1
|
Crawford KJ, Humphrey KS, Cortes E, Wang J, Feigin ME, Witkiewicz AK, Knudsen ES, Abel EV. Targeting FGFR4 Abrogates HNF1A-driven Metastasis in Pancreatic Ductal Adenocarcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.06.636643. [PMID: 39974881 PMCID: PMC11839031 DOI: 10.1101/2025.02.06.636643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Purpose We previously identified an oncogenic role for the transcription factor HNF1A in pancreatic ductal adenocarcinoma (PDAC). However, the role of HNF1A in the metastatic progression of PDAC remains unknown and targeting modalities for HNF1A -dependent phenotypes have yet to be identified. Experimental Design Transwell chambers were used to assess the effects of HNF1A and FGFR4 modulation on the migration and invasion of ATCC and patient-derived PDAC cells in vitro . An intrasplenic injection xenograft model was used to evaluate the impact of HNF1A knockdown and overexpression on metastatic tumor burden. Single-cell RNA sequencing, tissue microarray (TMA) data, and UMAP spatial profiling were used to identify FGFR4 as an HNF1A target gene upregulated in metastatic cells. RNAi and two FGFR4 inhibiting modalities (H3B-6527 and U3- 1784) were utilized to demonstrate the efficacy of FGFR4 inhibiting agents at reducing HNF1A- driven metastasis. Results Knockdown of HNF1A significantly decreases and HNF1A overexpression significantly increases PDAC cell migration and invasion. In vivo studies show that HNF1A knockdown significantly abrogates metastasis, while overexpression significantly promotes metastasis. Single-cell RNAseq shows that FGFR4 is upregulated in metastatic PDAC cells and staining for HNF1A and FGFR4 in a PDAC TMA reveals significant correlation between HNF1A and FGFR4 in PDAC patients. Further, knockdown and inhibition of FGFR4 significantly decreases HNF1A- mediated cell migration and invasion, and blocks HNF1A-driven metastasis in vivo . Conclusions These findings demonstrate that HNF1A drives PDAC metastasis via upregulation of FGFR4, and FGFR4 inhibition is a potential mechanism to target metastasis in PDAC patients. Translational Relevance Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies, made even more devastating when metastases overwhelm major organs. The vast majority of PDAC patients either present with metastases or will relapse with recurrent metastatic PDAC after primary tumor resection. Unfortunately, toxic and largely ineffective chemotherapies are currently the only approved treatment options for these patients and therefore there exists a critical and unmet clinical need for targeted therapies against pro-metastatic pathways in PDAC. In the current study, we identify HNF1A as an oncogenic transcription factor that drives metastasis in PDAC, and it does so through upregulation of the receptor tyrosine kinase FGFR4. Importantly, FGFR4 is a targetable vulnerability and treatment with an FGFR4 blocking antibody reduces HNF1A-driven metastasis. These findings suggest that FGFR4 inhibitors could be an efficacious treatment for PDAC patients for the prevention or delay of metastatic tumor development.
Collapse
|
2
|
Wang N, Pachai MR, Li D, Lee CJ, Warda S, Khudoynazarova MN, Cho WH, Xie G, Shah SR, Yao L, Qian C, Wong EWP, Yan J, Tomas FV, Hu W, Kuo F, Gao SP, Luo J, Smith AE, Han M, Gao D, Ge K, Yu H, Chandarlapaty S, Iyer GV, Rosenberg JE, Solit DB, Al-Ahmadie HA, Chi P, Chen Y. Loss of Kmt2c or Kmt2d primes urothelium for tumorigenesis and redistributes KMT2A-menin to bivalent promoters. Nat Genet 2025; 57:165-179. [PMID: 39806204 PMCID: PMC11735410 DOI: 10.1038/s41588-024-02015-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 10/23/2024] [Indexed: 01/16/2025]
Abstract
Members of the KMT2C/D-KDM6A complex are recurrently mutated in urothelial carcinoma and in histologically normal urothelium. Here, using genetically engineered mouse models, we demonstrate that Kmt2c/d knockout in the urothelium led to impaired differentiation, augmented responses to growth and inflammatory stimuli and sensitization to oncogenic transformation by carcinogen and oncogenes. Mechanistically, KMT2D localized to active enhancers and CpG-poor promoters that preferentially regulate the urothelial lineage program and Kmt2c/d knockout led to diminished H3K4me1, H3K27ac and nascent RNA transcription at these sites, which leads to impaired differentiation. Kmt2c/d knockout further led to KMT2A-menin redistribution from KMT2D localized enhancers to CpG-high and bivalent promoters, resulting in derepression of signal-induced immediate early genes. Therapeutically, Kmt2c/d knockout upregulated epidermal growth factor receptor signaling and conferred vulnerability to epidermal growth factor receptor inhibitors. Together, our data posit that functional loss of Kmt2c/d licenses a molecular 'field effect' priming histologically normal urothelium for oncogenic transformation and presents therapeutic vulnerabilities.
Collapse
Affiliation(s)
- Naitao Wang
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mohini R Pachai
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Dan Li
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Cindy J Lee
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sarah Warda
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | | | - Woo Hyun Cho
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Guojia Xie
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Sagar R Shah
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
| | - Li Yao
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Cheng Qian
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Elissa W P Wong
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Juan Yan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Fanny V Tomas
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Wenhuo Hu
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Fengshen Kuo
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sizhi P Gao
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jiaqian Luo
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Alison E Smith
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ming Han
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Dong Gao
- State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai, China
| | - Kai Ge
- National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Haiyuan Yu
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, NY, USA
- Department of Computational Biology, Cornell University, Ithaca, NY, USA
| | - Sarat Chandarlapaty
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Gopakumar V Iyer
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Jonathan E Rosenberg
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - David B Solit
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA
| | - Hikmat A Al-Ahmadie
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Urology Service, Department of Surgery, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ping Chi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
- Department of Medicine, Weill Cornell Medical College, New York, NY, USA.
| |
Collapse
|
3
|
Senatorov IS, Bowman J, Jansson KH, Alilin AN, Capaldo BJ, Lake R, Riba M, Abbey YC, Mcknight C, Zhang X, Raj S, Beshiri ML, Shinn P, Nguyen H, Thomas CJ, Corey E, Kelly K. Castrate-resistant prostate cancer response to taxane is determined by an HNF1-dependent apoptosis resistance circuit. Cell Rep Med 2024; 5:101868. [PMID: 39657662 PMCID: PMC11722106 DOI: 10.1016/j.xcrm.2024.101868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 09/09/2024] [Accepted: 11/14/2024] [Indexed: 12/12/2024]
Abstract
Metastatic castrate-resistant prostate cancer (mCRPC) is a genetically and phenotypically heterogeneous cancer where advancements are needed in biomarker discovery and targeted therapy. A critical and often effective component of treatment includes taxanes. We perform a high-throughput screen across a cohort of 30 diverse patient-derived castrate-resistant prostate cancer (CRPC) organoids to a library of 78 drugs. Combining quantitative response measures with transcriptomic analyses demonstrates that HNF1 homeobox A (HNF1A) drives a transcriptional program of taxane resistance, commonly dependent upon cellular inhibitor of apoptosis protein 2 (cIAP2). Monotherapy with cIAP2 inhibitor LCL161 is sufficient to treat HNF1A+ models of mCRPC previously resistant to docetaxel. These data may be useful in future clinical trial designs.
Collapse
Affiliation(s)
- Ilya S Senatorov
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Joel Bowman
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Keith H Jansson
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Aian Neil Alilin
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Brian J Capaldo
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Ross Lake
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Morgan Riba
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Yasmine C Abbey
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Crystal Mcknight
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Xiaohu Zhang
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Sonam Raj
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Michael L Beshiri
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Paul Shinn
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA
| | - Holly Nguyen
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Craig J Thomas
- Division of Preclinical Innovation, National Center for Advancing Translational Sciences, National Institutes of Health, Rockville, MD, USA; Lymphoid Malignancies Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, NIH, Bethesda, MD, USA
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, WA, USA
| | - Kathleen Kelly
- Laboratory of Genitourinary Cancer Pathogenesis, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, USA.
| |
Collapse
|
4
|
Lazzeri I, Spiegl BG, Hasenleithner SO, Speicher MR, Kircher M. LBFextract: Unveiling transcription factor dynamics from liquid biopsy data. Comput Struct Biotechnol J 2024; 23:3163-3174. [PMID: 39660220 PMCID: PMC11630664 DOI: 10.1016/j.csbj.2024.08.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/09/2024] [Accepted: 08/09/2024] [Indexed: 12/12/2024] Open
Abstract
Motivation The analysis of circulating cell-free DNA (cfDNA) holds immense promise as a non-invasive diagnostic tool across various human conditions. However, extracting biological insights from cfDNA fragments entails navigating complex and diverse bioinformatics methods, encompassing not only DNA sequence variation, but also epigenetic characteristics like nucleosome footprints, fragment length, and methylation patterns. Results We introduce Liquid Biopsy Feature extract (LBFextract), a comprehensive package designed to streamline feature extraction from cfDNA sequencing data, with the aim of enhancing the reproducibility and comparability of liquid biopsy studies. LBFextract facilitates the integration of preprocessing and postprocessing steps through alignment fragment tags and a hook mechanism. It incorporates various methods, including coverage-based and fragment length-based approaches, alongside two novel feature extraction methods: an entropy-based method to infer TF activity from fragmentomics data and a technique to amplify signals from nucleosome dyads. Additionally, it implements a method to extract condition-specific differentially active TFs based on these features for biomarker discovery. We demonstrate the use of LBFextract for the subtype classification of advanced prostate cancer patients using coverage signals at transcription factor binding sites from cfDNA. We show that LBFextract can generate robust and interpretable features that can discriminate between different clinical groups. LBFextract is a versatile and user-friendly package that can facilitate the analysis and interpretation of liquid biopsy data. Data and Code Availability and Implementation LBFextract is freely accessible at https://github.com/Isy89/LBF. It is implemented in Python and compatible with Linux and Mac operating systems. Code and data to reproduce these analyses have been uploaded to 10.5281/zenodo.10964406.
Collapse
Affiliation(s)
- Isaac Lazzeri
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Neue Stiftingtalstr. 6, Graz 8010, Austria
| | - Benjamin Gernot Spiegl
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Neue Stiftingtalstr. 6, Graz 8010, Austria
| | - Samantha O. Hasenleithner
- Division of Oncology, Department of Internal Medicine, Medical University of Graz, 8010 Graz, Austria
| | - Michael R. Speicher
- Institute of Human Genetics, Diagnostic and Research Center for Molecular BioMedicine, Medical University of Graz, Neue Stiftingtalstr. 6, Graz 8010, Austria
- BioTechMed-Graz, Graz, Austria
| | - Martin Kircher
- Berlin Institute of Health (BIH) at Charité – Universitätsmedizin Berlin, Berlin 10178, Germany
- Institute of Human Genetics, University Medical Center Schleswig-Holstein, University of Lübeck, Lübeck, Germany
| |
Collapse
|
5
|
Zaidi S, Park J, Chan JM, Roudier MP, Zhao JL, Gopalan A, Wadosky KM, Patel RA, Sayar E, Karthaus WR, Kates DH, Chaudhary O, Xu T, Masilionis I, Mazutis L, Chaligné R, Obradovic A, Linkov I, Barlas A, Jungbluth AA, Rekhtman N, Silber J, Manova-Todorova K, Watson PA, True LD, Morrissey C, Scher HI, Rathkopf DE, Morris MJ, Goodrich DW, Choi J, Nelson PS, Haffner MC, Sawyers CL. Single-cell analysis of treatment-resistant prostate cancer: Implications of cell state changes for cell surface antigen-targeted therapies. Proc Natl Acad Sci U S A 2024; 121:e2322203121. [PMID: 38968122 PMCID: PMC11252802 DOI: 10.1073/pnas.2322203121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 05/09/2024] [Indexed: 07/07/2024] Open
Abstract
Targeting cell surface molecules using radioligand and antibody-based therapies has yielded considerable success across cancers. However, it remains unclear how the expression of putative lineage markers, particularly cell surface molecules, varies in the process of lineage plasticity, wherein tumor cells alter their identity and acquire new oncogenic properties. A notable example of lineage plasticity is the transformation of prostate adenocarcinoma (PRAD) to neuroendocrine prostate cancer (NEPC)-a growing resistance mechanism that results in the loss of responsiveness to androgen blockade and portends dismal patient survival. To understand how lineage markers vary across the evolution of lineage plasticity in prostate cancer, we applied single-cell analyses to 21 human prostate tumor biopsies and two genetically engineered mouse models, together with tissue microarray analysis on 131 tumor samples. Not only did we observe a higher degree of phenotypic heterogeneity in castrate-resistant PRAD and NEPC than previously anticipated but also found that the expression of molecules targeted therapeutically, namely PSMA, STEAP1, STEAP2, TROP2, CEACAM5, and DLL3, varied within a subset of gene-regulatory networks (GRNs). We also noted that NEPC and small cell lung cancer subtypes shared a set of GRNs, indicative of conserved biologic pathways that may be exploited therapeutically across tumor types. While this extreme level of transcriptional heterogeneity, particularly in cell surface marker expression, may mitigate the durability of clinical responses to current and future antigen-directed therapies, its delineation may yield signatures for patient selection in clinical trials, potentially across distinct cancer types.
Collapse
MESH Headings
- Male
- Humans
- Single-Cell Analysis/methods
- Animals
- Mice
- Prostatic Neoplasms/genetics
- Prostatic Neoplasms/metabolism
- Prostatic Neoplasms/pathology
- Prostatic Neoplasms/drug therapy
- Antigens, Surface/metabolism
- Antigens, Surface/genetics
- Antigens, Neoplasm/metabolism
- Antigens, Neoplasm/genetics
- Antigens, Neoplasm/immunology
- Biomarkers, Tumor/metabolism
- Biomarkers, Tumor/genetics
- Adenocarcinoma/genetics
- Adenocarcinoma/pathology
- Adenocarcinoma/metabolism
- Adenocarcinoma/drug therapy
- Carcinoma, Neuroendocrine/genetics
- Carcinoma, Neuroendocrine/pathology
- Carcinoma, Neuroendocrine/metabolism
- Carcinoma, Neuroendocrine/drug therapy
- Gene Expression Regulation, Neoplastic
- Prostatic Neoplasms, Castration-Resistant/metabolism
- Prostatic Neoplasms, Castration-Resistant/pathology
- Prostatic Neoplasms, Castration-Resistant/genetics
- Prostatic Neoplasms, Castration-Resistant/drug therapy
Collapse
Affiliation(s)
- Samir Zaidi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY10065
- Department of Medicine, Division of Solid Tumor Oncology, Genitourinary Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY10065
| | - Jooyoung Park
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul02841, Korea
| | - Joseph M. Chan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY10065
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY10065
| | | | | | - Anuradha Gopalan
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY10065
| | - Kristine M. Wadosky
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY14263
| | - Radhika A. Patel
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA98195
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA98195
| | - Erolcan Sayar
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA98195
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA98195
| | - Wouter R. Karthaus
- Swiss Institute for Experimental Cancer Research, School of Life Sciences, École Polytechnique Fédérale de Lausanne, Lausanne1015, Switzerland
| | - D. Henry Kates
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY10065
| | - Ojasvi Chaudhary
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY10065
| | - Tianhao Xu
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY10065
| | - Ignas Masilionis
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY10065
| | - Linas Mazutis
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY10065
| | - Ronan Chaligné
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY10065
| | - Aleksandar Obradovic
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY10032
| | - Irina Linkov
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY10065
| | - Afsar Barlas
- Molecular Cytology Core Facility, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New YorkNY10065
| | - Achim A. Jungbluth
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY10065
| | - Natasha Rekhtman
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY10065
| | - Joachim Silber
- Department of Pathology and Laboratory Medicine, Memorial Sloan Kettering Cancer Center, New York, NY10065
| | - Katia Manova-Todorova
- Molecular Cytology Core Facility, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New YorkNY10065
| | - Philip A. Watson
- Research Outreach and Compliance, Memorial Sloan Kettering Cancer Center, New York, NY10065
| | - Lawrence D. True
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA98195
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, WA98195
| | - Howard I. Scher
- Department of Medicine, Division of Solid Tumor Oncology, Genitourinary Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY10065
| | - Dana E. Rathkopf
- Department of Medicine, Division of Solid Tumor Oncology, Genitourinary Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY10065
| | - Michael J. Morris
- Department of Medicine, Division of Solid Tumor Oncology, Genitourinary Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY10065
| | - David W. Goodrich
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY14263
| | - Jungmin Choi
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul02841, Korea
- Department of Genetics, Yale University School of Medicine, New Haven, CT06510
| | - Peter S. Nelson
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA98195
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA98195
| | - Michael C. Haffner
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, WA98195
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA98195
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA98195
| | - Charles L. Sawyers
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY10065
- HHMI, Memorial Sloan Kettering Cancer Center, New York, NY10065
| |
Collapse
|
6
|
Jia T, Liu C, Guo P, Xu Y, Wang W, Liu X, Wang S, Zhang X, Guo H. FOXA1 regulates ribosomal RNA transcription in prostate cancer. Prostate 2024; 84:967-976. [PMID: 38632701 DOI: 10.1002/pros.24714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/20/2024] [Accepted: 04/08/2024] [Indexed: 04/19/2024]
Abstract
BACKGROUND Ribosome biogenesis is excessively activated in tumor cells, yet it is little known whether oncogenic transcription factors (TFs) are involved in the ribosomal RNA (rRNA) transactivation. METHODS Nucleolar proteomics data and large-scale immunofluorescence were re-analyzed to jointly identify the proteins localized at nucleolus. RNA-Seq data of five prostate cancer (PCa) cohorts were combined and integrated with multi-dimensional data to define the upregulated nucleolar TFs in PCa tissues. Then, ChIP-Seq data of PCa cell lines and two PCa clinical cohorts were re-analyzed to reveal the TF binding patterns at ribosomal DNA (rDNA) repeats. The TF binding at rDNA was validated by ChIP-qPCR. The effect of the TF on rRNA transcription was determined by rDNA luciferase reporter, nascent RNA synthesis, and global protein translation assays. RESULTS In this study, we reveal the role of oncogenic TF FOXA1 in regulating rRNA transcription within nucleolar organization regions. By analyzing human TFs in prostate cancer clinical datasets and nucleolar proteomics data, we identified that FOXA1 is partially localized in the nucleolus and correlated with global protein translation. Our extensive FOXA1 ChIP-Seq analysis provides robust evidence of FOXA1 binding across rDNA repeats in prostate cancer cell lines, primary tumors, and castration-resistant variants. Notably, FOXA1 occupancy at rDNA repeats correlates with histone modifications associated with active transcription, namely H3K27ac and H3K4me3. Reducing FOXA1 expression results in decreased transactivation at rDNA, subsequently diminishing global protein synthesis. CONCLUSIONS Our results suggest FOXA1 regulates aberrant ribosome biogenesis downstream of oncogenic signaling in prostate cancer.
Collapse
Affiliation(s)
- Tianwei Jia
- Department of Clinical Laboratory, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, Shandong, China
| | - Chenxu Liu
- Department of Clinical Laboratory, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, Shandong, China
| | - Ping Guo
- Department of Clinical Laboratory, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, Shandong, China
| | - Yaning Xu
- Department of Clinical Laboratory, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, Shandong, China
| | - Wenzheng Wang
- Department of Clinical Laboratory, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, Shandong, China
| | - Xiaoyu Liu
- Department of Clinical Laboratory, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, Shandong, China
| | - Song Wang
- Department of Clinical Laboratory, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, Shandong, China
| | - Xianglin Zhang
- Department of Clinical Laboratory, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, Shandong, China
| | - Haiyang Guo
- Department of Clinical Laboratory, the Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
- Shandong Engineering & Technology Research Center for Tumor Marker Detection, Jinan, Shandong, China
- Shandong Provincial Clinical Medicine Research Center for Clinical Laboratory, Jinan, Shandong, China
| |
Collapse
|
7
|
Wang Z, Liu C, Zheng S, Yao Y, Wang S, Wang X, Yin E, Zeng Q, Zhang C, Zhang G, Tang W, Zheng B, Xue L, Wang Z, Feng X, Wang Y, Ying J, Xue Q, Sun N, He J. Molecular subtypes of neuroendocrine carcinomas: A cross-tissue classification framework based on five transcriptional regulators. Cancer Cell 2024; 42:1106-1125.e8. [PMID: 38788718 DOI: 10.1016/j.ccell.2024.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 04/03/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024]
Abstract
Neuroendocrine carcinomas (NECs) are extremely lethal malignancies that can arise at almost any anatomic site. Characterization of NECs is hindered by their rarity and significant inter- and intra-tissue heterogeneity. Herein, through an integrative analysis of over 1,000 NECs originating from 31 various tissues, we reveal their tissue-independent convergence and further unveil molecular divergence driven by distinct transcriptional regulators. Pan-tissue NECs are therefore categorized into five intrinsic subtypes defined by ASCL1, NEUROD1, HNF4A, POU2F3, and YAP1. A comprehensive portrait of these subtypes is depicted, highlighting subtype-specific transcriptional programs, genomic alterations, evolution trajectories, therapeutic vulnerabilities, and clinicopathological presentations. Notably, the newly discovered HNF4A-dominated subtype-H exhibits a gastrointestinal-like signature, wild-type RB1, unique neuroendocrine differentiation, poor chemotherapeutic response, and prevalent large-cell morphology. The proposal of uniform classification paradigm illuminates transcriptional basis of NEC heterogeneity and bridges the gap across different lineages and cytomorphological variants, in which context-dependent prevalence of subtypes underlies their phenotypic disparities.
Collapse
Affiliation(s)
- Zhanyu Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Chengming Liu
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Sufei Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China; Office for Cancer Diagnosis and Treatment Quality Control, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Yuxin Yao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Sihui Wang
- Department of Medical Oncology, National Cancer Center/ National Clinical Research Center for Cancer/Cancer Hospital & Shenzhen Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, P.R. China
| | - Xinfeng Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Enzhi Yin
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Qingpeng Zeng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Chaoqi Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Guochao Zhang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Wei Tang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Bo Zheng
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Liyan Xue
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Zhen Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Xiaoli Feng
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Yan Wang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Jianming Ying
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Qi Xue
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China
| | - Nan Sun
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China; State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, P.R. China.
| |
Collapse
|
8
|
Subramanian A, Zhang M, Sharifi M, Moreno-Rodriguez T, Feng E, Rydzewski NR, Shrestha R, Zhu X, Zhao SG, Aggarwal R, Small EJ, Ding CKC, Quigley DA, Sjöström M. A prostate cancer gastrointestinal transcriptional phenotype may be associated with diminished response to AR-targeted therapy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.02.595931. [PMID: 38895460 PMCID: PMC11185575 DOI: 10.1101/2024.06.02.595931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/21/2024]
Abstract
Background Prostate cancer is a heterogenous disease, but once it becomes metastatic it eventually becomes treatment resistant. One mechanism of resistance to AR-targeting therapy is lineage plasticity, where the tumor undergoes a transformation to an AR-indifferent phenotype, most studied in the context of neuroendocrine prostate cancer (NEPC). However, activation of additional de- or trans-differentiation programs, including a gastrointestinal (GI) gene expression program, has been suggested as an alternative method of resistance. In this study, we explored the previously identified GI prostate cancer phenotype (PCa-GI) in a large cohort of metastatic castration-resistant prostate cancer (mCRPC) patient biopsy samples. Methods We analyzed a dataset of 634 mCRPC samples with batch effect corrected gene expression data from the West Coast Dream Team (WCDT), the East Coast Dream Team (ECDT), the Fred Hutchinson Cancer Research Center (FHCRC) and the Weill Cornell Medical center (WCM). Survival data was available from the WCDT and ECDT cohorts. We calculated a gene expression GI score using the sum of z-scores of genes from a published set of PCa-GI-defining genes (N=38). Survival analysis was performed using the Kaplan-Meier method and Cox proportional hazards regression with endpoint overall survival from time of biopsy to death of any cause. Results We found that the PCa-GI score had a bimodal distribution, identifying a distinct set of tumors with an activated GI expression pattern. Approximately 35% of samples were classified as PCa-GI high, which was concordant with prior reports. Liver metastases had the highest median score but after excluding liver samples, 29% of the remaining samples were still classified as PCa-GI high, suggesting a distinct phenotype not exclusive to liver metastases. No correlation was observed between GI score and proliferation, AR signaling, or NEPC scores. Furthermore, the PCa-GI score was not associated with genomic alterations in AR, FOXA1, RB1, TP53 or PTEN. However, tumors with MYC amplifications showed significantly higher GI scores (p=0.0001). Patients with PCa-GI tumors had a shorter survival (HR=1.5 [1.1-2.1], p=0.02), but this result was not significant after adjusting for the liver as metastatic site (HR=1.2 [0.82-1.7], p=0.35). Patients with PCa-GI low samples had a better outcome after androgen receptor signaling inhibitors (ASI, abiraterone or enzalutamide) than other therapies (HR=0.37 [0.22-0.61], p=0.0001) while the benefit of ASI was smaller and non-significant for PCa-GI high samples (HR=0.55 [0.29-1.1], p=0.07). A differential pathway analysis identified FOXA2 signaling to be upregulated PCa-GI high tumors (FDR = 3.7 × 10-13). Conclusions The PCa-GI phenotype is prevalent in clinical mCRPC samples and may represent a distinct biological entity. PCa-GI tumors may respond less to ASI and could offer a strategy to study novel therapeutic targets.
Collapse
Affiliation(s)
- Aishwarya Subramanian
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA
| | - Meng Zhang
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA
| | - Marina Sharifi
- Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
- Department of Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | - Thaidy Moreno-Rodriguez
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California at San Francisco, San Francisco, CA, USA
| | - Eric Feng
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA
| | | | - Raunak Shrestha
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA
| | - Xiaolin Zhu
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Shuang G. Zhao
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI, USA
- William S. Middleton Memorial Veterans’ Hospital, Madison, WI, USA
| | - Rahul Aggarwal
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Eric J. Small
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Chien-Kuang Cornelia Ding
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Pathology, University of California, San Francisco, San Francisco, CA, USA
| | - David A. Quigley
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Urology, University of California at San Francisco, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California at San Francisco, San Francisco, CA, USA
| | - Martin Sjöström
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA, USA
- Department of Clinical Sciences Lund, Division of Oncology, Lund University, Lund, Sweden
- Department of Hematology, Oncology and Radiation Physics, Skåne University Hospital, Lund, Sweden
| |
Collapse
|
9
|
Bhattacharya S, Stillahn A, Smith K, Muders M, Datta K, Dutta S. Understanding the molecular regulators of neuroendocrine prostate cancer. Adv Cancer Res 2024; 161:403-429. [PMID: 39032955 DOI: 10.1016/bs.acr.2024.04.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
Worldwide, prostate cancer (PCa) remains a leading cause of death in men. Histologically, the majority of PCa cases are classified as adenocarcinomas, which are mainly composed of androgen receptor-positive luminal cells. PCa is initially driven by the androgen receptor axis, where androgen-mediated activation of the receptor is one of the primary culprits for disease progression. Therefore, in advanced stage PCa, patients are generally treated with androgen deprivation therapies alone or in combination with androgen receptor pathway inhibitors. However, after an initial decrease, the cancer recurs for majority patients. At this stage, cancer is known as castration-resistant prostate cancer (CRPC). Majority of CRPC tumors still depend on androgen receptor axis for its progression to metastasis. However, in around 20-30% of cases, CRPC progresses via an androgen receptor-independent pathway and is often presented as neuroendocrine cancer (NE). This NE phenotype is highly aggressive with poor overall survival as compared to CRPC adenocarcinoma. NE cancers are resistant to standard taxane chemotherapies, which are often used to treat metastatic disease. Pathologically and morphologically, NE cancers are highly diverse and often co-exist with adenocarcinoma. Due to the lack of proper biomarkers, it is often difficult to make an early diagnosis of this lethal disease. Moreover, increased tumor heterogeneity and admixtures of adeno and NE subtypes in the same tumor make early detection of NE tumors very difficult. With the advancement of our knowledge and sequencing technology, we are now able to better understand the molecular mediators of this transformation pathway. This current study will give an update on how various molecular regulators are involved in these lineage transformation processes and what challenges we are still facing to detect and treat this cancer.
Collapse
Affiliation(s)
- Sreyashi Bhattacharya
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, United States; Department of Biochemistry and Molecular Biology, Massy Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Avery Stillahn
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, United States
| | - Kaitlin Smith
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, United States
| | | | - Kaustubh Datta
- Department of Biochemistry and Molecular Biology, Massy Cancer Center, Virginia Commonwealth University, Richmond, VA, United States
| | - Samikshan Dutta
- Department of Biochemistry and Molecular Biology, Massy Cancer Center, Virginia Commonwealth University, Richmond, VA, United States.
| |
Collapse
|
10
|
Rawat C, Heemers HV. Alternative splicing in prostate cancer progression and therapeutic resistance. Oncogene 2024; 43:1655-1668. [PMID: 38658776 PMCID: PMC11136669 DOI: 10.1038/s41388-024-03036-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/11/2024] [Accepted: 04/12/2024] [Indexed: 04/26/2024]
Abstract
Prostate cancer (CaP) remains the second leading cause of cancer deaths in western men. CaP mortality results from diverse molecular mechanisms that mediate resistance to the standard of care treatments for metastatic disease. Recently, alternative splicing has been recognized as a hallmark of CaP aggressiveness. Alternative splicing events cause treatment resistance and aggressive CaP behavior and are determinants of the emergence of the two major types of late-stage treatment-resistant CaP, namely castration-resistant CaP (CRPC) and neuroendocrine CaP (NEPC). Here, we review recent multi-omics data that are uncovering the complicated landscape of alternative splicing events during CaP progression and the impact that different gene transcript isoforms can have on CaP cell biology and behavior. We discuss renewed insights in the molecular machinery by which alternative splicing occurs and contributes to the failure of systemic CaP therapies. The potential for alternative splicing events to serve as diagnostic markers and/or therapeutic targets is explored. We conclude by considering current challenges and promises associated with splicing-modulating therapies, and their potential for clinical translation into CaP patient care.
Collapse
Affiliation(s)
- Chitra Rawat
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA
| | - Hannelore V Heemers
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic, Cleveland, OH, 44195, USA.
| |
Collapse
|
11
|
Zaidi S, Park J, Chan JM, Roudier MP, Zhao JL, Gopalan A, Wadosky KM, Patel RA, Sayar E, Karthaus WR, Henry Kates D, Chaudhary O, Xu T, Masilionis I, Mazutis L, Chaligné R, Obradovic A, Linkov I, Barlas A, Jungbluth A, Rekhtman N, Silber J, Manova–Todorova K, Watson PA, True LD, Morrissey CM, Scher HI, Rathkopf D, Morris MJ, Goodrich DW, Choi J, Nelson PS, Haffner MC, Sawyers CL. Single Cell Analysis of Treatment-Resistant Prostate Cancer: Implications of Cell State Changes for Cell Surface Antigen Targeted Therapies. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.09.588340. [PMID: 38645034 PMCID: PMC11030323 DOI: 10.1101/2024.04.09.588340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Targeting cell surface molecules using radioligand and antibody-based therapies has yielded considerable success across cancers. However, it remains unclear how the expression of putative lineage markers, particularly cell surface molecules, varies in the process of lineage plasticity, wherein tumor cells alter their identity and acquire new oncogenic properties. A notable example of lineage plasticity is the transformation of prostate adenocarcinoma (PRAD) to neuroendocrine prostate cancer (NEPC)--a growing resistance mechanism that results in the loss of responsiveness to androgen blockade and portends dismal patient survival. To understand how lineage markers vary across the evolution of lineage plasticity in prostate cancer, we applied single cell analyses to 21 human prostate tumor biopsies and two genetically engineered mouse models, together with tissue microarray analysis (TMA) on 131 tumor samples. Not only did we observe a higher degree of phenotypic heterogeneity in castrate-resistant PRAD and NEPC than previously anticipated, but also found that the expression of molecules targeted therapeutically, namely PSMA, STEAP1, STEAP2, TROP2, CEACAM5, and DLL3, varied within a subset of gene-regulatory networks (GRNs). We also noted that NEPC and small cell lung cancer (SCLC) subtypes shared a set of GRNs, indicative of conserved biologic pathways that may be exploited therapeutically across tumor types. While this extreme level of transcriptional heterogeneity, particularly in cell surface marker expression, may mitigate the durability of clinical responses to novel antigen-directed therapies, its delineation may yield signatures for patient selection in clinical trials, potentially across distinct cancer types.
Collapse
Affiliation(s)
- Samir Zaidi
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Department of Genitourinary Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jooyoung Park
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
| | - Joseph M. Chan
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | | | | | - Anuradha Gopalan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kristine M. Wadosky
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Radhika A. Patel
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA 98195, USA
| | - Erolcan Sayar
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA 98195, USA
| | - Wouter R. Karthaus
- Swiss Institute for Experimental Cancer Research (ISREC). School of Life Sciences. EPFL, 1015 Lausanne, Switzerland
| | - D. Henry Kates
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ojasvi Chaudhary
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tianhao Xu
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ignas Masilionis
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Linas Mazutis
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ronan Chaligné
- Program for Computational and Systems Biology, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Aleksandar Obradovic
- Department of Systems Biology, Columbia University Irving Medical Center, New York, NY, 10032, USA
| | - Irina Linkov
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Afsar Barlas
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Achim Jungbluth
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Natasha Rekhtman
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Joachim Silber
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Katia Manova–Todorova
- Molecular Cytology Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Philip A. Watson
- Research Outreach and Compliance, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lawrence D. True
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Colm M. Morrissey
- Department of Urology, University of Washington, Seattle, WA 98195, USA
| | - Howard I. Scher
- Department of Genitourinary Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dana Rathkopf
- Department of Genitourinary Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Michael J. Morris
- Department of Genitourinary Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - David W. Goodrich
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Jungmin Choi
- Department of Biomedical Sciences, Korea University College of Medicine, Seoul, Korea
| | - Peter S. Nelson
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA 98195, USA
| | - Michael C. Haffner
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Center, Seattle, WA 98195, USA
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98195, USA
| | - Charles L. Sawyers
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
- Howard Hughes Medical Institute, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| |
Collapse
|
12
|
Manzar N, Khan UK, Goel A, Carskadon S, Gupta N, Palanisamy N, Ateeq B. An integrative proteomics approach identifies tyrosine kinase KIT as a therapeutic target for SPINK1-positive prostate cancer. iScience 2024; 27:108794. [PMID: 38384854 PMCID: PMC10879682 DOI: 10.1016/j.isci.2024.108794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 08/05/2023] [Accepted: 01/02/2024] [Indexed: 02/23/2024] Open
Abstract
Elevated serine peptidase inhibitor, Kazal type 1 (SPINK1) levels in ∼10%-25% of prostate cancer (PCa) patients associate with aggressive phenotype, for which there are limited treatment choices and dismal clinical outcomes. Using an integrative proteomics approach involving label-free phosphoproteome and proteome profiling, we delineated the downstream signaling pathways involved in SPINK1-mediated tumorigenesis and identified tyrosine kinase KIT as highly enriched. Furthermore, high to moderate levels of KIT expression were detected in ∼85% of SPINK1-positive PCa specimens. We show KIT signaling orchestrates SPINK1-mediated oncogenesis, and treatment with KIT inhibitor reduces tumor growth and metastases in preclinical mice models. Mechanistically, KIT signaling modulates WNT/β-catenin pathway and confers stemness-related features in PCa. Notably, inhibiting KIT signaling led to restoration of AR/REST levels, forming a feedback loop enabling SPINK1 repression. Overall, we uncover the role of KIT signaling downstream of SPINK1 in maintaining lineage plasticity and provide distinct treatment modalities for advanced-stage SPINK1-positive patients.
Collapse
Affiliation(s)
- Nishat Manzar
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, UP 208016, India
| | - Umar Khalid Khan
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, UP 208016, India
| | - Ayush Goel
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, UP 208016, India
| | - Shannon Carskadon
- Vattikuti Urology Institute, Department of Urology, Henry Ford Health System, Detroit, MI 48202, USA
| | - Nilesh Gupta
- Department of Pathology, Henry Ford Health System, Detroit, MI 48202, USA
| | - Nallasivam Palanisamy
- Vattikuti Urology Institute, Department of Urology, Henry Ford Health System, Detroit, MI 48202, USA
| | - Bushra Ateeq
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, UP 208016, India
- Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, UP 208016, India
- Centre of Excellence for Cancer - Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur, UP 208016, India
| |
Collapse
|
13
|
Shukla S, Li D, Nguyen H, Conner J, Bayshtok G, Cho WH, Pachai M, Teri N, Campeau E, Attwell S, Trojer P, Ostrovnaya I, Gopalan A, Corey E, Chi P, Chen Y. BET inhibitors as a therapeutic intervention in gastrointestinal gene signature-positive castration-resistant prostate cancer. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.09.584256. [PMID: 38559135 PMCID: PMC10979872 DOI: 10.1101/2024.03.09.584256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
A subgroup of castration-resistant prostate cancer (CRPC) aberrantly expresses a gastrointestinal (GI) transcriptome governed by two GI-lineage-restricted transcription factors, HNF1A and HNF4G. In this study, we found that expression of GI transcriptome in CRPC correlates with adverse clinical outcomes to androgen receptor signaling inhibitor treatment and shorter overall survival. Bromo- and extra-terminal domain inhibitors (BETi) downregulated HNF1A, HNF4G, and the GI transcriptome in multiple CRPC models, including cell lines, patient-derived organoids, and patient-derived xenografts, while AR and the androgen-dependent transcriptome were largely spared. Accordingly, BETi selectively inhibited growth of GI transcriptome-positive preclinical models of prostate cancer. Mechanistically, BETi inhibited BRD4 binding at enhancers globally, including both AR and HNF4G bound enhancers while gene expression was selectively perturbed. Restoration of HNF4G expression in the presence of BETi rescued target gene expression without rescuing BRD4 binding. This suggests that inhibition of master transcription factors expression underlies the selective transcriptional effects of BETi. SIGNIFICANCE GI transcriptome expression in CRPC is regulated by the HNF1A-HNF4G-BRD4 axis and correlates with worse clinical outcomes. Accordingly, BET inhibitors significantly reduce tumor cell growth in multiple GI-transcriptome-positive preclinical models of CRPC. Our studies point that expression of GI transcriptome could serve as a predictive biomarker to BETi therapy response.
Collapse
|
14
|
De Sarkar N, Patton RD, Doebley AL, Hanratty B, Adil M, Kreitzman AJ, Sarthy JF, Ko M, Brahma S, Meers MP, Janssens DH, Ang LS, Coleman IM, Bose A, Dumpit RF, Lucas JM, Nunez TA, Nguyen HM, McClure HM, Pritchard CC, Schweizer MT, Morrissey C, Choudhury AD, Baca SC, Berchuck JE, Freedman ML, Ahmad K, Haffner MC, Montgomery RB, Corey E, Henikoff S, Nelson PS, Ha G. Nucleosome Patterns in Circulating Tumor DNA Reveal Transcriptional Regulation of Advanced Prostate Cancer Phenotypes. Cancer Discov 2023; 13:632-653. [PMID: 36399432 PMCID: PMC9976992 DOI: 10.1158/2159-8290.cd-22-0692] [Citation(s) in RCA: 29] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 10/01/2022] [Accepted: 11/16/2022] [Indexed: 11/19/2022]
Abstract
Advanced prostate cancers comprise distinct phenotypes, but tumor classification remains clinically challenging. Here, we harnessed circulating tumor DNA (ctDNA) to study tumor phenotypes by ascertaining nucleosome positioning patterns associated with transcription regulation. We sequenced plasma ctDNA whole genomes from patient-derived xenografts representing a spectrum of androgen receptor active (ARPC) and neuroendocrine (NEPC) prostate cancers. Nucleosome patterns associated with transcriptional activity were reflected in ctDNA at regions of genes, promoters, histone modifications, transcription factor binding, and accessible chromatin. We identified the activity of key phenotype-defining transcriptional regulators from ctDNA, including AR, ASCL1, HOXB13, HNF4G, and GATA2. To distinguish NEPC and ARPC in patient plasma samples, we developed prediction models that achieved accuracies of 97% for dominant phenotypes and 87% for mixed clinical phenotypes. Although phenotype classification is typically assessed by IHC or transcriptome profiling from tumor biopsies, we demonstrate that ctDNA provides comparable results with diagnostic advantages for precision oncology. SIGNIFICANCE This study provides insights into the dynamics of nucleosome positioning and gene regulation associated with cancer phenotypes that can be ascertained from ctDNA. New methods for classification in phenotype mixtures extend the utility of ctDNA beyond assessments of somatic DNA alterations with important implications for molecular classification and precision oncology. This article is highlighted in the In This Issue feature, p. 517.
Collapse
Affiliation(s)
- Navonil De Sarkar
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington
- Department of Pathology and Prostate Cancer Center of Excellence, Medical College of Wisconsin, Milwaukee, Wisconsin
| | - Robert D. Patton
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Anna-Lisa Doebley
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
- Molecular and Cellular Biology Graduate Program, University of Washington, Seattle, Washington
- Medical Scientist Training Program, University of Washington, Seattle, Washington
| | - Brian Hanratty
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Mohamed Adil
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Adam J. Kreitzman
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Jay F. Sarthy
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Minjeong Ko
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Sandipan Brahma
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Michael P. Meers
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Derek H. Janssens
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Lisa S. Ang
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Ilsa M. Coleman
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Arnab Bose
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Ruth F. Dumpit
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Jared M. Lucas
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Talina A. Nunez
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Holly M. Nguyen
- Department of Urology, University of Washington, Seattle, Washington
| | | | - Colin C. Pritchard
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
- Brotman Baty Institute for Precision Medicine, Seattle, Washington
| | - Michael T. Schweizer
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington
- Division of Oncology, Department of Medicine, University of Washington, Seattle, Washington
| | - Colm Morrissey
- Department of Urology, University of Washington, Seattle, Washington
| | - Atish D. Choudhury
- Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Sylvan C. Baca
- Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | | | - Matthew L. Freedman
- Dana-Farber Cancer Institute, Boston, Massachusetts
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts
| | - Kami Ahmad
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Michael C. Haffner
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington
| | - R. Bruce Montgomery
- Division of Oncology, Department of Medicine, University of Washington, Seattle, Washington
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, Washington
| | - Steven Henikoff
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
- Howard Hughes Medical Institute, Chevy Chase, Maryland
| | - Peter S. Nelson
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
- Division of Clinical Research, Fred Hutchinson Cancer Center, Seattle, Washington
- Department of Urology, University of Washington, Seattle, Washington
- Brotman Baty Institute for Precision Medicine, Seattle, Washington
- Division of Oncology, Department of Medicine, University of Washington, Seattle, Washington
- Corresponding Authors: Gavin Ha, Fred Hutchinson Cancer Center, 1100 Fairview Avenue North, Seattle, WA 98109. Phone: 206-667-2802; E-mail: ; and Peter S. Nelson, Fred Hutchinson Cancer Center, 1100 Fairview Avenue North, Seattle, WA 98109. Phone: 206-667-3377; E-mail:
| | - Gavin Ha
- Division of Public Health Sciences, Fred Hutchinson Cancer Center, Seattle, Washington
- Division of Human Biology, Fred Hutchinson Cancer Center, Seattle, Washington
- Brotman Baty Institute for Precision Medicine, Seattle, Washington
- Department of Genome Sciences, University of Washington, Seattle, Washington
- Corresponding Authors: Gavin Ha, Fred Hutchinson Cancer Center, 1100 Fairview Avenue North, Seattle, WA 98109. Phone: 206-667-2802; E-mail: ; and Peter S. Nelson, Fred Hutchinson Cancer Center, 1100 Fairview Avenue North, Seattle, WA 98109. Phone: 206-667-3377; E-mail:
| |
Collapse
|
15
|
Severson TM, Zhu Y, Prekovic S, Schuurman K, Nguyen HM, Brown LG, Hakkola S, Kim Y, Kneppers J, Linder S, Stelloo S, Lieftink C, van der Heijden M, Nykter M, van der Noort V, Sanders J, Morris B, Jenster G, van Leenders GJLH, Pomerantz M, Freedman ML, Beijersbergen RL, Urbanucci A, Wessels L, Corey E, Zwart W, Bergman AM. Enhancer profiling identifies epigenetic markers of endocrine resistance and reveals therapeutic options for metastatic castration-resistant prostate cancer patients. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2023:2023.02.24.23286403. [PMID: 36865297 PMCID: PMC9980263 DOI: 10.1101/2023.02.24.23286403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2023]
Abstract
Androgen Receptor (AR) signaling inhibitors, including enzalutamide, are treatment options for patients with metastatic castration-resistant prostate cancer (mCRPC), but resistance inevitably develops. Using metastatic samples from a prospective phase II clinical trial, we epigenetically profiled enhancer/promoter activities with H3K27ac chromatin immunoprecipitation followed by sequencing, before and after AR-targeted therapy. We identified a distinct subset of H3K27ac-differentially marked regions that associated with treatment responsiveness. These data were successfully validated in mCRPC patient-derived xenograft models (PDX). In silico analyses revealed HDAC3 as a critical factor that can drive resistance to hormonal interventions, which we validated in vitro . Using cell lines and mCRPC PDX tumors in vitro , we identified drug-drug synergy between enzalutamide and the pan-HDAC inhibitor vorinostat, providing therapeutic proof-of-concept. These findings demonstrate rationale for new therapeutic strategies using a combination of AR and HDAC inhibitors to improve patient outcome in advanced stages of mCRPC.
Collapse
|
16
|
Che H, Zheng Q, Liao Z, Zhang L. HNF4G accelerates glioma progression by facilitating NRP1 transcription. Oncol Lett 2023; 25:102. [PMID: 36817051 PMCID: PMC9932018 DOI: 10.3892/ol.2023.13688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 12/02/2022] [Indexed: 02/04/2023] Open
Abstract
Hepatocyte nuclear factor 4γ (HNF4G) is considered to be a transcription factor and functions as an oncogene in certain types of human cancer. However, the precise functions and the potential molecular mechanisms of HNF4G in glioma remain unclear. Therefore, the present study aimed to elucidate the role of HNF4G in glioma and the underlying mechanism. Western blotting and reverse transcription-quantitative PCR (RT-qPCR) demonstrated that HNF4G was highly expressed in glioma tissues and cell lines. The overexpression of HNF4G in LN229 and U251 glioma cells promoted cell proliferation and cell cycle progression, and inhibited apoptosis, while the knockdown of HNF4G suppressed cell proliferation, cell cycle progression and tumor growth, and induced apoptosis. A significant positive association was detected between HNF4G and neuropilin-1 (NRP1) mRNA expression in glioma tissues. Bioinformatics analysis, chromatin immunoprecipitation-RT-qPCR and promoter reporter assays confirmed that HNF4G promoted NRP1 transcription in glioma by binding to its promoter. NRP1 overexpression facilitated glioma cell proliferation and cell cycle progression, and suppressed apoptosis in vitro, while the knockdown of NRP1 inhibited cell proliferation and cell cycle progression, and facilitated apoptosis. NRP1 overexpression reversed the effects induced by HNF4G knockdown on glioma cell proliferation, cell cycle progression and apoptosis. In summary, the present study demonstrated that HNF4G promotes glioma cell proliferation and suppresses apoptosis by activating NRP1 transcription. These findings indicate that HNF4G acts as an oncogene in glioma and may thus be an effective therapeutic target for glioma.
Collapse
Affiliation(s)
- Hongmin Che
- Department of Neurosurgery, Xi'an Gaoxin Hospital, Xi'an, Shaanxi 710075, P.R. China,Correspondence to: Professor Hongmin Che, Department of Neurosurgery, Xi'an Gaoxin Hospital, 16 Tuanjie South Road, Xi'an, Shaanxi 710075, P.R. China, E-mail:
| | - Qi Zheng
- Department of Medical Oncology, Affiliated Shaanxi Provincial Cancer Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Zijun Liao
- Department of Medical Oncology, Affiliated Shaanxi Provincial Cancer Hospital, College of Medicine, Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Lu Zhang
- Department of Foreign Languages, Xi'an Mingde Institute of Technology, Xi'an, Shaanxi 710124, P.R. China,Professor Lu Zhang, Department of Foreign Languages, Xi'an Mingde Institute of Technology, 11 Fengye Road, Xi'an, Shaanxi 710124, P.R. China, E-mail:
| |
Collapse
|
17
|
Zhan J, Zhang Q, Tong X, Liu X, Zhao C. HNF4G stimulates the development of pancreatic cancer by promoting IGF2BP2 transcription. CLINICAL & TRANSLATIONAL ONCOLOGY : OFFICIAL PUBLICATION OF THE FEDERATION OF SPANISH ONCOLOGY SOCIETIES AND OF THE NATIONAL CANCER INSTITUTE OF MEXICO 2023; 25:1472-1481. [PMID: 36607591 DOI: 10.1007/s12094-022-03048-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023]
Abstract
OBJECTIVE Pancreatic cancer is a devastating and lethal malignancy. Our study investigated the effective mechanism of HNF4G on pancreatic cancer cell functions through the IGF2BP2 transcription. METHODS HNF4G and IGF2BP2 expressions in pancreatic cancer were examined. The relationship between HNF4G expression and pancreatic cancer patients' clinicopathological characteristics was evaluated. After interfering with HNF4G expression in pancreatic cancer cells, the cell proliferative, migratory, and invasive capabilities were evaluated. Also, the expression of proliferation-related gene PCNA and migration and invasion-related gene MMP2 was determined. The binding relation between HNF4G and HNF4G promoter was forecasted and testified. A tumorigenesis assay in nude mice was performed to detect the HNF4G interference's effect on the subcutaneous tumorigenic capacity of pancreatic cancer cells. RESULTS HNF4G and IGF2BP2 expressions were up-regulated in pancreatic cancer. Specifically, interfering with HNF4G inhibited PANC-1 cell proliferative, invasive and migratory behaviors, and decreased PCNA and MMP2 expression. Mechanistically, HNF4G as a transcription factor could specifically bind to IGF2BP2 and promote its expression. Rescue assay findings showed that IGF2BP2 overexpression could reverse the inhibiting effect of HNF4G interference on pancreatic cancer cells. For the in vivo finding, interfering HNF4G expression retarded the subcutaneous tumorigenic ability of pancreatic cancer cells. CONCLUSION We summarize that HNF4G as a transcription factor regulates IGF2BP2 expression to promote pancreatic cancer cell proliferation and migration capacities.
Collapse
Affiliation(s)
- Jian Zhan
- Department of Abdominal Radiotherapy, Harbin Medical University Cancer Hospital, Harbin Medical University, 150 Haping Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Qian Zhang
- Department of Abdominal Radiotherapy, Harbin Medical University Cancer Hospital, Harbin Medical University, 150 Haping Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Xu Tong
- Department of Abdominal Radiotherapy, Harbin Medical University Cancer Hospital, Harbin Medical University, 150 Haping Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Xu Liu
- Department of Abdominal Radiotherapy, Harbin Medical University Cancer Hospital, Harbin Medical University, 150 Haping Road, Nangang District, Harbin, 150081, Heilongjiang, China
| | - Chunbo Zhao
- Department of Abdominal Radiotherapy, Harbin Medical University Cancer Hospital, Harbin Medical University, 150 Haping Road, Nangang District, Harbin, 150081, Heilongjiang, China.
| |
Collapse
|
18
|
Feng E, Rydzewski NR, Zhang M, Lundberg A, Bootsma M, Helzer KT, Lang JM, Aggarwal R, Small EJ, Quigley DA, Sjöström M, Zhao SG. Intrinsic Molecular Subtypes of Metastatic Castration-Resistant Prostate Cancer. Clin Cancer Res 2022; 28:5396-5404. [PMID: 36260524 PMCID: PMC9890931 DOI: 10.1158/1078-0432.ccr-22-2567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 10/05/2022] [Accepted: 10/17/2022] [Indexed: 02/03/2023]
Abstract
PURPOSE Although numerous biology-driven subtypes have been described previously in metastatic castration-resistant prostate cancer (mCRPC), unsupervised molecular subtyping based on gene expression has been less studied, especially using large cohorts. Thus, we sought to identify the intrinsic molecular subtypes of mCRPC and assess molecular and clinical correlates in the largest combined cohort of mCRPC samples with gene expression data available to date. EXPERIMENTAL DESIGN We combined and batch-effect corrected gene expression data from four mCRPC cohorts from the Fred Hutchinson Cancer Research Center (N = 157), a small-cell neuroendocrine (NE) prostate cancer (SCNC)-enriched cohort from Weill Cornell Medicine (N = 49), and cohorts from the Stand Up 2 Cancer/Prostate Cancer Foundation East Coast Dream Team (N = 266) and the West Coast Dream Team (N = 162). RESULTS Hierarchical clustering of RNA-sequencing data from these 634 mCRPC samples identified two distinct adenocarcinoma subtypes, one of which (adeno-immune) was characterized by higher gene expression of immune pathways, higher CIBERSORTx immune scores, diminished ASI benefit, and non-lymph node metastasis tropism compared with an adeno-classic subtype. We also identified two distinct subtypes with enrichment for an NE phenotype, including an NE-liver subgroup characterized by liver metastasis tropism, PTEN loss, and APC and SPOP mutations compared with an NE-classic subgroup. CONCLUSIONS Our results emphasize the heterogeneity of mCRPC beyond currently accepted molecular phenotypes, and suggest that future studies should consider incorporating transcriptome-wide profiling to better understand how these differences impact treatment responses and outcomes.
Collapse
Affiliation(s)
- Eric Feng
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
| | - Nicholas R Rydzewski
- Department of Human Oncology, University of Wisconsin, Madison, Wisconsin
- Radiation Oncology Branch, National Cancer Institute, National Institute of Health, Bethesda, Maryland
| | - Meng Zhang
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California
| | - Arian Lundberg
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California
| | - Matthew Bootsma
- Department of Human Oncology, University of Wisconsin, Madison, Wisconsin
| | - Kyle T Helzer
- Department of Human Oncology, University of Wisconsin, Madison, Wisconsin
| | - Joshua M Lang
- Department of Medicine, University of Wisconsin, Madison, Wisconsin
- University of Wisconsin, Carbone Cancer Center, Madison, Wisconsin
| | - Rahul Aggarwal
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - Eric J Small
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California
- Department of Medicine, University of California San Francisco, San Francisco, California
| | - David A Quigley
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California
| | - Martin Sjöström
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California
- Helen Diller Family Comprehensive Cancer Center, University of California at San Francisco, San Francisco, California
- Division of Oncology, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Shuang G Zhao
- Department of Human Oncology, University of Wisconsin, Madison, Wisconsin
- University of Wisconsin, Carbone Cancer Center, Madison, Wisconsin
- William S. Middleton Memorial Hospital, Madison, Wisconsin
| |
Collapse
|
19
|
Pan X, Tan J, Yin X, Liu Q, Zheng L, Su Z, Zhou Q, Chen N. The roles of mutated SPINK1 gene in prostate cancer cells. Mutagenesis 2022; 37:238-247. [PMID: 36112498 DOI: 10.1093/mutage/geac019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 09/07/2022] [Indexed: 12/31/2022] Open
Abstract
SPINK1-positive prostate cancer (PCa) has been identified as an aggressive PCa subtype. However, there is a lack of definite studies to elucidate the underlying mechanism of the loss of SPINK1 expression in most PCa cells except 22Rv1 cells, which are derived from a human prostatic carcinoma xenograft, CWR22R. The aim of this study was to investigate the mechanisms of SPINK1 protein positive/negative expression and its biological roles in PCa cell lines. SPINK1 mRNA was highly expressed in 22Rv1 cells compared with LNCaP, C4-2B, DU145, and PC-3 cells, and the protein was only detected in 22Rv1 cells. Among these cell lines, the wild-type SPINK1 coding sequence was only found in 22Rv1 cells, and two mutation sites, the c.194G>A missense mutation and the c.210T>C synonymous mutation, were found in other cell lines. Our further research showed that the mutations were associated with a reduction in SPINK1 mRNA and protein levels. Functional experiments indicated that SPINK1 promoted PC-3 cell proliferation, migration, and invasion, while knockdown of SPINK1 attenuated 22Rv1 cell proliferation, migration, and invasion. The wild-type SPINK1 gene can promote the malignant behaviors of cells more than the mutated ones. Cell cycle analysis by flow cytometry showed that SPINK1 decreased the percentage of cells in the G0/G1 phase and increased the percentage of S phase cells. We demonstrated that the c.194G>A and c.210T>C mutations in the SPINK1 gene decreased the mRNA and protein levels. The wild-type SPINK1 gene is related to aggressive biological behaviors of PCa cells and may be a potential therapeutic target for PCa.
Collapse
Affiliation(s)
- Xiuyi Pan
- Pathology Department, West China Hospital, Sichuan University, Chengdu 610041, China.,State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Junya Tan
- Pathology Department, West China Hospital, Sichuan University, Chengdu 610041, China.,State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xiaoxue Yin
- Pathology Department, West China Hospital, Sichuan University, Chengdu 610041, China.,State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qianqi Liu
- Pathology Department, West China Hospital, Sichuan University, Chengdu 610041, China.,State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Linmao Zheng
- Pathology Department, West China Hospital, Sichuan University, Chengdu 610041, China.,State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhengzheng Su
- Pathology Department, West China Hospital, Sichuan University, Chengdu 610041, China.,State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Qiao Zhou
- Pathology Department, West China Hospital, Sichuan University, Chengdu 610041, China.,State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ni Chen
- Pathology Department, West China Hospital, Sichuan University, Chengdu 610041, China.,State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
20
|
Feng Y, Wang P, Cai L, Zhan M, He F, Wang J, Li Y, Gega E, Zhang W, Zhao W, Xin Y, Chen X, Ruan Y, Lu L. 3D-Epigenomic Regulation of Gene Transcription in Hepatocellular Carcinoma. ADVANCED GENETICS (HOBOKEN, N.J.) 2022; 3:2100010. [PMID: 36911294 PMCID: PMC9993472 DOI: 10.1002/ggn2.202100010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 05/03/2022] [Indexed: 11/10/2022]
Abstract
The fundamental cause of transcription dysregulation in hepatocellular carcinoma (HCC) remains elusive. To investigate the underlying mechanisms, comprehensive 3D-epigenomic analyses are performed in cellular models of THLE2 (a normal hepatocytes cell line) and HepG2 (a hepatocellular carcinoma cell line) using integrative approaches for chromatin topology, genomic and epigenomic variation, and transcriptional output. Comparing the 3D-epigenomes in THLE2 and HepG2 reveal that most HCC-associated genes are organized in complex chromatin interactions mediated by RNA polymerase II (RNAPII). Incorporation of genome-wide association studies (GWAS) data enables the identification of non-coding genetic variants that are enriched in distal enhancers connecting to the promoters of HCC-associated genes via long-range chromatin interactions, highlighting their functional roles. Interestingly, CTCF binding and looping proximal to HCC-associated genes appear to form chromatin architectures that overarch RNAPII-mediated chromatin interactions. It is further demonstrated that epigenetic variants by DNA hypomethylation at a subset of CTCF motifs proximal to HCC-associated genes can modify chromatin topological configuration, which in turn alter RNAPII-mediated chromatin interactions and lead to dysregulation of transcription. Together, the 3D-epigenomic analyses provide novel insights of multifaceted interplays involving genetics, epigenetics, and chromatin topology in HCC cells.
Collapse
Affiliation(s)
- Yuliang Feng
- Zhuhai Precision Medical CenterZhuhai People's HospitalZhuhai Hospital Affiliated with Jinan UniversityZhuhaiGuangdong519000P. R. China
- The Jackson Laboratory for Genomic MedicineFarmingtonCT06032USA
| | - Ping Wang
- The Jackson Laboratory for Genomic MedicineFarmingtonCT06032USA
| | - Liuyang Cai
- The Jackson Laboratory for Genomic MedicineFarmingtonCT06032USA
| | - Meixiao Zhan
- Zhuhai Precision Medical CenterZhuhai People's HospitalZhuhai Hospital Affiliated with Jinan UniversityZhuhaiGuangdong519000P. R. China
| | - Fan He
- Department of Interventional RadiologyShenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology)ShenzhenGuangdong518020P. R. China
| | - Jiahui Wang
- The Jackson Laboratory for Genomic MedicineFarmingtonCT06032USA
| | - Yong Li
- Zhuhai Precision Medical CenterZhuhai People's HospitalZhuhai Hospital Affiliated with Jinan UniversityZhuhaiGuangdong519000P. R. China
| | - Eva Gega
- The Jackson Laboratory for Genomic MedicineFarmingtonCT06032USA
| | - Wei Zhang
- Department of Interventional RadiologyShenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology)ShenzhenGuangdong518020P. R. China
| | - Wei Zhao
- Zhuhai Precision Medical CenterZhuhai People's HospitalZhuhai Hospital Affiliated with Jinan UniversityZhuhaiGuangdong519000P. R. China
| | - Yongjie Xin
- Zhuhai Precision Medical CenterZhuhai People's HospitalZhuhai Hospital Affiliated with Jinan UniversityZhuhaiGuangdong519000P. R. China
| | - Xudong Chen
- Department of Interventional RadiologyShenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology)ShenzhenGuangdong518020P. R. China
| | - Yijun Ruan
- The Jackson Laboratory for Genomic MedicineFarmingtonCT06032USA
| | - Ligong Lu
- Zhuhai Precision Medical CenterZhuhai People's HospitalZhuhai Hospital Affiliated with Jinan UniversityZhuhaiGuangdong519000P. R. China
| |
Collapse
|
21
|
Sjöström M, Zhao SG, Levy S, Zhang M, Ning Y, Shrestha R, Lundberg A, Herberts C, Foye A, Aggarwal R, Hua JT, Li H, Bergamaschi A, Maurice-Dror C, Maheshwari A, Chen S, Ng SWS, Ye W, Petricca J, Fraser M, Chesner L, Perry MD, Moreno-Rodriguez T, Chen WS, Alumkal JJ, Chou J, Morgans AK, Beer TM, Thomas GV, Gleave M, Lloyd P, Phillips T, McCarthy E, Haffner MC, Zoubeidi A, Annala M, Reiter RE, Rettig MB, Witte ON, Fong L, Bose R, Huang FW, Luo J, Bjartell A, Lang JM, Mahajan NP, Lara PN, Evans CP, Tran PT, Posadas EM, He C, Cui XL, Huang J, Zwart W, Gilbert LA, Maher CA, Boutros PC, Chi KN, Ashworth A, Small EJ, He HH, Wyatt AW, Quigley DA, Feng FY. The 5-Hydroxymethylcytosine Landscape of Prostate Cancer. Cancer Res 2022; 82:3888-3902. [PMID: 36251389 PMCID: PMC9627125 DOI: 10.1158/0008-5472.can-22-1123] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 06/13/2022] [Accepted: 07/29/2022] [Indexed: 02/03/2023]
Abstract
Analysis of DNA methylation is a valuable tool to understand disease progression and is increasingly being used to create diagnostic and prognostic clinical biomarkers. While conversion of cytosine to 5-methylcytosine (5mC) commonly results in transcriptional repression, further conversion to 5-hydroxymethylcytosine (5hmC) is associated with transcriptional activation. Here we perform the first study integrating whole-genome 5hmC with DNA, 5mC, and transcriptome sequencing in clinical samples of benign, localized, and advanced prostate cancer. 5hmC is shown to mark activation of cancer drivers and downstream targets. Furthermore, 5hmC sequencing revealed profoundly altered cell states throughout the disease course, characterized by increased proliferation, oncogenic signaling, dedifferentiation, and lineage plasticity to neuroendocrine and gastrointestinal lineages. Finally, 5hmC sequencing of cell-free DNA from patients with metastatic disease proved useful as a prognostic biomarker able to identify an aggressive subtype of prostate cancer using the genes TOP2A and EZH2, previously only detectable by transcriptomic analysis of solid tumor biopsies. Overall, these findings reveal that 5hmC marks epigenomic activation in prostate cancer and identify hallmarks of prostate cancer progression with potential as biomarkers of aggressive disease. SIGNIFICANCE In prostate cancer, 5-hydroxymethylcytosine delineates oncogene activation and stage-specific cell states and can be analyzed in liquid biopsies to detect cancer phenotypes. See related article by Wu and Attard, p. 3880.
Collapse
Affiliation(s)
- Martin Sjöström
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA
- Division of Oncology, Department of Clinical Sciences Lund, Faculty of Medicine, Lund University, Lund, Sweden
| | - Shuang G Zhao
- Department of Human Oncology, University of Wisconsin-Madison, Madison, WI
- William S. Middleton Memorial Veterans' Hospital, Madison, WI
| | | | - Meng Zhang
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA
| | | | - Raunak Shrestha
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA
| | - Arian Lundberg
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA
| | - Cameron Herberts
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Adam Foye
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Rahul Aggarwal
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Junjie T Hua
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA
| | - Haolong Li
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA
| | | | - Corinne Maurice-Dror
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
- BC Cancer, Vancouver, BC, Canada
| | - Ashutosh Maheshwari
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA
| | - Sujun Chen
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Sarah W S Ng
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Wenbin Ye
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Automation, Xiamen University, Xiamen, Fujian, China
| | - Jessica Petricca
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Michael Fraser
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Department of Surgery, University of Toronto, Toronto, Ontario, Canada
| | - Lisa Chesner
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA
| | - Marc D Perry
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA
| | - Thaidy Moreno-Rodriguez
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA
| | - William S Chen
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA
| | - Joshi J Alumkal
- Division of Hematology and Oncology, University of Michigan Rogel Cancer Center, Ann Arbor, MI
| | - Jonathan Chou
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Alicia K Morgans
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Tomasz M Beer
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR
| | - George V Thomas
- Knight Cancer Institute, Oregon Health and Science University, Portland, OR
- Department of Pathology, Oregon Health & Science University, Portland, OR
| | - Martin Gleave
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | | | | | | | - Michael C Haffner
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, WA
- University of Washington, Seattle, WA
| | - Amina Zoubeidi
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Matti Annala
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
- Faculty of Medicine and Health Technology, Tampere University and Tays Cancer Centre, Tampere, Finland
| | - Robert E Reiter
- Departments of Medicine, Hematology/Oncology and Urology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA
| | - Matthew B Rettig
- Departments of Medicine, Hematology/Oncology and Urology, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
- Jonsson Comprehensive Cancer Center, University of California Los Angeles, Los Angeles, CA
- VA Greater Los Angeles Healthcare System, Los Angeles, CA
| | - Owen N Witte
- Department of Microbiology, Immunology, and Molecular Genetics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA
| | - Lawrence Fong
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Rohit Bose
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA
- Department of Urology, University of California, San Francisco, San Francisco, CA
- Department of Anatomy, University of California, San Francisco, San Francisco, CA
| | - Franklin W Huang
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Jianhua Luo
- Department of Pathology, University of Pittsburgh, Pittsburgh, PA
| | - Anders Bjartell
- Department of Translational Medicine, Medical Faculty, Lund University, Malmö, Sweden
- Department of Urology, Skåne University Hospital, Malmö, Sweden
| | - Joshua M Lang
- Department of Medicine, University of Wisconsin-Madison, Madison, WI
| | | | - Primo N Lara
- Division of Hematology Oncology, Department of Internal Medicine, University of California Davis, Sacramento, CA
- Comprehensive Cancer Center, University of California Davis, Sacramento, CA
| | - Christopher P Evans
- Comprehensive Cancer Center, University of California Davis, Sacramento, CA
- Department of Urologic Surgery, University of California Davis, Sacramento, CA
| | - Phuoc T Tran
- Department of Radiation Oncology, University of Maryland, College Park, Baltimore, MD
| | - Edwin M Posadas
- Urologic Oncology Program & Uro-Oncology Research Laboratories, Samuel Oschin Comprehensive Cancer Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Chuan He
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, IL
- Howard Hughes Medical Institute, University of Chicago, Chicago, IL
| | - Xiao-Long Cui
- Department of Chemistry, Department of Biochemistry and Molecular Biology, Institute for Biophysical Dynamics, University of Chicago, Chicago, IL
- Howard Hughes Medical Institute, University of Chicago, Chicago, IL
| | - Jiaoti Huang
- Department of Pathology, Duke University, Durham, NC
| | - Wilbert Zwart
- Netherlands Cancer Institute, Oncode Institute, Amsterdam, the Netherlands
| | - Luke A Gilbert
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Department of Urology, University of California, San Francisco, San Francisco, CA
- Arc Institute, Palo Alto, CA
| | - Christopher A Maher
- Siteman Cancer Center, Washington University, St. Louis, MO
- McDonnell Genome Institute, Washington University, St. Louis, MO
- Department of Internal Medicine, Washington University, St. Louis, MO
- Department of Biomedical Engineering, Washington University, St. Louis, MO
| | - Paul C Boutros
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Department of Human Genetics, Institute for Precision Health, UCLA, Los Angeles, CA
- Jonsson Comprehensive Cancer Center, Departments of Human Genetics and Urology, University of California Los Angeles, Los Angeles, CA
| | - Kim N Chi
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
| | - Alan Ashworth
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Eric J Small
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA
| | - Housheng H He
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
- Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Alexander W Wyatt
- Vancouver Prostate Centre, Department of Urologic Sciences, University of British Columbia, Vancouver, BC, Canada
- Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | - David A Quigley
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Department of Urology, University of California, San Francisco, San Francisco, CA
- Department of Epidemiology and Biostatistics, University of California, San Francisco, San Francisco, CA
| | - Felix Y Feng
- Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA
- Department of Radiation Oncology, University of California, San Francisco, San Francisco, CA
- Division of Hematology and Oncology, Department of Medicine, University of California, San Francisco, San Francisco, CA
- Department of Urology, University of California, San Francisco, San Francisco, CA
| |
Collapse
|
22
|
D’Abronzo LS, Lombard AP, Ning S, Armstong CM, Leslie AR, Sharifi M, Schaaf ZA, Lou W, Gao AC. Wntless expression promotes lineage plasticity and is associated with neuroendocrine prostate cancer. AMERICAN JOURNAL OF CLINICAL AND EXPERIMENTAL UROLOGY 2022; 10:299-310. [PMID: 36313205 PMCID: PMC9605943] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/01/2022] [Indexed: 06/16/2023]
Abstract
Resistance to androgen receptor (AR) targeted therapies remains as the main reason for most prostate cancer related deaths. Lineage plasticity resulting in altered, treatment insensitive prostate tumor cell phenotypes such neuroendocrine differentiated prostate cancer is a common manifestation within resistant tumors upon AR-targeted therapies. The mechanisms responsible for lineage plasticity in prostate cancer remain incompletely understood. Here we demonstrate that the enzalutamide resistant MDVR cell line possesses lineage plastic characteristics associated with overexpression of the Wnt transporter Wntless (WLS). Furthermore, we present evidence that overexpression of WLS is common in varying cell line models of lineage plastic prostate cancer, is higher in neuroendocrine patient samples, and positively correlates with the neuroendocrine marker SYP in clinical data. Targeting WLS in lineage plastic cellular models reduces viability and represses lineage plasticity associated gene expression. Our study provides insight into the importance of WLS to the development of lethal resistant prostate cancer and provides a potential target for the treatment of advanced disease.
Collapse
Affiliation(s)
- Leandro S D’Abronzo
- Department of Urologic Surgery, University of California DavisSacramento, California, USA
| | - Alan P Lombard
- Department of Urologic Surgery, University of California DavisSacramento, California, USA
- UC Davis Comprehensive Cancer Center, University of California DavisSacramento, California, USA
- Department of Biochemistry and Molecular Medicine, University of California DavisSacramento, California, USA
| | - Shu Ning
- Department of Urologic Surgery, University of California DavisSacramento, California, USA
| | - Cameron M Armstong
- Department of Urologic Surgery, University of California DavisSacramento, California, USA
| | - Amy R Leslie
- Department of Urologic Surgery, University of California DavisSacramento, California, USA
| | - Masuda Sharifi
- Department of Urologic Surgery, University of California DavisSacramento, California, USA
| | - Zachary A Schaaf
- Department of Urologic Surgery, University of California DavisSacramento, California, USA
| | - Wei Lou
- Department of Urologic Surgery, University of California DavisSacramento, California, USA
| | - Allen C Gao
- Department of Urologic Surgery, University of California DavisSacramento, California, USA
- UC Davis Comprehensive Cancer Center, University of California DavisSacramento, California, USA
- VA Northern California Health Care SystemSacramento, California, USA
| |
Collapse
|
23
|
Zhang L, Billet S, Gonzales G, Rohena-Rivera K, Muranaka H, Chu GCY, Yang Q, Kim H, Bhowmick NA, Smith B. Fatty Acid Signaling Impacts Prostate Cancer Lineage Plasticity in an Autocrine and Paracrine Manner. Cancers (Basel) 2022; 14:3449. [PMID: 35884514 PMCID: PMC9318639 DOI: 10.3390/cancers14143449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 06/30/2022] [Accepted: 07/11/2022] [Indexed: 01/27/2023] Open
Abstract
Prostate cancer (PCa) affects an estimated 250,000 men every year and causes 34,000 deaths annually. A high-fat diet and obesity are associated with PCa progression and mortality. This study's premise was the novel observation of crosstalk between PCa epithelia and cancer-associated fibroblasts (CAF) in response to palmitate-mediated lineage plasticity. We found that cholesterol activated canonical Hedgehog (Hh) signaling by increasing cilium Gli activity in PCa cells, while palmitate activated Hh independent of Gli. Exogenous palmitate activated SOX2, a known mediator of lineage plasticity, in PCa cells cocultured with CAF. Stroma-derived Wnt5a was upregulated in CAF while cocultured with PCa cells and treated with palmitate. Wnt5a knockdown in CAF inhibited Hh and SOX2 expression in PCa cells from cocultures. These findings supported our proposed mechanism of a high-fat diet promoting Hh signaling-mediated transformation within the tumor microenvironment. SOX2 and Wnt5a expression were limited by the CD36 neutralizing antibody. Mice xenografted with PCa epithelia and CAF tumors were fed a high-fat diet, leading to elevated SOX2 expression and lineage plasticity reprogramming compared to mice fed an isocaloric rodent diet. CD36 inhibition with enzalutamide elevated apoptosis by TUNEL, but limited proliferation and SOX2 expression compared to enzalutamide alone. This study revealed a mechanism for a high-fat diet to affect prostate cancer progression. We found that saturated fat induced lineage plasticity reprogramming of PCa by interaction with CAF through Wnt5a and Hh signaling.
Collapse
Affiliation(s)
- Le Zhang
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (L.Z.); (S.B.); (G.G.); (K.R.-R.); (H.M.); (G.C.-Y.C.); (Q.Y.); (H.K.)
| | - Sandrine Billet
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (L.Z.); (S.B.); (G.G.); (K.R.-R.); (H.M.); (G.C.-Y.C.); (Q.Y.); (H.K.)
| | - Gabrielle Gonzales
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (L.Z.); (S.B.); (G.G.); (K.R.-R.); (H.M.); (G.C.-Y.C.); (Q.Y.); (H.K.)
| | - Krizia Rohena-Rivera
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (L.Z.); (S.B.); (G.G.); (K.R.-R.); (H.M.); (G.C.-Y.C.); (Q.Y.); (H.K.)
| | - Hayato Muranaka
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (L.Z.); (S.B.); (G.G.); (K.R.-R.); (H.M.); (G.C.-Y.C.); (Q.Y.); (H.K.)
| | - Gina Chia-Yi Chu
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (L.Z.); (S.B.); (G.G.); (K.R.-R.); (H.M.); (G.C.-Y.C.); (Q.Y.); (H.K.)
| | - Qian Yang
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (L.Z.); (S.B.); (G.G.); (K.R.-R.); (H.M.); (G.C.-Y.C.); (Q.Y.); (H.K.)
| | - Hyung Kim
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (L.Z.); (S.B.); (G.G.); (K.R.-R.); (H.M.); (G.C.-Y.C.); (Q.Y.); (H.K.)
| | - Neil A. Bhowmick
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (L.Z.); (S.B.); (G.G.); (K.R.-R.); (H.M.); (G.C.-Y.C.); (Q.Y.); (H.K.)
- Department of Research, VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA
| | - Bethany Smith
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; (L.Z.); (S.B.); (G.G.); (K.R.-R.); (H.M.); (G.C.-Y.C.); (Q.Y.); (H.K.)
| |
Collapse
|
24
|
Tang F, Xu D, Wang S, Wong CK, Martinez-Fundichely A, Lee CJ, Cohen S, Park J, Hill CE, Eng K, Bareja R, Han T, Liu EM, Palladino A, Di W, Gao D, Abida W, Beg S, Puca L, Meneses M, De Stanchina E, Berger MF, Gopalan A, Dow LE, Mosquera JM, Beltran H, Sternberg CN, Chi P, Scher HI, Sboner A, Chen Y, Khurana E. Chromatin profiles classify castration-resistant prostate cancers suggesting therapeutic targets. Science 2022; 376:eabe1505. [PMID: 35617398 PMCID: PMC9299269 DOI: 10.1126/science.abe1505] [Citation(s) in RCA: 131] [Impact Index Per Article: 43.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In castration-resistant prostate cancer (CRPC), the loss of androgen receptor (AR) dependence leads to clinically aggressive tumors with few therapeutic options. We used ATAC-seq (assay for transposase-accessible chromatin sequencing), RNA-seq, and DNA sequencing to investigate 22 organoids, six patient-derived xenografts, and 12 cell lines. We identified the well-characterized AR-dependent and neuroendocrine subtypes, as well as two AR-negative/low groups: a Wnt-dependent subtype, and a stem cell-like (SCL) subtype driven by activator protein-1 (AP-1) transcription factors. We used transcriptomic signatures to classify 366 patients, which showed that SCL is the second most common subtype of CRPC after AR-dependent. Our data suggest that AP-1 interacts with the YAP/TAZ and TEAD proteins to maintain subtype-specific chromatin accessibility and transcriptomic landscapes in this group. Together, this molecular classification reveals drug targets and can potentially guide therapeutic decisions.
Collapse
Affiliation(s)
- Fanying Tang
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA.,Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10021, USA
| | - Duo Xu
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA.,Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10021, USA.,Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10021, USA.,Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021 USA
| | - Shangqian Wang
- Human Oncology and Pathogenesis Program, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,State Key Laboratory of Reproductive Medicine, Urology department, the First Affiliated Hospital of Nanjing Medical University, Nanjing 211116, China
| | - Chen Khuan Wong
- Human Oncology and Pathogenesis Program, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alexander Martinez-Fundichely
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA.,Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10021, USA.,Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10021, USA.,Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021 USA
| | - Cindy J. Lee
- Human Oncology and Pathogenesis Program, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Sandra Cohen
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA
| | - Jane Park
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Corinne E. Hill
- Center for Epigenetics Research, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Kenneth Eng
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021 USA
| | - Rohan Bareja
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021 USA
| | - Teng Han
- Human Oncology and Pathogenesis Program, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Eric Minwei Liu
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA.,Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10021, USA.,Computational Oncology Service, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Ann Palladino
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA.,Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10021, USA
| | - Wei Di
- Human Oncology and Pathogenesis Program, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Dong Gao
- Human Oncology and Pathogenesis Program, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,State Key Laboratory of Cell Biology, Shanghai Key Laboratory of Molecular Andrology, Shanghai Institute of Biochemistry and Cell Biology, Center for Excellence in Molecular Cell Science, Chinese Academy of Sciences, Shanghai 200031, China
| | - Wassim Abida
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Shaham Beg
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021 USA
| | - Loredana Puca
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA.,Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021 USA
| | - Maximiliano Meneses
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Elisa De Stanchina
- Antitumor Assessment Core Facility, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Michael F. Berger
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Anuradha Gopalan
- Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Lukas E. Dow
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA.,Department of Medicine, Weill Cornell Medical College and New York-Presbyterian Hospital, New York, NY 10065, USA
| | - Juan Miguel Mosquera
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA.,Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021 USA.,Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Himisha Beltran
- Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021 USA.,Department of Medical Oncology, Dana Farber Cancer Institute, Boston, MA 02215, USA
| | - Cora N. Sternberg
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA.,Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021 USA
| | - Ping Chi
- Human Oncology and Pathogenesis Program, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Department of Medicine, Weill Cornell Medical College and New York-Presbyterian Hospital, New York, NY 10065, USA
| | - Howard I. Scher
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Biomarker Development Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Andrea Sboner
- Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10021, USA.,Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021 USA.,Department of Pathology and Laboratory Medicine, Weill Cornell Medical College, New York, NY 10065, USA
| | - Yu Chen
- Human Oncology and Pathogenesis Program, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.,Department of Medicine, Weill Cornell Medical College and New York-Presbyterian Hospital, New York, NY 10065, USA.,Corresponding authors. (E.K.); (Y.C.)
| | - Ekta Khurana
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY 10021, USA.,Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10021, USA.,Department of Physiology and Biophysics, Weill Cornell Medical College, New York, NY 10021, USA.,Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021 USA.,Corresponding authors. (E.K.); (Y.C.)
| |
Collapse
|
25
|
Qiu X, Brown LG, Conner JL, Nguyen HM, Boufaied N, Abou Alaiwi S, Seo JH, El Zarif T, Bell C, O’Connor E, Hanratty B, Pomerantz M, Freedman ML, Brown M, Haffner MC, Nelson PS, Feng FY, Labbé DP, Long HW, Corey E. Response to supraphysiological testosterone is predicted by a distinct androgen receptor cistrome. JCI Insight 2022; 7:157164. [PMID: 35603787 PMCID: PMC9220831 DOI: 10.1172/jci.insight.157164] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The androgen receptor (AR) is a master transcription factor that regulates prostate cancer (PC) development and progression. Inhibition of AR signaling by androgen deprivation is the first-line therapy with initial efficacy for advanced and recurrent PC. Paradoxically, supraphysiological levels of testosterone (SPT) also inhibit PC progression. However, as with any therapy, not all patients show a therapeutic benefit, and responses differ widely in magnitude and duration. In this study, we evaluated whether differences in the AR cistrome before treatment can distinguish between SPT-responding (R) and -nonresponding (NR) tumors. We provide the first preclinical evidence to our knowledge that SPT-R tumors exhibit a distinct AR cistrome when compared with SPT-NR tumors, indicating a differential biological role of the AR. We applied an integrated analysis of ChIP-Seq and RNA-Seq to the pretreatment tumors and identified an SPT-R signature that distinguishes R and NR tumors. Because transcriptomes of SPT-treated clinical specimens are not available, we interrogated available castration-resistant PC (CRPC) transcriptomes and showed that the SPT-R signature is associated with improved survival and has the potential to identify patients who would respond to SPT. These findings provide an opportunity to identify the subset of patients with CRPC who would benefit from SPT therapy.
Collapse
Affiliation(s)
- Xintao Qiu
- Center for Functional Cancer Epigenetics, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Lisha G. Brown
- Department of Urology, University of Washington, Seattle, Washington, USA
| | - Jennifer L. Conner
- Department of Urology, University of Washington, Seattle, Washington, USA
| | - Holly M. Nguyen
- Department of Urology, University of Washington, Seattle, Washington, USA
| | - Nadia Boufaied
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
| | - Sarah Abou Alaiwi
- Center for Functional Cancer Epigenetics, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Ji-Heui Seo
- Center for Functional Cancer Epigenetics, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Talal El Zarif
- Center for Functional Cancer Epigenetics, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Connor Bell
- Center for Functional Cancer Epigenetics, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Edward O’Connor
- Center for Functional Cancer Epigenetics, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Brian Hanratty
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Mark Pomerantz
- Center for Functional Cancer Epigenetics, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Matthew L. Freedman
- Center for Functional Cancer Epigenetics, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Myles Brown
- Center for Functional Cancer Epigenetics, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Michael C. Haffner
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Peter S. Nelson
- Divisions of Human Biology and Clinical Research, Fred Hutchinson Cancer Research Center, Seattle, Washington, USA
| | - Felix Y. Feng
- University of California at San Francisco, San Francisco, California, USA
| | - David P. Labbé
- Cancer Research Program, Research Institute of the McGill University Health Centre, Montréal, Québec, Canada
- Department of Surgery, Division of Urology, McGill University, Montréal, Québec, Canada
| | - Henry W. Long
- Center for Functional Cancer Epigenetics, Department of Medical Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts, USA
| | - Eva Corey
- Department of Urology, University of Washington, Seattle, Washington, USA
| |
Collapse
|
26
|
PGC1 alpha coactivates ERG fusion to drive antioxidant target genes under metabolic stress. Commun Biol 2022; 5:416. [PMID: 35508713 PMCID: PMC9068611 DOI: 10.1038/s42003-022-03385-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 04/20/2022] [Indexed: 12/02/2022] Open
Abstract
The presence of ERG gene fusion; from developing prostatic intraepithelial neoplasia (PIN) lesions to hormone resistant high grade prostate cancer (PCa) dictates disease progression, altered androgen metabolism, proliferation and metastasis1–3. ERG driven transcriptional landscape may provide pro-tumorigenic cues in overcoming various strains like hypoxia, nutrient deprivation, inflammation and oxidative stress. However, insights on the androgen independent regulation and function of ERG during stress are limited. Here, we identify PGC1α as a coactivator of ERG fusion under various metabolic stress. Deacetylase SIRT1 is necessary for PGC1α-ERG interaction and function. We reveal that ERG drives the expression of antioxidant genes; SOD1 and TXN, benefitting PCa growth. We observe increased expression of these antioxidant genes in patients with high ERG expression correlates with poor survival. Inhibition of PGC1α-ERG axis driven transcriptional program results in apoptosis and reduction in PCa xenografts. Here we report a function of ERG under metabolic stress which warrants further studies as a therapeutic target for ERG fusion positive PCa. PGC1α acts as a co-activator of the ERG transcription factor during metabolic stress resulting in antioxidant functionsand inhibition of the PGC1α-ERG driven transcriptional program reduces prostate cancer growth by inducing ROS mediated apoptosis.
Collapse
|
27
|
Lorenzin F, Demichelis F. Past, Current, and Future Strategies to Target ERG Fusion-Positive Prostate Cancer. Cancers (Basel) 2022; 14:cancers14051118. [PMID: 35267426 PMCID: PMC8909394 DOI: 10.3390/cancers14051118] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 12/27/2022] Open
Abstract
Simple Summary In addition to its role in development and in the vascular and hematopoietic systems, ERG plays a central role in prostate cancer. Approximately 40–50% of prostate cancer cases are characterized by ERG gene fusions, which lead to ERG overexpression. Importantly, inhibition of ERG activity in prostate cancer cells decreases their viability. Therefore, inhibiting ERG might represent an important step to improve treatment efficacy for patients with ERG-positive prostate tumors. Here, we summarize the attempts made over the past years to repress ERG activity, the current use of ERG fusion detection and the strategies that might be utilized in the future to treat ERG fusion-positive tumors. Abstract The ETS family member ERG is a transcription factor with physiological roles during development and in the vascular and hematopoietic systems. ERG oncogenic activity characterizes several malignancies, including Ewing’s sarcoma, leukemia and prostate cancer (PCa). In PCa, ERG rearrangements with androgen-regulated genes—mostly TMPRSS2—characterize a large subset of patients across disease progression and result in androgen receptor (AR)-mediated overexpression of ERG in the prostate cells. Importantly, PCa cells overexpressing ERG are dependent on ERG activity for survival, further highlighting its therapeutic potential. Here, we review the current understanding of the role of ERG and its partners in PCa. We discuss the strategies developed in recent years to inhibit ERG activity, the current therapeutic utility of ERG fusion detection in PCa patients, and the possible future approaches to target ERG fusion-positive tumors.
Collapse
Affiliation(s)
- Francesca Lorenzin
- Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, 38123 Trento, Italy
- Correspondence: (F.L.); (F.D.)
| | - Francesca Demichelis
- Department of Cellular, Computational and Integrative Biology, CIBIO, University of Trento, 38123 Trento, Italy
- The HRH Prince Alwaleed Bin Talal Bin Abdulaziz Al-Saud Institute for Computational Biomedicine, Weill Cornell Medical College, New York, NY 10021, USA
- The Caryl and Israel Englander Institute for Precision Medicine, Weill Cornell Medicine, New York, NY 10021, USA
- Correspondence: (F.L.); (F.D.)
| |
Collapse
|
28
|
Genomic Insights into Non-steroidal Nuclear Receptors in Prostate and Breast Cancer. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:227-239. [DOI: 10.1007/978-3-031-11836-4_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
29
|
Chen L, Shi H, Wang X, Wang T, Wang Y, Wu Z, Zhang W, Chen H, Zhong M, Mao X, Shi X, Li Q. Hepatocyte nuclear factor 4 gamma (HNF4G) is correlated with poor prognosis and promotes tumor cell growth by inhibiting caspase-dependent intrinsic apoptosis in colorectal cancer. Eur J Pharmacol 2021; 916:174727. [PMID: 34965388 DOI: 10.1016/j.ejphar.2021.174727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 11/03/2022]
Abstract
The hepatocyte nuclear factor 4 gamma (HNF4G), a member of orphan nuclear receptors, is up-regulated and functions as an oncoprotein in a variety of tumors. Recent advances in understanding the biologic function and action mechanism of HNF4G in colorectal cancer (CRC) have not been fully elucidated. In the present study, we observed that HNF4G expression levels were significantly increased in CRC tissues compared with adjacent normal tissues, and HNF4G overexpression correlated with worse prognosis in colorectal cancer. Transfection with a small interference RNA (siRNA) targeting HNF4G in HCT116 and SW480 CRC cell lines significantly inhibited cell proliferation and promoted apoptosis in vitro. In contrast, overexpression of HNF4G increased cell proliferation and decreased the percentage of apoptotic cells. Moreover, we discovered that HNF4G was involved in CRC cell apoptosis via the caspase-dependent intrinsic pathway. Finally, knockdown of HNF4G expression led to attenuated colorectal cancer growth and promoted apoptosis in a xenograft mouse model. Collectively, these results indicate that HNF4G exerts as an oncogenic role in colorectal cancer and provides a potential therapeutic target.
Collapse
Affiliation(s)
- Lu Chen
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Huanying Shi
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xinhai Wang
- Department of Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Tianxiao Wang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Yingjie Wang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Zimei Wu
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Wenxin Zhang
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Haifei Chen
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Mingkang Zhong
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Xiang Mao
- Department of Surgery, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Xiaojin Shi
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| | - Qunyi Li
- Department of Pharmacy, Huashan Hospital, Fudan University, Shanghai, 200040, China.
| |
Collapse
|
30
|
Ding Y, Liu X, Yang C, Ruan X, Wang D, Liu Y, Shang X, Liu Q, Shen S, Zhu L, Xue Y. Pseudogene RPL32P3 regulates the blood-tumor barrier permeability via the YBX2/HNF4G axis. Cell Death Discov 2021; 7:367. [PMID: 34819492 PMCID: PMC8613260 DOI: 10.1038/s41420-021-00758-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Revised: 11/02/2021] [Accepted: 11/03/2021] [Indexed: 11/09/2022] Open
Abstract
The existence of the blood–tumor barrier (BTB) severely hinders the transport of anti-tumor drugs to brain tumor tissues. Selectively opening BTB is of great significance to improve the chemotherapy effect of glioma. Pseudogenes have been recognized as important regulators in various biologic processes. In this study, we identified that ribosomal protein L32 pseudogene 3 (RPL32P3) was highly expressed in glioma-exposed endothelial cells (GECs). Knockdown of RPL32P3 decreased the expression of tight junction-related proteins (TJPs) and increased BTB permeability. Subsequent analysis of the underlying mechanism indicated that RPL32P3 recruited lysine methyltransferase 2 A (KMT2A) to the Y-box binding protein 2 (YBX2) promoter region and mediated H3K4me3 to promote YBX2 transcription. Highly expressed YBX2 bound and stabilized hepatocyte nuclear factor 4 gamma (HNF4G) mRNA. Highly expressed HNF4G directly bound to the promoters of TJPs ZO-1, occludin and claudin-5 to promote their transcriptional activities and regulated BTB permeability. The simultaneous knockdown of RPL32P3, YBX2, and HNF4G combined with doxorubicin (DOX) increased the apoptosis of glioma cells. In conclusion, the current study indicated that RPL32P3 knockdown increased BTB permeability through the YBX2/HNF4G pathway. These findings may provide new targets for the comprehensive treatment of glioma.
Collapse
Affiliation(s)
- Ye Ding
- Department of Neurobiology, School of life Sciences, China Medical University, Shenyang, 110122, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, China
| | - Xiaobai Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
| | - Chunqing Yang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
| | - Xuelei Ruan
- Department of Neurobiology, School of life Sciences, China Medical University, Shenyang, 110122, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, China
| | - Di Wang
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
| | - Yunhui Liu
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, 110004, China.,Key Laboratory of Neuro-oncology in Liaoning Province, Shenyang, 110004, China
| | - Xiuli Shang
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Qianshuo Liu
- Department of Neurobiology, School of life Sciences, China Medical University, Shenyang, 110122, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, China
| | - Shuyuan Shen
- Department of Neurobiology, School of life Sciences, China Medical University, Shenyang, 110122, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, China
| | - Lu Zhu
- Department of Neurobiology, School of life Sciences, China Medical University, Shenyang, 110122, China.,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, China.,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, China
| | - Yixue Xue
- Department of Neurobiology, School of life Sciences, China Medical University, Shenyang, 110122, China. .,Key Laboratory of Cell Biology, Ministry of Public Health of China, China Medical University, Shenyang, 110122, China. .,Key Laboratory of Medical Cell Biology, Ministry of Education of China, China Medical University, Shenyang, 110122, China.
| |
Collapse
|
31
|
Opposing transcriptional programs of KLF5 and AR emerge during therapy for advanced prostate cancer. Nat Commun 2021; 12:6377. [PMID: 34737261 PMCID: PMC8568894 DOI: 10.1038/s41467-021-26612-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/04/2021] [Indexed: 12/13/2022] Open
Abstract
Endocrine therapies for prostate cancer inhibit the androgen receptor (AR) transcription factor. In most cases, AR activity resumes during therapy and drives progression to castration-resistant prostate cancer (CRPC). However, therapy can also promote lineage plasticity and select for AR-independent phenotypes that are uniformly lethal. Here, we demonstrate the stem cell transcription factor Krüppel-like factor 5 (KLF5) is low or absent in prostate cancers prior to endocrine therapy, but induced in a subset of CRPC, including CRPC displaying lineage plasticity. KLF5 and AR physically interact on chromatin and drive opposing transcriptional programs, with KLF5 promoting cellular migration, anchorage-independent growth, and basal epithelial cell phenotypes. We identify ERBB2 as a point of transcriptional convergence displaying activation by KLF5 and repression by AR. ERBB2 inhibitors preferentially block KLF5-driven oncogenic phenotypes. These findings implicate KLF5 as an oncogene that can be upregulated in CRPC to oppose AR activities and promote lineage plasticity.
Collapse
|
32
|
Shetty A, Seo JH, Bell CA, O’Connor EP, Pomerantz MM, Freedman ML, Gusev A. Allele-specific epigenetic activity in prostate cancer and normal prostate tissue implicates prostate cancer risk mechanisms. Am J Hum Genet 2021; 108:2071-2085. [PMID: 34699744 DOI: 10.1016/j.ajhg.2021.09.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Accepted: 09/15/2021] [Indexed: 11/26/2022] Open
Abstract
Genome-wide association studies (GWASs) of prostate cancer have identified >250 significant risk loci, but the causal variants and mechanisms for these loci remain largely unknown. Here, we sought to identify and characterize risk-harboring regulatory elements by integrating epigenomes from primary prostate tumor and normal tissues of 27 individuals across the H3K27ac, H3K4me3, and H3K4me2 histone marks and FOXA1 and HOXB13 transcription factors. We identified 7,371 peaks with significant allele specificity (allele-specific quantitative trait locus [asQTL] peaks). Showcasing their relevance to prostate cancer risk, H3K27ac T-asQTL peaks were the single annotation most enriched for prostate cancer GWAS heritability (40×), significantly higher than corresponding non-asQTL H3K27ac peaks (14×) or coding regions (14×). Surprisingly, fine-mapped GWAS risk variants were most significantly enriched for asQTL peaks observed in tumors, including asQTL peaks that were differentially imbalanced with respect to tumor-normal states. These data pinpointed putative causal regulatory elements at 20 GWAS loci, of which 11 were detected only in the tumor samples. More broadly, tumor-specific asQTLs were enriched for expression QTLs in benign tissues as well as accessible regions found in stem cells, supporting a hypothesis where some germline variants become reactivated during or after transformation and can be captured by epigenomic profiling of the tumor. Our study demonstrates the power of allele specificity in chromatin signals to uncover GWAS mechanisms, highlights the relevance of tumor-specific regulation in the context of cancer risk, and prioritizes multiple loci for experimental follow-up.
Collapse
|
33
|
Goel S, Bhatia V, Kundu S, Biswas T, Carskadon S, Gupta N, Asim M, Morrissey C, Palanisamy N, Ateeq B. Transcriptional network involving ERG and AR orchestrates Distal-less homeobox-1 mediated prostate cancer progression. Nat Commun 2021; 12:5325. [PMID: 34493733 PMCID: PMC8423767 DOI: 10.1038/s41467-021-25623-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 08/20/2021] [Indexed: 02/07/2023] Open
Abstract
Distal-less homeobox-1 (DLX1) is a well-established non-invasive biomarker for prostate cancer (PCa) diagnosis, however, its mechanistic underpinnings in disease pathobiology are not known. Here, we reveal the oncogenic role of DLX1 and show that abrogating its function leads to reduced tumorigenesis and metastases. We observed that ~60% of advanced-stage and metastatic patients display higher DLX1 levels. Moreover, ~96% of TMPRSS2-ERG fusion-positive and ~70% of androgen receptor (AR)-positive patients show elevated DLX1, associated with aggressive disease and poor survival. Mechanistically, ERG coordinates with enhancer-bound AR and FOXA1 to drive transcriptional upregulation of DLX1 in ERG-positive background. However, in ERG-negative context, AR/AR-V7 and FOXA1 suffice to upregulate DLX1. Notably, inhibiting ERG/AR-mediated DLX1 transcription using BET inhibitor (BETi) or/and anti-androgen drugs reduce its expression and downstream oncogenic effects. Conclusively, this study establishes DLX1 as a direct-target of ERG/AR with an oncogenic role and demonstrates the clinical significance of BETi and anti-androgens for DLX1-positive patients.
Collapse
Affiliation(s)
- Sakshi Goel
- grid.417965.80000 0000 8702 0100Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, U.P. India
| | - Vipul Bhatia
- grid.417965.80000 0000 8702 0100Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, U.P. India
| | - Sushmita Kundu
- grid.417965.80000 0000 8702 0100Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, U.P. India
| | - Tanay Biswas
- grid.417965.80000 0000 8702 0100Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, U.P. India
| | - Shannon Carskadon
- grid.239864.20000 0000 8523 7701Vattikuti Urology Institute, Department of Urology, Henry Ford Health System, Detroit, MI USA
| | - Nilesh Gupta
- grid.239864.20000 0000 8523 7701Department of Pathology, Henry Ford Health System, Detroit, MI USA
| | - Mohammad Asim
- grid.5475.30000 0004 0407 4824Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, UK
| | - Colm Morrissey
- grid.34477.330000000122986657Department of Urology, University of Washington, Seattle, WA USA
| | - Nallasivam Palanisamy
- grid.239864.20000 0000 8523 7701Vattikuti Urology Institute, Department of Urology, Henry Ford Health System, Detroit, MI USA
| | - Bushra Ateeq
- grid.417965.80000 0000 8702 0100Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, U.P. India ,grid.417965.80000 0000 8702 0100The Mehta Family Center for Engineering in Medicine, Indian Institute of Technology Kanpur, Kanpur, U.P. India
| |
Collapse
|
34
|
Cotter KA, Gallon J, Uebersax N, Rubin P, Meyer KD, Piscuoglio S, Jaffrey SR, Rubin MA. Mapping of m 6A and Its Regulatory Targets in Prostate Cancer Reveals a METTL3-Low Induction of Therapy Resistance. Mol Cancer Res 2021; 19:1398-1411. [PMID: 34088870 PMCID: PMC8349875 DOI: 10.1158/1541-7786.mcr-21-0014] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 04/01/2021] [Accepted: 04/19/2021] [Indexed: 01/07/2023]
Abstract
Recent evidence has highlighted the role of N 6-methyladenosine (m6A) in the regulation of mRNA expression, stability, and translation, supporting a potential role for posttranscriptional regulation mediated by m6A in cancer. Here, we explore prostate cancer as an exemplar and demonstrate that low levels of N 6-adenosine-methyltransferase (METTL3) is associated with advanced metastatic disease. To investigate this relationship, we generated the first prostate m6A maps, and further examined how METTL3 regulates expression at the level of transcription, translation, and protein. Significantly, transcripts encoding extracellular matrix proteins are consistently upregulated with METTL3 knockdown. We also examined the relationship between METTL3 and androgen signaling and discovered the upregulation of a hepatocyte nuclear factor-driven gene signature that is associated with therapy resistance in prostate cancer. Significantly, METTL3 knockdown rendered the cells resistant to androgen receptor antagonists via an androgen receptor-independent mechanism driven by the upregulation of nuclear receptor NR5A2/LRH-1. IMPLICATIONS: These findings implicate changes in m6A as a mechanism for therapy resistance in metastatic prostate cancer.
Collapse
Affiliation(s)
- Kellie A Cotter
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - John Gallon
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Nadine Uebersax
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Philip Rubin
- Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Kate D Meyer
- Department of Biochemistry, Duke University School of Medicine, Durham, North Carolina
- Department of Neurobiology, Duke University School of Medicine, Durham, North Carolina
| | - Salvatore Piscuoglio
- Visceral Surgery and Precision Medicine Research Laboratory, Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Medical Genetics and Pathology, University Hospital Basel, Basel, Switzerland
- Clarunis, Department of Visceral Surgery, University Centre for Gastrointestinal and Liver Diseases, St. Clara Hospital and University Hospital Basel, Basel, Switzerland
| | - Samie R Jaffrey
- Department of Pharmacology, Weill Cornell Medicine, New York, New York.
| | - Mark A Rubin
- Department for BioMedical Research, University of Bern, Bern, Switzerland.
- Inselspital, Bern, Switzerland
- Bern Center for Precision Medicine, Bern, Switzerland
| |
Collapse
|
35
|
Zou N, Zhang X, Li S, Li Y, Zhao Y, Yang X, Zhu S. Elevated HNF1A expression promotes radiation-resistance via driving PI3K/AKT signaling pathway in esophageal squamous cell carcinoma cells. J Cancer 2021; 12:5013-5024. [PMID: 34234870 PMCID: PMC8247383 DOI: 10.7150/jca.58023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 06/05/2021] [Indexed: 01/06/2023] Open
Abstract
Purpose: Radiotherapy is a major modality for treatment of local advanced esophageal squamous cell carcinoma (ESCC). Hepatocyte nuclear factor 1-alpha (HNF1A) is involved in regulation of tumor cell proliferation, apoptosis, cycle distribution, invasion metastasis and chemical resistance. The aim of this study was to investigate the effect of HNF1A on radiosensitivity of ESCC cells. Methods: In our study, HNF1A expression was verified from GEPIA in multiple types of cancer. The prognostic value of HNF1A in ESCC was obtained by TCGA database. In addition, the expression of HNF1A in ESCC cell lines was verified by western blot. Subsequently, lentiviruses were used to construct HNF1A overexpressed cell lines TE1 and KYSE150.Then, the roles of HNF1A on cell proliferation, invasion, apoptosis, cell cycle distribution and radiosensitivity were verified. Furthermore, the relationship between HNF1A and γH2AX were determined by western blot and immunofluorescence. We also detected the expression changes of key factors in PI3K/AKT pathway after overexpression of HNF1A. Results: The results showed that the overexpression of HNF1A promoted cell proliferation and invasion with or without irradiation (IR), and potently radiation-resistance ESCC cells with a sensitization enhancement ratio (SER) of 0.76 and 0.87. In addition, HNF1A regulated Cyclin D1 and CDK4 proteins to promote the transition from radiation-induced G0/G1 phase arrest to S phase, and coordinated BAX and BCL2 proteins to reduce the occurrence of radiation-induced apoptosis. It was worth noting that HNF1A might be involved in radiation-induced DNA damage repair by regulating γH2AX though PI3K/AKT signal pathway. Conclusion: Our study preliminarily suggested that HNF1A was associated with the progression and radiosensitivity of ESCC cells, and it might reduce the radiosensitivity of ESCC cells by promoting cell proliferation, releasing G0/G1 phase arrest, reducing apoptosis, and regulating the expression of γH2AX protein though driving PI3K/AKT signal pathway.
Collapse
Affiliation(s)
- Naiyi Zou
- Department of Radiation Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Xueyuan Zhang
- Department of Radiation Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Shuguang Li
- Department of Radiation Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Youmei Li
- Department of Radiation Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Yan Zhao
- Department of Radiation Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Xingxiao Yang
- Department of Infection Management, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| | - Shuchai Zhu
- Department of Radiation Oncology, The Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei 050011, P.R. China
| |
Collapse
|
36
|
Ma YS, Shi BW, Guo JH, Liu JB, Yang XL, Xin R, Shi Y, Zhang DD, Lu GX, Jia CY, Wang HM, Wang PY, Yang HQ, Zhang JJ, Wu W, Cao PS, Yin YZ, Gu LP, Tian LL, Lv ZW, Wu CY, Wang GR, Yu F, Hou LK, Jiang GX, Fu D. microRNA-320b suppresses HNF4G and IGF2BP2 expression to inhibit angiogenesis and tumor growth of lung cancer. Carcinogenesis 2021; 42:762-771. [PMID: 33758932 DOI: 10.1093/carcin/bgab023] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 02/19/2021] [Accepted: 03/23/2021] [Indexed: 12/25/2022] Open
Abstract
We examined the effect of microRNA-320b (miR-320b) on tumor growth and angiogenesis in lung cancer and also determined its downstream molecular mechanisms. Lung cancer tissues and adjacent non-cancerous tissues were collected from 66 patients with lung cancer. miR-320b expression was experimentally determined to be expressed at low level in cancer tissues. The results of gain-of-function experiments suggested that miR-320b overexpression suppressed cancer cell invasion, tube formation, tumor volume and angiogenesis in xenografted nude mice. Hepatocyte nuclear factor 4 gamma (HNF4G) was identified as a target of miR-320b based on in silico analysis. Dual-luciferase reporter gene assays further identified the binding relationship between HNF4G and miR-320b. Lung cancer tissues exhibited increased expression of HNF4G and insulin-like growth factor 2 mRNA-binding protein 2 (IGF2BP2). Meanwhile, HNF4G knockdown suppressed IGF2BP2 expression, thereby repressing cancer cell invasion and tube formation. Furthermore, IGF2BP2 modified m6A to increase the expression of thymidine kinase 1 (TK1), thus promoting angiogenesis. In nude mice, restoration of TK1 reversed the suppressive effect of miR-320b overexpression on tumor growth rate and CD31 expression. In conclusion, miR-320b suppresses lung cancer growth and angiogenesis by inhibiting HNF4G, IGF2BP2 and TK1.
Collapse
Affiliation(s)
- Yu-Shui Ma
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P.R. China.,Cancer Institute, Affiliated Tumor Hospital of Nantong University, Nantong, P.R. China
| | - Bo-Wen Shi
- Department of Thoracic Surgery, Navy Military Medical University Affiliated Changhai Hospital, Shanghai, P.R. China
| | - Jun-Hong Guo
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Ji-Bin Liu
- Cancer Institute, Affiliated Tumor Hospital of Nantong University, Nantong, P.R. China
| | - Xiao-Li Yang
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Rui Xin
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Yi Shi
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Dan-Dan Zhang
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Gai-Xia Lu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Cheng-You Jia
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Hui-Min Wang
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Pei-Yao Wang
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Hui-Qiong Yang
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Jia-Jia Zhang
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Wei Wu
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Ping-Sheng Cao
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Yu-Zhen Yin
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Li-Peng Gu
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Lin-Lin Tian
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Zhong-Wei Lv
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Chun-Yan Wu
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Gao-Ren Wang
- Cancer Institute, Affiliated Tumor Hospital of Nantong University, Nantong, P.R. China
| | - Fei Yu
- Department of Nuclear Medicine, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Li-Kun Hou
- Department of Pathology, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| | - Geng-Xi Jiang
- Department of Thoracic Surgery, Navy Military Medical University Affiliated Changhai Hospital, Shanghai, P.R. China
| | - Da Fu
- Central Laboratory for Medical Research, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, P.R. China
| |
Collapse
|
37
|
Wang C, Zhang T, Liao Q, Dai M, Guo J, Yang X, Tan W, Lin D, Wu C, Zhao Y. Metformin inhibits pancreatic cancer metastasis caused by SMAD4 deficiency and consequent HNF4G upregulation. Protein Cell 2021; 12:128-144. [PMID: 32737864 PMCID: PMC7862466 DOI: 10.1007/s13238-020-00760-4] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 06/19/2020] [Indexed: 12/24/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) has poor prognosis due to limited therapeutic options. This study examines the roles of genome-wide association study identified PDAC-associated genes as therapeutic targets. We have identified HNF4G gene whose silencing most effectively repressed PDAC cell invasiveness. HNF4G overexpression is induced by the deficiency of transcriptional factor and tumor suppressor SMAD4. Increased HNF4G are correlated with SMAD4 deficiency in PDAC tumor samples and associated with metastasis and poor survival time in xenograft animal model and in patients with PDAC (log-rank P = 0.036; HR = 1.60, 95% CI = 1.03-2.47). We have found that Metformin suppresses HNF4G activity via AMPK-mediated phosphorylation-coupled ubiquitination degradation and inhibits in vitro invasion and in vivo metastasis of PDAC cells with SMAD4 deficiency. Furthermore, Metformin treatment significantly improve clinical outcomes and survival in patients with SMAD4-deficient PDAC (log-rank P = 0.022; HR = 0.31, 95% CI = 0.14-0.68) but not in patients with SMAD4-normal PDAC. Pathway analysis shows that HNF4G may act in PDAC through the cell-cell junction pathway. These results indicate that SMAD4 deficiency-induced overexpression of HNF4G plays a critical oncogenic role in PDAC progression and metastasis but may form a druggable target for Metformin treatment.
Collapse
Affiliation(s)
- Chengcheng Wang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Quan Liao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Menghua Dai
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Junchao Guo
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Xinyu Yang
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wen Tan
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Dongxin Lin
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangzhou, 510060, China.
| | - Chen Wu
- Department of Etiology and Carcinogenesis, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
- CAMS Oxford Institute (COI), Chinese Academy of Medical Sciences, Beijing, 100730, China.
| | - Yupei Zhao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
38
|
Transcriptional programmes underlying cellular identity and microbial responsiveness in the intestinal epithelium. Nat Rev Gastroenterol Hepatol 2021; 18:7-23. [PMID: 33024279 PMCID: PMC7997278 DOI: 10.1038/s41575-020-00357-6] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/12/2020] [Indexed: 12/19/2022]
Abstract
The intestinal epithelium serves the unique and critical function of harvesting dietary nutrients, while simultaneously acting as a cellular barrier separating tissues from the luminal environment and gut microbial ecosystem. Two salient features of the intestinal epithelium enable it to perform these complex functions. First, cells within the intestinal epithelium achieve a wide range of specialized identities, including different cell types and distinct anterior-posterior patterning along the intestine. Second, intestinal epithelial cells are sensitive and responsive to the dynamic milieu of dietary nutrients, xenobiotics and microorganisms encountered in the intestinal luminal environment. These diverse identities and responsiveness of intestinal epithelial cells are achieved in part through the differential transcription of genes encoded in their shared genome. Here, we review insights from mice and other vertebrate models into the transcriptional regulatory mechanisms underlying intestinal epithelial identity and microbial responsiveness, including DNA methylation, chromatin accessibility, histone modifications and transcription factors. These studies are revealing that most transcription factors involved in intestinal epithelial identity also respond to changes in the microbiota, raising both opportunities and challenges to discern the underlying integrative transcriptional regulatory networks.
Collapse
|
39
|
Kääriäinen A, Pesola V, Dittmann A, Kontio J, Koivunen J, Pihlajaniemi T, Izzi V. Machine Learning Identifies Robust Matrisome Markers and Regulatory Mechanisms in Cancer. Int J Mol Sci 2020; 21:E8837. [PMID: 33266472 PMCID: PMC7700160 DOI: 10.3390/ijms21228837] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/20/2020] [Accepted: 11/20/2020] [Indexed: 12/12/2022] Open
Abstract
The expression and regulation of matrisome genes-the ensemble of extracellular matrix, ECM, ECM-associated proteins and regulators as well as cytokines, chemokines and growth factors-is of paramount importance for many biological processes and signals within the tumor microenvironment. The availability of large and diverse multi-omics data enables mapping and understanding of the regulatory circuitry governing the tumor matrisome to an unprecedented level, though such a volume of information requires robust approaches to data analysis and integration. In this study, we show that combining Pan-Cancer expression data from The Cancer Genome Atlas (TCGA) with genomics, epigenomics and microenvironmental features from TCGA and other sources enables the identification of "landmark" matrisome genes and machine learning-based reconstruction of their regulatory networks in 74 clinical and molecular subtypes of human cancers and approx. 6700 patients. These results, enriched for prognostic genes and cross-validated markers at the protein level, unravel the role of genetic and epigenetic programs in governing the tumor matrisome and allow the prioritization of tumor-specific matrisome genes (and their regulators) for the development of novel therapeutic approaches.
Collapse
Affiliation(s)
- Anni Kääriäinen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. BOX 8000, FI-90014 Oulu, Finland; (A.K.); (V.P.); (A.D.); (J.K.); (J.K.); (T.P.)
| | - Vilma Pesola
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. BOX 8000, FI-90014 Oulu, Finland; (A.K.); (V.P.); (A.D.); (J.K.); (J.K.); (T.P.)
| | - Annalena Dittmann
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. BOX 8000, FI-90014 Oulu, Finland; (A.K.); (V.P.); (A.D.); (J.K.); (J.K.); (T.P.)
| | - Juho Kontio
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. BOX 8000, FI-90014 Oulu, Finland; (A.K.); (V.P.); (A.D.); (J.K.); (J.K.); (T.P.)
| | - Jarkko Koivunen
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. BOX 8000, FI-90014 Oulu, Finland; (A.K.); (V.P.); (A.D.); (J.K.); (J.K.); (T.P.)
| | - Taina Pihlajaniemi
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. BOX 8000, FI-90014 Oulu, Finland; (A.K.); (V.P.); (A.D.); (J.K.); (J.K.); (T.P.)
| | - Valerio Izzi
- Faculty of Biochemistry and Molecular Medicine, University of Oulu, P.O. BOX 8000, FI-90014 Oulu, Finland; (A.K.); (V.P.); (A.D.); (J.K.); (J.K.); (T.P.)
- Faculty of Medicine, University of Oulu, P.O. BOX 8000, FI-90014 Oulu, Finland
- Finnish Cancer Institute, 00130 Helsinki, Finland
| |
Collapse
|
40
|
Control of Cell Identity by the Nuclear Receptor HNF4 in Organ Pathophysiology. Cells 2020; 9:cells9102185. [PMID: 32998360 PMCID: PMC7600215 DOI: 10.3390/cells9102185] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 12/14/2022] Open
Abstract
Hepatocyte Nuclear Factor 4 (HNF4) is a transcription factor (TF) belonging to the nuclear receptor family whose expression and activities are restricted to a limited number of organs including the liver and gastrointestinal tract. In this review, we present robust evidence pointing to HNF4 as a master regulator of cellular differentiation during development and a safekeeper of acquired cell identity in adult organs. Importantly, we discuss that transient loss of HNF4 may represent a protective mechanism upon acute organ injury, while prolonged impairment of HNF4 activities could contribute to organ dysfunction. In this context, we describe in detail mechanisms involved in the pathophysiological control of cell identity by HNF4, including how HNF4 works as part of cell-specific TF networks and how its expression/activities are disrupted in injured organs.
Collapse
|
41
|
John A, Qin B, Kalari KR, Wang L, Yu J. Patient-specific multi-omics models and the application in personalized combination therapy. Future Oncol 2020; 16:1737-1750. [PMID: 32462937 DOI: 10.2217/fon-2020-0119] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The rapid advancement of high-throughput technologies and sharp decrease in cost have opened up the possibility to generate large amount of multi-omics data on an individual basis. The development of high-throughput -omics, including genomics, epigenomics, transcriptomics, proteomics, metabolomics and microbiomics, enables the application of multi-omics technologies in the clinical settings. Combination therapy, defined as disease treatment with two or more drugs to achieve efficacy with lower doses or lower drug toxicity, is the basis for the care of diseases like cancer. Patient-specific multi-omics data integration can help the identification and development of combination therapies. In this review, we provide an overview of different -omics platforms, and discuss the methods for multi-omics, high-throughput, data integration, personalized combination therapy.
Collapse
Affiliation(s)
- August John
- Mayo Clinic Graduate School of Biomedical Sciences, Mayo Clinic, Rochester, MN 55905, USA
| | - Bo Qin
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA.,Gastroenterology Research Unit, Mayo Clinic, Rochester, MN 55905, USA.,Department of Oncology, Mayo Clinic, Rochester, MN 55905, USA
| | - Krishna R Kalari
- Department of Health Sciences Research, Mayo Clinic, Rochester, MN 55905, USA
| | - Liewei Wang
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| | - Jia Yu
- Department of Molecular Pharmacology & Experimental Therapeutics, Mayo Clinic, Rochester, MN 55905, USA
| |
Collapse
|
42
|
Huang M, Wang Y, Yang M, Yan J, Yang H, Zhuang W, Xu Y, Koeffler HP, Lin DC, Chen X. dbInDel: a database of enhancer-associated insertion and deletion variants by analysis of H3K27ac ChIP-Seq. Bioinformatics 2020; 36:1649-1651. [PMID: 31603498 PMCID: PMC7703781 DOI: 10.1093/bioinformatics/btz770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 08/24/2019] [Accepted: 10/08/2019] [Indexed: 11/21/2022] Open
Abstract
SUMMARY Cancer hallmarks rely on its specific transcriptional programs, which are dysregulated by multiple mechanisms, including genomic aberrations in the DNA regulatory regions. Genome-wide association studies have shown many variants are found within putative enhancer elements. To provide insights into the regulatory role of enhancer-associated non-coding variants in cancer epigenome, and to facilitate the identification of functional non-coding mutations, we present dbInDel, a database where we have comprehensively analyzed enhancer-associated insertion and deletion variants for both human and murine samples using ChIP-Seq data. Moreover, we provide the identification and visualization of upstream TF binding motifs in InDel-containing enhancers. Downstream target genes are also predicted and analyzed in the context of cancer biology. The dbInDel database promotes the investigation of functional contributions of non-coding variants in cancer epigenome. AVAILABILITY AND IMPLEMENTATION The database, dbInDel, can be accessed from http://enhancer-indel.cam-su.org/. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Moli Huang
- Department of Bioinformatics, School of Biology and Basic Medical Sciences
- Cambridge-Suda Genomic Research Center, Soochow University, Suzhou 215123, China
| | - Yunpeng Wang
- Department of Bioinformatics, School of Biology and Basic Medical Sciences
| | - Manqiu Yang
- Department of Bioinformatics, School of Biology and Basic Medical Sciences
| | - Jun Yan
- MOE Key Laboratory of Model Animal for Disease Study, Nanjing University, Nanjing 210061, China
| | - Henry Yang
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 119074, Singapore
| | - Wenzhuo Zhuang
- Department of Bioinformatics, School of Biology and Basic Medical Sciences
| | - Ying Xu
- Cambridge-Suda Genomic Research Center, Soochow University, Suzhou 215123, China
| | - H Phillip Koeffler
- Cancer Science Institute of Singapore, National University of Singapore, Singapore 119074, Singapore
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - De-Chen Lin
- Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Xi Chen
- Department of Biology, Southern University of Science and Technology, Shenzhen 518055, China
| |
Collapse
|
43
|
Luo Z, Farnham PJ. Genome-wide analysis of HOXC4 and HOXC6 regulated genes and binding sites in prostate cancer cells. PLoS One 2020; 15:e0228590. [PMID: 32012197 PMCID: PMC6996832 DOI: 10.1371/journal.pone.0228590] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Accepted: 01/17/2020] [Indexed: 01/12/2023] Open
Abstract
Aberrant expression of HOXC6 and HOXC4 is commonly detected in prostate cancer. The high expression of these transcription factors is associated with aggressive prostate cancer and can predict cancer recurrence after treatment. Thus, HOXC4 and HOXC6 are clinically relevant biomarkers of aggressive prostate cancer. However, the molecular mechanisms by which these HOXC genes contribute to prostate cancer is not yet understood. To begin to address the role of HOXC4 and HOXC6 in prostate cancer, we performed RNA-seq analyses before and after siRNA-mediated knockdown of HOXC4 and/or HOXC6 and also performed ChIP-seq to identify genomic binding sites for both of these transcription factors. Our studies demonstrate that HOXC4 and HOXC6 co-localize with HOXB13, FOXA1 and AR, three transcription factors previously shown to contribute to the development of prostate cancer. We suggest that the aberrantly upregulated HOXC4 and HOXC6 proteins may compete with HOXB13 for binding sites, thus altering the prostate transcriptome. This competition model may be applicable to many different human cancers that display increased expression of a HOX transcription factor.
Collapse
Affiliation(s)
- Zhifei Luo
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
| | - Peggy J. Farnham
- Department of Biochemistry and Molecular Medicine and the Norris Comprehensive Cancer Center, Keck School of Medicine, University of Southern California, Los Angeles, CA, United States of America
- * E-mail:
| |
Collapse
|
44
|
Tiwari R, Manzar N, Bhatia V, Yadav A, Nengroo MA, Datta D, Carskadon S, Gupta N, Sigouros M, Khani F, Poutanen M, Zoubeidi A, Beltran H, Palanisamy N, Ateeq B. Androgen deprivation upregulates SPINK1 expression and potentiates cellular plasticity in prostate cancer. Nat Commun 2020; 11:384. [PMID: 31959826 PMCID: PMC6971084 DOI: 10.1038/s41467-019-14184-0] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 12/19/2019] [Indexed: 12/14/2022] Open
Abstract
Emergence of an aggressive androgen receptor (AR)-independent neuroendocrine prostate cancer (NEPC) after androgen-deprivation therapy (ADT) is well-known. Nevertheless, the majority of advanced-stage prostate cancer patients, including those with SPINK1-positive subtype, are treated with AR-antagonists. Here, we show AR and its corepressor, REST, function as transcriptional-repressors of SPINK1, and AR-antagonists alleviate this repression leading to SPINK1 upregulation. Increased SOX2 expression during NE-transdifferentiation transactivates SPINK1, a critical-player for maintenance of NE-phenotype. SPINK1 elicits epithelial-mesenchymal-transition, stemness and cellular-plasticity. Conversely, pharmacological Casein Kinase-1 inhibition stabilizes REST, which in cooperation with AR causes SPINK1 transcriptional-repression and impedes SPINK1-mediated oncogenesis. Elevated levels of SPINK1 and NEPC markers are observed in the tumors of AR-antagonists treated mice, and in a subset of NEPC patients, implicating a plausible role of SPINK1 in treatment-related NEPC. Collectively, our findings provide an explanation for the paradoxical clinical-outcomes after ADT, possibly due to SPINK1 upregulation, and offers a strategy for adjuvant therapies.
Collapse
Affiliation(s)
- Ritika Tiwari
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, UP, 208016, India
| | - Nishat Manzar
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, UP, 208016, India
| | - Vipul Bhatia
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, UP, 208016, India
| | - Anjali Yadav
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, UP, 208016, India
| | - Mushtaq A Nengroo
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, UP, 226031, India
| | - Dipak Datta
- Division of Cancer Biology, CSIR-Central Drug Research Institute, Lucknow, UP, 226031, India
| | - Shannon Carskadon
- Vattikuti Urology Institute, Department of Urology, Henry Ford Health System, Detroit, MI, 48202, USA
| | - Nilesh Gupta
- Department of Pathology, Henry Ford Health System, Detroit, MI, 48202, USA
| | - Michael Sigouros
- Division of Medical Oncology, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Francesca Khani
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, 10065, USA
| | - Matti Poutanen
- Institute of Biomedicine, Research Centre for Integrative Physiology and Pharmacology, University of Turku, Turku, Finland
| | - Amina Zoubeidi
- Vancouver Prostate Centre and Department of Urologic Sciences, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada
| | - Himisha Beltran
- Department of Medical Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, 02215, USA
| | - Nallasivam Palanisamy
- Vattikuti Urology Institute, Department of Urology, Henry Ford Health System, Detroit, MI, 48202, USA
| | - Bushra Ateeq
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, UP, 208016, India.
| |
Collapse
|
45
|
Ye S, Wang H, He K, Shen H, Peng M, Nian Y, Cui R, Yi L. Gene set based systematic analysis of prostate cancer and its subtypes. Future Oncol 2019; 16:4381-4393. [PMID: 31814446 DOI: 10.2217/fon-2019-0459] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Aim: A gene set based systematic analysis strategy is used to investigate prostate tumors and its subclusters with focuses on similarities and differences of biological functions. Results: Dysregulation of methylation status, as well as RAS/RAF/ERK and PI3K-ATK signaling pathways, were found to be the most dramatic changes during prostate cancer tumorigenesis. Besides, neural and inflammation microenvironment is also significantly divergent between tumor and adjacent tissues. Insights of subclasses within prostate tumor cohorts revealed four different clusters with distinct gene expression patterns. We found that samples are mainly clustered by immune environments and proliferation traits. Conclusion: The findings of this article may help to advance the progress of identifying better diagnosis biomarkers and therapeutic targets.
Collapse
Affiliation(s)
- Senlin Ye
- Department of Urology, The Second Xiangya Hospital of Central South University, 139 Renmin Middle Road, Changsha 410011, PR China
| | - Haohui Wang
- Department of Urology, The Second Xiangya Hospital of Central South University, 139 Renmin Middle Road, Changsha 410011, PR China
| | - Kancheng He
- Department of Urology, The Second Xiangya Hospital of Central South University, 139 Renmin Middle Road, Changsha 410011, PR China
| | - Hongwei Shen
- Central Lab of the Second Xiangya Hospital of Central South University, 139 Renmin Middle Road, Changsha 410011, PR China
| | - Mou Peng
- Department of Urology, The Second Xiangya Hospital of Central South University, 139 Renmin Middle Road, Changsha 410011, PR China
| | - Yeqi Nian
- Department of Urology, The Second Xiangya Hospital of Central South University, 139 Renmin Middle Road, Changsha 410011, PR China
| | - Rongrong Cui
- Institute of Metabolism & Endocrinology, The Second Xiangya Hospital of Central South University, 139 Renmin Middle Road, Changsha 410011, PR China
| | - Lu Yi
- Department of Urology, The Second Xiangya Hospital of Central South University, 139 Renmin Middle Road, Changsha 410011, PR China
| |
Collapse
|
46
|
Beltran H, Hruszkewycz A, Scher HI, Hildesheim J, Isaacs J, Yu EY, Kelly K, Lin D, Dicker A, Arnold J, Hecht T, Wicha M, Sears R, Rowley D, White R, Gulley JL, Lee J, Diaz Meco M, Small EJ, Shen M, Knudsen K, Goodrich DW, Lotan T, Zoubeidi A, Sawyers CL, Rudin CM, Loda M, Thompson T, Rubin MA, Tawab-Amiri A, Dahut W, Nelson PS. The Role of Lineage Plasticity in Prostate Cancer Therapy Resistance. Clin Cancer Res 2019; 25:6916-6924. [PMID: 31363002 PMCID: PMC6891154 DOI: 10.1158/1078-0432.ccr-19-1423] [Citation(s) in RCA: 220] [Impact Index Per Article: 36.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/07/2019] [Accepted: 07/25/2019] [Indexed: 12/23/2022]
Abstract
Lineage plasticity has emerged as an important mechanism of treatment resistance in prostate cancer. Treatment-refractory prostate cancers are increasingly associated with loss of luminal prostate markers, and in many cases induction of developmental programs, stem cell-like phenotypes, and neuroendocrine/neuronal features. Clinically, lineage plasticity may manifest as low PSA progression, resistance to androgen receptor (AR) pathway inhibitors, and sometimes small cell/neuroendocrine pathologic features observed on metastatic biopsy. This mechanism is not restricted to prostate cancer as other malignancies also demonstrate lineage plasticity during resistance to targeted therapies. At present, there is no established therapeutic approach for patients with advanced prostate cancer developing lineage plasticity or small cell neuroendocrine prostate cancer (NEPC) due to knowledge gaps in the underlying biology. Few clinical trials address questions in this space, and the outlook for patients remains poor. To move forward, urgently needed are: (i) a fundamental understanding of how lineage plasticity occurs and how it can best be defined; (ii) the temporal contribution and cooperation of emerging drivers; (iii) preclinical models that recapitulate biology of the disease and the recognized phenotypes; (iv) identification of therapeutic targets; and (v) novel trial designs dedicated to the entity as it is defined. This Perspective represents a consensus arising from the NCI Workshop on Lineage Plasticity and Androgen Receptor-Independent Prostate Cancer. We focus on the critical questions underlying lineage plasticity and AR-independent prostate cancer, outline knowledge and resource gaps, and identify strategies to facilitate future collaborative clinical translational and basic studies in this space.
Collapse
Affiliation(s)
| | | | | | | | | | - Evan Y Yu
- University of Washington, Fred Hutchinson Cancer Center, Seattle, Washington
| | | | - Daniel Lin
- University of Washington, Fred Hutchinson Cancer Center, Seattle, Washington
| | - Adam Dicker
- Thomas Jefferson University, Philadelphia, Pennsylvania
| | | | - Toby Hecht
- National Cancer Institute, Bethesda, Maryland
| | - Max Wicha
- University of Michigan, Ann Arbor, Michigan
| | - Rosalie Sears
- Oregon Health and Science University, Portland, Oregon
| | | | | | | | - John Lee
- University of Washington, Fred Hutchinson Cancer Center, Seattle, Washington
| | | | - Eric J Small
- University of California San Francisco, San Francisco, California
| | - Michael Shen
- Columbia University Irving Medical Center, New York, New York
| | - Karen Knudsen
- Thomas Jefferson University, Philadelphia, Pennsylvania
| | | | | | - Amina Zoubeidi
- University of British Columbia, Vancouver, British Columbia, Canada
| | | | | | | | | | | | | | | | - Peter S Nelson
- University of Washington, Fred Hutchinson Cancer Center, Seattle, Washington
| |
Collapse
|
47
|
Testa U, Castelli G, Pelosi E. Cellular and Molecular Mechanisms Underlying Prostate Cancer Development: Therapeutic Implications. MEDICINES (BASEL, SWITZERLAND) 2019; 6:E82. [PMID: 31366128 PMCID: PMC6789661 DOI: 10.3390/medicines6030082] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 07/19/2019] [Accepted: 07/25/2019] [Indexed: 12/15/2022]
Abstract
Prostate cancer is the most frequent nonskin cancer and second most common cause of cancer-related deaths in man. Prostate cancer is a clinically heterogeneous disease with many patients exhibiting an aggressive disease with progression, metastasis, and other patients showing an indolent disease with low tendency to progression. Three stages of development of human prostate tumors have been identified: intraepithelial neoplasia, adenocarcinoma androgen-dependent, and adenocarcinoma androgen-independent or castration-resistant. Advances in molecular technologies have provided a very rapid progress in our understanding of the genomic events responsible for the initial development and progression of prostate cancer. These studies have shown that prostate cancer genome displays a relatively low mutation rate compared with other cancers and few chromosomal loss or gains. The ensemble of these molecular studies has led to suggest the existence of two main molecular groups of prostate cancers: one characterized by the presence of ERG rearrangements (~50% of prostate cancers harbor recurrent gene fusions involving ETS transcription factors, fusing the 5' untranslated region of the androgen-regulated gene TMPRSS2 to nearly the coding sequence of the ETS family transcription factor ERG) and features of chemoplexy (complex gene rearrangements developing from a coordinated and simultaneous molecular event), and a second one characterized by the absence of ERG rearrangements and by the frequent mutations in the E3 ubiquitin ligase adapter SPOP and/or deletion of CDH1, a chromatin remodeling factor, and interchromosomal rearrangements and SPOP mutations are early events during prostate cancer development. During disease progression, genomic and epigenomic abnormalities accrued and converged on prostate cancer pathways, leading to a highly heterogeneous transcriptomic landscape, characterized by a hyperactive androgen receptor signaling axis.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Vaile Regina Elena 299, 00161 Rome, Italy.
| | - Germana Castelli
- Department of Oncology, Istituto Superiore di Sanità, Vaile Regina Elena 299, 00161 Rome, Italy
| | - Elvira Pelosi
- Department of Oncology, Istituto Superiore di Sanità, Vaile Regina Elena 299, 00161 Rome, Italy
| |
Collapse
|
48
|
Bhatia V, Ateeq B. Molecular Underpinnings Governing Genetic Complexity of ETS-Fusion-Negative Prostate Cancer. Trends Mol Med 2019; 25:1024-1038. [PMID: 31353123 DOI: 10.1016/j.molmed.2019.07.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 06/18/2019] [Accepted: 07/03/2019] [Indexed: 01/16/2023]
Abstract
Inter- and intra-patient molecular heterogeneity of primary and metastatic prostate cancer (PCa) confers variable clinical outcome and poses a formidable challenge in disease management. High-throughput integrative genomics and functional approaches have untangled the complexity involved in this disease and revealed a spectrum of diverse aberrations prevalent in various molecular subtypes, including ETS fusion negative. Emerging evidence indicates that SPINK1 upregulation, mutations in epigenetic regulators or chromatin modifiers, and SPOP are associated with the ETS-fusion negative subtype. Additionally, patients with defects in a DNA-repair pathway respond to poly-(ADP-ribose)-polymerase (PARP) inhibition therapies. Furthermore, a new class of immunogenic subtype defined by CDK12 biallelic loss has also been identified in ETS-fusion-negative cases. This review focuses on the emerging molecular underpinnings driving key oncogenic aberrations and advancements in therapeutic strategies of this disease.
Collapse
Affiliation(s)
- Vipul Bhatia
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, U.P., India
| | - Bushra Ateeq
- Molecular Oncology Laboratory, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, 208016, U.P., India.
| |
Collapse
|
49
|
Kaochar S, Mitsiades N. Multimodal action of ONECUT2 in driving neuroendocrine prostate cancer. Transl Cancer Res 2019; 8:S198-S203. [PMID: 31360645 PMCID: PMC6662936 DOI: 10.21037/tcr.2019.02.08] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022]
Affiliation(s)
- Salma Kaochar
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nicholas Mitsiades
- Department of Medicine, Baylor College of Medicine, Houston, TX 77030, USA.,Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
50
|
Bhatia V, Yadav A, Tiwari R, Nigam S, Goel S, Carskadon S, Gupta N, Goel A, Palanisamy N, Ateeq B. Epigenetic Silencing of miRNA-338-5p and miRNA-421 Drives SPINK1-Positive Prostate Cancer. Clin Cancer Res 2018; 25:2755-2768. [PMID: 30587549 DOI: 10.1158/1078-0432.ccr-18-3230] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Revised: 11/09/2018] [Accepted: 12/19/2018] [Indexed: 01/03/2023]
Abstract
PURPOSE Serine peptidase inhibitor, Kazal type-1 (SPINK1) overexpression defines the second most recurrent and aggressive prostate cancer subtype. However, the underlying molecular mechanism and pathobiology of SPINK1 in prostate cancer remains largely unknown. EXPERIMENTAL DESIGN miRNA prediction tools were employed to examine the SPINK1-3'UTR for miRNA binding. Luciferase reporter assays were performed to confirm the SPINK1-3'UTR binding of shortlisted miR-338-5p/miR-421. Furthermore, miR-338-5p/-421-overexpressing cancer cells (SPINK1-positive) were evaluated for oncogenic properties using cell-based functional assays and a mouse xenograft model. Global gene expression profiling was performed to unravel the biological pathways altered by miR-338-5p/-421. IHC and RNA in situ hybridization were carried out on prostate cancer patients' tissue microarray for SPINK1 and EZH2 expression, respectively. Chromatin immunoprecipitation assay was performed to examine EZH2 occupancy on the miR-338-5p/-421-regulatory regions. Bisulfite sequencing and methylated DNA immunoprecipitation were performed on prostate cancer cell lines and patients' specimens. RESULTS We established a critical role of miRNA-338-5p/-421 in posttranscriptional regulation of SPINK1. Ectopic expression of miRNA-338-5p/-421 in SPINK1-positive cells abrogates oncogenic properties including cell-cycle progression, stemness, and drug resistance, and shows reduced tumor burden and distant metastases in a mouse model. Importantly, we show that patients with SPINK1-positive prostate cancer exhibit increased EZH2 expression, suggesting its role in epigenetic silencing of miRNA-338-5p/-421. Furthermore, presence of CpG dinucleotide DNA methylation marks on the regulatory regions of miR-338-5p/-421 in SPINK1-positive prostate cancer cells and patients' specimens confirms epigenetic silencing. CONCLUSIONS Our findings revealed that miRNA-338-5p/-421 are epigenetically silenced in SPINK1-positive prostate cancer, although restoring the expression of these miRNAs using epigenetic drugs or synthetic mimics could abrogate SPINK1-mediated oncogenesis.See related commentary by Bjartell, p. 2679.
Collapse
Affiliation(s)
- Vipul Bhatia
- Molecular Oncology Lab, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Anjali Yadav
- Molecular Oncology Lab, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Ritika Tiwari
- Molecular Oncology Lab, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Shivansh Nigam
- Molecular Oncology Lab, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Sakshi Goel
- Molecular Oncology Lab, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India
| | - Shannon Carskadon
- Vattikuti Urology Institute, Department of Urology, Henry Ford Health System, Detroit, Michigan
| | - Nilesh Gupta
- Department of Pathology, Henry Ford Health System, Detroit, Michigan
| | - Apul Goel
- Department of Urology, King George's Medical University, Lucknow, Uttar Pradesh, India
| | - Nallasivam Palanisamy
- Vattikuti Urology Institute, Department of Urology, Henry Ford Health System, Detroit, Michigan
| | - Bushra Ateeq
- Molecular Oncology Lab, Department of Biological Sciences and Bioengineering, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh, India.
| |
Collapse
|