1
|
Rancilio N, Drozd M, Donaldson L, Harm T, Murakami K. Oligodendroglioma pseudoprogression after radiotherapy in a dog: a case report. Front Vet Sci 2025; 12:1572808. [PMID: 40417366 PMCID: PMC12100751 DOI: 10.3389/fvets.2025.1572808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 03/24/2025] [Indexed: 05/27/2025] Open
Abstract
Pseudoprogression is a clinical and imaging phenomenon characterized by an increase in the size and contrast enhancement pattern of a glioma lesion following treatment with radiotherapy. In human beings, a substantial body of literature describes the phenomenon of pseudoprogression in glioblastoma after radiotherapy. The occurrence of gliomas in the cranial nerves has been reported in human beings as a clinically rare entity. A 7-year-old spayed female French Bulldog was presented with left-sided craniofacial muscle atrophy for a duration of 3 months and episodes of compulsive circling to the left. After a neurological examination, a magnetic resonance (MR) imaging scan of the brain was performed. A T2-and T2 FLAIR-weighted hyperintense, non-contrast-enhancing, T1-weighted hypointense intra-axial suprasellar lesion was found. In addition, an extra-axial, T1-weighted hyperintense, contrast-enhancing mass was identified at the level of the left trigeminal nerve. The lesions were presumptively diagnosed as a glioma and a left trigeminal nerve sheath tumor based on their imaging characteristics and the breed of the patient. A course of stereotactic radiotherapy (SRT) was prescribed, and 3 months after treatment, there was significant progression in the size of the suprasellar mass, indicative of either true progression or pseudoprogression. The left trigeminal nerve mass remained stable in size. Treatment with glucocorticoids resulted in a reduction in the size of the suprasellar mass, as observed on MR imaging 7 months after treatment. The left trigeminal nerve mass remained stable in size. Progression in the size of the suprasellar mass and the left trigeminal nerve mass occurred 9 months after the first course of treatment, and a second course of stereotactic radiotherapy was administered. Sixteen months after the first course of radiotherapy, a necropsy was performed. The suprasellar lesion and the left trigeminal nerve lesion were diagnosed as oligodendrogliomas on histopathology. Trigeminal nerve oligodendrogliomas and pseudoprogression following radiotherapy have not been previously described in dogs. Pseudoprogression should be considered a differential diagnosis for the progression of presumed or confirmed glioma lesions after treatment with radiotherapy. Concurrent oligodendroglioma lesions in the trigeminal nerve are also possible and should be included in the list of differential diagnoses for dogs with concurrent brain lesions.
Collapse
Affiliation(s)
- Nicholas Rancilio
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, IA, United States
| | - Mary Drozd
- School of Veterinary Medicine and Biomedical Sciences, University of Nebraska-Lincoln, Lincoln, NE, United States
| | - Logan Donaldson
- VCA Midwest Veterinary Emergency & Referral Center, Neurology & Neurosurgery, Omaha, NE, United States
| | - Tyler Harm
- Department of Veterinary Pathology, Iowa State University, Ames, IA, United States
| | - Keiko Murakami
- Department of Veterinary Clinical Sciences, Iowa State University, Ames, IA, United States
| |
Collapse
|
2
|
Alonso FH, Phan A, O’Connell K, Vasilatis DM. Cytology and histology of a high-grade oligodendroglioma with embryonal features in a dog. J Vet Diagn Invest 2025:10406387251331553. [PMID: 40237443 PMCID: PMC12003332 DOI: 10.1177/10406387251331553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/18/2025] Open
Abstract
A 10-y-old castrated male German Wirehaired Pointer dog was presented for referral evaluation of a brain mass and craniotomy. Pertinent history included acute onset of cluster seizures; the systemic physical examination was largely unremarkable. Thorough laboratory and imaging screening ruled out extracranial causes for the presenting clinical signs. MRI revealed a hemorrhagic and strongly contrast-enhancing mass in the left frontal lobe. Upon craniotomy, the lesion was abnormal cortical parenchyma with surrounding malacic tissue, which was excised and submitted for microscopic analyses. Cytologic examination of a squash preparation of the mass revealed a mildly inflamed and hemorrhagic neoplasm, with oligodendroglioma or an embryonal CNS neoplasm as primary differential diagnoses. Histopathology with immunohistochemistry confirmed a high-grade oligodendroglioma with embryonal morphology.
Collapse
Affiliation(s)
- Flavio H. Alonso
- Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California–Davis, Davis, CA, USA
- Department of Comparative Medicine, Stanford University School of Medicine, Stanford, CA, USA
| | - Aria Phan
- Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California–Davis, Davis, CA, USA
| | - Kelly O’Connell
- Veterinary Medical Teaching Hospital, School of Veterinary Medicine, University of California–Davis, Davis, CA, USA
| | - Demitria M. Vasilatis
- Department of Urological Surgery, School of Veterinary Medicine, University of California–Davis, Davis, CA, USA
| |
Collapse
|
3
|
Lisowska M, Worrall EG, Zavadil-Kokas F, Charlton K, Murray E, Mohtar MA, Krejcir R, Hrabal V, Brydon J, Urionabarrenetxea AG, Saliba DG, Grima M, Kalathiya U, Muller P, Krejci A, Vojtesek B, Ball KL, Fahraeus R, Argyle DJ, Parys M, Hupp TR. The development of a canine single-chain phage antibody library to isolate recombinant antibodies for use in translational cancer research. CELL REPORTS METHODS 2025; 5:101008. [PMID: 40132540 PMCID: PMC12049728 DOI: 10.1016/j.crmeth.2025.101008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 07/10/2024] [Accepted: 02/25/2025] [Indexed: 03/27/2025]
Abstract
The development of canine immunotolerant monoclonal antibodies can accelerate the invention of new medicines for both canine and human diseases. We develop a methodology to clone the naive, somatically mutated variable domain repertoire from canine B cell mRNA using 5'RACE PCR. A set of degenerate primers were then designed and used to clone variable domain genes into archival "holding" plasmid libraries. These archived variable domain genes were then combinatorially ligated to produce a scFv M13 phage library. Next-generation long-read and short-read DNA sequencing methodologies were developed to annotate features of the cloned library including CDR diversity and IGHV/IGKV/IGLV subfamily distribution. A synthetic immunoglobulin G was developed from this scFv library to the canine immune checkpoint receptor PD-1. This synthetic platform can be used to clone and annotate archived antibody variable domain genes for use in perpetuity in order to develop improved preclinical models for the treatment of complex human diseases.
Collapse
Affiliation(s)
- Małgorzata Lisowska
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland.
| | - Erin G Worrall
- University of Edinburgh, Institute of Genetics and Cancer, Edinburgh, Scotland, UK
| | - Filip Zavadil-Kokas
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Keith Charlton
- University of Aberdeen, Polwarth Building, Foresterhill, Aberdeen, UK
| | - Euan Murray
- University of Edinburgh, Institute of Genetics and Cancer, Edinburgh, Scotland, UK; Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St Louis, Paris, France
| | - M Aiman Mohtar
- University of Edinburgh, Institute of Genetics and Cancer, Edinburgh, Scotland, UK
| | - Radovan Krejcir
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Vaclav Hrabal
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Jack Brydon
- University of Edinburgh, Institute of Genetics and Cancer, Edinburgh, Scotland, UK
| | | | - David G Saliba
- Faculty of Health Sciences/Department Applied Biomedical Science, Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Mariana Grima
- Faculty of Health Sciences/Department Applied Biomedical Science, Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Umesh Kalathiya
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland
| | - Petr Muller
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Adam Krejci
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic
| | - Borivoj Vojtesek
- Research Centre for Applied Molecular Oncology, Masaryk Memorial Cancer Institute, Brno, Czech Republic; Laboratory of Growth Regulators, Institute of Experimental Botany, The Czech Academy of Sciences, Olomouc, Czech Republic
| | - Kathryn L Ball
- University of Edinburgh, Institute of Genetics and Cancer, Edinburgh, Scotland, UK
| | - Robin Fahraeus
- Inserm UMRS1131, Institut de Génétique Moléculaire, Université Paris 7, Hôpital St Louis, Paris, France
| | - David J Argyle
- The University of Edinburgh, Royal (Dick) School of Veterinary Studies and Roslin Institute, Edinburgh, UK
| | - Maciej Parys
- The University of Edinburgh, Royal (Dick) School of Veterinary Studies and Roslin Institute, Edinburgh, UK
| | - Ted R Hupp
- International Centre for Cancer Vaccine Science, University of Gdansk, Gdansk, Poland; University of Edinburgh, Institute of Genetics and Cancer, Edinburgh, Scotland, UK
| |
Collapse
|
4
|
Arnold SA, Taylor AR, Hansen K, Agarwal V, Low WC, Pluhar GE. Immunotherapy yields breed-specific worst survival outcomes among three investigated therapies in French bulldogs with high-grade glioma. Front Vet Sci 2025; 12:1532439. [PMID: 40177677 PMCID: PMC11961989 DOI: 10.3389/fvets.2025.1532439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 02/17/2025] [Indexed: 04/05/2025] Open
Abstract
Introduction French bulldogs are one of the most popular dog breeds in the United States and are also among breeds with the highest risk for developing high-grade glioma (HGG). With limited treatment options and high translational value for studying canine HGG to advance understanding of human glioblastoma (GB), a variety of novel treatment options have been investigated. In other forms of cancer, immunotherapy has shown promising results, garnering interest in the treatment of HGG. Yet, when an immunotherapy-based clinical trial was conducted, a marked survival disparity in French bulldog patients compared to other breeds was observed. Methods This retrospective, multi-institutional study was conducted to examine survival outcomes in immunotherapy-treated French bulldogs compared to closely related breeds, and to French bulldogs treated with several other treatment modalities. Results French bulldogs treated with immunotherapy experienced significantly shorter overall survival (OS) than boxers and Boston terriers (132 vs. 221 days, respectively). French bulldogs treated with immunotherapy had no significant difference in OS compared to French bulldogs treated palliatively, whereas dogs treated with either a novel therapy involving sonodynamic therapy or stereotactic radiation therapy had significantly longer OS. Discussion This study provides evidence for an immunotherapy-resistant form of HGG in French bulldogs, suggesting that the breed harbors key molecular differences affecting the tumor and tumor-immune microenvironment and subsequent poor response to treatment.
Collapse
Affiliation(s)
- Susan A. Arnold
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, Saint Paul, MN, United States
| | - Amanda R. Taylor
- Southeast Veterinary Neurology, Virginia Beach, VA, United States
| | - Katherine Hansen
- VCA Bay Area Veterinary Specialists, San Leandro, CA, United States
| | - Vijay Agarwal
- Department of Neurosurgery, Albert Einstein College of Medicine, Bronx, NY, United States
| | - Walter C. Low
- Department of Neurosurgery, University of Minnesota Medical School, Minneapolis, MN, United States
| | - G. Elizabeth Pluhar
- Department of Veterinary Clinical Sciences, University of Minnesota College of Veterinary Medicine, Saint Paul, MN, United States
| |
Collapse
|
5
|
Lenz JA, Atherton MJ. Maximizing the dual benefit of pet dogs in cancer trials. Nat Rev Cancer 2025; 25:147-148. [PMID: 39891026 DOI: 10.1038/s41568-025-00792-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2025]
Affiliation(s)
- Jennifer A Lenz
- Department of Clinical Sciences & Advanced Medicine, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA, USA.
| | - Matthew J Atherton
- Department of Clinical Sciences & Advanced Medicine, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA, USA.
- Department of Biomedical Sciences, University of Pennsylvania, School of Veterinary Medicine, Philadelphia, PA, USA.
| |
Collapse
|
6
|
Rumberger Rivera L, Springer NL, Bailey K, Patel J, Brett C, Barker E. Opportunities in the translational pipeline for pediatric brain cancer therapies. Pediatr Res 2025:10.1038/s41390-025-03847-y. [PMID: 39893288 DOI: 10.1038/s41390-025-03847-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 10/15/2024] [Accepted: 11/02/2024] [Indexed: 02/04/2025]
Abstract
Primary malignant central nervous system (CNS) tumors are the leading cause of cancer-related mortality in the pediatric population. Moreover, survivors often experience significant long-term treatment-related morbidity. Challenges unique to drug delivery to the central nervous system have hampered therapeutic progress. In the past decade, significant advancements in our understanding of molecular biology, genetic alterations, and the tumor microenvironment have allowed us to improve our in vitro and laboratory animal models to better replicate diseases seen in the pediatric population. Recently, a comparative approach using naturally-occurring CNS malignancies in dogs with similar disease progression, histologic presentation, and treatment response has been proposed as an enticing model system. Given these improvements in the translational pipeline, there is an opportunity to identify and implement effective therapies more efficiently to pediatric CNS malignancy populations. IMPACT: Relevant and translational pre-clinical studies are needed to find chemotherapeutics and targeted agents that can reach therapeutic doses within tumors in children without causing systemic adverse effects. A discussion of comparative oncology is provided with the intent to foster veterinary/human oncology collaboration. While the traditional pipeline for translating medications from bench to bedside has been evolving and improving over the last decade, the advances and remaining roadblocks of this pipeline are reviewed and discussed in this article.
Collapse
Affiliation(s)
| | - Nora L Springer
- Department of Biomedical and Diagnostic Sciences, University of Tennessee College of Veterinary Medicine, Knoxville, TN, USA
| | - Katherine Bailey
- Department of Mechanical, Aerospace, and Biomedical Engineering, The University of Tennessee at Knoxville, Knoxville, TN, USA
| | - Jenny Patel
- Department of Mechanical, Aerospace, and Biomedical Engineering, The University of Tennessee at Knoxville, Knoxville, TN, USA
| | - Christopher Brett
- University of Tennessee Graduate School of Medicine, Knoxville, TN, USA
| | - Elizabeth Barker
- Department of Mechanical, Aerospace, and Biomedical Engineering, The University of Tennessee at Knoxville, Knoxville, TN, USA.
| |
Collapse
|
7
|
TOKUNO H, TANAKA M, IZAWA T, SASAI H, KUWAMURA M. A case of anaplastic oligodendroglioma in a rabbit (Oryctolagus cuniculus). J Vet Med Sci 2025; 87:86-89. [PMID: 39631956 PMCID: PMC11735220 DOI: 10.1292/jvms.24-0438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 11/24/2024] [Indexed: 12/07/2024] Open
Abstract
A 6-year-old male rabbit (Oryctolagus cuniculus) showed loss of appetite, right side rotating and the left side circling. The symptoms did not improve, and the rabbit died on the 2nd day after presentation. Histological evaluation of the brain revealed a non-demarcated high cellularity area of neoplastic cells in the midbrain. In the lesion, neoplastic proliferation of large pleomorphic cells with irregular nuclei and medium amount of cytoplasm with prominent atypia was observed. Most of the neoplastic cells were immunohistochemically positive for both Olig2 and vimentin, and filamentous structure was seen in the cytoplasm. To our knowledge, this is the first report of anaplastic oligodendroglioma in a pet rabbit.
Collapse
Affiliation(s)
- Hisaki TOKUNO
- Laboratory of Veterinary Pathology, Graduate School of Veterinary Sciences, Osaka Metropolitan University, Osaka, Japan
| | - Miyuu TANAKA
- Laboratory of Veterinary Pathology, Graduate School of Veterinary Sciences, Osaka Metropolitan University, Osaka, Japan
| | - Takeshi IZAWA
- Laboratory of Veterinary Pathology, Graduate School of Veterinary Sciences, Osaka Metropolitan University, Osaka, Japan
| | | | - Mitsuru KUWAMURA
- Laboratory of Veterinary Pathology, Graduate School of Veterinary Sciences, Osaka Metropolitan University, Osaka, Japan
| |
Collapse
|
8
|
Liu Y, Wang Y, Sun J, Kong D, Zhou B, Ding M, Meng Y, Duan G, Cui Y, Fan Z, Zhang YP, Zhao W, Tang B. iDog: a multi-omics resource for canids study. Nucleic Acids Res 2025; 53:D1039-D1046. [PMID: 39526388 PMCID: PMC11701671 DOI: 10.1093/nar/gkae1031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/14/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024] Open
Abstract
iDog (https://ngdc.cncb.ac.cn/idog/) is a comprehensive public resource for domestic dogs (Canis lupus familiaris) and wild canids, designed to integrate multi-omics data and provide data services for the worldwide canine research community. Notably, iDog 2.0 features a 15-fold increase in genomic samples, including 29.55 million single nucleotide polymorphisms (SNPs) and 16.54 million insertions/deletions (InDels) from 1929 modern samples and 29.09 million SNPs from 111 ancient Canis samples. Additionally, 43487 breed-specific SNPs and 530 disease/trait-associated variants have been identified and integrated. The platform also includes data from 141 BioProjects involving gene expression analyses and a single-cell transcriptome module containing data from 105 057 Beagle hippocampus cells. iDog 2.0 also includes an epignome module that evaluates DNA methylation patterns across 547 samples and chromatin accessibility across 87 samples for the analysis of gene expression regulation. Additionally, it provies phenotypic data for 897 dog diseases, 3207 genotype-to-phenotype (G2P) pairs, and 349 dog disease-associated genes, along with two newly constructed ontologies for breed and disease standardization. Finally, 13 new analytical tools have been added. Given these enhancements, the updated iDog 2.0 is an invaluable resource for the global cannie research community.
Collapse
Affiliation(s)
- Yanhu Liu
- Key Laboratory of Genetic Evolution & Animal Models and Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650091, China
| | - Yibo Wang
- National Genomics Data Center, China National Center for Bioinformation, Beijing 100049, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jiani Sun
- National Genomics Data Center, China National Center for Bioinformation, Beijing 100049, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| | - Demian Kong
- National Genomics Data Center, China National Center for Bioinformation, Beijing 100049, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bowen Zhou
- Key Laboratory of Genetic Evolution & Animal Models and Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650091, China
| | - Mengting Ding
- Key Laboratory of Genetic Evolution & Animal Models and Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650091, China
| | - Yuyan Meng
- National Genomics Data Center, China National Center for Bioinformation, Beijing 100049, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, China
| | - Guangya Duan
- National Genomics Data Center, China National Center for Bioinformation, Beijing 100049, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ying Cui
- National Genomics Data Center, China National Center for Bioinformation, Beijing 100049, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Zhuojing Fan
- National Genomics Data Center, China National Center for Bioinformation, Beijing 100049, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100049, China
| | - Ya-Ping Zhang
- Key Laboratory of Genetic Evolution & Animal Models and Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650091, China
| | - Wenming Zhao
- National Genomics Data Center, China National Center for Bioinformation, Beijing 100049, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100049, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Bixia Tang
- National Genomics Data Center, China National Center for Bioinformation, Beijing 100049, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
9
|
Yoshida K, Chambers JK, Uchida K. Chromosomal gain and mutations of platelet-derived growth factor receptor-α gene in canine high-grade oligodendroglioma. Vet Pathol 2025:3009858241309396. [PMID: 39757746 DOI: 10.1177/03009858241309396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2025]
Abstract
Canine high-grade oligodendrogliomas (HGOGs) exhibit a high expression of platelet-derived growth factor receptor-α (PDGFRA). We examined PDGFRA mutations and gain of PDGFRA and their association with the PDGFRA expression and proliferation of tumor cells in canine HGOG cases and cell lines. Polymerase chain reaction and sequence analysis revealed expected pathogenic mutations in PDGFRA exons 7 and 8 in 16/34 (47%) cases. However, these mutations were not associated with PDGFRA expression, as examined by mRNA in situ hybridization (ISH) and immunohistochemistry, or proliferation activity, as examined by the Ki-67 labeling index (LI). Chromosomal ISH performed in 16 cases revealed PDGFRA and endoplasmic reticulum membrane protein complex subunit 2 (EMC2) gains in 15 cases (94%). PDGFRA gain was moderately correlated with PDGFRA mRNA expression (ρ = 0.54, P = .04) and were moderately correlated with PDGFRA H-score, which is the score based on immunolabeling intensity (ρ = 0.44, P = .09). However, PDGFRA gain was not correlated with the Ki-67 LI (ρ = 0.23, P = .38). The canine HGOG cell line with PDGFRA gain showed higher PDGFRA mRNA expression (P < .01), H-score (P < .01), and Ki-67 LI (P < .01) than the cell line without PDGFRA gain in vitro. The gain of PDGFRA and EMC2 suggests polysomy of canine chromosome 13, where both genes are located. The in vitro analysis results suggested that chromosome 13 polysomy is associated with increased PDGFRA expression and cell proliferation in canine HGOG. Chromosome 13 polysomy may be involved in canine gliomagenesis by increasing PDGFRA expression and inducing tumor cell proliferation.
Collapse
|
10
|
Rossmeisl JH. Novel Treatments for Brain Tumors. Vet Clin North Am Small Anim Pract 2025; 55:81-94. [PMID: 39393932 DOI: 10.1016/j.cvsm.2024.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2024]
Abstract
The blood-brain barrier and knowledge gaps in tumor biology remain significant obstacles to the development of effective treatments for brain tumors. The identification of shared molecular and genetic pathways that contribute to tumorigenesis in both dogs and people has been key to the discovery and translation of targeted pharmacologic and biologic therapies. Treatment approaches often utilize targeted or multifunctional antitumor agents, such as nanocarriers, molecularly targeted agents, immunotherapeutics, and oncolytic viruses in combination with alternative therapeutic delivery strategies. The article discusses about various treatments albeit none of the treatments discussed here are widely available or approved for clinical use.
Collapse
Affiliation(s)
- John H Rossmeisl
- Department of Small Animal Clinical Sciences, Veterinary and Comparative Neuro-oncology Laboratory, Virginia-Maryland College of Veterinary Medicine, Virginia Tech, 205 Duckpond Drive, Blacksburg, VA 24061, USA.
| |
Collapse
|
11
|
Arnold SA, Low WC, Pluhar GE. Breed-Associated Differences in Differential Gene Expression Following Immunotherapy-Based Treatment of Canine High-Grade Glioma. Animals (Basel) 2024; 15:28. [PMID: 39794971 PMCID: PMC11718890 DOI: 10.3390/ani15010028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 12/18/2024] [Accepted: 12/19/2024] [Indexed: 01/13/2025] Open
Abstract
Canine high-grade glioma (HGG) is among the deadliest and most treatment-resistant forms of canine cancer. Successful, widespread treatment is challenged by heterogeneity in tumor cells and the tumor microenvironment and tumor evolution following treatment. Immunotherapy is theoretically a strong novel therapy, since HGG-generated immunosuppression is a substantial malignancy mechanism. Immunotherapy has improved survival times overall, but has been associated with extremely poor outcomes in French bulldogs. Given this breed-specific observation, we hypothesized that within the French bulldog breed, there are key transcriptomic differences when compared to other breeds, and that their tumors change differently in response to immunotherapy. Using bulk RNA sequencing, French bulldog tumors were confirmed to differ substantially from boxer and Boston terrier tumors, with only 15.9% overlap in significant differentially expressed genes (DEGs). In upregulated DEGs, the magnitude of changes in expression post-treatment compared to pre-treatment was markedly greater in French bulldogs. Gene set enrichment analysis confirmed that following treatment, French bulldog tumors showed enrichment of key immune-associated pathways previously correlated with poor prognosis. Overall, this study confirmed that French bulldog HGG transcriptomes differ from boxer and Boston terrier transcriptomes, further refining description of the canine glioma transcriptome and providing important information to guide novel therapy development, both for specific dog breeds and for possible correlative variants of human glioblastoma.
Collapse
Affiliation(s)
- Susan A. Arnold
- Department of Veterinary Clinical Sciences, University of Minnesota, Saint Paul, MN 55108, USA;
| | - Walter C. Low
- Department of Neurosurgery, University of Minnesota, Minneapolis, MN 55455, USA
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA
| | - Grace Elizabeth Pluhar
- Department of Veterinary Clinical Sciences, University of Minnesota, Saint Paul, MN 55108, USA;
| |
Collapse
|
12
|
Panek WK, Toedebusch RG, Mclaughlin BE, Dickinson PJ, Van Dyke JE, Woolard KD, Berens ME, Lesniak MS, Sturges BK, Vernau KM, Li C, Miska J, Toedebusch CM. The CCL2-CCR4 axis promotes Regulatory T cell trafficking to canine glioma tissues. J Neurooncol 2024; 169:647-658. [PMID: 39046599 PMCID: PMC11341612 DOI: 10.1007/s11060-024-04766-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/02/2024] [Indexed: 07/25/2024]
Abstract
PURPOSE Spontaneously occurring glioma in pet dogs is increasingly recognized as a valuable translational model for human glioblastoma. Canine high-grade glioma and human glioblastomas share many molecular similarities, including the accumulation of immunosuppressive regulatory T cells (Tregs) that inhibit anti-tumor immune responses. Identifying in dog mechanisms responsible for Treg recruitment may afford to target the cellular population driving immunosuppression, the results providing a rationale for translational clinical studies in human patients. Our group has previously identified C-C motif chemokine 2 (CCL2) as a glioma-derived T-reg chemoattractant acting on chemokine receptor 4 (CCR4) in a murine orthotopic glioma model. Recently, we demonstrated a robust increase of CCL2 in the brain tissue of canine patients bearing high-grade glioma. METHODS We performed a series of in vitro experiments using canine Tregs and patient-derived canine glioma cell lines (GSC 1110, GSC 0514, J3T-Bg, G06A) to interrogate the CCL2-CCR4 signaling axis in the canine. RESULTS We established a flow cytometry gating strategy for identifying and isolating FOXP3+ Tregs in dogs. The canine CD4 + CD25high T-cell population was highly enriched in FOXP3 and CCR4 expression, indicating they are bona fide Tregs. Canine Treg migration was enhanced by CCL2 or by glioma cell line-derived supernatant. Blockade of the CCL2-CCR4 axis significantly reduced migration of canine Tregs. CCL2 mRNA was expressed in all glioma cell lines, and expression increased when exposed to Tregs but not CD4 + helper T-cells. CONCLUSION Our study validates CCL2-CCR4 as a bi-directional Treg-glioma immunosuppressive and tumor-promoting axis in canine high-grade glioma.
Collapse
Affiliation(s)
- W K Panek
- Department of Surgical and Radiological Sciences, University of California, Davis, One Shields Avenue, 2112 Tupper Hall, Davis, CA, 95616-5270, USA.
- Department of Clinical Sciences & Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, 380 South University Avenue, 419 Hill Pavilion, Philadelphia, PA, 19104, USA.
| | - R G Toedebusch
- Department of Surgical and Radiological Sciences, University of California, Davis, One Shields Avenue, 2112 Tupper Hall, Davis, CA, 95616-5270, USA
| | - B E Mclaughlin
- University of California Davis, Flow Cytometry Shared Resource, Davis, CA, USA
| | - P J Dickinson
- Department of Surgical and Radiological Sciences, University of California, Davis, One Shields Avenue, 2112 Tupper Hall, Davis, CA, 95616-5270, USA
| | - J E Van Dyke
- University of California Davis, Flow Cytometry Shared Resource, Davis, CA, USA
| | - K D Woolard
- Department of Pathology, Microbiology and Immunology, University of California, Davis, Davis, CA, USA
| | - M E Berens
- Cancer and Cell Biology Division, The Translational Genomics Research Institute, Phoenix, AZ, USA
| | - M S Lesniak
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - B K Sturges
- Department of Surgical and Radiological Sciences, University of California, Davis, One Shields Avenue, 2112 Tupper Hall, Davis, CA, 95616-5270, USA
| | - K M Vernau
- Department of Surgical and Radiological Sciences, University of California, Davis, One Shields Avenue, 2112 Tupper Hall, Davis, CA, 95616-5270, USA
| | - C Li
- Department of Surgical and Radiological Sciences, University of California, Davis, One Shields Avenue, 2112 Tupper Hall, Davis, CA, 95616-5270, USA
| | - J Miska
- Department of Neurological Surgery, Lou and Jean Malnati Brain Tumor Institute, Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Christine M Toedebusch
- Department of Surgical and Radiological Sciences, University of California, Davis, One Shields Avenue, 2112 Tupper Hall, Davis, CA, 95616-5270, USA.
| |
Collapse
|
13
|
Yoshida K, Chambers JK, Uchida K. The relationships of platelet-derived growth factor, microvascular proliferation, and tumor cell proliferation in canine high-grade oligodendrogliomas: Immunohistochemistry of 45 tumors and an AFOB-01 xenograft mouse model. Vet Pathol 2024; 61:732-742. [PMID: 38577818 DOI: 10.1177/03009858241241793] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024]
Abstract
High-grade oligodendroglioma (HGOG) is the most common type of glioma in dogs and expresses platelet-derived growth factor receptor-α (PDGFR-α). Microvascular proliferation is often observed in HGOG. Therefore, the present study investigated the functional relationships between PDGFR-α, microvascular proliferation, and tumor cell proliferation in canine HGOG. The expression of PDGFR-α and PDGF-subunit A (PDGF-A) in tumor cells, as well as endothelial cells and pericytes of tumor-associated microvascular proliferations, in 45 canine HGOGs were examined immunohistochemically. Microvascular proliferation was observed in 24/45 cases (53%). PDGFR-α expression in tumor cells and microvascular proliferations was observed in 45/45 (100%) and 2/24 cases (8%), respectively. Furthermore, PDGF-A expression in tumor cells and microvascular proliferations was detected in 13/45 (29%) and 24/24 cases (100%), respectively. In vitro, stimulation of the canine HGOG cell line AOFB-01 with PDGF-A showed that the doubling time of AOFB-01 cells was significantly shorter with PDGF-A than without PDGF-A. Crenolanib (a PDGFR inhibitor) inhibited AOFB-01 cell proliferation. In vivo, the AOFB-01 xenograft mouse model was treated with crenolanib. Tumor xenografts were smaller in crenolanib-treated mice than in untreated control mice. PDGFR-α expression in tumor cells and PDGF-A expression in microvascular proliferations and tumor cells suggest autocrine and paracrine effects of PDGF-A in canine HGOG. The results of in vitro assays indicate that canine HGOG expresses functional PDGFR-α, which responds to PDGF-A. Therefore, PDGF-A produced by microvascular proliferations and tumor cells may promote the proliferation of PDGFR-α-expressing tumor cells in canine HGOG. PDGFR-α signaling has potential as a therapeutic target.
Collapse
|
14
|
Mazzone E, Aresu L. Comprehensive Analysis of Microsatellite Instability in Canine Cancers: Implications for Comparative Oncology and Personalized Veterinary Medicine. Animals (Basel) 2024; 14:2484. [PMID: 39272269 PMCID: PMC11394029 DOI: 10.3390/ani14172484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/20/2024] [Accepted: 08/20/2024] [Indexed: 09/15/2024] Open
Abstract
Microsatellite instability (MSI) is a crucial feature in cancer biology, yet its prevalence and significance in canine cancers remain largely unexplored. This study conducted a comprehensive analysis of MSI across 10 distinct canine cancer histotypes using whole-exome sequencing data from 692 tumor-normal sample pairs. MSI was detected in 64% of tumors, with prevalence varying significantly among cancer types. B-cell lymphomas exhibited the highest MSI burden, contrasting with human studies. A novel "MSI-burden" score was developed, correlating significantly with tumor mutational burden. MSI-high (MSI-H) tumors showed elevated somatic mutation counts compared to MSI-low and microsatellite stable tumors. The study identified 3632 recurrent MSI-affected genomic regions across cancer types. Notably, seven of the ten cancer types exhibited MSI-H tumors, with prevalence ranging from 1.5% in melanomas to 37% in B-cell lymphomas. These findings highlight the potential importance of MSI in canine cancer biology and suggest opportunities for targeted therapies, particularly immunotherapies. The high prevalence of MSI in canine cancers, especially in B-cell lymphomas, warrants further investigation into its mechanistic role and potential as a biomarker for prognosis and treatment response.
Collapse
Affiliation(s)
- Eugenio Mazzone
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, Italy
| | - Luca Aresu
- Department of Veterinary Sciences, University of Turin, 10095 Grugliasco, Italy
| |
Collapse
|
15
|
Cahill JA, Smith LA, Gottipati S, Torabi TS, Graim K. Bringing the Genomic Revolution to Comparative Oncology: Human and Dog Cancers. Annu Rev Biomed Data Sci 2024; 7:107-129. [PMID: 38648188 PMCID: PMC11343685 DOI: 10.1146/annurev-biodatasci-102423-111936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
Dogs are humanity's oldest friend, the first species we domesticated 20,000-40,000 years ago. In this unequaled collaboration, dogs have inadvertently but serendipitously been molded into a potent human cancer model. Unlike many common model species, dogs are raised in the same environment as humans and present with spontaneous tumors with human-like comorbidities, immunocompetency, and heterogeneity. In breast, bladder, blood, and several pediatric cancers, in-depth profiling of dog and human tumors has established the benefits of the dog model. In addition to this clinical and molecular similarity, veterinary studies indicate that domestic dogs have relatively high tumor incidence rates. As a result, there are a plethora of data for analysis, the statistical power of which is bolstered by substantial breed-specific variability. As such, dog tumors provide a unique opportunity to interrogate the molecular factors underpinning cancer and facilitate the modeling of new therapeutic targets. This review discusses the emerging field of comparative oncology, how it complements human and rodent cancer studies, and where challenges remain, given the rapid proliferation of genomic resources. Increasingly, it appears that human's best friend is becoming an irreplaceable component of oncology research.
Collapse
Affiliation(s)
- James A Cahill
- University of Florida Genetics Institute, University of Florida, Gainesville, Florida, USA;
- Department of Environmental Engineering Sciences, University of Florida, Gainesville, Florida, USA
| | - Leslie A Smith
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, Florida, USA
| | - Soumya Gottipati
- Department of Computer Science, Princeton University, Princeton, New Jersey, USA
| | - Tina Salehi Torabi
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, Florida, USA
| | - Kiley Graim
- Department of Computer and Information Science and Engineering, University of Florida, Gainesville, Florida, USA
- University of Florida Health Cancer Center, University of Florida, Gainesville, Florida, USA
- University of Florida Genetics Institute, University of Florida, Gainesville, Florida, USA;
| |
Collapse
|
16
|
Inglis FM, Taylor PA, Andrews EF, Pascalau R, Voss HU, Glen DR, Johnson PJ. A diffusion tensor imaging white matter atlas of the domestic canine brain. IMAGING NEUROSCIENCE (CAMBRIDGE, MASS.) 2024; 2:1-21. [PMID: 39301427 PMCID: PMC11409835 DOI: 10.1162/imag_a_00276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/02/2024] [Accepted: 07/23/2024] [Indexed: 09/22/2024]
Abstract
There is increasing reliance on magnetic resonance imaging (MRI) techniques in both research and clinical settings. However, few standardized methods exist to permit comparative studies of brain pathology and function. To help facilitate these studies, we have created a detailed, MRI-based white matter atlas of the canine brain using diffusion tensor imaging. This technique, which relies on the movement properties of water, permits the creation of a three-dimensional diffusivity map of white matter brain regions that can be used to predict major axonal tracts. To generate an atlas of white matter tracts, thirty neurologically and clinically normal dogs underwent MRI imaging under anesthesia. High-resolution, three-dimensional T1-weighted sequences were collected and averaged to create a population average template. Diffusion-weighted imaging sequences were collected and used to generate diffusivity maps, which were then registered to the T1-weighted template. Using these diffusivity maps, individual white matter tracts-including association, projection, commissural, brainstem, olfactory, and cerebellar tracts-were identified with reference to previous canine brain atlas sources. To enable the use of this atlas, we created downloadable overlay files for each white matter tract identified using manual segmentation software. In addition, using diffusion tensor imaging tractography, we created tract files to delineate major projection pathways. This comprehensive white matter atlas serves as a standard reference to aid in the interpretation of quantitative changes in brain structure and function in clinical and research settings.
Collapse
Affiliation(s)
- Fiona M Inglis
- Cornell College of Veterinary Medicine, Department of Clinical Sciences, Cornell University, Ithaca, NY, United States
| | - Paul A Taylor
- Scientific and Statistical Computing Core, National Institute of Mental Health, Bethesda, MD, United States
| | - Erica F Andrews
- Cornell College of Veterinary Medicine, Department of Clinical Sciences, Cornell University, Ithaca, NY, United States
| | - Raluca Pascalau
- Faculty of Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Henning U Voss
- Cornell Magnetic Resonance Imaging Facility, College of Human Ecology, Cornell University, Cornell, Ithaca, NY, United States
| | - Daniel R Glen
- Scientific and Statistical Computing Core, National Institute of Mental Health, Bethesda, MD, United States
| | - Philippa J Johnson
- Cornell College of Veterinary Medicine, Department of Clinical Sciences, Cornell University, Ithaca, NY, United States
| |
Collapse
|
17
|
Molín J, José-López R, Ramírez GA, Pumarola M. Immunohistochemical Expression of PTEN in Canine Gliomas. Animals (Basel) 2024; 14:2115. [PMID: 39061577 PMCID: PMC11273977 DOI: 10.3390/ani14142115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Revised: 07/14/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Phosphatase and tensin homolog (PTEN) is a critical tumor suppressor gene with a vital role in regulating cell proliferation, migration, and survival. The loss of PTEN function, either by genetic alterations or decreased protein expression, is frequent in human gliomas and has been correlated with tumor progression, grade, therapeutic resistance, and decreased overall survival in patients with glioma. While different genetic mutations in PTEN gene have been occasionally reported in canine gliomas, no alterations in protein expression have been reported. This study investigates the immunohistochemical expression of PTEN in canine gliomas to evaluate possible alterations, as those reported in human gliomas. Immunohistochemical PTEN expression and pattern distribution were analyzed in 37 spontaneous canine gliomas. Among gliomas, 52.6% cases showed high PTEN expression and 48.6% displayed reduced (13.5%) or highly reduced (35.1%) immunopositivity. Most oligodendrogliomas showed high expression (73.7%), while the majority of astrocytomas (69.2%) showed a reduced or highly reduced expression. A reduced PTEN expression was mostly associated with a heterogeneous loss of PTEN immunopositivity. These observations are in line with those reported in human gliomas and provide a rationale for future studies regarding abnormalities in PTEN expression and PI3K/Akt/mTor pathway in canine gliomas, to evaluate its prognostic and therapeutic implications.
Collapse
Affiliation(s)
- Jéssica Molín
- Departament Ciència Animal, Campus Agroalimentari, Forestal i Veterinari, Universitat de Lleida, 25198 Lleida, Spain;
| | - Roberto José-López
- Division of Small Animal Clinical Sciences, School of Biodiversity, One Health and Veterinary Medicine, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow G61 1QH, UK;
- Neurology and Neurosurgery Service, Southfields Veterinary Specialists, Part of Linnaeus Veterinary Ltd., Basildon SS14 3AP, UK
| | - Gustavo A. Ramírez
- Departament Ciència Animal, Campus Agroalimentari, Forestal i Veterinari, Universitat de Lleida, 25198 Lleida, Spain;
| | - Martí Pumarola
- Unitat de Patologia Murina i Comparada, Departament de Medicina i Cirurgia Animals, Facultat de Veterinària, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain;
| |
Collapse
|
18
|
Panek WK, Toedebusch RG, Mclaughlin BE, Dickinson PJ, Dyke JE, Woolard KD, Berens ME, Lesniak MS, Sturges BK, Vernau KM, Li C, Miska JM, Toedebusch CM. The CCL2-CCR4 Axis Promotes Regulatory T Cell Trafficking to Canine Glioma Tissues. RESEARCH SQUARE 2024:rs.3.rs-4474288. [PMID: 38947002 PMCID: PMC11213221 DOI: 10.21203/rs.3.rs-4474288/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Purpose Spontaneously occurring glioma in pet dogs is increasingly recognized as a valuable translational model for human glioblastoma. Canine high grade glioma and human glioblastomas share many molecular similarities, including accumulation of immunosuppressive regulatory T cells (Tregs) that inhibit anti-tumor immune responses. Identifying in dog mechanisms responsible for Treg recruitment may afford targeting the cellular population driving immunosuppression, the results providing a rationale for translational clinical studies in human patients. Our group has previously identified C-C motif chemokine 2 (CCL2) as a glioma-derived T-reg chemoattractant acting on chemokine receptor 4 (CCR4) in a murine orthotopic model of glioma. Recently, we demonstrated a robust increase of CCL2 in the brain tissue of canine patients bearing high-grade glioma. Methods We performed a series of in vitro experiments using canine Tregs and patient-derived canine glioma cell lines (GSC 1110, GSC 0514, J3T-Bg, G06A) to interrogate the CCL2-CCR4 signaling axis in the canine. Results We established a flow cytometry gating strategy for identification and isolation of FOXP3+ Tregs in dogs. The canine CD4 + CD25high T-cell population was highly enriched in FOXP3 and CCR4 expression, indicating they are bona fide Tregs. Canine Treg migration was enhanced by CCL2 or by glioma cell line-derived supernatant. Blockade of the CCL2-CCR4 axis significantly reduced migration of canine Tregs. CCL2 mRNA was expressed in all glioma cell lines and expression increased when exposed to Tregs but not to CD4 + helper T-cells. Conclusion Our study validates CCL2-CCR4 as a bi-directional Treg-glioma immunosuppressive and tumor-promoting axis in canine high-grade glioma.
Collapse
Affiliation(s)
| | | | - B E Mclaughlin
- University of California Davis, Flow Cytometry Shared Resource
| | | | - J E Dyke
- University of California Davis, Flow Cytometry Shared Resource
| | | | - M E Berens
- The Translational Genomics Research Institute
| | | | | | | | - C Li
- University of California, Davis
| | | | | |
Collapse
|
19
|
Filippo D, Guardone L, Listorti V, Elisabetta R. Microbiome in cancer: A comparative analysis between humans and dogs. Vet J 2024; 305:106145. [PMID: 38788999 DOI: 10.1016/j.tvjl.2024.106145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 04/22/2024] [Accepted: 05/21/2024] [Indexed: 05/26/2024]
Abstract
Cancer is a major cause of death in humans and animals worldwide. While cancer survival rates have increased over recent decades, further research to identify risk factors for the onset and progression of disease, and safe and highly efficacious treatments, is needed. Spontaneous tumours in pets represent an excellent model for neoplastic disease in humans. In this regard, dogs are an interesting species, as the divergence between the dog and human genome is low, humans and dogs have important similarities in the development and functioning of the immune system, and both species often share the same physical environment. There is also a higher homology between the canine and human microbiome than murine model. This review aims to describe and organize recently published information on canine microbiome assemblages and their relationship with the onset and progression of colorectal cancer, breast cancer and lymphoma, and to compare this with human disease. In both species, dysbiosis can induce variations in the gut microbiota that strongly influence shifts in status between health and disease. This can produce an inflammatory state, potentially leading to neoplasia, especially in the intestine, thus supporting canine studies in comparative oncology. Intestinal dysbiosis can also alter the efficacy and side effects of cancer treatments. Fewer published studies are available on changes in the relevant microbiomes in canine lymphoma and mammary cancer, and further research in this area could improve our understanding of the role of microbiota in the development of these cancers.
Collapse
Affiliation(s)
- Dell'Anno Filippo
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Genova 16129, Italy; Department of Public Health, Experimental and Forensic Medicine, Section of Biostatistics and Clinical Epidemiology, University of Pavia, Pavia, Italy
| | - Lisa Guardone
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Genova 16129, Italy
| | - Valeria Listorti
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Genova 16129, Italy
| | - Razzuoli Elisabetta
- National Reference Center of Veterinary and Comparative Oncology (CEROVEC), Istituto Zooprofilattico Sperimentale del Piemonte, Liguria e Valle d'Aosta, Genova 16129, Italy.
| |
Collapse
|
20
|
Alberti G, Amico MD, Caruso Bavisotto C, Rappa F, Marino Gammazza A, Bucchieri F, Cappello F, Scalia F, Szychlinska MA. Speeding up Glioblastoma Cancer Research: Highlighting the Zebrafish Xenograft Model. Int J Mol Sci 2024; 25:5394. [PMID: 38791432 PMCID: PMC11121320 DOI: 10.3390/ijms25105394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/07/2024] [Accepted: 05/14/2024] [Indexed: 05/26/2024] Open
Abstract
Glioblastoma multiforme (GBM) is a very aggressive and lethal primary brain cancer in adults. The multifaceted nature of GBM pathogenesis, rising from complex interactions between cells and the tumor microenvironment (TME), has posed great treatment challenges. Despite significant scientific efforts, the prognosis for GBM remains very poor, even after intensive treatment with surgery, radiation, and chemotherapy. Efficient GBM management still requires the invention of innovative treatment strategies. There is a strong necessity to complete cancer in vitro studies and in vivo studies to properly evaluate the mechanisms of tumor progression within the complex TME. In recent years, the animal models used to study GBM tumors have evolved, achieving highly invasive GBM models able to provide key information on the molecular mechanisms of GBM onset. At present, the most commonly used animal models in GBM research are represented by mammalian models, such as mouse and canine ones. However, the latter present several limitations, such as high cost and time-consuming management, making them inappropriate for large-scale anticancer drug evaluation. In recent years, the zebrafish (Danio rerio) model has emerged as a valuable tool for studying GBM. It has shown great promise in preclinical studies due to numerous advantages, such as its small size, its ability to generate a large cohort of genetically identical offspring, and its rapid development, permitting more time- and cost-effective management and high-throughput drug screening when compared to mammalian models. Moreover, due to its transparent nature in early developmental stages and genetic and anatomical similarities with humans, it allows for translatable brain cancer research and related genetic screening and drug discovery. For this reason, the aim of the present review is to highlight the potential of relevant transgenic and xenograft zebrafish models and to compare them to the traditionally used animal models in GBM research.
Collapse
Affiliation(s)
- Giusi Alberti
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (M.D.A.); (C.C.B.); (F.R.); (A.M.G.); (F.B.); (F.C.); (F.S.)
| | - Maria Denise Amico
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (M.D.A.); (C.C.B.); (F.R.); (A.M.G.); (F.B.); (F.C.); (F.S.)
| | - Celeste Caruso Bavisotto
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (M.D.A.); (C.C.B.); (F.R.); (A.M.G.); (F.B.); (F.C.); (F.S.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Francesca Rappa
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (M.D.A.); (C.C.B.); (F.R.); (A.M.G.); (F.B.); (F.C.); (F.S.)
- The Institute of Translational Pharmacology, National Research Council of Italy (CNR), 90146 Palermo, Italy
| | - Antonella Marino Gammazza
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (M.D.A.); (C.C.B.); (F.R.); (A.M.G.); (F.B.); (F.C.); (F.S.)
| | - Fabio Bucchieri
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (M.D.A.); (C.C.B.); (F.R.); (A.M.G.); (F.B.); (F.C.); (F.S.)
| | - Francesco Cappello
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (M.D.A.); (C.C.B.); (F.R.); (A.M.G.); (F.B.); (F.C.); (F.S.)
- Euro-Mediterranean Institute of Science and Technology (IEMEST), 90139 Palermo, Italy
| | - Federica Scalia
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy; (G.A.); (M.D.A.); (C.C.B.); (F.R.); (A.M.G.); (F.B.); (F.C.); (F.S.)
| | - Marta Anna Szychlinska
- Department of Precision Medicine in Medical, Surgical and Critical Care (Me.Pre.C.C.), University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
21
|
Aupperle-Lellbach H, Kehl A, de Brot S, van der Weyden L. Clinical Use of Molecular Biomarkers in Canine and Feline Oncology: Current and Future. Vet Sci 2024; 11:199. [PMID: 38787171 PMCID: PMC11126050 DOI: 10.3390/vetsci11050199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 04/24/2024] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Molecular biomarkers are central to personalised medicine for human cancer patients. It is gaining traction as part of standard veterinary clinical practice for dogs and cats with cancer. Molecular biomarkers can be somatic or germline genomic alterations and can be ascertained from tissues or body fluids using various techniques. This review discusses how these genomic alterations can be determined and the findings used in clinical settings as diagnostic, prognostic, predictive, and screening biomarkers. We showcase the somatic and germline genomic alterations currently available to date for testing dogs and cats in a clinical setting, discussing their utility in each biomarker class. We also look at some emerging molecular biomarkers that are promising for clinical use. Finally, we discuss the hurdles that need to be overcome in going 'bench to bedside', i.e., the translation from discovery of genomic alterations to adoption by veterinary clinicians. As we understand more of the genomics underlying canine and feline tumours, molecular biomarkers will undoubtedly become a mainstay in delivering precision veterinary care to dogs and cats with cancer.
Collapse
Affiliation(s)
- Heike Aupperle-Lellbach
- Laboklin GmbH&Co.KG, Steubenstr. 4, 97688 Bad Kissingen, Germany; (H.A.-L.); (A.K.)
- School of Medicine, Institute of Pathology, Technical University of Munich, Trogerstr. 18, 80333 München, Germany
| | - Alexandra Kehl
- Laboklin GmbH&Co.KG, Steubenstr. 4, 97688 Bad Kissingen, Germany; (H.A.-L.); (A.K.)
- School of Medicine, Institute of Pathology, Technical University of Munich, Trogerstr. 18, 80333 München, Germany
| | - Simone de Brot
- Institute of Animal Pathology, COMPATH, University of Bern, 3012 Bern, Switzerland;
| | | |
Collapse
|
22
|
Jiang YZ, Ma D, Jin X, Xiao Y, Yu Y, Shi J, Zhou YF, Fu T, Lin CJ, Dai LJ, Liu CL, Zhao S, Su GH, Hou W, Liu Y, Chen Q, Yang J, Zhang N, Zhang WJ, Liu W, Ge W, Yang WT, You C, Gu Y, Kaklamani V, Bertucci F, Verschraegen C, Daemen A, Shah NM, Wang T, Guo T, Shi L, Perou CM, Zheng Y, Huang W, Shao ZM. Integrated multiomic profiling of breast cancer in the Chinese population reveals patient stratification and therapeutic vulnerabilities. NATURE CANCER 2024; 5:673-690. [PMID: 38347143 DOI: 10.1038/s43018-024-00725-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 01/04/2024] [Indexed: 04/30/2024]
Abstract
Molecular profiling guides precision treatment of breast cancer; however, Asian patients are underrepresented in publicly available large-scale studies. We established a comprehensive multiomics cohort of 773 Chinese patients with breast cancer and systematically analyzed their genomic, transcriptomic, proteomic, metabolomic, radiomic and digital pathology characteristics. Here we show that compared to breast cancers in white individuals, Asian individuals had more targetable AKT1 mutations. Integrated analysis revealed a higher proportion of HER2-enriched subtype and correspondingly more frequent ERBB2 amplification and higher HER2 protein abundance in the Chinese HR+HER2+ cohort, stressing anti-HER2 therapy for these individuals. Furthermore, comprehensive metabolomic and proteomic analyses revealed ferroptosis as a potential therapeutic target for basal-like tumors. The integration of clinical, transcriptomic, metabolomic, radiomic and pathological features allowed for efficient stratification of patients into groups with varying recurrence risks. Our study provides a public resource and new insights into the biology and ancestry specificity of breast cancer in the Asian population, offering potential for further precision treatment approaches.
Collapse
Affiliation(s)
- Yi-Zhou Jiang
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Ding Ma
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xi Jin
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yi Xiao
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Ying Yu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Jinxiu Shi
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai, China
| | - Yi-Fan Zhou
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Tong Fu
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cai-Jin Lin
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Lei-Jie Dai
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Cheng-Lin Liu
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Shen Zhao
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Guan-Hua Su
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wanwan Hou
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Yaqing Liu
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Qingwang Chen
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Jingcheng Yang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Shanghai Cancer Center, Fudan University, Shanghai, China
- Greater Bay Area Institute of Precision Medicine, Guangzhou, China
| | - Naixin Zhang
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Shanghai Cancer Center, Fudan University, Shanghai, China
| | - Wen-Juan Zhang
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wei Liu
- Westlake Omics (Hangzhou) Biotechnology, Hangzhou, China
| | - Weigang Ge
- Westlake Omics (Hangzhou) Biotechnology, Hangzhou, China
| | - Wen-Tao Yang
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Chao You
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Yajia Gu
- Department of Radiology, Fudan University Shanghai Cancer Center, Shanghai, China
| | - Virginia Kaklamani
- Division Haematology/Oncology, University of Texas Health Science Center at San Antonio, San Antonio, TX, USA
| | - François Bertucci
- Predictive Oncology Laboratory and Department of Medical Oncology, CRCM, Institut Paoli-Calmettes, Inserm UMR1068, CNRS UMR7258, Aix-Marseille Université, Marseille, France
| | | | - Anneleen Daemen
- Department of Bioinformatics and Computational Biology, Genentech, South San Francisco, CA, USA
| | - Nakul M Shah
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
| | - Ting Wang
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St. Louis, MO, USA
- McDonnell Genome Institute, Washington University School of Medicine, St. Louis, MO, USA
| | - Tiannan Guo
- Westlake Center for Intelligent Proteomics, Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, China
- School of Medicine, School of Life Sciences, Westlake University, Hangzhou, China
- Research Center for Industries of the Future, Westlake University, Hangzhou, China
| | - Leming Shi
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Shanghai Cancer Center, Fudan University, Shanghai, China
- International Human Phenome Institutes (Shanghai), Shanghai, China
| | - Charles M Perou
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Yuanting Zheng
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Human Phenome Institute and Shanghai Cancer Center, Fudan University, Shanghai, China.
| | - Wei Huang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Shanghai Institute for Biomedical and Pharmaceutical Technologies (SIBPT), Shanghai, China.
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer, Department of Breast Surgery, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
23
|
Sakthikumar S, Warrier M, Whitley D, Facista S, Adkins J, Aman S, Tsinajinnie D, Duran N, Siravegna G, Ahmed Z, Day K, Jenkins B, Patel N, Ryden K, Nadai J, Banovich K, Powers B, Edwards J, Steinberg J, Fielder S, Wong S, Byron SA, Izatt T, Zismann V, Boateng M, Zhu Z, Chuang HY, Trent JM, Haworth D, Chon E, Hendricks W, Wang G. Genomic analysis across 53 canine cancer types reveals novel mutations and high clinical actionability potential. Vet Comp Oncol 2024; 22:30-41. [PMID: 38053317 DOI: 10.1111/vco.12944] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/27/2023] [Accepted: 11/12/2023] [Indexed: 12/07/2023]
Abstract
A genomic understanding of the oncogenic processes and individual variability of human cancer has steadily fueled improvement in patient outcomes over the past 20 years. Mutations within tumour tissues are routinely assessed through clinical genomic diagnostic assays by academic and commercial laboratories to facilitate diagnosis, prognosis and effective treatment stratification. The application of genomics has unveiled a wealth of mutation-based biomarkers in canine cancers, suggesting that the transformative principles that have revolutionized human cancer medicine can be brought to bear in veterinary oncology. To advance clinical genomics and genomics-guided medicine in canine oncology, we have developed and validated a canine cancer next-generation sequencing gene panel for the identification of multiple mutation types in clinical specimens. With this panel, we examined the genomic landscapes of 828 tumours from 813 dogs, spanning 53 cancer types. We identified 7856 alterations, encompassing copy number variants, single nucleotide variants, indels and internal tandem duplications. Additionally, we evaluated the clinical utility of these alterations by incorporating a biomarker framework from comprehensive curation of primary canine literature and inferences from human cancer genomic biomarker literature and clinical diagnostics. Remarkably, nearly 90% of the cases exhibited mutations with diagnostic, prognostic or therapeutic implications. Our work represents a thorough assessment of genomic landscapes in a large cohort of canine cancers, the first of its kind for its comprehensive inclusion of multiple mutation types and structured annotation of biomarkers, demonstrating the clinical potential of leveraging mutation-based biomarkers in veterinary oncology.
Collapse
Affiliation(s)
| | | | | | | | | | - Sara Aman
- Vidium Animal Health, Phoenix, Arizona, USA
| | | | | | | | | | | | | | | | - Kirk Ryden
- Vidium Animal Health, Phoenix, Arizona, USA
| | - Joe Nadai
- Vidium Animal Health, Phoenix, Arizona, USA
| | | | | | | | - Jennifer Steinberg
- Center for Cancer Research at the National Cancer Institute, National Cancer Institute, Bethesda, Maryland, USA
| | | | - Shukmei Wong
- Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Sara A Byron
- Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Tyler Izatt
- Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Victoria Zismann
- Translational Genomics Research Institute, Phoenix, Arizona, USA
| | | | | | | | - Jeffrey M Trent
- Translational Genomics Research Institute, Phoenix, Arizona, USA
| | | | | | | | | |
Collapse
|
24
|
Kehl A, Aupperle-Lellbach H, de Brot S, van der Weyden L. Review of Molecular Technologies for Investigating Canine Cancer. Animals (Basel) 2024; 14:769. [PMID: 38473154 PMCID: PMC10930838 DOI: 10.3390/ani14050769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/09/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Genetic molecular testing is starting to gain traction as part of standard clinical practice for dogs with cancer due to its multi-faceted benefits, such as potentially being able to provide diagnostic, prognostic and/or therapeutic information. However, the benefits and ultimate success of genomic analysis in the clinical setting are reliant on the robustness of the tools used to generate the results, which continually expand as new technologies are developed. To this end, we review the different materials from which tumour cells, DNA, RNA and the relevant proteins can be isolated and what methods are available for interrogating their molecular profile, including analysis of the genetic alterations (both somatic and germline), transcriptional changes and epigenetic modifications (including DNA methylation/acetylation and microRNAs). We also look to the future and the tools that are currently being developed, such as using artificial intelligence (AI) to identify genetic mutations from histomorphological criteria. In summary, we find that the molecular genetic characterisation of canine neoplasms has made a promising start. As we understand more of the genetics underlying these tumours and more targeted therapies become available, it will no doubt become a mainstay in the delivery of precision veterinary care to dogs with cancer.
Collapse
Affiliation(s)
- Alexandra Kehl
- Laboklin GmbH & Co. KG, Steubenstr. 4, 97688 Bad Kissingen, Germany; (A.K.); (H.A.-L.)
- School of Medicine, Institute of Pathology, Technical University of Munich, Trogerstr. 18, 81675 München, Germany
| | - Heike Aupperle-Lellbach
- Laboklin GmbH & Co. KG, Steubenstr. 4, 97688 Bad Kissingen, Germany; (A.K.); (H.A.-L.)
- School of Medicine, Institute of Pathology, Technical University of Munich, Trogerstr. 18, 81675 München, Germany
| | - Simone de Brot
- Institute of Animal Pathology, COMPATH, University of Bern, 3012 Bern, Switzerland;
| | | |
Collapse
|
25
|
Brooks AM, Vornoli A, Kovi RC, Ton TVT, Xu M, Mashal A, Tibaldi E, Gnudi F, Li JL, Sills RC, Bucher JR, Mandrioli D, Belpoggi F, Pandiri AR. Genetic profiling of rat gliomas and cardiac schwannomas from life-time radiofrequency radiation exposure study using a targeted next-generation sequencing gene panel. PLoS One 2024; 19:e0296699. [PMID: 38232086 PMCID: PMC10793937 DOI: 10.1371/journal.pone.0296699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Accepted: 12/17/2023] [Indexed: 01/19/2024] Open
Abstract
The cancer hazard associated with lifetime exposure to radiofrequency radiation (RFR) was examined in Sprague Dawley (SD) rats at the Ramazzini Institute (RI), Italy. There were increased incidences of gliomas and cardiac schwannomas. The translational relevance of these rare rat tumors for human disease is poorly understood. We examined the genetic alterations in RFR-derived rat tumors through molecular characterization of important cancer genes relevant for human gliomagenesis. A targeted next-generation sequencing (NGS) panel was designed for rats based on the top 23 orthologous human glioma-related genes. Single-nucleotide variants (SNVs) and small insertion and deletions (indels) were characterized in the rat gliomas and cardiac schwannomas. Translational relevance of these genetic alterations in rat tumors to human disease was determined through comparison with the Catalogue of Somatic Mutations in Cancer (COSMIC) database. These data suggest that rat gliomas resulting from life-time exposure to RFR histologically resemble low grade human gliomas but surprisingly no mutations were detected in rat gliomas that had homology to the human IDH1 p.R132 or IDH2 p.R172 suggesting that rat gliomas are primarily wild-type for IDH hotspot mutations implicated in human gliomas. The rat gliomas appear to share some genetic alterations with IDH1 wildtype human gliomas and rat cardiac schwannomas also harbor mutations in some of the queried cancer genes. These data demonstrate that targeted NGS panels based on tumor specific orthologous human cancer driver genes are an important tool to examine the translational relevance of rodent tumors resulting from chronic/life-time rodent bioassays.
Collapse
Affiliation(s)
- Ashley M. Brooks
- Integrative Bioinformatics Support Group, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Andrea Vornoli
- Comparative and Molecular Pathogenesis Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Bologna, Italy
| | - Ramesh C. Kovi
- Comparative and Molecular Pathogenesis Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
- Experimental Pathology Laboratories, Inc., Research Triangle Park, North Carolina, United States of America
| | - Thai Vu T. Ton
- Comparative and Molecular Pathogenesis Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Miaofei Xu
- Comparative and Molecular Pathogenesis Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Ahmed Mashal
- Comparative and Molecular Pathogenesis Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Eva Tibaldi
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Bologna, Italy
| | - Federica Gnudi
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Bologna, Italy
| | - Jian-Liang Li
- Integrative Bioinformatics Support Group, Division of Intramural Research, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Robert C. Sills
- Comparative and Molecular Pathogenesis Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - John R. Bucher
- Comparative and Molecular Pathogenesis Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| | - Daniele Mandrioli
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Bologna, Italy
| | - Fiorella Belpoggi
- Cesare Maltoni Cancer Research Center, Ramazzini Institute, Bologna, Italy
| | - Arun R. Pandiri
- Comparative and Molecular Pathogenesis Branch, Division of Translational Toxicology, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina, United States of America
| |
Collapse
|
26
|
Low JT, Brown MC, Reitman ZJ, Bernstock JD, Markert JM, Friedman GK, Waitkus MS, Bowie ML, Ashley DM. Understanding and therapeutically exploiting cGAS/STING signaling in glioblastoma. J Clin Invest 2024; 134:e163452. [PMID: 38226619 PMCID: PMC10786687 DOI: 10.1172/jci163452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2024] Open
Abstract
Since the discovery that cGAS/STING recognizes endogenous DNA released from dying cancer cells and induces type I interferon and antitumor T cell responses, efforts to understand and therapeutically target the STING pathway in cancer have ensued. Relative to other cancer types, the glioma immune microenvironment harbors few infiltrating T cells, but abundant tumor-associated myeloid cells, possibly explaining disappointing responses to immune checkpoint blockade therapies in cohorts of patients with glioblastoma. Notably, unlike most extracranial tumors, STING expression is absent in the malignant compartment of gliomas, likely due to methylation of the STING promoter. Nonetheless, several preclinical studies suggest that inducing cGAS/STING signaling in the glioma immune microenvironment could be therapeutically beneficial, and cGAS/STING signaling has been shown to mediate inflammatory and antitumor effects of other modalities either in use or being developed for glioblastoma therapy, including radiation, tumor-treating fields, and oncolytic virotherapy. In this Review, we discuss cGAS/STING signaling in gliomas, its implications for glioma immunobiology, compartment-specific roles for STING signaling in influencing immune surveillance, and efforts to target STING signaling - either directly or indirectly - for antiglioma therapy.
Collapse
Affiliation(s)
| | | | - Zachary J. Reitman
- Department of Radiation Oncology, Duke University, Durham, North Carolina, USA
| | - Joshua D. Bernstock
- Department of Neurosurgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, Massachusetts, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - James M. Markert
- Department of Neurosurgery, University of Alabama at Birmingham, Birmingham, Alabama, USA
| | - Gregory K. Friedman
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, University of Alabama at Birmingham, Birmingham, Alabama, USA
- Division of Pediatrics, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | | | | | | |
Collapse
|
27
|
London CA, Gardner H, Zhao S, Knapp DW, Utturkar SM, Duval DL, Chambers MR, Ostrander E, Trent JM, Kuffel G. Leading the pack: Best practices in comparative canine cancer genomics to inform human oncology. Vet Comp Oncol 2023; 21:565-577. [PMID: 37778398 PMCID: PMC12065084 DOI: 10.1111/vco.12935] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/17/2023] [Accepted: 08/18/2023] [Indexed: 10/03/2023]
Abstract
Pet dogs develop spontaneous cancers at a rate estimated to be five times higher than that of humans, providing a unique opportunity to study disease biology and evaluate novel therapeutic strategies in a model system that possesses an intact immune system and mirrors key aspects of human cancer biology. Despite decades of interest, effective utilization of pet dog cancers has been hindered by a limited repertoire of necessary cellular and molecular reagents for both in vitro and in vivo studies, as well as a dearth of information regarding the genomic landscape of these cancers. Recently, many of these critical gaps have been addressed through the generation of a highly annotated canine reference genome, the creation of several tools necessary for multi-omic analysis of canine tumours, and the development of a centralized repository for key genomic and associated clinical information from canine cancer patients, the Integrated Canine Data Commons. Together, these advances have catalysed multidisciplinary efforts designed to integrate the study of pet dog cancers more effectively into the translational continuum, with the ultimate goal of improving human outcomes. The current review summarizes this recent progress and provides a guide to resources and tools available for comparative study of pet dog cancers.
Collapse
Affiliation(s)
- Cheryl A. London
- Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, USA
| | - Heather Gardner
- Cummings School of Veterinary Medicine, Tufts University, North Grafton, Massachusetts, USA
| | - Shaying Zhao
- University of Georgia Cancer Center, University of Georgia, Athens, Georgia, USA
| | - Deborah W. Knapp
- College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, USA
| | - Sagar M. Utturkar
- Purdue Institute for Cancer Research, Purdue University, West Lafayette, Indiana, USA
| | - Dawn L. Duval
- College of Veterinary Medicine and Biomedical Sciences, Colorado State University, Fort Collins, Colorado, USA
| | | | - Elaine Ostrander
- Cancer Genetics and Comparative Genomics Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Jeffrey M. Trent
- Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Gina Kuffel
- National Human Genome Research Institute, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
28
|
Fedorov A, Longabaugh WJR, Pot D, Clunie DA, Pieper SD, Gibbs DL, Bridge C, Herrmann MD, Homeyer A, Lewis R, Aerts HJWL, Krishnaswamy D, Thiriveedhi VK, Ciausu C, Schacherer DP, Bontempi D, Pihl T, Wagner U, Farahani K, Kim E, Kikinis R. National Cancer Institute Imaging Data Commons: Toward Transparency, Reproducibility, and Scalability in Imaging Artificial Intelligence. Radiographics 2023; 43:e230180. [PMID: 37999984 PMCID: PMC10716669 DOI: 10.1148/rg.230180] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2023] [Revised: 08/10/2023] [Accepted: 09/12/2023] [Indexed: 11/26/2023]
Abstract
The remarkable advances of artificial intelligence (AI) technology are revolutionizing established approaches to the acquisition, interpretation, and analysis of biomedical imaging data. Development, validation, and continuous refinement of AI tools requires easy access to large high-quality annotated datasets, which are both representative and diverse. The National Cancer Institute (NCI) Imaging Data Commons (IDC) hosts large and diverse publicly available cancer image data collections. By harmonizing all data based on industry standards and colocalizing it with analysis and exploration resources, the IDC aims to facilitate the development, validation, and clinical translation of AI tools and address the well-documented challenges of establishing reproducible and transparent AI processing pipelines. Balanced use of established commercial products with open-source solutions, interconnected by standard interfaces, provides value and performance, while preserving sufficient agility to address the evolving needs of the research community. Emphasis on the development of tools, use cases to demonstrate the utility of uniform data representation, and cloud-based analysis aim to ease adoption and help define best practices. Integration with other data in the broader NCI Cancer Research Data Commons infrastructure opens opportunities for multiomics studies incorporating imaging data to further empower the research community to accelerate breakthroughs in cancer detection, diagnosis, and treatment. Published under a CC BY 4.0 license.
Collapse
Affiliation(s)
- Andrey Fedorov
- From the Department of Radiology, Brigham and Women’s Hospital
and Harvard Medical School, 399 Revolution Dr, Somerville, MA 02145 (A.F., D.K.,
V.K.T., C.C., R.K.); Institute for Systems Biology, Seattle, Wash (W.J.R.L.,
D.L.G.); General Dynamics Information Technology, Rockville, Md (D.P.); PixelMed
Publishing, Bangor, Pa (D.A.C.); Isomics, Cambridge, Mass (S.D.P.); Departments
of Radiology (C.B.) and Pathology (M.D.H.), Massachusetts General Hospital and
Harvard Medical School, Boston, Mass; Fraunhofer MEVIS, Bremen, Germany (A.H.,
D.P.S.); Radical Imaging, Boston, Mass (R.L.); Artificial Intelligence in
Medicine Program, Mass General Brigham, Harvard Medical School, Boston, Mass
(H.J.W.L.A., D.B.); Radiology and Nuclear Medicine, CARIM & GROW,
Maastricht University, Maastricht, the Netherlands (H.J.W.L.A., D.B.); Frederick
National Laboratory for Cancer Research, Rockville, Md (T.P., U.W.); and
National Cancer Institute, Bethesda, Md (K.F., E.K.)
| | - William J. R. Longabaugh
- From the Department of Radiology, Brigham and Women’s Hospital
and Harvard Medical School, 399 Revolution Dr, Somerville, MA 02145 (A.F., D.K.,
V.K.T., C.C., R.K.); Institute for Systems Biology, Seattle, Wash (W.J.R.L.,
D.L.G.); General Dynamics Information Technology, Rockville, Md (D.P.); PixelMed
Publishing, Bangor, Pa (D.A.C.); Isomics, Cambridge, Mass (S.D.P.); Departments
of Radiology (C.B.) and Pathology (M.D.H.), Massachusetts General Hospital and
Harvard Medical School, Boston, Mass; Fraunhofer MEVIS, Bremen, Germany (A.H.,
D.P.S.); Radical Imaging, Boston, Mass (R.L.); Artificial Intelligence in
Medicine Program, Mass General Brigham, Harvard Medical School, Boston, Mass
(H.J.W.L.A., D.B.); Radiology and Nuclear Medicine, CARIM & GROW,
Maastricht University, Maastricht, the Netherlands (H.J.W.L.A., D.B.); Frederick
National Laboratory for Cancer Research, Rockville, Md (T.P., U.W.); and
National Cancer Institute, Bethesda, Md (K.F., E.K.)
| | - David Pot
- From the Department of Radiology, Brigham and Women’s Hospital
and Harvard Medical School, 399 Revolution Dr, Somerville, MA 02145 (A.F., D.K.,
V.K.T., C.C., R.K.); Institute for Systems Biology, Seattle, Wash (W.J.R.L.,
D.L.G.); General Dynamics Information Technology, Rockville, Md (D.P.); PixelMed
Publishing, Bangor, Pa (D.A.C.); Isomics, Cambridge, Mass (S.D.P.); Departments
of Radiology (C.B.) and Pathology (M.D.H.), Massachusetts General Hospital and
Harvard Medical School, Boston, Mass; Fraunhofer MEVIS, Bremen, Germany (A.H.,
D.P.S.); Radical Imaging, Boston, Mass (R.L.); Artificial Intelligence in
Medicine Program, Mass General Brigham, Harvard Medical School, Boston, Mass
(H.J.W.L.A., D.B.); Radiology and Nuclear Medicine, CARIM & GROW,
Maastricht University, Maastricht, the Netherlands (H.J.W.L.A., D.B.); Frederick
National Laboratory for Cancer Research, Rockville, Md (T.P., U.W.); and
National Cancer Institute, Bethesda, Md (K.F., E.K.)
| | - David A. Clunie
- From the Department of Radiology, Brigham and Women’s Hospital
and Harvard Medical School, 399 Revolution Dr, Somerville, MA 02145 (A.F., D.K.,
V.K.T., C.C., R.K.); Institute for Systems Biology, Seattle, Wash (W.J.R.L.,
D.L.G.); General Dynamics Information Technology, Rockville, Md (D.P.); PixelMed
Publishing, Bangor, Pa (D.A.C.); Isomics, Cambridge, Mass (S.D.P.); Departments
of Radiology (C.B.) and Pathology (M.D.H.), Massachusetts General Hospital and
Harvard Medical School, Boston, Mass; Fraunhofer MEVIS, Bremen, Germany (A.H.,
D.P.S.); Radical Imaging, Boston, Mass (R.L.); Artificial Intelligence in
Medicine Program, Mass General Brigham, Harvard Medical School, Boston, Mass
(H.J.W.L.A., D.B.); Radiology and Nuclear Medicine, CARIM & GROW,
Maastricht University, Maastricht, the Netherlands (H.J.W.L.A., D.B.); Frederick
National Laboratory for Cancer Research, Rockville, Md (T.P., U.W.); and
National Cancer Institute, Bethesda, Md (K.F., E.K.)
| | - Steven D. Pieper
- From the Department of Radiology, Brigham and Women’s Hospital
and Harvard Medical School, 399 Revolution Dr, Somerville, MA 02145 (A.F., D.K.,
V.K.T., C.C., R.K.); Institute for Systems Biology, Seattle, Wash (W.J.R.L.,
D.L.G.); General Dynamics Information Technology, Rockville, Md (D.P.); PixelMed
Publishing, Bangor, Pa (D.A.C.); Isomics, Cambridge, Mass (S.D.P.); Departments
of Radiology (C.B.) and Pathology (M.D.H.), Massachusetts General Hospital and
Harvard Medical School, Boston, Mass; Fraunhofer MEVIS, Bremen, Germany (A.H.,
D.P.S.); Radical Imaging, Boston, Mass (R.L.); Artificial Intelligence in
Medicine Program, Mass General Brigham, Harvard Medical School, Boston, Mass
(H.J.W.L.A., D.B.); Radiology and Nuclear Medicine, CARIM & GROW,
Maastricht University, Maastricht, the Netherlands (H.J.W.L.A., D.B.); Frederick
National Laboratory for Cancer Research, Rockville, Md (T.P., U.W.); and
National Cancer Institute, Bethesda, Md (K.F., E.K.)
| | - David L. Gibbs
- From the Department of Radiology, Brigham and Women’s Hospital
and Harvard Medical School, 399 Revolution Dr, Somerville, MA 02145 (A.F., D.K.,
V.K.T., C.C., R.K.); Institute for Systems Biology, Seattle, Wash (W.J.R.L.,
D.L.G.); General Dynamics Information Technology, Rockville, Md (D.P.); PixelMed
Publishing, Bangor, Pa (D.A.C.); Isomics, Cambridge, Mass (S.D.P.); Departments
of Radiology (C.B.) and Pathology (M.D.H.), Massachusetts General Hospital and
Harvard Medical School, Boston, Mass; Fraunhofer MEVIS, Bremen, Germany (A.H.,
D.P.S.); Radical Imaging, Boston, Mass (R.L.); Artificial Intelligence in
Medicine Program, Mass General Brigham, Harvard Medical School, Boston, Mass
(H.J.W.L.A., D.B.); Radiology and Nuclear Medicine, CARIM & GROW,
Maastricht University, Maastricht, the Netherlands (H.J.W.L.A., D.B.); Frederick
National Laboratory for Cancer Research, Rockville, Md (T.P., U.W.); and
National Cancer Institute, Bethesda, Md (K.F., E.K.)
| | - Christopher Bridge
- From the Department of Radiology, Brigham and Women’s Hospital
and Harvard Medical School, 399 Revolution Dr, Somerville, MA 02145 (A.F., D.K.,
V.K.T., C.C., R.K.); Institute for Systems Biology, Seattle, Wash (W.J.R.L.,
D.L.G.); General Dynamics Information Technology, Rockville, Md (D.P.); PixelMed
Publishing, Bangor, Pa (D.A.C.); Isomics, Cambridge, Mass (S.D.P.); Departments
of Radiology (C.B.) and Pathology (M.D.H.), Massachusetts General Hospital and
Harvard Medical School, Boston, Mass; Fraunhofer MEVIS, Bremen, Germany (A.H.,
D.P.S.); Radical Imaging, Boston, Mass (R.L.); Artificial Intelligence in
Medicine Program, Mass General Brigham, Harvard Medical School, Boston, Mass
(H.J.W.L.A., D.B.); Radiology and Nuclear Medicine, CARIM & GROW,
Maastricht University, Maastricht, the Netherlands (H.J.W.L.A., D.B.); Frederick
National Laboratory for Cancer Research, Rockville, Md (T.P., U.W.); and
National Cancer Institute, Bethesda, Md (K.F., E.K.)
| | - Markus D. Herrmann
- From the Department of Radiology, Brigham and Women’s Hospital
and Harvard Medical School, 399 Revolution Dr, Somerville, MA 02145 (A.F., D.K.,
V.K.T., C.C., R.K.); Institute for Systems Biology, Seattle, Wash (W.J.R.L.,
D.L.G.); General Dynamics Information Technology, Rockville, Md (D.P.); PixelMed
Publishing, Bangor, Pa (D.A.C.); Isomics, Cambridge, Mass (S.D.P.); Departments
of Radiology (C.B.) and Pathology (M.D.H.), Massachusetts General Hospital and
Harvard Medical School, Boston, Mass; Fraunhofer MEVIS, Bremen, Germany (A.H.,
D.P.S.); Radical Imaging, Boston, Mass (R.L.); Artificial Intelligence in
Medicine Program, Mass General Brigham, Harvard Medical School, Boston, Mass
(H.J.W.L.A., D.B.); Radiology and Nuclear Medicine, CARIM & GROW,
Maastricht University, Maastricht, the Netherlands (H.J.W.L.A., D.B.); Frederick
National Laboratory for Cancer Research, Rockville, Md (T.P., U.W.); and
National Cancer Institute, Bethesda, Md (K.F., E.K.)
| | - André Homeyer
- From the Department of Radiology, Brigham and Women’s Hospital
and Harvard Medical School, 399 Revolution Dr, Somerville, MA 02145 (A.F., D.K.,
V.K.T., C.C., R.K.); Institute for Systems Biology, Seattle, Wash (W.J.R.L.,
D.L.G.); General Dynamics Information Technology, Rockville, Md (D.P.); PixelMed
Publishing, Bangor, Pa (D.A.C.); Isomics, Cambridge, Mass (S.D.P.); Departments
of Radiology (C.B.) and Pathology (M.D.H.), Massachusetts General Hospital and
Harvard Medical School, Boston, Mass; Fraunhofer MEVIS, Bremen, Germany (A.H.,
D.P.S.); Radical Imaging, Boston, Mass (R.L.); Artificial Intelligence in
Medicine Program, Mass General Brigham, Harvard Medical School, Boston, Mass
(H.J.W.L.A., D.B.); Radiology and Nuclear Medicine, CARIM & GROW,
Maastricht University, Maastricht, the Netherlands (H.J.W.L.A., D.B.); Frederick
National Laboratory for Cancer Research, Rockville, Md (T.P., U.W.); and
National Cancer Institute, Bethesda, Md (K.F., E.K.)
| | - Rob Lewis
- From the Department of Radiology, Brigham and Women’s Hospital
and Harvard Medical School, 399 Revolution Dr, Somerville, MA 02145 (A.F., D.K.,
V.K.T., C.C., R.K.); Institute for Systems Biology, Seattle, Wash (W.J.R.L.,
D.L.G.); General Dynamics Information Technology, Rockville, Md (D.P.); PixelMed
Publishing, Bangor, Pa (D.A.C.); Isomics, Cambridge, Mass (S.D.P.); Departments
of Radiology (C.B.) and Pathology (M.D.H.), Massachusetts General Hospital and
Harvard Medical School, Boston, Mass; Fraunhofer MEVIS, Bremen, Germany (A.H.,
D.P.S.); Radical Imaging, Boston, Mass (R.L.); Artificial Intelligence in
Medicine Program, Mass General Brigham, Harvard Medical School, Boston, Mass
(H.J.W.L.A., D.B.); Radiology and Nuclear Medicine, CARIM & GROW,
Maastricht University, Maastricht, the Netherlands (H.J.W.L.A., D.B.); Frederick
National Laboratory for Cancer Research, Rockville, Md (T.P., U.W.); and
National Cancer Institute, Bethesda, Md (K.F., E.K.)
| | - Hugo J. W. L. Aerts
- From the Department of Radiology, Brigham and Women’s Hospital
and Harvard Medical School, 399 Revolution Dr, Somerville, MA 02145 (A.F., D.K.,
V.K.T., C.C., R.K.); Institute for Systems Biology, Seattle, Wash (W.J.R.L.,
D.L.G.); General Dynamics Information Technology, Rockville, Md (D.P.); PixelMed
Publishing, Bangor, Pa (D.A.C.); Isomics, Cambridge, Mass (S.D.P.); Departments
of Radiology (C.B.) and Pathology (M.D.H.), Massachusetts General Hospital and
Harvard Medical School, Boston, Mass; Fraunhofer MEVIS, Bremen, Germany (A.H.,
D.P.S.); Radical Imaging, Boston, Mass (R.L.); Artificial Intelligence in
Medicine Program, Mass General Brigham, Harvard Medical School, Boston, Mass
(H.J.W.L.A., D.B.); Radiology and Nuclear Medicine, CARIM & GROW,
Maastricht University, Maastricht, the Netherlands (H.J.W.L.A., D.B.); Frederick
National Laboratory for Cancer Research, Rockville, Md (T.P., U.W.); and
National Cancer Institute, Bethesda, Md (K.F., E.K.)
| | - Deepa Krishnaswamy
- From the Department of Radiology, Brigham and Women’s Hospital
and Harvard Medical School, 399 Revolution Dr, Somerville, MA 02145 (A.F., D.K.,
V.K.T., C.C., R.K.); Institute for Systems Biology, Seattle, Wash (W.J.R.L.,
D.L.G.); General Dynamics Information Technology, Rockville, Md (D.P.); PixelMed
Publishing, Bangor, Pa (D.A.C.); Isomics, Cambridge, Mass (S.D.P.); Departments
of Radiology (C.B.) and Pathology (M.D.H.), Massachusetts General Hospital and
Harvard Medical School, Boston, Mass; Fraunhofer MEVIS, Bremen, Germany (A.H.,
D.P.S.); Radical Imaging, Boston, Mass (R.L.); Artificial Intelligence in
Medicine Program, Mass General Brigham, Harvard Medical School, Boston, Mass
(H.J.W.L.A., D.B.); Radiology and Nuclear Medicine, CARIM & GROW,
Maastricht University, Maastricht, the Netherlands (H.J.W.L.A., D.B.); Frederick
National Laboratory for Cancer Research, Rockville, Md (T.P., U.W.); and
National Cancer Institute, Bethesda, Md (K.F., E.K.)
| | - Vamsi Krishna Thiriveedhi
- From the Department of Radiology, Brigham and Women’s Hospital
and Harvard Medical School, 399 Revolution Dr, Somerville, MA 02145 (A.F., D.K.,
V.K.T., C.C., R.K.); Institute for Systems Biology, Seattle, Wash (W.J.R.L.,
D.L.G.); General Dynamics Information Technology, Rockville, Md (D.P.); PixelMed
Publishing, Bangor, Pa (D.A.C.); Isomics, Cambridge, Mass (S.D.P.); Departments
of Radiology (C.B.) and Pathology (M.D.H.), Massachusetts General Hospital and
Harvard Medical School, Boston, Mass; Fraunhofer MEVIS, Bremen, Germany (A.H.,
D.P.S.); Radical Imaging, Boston, Mass (R.L.); Artificial Intelligence in
Medicine Program, Mass General Brigham, Harvard Medical School, Boston, Mass
(H.J.W.L.A., D.B.); Radiology and Nuclear Medicine, CARIM & GROW,
Maastricht University, Maastricht, the Netherlands (H.J.W.L.A., D.B.); Frederick
National Laboratory for Cancer Research, Rockville, Md (T.P., U.W.); and
National Cancer Institute, Bethesda, Md (K.F., E.K.)
| | - Cosmin Ciausu
- From the Department of Radiology, Brigham and Women’s Hospital
and Harvard Medical School, 399 Revolution Dr, Somerville, MA 02145 (A.F., D.K.,
V.K.T., C.C., R.K.); Institute for Systems Biology, Seattle, Wash (W.J.R.L.,
D.L.G.); General Dynamics Information Technology, Rockville, Md (D.P.); PixelMed
Publishing, Bangor, Pa (D.A.C.); Isomics, Cambridge, Mass (S.D.P.); Departments
of Radiology (C.B.) and Pathology (M.D.H.), Massachusetts General Hospital and
Harvard Medical School, Boston, Mass; Fraunhofer MEVIS, Bremen, Germany (A.H.,
D.P.S.); Radical Imaging, Boston, Mass (R.L.); Artificial Intelligence in
Medicine Program, Mass General Brigham, Harvard Medical School, Boston, Mass
(H.J.W.L.A., D.B.); Radiology and Nuclear Medicine, CARIM & GROW,
Maastricht University, Maastricht, the Netherlands (H.J.W.L.A., D.B.); Frederick
National Laboratory for Cancer Research, Rockville, Md (T.P., U.W.); and
National Cancer Institute, Bethesda, Md (K.F., E.K.)
| | - Daniela P. Schacherer
- From the Department of Radiology, Brigham and Women’s Hospital
and Harvard Medical School, 399 Revolution Dr, Somerville, MA 02145 (A.F., D.K.,
V.K.T., C.C., R.K.); Institute for Systems Biology, Seattle, Wash (W.J.R.L.,
D.L.G.); General Dynamics Information Technology, Rockville, Md (D.P.); PixelMed
Publishing, Bangor, Pa (D.A.C.); Isomics, Cambridge, Mass (S.D.P.); Departments
of Radiology (C.B.) and Pathology (M.D.H.), Massachusetts General Hospital and
Harvard Medical School, Boston, Mass; Fraunhofer MEVIS, Bremen, Germany (A.H.,
D.P.S.); Radical Imaging, Boston, Mass (R.L.); Artificial Intelligence in
Medicine Program, Mass General Brigham, Harvard Medical School, Boston, Mass
(H.J.W.L.A., D.B.); Radiology and Nuclear Medicine, CARIM & GROW,
Maastricht University, Maastricht, the Netherlands (H.J.W.L.A., D.B.); Frederick
National Laboratory for Cancer Research, Rockville, Md (T.P., U.W.); and
National Cancer Institute, Bethesda, Md (K.F., E.K.)
| | - Dennis Bontempi
- From the Department of Radiology, Brigham and Women’s Hospital
and Harvard Medical School, 399 Revolution Dr, Somerville, MA 02145 (A.F., D.K.,
V.K.T., C.C., R.K.); Institute for Systems Biology, Seattle, Wash (W.J.R.L.,
D.L.G.); General Dynamics Information Technology, Rockville, Md (D.P.); PixelMed
Publishing, Bangor, Pa (D.A.C.); Isomics, Cambridge, Mass (S.D.P.); Departments
of Radiology (C.B.) and Pathology (M.D.H.), Massachusetts General Hospital and
Harvard Medical School, Boston, Mass; Fraunhofer MEVIS, Bremen, Germany (A.H.,
D.P.S.); Radical Imaging, Boston, Mass (R.L.); Artificial Intelligence in
Medicine Program, Mass General Brigham, Harvard Medical School, Boston, Mass
(H.J.W.L.A., D.B.); Radiology and Nuclear Medicine, CARIM & GROW,
Maastricht University, Maastricht, the Netherlands (H.J.W.L.A., D.B.); Frederick
National Laboratory for Cancer Research, Rockville, Md (T.P., U.W.); and
National Cancer Institute, Bethesda, Md (K.F., E.K.)
| | - Todd Pihl
- From the Department of Radiology, Brigham and Women’s Hospital
and Harvard Medical School, 399 Revolution Dr, Somerville, MA 02145 (A.F., D.K.,
V.K.T., C.C., R.K.); Institute for Systems Biology, Seattle, Wash (W.J.R.L.,
D.L.G.); General Dynamics Information Technology, Rockville, Md (D.P.); PixelMed
Publishing, Bangor, Pa (D.A.C.); Isomics, Cambridge, Mass (S.D.P.); Departments
of Radiology (C.B.) and Pathology (M.D.H.), Massachusetts General Hospital and
Harvard Medical School, Boston, Mass; Fraunhofer MEVIS, Bremen, Germany (A.H.,
D.P.S.); Radical Imaging, Boston, Mass (R.L.); Artificial Intelligence in
Medicine Program, Mass General Brigham, Harvard Medical School, Boston, Mass
(H.J.W.L.A., D.B.); Radiology and Nuclear Medicine, CARIM & GROW,
Maastricht University, Maastricht, the Netherlands (H.J.W.L.A., D.B.); Frederick
National Laboratory for Cancer Research, Rockville, Md (T.P., U.W.); and
National Cancer Institute, Bethesda, Md (K.F., E.K.)
| | - Ulrike Wagner
- From the Department of Radiology, Brigham and Women’s Hospital
and Harvard Medical School, 399 Revolution Dr, Somerville, MA 02145 (A.F., D.K.,
V.K.T., C.C., R.K.); Institute for Systems Biology, Seattle, Wash (W.J.R.L.,
D.L.G.); General Dynamics Information Technology, Rockville, Md (D.P.); PixelMed
Publishing, Bangor, Pa (D.A.C.); Isomics, Cambridge, Mass (S.D.P.); Departments
of Radiology (C.B.) and Pathology (M.D.H.), Massachusetts General Hospital and
Harvard Medical School, Boston, Mass; Fraunhofer MEVIS, Bremen, Germany (A.H.,
D.P.S.); Radical Imaging, Boston, Mass (R.L.); Artificial Intelligence in
Medicine Program, Mass General Brigham, Harvard Medical School, Boston, Mass
(H.J.W.L.A., D.B.); Radiology and Nuclear Medicine, CARIM & GROW,
Maastricht University, Maastricht, the Netherlands (H.J.W.L.A., D.B.); Frederick
National Laboratory for Cancer Research, Rockville, Md (T.P., U.W.); and
National Cancer Institute, Bethesda, Md (K.F., E.K.)
| | - Keyvan Farahani
- From the Department of Radiology, Brigham and Women’s Hospital
and Harvard Medical School, 399 Revolution Dr, Somerville, MA 02145 (A.F., D.K.,
V.K.T., C.C., R.K.); Institute for Systems Biology, Seattle, Wash (W.J.R.L.,
D.L.G.); General Dynamics Information Technology, Rockville, Md (D.P.); PixelMed
Publishing, Bangor, Pa (D.A.C.); Isomics, Cambridge, Mass (S.D.P.); Departments
of Radiology (C.B.) and Pathology (M.D.H.), Massachusetts General Hospital and
Harvard Medical School, Boston, Mass; Fraunhofer MEVIS, Bremen, Germany (A.H.,
D.P.S.); Radical Imaging, Boston, Mass (R.L.); Artificial Intelligence in
Medicine Program, Mass General Brigham, Harvard Medical School, Boston, Mass
(H.J.W.L.A., D.B.); Radiology and Nuclear Medicine, CARIM & GROW,
Maastricht University, Maastricht, the Netherlands (H.J.W.L.A., D.B.); Frederick
National Laboratory for Cancer Research, Rockville, Md (T.P., U.W.); and
National Cancer Institute, Bethesda, Md (K.F., E.K.)
| | - Erika Kim
- From the Department of Radiology, Brigham and Women’s Hospital
and Harvard Medical School, 399 Revolution Dr, Somerville, MA 02145 (A.F., D.K.,
V.K.T., C.C., R.K.); Institute for Systems Biology, Seattle, Wash (W.J.R.L.,
D.L.G.); General Dynamics Information Technology, Rockville, Md (D.P.); PixelMed
Publishing, Bangor, Pa (D.A.C.); Isomics, Cambridge, Mass (S.D.P.); Departments
of Radiology (C.B.) and Pathology (M.D.H.), Massachusetts General Hospital and
Harvard Medical School, Boston, Mass; Fraunhofer MEVIS, Bremen, Germany (A.H.,
D.P.S.); Radical Imaging, Boston, Mass (R.L.); Artificial Intelligence in
Medicine Program, Mass General Brigham, Harvard Medical School, Boston, Mass
(H.J.W.L.A., D.B.); Radiology and Nuclear Medicine, CARIM & GROW,
Maastricht University, Maastricht, the Netherlands (H.J.W.L.A., D.B.); Frederick
National Laboratory for Cancer Research, Rockville, Md (T.P., U.W.); and
National Cancer Institute, Bethesda, Md (K.F., E.K.)
| | - Ron Kikinis
- From the Department of Radiology, Brigham and Women’s Hospital
and Harvard Medical School, 399 Revolution Dr, Somerville, MA 02145 (A.F., D.K.,
V.K.T., C.C., R.K.); Institute for Systems Biology, Seattle, Wash (W.J.R.L.,
D.L.G.); General Dynamics Information Technology, Rockville, Md (D.P.); PixelMed
Publishing, Bangor, Pa (D.A.C.); Isomics, Cambridge, Mass (S.D.P.); Departments
of Radiology (C.B.) and Pathology (M.D.H.), Massachusetts General Hospital and
Harvard Medical School, Boston, Mass; Fraunhofer MEVIS, Bremen, Germany (A.H.,
D.P.S.); Radical Imaging, Boston, Mass (R.L.); Artificial Intelligence in
Medicine Program, Mass General Brigham, Harvard Medical School, Boston, Mass
(H.J.W.L.A., D.B.); Radiology and Nuclear Medicine, CARIM & GROW,
Maastricht University, Maastricht, the Netherlands (H.J.W.L.A., D.B.); Frederick
National Laboratory for Cancer Research, Rockville, Md (T.P., U.W.); and
National Cancer Institute, Bethesda, Md (K.F., E.K.)
| |
Collapse
|
29
|
Cartiaux B, Deviers A, Delmas C, Abadie J, Pumarola Battle M, Cohen-Jonathan Moyal E, Mogicato G. Evaluation of in vitro intrinsic radiosensitivity and characterization of five canine high-grade glioma cell lines. Front Vet Sci 2023; 10:1253074. [PMID: 38098992 PMCID: PMC10720585 DOI: 10.3389/fvets.2023.1253074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 11/17/2023] [Indexed: 12/17/2023] Open
Abstract
Glioma is the most common primary brain tumor in dogs and predominantly affects brachycephalic breeds. Diagnosis relies on CT or MRI imaging, and the proposed treatments include surgical resection, chemotherapy, and radiotherapy depending on the tumor's location. Canine glioma from domestic dogs could be used as a more powerful model to study radiotherapy for human glioma than the murine model. Indeed, (i) contrary to mice, immunocompetent dogs develop spontaneous glioma, (ii) the canine brain structure is closer to human than mice, and (iii) domestic dogs are exposed to the same environmental factors than humans. Moreover, imaging techniques and radiation therapy used in human medicine can be applied to dogs, facilitating the direct transposition of results. The objective of this study is to fully characterize 5 canine glioma cell lines and to evaluate their intrinsic radiosensitivity. Canine cell lines present numerous analogies between the data obtained during this study on different glioma cell lines in dogs. Cell morphology is identical, such as doubling time, clonality test and karyotype. Immunohistochemical study of surface proteins, directly on cell lines and after stereotaxic injection in mice also reveals close similarity. Radiosensitivity profile of canine glial cells present high profile of radioresistance.
Collapse
Affiliation(s)
- Benjamin Cartiaux
- INSERM UMR.1037-Cancer Research Center of Toulouse (CRCT), University Paul Sabatier Toulouse III, Toulouse, France
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, ENVT, Toulouse, France
| | - Alexandra Deviers
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, ENVT, Toulouse, France
| | - Caroline Delmas
- INSERM UMR.1037-Cancer Research Center of Toulouse (CRCT), University Paul Sabatier Toulouse III, Toulouse, France
- IUCT-oncopole, Toulouse, France
| | - Jérôme Abadie
- Department of Biology, Pathology and Food Sciences, Laboniris, Nantes, France
| | - Martí Pumarola Battle
- Unit of Murine and Comparative Pathology, Department of Animal Medicine and Surgery, Veterinary Faculty, Autonomous University of Barcelona, Barcelona, Spain
| | - Elizabeth Cohen-Jonathan Moyal
- INSERM UMR.1037-Cancer Research Center of Toulouse (CRCT), University Paul Sabatier Toulouse III, Toulouse, France
- IUCT-oncopole, Toulouse, France
| | - Giovanni Mogicato
- ToNIC, Toulouse NeuroImaging Center, Université de Toulouse, Inserm, UPS, ENVT, Toulouse, France
| |
Collapse
|
30
|
Rotolo A, Whelan EC, Atherton MJ, Kulikovskaya I, Jarocha D, Fraietta JA, Kim MM, Diffenderfer ES, Cengel KA, Piviani M, Radaelli E, Duran-Struuck R, Mason NJ. Unedited allogeneic iNKT cells show extended persistence in MHC-mismatched canine recipients. Cell Rep Med 2023; 4:101241. [PMID: 37852175 PMCID: PMC10591065 DOI: 10.1016/j.xcrm.2023.101241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 08/14/2023] [Accepted: 09/20/2023] [Indexed: 10/20/2023]
Abstract
Allogeneic invariant natural killer T cells (allo-iNKTs) induce clinical remission in patients with otherwise incurable cancers and COVID-19-related acute respiratory failure. However, their functionality is inconsistent among individuals, and they become rapidly undetectable after infusion, raising concerns over rejection and limited therapeutic potential. We validate a strategy to promote allo-iNKT persistence in dogs, an established large-animal model for novel cellular therapies. We identify donor-specific iNKT biomarkers of survival and sustained functionality, conserved in dogs and humans and retained upon chimeric antigen receptor engineering. We reason that infusing optimal allo-iNKTs enriched in these biomarkers will prolong their persistence without requiring MHC ablation, high-intensity chemotherapy, or cytokine supplementation. Optimal allo-iNKTs transferred into MHC-mismatched dogs remain detectable for at least 78 days, exhibiting sustained immunomodulatory effects. Our canine model will accelerate biomarker discovery of optimal allo-iNKT products, furthering application of MHC-unedited allo-iNKTs as a readily accessible universal platform to treat incurable conditions worldwide.
Collapse
Affiliation(s)
- Antonia Rotolo
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| | - Eoin C Whelan
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Matthew J Atherton
- Department of Biomedical Sciences, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Clinical Sciences and Advanced Medicine, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Irina Kulikovskaya
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Danuta Jarocha
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joseph A Fraietta
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michele M Kim
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Eric S Diffenderfer
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Keith A Cengel
- Department of Radiation Oncology, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Martina Piviani
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Enrico Radaelli
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Raimon Duran-Struuck
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Nicola J Mason
- Department of Pathobiology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
31
|
Schrock MS, Zalenski AA, Tallman MM, Kollin L, Bratasz A, Weeks G, Miller MA, Sweeney CN, Pluhar GE, Olin MR, Kisseberth WC, Bentley RT, Dickinson PJ, York D, Webb A, Wang X, Moore S, Venere M, Summers MK. Establishment and characterization of two novel patient-derived lines from canine high-grade glioma. Vet Comp Oncol 2023; 21:492-502. [PMID: 37254642 PMCID: PMC10524959 DOI: 10.1111/vco.12912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/30/2023] [Accepted: 05/12/2023] [Indexed: 06/01/2023]
Abstract
High-grade glioma is an aggressive cancer that occurs naturally in pet dogs. Canine high-grade glioma (cHGG) is treated with radiation, chemotherapy or surgery, but has no curative treatment. Within the past eight years, there have been advances in our imaging and histopathology standards as well as genetic charactereization of cHGG. However, there are only three cHGG cell lines publicly available, all of which were derived from astrocytoma and established using methods involving expansion of tumour cells in vitro on plastic dishes. In order to provide more clinically relevant cell lines for studying cHGG in vitro, the goal of this study was to establish cHGG patient-derived lines, whereby cancer cells are expanded in vivo by injecting cells into immunocompromized laboratory mice. The cells are then harvested from mice and used for in vitro studies. This method is the standard in the human field and has been shown to minimize the acquisition of genetic alterations and gene expression changes from the original tumour. Through a multi-institutional collaboration, we describe our methods for establishing two novel cHGG patient-derived lines, Boo-HA and Mo-HO, from a high-grade astrocytoma and a high-grade oligodendroglioma, respectively. We compare our novel lines to G06-A, J3T-Bg, and SDT-3G (traditional cHGG cell lines) in terms of proliferation and sensitivity to radiation. We also perform whole genome sequencing and identify an NF1 truncating mutation in Mo-HO. We report the characterization and availability of these novel patient-derived lines for use by the veterinary community.
Collapse
Affiliation(s)
- Morgan S Schrock
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, OH, USA
| | - Abigail A Zalenski
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, OH, USA
- Neuroscience Graduate Program, The Ohio State University, Columbus, OH, USA
| | - Miranda M Tallman
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, OH, USA
- Biomedical Sciences Graduate, Program The Ohio State University Columbus, OH, USA
| | - Luke Kollin
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, OH, USA
| | - Anna Bratasz
- Small Animal Imaging Core, The Ohio State University, Columbus, OH, USA
| | - Griffin Weeks
- Small Animal Imaging Core, The Ohio State University, Columbus, OH, USA
| | - Margaret A Miller
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - Courtney N Sweeney
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN, USA
| | - G Elizabeth Pluhar
- Department of Veterinary Clinical Sciences, College of Veterinary Medicine, University of Minnesota, St Paul, Minnesota, USA
| | - Michael R Olin
- Department of Pediatrics, Division of Pediatric Hematology and Oncology, Masonic Cancer Center, University of Minnesota, Minneapolis, MN, USA
| | - William C. Kisseberth
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, OH, USA
| | - R Timothy Bentley
- Department of Veterinary Clinical Sciences, Purdue University, West Lafayette, IN, USA
| | - Peter J Dickinson
- Department of Surgical and Radiological Sciences, UC Davis School of Veterinary Medicine, The University of California, Davis, CA, USA
| | - Daniel York
- Department of Surgical and Radiological Sciences, UC Davis School of Veterinary Medicine, The University of California, Davis, CA, USA
| | - Amy Webb
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Xu Wang
- Department of Pathobiology, Auburn University, Auburn, AL, USA
| | - Sarah Moore
- Department of Veterinary Clinical Sciences, The Ohio State University, Columbus, OH, USA
| | - Monica Venere
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, OH, USA
| | - Matthew K Summers
- Department of Radiation Oncology, Arthur G James Comprehensive Cancer Center and Richard L. Solove Research Institute, The Ohio State University, Columbus, OH, USA
| |
Collapse
|
32
|
Sakthikumar S, Facista S, Whitley D, Byron SA, Ahmed Z, Warrier M, Zhu Z, Chon E, Banovich K, Haworth D, Hendricks WPD, Wang G. Standing in the canine precision medicine knowledge gap: Improving annotation of canine cancer genomic biomarkers through systematic comparative analysis of human cancer mutations in COSMIC. Vet Comp Oncol 2023; 21:482-491. [PMID: 37248814 DOI: 10.1111/vco.12911] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 04/26/2023] [Accepted: 05/08/2023] [Indexed: 05/31/2023]
Abstract
The accrual of cancer mutation data and related functional and clinical associations have revolutionised human oncology, enabling the advancement of precision medicine and biomarker-guided clinical management. The catalogue of cancer mutations is also growing in canine cancers. However, without direct high-powered functional data in dogs, it remains challenging to interpret and utilise them in research and clinical settings. It is well-recognised that canine and human cancers share genetic, molecular and phenotypic similarities. Therefore, leveraging the massive wealth of human mutation data may help advance canine oncology. Here, we present a structured analysis of sequence conservation and conversion of human mutations to the canine genome through a 'caninisation' process. We applied this analysis to COSMIC, the Catalogue of Somatic Mutations in Cancer, the most prominent human cancer mutation database. For the project's initial phase, we focused on the subset of the COSMIC data corresponding to Cancer Gene Census (CGC) genes. A total of 670 canine orthologs were found for 721 CGC genes. In these genes, 365 K unique mutations across 160 tumour types were converted successfully to canine coordinates. We identified shared putative cancer-driving mutations, including pathogenic and hotspot mutations and mutations bearing similar biomarker associations with diagnostic, prognostic and therapeutic utility. Thus, this structured caninisation of human cancer mutations facilitates the interpretation and annotation of canine mutations and helps bridge the knowledge gap to enable canine precision medicine.
Collapse
Affiliation(s)
| | | | - Derick Whitley
- Vidium Animal Health, a TGen Subsidiary, Phoenix, Arizona, USA
| | - Sara A Byron
- Translational Genomics Research Institute, Phoenix, Arizona, USA
| | - Zeeshan Ahmed
- Vidium Animal Health, a TGen Subsidiary, Phoenix, Arizona, USA
| | - Manisha Warrier
- Vidium Animal Health, a TGen Subsidiary, Phoenix, Arizona, USA
| | - Zhanyang Zhu
- Vidium Animal Health, a TGen Subsidiary, Phoenix, Arizona, USA
| | - Esther Chon
- Vidium Animal Health, a TGen Subsidiary, Phoenix, Arizona, USA
| | | | - David Haworth
- Vidium Animal Health, a TGen Subsidiary, Phoenix, Arizona, USA
| | | | - Guannan Wang
- Vidium Animal Health, a TGen Subsidiary, Phoenix, Arizona, USA
| |
Collapse
|
33
|
Rodrigues L, Watson J, Feng Y, Lewis B, Harvey G, Post G, Megquier K, White ME, Lambert L, Miller A, Lopes C, Zhao S. Shared hotspot mutations in oncogenes position dogs as an unparalleled comparative model for precision therapeutics. Sci Rep 2023; 13:10935. [PMID: 37414794 PMCID: PMC10325973 DOI: 10.1038/s41598-023-37505-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/22/2023] [Indexed: 07/08/2023] Open
Abstract
Naturally occurring canine cancers have remarkable similarities to their human counterparts. To better understand these similarities, we investigated 671 client-owned dogs from 96 breeds with 23 common tumor types, including those whose mutation profile are unknown (anal sac carcinoma and neuroendocrine carcinoma) or understudied (thyroid carcinoma, soft tissue sarcoma and hepatocellular carcinoma). We discovered mutations in 50 well-established oncogenes and tumor suppressors, and compared them to those reported in human cancers. As in human cancer, TP53 is the most commonly mutated gene, detected in 22.5% of canine tumors overall. Canine tumors share mutational hotspots with human tumors in oncogenes including PIK3CA, KRAS, NRAS, BRAF, KIT and EGFR. Hotspot mutations with significant association to tumor type include NRAS G61R and PIK3CA H1047R in hemangiosarcoma, ERBB2 V659E in pulmonary carcinoma, and BRAF V588E (equivalent of V600E in humans) in urothelial carcinoma. Our findings better position canines as a translational model of human cancer to investigate a wide spectrum of targeted therapies.
Collapse
Affiliation(s)
- Lucas Rodrigues
- One Health Company, Inc, 530 Lytton Ave, 2nd Floor, Palo Alto, CA, 94301, USA.
| | - Joshua Watson
- Department of Biochemistry and Molecular Biology, Institute of Bioinformatics, University of Georgia, B304B Life Sciences Building, 120 Green Street, Athens, GA, 30602-7229, USA
| | - Yuan Feng
- Department of Biochemistry and Molecular Biology, Institute of Bioinformatics, University of Georgia, B304B Life Sciences Building, 120 Green Street, Athens, GA, 30602-7229, USA
| | - Benjamin Lewis
- One Health Company, Inc, 530 Lytton Ave, 2nd Floor, Palo Alto, CA, 94301, USA
| | - Garrett Harvey
- One Health Company, Inc, 530 Lytton Ave, 2nd Floor, Palo Alto, CA, 94301, USA
| | - Gerald Post
- One Health Company, Inc, 530 Lytton Ave, 2nd Floor, Palo Alto, CA, 94301, USA
| | - Kate Megquier
- One Health Company, Inc, 530 Lytton Ave, 2nd Floor, Palo Alto, CA, 94301, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, 02142, USA
| | - Michelle E White
- One Health Company, Inc, 530 Lytton Ave, 2nd Floor, Palo Alto, CA, 94301, USA
| | - Lindsay Lambert
- One Health Company, Inc, 530 Lytton Ave, 2nd Floor, Palo Alto, CA, 94301, USA
| | - Aubrey Miller
- One Health Company, Inc, 530 Lytton Ave, 2nd Floor, Palo Alto, CA, 94301, USA
| | - Christina Lopes
- One Health Company, Inc, 530 Lytton Ave, 2nd Floor, Palo Alto, CA, 94301, USA
| | - Shaying Zhao
- Department of Biochemistry and Molecular Biology, Institute of Bioinformatics, University of Georgia, B304B Life Sciences Building, 120 Green Street, Athens, GA, 30602-7229, USA.
| |
Collapse
|
34
|
Garcia‐Mora J, Parker RL, Cecere T, Robertson JL, Rossmeisl JH. The T2-FLAIR mismatch sign as an imaging biomarker for oligodendrogliomas in dogs. J Vet Intern Med 2023; 37:1447-1454. [PMID: 37246729 PMCID: PMC10365042 DOI: 10.1111/jvim.16749] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 05/09/2023] [Indexed: 05/30/2023] Open
Abstract
BACKGROUND In humans, the T2-weighted (T2W)-fluid-attenuated inversion recovery (FLAIR) mismatch sign (T2FMM) is a specific imaging biomarker for the isocitrate dehydrogenase 1 (IDH1)-mutated, 1p/19q non-codeleted low-grade astrocytomas (LGA). The T2FMM is characterized by a homogeneous hyperintense T2W signal and a hypointense signal with a hyperintense peripheral rim on FLAIR sequences. In gliomas in dogs, the T2FMM has not been described. HYPOTHESES/OBJECTIVES In dogs with focal intra-axial brain lesions, T2FMM will discriminate gliomas from other lesions. The T2FMM will be associated with the LGA phenotype and presence of microcysts on histopathology. Interobserver agreement for T2FMM magnetic resonance imaging (MRI) features will be high. ANIMALS One hundred eighty-six dogs with histopathologically diagnosed focal intra-axial lesions on brain MRI including oligodendrogliomas (n = 90), astrocytomas (n = 47), undefined gliomas (n = 9), cerebrovascular accidents (n = 33), and inflammatory lesions (n = 7). METHODS Two blinded raters evaluated the 186 MRI studies and identified cases with the T2FMM. Histopathologic and immunohistochemical slides of T2FMM cases were evaluated for morphologic features and IDH1-mutations and compared to cases without the T2FMM. Gene expression analyses were performed on a subset of oligodendrogliomas (n = 10) with and without T2FMM. RESULTS The T2FMM was identified in 14/186 (8%) of MRI studies, and all dogs with T2FMM had oligodendrogliomas (n = 12 low-grade [LGO], n = 2 high-grade [HGO]; P < .001). Microcystic change was significantly associated with the T2FMM (P < .00001). In oligodendrogliomas with T2FMM, IDH1-mutations or specific differentially expressed genes were not identified. CONCLUSION AND CLINICAL IMPORTANCE The T2FMM can be readily identified on routinely obtained MRI sequences. It is a specific biomarker for oligodendroglioma in dogs, and was significantly associated with non-enhancing LGO.
Collapse
Affiliation(s)
- Josefa Garcia‐Mora
- Department of Small Animal Clinical Sciences and Animal Cancer Care and Research CenterVirginia‐Maryland College of Veterinary Medicine, Virginia TechBlacksburgVirginiaUSA
- Veterinary and Comparative Neuro‐Oncology Laboratory, Virginia‐Maryland College of Veterinary Medicine, Virginia TechBlacksburgVirginiaUSA
| | - Rell L. Parker
- Department of Small Animal Clinical Sciences and Animal Cancer Care and Research CenterVirginia‐Maryland College of Veterinary Medicine, Virginia TechBlacksburgVirginiaUSA
| | - Thomas Cecere
- Department of Biomedical Sciences & PathobiologyVirginia‐Maryland College of Veterinary Medicine, Virginia TechBlacksburgVirginiaUSA
| | - John L. Robertson
- Veterinary and Comparative Neuro‐Oncology Laboratory, Virginia‐Maryland College of Veterinary Medicine, Virginia TechBlacksburgVirginiaUSA
- School of Biomedical Engineering and Sciences, Virginia Tech‐Wake Forest UniversityBlacksburgVirginiaUSA
- Comprehensive Cancer Center and Brain Tumor Center of Excellence, Wake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| | - John H. Rossmeisl
- Department of Small Animal Clinical Sciences and Animal Cancer Care and Research CenterVirginia‐Maryland College of Veterinary Medicine, Virginia TechBlacksburgVirginiaUSA
- Veterinary and Comparative Neuro‐Oncology Laboratory, Virginia‐Maryland College of Veterinary Medicine, Virginia TechBlacksburgVirginiaUSA
- School of Biomedical Engineering and Sciences, Virginia Tech‐Wake Forest UniversityBlacksburgVirginiaUSA
- Comprehensive Cancer Center and Brain Tumor Center of Excellence, Wake Forest School of MedicineWinston‐SalemNorth CarolinaUSA
| |
Collapse
|
35
|
Toedebusch RG, Wei NW, Simafranca KT, Furth-Jacobus JA, Brust-Mascher I, Stewart SL, Dickinson PJ, Woolard KD, Li CF, Vernau KM, Meyers FJ, Toedebusch CM. Intra- and Intertumoral Microglia/Macrophage Infiltration and Their Associated Molecular Signature Is Highly Variable in Canine Oligodendroglioma: A Preliminary Evaluation. Vet Sci 2023; 10:403. [PMID: 37368789 PMCID: PMC10303632 DOI: 10.3390/vetsci10060403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/29/2023] Open
Abstract
The goal of this study was to define the glioma-associated microglia/macrophage (GAM) response and associated molecular landscape in canine oligodendrogliomas. Here, we quantified the intratumoral GAM density of low- and high-grade oligodendrogliomas compared to that of a normal brain, as well as the intratumoral concentration of several known GAM-derived pro-tumorigenic molecules in high-grade oligodendrogliomas compared to that in a normal brain. Our analysis demonstrated marked intra- and intertumoral heterogeneity of GAM infiltration. Correspondingly, we observed significant variability in the intratumoral concentrations of several GAM-associated molecules, unlike what we previously observed in high-grade astrocytomas. However, high-grade oligodendroglioma tumor homogenates (n = 6) exhibited an increase in the pro-tumorigenic molecules hepatocyte growth factor receptor (HGFR) and vascular endothelial growth factor (VEGF), as we observed in high-grade astrocytomas. Moreover, neoplastic oligodendrocytes displayed robust expression of GAL-3, a chimeric galectin implicated in driving immunosuppression in human glioblastoma. While this work identifies shared putative therapeutic targets across canine glioma subtypes (HGFR, GAL-3), it highlights several key differences in the immune landscape. Therefore, a continued effort to develop a comprehensive understanding of the immune microenvironment within each subtype is necessary to inform therapeutic strategies going forward.
Collapse
Affiliation(s)
- Ryan G. Toedebusch
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (R.G.T.); (N.-W.W.); (K.T.S.); (J.A.F.-J.); (P.J.D.); (C.-F.L.); (K.M.V.)
| | - Ning-Wei Wei
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (R.G.T.); (N.-W.W.); (K.T.S.); (J.A.F.-J.); (P.J.D.); (C.-F.L.); (K.M.V.)
| | - Kulani T. Simafranca
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (R.G.T.); (N.-W.W.); (K.T.S.); (J.A.F.-J.); (P.J.D.); (C.-F.L.); (K.M.V.)
| | - Jennie A. Furth-Jacobus
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (R.G.T.); (N.-W.W.); (K.T.S.); (J.A.F.-J.); (P.J.D.); (C.-F.L.); (K.M.V.)
| | - Ingrid Brust-Mascher
- Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA;
| | - Susan L. Stewart
- Division of Biostatistics, School of Medicine, University of California, Davis, CA 95616, USA;
- UC Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA;
| | - Peter J. Dickinson
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (R.G.T.); (N.-W.W.); (K.T.S.); (J.A.F.-J.); (P.J.D.); (C.-F.L.); (K.M.V.)
- UC Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA;
| | - Kevin D. Woolard
- Department of Pathology, Microbiology, and Immunology, School of Veterinary Medicine, University of California, Davis, CA 95616, USA;
| | - Chai-Fei Li
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (R.G.T.); (N.-W.W.); (K.T.S.); (J.A.F.-J.); (P.J.D.); (C.-F.L.); (K.M.V.)
| | - Karen M. Vernau
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (R.G.T.); (N.-W.W.); (K.T.S.); (J.A.F.-J.); (P.J.D.); (C.-F.L.); (K.M.V.)
| | - Frederick J. Meyers
- UC Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA;
- Department of Internal Medicine, Division of Hematology and Oncology, Center for Precision Medicine, Microbiology, and Immunology, School of Medicine, University of California, Sacramento, CA 95817, USA
| | - Christine M. Toedebusch
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA 95616, USA; (R.G.T.); (N.-W.W.); (K.T.S.); (J.A.F.-J.); (P.J.D.); (C.-F.L.); (K.M.V.)
- UC Davis Comprehensive Cancer Center, Sacramento, CA 95817, USA;
| |
Collapse
|
36
|
Lingaas F, Tengvall K, Jansen JH, Pelander L, Hurst MH, Meuwissen T, Karlsson Å, Meadows JRS, Sundström E, Thoresen SI, Arnet EF, Guttersrud OA, Kierczak M, Hytönen MK, Lohi H, Hedhammar Å, Lindblad-Toh K, Wang C. Bayesian mixed model analysis uncovered 21 risk loci for chronic kidney disease in boxer dogs. PLoS Genet 2023; 19:e1010599. [PMID: 36693108 PMCID: PMC9897549 DOI: 10.1371/journal.pgen.1010599] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 02/03/2023] [Accepted: 01/04/2023] [Indexed: 01/25/2023] Open
Abstract
Chronic kidney disease (CKD) affects 10% of the human population, with only a small fraction genetically defined. CKD is also common in dogs and has been diagnosed in nearly all breeds, but its genetic basis remains unclear. Here, we performed a Bayesian mixed model genome-wide association analysis for canine CKD in a boxer population of 117 canine cases and 137 controls, and identified 21 genetic regions associated with the disease. At the top markers from each CKD region, the cases carried an average of 20.2 risk alleles, significantly higher than controls (15.6 risk alleles). An ANOVA test showed that the 21 CKD regions together explained 57% of CKD phenotypic variation in the population. Based on whole genome sequencing data of 20 boxers, we identified 5,206 variants in LD with the top 50 BayesR markers. Following comparative analysis with human regulatory data, 17 putative regulatory variants were identified and tested with electrophoretic mobility shift assays. In total four variants, three intronic variants from the MAGI2 and GALNT18 genes, and one variant in an intergenic region on chr28, showed alternative binding ability for the risk and protective alleles in kidney cell lines. Many genes from the 21 CKD regions, RELN, MAGI2, FGFR2 and others, have been implicated in human kidney development or disease. The results from this study provide new information that may enlighten the etiology of CKD in both dogs and humans.
Collapse
Affiliation(s)
- Frode Lingaas
- Faculty of Veterinary Medicine, Department of Preclinical Sciences and Pathology, Norwegian University of Life Sciences, Ås, Norway
| | - Katarina Tengvall
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Johan Høgset Jansen
- Faculty of Veterinary Medicine, Department of Preclinical Sciences and Pathology, Norwegian University of Life Sciences, Ås, Norway
| | - Lena Pelander
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | | | - Theo Meuwissen
- Faculty of Biosciences, Norwegian University of Life Sciences, Ås, Norway
| | - Åsa Karlsson
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Jennifer R. S. Meadows
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Elisabeth Sundström
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Stein Istre Thoresen
- Faculty of Veterinary Medicine, Department of Preclinical Sciences and Pathology, Norwegian University of Life Sciences, Ås, Norway
| | - Ellen Frøysadal Arnet
- Faculty of Veterinary Medicine, Department of Preclinical Sciences and Pathology, Norwegian University of Life Sciences, Ås, Norway
| | - Ole Albert Guttersrud
- Faculty of Veterinary Medicine, Department of Preclinical Sciences and Pathology, Norwegian University of Life Sciences, Ås, Norway
| | - Marcin Kierczak
- Department of Cell and Molecular Biology, National Bioinformatics Infrastructure Sweden, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Marjo K. Hytönen
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Hannes Lohi
- Department of Medical and Clinical Genetics, University of Helsinki, Helsinki, Finland
- Department of Veterinary Biosciences, University of Helsinki, Helsinki, Finland
- Folkhälsan Research Center, Helsinki, Finland
| | - Åke Hedhammar
- Department of Clinical Sciences, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Kerstin Lindblad-Toh
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- Broad Institute of MIT and Harvard, Cambridge, Massachusetts, United States of America
- * E-mail: (KL-T); (CW)
| | - Chao Wang
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
- * E-mail: (KL-T); (CW)
| |
Collapse
|
37
|
Wu K, Rodrigues L, Post G, Harvey G, White M, Miller A, Lambert L, Lewis B, Lopes C, Zou J. Analyses of canine cancer mutations and treatment outcomes using real-world clinico-genomics data of 2119 dogs. NPJ Precis Oncol 2023; 7:8. [PMID: 36658200 PMCID: PMC9852553 DOI: 10.1038/s41698-023-00346-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2022] [Accepted: 01/05/2023] [Indexed: 01/21/2023] Open
Abstract
Spontaneous tumors in canines share significant genetic and histological similarities with human tumors, positioning them as valuable models to guide drug development. However, current translational studies have limited real world evidence as cancer outcomes are dispersed across veterinary clinics and genomic tests are rarely performed on dogs. In this study, we aim to expand the value of canine models by systematically characterizing genetic mutations in tumors and their response to targeted treatments. In total, we collect and analyze survival outcomes for 2119 tumor-bearing dogs and the prognostic effect of genomic alterations in a subset of 1108 dogs. Our analysis identifies prognostic concordance between canines and humans in several key oncogenes, including TP53 and PIK3CA. We also find that several targeted treatments designed for humans are associated with a positive prognosis when used to treat canine tumors with specific genomic alterations, underscoring the value of canine models in advancing drug discovery for personalized oncology.
Collapse
Affiliation(s)
- Kevin Wu
- One Health Company, Palo Alto, CA, US
- Department of Biomedical Data Science, Stanford University, Stanford, US
| | | | | | | | | | | | | | | | | | - James Zou
- One Health Company, Palo Alto, CA, US
- Department of Biomedical Data Science, Stanford University, Stanford, US
| |
Collapse
|
38
|
Arendt ML, Sakthikumar S, Melin M, Elvers I, Rivera P, Larsen M, Saellström S, Lingaas F, Rönnberg H, Lindblad-Toh K. PIK3CA is recurrently mutated in canine mammary tumors, similarly to in human mammary neoplasia. Sci Rep 2023; 13:632. [PMID: 36635367 PMCID: PMC9837039 DOI: 10.1038/s41598-023-27664-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 01/05/2023] [Indexed: 01/13/2023] Open
Abstract
Biological features of neoplastic disease affecting mammary gland tissue are shared between canines and humans. Research performed in either species has translational value and early phase clinical trials performed in canines with spontaneous disease could be informative for human trials. The purpose of this study was to investigate the somatic genetic aberrations occurring in canine mammary neoplasia by exome capture and next generation sequencing. Based on 55 tumor-normal pairs we identified the PIK3CA gene as the most commonly mutated gene in canine mammary tumors, with 25% of samples carrying mutations in this gene. A recurrent missense mutation was identified, p.H1047R, which is homologous to the human PIK3CA hotspot mutation found in different types of breast neoplasia. Mutations homologous to other known human mutation hotspots such as the PIK3CA p.E545K and the KRAS p.G12V/D were also identified. We identified copy number aberrations affecting important tumor suppressor and oncogenic pathways including deletions affecting the PTEN tumor suppressor gene. We suggest that activation of the KRAS or PIK3CA oncogenes or loss of the PTEN suppressor gene may be important for mammary tumor development in dogs. This data endorses the conservation of cancer across species and the validity of studying cancer in non-human species.
Collapse
Affiliation(s)
- Maja Louise Arendt
- Department of Veterinary Clinical Sciences, University of Copenhagen, Copenhagen, Denmark.
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
| | | | - Malin Melin
- Science for Life Laboratory, Department of Immunology, Genetics and Pathology, Clinical Genomics Uppsala, Uppsala University, Uppsala, Sweden
| | | | | | | | - Sara Saellström
- Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Frode Lingaas
- Veterinary Faculty, Norwegian University of Life Sciences, Ås, Norway
| | - Henrik Rönnberg
- Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Kerstin Lindblad-Toh
- Science for Life Laboratory, Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
| |
Collapse
|
39
|
Frederico SC, Zhang X, Hu B, Kohanbash G. Pre-clinical models for evaluating glioma targeted immunotherapies. Front Immunol 2023; 13:1092399. [PMID: 36700223 PMCID: PMC9870312 DOI: 10.3389/fimmu.2022.1092399] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 12/20/2022] [Indexed: 01/11/2023] Open
Abstract
Gliomas have an extremely poor prognosis in both adult and pediatric patient populations as these tumors are known to grow aggressively and respond poorly to standard of care treatment. Currently, treatment for gliomas involves surgical resection followed by chemoradiation therapy. However, some gliomas, such as diffuse midline glioma, have more limited treatment options such as radiotherapy alone. Even with these interventions, the prognosis for those diagnosed with a glioma remains poor. Immunotherapy is highly effective for some cancers and there is great interest in the development of effective immunotherapies for the treatment of gliomas. Clinical trials evaluating the efficacy of immunotherapies targeted to gliomas have largely failed to date, and we believe this is partially due to the poor choice in pre-clinical mouse models that are used to evaluate these immunotherapies. A key consideration in evaluating new immunotherapies is the selection of pre-clinical models that mimic the glioma-immune response in humans. Multiple pre-clinical options are currently available, each one with their own benefits and limitations. Informed selection of pre-clinical models for testing can facilitate translation of more promising immunotherapies in the clinical setting. In this review we plan to present glioma cell lines and mouse models, as well as alternatives to mouse models, that are available for pre-clinical glioma immunotherapy studies. We plan to discuss considerations of model selection that should be made for future studies as we hope this review can serve as a guide for investigators as they choose which model is best suited for their study.
Collapse
Affiliation(s)
- Stephen C. Frederico
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States,Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Xiaoran Zhang
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Baoli Hu
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States
| | - Gary Kohanbash
- Department of Neurological Surgery, University of Pittsburgh, Pittsburgh, PA, United States,*Correspondence: Gary Kohanbash,
| |
Collapse
|
40
|
Cloquell A, Mateo I, Gambera S, Pumarola M, Alemany R, García-Castro J, Perisé-Barrios AJ. Systemic cellular viroimmunotherapy for canine high-grade gliomas. J Immunother Cancer 2022; 10:jitc-2022-005669. [PMID: 36600663 PMCID: PMC9772696 DOI: 10.1136/jitc-2022-005669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/19/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Oncolytic viruses constitute a growing field of interest, both in human and veterinary oncology, given that they are particularly helpful for treating non-surgical tumors and disseminated cancer, such as high-grade gliomas. Companion dogs present malignant gliomas with biological, genetic, phenotypic, immunological, and clinical similarities to human gliomas. These features favor comparative approaches, leading to the treatment of canine oncological patients to achieve translational applications to the human clinic. The systemic administration of oncolytic viruses presents a challenge due to their limitations in effectively targeting tumors and metastases. Therefore, the aim of this study is to evaluate the safety and antitumor activity of a virotherapy used in spontaneous canine tumors. METHODS Ten dogs with high-grade rostrotentorial gliomas underwent weekly systemic endovenous cellular virotherapy with dCelyvir (canine mesenchymal stem cells infected with the canine oncolytic adenovirus ICOCAV17) for 8 weeks. Efficacy was determined in seven dogs according to the Response Assessment in Veterinary Neuro-Oncology criteria considering clinical status and MRI measurements. Medical history, physical and neurological examinations, and vaccination status were evaluated prior to and during follow-up. Safety was evaluated by physical examinations and hematological and biochemical changes in peripheral blood. Immune populations were analyzed by flow cytometry in peripheral blood and by gene expression and immunohistochemistry in the tumor microenvironment. RESULTS The treatment was well tolerated and major adverse effects were not observed. Two dogs had partial responses (76% and 86% reduction in tumor size), and 3/7 showed stable disease. ICOCAV17 was detected in peripheral blood in nine dogs, and a correlation between the ICOCAV17 particles and anti-canine adenovirus (CAV) antibodies was observed. ICOCAV17 was detected in 3/9 tumor tissues after necropsies. Regarding tumor-infiltrating lymphocytes, the dogs with disease stabilization and partial response tended to have reduced memory B-cell infiltration and increased monocyte/macrophage lineage cells. CONCLUSIONS These findings indicate that dCelyvir is safe and presents efficacy in canine rostrotentorial high-grade gliomas. These data are relevant to the ongoing phase Ib regulated human clinical trial that is administering this virotherapy to children, adolescents, and young adults with diffuse pontine glioma. Celyvir should be further explored as a treatment in veterinary and human neuro-oncology.
Collapse
Affiliation(s)
- Ana Cloquell
- Servicio de Neurología, Hospital Clínico Veterinario, Universidad Alfonso X el Sabio, Villanueva de la Cañada, Spain
| | - Isidro Mateo
- Servicio de Neurología, Hospital Clínico Veterinario, Universidad Alfonso X el Sabio, Villanueva de la Cañada, Spain,Servicio de Neurología, Hospital Veterinario VETSIA, Leganés, Spain
| | - Stefano Gambera
- Unidad de Biotecnología Celular, Instituto de Salud Carlos III, Madrid, Spain,Molecular Genetics of Angiogenesis Group, Spanish National Centre for Cardiovascular Research (CNIC), Madrid, Spain
| | - Martí Pumarola
- Unitat de Patologia Murina i Comparada (UPMiC), Departament de Medicina i Cirurgia Animals, Facultat de Veterinaria, Networking Research Center on Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Ramon Alemany
- IDIBELL, Institut Català d'Oncologia, Barcelona, Spain
| | | | - Ana Judith Perisé-Barrios
- Unidad de Investigación Biomédica (UIB-UAX), Universidad Alfonso X el Sabio, Villanueva de la Cañada, Spain
| |
Collapse
|
41
|
Pan-cancer landscape of AID-related mutations, composite mutations, and their potential role in the ICI response. NPJ Precis Oncol 2022; 6:89. [PMID: 36456685 PMCID: PMC9715662 DOI: 10.1038/s41698-022-00331-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 11/02/2022] [Indexed: 12/03/2022] Open
Abstract
Activation-induced cytidine deaminase, AICDA or AID, is a driver of somatic hypermutation and class-switch recombination in immunoglobulins. In addition, this deaminase belonging to the APOBEC family may have off-target effects genome-wide, but its effects at pan-cancer level are not well elucidated. Here, we used different pan-cancer datasets, totaling more than 50,000 samples analyzed by whole-genome, whole-exome, or targeted sequencing. AID mutations are present at pan-cancer level with higher frequency in hematological cancers and higher presence at transcriptionally active TAD domains. AID synergizes initial hotspot mutations by a second composite mutation. AID mutational load was found to be independently associated with a favorable outcome in immune-checkpoint inhibitors (ICI) treated patients across cancers after analyzing 2000 samples. Finally, we found that AID-related neoepitopes, resulting from mutations at more frequent hotspots if compared to other mutational signatures, enhance CXCL13/CCR5 expression, immunogenicity, and T-cell exhaustion, which may increase ICI sensitivity.
Collapse
|
42
|
Pinard CJ, Lagree A, Lu FI, Klein J, Oblak ML, Salgado R, Cardenas JCP, Brunetti B, Muscatello LV, Sarli G, Foschini MP, Hardas A, Castillo SP, AbdulJabbar K, Yuan Y, Moore DA, Tran WT. Comparative Evaluation of Tumor-Infiltrating Lymphocytes in Companion Animals: Immuno-Oncology as a Relevant Translational Model for Cancer Therapy. Cancers (Basel) 2022; 14:5008. [PMID: 36291791 PMCID: PMC9599753 DOI: 10.3390/cancers14205008] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 10/04/2022] [Accepted: 10/08/2022] [Indexed: 11/16/2022] Open
Abstract
Despite the important role of preclinical experiments to characterize tumor biology and molecular pathways, there are ongoing challenges to model the tumor microenvironment, specifically the dynamic interactions between tumor cells and immune infiltrates. Comprehensive models of host-tumor immune interactions will enhance the development of emerging treatment strategies, such as immunotherapies. Although in vitro and murine models are important for the early modelling of cancer and treatment-response mechanisms, comparative research studies involving veterinary oncology may bridge the translational pathway to human studies. The natural progression of several malignancies in animals exhibits similar pathogenesis to human cancers, and previous studies have shown a relevant and evaluable immune system. Veterinary oncologists working alongside oncologists and cancer researchers have the potential to advance discovery. Understanding the host-tumor-immune interactions can accelerate drug and biomarker discovery in a clinically relevant setting. This review presents discoveries in comparative immuno-oncology and implications to cancer therapy.
Collapse
Affiliation(s)
- Christopher J. Pinard
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
- Odette Cancer Program, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Radiogenomics Laboratory, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
| | - Andrew Lagree
- Odette Cancer Program, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Radiogenomics Laboratory, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
| | - Fang-I Lu
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Jonathan Klein
- Department of Radiation Oncology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY 10461, USA
| | - Michelle L. Oblak
- Department of Clinical Studies, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Roberto Salgado
- Division of Research, Peter MacCallum Cancer Centre, Melbourne 3000, Australia
- Department of Pathology, GZA-ZNA Hospitals, 2610 Antwerp, Belgium
| | | | - Barbara Brunetti
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, Italy
| | - Luisa Vera Muscatello
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, Italy
| | - Giuseppe Sarli
- Department of Veterinary Medical Sciences, University of Bologna, 40064 Ozzano dell’Emilia, Italy
| | - Maria Pia Foschini
- Department of Biomedical and Neuromotor Sciences, University of Bologna, 40127 Bologna, Italy
| | - Alexandros Hardas
- Department of Pathobiology & Population Sciences, The Royal Veterinary College, Hertfordshire AL9 7TA, UK
| | - Simon P. Castillo
- Centre for Evolution and Cancer, The Institute of Cancer Research, London SM2 5NG, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London SM2 5NG, UK
| | - Khalid AbdulJabbar
- Centre for Evolution and Cancer, The Institute of Cancer Research, London SM2 5NG, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London SM2 5NG, UK
| | - Yinyin Yuan
- Centre for Evolution and Cancer, The Institute of Cancer Research, London SM2 5NG, UK
- Division of Molecular Pathology, The Institute of Cancer Research, London SM2 5NG, UK
| | - David A. Moore
- Department of Pathology, UCL Cancer Institute, London WC1E 6DD, UK
- University College Hospitals NHS Trust, London NW1 2PG, UK
| | - William T. Tran
- Odette Cancer Program, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Radiogenomics Laboratory, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, ON M5T 1P5, Canada
- Department of Radiation Oncology, Sunnybrook Health Sciences Centre, Toronto, ON M4N 3M5, Canada
- Temerty Centre for AI Research and Education in Medicine, University of Toronto, Toronto, ON M5S 1A8, Canada
| |
Collapse
|
43
|
Yu Y, Manders F, Grinwis GCM, Groenen MAM, Crooijmans RPMA. A recurrent somatic missense mutation in GNAS gene identified in familial thyroid follicular cell carcinomas in German longhaired pointer dogs. BMC Genomics 2022; 23:669. [PMID: 36151521 PMCID: PMC9508735 DOI: 10.1186/s12864-022-08885-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 08/29/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND We previously reported a familial thyroid follicular cell carcinoma (FCC) in a large number of Dutch German longhaired pointers and identified two deleterious germline mutations in the TPO gene associated with disease predisposition. However, the somatic mutation profile of the FCC in dogs has not been investigated at a genome-wide scale. RESULTS Herein, we comprehensively investigated the somatic mutations that potentially contribute to the inherited tumor formation and progression using high depth whole-genome sequencing. A GNAS p.A204D missense mutation was identified in 4 out of 7 FCC tumors by whole-genome sequencing and in 20 out of 32 dogs' tumors by targeted sequencing. In contrast to this, in the human TC, mutations in GNAS gene have lower prevalence. Meanwhile, the homologous somatic mutation in humans has not been reported. These findings suggest a difference in the somatic mutation landscape between TC in these dogs and human TC. Moreover, tumors with the GNAS p.A204D mutation had a significantly lower somatic mutation burden in these dogs. Somatic structural variant and copy number alterations were also investigated, but no potential driver event was identified. CONCLUSION This study provides novel insight in the molecular mechanism of thyroid carcinoma development in dogs. German longhaired pointers carrying GNAS mutations in the tumor may be used as a disease model for the development and testing of novel therapies to kill the tumor with somatic mutations in the GNAS gene.
Collapse
Affiliation(s)
- Yun Yu
- Animal Breeding and Genomics, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Freek Manders
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584CS, Utrecht, The Netherlands
| | - Guy C M Grinwis
- Department of Biomolecular Health Sciences, Division of Pathology, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 1, Utrecht, The Netherlands
| | - Martien A M Groenen
- Animal Breeding and Genomics, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands
| | - Richard P M A Crooijmans
- Animal Breeding and Genomics, Wageningen University & Research, Droevendaalsesteeg 1, 6708 PB, Wageningen, The Netherlands.
| |
Collapse
|
44
|
Kleber KT, Iranpur KR, Perry LM, Cruz SM, Razmara AM, Culp WTN, Kent MS, Eisen JA, Rebhun RB, Canter RJ. Using the canine microbiome to bridge translation of cancer immunotherapy from pre-clinical murine models to human clinical trials. Front Immunol 2022; 13:983344. [PMID: 36032113 PMCID: PMC9412231 DOI: 10.3389/fimmu.2022.983344] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Accepted: 07/26/2022] [Indexed: 11/27/2022] Open
Abstract
The microbiome has clearly been established as a cutting-edge field in tumor immunology and immunotherapy. Growing evidence supports the role of the microbiome in immune surveillance, self-tolerance, and response to immune checkpoint inhibitors such as anti PD-L1 and CTLA-4 blockade (1-6). Moreover, recent studies including those using fecal microbial transplantation (FMT) have demonstrated that response to checkpoint immunotherapies may be conferred or eliminated through gut microbiome modulation (7, 8). Consequently, studies evaluating microbiota-host immune and metabolic interactions remain an area of high impact research. While observations in murine models have highlighted the importance of the microbiome in response to therapy, we lack sufficient understanding of the exact mechanisms underlying these interactions. Furthermore, mouse and human gut microbiome composition may be too dissimilar for discovery of all relevant gut microbial biomarkers. Multiple cancers in dogs, including lymphoma, high grade gliomas, melanomas and osteosarcoma (OSA) closely resemble their human analogues, particularly in regard to metastasis, disease recurrence and response to treatment. Importantly, dogs with these spontaneous cancers also have intact immune systems, suggesting that microbiome analyses in these subjects may provide high yield information, especially in the setting of novel immunotherapy regimens which are currently expanding rapidly in canine comparative oncology (9, 10). Additionally, as onco-microbiotic therapies are developed to modify gut microbiomes for maximal responsiveness, large animal models with intact immune systems will be useful for trialing interventions and monitoring adverse events. Together, pre-clinical mechanistic studies and large animal trials can help fully unlock the potential of the microbiome as a diagnostic and therapeutic target in cancer.
Collapse
Affiliation(s)
- Kara T. Kleber
- Division of Surgical Oncology, Department of Surgery, University of California Davis Medical Center, Sacramento, CA, United States
| | - Khurshid R. Iranpur
- Division of Surgical Oncology, Department of Surgery, University of California Davis Medical Center, Sacramento, CA, United States
| | - Lauren M. Perry
- Division of Surgical Oncology, Department of Surgery, University of California Davis Medical Center, Sacramento, CA, United States
| | - Sylvia M. Cruz
- Division of Surgical Oncology, Department of Surgery, University of California Davis Medical Center, Sacramento, CA, United States
| | - Aryana M. Razmara
- School of Veterinary Medicine, University of California Davis, Sacramento, CA, United States
| | - William T. N. Culp
- Center for Companion Animal Health Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, United States
| | - Michael S. Kent
- Center for Companion Animal Health Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, United States
| | - Jonathan A. Eisen
- Department of Medical Microbiology and Immunology, University of California Davis, Davis, CA, United States
| | - Robert B. Rebhun
- Center for Companion Animal Health Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California Davis, Davis, CA, United States
| | - Robert J. Canter
- Division of Surgical Oncology, Department of Surgery, University of California Davis Medical Center, Sacramento, CA, United States
| |
Collapse
|
45
|
Dubois FPB, Shapira O, Greenwald NF, Zack T, Wala J, Tsai JW, Crane A, Baguette A, Hadjadj D, Harutyunyan AS, Kumar KH, Blattner-Johnson M, Vogelzang J, Sousa C, Kang KS, Sinai C, Wang DK, Khadka P, Lewis K, Nguyen L, Malkin H, Ho P, O'Rourke R, Zhang S, Gold R, Deng D, Serrano J, Snuderl M, Jones C, Wright KD, Chi SN, Grill J, Kleinman CL, Goumnerova LC, Jabado N, Jones DTW, Kieran MW, Ligon KL, Beroukhim R, Bandopadhayay P. Structural variants shape driver combinations and outcomes in pediatric high-grade glioma. NATURE CANCER 2022; 3:994-1011. [PMID: 35788723 PMCID: PMC10365847 DOI: 10.1038/s43018-022-00403-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Accepted: 05/23/2022] [Indexed: 12/13/2022]
Abstract
We analyzed the contributions of structural variants (SVs) to gliomagenesis across 179 pediatric high-grade gliomas (pHGGs). The most recurrent SVs targeted MYC isoforms and receptor tyrosine kinases (RTKs), including an SV amplifying a MYC enhancer in 12% of diffuse midline gliomas (DMG), indicating an underappreciated role for MYC in pHGG. SV signature analysis revealed that tumors with simple signatures were TP53 wild type (TP53WT) but showed alterations in TP53 pathway members PPM1D and MDM4. Complex signatures were associated with direct aberrations in TP53, CDKN2A and RB1 early in tumor evolution and with later-occurring extrachromosomal amplicons. All pHGGs exhibited at least one simple-SV signature, but complex-SV signatures were primarily restricted to subsets of H3.3K27M DMGs and hemispheric pHGGs. Importantly, DMGs with complex-SV signatures were associated with shorter overall survival independent of histone mutation and TP53 status. These data provide insight into the impact of SVs on gliomagenesis and the mechanisms that shape them.
Collapse
Affiliation(s)
- Frank P B Dubois
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ofer Shapira
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Noah F Greenwald
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Travis Zack
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jeremiah Wala
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Jessica W Tsai
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Alexander Crane
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Audrey Baguette
- Quantitative Life Sciences, McGill University, Montreal, QC, Canada
| | - Djihad Hadjadj
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | | | - Kiran H Kumar
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Mirjam Blattner-Johnson
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Glioma Research, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jayne Vogelzang
- Department of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Cecilia Sousa
- Department of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Kyung Shin Kang
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Claire Sinai
- Department of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Dayle K Wang
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Prasidda Khadka
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | - Lan Nguyen
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Hayley Malkin
- Department of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Patricia Ho
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ryan O'Rourke
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Shu Zhang
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Rose Gold
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Davy Deng
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | | | | | - Chris Jones
- Division of Cancer Therapeutics and Department of Molecular Pathology, Institute of Cancer Research 15 Cotswold Road, Sutton, London, UK
| | - Karen D Wright
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Susan N Chi
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
| | - Jacques Grill
- Department of Pediatric and Adolescent Oncology and INSERM Unit 981, Gustave Roussy Institute and University of Paris Saclay, Villejuif, France
| | - Claudia L Kleinman
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Lady Davis Research Institute, Jewish General Hospital, Montreal, QC, Canada
| | - Liliana C Goumnerova
- Department of Neurosurgery, Boston Children's Hospital; Dana Farber/Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- LCG: Tromboprotea, MWK: Day One Biopharmaceuticals, San Francisco, CA, USA
| | - Nada Jabado
- Department of Human Genetics, McGill University, Montreal, QC, Canada
- Division of Experimental Medicine, Department of Medicine and Department of Pediatrics, McGill University, and The Research Institute of the McGill University Health Centre, Montreal, QC, Canada
| | - David T W Jones
- Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
- Division of Pediatric Glioma Research, German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mark W Kieran
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA
- LCG: Tromboprotea, MWK: Day One Biopharmaceuticals, San Francisco, CA, USA
| | - Keith L Ligon
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Pathology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
- Department of Pathology, Brigham & Women's Hospital and Boston Children's Hospital, Boston, USA.
- Center for Patient Derived Models, Dana-Farber Cancer Institute, Boston, MA, USA.
| | - Rameen Beroukhim
- Department of Cancer Biology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Medical Oncology, Dana-Farber Cancer Institute and Harvard Medical School, Boston, MA, USA.
| | - Pratiti Bandopadhayay
- Broad Institute of MIT and Harvard, Cambridge, MA, USA.
- Department of Pediatrics, Harvard Medical School, Boston, MA, USA.
- Department of Pediatric Oncology, Dana-Farber Boston Children's Cancer and Blood Disorders Center, Boston, MA, USA.
| |
Collapse
|
46
|
Al-Nadaf S, Peacott-Ricardos KS, Dickinson PJ, Rebhun RB, York D. Expression and therapeutic targeting of BMI1 in canine gliomas. Vet Comp Oncol 2022; 20:871-880. [PMID: 35833892 DOI: 10.1111/vco.12852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Revised: 06/27/2022] [Accepted: 06/28/2022] [Indexed: 12/01/2022]
Abstract
The BMI1 proto-oncogene, polycomb ring finger protein (BMI1) is a key component of the epigenetic polycomb repressor complex 1, and has been associated with aggressive behavior and chemotherapeutic resistance in various malignances including human gliomas. Similar to humans, spontaneous canine gliomas carry a poor prognosis with limited therapeutic options. BMI1 expression and the effects of BMI1 inhibition have not been evaluated in canine gliomas. Here, we demonstrate that BMI1 is highly expressed in canine gliomas. Although increased BMI1 protein expression correlated with higher glioma grade in western blot assays, this correlation was not observed in a larger sample set using immunohistochemical analysis. The BMI1 inhibitor, PTC-209, suppressed BMI1 expression in established canine glioma cell lines and resulted in antiproliferative activity when used alone and in combination with chemotherapeutic agents. PTC-209 targeting of BMI1 activated the RB pathway through downregulation of total and phosphorylated RB, independent of INK4A/ARF signaling, likely through BMI1-inhibition mediated upregulation of p21. These data support the rationale for targeting of BMI1 signaling and the use of canine glioma as a translational therapeutic model for human disease. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Sami Al-Nadaf
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Kyle S Peacott-Ricardos
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Peter J Dickinson
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Robert B Rebhun
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| | - Daniel York
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California, Davis, CA, USA
| |
Collapse
|
47
|
Giannuzzi D, Marconato L, Fanelli A, Licenziato L, De Maria R, Rinaldi A, Rotta L, Rouquet N, Birolo G, Fariselli P, Mensah AA, Bertoni F, Aresu L. The genomic landscape of canine diffuse large B-cell lymphoma identifies distinct subtypes with clinical and therapeutic implications. Lab Anim (NY) 2022; 51:191-202. [PMID: 35726023 DOI: 10.1038/s41684-022-00998-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Accepted: 05/13/2022] [Indexed: 12/13/2022]
Abstract
Diffuse large B-cell lymphoma (DLBCL) is the most common lymphoid neoplasm in dogs and in humans. It is characterized by a remarkable degree of clinical heterogeneity that is not completely elucidated by molecular data. This poses a major barrier to understanding the disease and its response to therapy, or when treating dogs with DLBCL within clinical trials. We performed an integrated analysis of exome (n = 77) and RNA sequencing (n = 43) data in a cohort of canine DLBCL to define the genetic landscape of this tumor. A wide range of signaling pathways and cellular processes were found in common with human DLBCL, but the frequencies of the most recurrently mutated genes (TRAF3, SETD2, POT1, TP53, MYC, FBXW7, DDX3X and TBL1XR1) differed. We developed a prognostic model integrating exonic variants and clinical and transcriptomic features to predict the outcome in dogs with DLBCL. These results comprehensively define the genetic drivers of canine DLBCL and can be prospectively utilized to identify new therapeutic opportunities.
Collapse
Affiliation(s)
- Diana Giannuzzi
- Department of Agronomy, Food, Natural Resources, Animals and Environment (DAFNAE), University of Padua, Padua, Italy
| | - Laura Marconato
- Department of Veterinary Medical Science, University of Bologna, Ozzano dell'Emilia, Bologna, Italy
| | - Antonella Fanelli
- Department of Veterinary Sciences, University of Turin, Grugliasco, Turin, Italy
| | - Luca Licenziato
- Department of Veterinary Sciences, University of Turin, Grugliasco, Turin, Italy
| | - Raffaella De Maria
- Department of Veterinary Sciences, University of Turin, Grugliasco, Turin, Italy
| | - Andrea Rinaldi
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Luca Rotta
- Department of Experimental Oncology, European Institute of Oncology (IEO), Milan, Italy
| | | | - Giovanni Birolo
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Piero Fariselli
- Department of Medical Sciences, University of Turin, Turin, Italy
| | - Afua A Mensah
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland
| | - Francesco Bertoni
- Institute of Oncology Research, Faculty of Biomedical Sciences, USI, Bellinzona, Switzerland. .,Oncology Institute of Southern Switzerland, Ente Ospedaliero Cantonale, Bellinzona, Switzerland.
| | - Luca Aresu
- Department of Veterinary Sciences, University of Turin, Grugliasco, Turin, Italy.
| |
Collapse
|
48
|
Pediatric glioblastoma: mechanisms of immune evasion and potential therapeutic opportunities. Cancer Immunol Immunother 2022; 71:1813-1822. [PMID: 35020009 DOI: 10.1007/s00262-021-03131-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 12/09/2021] [Indexed: 12/13/2022]
Abstract
Pediatric glioblastoma is relatively rare compared with its adult counterpart but is associated with a similarly grim prognosis. Available data indicate that pediatric glioblastomas are molecularly distinct from adult tumors, and relatively little is known about the pediatric glioblastoma tumor microenvironment (TME). Cancer immunotherapy has emerged as a new pillar of cancer treatment and is revolutionizing the care of patients with many advanced solid tumors, including melanoma, non-small cell lung cancer, head and neck cancer, and renal cell carcinoma. Unfortunately, attempts to treat adult glioblastoma with current immunotherapies have had limited success to date. Nevertheless, the immune milieu in pediatric glioblastoma is distinct from that found in adult tumors, and evidence suggests that pediatric tumors are less immunosuppressive. As a result, immunotherapies should be specifically evaluated in the pediatric context. The purpose of this review is to explore known and emerging mechanisms of immune evasion in pediatric glioblastoma and highlight potential opportunities for implementing immunotherapy in the treatment of these devastating pediatric brain tumors.
Collapse
|
49
|
Sanz CR, Miró G, Sevane N, Reyes-Palomares A, Dunner S. Modulation of Host Immune Response during Leishmania infantum Natural Infection: A Whole-Transcriptome Analysis of the Popliteal Lymph Nodes in Dogs. Front Immunol 2022; 12:794627. [PMID: 35058931 PMCID: PMC8763708 DOI: 10.3389/fimmu.2021.794627] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/10/2021] [Indexed: 12/21/2022] Open
Abstract
Leishmania infantum, the etiological agent of canine leishmaniosis (CanL) in Europe, was responsible of the largest outbreak of human leishmaniosis in Spain. The parasite infects and survives within myeloid lineage cells, causing a potentially fatal disease if left untreated. The only treatment option relies on chemotherapy, although immunotherapy strategies are being considered as novel approaches to prevent progression of the disease. To this aim, a deeper characterization of the molecular mechanisms behind the immunopathogenesis of leishmaniosis is necessary. Thus, we evaluated, for the first time, the host immune response during L. infantum infection through transcriptome sequencing of the popliteal lymph nodes aspirates of dogs with CanL. Differential expression and weighted gene co-expression network analyses were performed, resulting in the identification of 5,461 differentially expressed genes (DEGs) and four key modules in sick dogs, compared to controls. As expected, defense response was the highest enriched biological process in the DEGs, with six genes related to immune response against pathogens (CHI3L1, SLPI, ACOD1, CCL5, MPO, BPI) included among the ten most expressed genes; and two of the key co-expression modules were associated with regulation of immune response, which also positively correlated with clinical stage and blood monocyte concentration. In particular, sick dogs displayed significant changes in the expression of Th1, Th2, Th17 and Tr1 cytokines (e. g. TNF-α, IFN-γ, IL-21, IL-17, IL-15), markers of T cell and NK cell exhaustion (e. g. LAG3, CD244, Blimp-1, JUN), and B cell, monocyte and macrophage disrupted functionality (e. g. CD40LG, MAPK4, IL-1R, NLRP3, BCMA). In addition, we found an overexpression of XBP1 and some other genes involved in endoplasmic reticulum stress and the IRE1 branch of the unfolded protein response, as well as one co-expression module associated with these processes, which could be induced by L. infantum to prevent host cell apoptosis and modulate inflammation-induced lymphangiogenesis at lymph nodes. Moreover, 21 lncRNAs were differentially expressed in sick dogs, and one key co-expression module was associated with chromatin organization, suggesting that epigenetic mechanisms could also contribute to dampening host immune response during natural L. infantum infection in the lymph nodes of dogs suffering from clinical leishmaniosis.
Collapse
Affiliation(s)
- Carolina R Sanz
- Animal Health Department, Veterinary Faculty, Complutense University of Madrid, Madrid, Spain
| | - Guadalupe Miró
- Animal Health Department, Veterinary Faculty, Complutense University of Madrid, Madrid, Spain
| | - Natalia Sevane
- Department of Animal Production, Veterinary Faculty, Complutense University of Madrid, Madrid, Spain
| | - Armando Reyes-Palomares
- Department of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid, Spain
| | - Susana Dunner
- Department of Animal Production, Veterinary Faculty, Complutense University of Madrid, Madrid, Spain
| |
Collapse
|
50
|
Saeb S, Assche JV, Loustau T, Rohr O, Wallet C, Schwartz C. Suicide gene therapy in cancer and HIV-1 infection: An alternative to conventional treatments. Biochem Pharmacol 2021; 197:114893. [PMID: 34968484 DOI: 10.1016/j.bcp.2021.114893] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2021] [Revised: 12/15/2021] [Accepted: 12/16/2021] [Indexed: 12/16/2022]
Abstract
Suicide Gene Therapy (SGT) aims to introduce a gene encoding either a toxin or an enzyme making the targeted cell more sensitive to chemotherapy. SGT represents an alternative approach to combat pathologies where conventional treatments fail such as pancreatic cancer or the high-grade glioblastoma which are still desperately lethal. We review the possibility to use SGT to treat these cancers which have shown promising results in vitro and in preclinical trials. However, SGT has so far failed in phase III clinical trials thus further improvements are awaited. We can now take advantages of the many advances made in SGT for treating cancer to combat other pathologies such as HIV-1 infection. In the review we also discuss the feasibility to add SGT to the therapeutic arsenal used to cure HIV-1-infected patients. Indeed, preliminary results suggest that both productive and latently infected cells are targeted by the SGT. In the last section, we address the limitations of this approach and how we might improve it.
Collapse
Affiliation(s)
- Sepideh Saeb
- Department of Virology, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran; University of Strasbourg, Research Unit 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France
| | - Jeanne Van Assche
- University of Strasbourg, Research Unit 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France
| | - Thomas Loustau
- University of Strasbourg, Research Unit 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France
| | - Olivier Rohr
- University of Strasbourg, Research Unit 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France
| | - Clémentine Wallet
- University of Strasbourg, Research Unit 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France
| | - Christian Schwartz
- University of Strasbourg, Research Unit 7292, DHPI, IUT Louis Pasteur, Schiltigheim, France.
| |
Collapse
|