical College of Acupuncture moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China
| | - Quan Haocheng
- College of Engineering and Applied sciences, Nanjing University, Nanjing, 210023, Jiangsu, China.
| | - Liang Xudong
- School of Science, Harbin Institute of Technology(Shenzhen), Shenzhen, 518055, Guangdong , China.
| | - Lu Liming
- Clinical Medical College of Acupuncture moxibustion and Rehabilitation, Guangzhou University of Chinese Medicine, Guangzhou, 510006, Guangdong, China.
| |
Collapse
|
40
|
Zhang Y, Liu Y, Deng Q, Liu L, Zhu W. USP43 drives cervical carcinoma progression through regulation of the Hippo/TAZ pathway. Int Immunopharmacol 2025; 149:114217. [PMID: 39922114 DOI: 10.1016/j.intimp.2025.114217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 01/24/2025] [Accepted: 01/31/2025] [Indexed: 02/10/2025]
Abstract
BACKGROUND Cervical carcinoma (CC) poses significant health challenges, with its pathogenesis not fully understood. While ubiquitin specific peptidase 43 (USP43) is implicated in various cancers, its role in CC and regulation of the Hippo/Transcriptional Co-Activator With PDZ-Binding Motif (TAZ) pathway remain unexplored. This study examines USP43's impact on CC progression and its interaction with TAZ. METHODS USP43 expression levels in CC tissues and cell lines were assessed using reverse transcription real-time polymerase chain reaction (RT-qPCR) and Western blot. The effects of USP43 silencing on cell proliferation, migration, and invasion were evaluated through cell counting Kit-8 (CCK-8), 5-ethynyl-2'deoxyuridine (EdU), colony formation, and transwell assays. Immunofluorescence staining and co-immunoprecipitation (Co-IP) assays were used to explore the interaction between USP43 and TAZ. Polyubiquitination assays were performed to evaluate ubiquitination and stability of TAZ, and cycloheximide (CHX) chase experiments determined the half-life of TAZ. In vivo studies using BALB/c nude mice examined the impact of USP43 knockdown on tumor growth and metastasis. RESULTS USP43 was overexpressed in CC tissues and cell lines. Silencing of USP43 reduced cell proliferation, migration, invasion, and the epithelial-mesenchymal transition (EMT) process. Co-IP and ubiquitination assays revealed that USP43 interacted with and stabilized TAZ by inhibiting TAZ ubiquitination. CHX chase experiments confirmed that USP43 prolonged TAZ protein stability. In vivo, USP43 knockdown led to reduced tumor growth and lung metastasis. Overexpression of TAZ reversed the inhibitory effects of USP43 silencing on CC cell proliferation, migration, invasion and EMT CONCLUSION: USP43 promotes CC cell proliferation, migration, invasion, and epithelial-to-mesenchymal transition (EMT) by activating the Hippo/TAZ pathway. These findings enhance our understanding of USP43's role in CC progression and highlight potential therapeutic targets for the treatment of CC.
Collapse
Affiliation(s)
- Yanhua Zhang
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou 215000, Jiangsu, China; Department of Obstetrics and Gynecology, Binhai County People's Hospital, Yancheng 224000, Jiangsu, China
| | - Yujing Liu
- Suzhou Research Center of Medical School, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou 215000, Jiangsu, China
| | - Qicheng Deng
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou 215000, Jiangsu, China
| | - Lifen Liu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou 215000, Jiangsu, China
| | - Weipei Zhu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Soochow University, Suzhou 215000, Jiangsu, China.
| |
Collapse
|
41
|
Sato K, Faraji F, Cervantes-Villagrana RD, Wu X, Koshizuka K, Ishikawa T, Iglesias-Bartolome R, Chen L, Miliani de Marval PL, Gwaltney SL, Adler B, Gutkind JS. Targeting YAP/TAZ-TEAD signaling as a therapeutic approach in head and neck squamous cell carcinoma. Cancer Lett 2025; 612:217467. [PMID: 39826667 PMCID: PMC12044704 DOI: 10.1016/j.canlet.2025.217467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 12/30/2024] [Accepted: 01/13/2025] [Indexed: 01/22/2025]
Abstract
Genetic alterations in Hippo pathway and the consequent activation of YAP/TAZ-TEAD are frequently observed in HPV-negative head and neck squamous cell carcinoma (HNSCC) patients. These include loss-of-function mutation and/or copy number loss of FAT1, and amplification of YAP1 and WWTR1 (encoding TAZ), thus raising the possibility that HNSCC cells may be dependent on YAP/TAZ-TEAD-mediated transcriptional programs. In this regard, the recent development of small molecule TEAD inhibitors (smTEADi) provides an opportunity to therapeutically target Hippo pathway dysregulation in human malignancies. This prompted us to explore the potential benefit of pharmacologically targeting the YAP/TAZ-TEAD axis in this disease. Here, we provide the pre-clinical evidence for the antitumor activity of novel smTEADi, SW-682 in HPV-negative HNSCC. By the use of multiple complementary experimental approaches, including siRNA knockdown, expression of a genetically encoded TEAD inhibitor peptide (pTEADi), and SW-682, we revealed that disruption of YAP/TAZ-TEAD interaction suppresses YAP/TAZ-TEAD-dependent target gene transcription and growth of HNSCC tumors. HNSCC cells with genetic alterations in FAT1 were more sensitive to TEADi compared to FAT1-wild type cells. Mechanistically, TEADi suppressed cell cycle progression and promoted the expression of terminal differentiation gene programs, resulting in tumor growth inhibition. A HNSCC-specific TEADi target gene set was defined from RNA-seq data, which is highly expressed in HNSCC tissues and predicts poor prognosis of HPV-negative HNSCC patients. Our results underscore that YAP/TAZ-TEAD-mediated growth-promoting programs represent a vulnerability in HPV-negative HNSCC, thus providing a pre-clinical rationale for the future evaluation of YAP/TAZ-TEAD targeting strategies as a therapeutic approach for HPV-negative HNSCC patients.
Collapse
Affiliation(s)
- Kuniaki Sato
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA; Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Farhoud Faraji
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA; Department of Otolaryngology-Head and Neck Surgery, UC San Diego Health, La Jolla, CA, USA
| | - Rodolfo Daniel Cervantes-Villagrana
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA; Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Xingyu Wu
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA; Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Keiichi Koshizuka
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA; Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Tomohiko Ishikawa
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA; Department of Pharmacology, University of California San Diego, La Jolla, CA, USA
| | - Ramiro Iglesias-Bartolome
- Laboratory of Cellular and Molecular Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Lei Chen
- SpringWorks Therapeutics, Inc., Stamford, CT, USA
| | | | | | | | - J Silvio Gutkind
- Moores Cancer Center, University of California San Diego, La Jolla, CA, USA; Department of Pharmacology, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
42
|
Tang B, Du Y, Wang J. TAZ-hTrap: A Rationally Designed, Disulfide-Stapled Tead Helical Hairpin Trap to Selectively Capture Hippo Signaling Taz With Potent Antigynecological Tumor Activity. J Mol Recognit 2025; 38:e3111. [PMID: 39626959 DOI: 10.1002/jmr.3111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 10/28/2024] [Accepted: 11/18/2024] [Indexed: 02/01/2025]
Abstract
Transcriptional enhanced associate domain (Tead)-mediated Hippo signaling pathway regulates diverse physiological processes; its dysfunction has been implicated in an increasing number of human gynecological cancers. The transcriptional coactivator with PDZ-binding motif (Taz) binds to and then activates Tead through forming a three-helix bundle (THB) at their complex interface. The THB is defined by a double-helical hairpin from Tead and a single α-helix from Taz, serving as the key interaction hotspot between Tead and Taz. In the present study, the helical hairpin was derived from Tead protein to generate a hairpin segment, which is a 25-mer polypeptide consisting of a longer helical arm-1 and a shorter helical arm-2 as well as a flexible loop linker between them. Dynamics simulation and energetics characterization revealed that the hairpin peptide is intrinsically disordered when splitting from its protein context, thus incurring a large entropy penalty upon binding to Taz α-helix. A disulfide bridge was introduced across the two helical arms of hairpin peptide to obtain a strong binder termed TAZ-hTrap, which can maintain in a considerably structured, native-like conformation in unbound state, and the entropy penalty was minimized by disulfide stapling to effectively improve its affinity toward the α-helix. These computational findings can be further substantiated by circular dichroism and fluorescence polarization at molecular level, and viability assay also observed a potent cytotoxic effect on diverse human gynecological tumors at cellular level. In addition, we further demonstrated that the TAZ-hTrap has a good selectivity for its cognate Taz over other noncognate proteins that share a high conservation with the Taz α-helix.
Collapse
Affiliation(s)
- Bin Tang
- Department of Gynecology, Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
| | - Yu Du
- Department of Gynecology, Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
| | - Jun Wang
- Department of Gynecology, Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, China
| |
Collapse
|
43
|
Zhong B, Du J, Liu F, Sun S. The Role of Yes-Associated Protein in Inflammatory Diseases and Cancer. MedComm (Beijing) 2025; 6:e70128. [PMID: 40066231 PMCID: PMC11892025 DOI: 10.1002/mco2.70128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 02/02/2025] [Accepted: 02/11/2025] [Indexed: 03/17/2025] Open
Abstract
Yes-associated protein (YAP) plays a central role in the Hippo pathway, primarily governing cell proliferation, differentiation, and apoptosis. Its significance extends to tumorigenesis and inflammatory conditions, impacting disease initiation and progression. Given the increasing relevance of YAP in inflammatory disorders and cancer, this study aims to elucidate its pathological regulatory functions in these contexts. Specifically, we aim to investigate the involvement and molecular mechanisms of YAP in various inflammatory diseases and cancers. We particularly focus on how YAP activation, whether through Hippo-dependent or independent pathways, triggers the release of inflammation and inflammatory mediators in respiratory, cardiovascular, and digestive inflammatory conditions. In cancer, YAP not only promotes tumor cell proliferation and differentiation but also modulates the tumor immune microenvironment, thereby fostering tumor metastasis and progression. Additionally, we provide an overview of current YAP-targeted therapies. By emphasizing YAP's role in inflammatory diseases and cancer, this study aims to enhance our understanding of the protein's pivotal involvement in disease processes, elucidate the intricate pathological mechanisms of related diseases, and contribute to future drug development strategies targeting YAP.
Collapse
Affiliation(s)
- Bing Zhong
- Department of Otolaryngology‐Head and Neck SurgeryWest China HospitalSichuan UniversityChengduSichuanChina
| | - Jintao Du
- Department of Otolaryngology‐Head and Neck SurgeryWest China HospitalSichuan UniversityChengduSichuanChina
| | - Feng Liu
- Department of Otolaryngology‐Head and Neck SurgeryWest China HospitalSichuan UniversityChengduSichuanChina
| | - Silu Sun
- State Key Laboratory of Oral DiseasesNational Clinical Research Center for Oral DiseasesChinese Academy of Medical Sciences Research Unit of Oral Carcinogenesis and ManagementWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| |
Collapse
|
44
|
Bednarski IA, Dróżdż I, Ciążyńska M, Wódz K, Narbutt J, Lesiak A. Ultraviolet B Exposure Does Not Influence the Expression of YAP mRNA in Human Epidermal Keratinocytes-Preliminary Study. Biomedicines 2025; 13:596. [PMID: 40149574 PMCID: PMC11940570 DOI: 10.3390/biomedicines13030596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 02/18/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025] Open
Abstract
Background: The causal relationship between exposure to ultraviolet radiation and the development of skin cancers requires constant research for possible orchestrating mechanisms. In recent years, the Hippo pathway, along with its effector protein YAP, became implicated in cutaneous carcinogenesis; however, Hippo pathway regulation by ultraviolet radiation has not been described thoroughly. In order to address this issue, we focused on how different doses of ultraviolet B affect Hippo signaling pathway components and its upstream regulators, JNK1/2 and ABL1, in human keratinocytes. Additionally, we decided to determine how silencing of YAP influences Hippo pathway component expression. Methods: Primary epidermal keratinocytes were irradiated using UVB lamps with increasing doses of ultraviolet B radiation (including 311 nm UVB). Real-time PCR was used to determine the mRNA levels of each investigated gene. The experiment was then performed after YAP silencing using siRNA transfection. Additionally, we determined the mRNA expression of Hippo pathway components in an A431 cSCC cell line. Results: We observed that YAP mRNA expression in the A431 cell line was insignificant in comparison to control, while in the case of LATS1/2, a significant increase was noted. UVB irradiation did not change the levels of YAP mRNA expression in human epidermal keratinocytes. LATS1, LATS2, ABL1 and MAP4K4 mRNA expression was significantly upregulated after UVB irradiation in non-YAP-silenced keratinocytes in a dose-dependent manner, while after YAP silencing, only LATS2 and ABL1 showed significant mRNA upregulation. The 311 nm UVB irradiation resulted in significant, dose-dependent mRNA upregulation in non-YAP-silenced keratinocytes for LATS1, ABL1 and MAP4K4. After YAP silencing, a significant change in mRNA expression was present only in the case of ABL1. Conclusions: YAP mRNA expression does not significantly increase after exposure to UVB; however, it upregulates the expression of its proven (LATS1/2, JNK1/2) regulators, suggesting that in real-life settings, UV-induced dysregulation of the Hippo pathway may not be limited to YAP.
Collapse
Affiliation(s)
- Igor Aleksander Bednarski
- Dermatology, Pediatric Dermatology and Dermatological Oncology Clinic, Medical University of Łódź, 91-347 Łódź, Poland; (I.A.B.); (J.N.)
- Department of Neurology, Medical University of Łódź, 90-419 Łódź, Poland
| | - Izabela Dróżdż
- Department of Clinical Genetics, Medical University of Łódź, 92-213 Łódź, Poland;
| | - Magdalena Ciążyńska
- Department of Proliferative Diseases, Nicolaus Copernicus Multidisciplinary Centre for Oncology and Traumatology, Medical University of Łódź, 93-513 Łódź, Poland;
| | - Karolina Wódz
- Laboratory of Molecular Biology, Vet-Lab Brudzew, 62-720 Brudzew, Poland;
| | - Joanna Narbutt
- Dermatology, Pediatric Dermatology and Dermatological Oncology Clinic, Medical University of Łódź, 91-347 Łódź, Poland; (I.A.B.); (J.N.)
| | - Aleksandra Lesiak
- Dermatology, Pediatric Dermatology and Dermatological Oncology Clinic, Medical University of Łódź, 91-347 Łódź, Poland; (I.A.B.); (J.N.)
| |
Collapse
|
45
|
Otani Y, Tanaka A, Maekawa M, Peña T, Rogachevskaya A, Ando T, Itano T, Katayama H, Nakata E, Ozaki T, Toyooka S, Doihara H, Roehrl MH, Fujimura A. The role of C1orf50 in breast cancer progression and prognosis. Breast Cancer 2025; 32:292-305. [PMID: 39604563 PMCID: PMC11842435 DOI: 10.1007/s12282-024-01653-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 11/18/2024] [Indexed: 11/29/2024]
Abstract
Although the prognosis of breast cancer has significantly improved compared to other types of cancer, there are still some patients who expire due to recurrence or metastasis. Therefore, it is necessary to develop a method to identify patients with poor prognosis at the early stages of cancer. In the process of discovering new prognostic markers from genes of unknown function, we found that the expression of C1orf50 determines the prognosis of breast cancer patients, especially for those with Luminal A breast cancer. This study aims to elucidate the molecular role of C1orf50 in breast cancer progression. Bioinformatic analyses of the breast cancer dataset of TCGA, and in vitro analyses, reveal the molecular pathways influenced by C1orf50 expression. C1orf50 knockdown suppressed the cell cycle of breast cancer cells and weakened their ability to maintain the undifferentiated state and self-renewal capacity. Interestingly, upregulation of C1orf50 increased sensitivity to CDK4/6 inhibition. In addition, C1orf50 was found to be more abundant in breast cancer cells than in normal breast epithelium, suggesting C1orf50's involvement in breast cancer pathogenesis. Furthermore, the mRNA expression level of C1orf50 was positively correlated with the expression of PD-L1 and its related factors. These results suggest that C1orf50 promotes breast cancer progression through cell cycle upregulation, maintenance of cancer stemness, and immune evasion mechanisms. Our study uncovers the biological functions of C1orf50 in Luminal breast cancer progression, a finding not previously reported in any type of cancer.
Collapse
Affiliation(s)
- Yusuke Otani
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Atsushi Tanaka
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Masaki Maekawa
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Tirso Peña
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Anna Rogachevskaya
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Teruhiko Ando
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Takuto Itano
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Haruyoshi Katayama
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Eiji Nakata
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Toshifumi Ozaki
- Department of Orthopedic Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Shinichi Toyooka
- Department of General Thoracic Surgery and Breast and Endocrinological Surgery, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan
| | - Hiroyoshi Doihara
- Department of General Surgery, Kawasaki Medical School General Medical Center, 2-6-1 Nakasange, Kita-Ku, Okayama, 700-8505, Japan
| | - Michael H Roehrl
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Atsushi Fujimura
- Department of Cellular Physiology, Okayama University Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan.
- Neutron Therapy Research Center, Okayama University, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, 700-8558, Japan.
| |
Collapse
|
46
|
Kern JG, Kroehling L, Spinella AJ, Monti S, Varelas X. LATS1/2 inactivation in the mammary epithelium drives the evolution of a tumor-associated niche. EMBO Rep 2025; 26:1472-1503. [PMID: 39953252 PMCID: PMC11933708 DOI: 10.1038/s44319-025-00370-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2024] [Revised: 01/02/2025] [Accepted: 01/08/2025] [Indexed: 02/17/2025] Open
Abstract
Basal-like breast cancers exhibit distinct cellular heterogeneity that contributes to disease pathology. In this study we used a genetic mouse model of basal-like breast cancer driven by epithelial-specific inactivation of the Hippo pathway-regulating LATS1 and LATS2 kinases to elucidate epithelial-stromal interactions. We demonstrate that basal-like carcinoma initiation in this model is accompanied by the accumulation of distinct cancer-associated fibroblasts and macrophages and dramatic extracellular matrix remodeling, phenocopying the stromal diversity observed in human triple-negative breast tumors. Dysregulated epithelial-stromal signals were observed, including those mediated by TGF-β, PDGF, and CSF. Autonomous activation of the transcriptional effector TAZ was observed in LATS1/2-deleted cells along with non-autonomous activation within the evolving tumor niche. We further show that inhibition of the YAP/TAZ-associated TEAD family of transcription factors blocks the development of the carcinomas and associated microenvironment. These observations demonstrate that carcinomas resulting from Hippo pathway dysregulation in the mammary epithelium are sufficient to drive cellular events that promote a basal-like tumor-associated niche and suggest that targeting dysregulated YAP/TAZ-TEAD activity may offer a therapeutic opportunity for basal-like mammary tumors.
Collapse
Affiliation(s)
- Joseph G Kern
- Department of Biochemistry and Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Lina Kroehling
- Department of Medicine, Computational Biomedicine Section, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
- Bioinformatics Program, Boston University, Boston, MA, 02215, USA
| | - Anthony J Spinella
- Department of Biochemistry and Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
| | - Stefano Monti
- Department of Medicine, Computational Biomedicine Section, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA
- Bioinformatics Program, Boston University, Boston, MA, 02215, USA
- Department of Biostatistics, Boston University School of Public Health, Boston, MA, 02118, USA
| | - Xaralabos Varelas
- Department of Biochemistry and Cell Biology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, 02118, USA.
| |
Collapse
|
47
|
Schott A, Simon T, Müller S, Rausch A, Busch B, Glaß M, Misiak D, Dipto M, Elrewany H, Peters L, Tripathee S, Ghazy E, Müller F, Rolnik R, Lederer M, Hmedat A, Vetter M, Wallwiener M, Sippl W, Hüttelmaier S, Bley N. The IGF2BP1 oncogene is a druggable m 6A-dependent enhancer of YAP1-driven gene expression in ovarian cancer. NAR Cancer 2025; 7:zcaf006. [PMID: 40008228 PMCID: PMC11850222 DOI: 10.1093/narcan/zcaf006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 02/02/2025] [Accepted: 02/13/2025] [Indexed: 02/27/2025] Open
Abstract
The Hippo/YAP1 signaling pathway regulates normal development by controlling contact inhibition of growth. In cancer, YAP1 activation is often dysregulated, leading to excessive tumor growth and metastasis. SRC kinase can cross talk to Hippo signaling by disrupting adherens junctions, repressing the Hippo cascade, or activating YAP1 to promote proliferation. Here, we demonstrate that the IGF2 messenger RNA-binding protein 1 (IGF2BP1) impedes the repression of YAP1 by Hippo signaling in carcinomas. IGF2BP1 stabilizes the YAP1 messenger RNA (mRNA) and enhances YAP1 protein synthesis through an m6A-dependent interaction with the 3' untranslated region of the YAP1 mRNA, thereby increasing YAP1/TAZ-driven transcription to bypass contact inhibition of tumor cell growth. Inhibiting IGF2BP1-mRNA binding using BTYNB reduces YAP1 levels and transcriptional activity, leading to significant growth inhibition in carcinoma cells and ovarian cancer organoids. In contrast, SRC inhibition with Saracatinib fails to inhibit YAP1/TAZ-driven transcription and cell growth in general. This is particularly significant in de-differentiated, rather mesenchymal carcinoma-derived cells, which exhibit high IGF2BP1 and YAP1 expression, rendering them less reliant on SRC-directed growth stimulation. In such invasive carcinoma models, the combined inhibition of SRC, IGF2BP1, and YAP1/TAZ proved superior over monotherapies. These findings highlight the therapeutic potential of targeting IGF2BP1, a key regulator of oncogenic transcription networks.
Collapse
Affiliation(s)
- Annekatrin Schott
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Theresa Simon
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Simon Müller
- New York Genome Center, 10013 New York, NY, United States; Department of Biology, New York University, 10003 New York, NY, United States
| | - Alexander Rausch
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Bianca Busch
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Markus Glaß
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Danny Misiak
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Mohammad Dipto
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Hend Elrewany
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Lara Meret Peters
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Sunita Tripathee
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Ehab Ghazy
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, 01620 Halle (Saale), Germany
| | - Florian Müller
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Robin Benedikt Rolnik
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Marcell Lederer
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Ali Hmedat
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
- Department of Pharmaceutics and Pharmaceutical Technology, Faculty of Pharmacy, Yarmouk University, 21163 Irbid, Jordan
| | - Martina Vetter
- Department of Gynecology, University Hospital, Martin Luther University Halle-Wittenberg, Ernst-Grube-Straße 40, 01620 Halle (Saale), Germany
| | - Markus Wallwiener
- Department of Gynecology, University Hospital, Martin Luther University Halle-Wittenberg, Ernst-Grube-Straße 40, 01620 Halle (Saale), Germany
| | - Wolfgang Sippl
- Department of Pharmaceutical Chemistry and Bioanalytics, Institute of Pharmacy, Martin Luther University Halle-Wittenberg, Kurt-Mothes-Straße 3, 01620 Halle (Saale), Germany
| | - Stefan Hüttelmaier
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| | - Nadine Bley
- Institute of Molecular Medicine, Section for Molecular Cell Biology, Faculty of Medicine, Martin Luther University Halle-Wittenberg, 06120 Halle, Germany
| |
Collapse
|
48
|
Wang X, Feng JK, Mao FF, Hou YC, Zhang YQ, Liu LH, Wei Q, Sun JX, Liu C, Shi J, Cheng SQ. Prognostic and Immunotherapeutic Predictive Value of CAD Gene in Hepatocellular Carcinoma: Integrated Bioinformatics and Experimental Analysis. Mol Biotechnol 2025; 67:1240-1255. [PMID: 38683442 DOI: 10.1007/s12033-024-01125-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Accepted: 02/27/2024] [Indexed: 05/01/2024]
Abstract
Hepatocellular carcinoma (HCC) is a common type of cancer that ranks first in cancer-associated death worldwide. Carbamoyl-phosphate synthetase 2, aspartate transcarbamylase, and dihydroorotase (CAD) are the key components of the pyrimidine pathway, which promotes cancer development. However, the function of CAD in HCC needs to be clarified. In this study, the clinical and transcriptome data of 424 TCGA-derived HCC cases were analyzed. The results demonstrated that high CAD expression was associated with poor prognosis in HCC patients. The effect of CAD on HCC was then investigated comprehensively using GO annotation analysis, KEGG enrichment analysis, Gene Set Enrichment Analysis (GSEA), and CIBERSORT algorithm. The results showed that CAD expression was correlated with immune checkpoint inhibitors and immune cell infiltration. In addition, low CAD levels in HCC patients predicted increased sensitivity to anti-CTLA4 and PD1, while HCC patients with high CAD expression exhibited high sensitivity to chemotherapeutic and molecular-targeted agents, including gemcitabine, paclitaxel, and sorafenib. Finally, the results from clinical sample suggested that CAD expression increased remarkably in HCC compared with non-cancerous tissues. Loss of function experiments demonstrated that CAD knockdown could significantly inhibit HCC cell growth and migration both in vitro and in vivo. Collectively, the results indicated that CAD is a potential oncogene during HCC metastasis and progression. Therefore, CAD is recommended as a candidate marker and target for HCC prediction and treatment.
Collapse
Affiliation(s)
- Xu Wang
- Cancer Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai, 200433, China
| | - Jin-Kai Feng
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai, 200433, China
| | - Fei-Fei Mao
- Tongji University Cancer Center, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China
| | - Yu-Chao Hou
- Cancer Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai, 200433, China
| | - Yu-Qing Zhang
- Cancer Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China
| | - Li-Heng Liu
- Cancer Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai, 200433, China
| | - Qian Wei
- The First Clinical Medicine School, Guangdong Pharmaceutical University, Guangzhou, China
| | - Ju-Xian Sun
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai, 200433, China
| | - Chang Liu
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai, 200433, China
| | - Jie Shi
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai, 200433, China.
| | - Shu-Qun Cheng
- Cancer Center, Yueyang Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, 110 Ganhe Road, Shanghai, 200437, China.
- Department of Hepatic Surgery VI, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, 225 Changhai Road, Shanghai, 200433, China.
- Tongji University Cancer Center, School of Medicine, Shanghai Tenth People's Hospital, Tongji University, Shanghai, China.
| |
Collapse
|
49
|
Yao G, Shao M, Nie Y, Zhang W, Yang Z, Li Q. Overexpression of YAP confers radioresistance to esophageal cancer by altering the tumor microenvironment. ENVIRONMENTAL TOXICOLOGY 2025; 40:384-395. [PMID: 38375610 DOI: 10.1002/tox.24122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/12/2023] [Accepted: 12/25/2023] [Indexed: 02/21/2024]
Abstract
This study aimed to investigate the role of yes-associated protein (YAP) in the radiotherapy sensitivity of esophageal squamous cell carcinoma (ESCC). The clonogenic ability of ESCC cells was reduced after YAP silencing and radiotherapy. Overexpression of YAP promoted cell survival and had a synergistic effect with the hypoxic microenvironment. YAP was found to directly regulate hypoxia-inducible factor 1α (HIF-1α). Bioinformatics analysis revealed the involvement of YAP in modulating the tumor immune microenvironment. Inhibition of YAP expression reduced myeloid-derived suppressor cells (MDSCs) and influenced the immunosuppressive state, leading to radio resistance. These findings provide insights into the YAP-HIF-1α interaction and support YAP as a potential target for enhancing radiotherapy sensitivity in esophageal cancer.
Collapse
Affiliation(s)
- Guangyue Yao
- Tumor Research and Therapy Center, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, People's Republic of China
| | - Mengqing Shao
- Postgraduate School, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong, People's Republic of China
| | - Yuanliu Nie
- Tumor Research and Therapy Center, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, People's Republic of China
| | - Wentao Zhang
- Postgraduate School, Shandong First Medical University (Shandong Academy of Medical Sciences), Jinan, Shandong, People's Republic of China
| | - Zhe Yang
- Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China
| | - Qiang Li
- Tumor Research and Therapy Center, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, People's Republic of China
| |
Collapse
|
50
|
Papaccio F, Cabeza-Segura M, García-Micó B, Gimeno-Valiente F, Zúñiga-Trejos S, Gambardella V, Gutiérrez-Bravo MF, Martinez-Ciarpaglini C, Rentero-Garrido P, Fleitas T, Roselló S, Carbonell-Asins JA, Huerta M, Moro-Valdezate D, Roda D, Tarazona N, Sánchez Del Pino MM, Cervantes A, Castillo J. Decoding chromosomal instability insights in CRC by integrating omics and patient-derived organoids. J Exp Clin Cancer Res 2025; 44:77. [PMID: 40022181 PMCID: PMC11869439 DOI: 10.1186/s13046-025-03308-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Accepted: 01/28/2025] [Indexed: 03/03/2025] Open
Abstract
BACKGROUND Chromosomal instability (CIN) is involved in about 70% of colorectal cancers (CRCs) and is associated with poor prognosis and drug resistance. From a clinical perspective, a better knowledge of these tumour's biology will help to guide therapeutic strategies more effectively. METHODS We used high-density chromosomal microarray analysis to evaluate CIN level of patient-derived organoids (PDOs) and their original mCRC tissues. We integrated the RNA-seq and mass spectrometry-based proteomics data from PDOs in a functional interaction network to identify the significantly dysregulated processes in CIN. This was followed by a proteome-wGII Pearson correlation analysis and an in silico validation of main findings using functional genomic databases and patient-tissues datasets to prioritize the high-confidence CIN features. RESULTS By applying the weighted Genome Instability Index (wGII) to identify CIN, we classified PDOs and demonstrated a good correlation with tissues. Multi-omics analysis showed that our organoids recapitulated genomic, transcriptomic and proteomic CIN features of independent tissues cohorts. Thanks to proteotranscriptomics, we uncovered significant associations between mitochondrial metabolism and epithelial-mesenchymal transition in CIN CRC PDOs. Correlating PDOs wGII with protein abundance, we identified a subset of proteins significantly correlated with CIN. Co-localisation analysis in PDOs strengthened the putative role of IPO7 and YAP, and, through in silico analysis, we found that some of the targets give significant dependencies in cell lines with CIN compatible status. CONCLUSIONS We first demonstrated that PDO models are a faithful reflection of CIN tissues at the genetic and phenotypic level. Our new findings prioritize a subset of genes and molecular processes putatively required to cope with the burden on cellular fitness imposed by CIN and associated with disease aggressiveness.
Collapse
Affiliation(s)
- Federica Papaccio
- Department of Medicine, Surgery and Dentistry "Scuola Medica Salernitana", University of Salerno, Via S. Allende, 84081, Baronissi, Italy.
- Department of Medical Oncology, Hospital Clínico Universitario de Valencia, INCLIVA Biomedical Research Institute, University of Valencia, Avda. Blasco Ibañez 17, 46010, Valencia, Spain.
| | - Manuel Cabeza-Segura
- Department of Medical Oncology, Hospital Clínico Universitario de Valencia, INCLIVA Biomedical Research Institute, University of Valencia, Avda. Blasco Ibañez 17, 46010, Valencia, Spain
| | - Blanca García-Micó
- Department of Medical Oncology, Hospital Clínico Universitario de Valencia, INCLIVA Biomedical Research Institute, University of Valencia, Avda. Blasco Ibañez 17, 46010, Valencia, Spain
- Centro de Investigación Biomédica en Red (CIBERONC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Francisco Gimeno-Valiente
- Cancer Evolution and Genome Instability Laboratory, University College London Cancer Institute, London, UK
| | - Sheila Zúñiga-Trejos
- Bioinformatic Unit, INCLIVA Biomedical Research Institute, Avda. Menéndez y Pelayo 3, 46010, Valencia, Spain
| | - Valentina Gambardella
- Department of Medical Oncology, Hospital Clínico Universitario de Valencia, INCLIVA Biomedical Research Institute, University of Valencia, Avda. Blasco Ibañez 17, 46010, Valencia, Spain
- Centro de Investigación Biomédica en Red (CIBERONC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - María Fernanda Gutiérrez-Bravo
- Experimental and Applied Biomedicine Research Group, Health Sciences Faculty, Universidad Particular Internacional SEK (UISEK), Quito, 170302, Ecuador
| | - Carolina Martinez-Ciarpaglini
- Centro de Investigación Biomédica en Red (CIBERONC), Instituto de Salud Carlos III, 28029, Madrid, Spain
- Department of Pathology, Hospital Clínico Universitario, INCLIVA Biomedical Research Institute, University of Valencia, Avda. Blasco Ibañez 17, 46010, Valencia, Spain
| | - Pilar Rentero-Garrido
- Precision Medicine Unit, INCLIVA Biomedical Research Institute, Avda. Menéndez y Pelayo 4, 46010, Valencia, Spain
| | - Tania Fleitas
- Department of Medical Oncology, Hospital Clínico Universitario de Valencia, INCLIVA Biomedical Research Institute, University of Valencia, Avda. Blasco Ibañez 17, 46010, Valencia, Spain
- Centro de Investigación Biomédica en Red (CIBERONC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Susana Roselló
- Department of Medical Oncology, Hospital Clínico Universitario de Valencia, INCLIVA Biomedical Research Institute, University of Valencia, Avda. Blasco Ibañez 17, 46010, Valencia, Spain
- Centro de Investigación Biomédica en Red (CIBERONC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | | | - Marisol Huerta
- Department of Medical Oncology, Hospital Clínico Universitario de Valencia, INCLIVA Biomedical Research Institute, University of Valencia, Avda. Blasco Ibañez 17, 46010, Valencia, Spain
| | - David Moro-Valdezate
- Department of General Surgery, INCLIVA Biomedical Research Institute, Hospital Clínico Universitario de Valencia, University of Valencia, Valencia, Spain
| | - Desamparados Roda
- Department of Medical Oncology, Hospital Clínico Universitario de Valencia, INCLIVA Biomedical Research Institute, University of Valencia, Avda. Blasco Ibañez 17, 46010, Valencia, Spain
- Centro de Investigación Biomédica en Red (CIBERONC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Noelia Tarazona
- Department of Medical Oncology, Hospital Clínico Universitario de Valencia, INCLIVA Biomedical Research Institute, University of Valencia, Avda. Blasco Ibañez 17, 46010, Valencia, Spain
- Centro de Investigación Biomédica en Red (CIBERONC), Instituto de Salud Carlos III, 28029, Madrid, Spain
| | - Manuel M Sánchez Del Pino
- Institute of Biotechnology and Biomedicine (BIOTECMED), University of Valencia, 46100, Burjassot, Spain.
- Department of Biochemistry and Molecular Biology, University of Valencia, 46100, Burjassot, Spain.
| | - Andrés Cervantes
- Department of Medical Oncology, Hospital Clínico Universitario de Valencia, INCLIVA Biomedical Research Institute, University of Valencia, Avda. Blasco Ibañez 17, 46010, Valencia, Spain.
- Centro de Investigación Biomédica en Red (CIBERONC), Instituto de Salud Carlos III, 28029, Madrid, Spain.
| | - Josefa Castillo
- Department of Medical Oncology, Hospital Clínico Universitario de Valencia, INCLIVA Biomedical Research Institute, University of Valencia, Avda. Blasco Ibañez 17, 46010, Valencia, Spain.
- Centro de Investigación Biomédica en Red (CIBERONC), Instituto de Salud Carlos III, 28029, Madrid, Spain.
- Department of Biochemistry and Molecular Biology, University of Valencia, 46100, Burjassot, Spain.
| |
Collapse
|