1
|
Qin H, Zhou Z, Shi R, Mai Y, Xu Y, Peng F, Cheng G, Zhang P, Chen W, Chen Y, Chen Y, Xu R, Lu Q. Insights into next-generation immunotherapy designs and tools: molecular mechanisms and therapeutic prospects. J Hematol Oncol 2025; 18:62. [PMID: 40483473 PMCID: PMC12145627 DOI: 10.1186/s13045-025-01701-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Accepted: 04/11/2025] [Indexed: 06/11/2025] Open
Abstract
Immunotherapy has revolutionized the oncology treatment paradigm, and CAR-T cell therapy in particular represents a significant milestone in treating hematological malignancies. Nevertheless, tumor resistance due to target heterogeneity or mutation remains a Gordian knot for immunotherapy. This review elucidates molecular mechanisms and therapeutic potential of next-generation immunotherapeutic tools spanning genetically engineered immune cells, multi-specific antibodies, and cell engagers, emphasizing multi-targeting strategies to enhance personalized immunotherapy efficacy. Development of logic gate modulation-based circuits, adapter-mediated CARs, multi-specific antibodies, and cell engagers could minimize adverse effects while recognizing tumor signals. Ultimately, we highlight gene delivery, gene editing, and other technologies facilitating tailored immunotherapy, and discuss the promising prospects of artificial intelligence in gene-edited immune cells.
Collapse
Affiliation(s)
- Hongzhuo Qin
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Zhaokai Zhou
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, People's Republic of China
| | - Run Shi
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yumiao Mai
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Yudi Xu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Fu Peng
- Department of Pharmacology, Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, School of Pharmacy, Sichuan University, Chengdu, 610041, West China, China
| | - Guangyang Cheng
- Department of Urology, First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Pengpeng Zhang
- Department of Lung Cancer, Tianjin Lung Cancer Center, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Wenjie Chen
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan, 410011, People's Republic of China
| | - Yun Chen
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan, 410011, People's Republic of China
| | - Yajun Chen
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan, 410011, People's Republic of China
- Mathematical Engineering Academy of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 510006, People's Republic of China
| | - Ran Xu
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, 410011, People's Republic of China.
| | - Qiong Lu
- Department of Pharmacy, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, People's Republic of China.
- National Clinical Research Center for Metabolic Diseases, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan, China.
- Institute of Clinical Pharmacy, Central South University, Changsha, Hunan, 410011, People's Republic of China.
| |
Collapse
|
2
|
Abken H. CAR T cell therapies in gastrointestinal cancers: current clinical trials and strategies to overcome challenges. Nat Rev Gastroenterol Hepatol 2025:10.1038/s41575-025-01062-y. [PMID: 40229574 DOI: 10.1038/s41575-025-01062-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/10/2025] [Indexed: 04/16/2025]
Abstract
Despite multimodal treatment options, most gastrointestinal cancers are still associated with high mortality rates and poor responsiveness to immunotherapy. The unprecedented efficacy of chimeric antigen receptor (CAR)-engineered T cells in the treatment of haematological malignancies raised interest in translating CAR T cell therapies to the treatment of gastrointestinal cancers. Treatment of solid cancers with canonical CAR T cells faces substantial challenges, including the dense architecture of the tumour tissue, the tolerogenic environment with low tumour-intrinsic immunogenicity, the rareness of targetable tumour-selective antigens, the antigenic heterogeneity of cancer cells, and the profound metabolic and immune cell disbalances. This Review provides an overview of CAR T cell trials in the treatment of gastrointestinal cancers, discussing considerations relating to safety, efficacy, potential reasons for failure and options for improving CAR T cells for the future. In addition, lessons regarding how to improve efficacy are drawn from CAR T cells armed with adjuvants that sustain their activation within the hostile environment and activate resident immune cells. As the field is rapidly evolving, current treatment modalities and editing CAR T cell functionalities are being refined towards a potentially more successful CAR T cell therapy for gastrointestinal cancers.
Collapse
Affiliation(s)
- Hinrich Abken
- Leibniz Institute for Immunotherapy, Genetic Immunotherapy Division, Regensburg, Germany.
- Genetic Immunotherapy, University of Regensburg, Regensburg, Germany.
| |
Collapse
|
3
|
Sehgal P, Naqvi AS, Higgins M, Liu J, Harvey K, Jarroux J, Kim T, Mankaliye B, Mishra P, Watterson G, Fine J, Davis J, Hayer KE, Castro A, Mogbo A, Drummer C, Martinez D, Koptyra MP, Ang Z, Wang K, Farrel A, Quesnel-Vallieres M, Barash Y, Spangler JB, Rokita JL, Resnick AC, Tilgner HU, DeRaedt T, Powell DJ, Thomas-Tikhonenko A. Neuronal cell adhesion molecule (NRCAM) variant defined by microexon skipping is an essential, antigenically distinct, and targetable proteoform in high-grade glioma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.09.631916. [PMID: 39868324 PMCID: PMC11761023 DOI: 10.1101/2025.01.09.631916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
To overcome the paucity of known tumor-specific surface antigens in pediatric high-grade glioma (pHGG), we contrasted splicing patterns in pHGGs and normal brain samples. Among alternative splicing events affecting extracellular protein domains, the most pervasive alteration was the skipping of ≤30 nucleotide-long microexons. Several of these skipped microexons mapped to L1-IgCAM family members, such as NRCAM . Bulk and single-nuclei short- and long-read RNA-seq revealed uniform skipping of NRCAM microexons 5 and 19 in virtually every pHGG sample. Importantly, the Δex5Δex19 (but not the full-length) NRCAM proteoform was essential for pHGG cell migration and invasion in vitro and tumor growth in vivo. We developed a monoclonal antibody selective for Δex5Δex19 NRCAM and demonstrated that "painting" of pHGG cells with this antibody enables killing by T cells armed with an FcRI-based universal immune receptor. Thus, pHGG-specific NRCAM and possibly other L1-IgCAM proteoforms are promising and highly selective targets for adoptive immunotherapies. Statement of significance Existing targets for chimeric antigen receptors (CAR)-armed T cells are often shared by CNS tumors and normal tissues, creating the potential for on-target/off-tumor toxicities. Here we demonstrate that in CNS tumors of glial origin, cell adhesion molecules have alternatively spliced proteoforms, which could be targeted by highly selective therapeutic antibodies.
Collapse
|
4
|
Matsushima R, Wakamatsu E, Machiyama H, Nishi W, Yoshida Y, Nishikawa T, Toyota H, Furuhata M, Nishijima H, Takeuchi A, Suzuki M, Yokosuka T. Imaging of biphasic signalosomes constructed by checkpoint receptor 2B4 in conventional and chimeric antigen receptor-T cells. iScience 2025; 28:111669. [PMID: 39886466 PMCID: PMC11780131 DOI: 10.1016/j.isci.2024.111669] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 06/27/2024] [Accepted: 12/19/2024] [Indexed: 02/01/2025] Open
Abstract
A co-signaling receptor, 2B4, has dual effects in immune cells, but its actual functions in T cells remain elusive. Here, using super-resolution imaging technology with an immunological synapse model, we showed that 2B4 forms "2B4 microclusters" immediately after 2B4-CD48 binding. A lipid phosphatase, SHIP-1, subsequently combined with 2B4 to form coinhibitory signalosomes, leading to the suppression of cytokine production. An activating adapter, SLAM-associated protein (SAP), attenuated the clustering of SHIP-1 and recruited a kinase, Fyn, enhancing the Vav1 signaling pathway as costimulatory signalosomes. Furthermore, we found that a chimeric antigen receptor with a 2B4 tail (2B4-CAR) retained the original signal transduction mechanism of 2B4. With endogenous levels of SAP expression, 2B4-CAR-T cells exposed sufficient antitumor efficacy in vivo without excess cytokine production. Our results may help explain the biphasic feature of 2B4 in T cell responses from the viewpoint of the signalosome and provide a new candidate for CAR development.
Collapse
Affiliation(s)
- Ryohei Matsushima
- Department of Thoracic Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Department of Immunology, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Ei Wakamatsu
- Department of Immunology, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Hiroaki Machiyama
- Department of Immunology, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Wataru Nishi
- Department of Thoracic Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
- Department of Immunology, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Yosuke Yoshida
- Department of Immunology, Tokyo Medical University, Tokyo 160-8402, Japan
- Department of Nephrology, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Tetsushi Nishikawa
- Department of Immunology, Tokyo Medical University, Tokyo 160-8402, Japan
- Department of Dermatology, Tokyo Medical University, Tokyo 160-0023, Japan
| | - Hiroko Toyota
- Department of Immunology, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Masae Furuhata
- Department of Immunology, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Hitoshi Nishijima
- Department of Immunology, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Arata Takeuchi
- Department of Immunology, Tokyo Medical University, Tokyo 160-8402, Japan
| | - Makoto Suzuki
- Department of Thoracic Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto 860-8556, Japan
| | - Tadashi Yokosuka
- Department of Immunology, Tokyo Medical University, Tokyo 160-8402, Japan
| |
Collapse
|
5
|
Gilden JK, Stecha P, Hartnett J, Cong M. A bioluminescent reporter bioassay for in-process assessment of chimeric antigen receptor lentiviral vector potency. Antib Ther 2025; 8:40-46. [PMID: 39839908 PMCID: PMC11744306 DOI: 10.1093/abt/tbae032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Revised: 11/19/2024] [Accepted: 12/18/2024] [Indexed: 01/23/2025] Open
Abstract
Background Chimeric antigen receptor (CAR)-T-cell therapy is a breakthrough in the field of cancer immunotherapy, wherein T cells are genetically modified to recognize and attack cancer cells. Delivery of the CAR gene is a critical step in this therapy and is usually achieved by transducing patient T cells with a lentiviral vector (LV). Because the LV is an essential component of CAR-T manufacturing, there is a need for simple bioassays that reflect the mechanism of action (MOA) of the LV and can measure LV potency with accuracy and specificity. Common methods for LV quantification may overestimate functional titer and lack a functional readout of LV MOA. Methods We developed a bioluminescent reporter bioassay using Jurkat T cells stably expressing a luciferase reporter under the control of an nuclear factor of activated T cells (NFAT) response element and tested its suitability for measuring LV potency. Results Jurkat reporter cells can be transduced with CAR LV and combined with target cells, yielding a luminescent signal that is dependent on the identity and potency of the LV used. Bioluminescence was highly correlated with CAR expression. The assay is stability indicating and suitable for use in drug development and quality control settings. Conclusions We have developed a simple bioassay for potency testing of CAR LV. The bioassay represents a significant improvement over other approaches to LV quantification because it reflects the MOA of the LV and selectively detects fully functional viral particles, making it ideal for inclusion in a matrix of in-process quality control assays for CAR LV.
Collapse
Affiliation(s)
- Julia K Gilden
- Research and Development, Promega Corp., Madison, WI 53711, United States
| | - Pete Stecha
- Research and Development, Promega Corp., Madison, WI 53711, United States
| | - Jim Hartnett
- Research and Development, Promega Corp., Madison, WI 53711, United States
| | - Mei Cong
- Research and Development, Promega Corp., Madison, WI 53711, United States
| |
Collapse
|
6
|
Ye X, Wu Y, Zhang H. Emerging Claudin18.2-targeting Therapy for Systemic Treatment of Gastric Cancer: Seeking Nobility Amidst Danger. Anticancer Agents Med Chem 2025; 25:223-231. [PMID: 39364863 DOI: 10.2174/0118715206329892240927081033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/05/2024]
Abstract
Gastric cancer in advanced stages lacked effective treatment options. claudin18.2 (CLDN18.2) is a membrane protein that is crucial for close junctions in the differentiated epithelial cells of the gastric mucosa, playing a vital role in barrier function, and can be hardly recognized by immune cells due to its polarity pattern. As the polarity of gastric tumor cells changes, claudin18.2 is exposed on the cell surface, resulting in immune system recognition, and making it an ideal target. In this review, we summarized the expression regulation mechanism of claudin18.2 both in normal cells and malignant tumor cells. Besides, we analyzed the available clinical results and potential areas for future research on claudin18.2-positive gastric cancer and claudin18.2-targeting therapy. In conclusion, claudin18.2 is an ideal target for gastric cancer treatment, and the claudin18.2-targeting therapy has changed the treatment pattern of gastric cancer.
Collapse
Affiliation(s)
- Xueshuai Ye
- School of Clinical Medicine, Hebei University of Engineering, Handan, 056002, China
| | - Yongqiang Wu
- Gene Editing Research Center, Hebei University of Science and Technology, Shijiazhuang, 050000, China
| | - Haiqiang Zhang
- Department of Surgery, The Second Hospital of Hebei Medical University, 215 West Heping Road, Shijiazhuang, 050051, China
| |
Collapse
|
7
|
Liu Y, An L, Wang X, Dai Y, Zhang C, Wen Q, Zhang X. Engineering a controllable and reversible switch for CAR-based cellular immunotherapies via a genetic code expansion system. J Hematol Oncol 2024; 17:122. [PMID: 39696585 PMCID: PMC11657976 DOI: 10.1186/s13045-024-01648-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Accepted: 12/02/2024] [Indexed: 12/20/2024] Open
Abstract
BACKGROUND As one of the most promising adoptive cell therapies, CAR-T cell therapy has achieved notable clinical effects in patients with hematological tumors. However, several treatment-related obstacles remain in CAR-T therapy, such as cytokine release syndrome, neurotoxicity, and high-frequency recurrence, which severely limit the long-term effects and can potentially be fatal. Therefore, strategies to increase the controllability and safety of CAR-T therapy are urgently needed. METHODS In this study, we engineered a genetic code expansion-based therapeutic system to achieve rapid CAR protein expression and regulation in response to cognate unnatural amino acids at the translational level. When the unnatural amino acid N-ε-((tert-butoxy) carbonyl)-l-lysine (BOCK) is absent, the CAR protein cannot be completely translated, and CAR-T is "closed". When BOCK is present, complete translation of the CAR protein is induced, and CAR-T is "open". Therefore, we investigated whether the BOCK-induced device can control CAR protein expression and regulate CAR-T cell function using a series of in vitro and in vivo experiments. RESULTS First, we verified that the BOCK-induced genetic code expansion system enables the regulation of protein expression as a controllable switch. We subsequently demonstrated that when the system was combined with CAR-T cells, BOCK could effectively and precisely control CAR protein expression and induce CAR signaling activation. When incubated with tumor cells, BOCK regulated CAR-T cells cytotoxicity in a dose-dependent manner. Our results revealed that the presence of BOCK enables the activation of CAR-T cells with strong anti-tumor cytotoxicity in a NOG mouse model. Furthermore, we verified that the BOCK-induced CAR device provided NK cells with controllable anti-tumor activity, which confirmed the universality of this device. CONCLUSIONS Our study systematically demonstrated that the BOCK-induced genetic code expansion system effectively and precisely regulates CAR protein expression and controls CAR-T cell anti-tumor effects in vitro and in vivo. We conclude that this controllable and reversible switch has the potential for more effective, secure, and clinically available CAR-based cellular immunotherapies.
Collapse
Affiliation(s)
- Yue Liu
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
| | - Lingna An
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
| | - Xiaoqi Wang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
| | - Yueyu Dai
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China
| | - Cheng Zhang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China.
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China.
| | - Qin Wen
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China.
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China.
| | - Xi Zhang
- Medical Center of Hematology, Xinqiao Hospital of Army Medical University, Chongqing, 400037, China.
- State Key Laboratory of Trauma and Chemical Poisoning, Chongqing Key Laboratory of Hematology and Microenvironment, Chongqing, 400037, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
8
|
Sirini C, De Rossi L, Moresco MA, Casucci M. CAR T cells in solid tumors and metastasis: paving the way forward. Cancer Metastasis Rev 2024; 43:1279-1296. [PMID: 39316265 DOI: 10.1007/s10555-024-10213-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 09/10/2024] [Indexed: 09/25/2024]
Abstract
CAR T cell therapy, hailed as a breakthrough in cancer treatment due to its remarkable outcomes in hematological malignancies, encounters significant hurdles when applied to solid tumors. While notable responses to CAR T cells remain sporadic in these patients, challenges persist due to issues such as on-target off-tumor toxicity, difficulties in their trafficking and infiltration into the tumor, and the presence of a hostile and immunosuppressive microenvironment. This review aims to explore recent endeavors aimed at overcoming these obstacles in CAR T cell therapy for solid tumors. Specifically, we will delve into promising strategies for enhancing tumor specificity through antigen targeting, addressing tumor heterogeneity, overcoming physical barriers, and counteracting the immune-suppressive microenvironment.
Collapse
Affiliation(s)
- Camilla Sirini
- Innovative Immunotherapies Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Laura De Rossi
- Innovative Immunotherapies Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Marta Angiola Moresco
- Innovative Immunotherapies Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Monica Casucci
- Innovative Immunotherapies Unit, Division of Immunology, Transplantation and Infectious Diseases, IRCCS San Raffaele Scientific Institute, 20132, Milan, Italy.
| |
Collapse
|
9
|
D'Avanzo C, Blaeschke F, Lysandrou M, Ingelfinger F, Zeiser R. Advances in cell therapy: progress and challenges in hematological and solid tumors. Trends Pharmacol Sci 2024; 45:1119-1134. [PMID: 39603960 DOI: 10.1016/j.tips.2024.10.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/20/2024] [Accepted: 10/20/2024] [Indexed: 11/29/2024]
Abstract
Cell-based therapies harness the endogenous ability of the immune system to fight cancer and have shown promising results in the treatment of hematological malignancies. However, their clinical application beyond B cell malignancies is hampered by numerous hurdles, ranging from relapsed disease to a hostile tumor microenvironment (TME). Recent advances in cell engineering and TME modulation may expand the applicability of these therapies to a wider range of cancers, creating new treatment possibilities. Breakthroughs in advanced gene editing and sophisticated cell engineering, have also provided promising solutions to longstanding challenges. In this review, we examine the challenges and future directions of the most prominent cell-based therapies, including chimeric antigen receptor (CAR)-T cells, tumor-infiltrating lymphocytes (TILs), and natural killer (NK) cells, and emerging modalities. We provide a comprehensive analysis of emerging cell types and combination strategies translated into clinical trials, offering insights into the next generation of cell-based cancer treatments.
Collapse
Affiliation(s)
- Claudia D'Avanzo
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Franziska Blaeschke
- German Cancer Research Center (DKFZ), Heidelberg, Germany; Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany; Heidelberg University Hospital, Heidelberg, Germany
| | - Memnon Lysandrou
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Florian Ingelfinger
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Robert Zeiser
- Department of Medicine I, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| |
Collapse
|
10
|
Nolan-Stevaux O, Smith R. Logic-gated and contextual control of immunotherapy for solid tumors: contrasting multi-specific T cell engagers and CAR-T cell therapies. Front Immunol 2024; 15:1490911. [PMID: 39606234 PMCID: PMC11599190 DOI: 10.3389/fimmu.2024.1490911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Accepted: 10/18/2024] [Indexed: 11/29/2024] Open
Abstract
CAR-T cell and T cell engager therapies have demonstrated transformational efficacy against hematological malignancies, but achieving efficacy in solid tumors has been more challenging, in large part because of on-target/off-tumor toxicities and sub-optimal T cell anti-tumor cytotoxic functions. Here, we discuss engineering solutions that exploit biological properties of solid tumors to overcome these challenges. Using logic gates as a framework, we categorize the numerous approaches that leverage two inputs instead of one to achieve better cancer selectivity or efficacy in solid tumors with dual-input CAR-Ts or multi-specific TCEs. In addition to the "OR gate" and "AND gate" approaches that leverage dual tumor antigen targeting, we also review "contextual AND gate" technologies whereby continuous cancer-selective inputs such a pH, hypoxia, target density, tumor proteases, and immune-suppressive cytokine gradients can be creatively incorporated in therapy designs. We also introduce the notion of "output directionality" to distinguish dual-input strategies that mechanistically impact cancer cell killing or T cell fitness. Finally, we contrast the feasibility and potential benefits of the various approaches using CAR-T and TCE therapeutics and discuss why the promising "IF/THEN" and "NOT" gate types pertain more specifically to CAR-T therapies, but can also succeed by integrating both technologies.
Collapse
Affiliation(s)
| | - Richard Smith
- Cell Biology Research, Kite Pharma, Foster City, CA, United States
| |
Collapse
|
11
|
Radhakrishnan H, Newmyer SL, Javitz HS, Bhatnagar P. Engineered CD4 T cells for in vivo delivery of therapeutic proteins. Proc Natl Acad Sci U S A 2024; 121:e2318687121. [PMID: 39312667 PMCID: PMC11459198 DOI: 10.1073/pnas.2318687121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 08/12/2024] [Indexed: 09/25/2024] Open
Abstract
The CD4 T cell, when engineered with a chimeric antigen receptor (CAR) containing specific intracellular domains, has been transformed into a zero-order drug-delivery platform. This introduces the capability of prolonged, disease-specific engineered protein biologics production, at the disease site. Experimental findings demonstrate that CD4 T cells offer a solution when modified with a CAR that includes 4-1BB but excludes CD28 intracellular domain. In this configuration, they achieve ~3X transduction efficiency of CD8 T cells, ~2X expansion rates, generating ~5X more biologic, and exhibit minimal cytolytic activity. Cumulatively, this addresses two main hurdles in the translation of cell-based drug delivery: scaling the production of engineered T cell ex vivo and generating sufficient biologics in vivo. When programmed to induce IFNβ upon engaging the target antigen, the CD4 T cells outperforms CD8 T cells, effectively suppressing cancer cell growth in vitro and in vivo. In summary, this platform enables precise targeting of disease sites with engineered protein-based therapeutics while minimizing healthy tissue exposure. Leveraging CD4 T cells' persistence could enhance disease management by reducing drug administration frequency, addressing critical challenges in cell-based therapy.
Collapse
|
12
|
Li X, Chen T, Li X, Zhang H, Li Y, Zhang S, Luo S, Zheng T. Therapeutic targets of armored chimeric antigen receptor T cells navigating the tumor microenvironment. Exp Hematol Oncol 2024; 13:96. [PMID: 39350256 PMCID: PMC11440706 DOI: 10.1186/s40164-024-00564-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 09/17/2024] [Indexed: 10/04/2024] Open
Abstract
Chimeric antigen receptor (CAR) T cell therapy, which targets tumors with high specificity through the recognition of particular antigens, has emerged as one of the most rapidly advancing modalities in immunotherapy, demonstrating substantial success against hematological malignancies. However, previous generations of CAR-T cell therapy encountered numerous challenges in treating solid tumors, such as the lack of suitable targets, high immunosuppression, suboptimal persistence, and insufficient infiltration owing to the complexities of the tumor microenvironment, all of which limited their efficacy. In this review, we focus on the current therapeutic targets of fourth-generation CAR-T cells, also known as armored CAR-T cells, and explore the mechanisms by which these engineered cells navigate the tumor microenvironment by targeting its various components. Enhancing CAR-T cells with these therapeutic targets holds promise for improving their effectiveness against solid tumors, thus achieving substantial clinical value and advancing the field of CAR-T cell therapy. Additionally, we discuss potential strategies to overcome existing challenges and highlight novel targets that could further enhance the efficacy of CAR-T cell therapy in treating solid tumors.
Collapse
Affiliation(s)
- Xianjun Li
- Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin,150081, China
| | - Tianjun Chen
- Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin,150081, China
| | - Xuehan Li
- Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin,150081, China
| | - Hanyu Zhang
- Department of Breast Surgery, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Yingjing Li
- Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin,150081, China
| | - Shuyuan Zhang
- Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin,150081, China
| | - Shengnan Luo
- Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin,150081, China
| | - Tongsen Zheng
- Harbin Medical University Cancer Hospital, Harbin, 150081, China.
- Department of Gastrointestinal Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
- Department of Phase 1 Trials Center, Harbin Medical University Cancer Hospital, Harbin, 150081, China.
- Heilongjiang Province Key Laboratory of Molecular Oncology, Harbin,150081, China.
| |
Collapse
|
13
|
Bear AS, Nadler RB, O'Hara MH, Stanton KL, Xu C, Saporito RJ, Rech AJ, Baroja ML, Blanchard T, Elliott MH, Ford MJ, Jones R, Patel S, Brennan A, O'Neil Z, Powell DJ, Vonderheide RH, Linette GP, Carreno BM. Natural TCRs targeting KRASG12V display fine specificity and sensitivity to human solid tumors. J Clin Invest 2024; 134:e175790. [PMID: 39287991 PMCID: PMC11529987 DOI: 10.1172/jci175790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 09/06/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUNDNeoantigens derived from KRASMUT have been described, but the fine antigen specificity of T cell responses directed against these epitopes is poorly understood. Here, we explore KRASMUT immunogenicity and the properties of 4 T cell receptors (TCRs) specific for KRASG12V restricted to the HLA-A3 superfamily of class I alleles.METHODSA phase 1 clinical vaccine trial targeting KRASMUT was conducted. TCRs targeting KRASG12V restricted to HLA-A*03:01 or HLA-A*11:01 were isolated from vaccinated patients or healthy individuals. A comprehensive analysis of TCR antigen specificity, affinity, crossreactivity, and CD8 coreceptor dependence was performed. TCR lytic activity was evaluated, and target antigen density was determined by quantitative immunopeptidomics.RESULTSVaccination against KRASMUT resulted in the priming of CD8+ and CD4+ T cell responses. KRASG12V -specific natural (not affinity enhanced) TCRs exhibited exquisite specificity to mutated protein with no discernible reactivity against KRASWT. TCR-recognition motifs were determined and used to identify and exclude crossreactivity to noncognate peptides derived from the human proteome. Both HLA-A*03:01 and HLA-A*11:01-restricted TCR-redirected CD8+ T cells exhibited potent lytic activity against KRASG12V cancers, while only HLA-A*11:01-restricted TCR-T CD4+ T cells exhibited antitumor effector functions consistent with partial coreceptor dependence. All KRASG12V-specific TCRs displayed high sensitivity for antigen as demonstrated by their ability to eliminate tumor cell lines expressing low levels of peptide/HLA (4.4 to 242) complexes per cell.CONCLUSIONThis study identifies KRASG12V-specific TCRs with high therapeutic potential for the development of TCR-T cell therapies.TRIAL REGISTRATIONClinicalTrials.gov NCT03592888.FUNDINGAACR SU2C/Lustgarten Foundation, Parker Institute for Cancer Immunotherapy, and NIH.
Collapse
Affiliation(s)
- Adham S Bear
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine
| | | | - Mark H O'Hara
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine
- Abramson Cancer Center, and
| | - Kelsey L Stanton
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Chong Xu
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Robert J Saporito
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrew J Rech
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Miren L Baroja
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Tatiana Blanchard
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Maxwell H Elliott
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | | - Shivang Patel
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Andrea Brennan
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Zachary O'Neil
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Daniel J Powell
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine and
| | - Robert H Vonderheide
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine
- Abramson Cancer Center, and
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Gerald P Linette
- Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine
- Abramson Cancer Center, and
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Beatriz M Carreno
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Pathology and Laboratory Medicine and
- Parker Institute for Cancer Immunotherapy, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| |
Collapse
|
14
|
Ali A, DiPersio JF. ReCARving the future: bridging CAR T-cell therapy gaps with synthetic biology, engineering, and economic insights. Front Immunol 2024; 15:1432799. [PMID: 39301026 PMCID: PMC11410633 DOI: 10.3389/fimmu.2024.1432799] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 08/12/2024] [Indexed: 09/22/2024] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has revolutionized the treatment of hematologic malignancies, offering remarkable remission rates in otherwise refractory conditions. However, its expansion into broader oncological applications faces significant hurdles, including limited efficacy in solid tumors, safety concerns related to toxicity, and logistical challenges in manufacturing and scalability. This review critically examines the latest advancements aimed at overcoming these obstacles, highlighting innovations in CAR T-cell engineering, novel antigen targeting strategies, and improvements in delivery and persistence within the tumor microenvironment. We also discuss the development of allogeneic CAR T cells as off-the-shelf therapies, strategies to mitigate adverse effects, and the integration of CAR T cells with other therapeutic modalities. This comprehensive analysis underscores the synergistic potential of these strategies to enhance the safety, efficacy, and accessibility of CAR T-cell therapies, providing a forward-looking perspective on their evolutionary trajectory in cancer treatment.
Collapse
Affiliation(s)
- Alaa Ali
- Stem Cell Transplant and Cellular Immunotherapy Program, Georgetown Lombardi Comprehensive Cancer Center, Washington, DC, United States
| | - John F DiPersio
- Center for Gene and Cellular Immunotherapy, Washington University in Saint Louis, Saint Louis, MO, United States
| |
Collapse
|
15
|
Erler P, Kurcon T, Cho H, Skinner J, Dixon C, Grudman S, Rozlan S, Dessez E, Mumford B, Jo S, Boyne A, Juillerat A, Duchateau P, Poirot L, Aranda-Orgilles B. Multi-armored allogeneic MUC1 CAR T cells enhance efficacy and safety in triple-negative breast cancer. SCIENCE ADVANCES 2024; 10:eadn9857. [PMID: 39213364 PMCID: PMC11364110 DOI: 10.1126/sciadv.adn9857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 07/26/2024] [Indexed: 09/04/2024]
Abstract
Solid tumors, such as triple-negative breast cancer (TNBC), are biologically complex due to cellular heterogeneity, lack of tumor-specific antigens, and an immunosuppressive tumor microenvironment (TME). These challenges restrain chimeric antigen receptor (CAR) T cell efficacy, underlining the importance of armoring. In solid cancers, a localized tumor mass allows alternative administration routes, such as intratumoral delivery with the potential to improve efficacy and safety but may compromise metastatic-site treatment. Using a multi-layered CAR T cell engineering strategy that allowed a synergy between attributes, we show enhanced cytotoxic activity of MUC1 CAR T cells armored with PD1KO, tumor-specific interleukin-12 release, and TGFBR2KO attributes catered towards the TNBC TME. Intratumoral treatment effectively reduced distant tumors, suggesting retention of antigen-recognition benefits at metastatic sites. Overall, we provide preclinical evidence of armored non-alloreactive MUC1 CAR T cells greatly reducing high TNBC tumor burden in a TGFB1- and PD-L1-rich TME both at local and distant sites while preserving safety.
Collapse
Affiliation(s)
| | | | - Hana Cho
- Cellectis Inc., New York, NY, USA
| | | | | | | | | | | | | | - Sumin Jo
- Cellectis Inc., New York, NY, USA
| | | | | | | | | | | |
Collapse
|
16
|
Ma L, Zhang K, Xu J, Wang J, Jiang T, Du X, Zhang J, Huang J, Ren F, Liu D, Xue W, Kan D, Yao M, Liang Y, Jason-Sun H. Building a novel TRUCK by harnessing the endogenous IFN-gamma promoter for cytokine expression. Mol Ther 2024; 32:2728-2740. [PMID: 38879754 PMCID: PMC11405158 DOI: 10.1016/j.ymthe.2024.06.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 04/22/2024] [Accepted: 06/14/2024] [Indexed: 06/27/2024] Open
Abstract
Despite the remarkable success of chimeric antigen receptor (CAR) T therapy in hematological malignancies, its efficacy in solid tumors remains limited. Cytokine-engineered CAR T cells offer a promising avenue, yet their clinical translation is hindered by the risks associated with constitutive cytokine expression. In this proof-of-concept study, we leverage the endogenous interferon (IFN)-γ promoter for transgenic interleukin (IL)-15 expression. We demonstrate that IFN-γ expression is tightly regulated by T cell receptor signaling. By introducing an internal ribosome entry site IL15 into the 3' UTR of the IFN-γ gene via homology directed repair-mediated knock-in, we confirm that IL-15 expression can co-express with IFN-γ in an antigen stimulation-dependent manner. Importantly, the insertion of transgenes does not compromise endogenous IFN-γ expression. In vitro and in vivo data demonstrate that IL-15 driven by the IFN-γ promoter dramatically improves CAR T cells' antitumor activity, suggesting the effectiveness of IL-15 expression. Last, as a part of our efforts toward clinical translation, we have developed an innovative two-gene knock-in approach. This approach enables the simultaneous integration of CAR and IL-15 genes into TRAC and IFN-γ gene loci using a single AAV vector. CAR T cells engineered to express IL-15 using this approach demonstrate enhanced antitumor efficacy. Overall, our study underscores the feasibility of utilizing endogenous promoters for transgenic cytokines expression in CAR T cells.
Collapse
MESH Headings
- Interferon-gamma/metabolism
- Promoter Regions, Genetic
- Humans
- Animals
- Mice
- Immunotherapy, Adoptive/methods
- Interleukin-15/genetics
- Interleukin-15/metabolism
- Receptors, Chimeric Antigen/genetics
- Receptors, Chimeric Antigen/metabolism
- Receptors, Chimeric Antigen/immunology
- T-Lymphocytes/metabolism
- T-Lymphocytes/immunology
- Genetic Vectors/genetics
- Cell Line, Tumor
- Transgenes
- Cytokines/metabolism
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/metabolism
- Xenograft Model Antitumor Assays
- Gene Expression
Collapse
Affiliation(s)
- Liya Ma
- Shenzhen Celconta Life Science Co. Ltd., Shenzhen, Guangdong, China
| | - Kaiwen Zhang
- Shenzhen Celconta Life Science Co. Ltd., Shenzhen, Guangdong, China
| | - Jian Xu
- Shenzhen Celconta Life Science Co. Ltd., Shenzhen, Guangdong, China
| | - Jian Wang
- Shenzhen Celconta Life Science Co. Ltd., Shenzhen, Guangdong, China
| | - Ting Jiang
- Shenzhen Celconta Life Science Co. Ltd., Shenzhen, Guangdong, China
| | - Xiaolong Du
- Shenzhen Celconta Life Science Co. Ltd., Shenzhen, Guangdong, China
| | - Jiaxin Zhang
- Shenzhen Celconta Life Science Co. Ltd., Shenzhen, Guangdong, China
| | - Jing Huang
- Shenzhen Celconta Life Science Co. Ltd., Shenzhen, Guangdong, China
| | - Fengyi Ren
- Shenzhen Celconta Life Science Co. Ltd., Shenzhen, Guangdong, China
| | - Dong Liu
- Shenzhen Celconta Life Science Co. Ltd., Shenzhen, Guangdong, China
| | - Weiwei Xue
- Shenzhen Celconta Life Science Co. Ltd., Shenzhen, Guangdong, China
| | - Dongxu Kan
- Shenzhen Celconta Life Science Co. Ltd., Shenzhen, Guangdong, China
| | - Mengjiao Yao
- Shenzhen Celconta Life Science Co. Ltd., Shenzhen, Guangdong, China
| | - Yutian Liang
- Shenzhen Celconta Life Science Co. Ltd., Shenzhen, Guangdong, China
| | | |
Collapse
|
17
|
Duan R, Milton P, Sittplangkoon C, Liu X, Sui Z, Boyce BF, Yao Z. Chimeric antigen receptor dendritic cells targeted delivery of a single tumoricidal factor for cancer immunotherapy. Cancer Immunol Immunother 2024; 73:203. [PMID: 39105847 PMCID: PMC11303651 DOI: 10.1007/s00262-024-03788-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 07/19/2024] [Indexed: 08/07/2024]
Abstract
BACKGROUND Chimeric antigen receptor (CAR)-T cells have been used to treat blood cancers by producing a wide variety of cytokines. However, they are not effective in treating solid cancers and can cause severe side-effects, including cytokine release syndrome. TNFα is a tumoricidal cytokine, but it markedly increases the protein levels of cIAP1 and cIAP2, the members of inhibitor of apoptosis protein (IAP) family of E3 ubiquitin ligase that limits caspase-induced apoptosis. Degradation of IAP proteins by an IAP antagonist does not effectively kill cancer cells but enables TNFα to strongly induce cancer cell apoptosis. It would be a promising approach to treat cancers by targeted delivery of TNFα through an inactive adoptive cell in combination with an IAP antagonist. METHODS Human dendritic cells (DCs) were engineered to express a single tumoricidal factor, TNFα, and a membrane-anchored Mucin1 antibody scFv, named Mucin 1 directed DCs expressing TNFα (M-DCsTNF). The efficacy of M-DCsTNF in recognizing and treating breast cancer was tested in vitro and in vivo. RESULTS Mucin1 was highly expressed on the surface of a wide range of human breast cancer cell lines. M-DCsTNF directly associated with MDA-MB-231 cells in the bone of NSG mice. M-DCsTNF plus an IAP antagonist, SM-164, but neither alone, markedly induce MDA-MB-231 breast cancer cell apoptosis, which was blocked by TNF antibody. Importantly, M-DCsTNF combined with SM-164, but not SM-164 alone, inhibited the growth of patient-derived breast cancer in NSG mice. CONCLUSION An adoptive cell targeting delivery of TNFα combined with an IAP antagonist is a novel effective approach to treat breast cancer and could be expanded to treat other solid cancers. Unlike CAR-T cell, this novel adoptive cell is not activated to produce a wide variety of cytokines, except for additional overexpressed TNF, and thus could avoid the severe side effects such as cytokine release syndrome.
Collapse
Affiliation(s)
- Rong Duan
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA
| | - Philip Milton
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA
- School of Engineering, University of Rochester, Rochester, NY, 14627, USA
| | - Chutamath Sittplangkoon
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA
| | - Xin Liu
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA
- Department of Orthopedics, Tianjin Hospital, Tianjin, 30021, People's Republic of China
| | - Zhining Sui
- Department of Biostatistics and Computational Biology, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA
| | - Brendan F Boyce
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA
| | - Zhenqiang Yao
- Department of Pathology and Laboratory Medicine, University of Rochester Medical Center, 601 Elmwood Ave, Rochester, NY, 14642, USA.
| |
Collapse
|
18
|
Xin Z, Qu S, Qu Y, Xu Y, Liu R, Sun D, Dai Z. Emerging IL-12-based nanomedicine for cancer therapy. NANO TODAY 2024; 57:102331. [DOI: 10.1016/j.nantod.2024.102331] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
19
|
Spiga M, Martini E, Maffia MC, Ciceri F, Ruggiero E, Potenza A, Bonini C. Harnessing the tumor microenvironment to boost adoptive T cell therapy with engineered lymphocytes for solid tumors. Semin Immunopathol 2024; 46:8. [PMID: 39060547 DOI: 10.1007/s00281-024-01011-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 03/18/2024] [Indexed: 07/28/2024]
Abstract
Adoptive cell therapy (ACT) using Chimeric Antigen Receptor (CAR) and T Cell Receptor (TCR) engineered T cells represents an innovative therapeutic approach for the treatment of hematological malignancies, yet its application for solid tumors is still suboptimal. The tumor microenvironment (TME) places several challenges to overcome for a satisfactory therapeutic effect, such as physical barriers (fibrotic capsule and stroma), and inhibitory signals impeding T cell function. Some of these obstacles can be faced by combining ACT with other anti-tumor approaches, such as chemo/radiotherapy and checkpoint inhibitors. On the other hand, cutting edge technological tools offer the opportunity to overcome and, in some cases, take advantage of TME intrinsic characteristics to boost ACT efficacy. These include: the exploitation of chemokine gradients and integrin expression for preferential T-cell homing and extravasation; metabolic changes that have direct or indirect effects on TCR-T and CAR-T cells by increasing antigen presentation and reshaping T cell phenotype; introduction of additional synthetic receptors on TCR-T and CAR-T cells with the aim of increasing T cells survival and fitness.
Collapse
Affiliation(s)
- Martina Spiga
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Elisa Martini
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Maria Chiara Maffia
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Fabio Ciceri
- Vita-Salute San Raffaele University, Milan, Italy
- Hematology and Bone Marrow Transplant Unit, IRCCS San Raffaele Hospital, Milan, Italy
| | - Eliana Ruggiero
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Alessia Potenza
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
| | - Chiara Bonini
- Experimental Hematology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
20
|
Peterman EL, Ploessl DS, Galloway KE. Accelerating Diverse Cell-Based Therapies Through Scalable Design. Annu Rev Chem Biomol Eng 2024; 15:267-292. [PMID: 38594944 DOI: 10.1146/annurev-chembioeng-100722-121610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2024]
Abstract
Augmenting cells with novel, genetically encoded functions will support therapies that expand beyond natural capacity for immune surveillance and tissue regeneration. However, engineering cells at scale with transgenic cargoes remains a challenge in realizing the potential of cell-based therapies. In this review, we introduce a range of applications for engineering primary cells and stem cells for cell-based therapies. We highlight tools and advances that have launched mammalian cell engineering from bioproduction to precision editing of therapeutically relevant cells. Additionally, we examine how transgenesis methods and genetic cargo designs can be tailored for performance. Altogether, we offer a vision for accelerating the translation of innovative cell-based therapies by harnessing diverse cell types, integrating the expanding array of synthetic biology tools, and building cellular tools through advanced genome writing techniques.
Collapse
Affiliation(s)
- Emma L Peterman
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - Deon S Ploessl
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| | - Kate E Galloway
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA;
| |
Collapse
|
21
|
Gitto SB, Ihewulezi CJN, Powell DJ. Adoptive T cell therapy for ovarian cancer. Gynecol Oncol 2024; 186:77-84. [PMID: 38603955 PMCID: PMC11216867 DOI: 10.1016/j.ygyno.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 03/27/2024] [Accepted: 04/01/2024] [Indexed: 04/13/2024]
Abstract
Although ovarian cancer patients typically respond to standard of care therapies, including chemotherapy and DNA repair inhibitors, the majority of tumors recur highlighting the need for alternative therapies. Ovarian cancer is an immunogenic cancer in which the accumulation of tumor infiltrating lymphocytes (TILs), particularly T cells, is associated with better patient outcome. Thus, harnessing the immune system through passive administration of T cells, a process called adoptive cell therapy (ACT), is a promising therapeutic option for the treatment of ovarian cancer. There are multiple routes by which tumor-specific T cell products can be generated. Dendritic cell cancer vaccines can be administered to the patients to induce or bolster T cell responses against tumor antigens or be utilized ex vivo to prime T cells against tumor antigens; these T cells can then be prepared for infusion. ACT protocols can also utilize naturally-occurring tumor-reactive T cells isolated from a patient tumor, known as TILs, as these cells often are heterogeneous in composition and antigen specificity with patient-specific cancer recognition. Alternatively, T cells may be sourced from the peripheral blood, including those that are genetically modified to express a tumor antigen-specific T cell receptor (TCR) or chimeric antigen receptor (CAR) to redirect their specificity and promote their activity against tumor cells expressing the target tumor antigen. Here, we review current ACT strategies for ovarian cancer and provide insights into advancing ACT therapy strategies for the treatment of ovarian cancer.
Collapse
Affiliation(s)
- Sarah B Gitto
- Department of Pathology and Laboratory Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Chibuike J N Ihewulezi
- Department of Pathology and Laboratory Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Daniel J Powell
- Department of Pathology and Laboratory Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Ovarian Cancer Research Center, Division of Gynecologic Oncology, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
22
|
Doan AE, Mueller KP, Chen AY, Rouin GT, Chen Y, Daniel B, Lattin J, Markovska M, Mozarsky B, Arias-Umana J, Hapke R, Jung IY, Wang A, Xu P, Klysz D, Zuern G, Bashti M, Quinn PJ, Miao Z, Sandor K, Zhang W, Chen GM, Ryu F, Logun M, Hall J, Tan K, Grupp SA, McClory SE, Lareau CA, Fraietta JA, Sotillo E, Satpathy AT, Mackall CL, Weber EW. FOXO1 is a master regulator of memory programming in CAR T cells. Nature 2024; 629:211-218. [PMID: 38600391 PMCID: PMC11062920 DOI: 10.1038/s41586-024-07300-8] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 03/12/2024] [Indexed: 04/12/2024]
Abstract
A major limitation of chimeric antigen receptor (CAR) T cell therapies is the poor persistence of these cells in vivo1. The expression of memory-associated genes in CAR T cells is linked to their long-term persistence in patients and clinical efficacy2-6, suggesting that memory programs may underpin durable CAR T cell function. Here we show that the transcription factor FOXO1 is responsible for promoting memory and restraining exhaustion in human CAR T cells. Pharmacological inhibition or gene editing of endogenous FOXO1 diminished the expression of memory-associated genes, promoted an exhaustion-like phenotype and impaired the antitumour activity of CAR T cells. Overexpression of FOXO1 induced a gene-expression program consistent with T cell memory and increased chromatin accessibility at FOXO1-binding motifs. CAR T cells that overexpressed FOXO1 retained their function, memory potential and metabolic fitness in settings of chronic stimulation, and exhibited enhanced persistence and tumour control in vivo. By contrast, overexpression of TCF1 (encoded by TCF7) did not enforce canonical memory programs or enhance the potency of CAR T cells. Notably, FOXO1 activity correlated with positive clinical outcomes of patients treated with CAR T cells or tumour-infiltrating lymphocytes, underscoring the clinical relevance of FOXO1 in cancer immunotherapy. Our results show that overexpressing FOXO1 can increase the antitumour activity of human CAR T cells, and highlight memory reprogramming as a broadly applicable approach for optimizing therapeutic T cell states.
Collapse
Affiliation(s)
- Alexander E Doan
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Katherine P Mueller
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andy Y Chen
- Department of Pathology, Stanford University, Stanford, CA, USA
- Department of Bioengineering, Stanford University, Stanford, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Geoffrey T Rouin
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yingshi Chen
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bence Daniel
- Department of Pathology, Stanford University, Stanford, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA, USA
- Department of Genetics, Stanford University, Stanford, CA, USA
- Genentech, South San Francisco, CA, USA
| | - John Lattin
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Martina Markovska
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Brett Mozarsky
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jose Arias-Umana
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert Hapke
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - In-Young Jung
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Alice Wang
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Peng Xu
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Dorota Klysz
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Gabrielle Zuern
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Malek Bashti
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Patrick J Quinn
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Zhuang Miao
- Department of Genetics, Stanford University, Stanford, CA, USA
| | - Katalin Sandor
- Department of Pathology, Stanford University, Stanford, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Wenxi Zhang
- Department of Pathology, Stanford University, Stanford, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
| | - Gregory M Chen
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Faith Ryu
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Meghan Logun
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Junior Hall
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Kai Tan
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Stephan A Grupp
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Susan E McClory
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Caleb A Lareau
- Department of Pathology, Stanford University, Stanford, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Joseph A Fraietta
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elena Sotillo
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Ansuman T Satpathy
- Department of Pathology, Stanford University, Stanford, CA, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA
| | - Crystal L Mackall
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
- Department of Pediatrics, Stanford University, Stanford, CA, USA.
- Department of Medicine, Stanford University, Stanford, CA, USA.
| | - Evan W Weber
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Center for Cellular and Molecular Therapeutics, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Center for Childhood Cancer Research, Children's Hospital of Philadelphia, Philadelphia, PA, USA.
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Parker Institute for Cancer Immunotherapy, San Francisco, CA, USA.
| |
Collapse
|
23
|
Enriquez-Rodriguez L, Attia N, Gallego I, Mashal M, Maldonado I, Puras G, Pedraz JL. Expanding the horizon of transient CAR T therapeutics using virus-free technology. Biotechnol Adv 2024; 72:108350. [PMID: 38537878 DOI: 10.1016/j.biotechadv.2024.108350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/14/2024] [Accepted: 03/24/2024] [Indexed: 04/01/2024]
Abstract
The extraordinary success that chimeric antigen receptor (CAR) T cell therapies have shown over the years on fighting hematological malignancies is evidenced by the six FDA-approved products present on the market. CAR T treatments have forever changed the way we understand cellular immunotherapies, as current research in the topic is expanding even outside the field of cancer with very promising results. Until now, virus-based strategies have been used for CAR T cell manufacturing. However, this methodology presents relevant limitations that need to be addressed prior to wide spreading this technology to other pathologies and in order to optimize current cancer treatments. Several approaches are being explored to overcome these challenges such as virus-free alternatives that additionally offer the possibility of developing transient CAR expression or in vivo T cell modification. In this review, we aim to spotlight a pivotal juncture in the history of medicine where a significant change in perspective is occurring. We review the current progress made on viral-based CAR T therapies as well as their limitations and we discuss the future outlook of virus-free CAR T strategies to overcome current challenges and achieve affordable immunotherapies for a wide variety of pathologies, including cancer.
Collapse
Affiliation(s)
- Lucia Enriquez-Rodriguez
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Noha Attia
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Histology and Cell Biology Department, Faculty of Medicine, University of Alexandria, Alexandria, Egypt
| | - Idoia Gallego
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Mohamed Mashal
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain
| | - Iván Maldonado
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - Gustavo Puras
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain
| | - José Luis Pedraz
- NanoBioCel Research Group, Laboratory of Pharmacy and Pharmaceutical Technology, Faculty of Pharmacy, University of the Basque Country (UPV/EHU), Vitoria-Gasteiz, Spain; Networking Research Centre of Bioengineering, Biomaterials and Nanomedicine (CIBER-BBN), Institute of Health Carlos III, Vitoria-Gasteiz, Spain; Bioaraba, NanoBioCel Research Group, Vitoria-Gasteiz, Spain.
| |
Collapse
|
24
|
van Hees EP, Morton LT, Remst DFG, Wouters AK, Van den Eynde A, Falkenburg JHF, Heemskerk MH. Self-sufficient primary natural killer cells engineered to express T cell receptors and interleukin-15 exhibit improved effector function and persistence. Front Immunol 2024; 15:1368290. [PMID: 38690288 PMCID: PMC11058644 DOI: 10.3389/fimmu.2024.1368290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024] Open
Abstract
Background NK cells can be genetically engineered to express a transgenic T-cell receptor (TCR). This approach offers an alternative strategy to target heterogenous tumors, as NK:TCR cells can eradicate both tumor cells with high expression of HLA class I and antigen of interest or HLA class I negative tumors. Expansion and survival of NK cells relies on the presence of IL-15. Therefore, autonomous production of IL-15 by NK:TCR cells might improve functional persistence of NK cells. Here we present an optimized NK:TCR product harnessed with a construct encoding for soluble IL-15 (NK:TCR/IL-15), to support their proliferation, persistence and cytotoxic capabilities. Methods Expression of tumor-specific TCRs in peripheral blood derived NK-cells was achieved following retroviral transduction. NK:TCR/IL-15 cells were compared with NK:TCR cells for autonomous cytokine production, proliferation and survival. NK:BOB1-TCR/IL-15 cells, expressing a HLA-B*07:02-restricted TCR against BOB1, a B-cell lineage specific transcription factor highly expressed in all B-cell malignancies, were compared with control NK:BOB1-TCR and NK:CMV-TCR/IL-15 cells for effector function against TCR antigen positive malignant B-cell lines in vitro and in vivo. Results Viral incorporation of the interleukin-15 gene into engineered NK:TCR cells was feasible and high expression of the TCR was maintained, resulting in pure NK:TCR/IL-15 cell products generated from peripheral blood of multiple donors. Self-sufficient secretion of IL-15 by NK:TCR cells enables engineered NK cells to proliferate in vitro without addition of extra cytokines. NK:TCR/IL-15 demonstrated a marked enhancement of TCR-mediated cytotoxicity as well as enhanced NK-mediated cytotoxicity resulting in improved persistence and performance of NK:BOB1-TCR/IL-15 cells in an orthotopic multiple myeloma mouse model. However, in contrast to prolonged anti-tumor reactivity by NK:BOB1-TCR/IL-15, we observed in one of the experiments an accumulation of NK:BOB1-TCR/IL-15 cells in several organs of treated mice, leading to unexpected death 30 days post-NK infusion. Conclusion This study showed that NK:TCR/IL-15 cells secrete low levels of IL-15 and can proliferate in an environment lacking cytokines. Repeated in vitro and in vivo experiments confirmed the effectiveness and target specificity of our product, in which addition of IL-15 supports TCR- and NK-mediated cytotoxicity.
Collapse
Affiliation(s)
- Els P. van Hees
- Department of Hematology, Leiden University Medical Centre (LUMC), Leiden, Netherlands
| | - Laura T. Morton
- Department of Hematology, Leiden University Medical Centre (LUMC), Leiden, Netherlands
| | - Dennis F. G. Remst
- Department of Hematology, Leiden University Medical Centre (LUMC), Leiden, Netherlands
| | - Anne K. Wouters
- Department of Hematology, Leiden University Medical Centre (LUMC), Leiden, Netherlands
| | - Astrid Van den Eynde
- Center for Oncological Research (CORE), Integrated Personalized and Precision Oncology Network (IPPON), Antwerp, Belgium
| | | | - Mirjam H.M. Heemskerk
- Department of Hematology, Leiden University Medical Centre (LUMC), Leiden, Netherlands
| |
Collapse
|
25
|
Bhatt B, García-Díaz P, Foight GW. Synthetic transcription factor engineering for cell and gene therapy. Trends Biotechnol 2024; 42:449-463. [PMID: 37865540 DOI: 10.1016/j.tibtech.2023.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/23/2023]
Abstract
Synthetic transcription factors (synTFs) that control beneficial transgene expression are an important method to increase the safety and efficacy of cell and gene therapy. Reliance on synTF components from non-human sources has slowed progress in the field because of concerns about immunogenicity and inducer drug properties. Recent advances in human-derived DNA-binding domains (DBDs) and transcriptional activation domains (TADs) paired with novel control modules responsive to clinically approved small molecules have poised the synTF field to overcome these hurdles. Advances include controllers inducible by autonomous signaling inputs and more complex, multi-input synTF circuits. Demonstrations of advanced control strategies with human-derived transcription factor components in clinically relevant vectors and in vivo models will facilitate progression into the clinic.
Collapse
Affiliation(s)
- Bhoomi Bhatt
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, and Baylor College of Medicine, Houston, TX, USA
| | - Pablo García-Díaz
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, and Baylor College of Medicine, Houston, TX, USA
| | - Glenna Wink Foight
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, and Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
26
|
Mei J, Liu X, Tian H, Chen Y, Cao Y, Zeng J, Liu Y, Chen Y, Gao Y, Yin J, Wang P. Tumour organoids and assembloids: Patient-derived cancer avatars for immunotherapy. Clin Transl Med 2024; 14:e1656. [PMID: 38664597 PMCID: PMC11045561 DOI: 10.1002/ctm2.1656] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 03/24/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
BACKGROUND Organoid technology is an emerging and rapidly growing field that shows promise in studying organ development and screening therapeutic regimens. Although organoids have been proposed for a decade, concerns exist, including batch-to-batch variations, lack of the native microenvironment and clinical applicability. MAIN BODY The concept of organoids has derived patient-derived tumour organoids (PDTOs) for personalized drug screening and new drug discovery, mitigating the risks of medication misuse. The greater the similarity between the PDTOs and the primary tumours, the more influential the model will be. Recently, 'tumour assembloids' inspired by cell-coculture technology have attracted attention to complement the current PDTO technology. High-quality PDTOs must reassemble critical components, including multiple cell types, tumour matrix, paracrine factors, angiogenesis and microorganisms. This review begins with a brief overview of the history of organoids and PDTOs, followed by the current approaches for generating PDTOs and tumour assembloids. Personalized drug screening has been practised; however, it remains unclear whether PDTOs can predict immunotherapies, including immune drugs (e.g. immune checkpoint inhibitors) and immune cells (e.g. tumour-infiltrating lymphocyte, T cell receptor-engineered T cell and chimeric antigen receptor-T cell). PDTOs, as cancer avatars of the patients, can be expanded and stored to form a biobank. CONCLUSION Fundamental research and clinical trials are ongoing, and the intention is to use these models to replace animals. Pre-clinical immunotherapy screening using PDTOs will be beneficial to cancer patients. KEY POINTS The current PDTO models have not yet constructed key cellular and non-cellular components. PDTOs should be expandable and editable. PDTOs are promising preclinical models for immunotherapy unless mature PDTOs can be established. PDTO biobanks with consensual standards are urgently needed.
Collapse
Affiliation(s)
- Jie Mei
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of AgingWenzhou Medical UniversityWenzhouPeople's Republic of China
- Department of Clinical Pharmacology, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of PharmacogeneticsCentral South UniversityChangshaPeople's Republic of China
- Engineering Research Center of Applied Technology of PharmacogenomicsMinistry of EducationChangshaPeople's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
| | - Xingjian Liu
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of AgingWenzhou Medical UniversityWenzhouPeople's Republic of China
| | - Hui‐Xiang Tian
- Department of Clinical Pharmacology, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of PharmacogeneticsCentral South UniversityChangshaPeople's Republic of China
| | - Yixuan Chen
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of AgingWenzhou Medical UniversityWenzhouPeople's Republic of China
| | - Yang Cao
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of AgingWenzhou Medical UniversityWenzhouPeople's Republic of China
| | - Jun Zeng
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of AgingWenzhou Medical UniversityWenzhouPeople's Republic of China
- Department of Thoracic Surgery, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
| | - Yung‐Chiang Liu
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of AgingWenzhou Medical UniversityWenzhouPeople's Republic of China
| | - Yaping Chen
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of AgingWenzhou Medical UniversityWenzhouPeople's Republic of China
| | - Yang Gao
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
- Department of Thoracic Surgery, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
- Hunan Engineering Research Center for Pulmonary Nodules Precise Diagnosis and Treatment, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
- Xiangya Lung Cancer Center, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
| | - Ji‐Ye Yin
- Department of Clinical Pharmacology, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of PharmacogeneticsCentral South UniversityChangshaPeople's Republic of China
- Engineering Research Center of Applied Technology of PharmacogenomicsMinistry of EducationChangshaPeople's Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya HospitalCentral South UniversityChangshaPeople's Republic of China
| | - Peng‐Yuan Wang
- Oujiang Laboratory; Key Laboratory of Alzheimer's Disease of Zhejiang Province, Institute of AgingWenzhou Medical UniversityWenzhouPeople's Republic of China
| |
Collapse
|
27
|
Kann MC, Schneider EM, Almazan AJ, Lane IC, Bouffard AA, Supper VM, Takei HN, Tepper A, Leick MB, Larson RC, Ebert BL, Maus MV, Jan M. Chemical genetic control of cytokine signaling in CAR-T cells using lenalidomide-controlled membrane-bound degradable IL-7. Leukemia 2024; 38:590-600. [PMID: 38123696 PMCID: PMC11774338 DOI: 10.1038/s41375-023-02113-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/19/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023]
Abstract
CAR-T cell therapy has emerged as a breakthrough therapy for the treatment of relapsed and refractory hematologic malignancies. However, insufficient CAR-T cell expansion and persistence is a leading cause of treatment failure. Exogenous or transgenic cytokines have great potential to enhance CAR-T cell potency but pose the risk of exacerbating toxicities. Here we present a chemical-genetic system for spatiotemporal control of cytokine function gated by the off-patent anti-cancer molecular glue degrader drug lenalidomide and its analogs. When co-delivered with a CAR, a membrane-bound, lenalidomide-degradable IL-7 fusion protein enforced a clinically favorable T cell phenotype, enhanced antigen-dependent proliferative capacity, and enhanced in vivo tumor control. Furthermore, cyclical pharmacologic combined control of CAR and cytokine abundance enabled the deployment of highly active, IL-7-augmented CAR-T cells in a dual model of antitumor potency and T cell hyperproliferation.
Collapse
Affiliation(s)
- Michael C Kann
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Emily M Schneider
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA
| | - Antonio J Almazan
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Isabel C Lane
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Amanda A Bouffard
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Valentina M Supper
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Hana N Takei
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA
| | - Alexander Tepper
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
| | - Mark B Leick
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Blood and Bone Marrow Transplant Program, Massachusetts General Hospital, Boston, MA, USA
| | - Rebecca C Larson
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Benjamin L Ebert
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Howard Hughes Medical Institute, Bethesda, MD, USA
| | - Marcela V Maus
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA.
- Harvard Medical School, Boston, MA, USA.
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA.
| | - Max Jan
- Cellular Immunotherapy Program, Cancer Center, Massachusetts General Hospital, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
- Cancer Program, Broad Institute of Harvard and MIT, Cambridge, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
28
|
Sun D, Shi X, Li S, Wang X, Yang X, Wan M. CAR‑T cell therapy: A breakthrough in traditional cancer treatment strategies (Review). Mol Med Rep 2024; 29:47. [PMID: 38275119 PMCID: PMC10835665 DOI: 10.3892/mmr.2024.13171] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/18/2023] [Indexed: 01/27/2024] Open
Abstract
Chimeric antigen receptor (CAR)‑T cell therapy is an innovative approach to immune cell therapy that works by modifying the T cells of a patient to express the CAR protein on their surface, and thus induce their recognition and destruction of cancer cells. CAR‑T cell therapy has shown some success in treating hematological tumors, but it still faces a number of challenges in the treatment of solid tumors, such as antigen selection, tolerability and safety. In response to these issues, studies continue to improve the design of CAR‑T cells in pursuit of improved therapeutic efficacy and safety. In the future, CAR‑T cell therapy is expected to become an important cancer treatment, and may provide new ideas and strategies for individualized immunotherapy. The present review provides a comprehensive overview of the principles, clinical applications, therapeutic efficacy and challenges of CAR‑T cell therapy.
Collapse
Affiliation(s)
- Dahua Sun
- Department of General Surgery, Qianjiang Central Hospital, Qianjiang, Hubei 433100, P.R. China
| | - Xiang Shi
- Department of Pathology, Qianjiang Central Hospital, Qianjiang, Hubei 433100, P.R. China
| | - Sanyan Li
- Department of Pathology, Qianjiang Central Hospital, Qianjiang, Hubei 433100, P.R. China
| | - Xiaohua Wang
- Department of Obstetrics, Qianjiang Central Hospital, Qianjiang, Hubei 433100, P.R. China
| | - Xiao Yang
- Department of General Surgery, Qianjiang Central Hospital, Qianjiang, Hubei 433100, P.R. China
| | - Meiping Wan
- Department of Traditional Chinese Medicine, Qianjiang Central Hospital, Qianjiang, Hubei 433100, P.R. China
| |
Collapse
|
29
|
Albelda SM. CAR T cell therapy for patients with solid tumours: key lessons to learn and unlearn. Nat Rev Clin Oncol 2024; 21:47-66. [PMID: 37904019 DOI: 10.1038/s41571-023-00832-4] [Citation(s) in RCA: 154] [Impact Index Per Article: 154.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/09/2023] [Indexed: 11/01/2023]
Abstract
Chimeric antigen receptor (CAR) T cells have been approved for use in patients with B cell malignancies or relapsed and/or refractory multiple myeloma, yet efficacy against most solid tumours remains elusive. The limited imaging and biopsy data from clinical trials in this setting continues to hinder understanding, necessitating a reliance on imperfect preclinical models. In this Perspective, I re-evaluate current data and suggest potential pathways towards greater success, drawing lessons from the few successful trials testing CAR T cells in patients with solid tumours and the clinical experience with tumour-infiltrating lymphocytes. The most promising approaches include the use of pluripotent stem cells, co-targeting multiple mechanisms of immune evasion, employing multiple co-stimulatory domains, and CAR ligand-targeting vaccines. An alternative strategy focused on administering multiple doses of short-lived CAR T cells in an attempt to pre-empt exhaustion and maintain a functional effector pool should also be considered.
Collapse
Affiliation(s)
- Steven M Albelda
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
- Pulmonary and Critical Care Division, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
30
|
Zhai Y, Du Y, Li G, Yu M, Hu H, Pan C, Wang D, Shi Z, Yan X, Li X, Jiang T, Zhang W. Trogocytosis of CAR molecule regulates CAR-T cell dysfunction and tumor antigen escape. Signal Transduct Target Ther 2023; 8:457. [PMID: 38143263 PMCID: PMC10749292 DOI: 10.1038/s41392-023-01708-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 10/19/2023] [Accepted: 11/15/2023] [Indexed: 12/26/2023] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy has demonstrated clinical response in treating both hematologic malignancies and solid tumors. Although instances of rapid tumor remissions have been observed in animal models and clinical trials, tumor relapses occur with multiple therapeutic resistance mechanisms. Furthermore, while the mechanisms underlying the long-term therapeutic resistance are well-known, short-term adaptation remains less understood. However, more views shed light on short-term adaptation and hold that it provides an opportunity window for long-term resistance. In this study, we explore a previously unreported mechanism in which tumor cells employ trogocytosis to acquire CAR molecules from CAR-T cells, a reversal of previously documented processes. This mechanism results in the depletion of CAR molecules and subsequent CAR-T cell dysfunction, also leading to short-term antigen loss and antigen masking. Such type of intercellular communication is independent of CAR downstream signaling, CAR-T cell condition, target antigen, and tumor cell type. However, it is mainly dependent on antigen density and CAR sensitivity, and is associated with tumor cell cholesterol metabolism. Partial mitigation of this trogocytosis-induced CAR molecule transfer can be achieved by adaptively administering CAR-T cells with antigen density-individualized CAR sensitivities. Together, our study reveals a dynamic process of CAR molecule transfer and refining the framework of clinical CAR-T therapy for solid tumors.
Collapse
Affiliation(s)
- You Zhai
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Yicong Du
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing, PR China
| | - Guanzhang Li
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Mingchen Yu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
| | - Huimin Hu
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
| | - Changqing Pan
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Di Wang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China
| | - Zhongfang Shi
- Department of Pathophysiology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
| | - Xu Yan
- Department of Pathophysiology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China
| | - Xuesong Li
- Department of Urology, Peking University First Hospital, Institute of Urology, Peking University, National Urological Cancer Center, Beijing, PR China
| | - Tao Jiang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, PR China.
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China.
- China National Clinical Research Center for Neurological Diseases, Beijing, PR China.
- Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, PR China.
- Research Unit of Accurate Diagnosis, Treatment, and Translational Medicine of Brain Tumors, Chinese Academy of Medical Sciences, Beijing, PR China.
- Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, PR China.
| | - Wei Zhang
- Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, PR China.
- China National Clinical Research Center for Neurological Diseases, Beijing, PR China.
- Center of Brain Tumor, Beijing Institute for Brain Disorders, Beijing, PR China.
- Chinese Glioma Genome Atlas Network (CGGA) and Asian Glioma Genome Atlas Network (AGGA), Beijing, PR China.
| |
Collapse
|
31
|
Chen R, Chen L, Wang C, Zhu H, Gu L, Li Y, Xiong X, Chen G, Jian Z. CAR-T treatment for cancer: prospects and challenges. Front Oncol 2023; 13:1288383. [PMID: 38115906 PMCID: PMC10728652 DOI: 10.3389/fonc.2023.1288383] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/21/2023] [Indexed: 12/21/2023] Open
Abstract
Chimeric antigen receptor (CAR-T) cell therapy has been widely used in hematological malignancies and has achieved remarkable results, but its long-term efficacy in solid tumors is greatly limited by factors such as the tumor microenvironment (TME). In this paper, we discuss the latest research and future views on CAR-T cell cancer immunotherapy, compare the different characteristics of traditional immunotherapy and CAR-T cell therapy, introduce the latest progress in CAR-T cell immunotherapy, and analyze the obstacles that hinder the efficacy of CAR-T cell therapy, including immunosuppressive factors, metabolic energy deficiency, and physical barriers. We then further discuss the latest therapeutic strategies to overcome these barriers, as well as management decisions regarding the possible safety issues of CAR-T cell therapy, to facilitate solutions to the limited use of CAR-T immunotherapy.
Collapse
Affiliation(s)
- Ran Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lei Chen
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Chaoqun Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Hua Zhu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Lijuan Gu
- Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yuntao Li
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoxing Xiong
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Gang Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhihong Jian
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
32
|
Doan A, Mueller KP, Chen A, Rouin GT, Daniel B, Lattin J, Chen Y, Mozarsky B, Markovska M, Arias-Umana J, Hapke R, Jung I, Xu P, Klysz D, Bashti M, Quinn PJ, Sandor K, Zhang W, Hall J, Lareau C, Grupp SA, Fraietta JA, Sotillo E, Satpathy AT, Mackall CL, Weber EW. FOXO1 is a master regulator of CAR T memory programming. RESEARCH SQUARE 2023:rs.3.rs-2802998. [PMID: 37986944 PMCID: PMC10659532 DOI: 10.21203/rs.3.rs-2802998/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2023]
Abstract
Poor CAR T persistence limits CAR T cell therapies for B cell malignancies and solid tumors1,2. The expression of memory-associated genes such as TCF7 (protein name TCF1) is linked to response and long-term persistence in patients3-7, thereby implicating memory programs in therapeutic efficacy. Here, we demonstrate that the pioneer transcription factor, FOXO1, is responsible for promoting memory programs and restraining exhaustion in human CAR T cells. Pharmacologic inhibition or gene editing of endogenous FOXO1 in human CAR T cells diminished the expression of memory-associated genes, promoted an exhaustion-like phenotype, and impaired antitumor activity in vitro and in vivo. FOXO1 overexpression induced a gene expression program consistent with T cell memory and increased chromatin accessibility at FOXO1 binding motifs. FOXO1-overexpressing cells retained function, memory potential, and metabolic fitness during settings of chronic stimulation and exhibited enhanced persistence and antitumor activity in vivo. In contrast, TCF1 overexpression failed to enforce canonical memory programs or enhance CAR T cell potency. Importantly, endogenous FOXO1 activity correlated with CAR T and TIL responses in patients, underscoring its clinical relevance in cancer immunotherapy. Our results demonstrate that memory reprogramming through FOXO1 can enhance the persistence and potency of human CAR T cells and highlights the utility of pioneer factors, which bind condensed chromatin and induce local epigenetic remodeling, for optimizing therapeutic T cell states.
Collapse
Affiliation(s)
- Alexander Doan
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Katherine P Mueller
- Department of Pediatrics, Division of Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
- Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Andy Chen
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
- Department of Bioengineering, Stanford University, Stanford, CA 94305, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
| | - Geoffrey T Rouin
- Department of Pediatrics, Division of Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
- Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Cell and Molecular Biology Graduate Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Bence Daniel
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA
| | - John Lattin
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yingshi Chen
- Department of Pediatrics, Division of Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
- Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Brett Mozarsky
- Department of Pediatrics, Division of Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
- Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Martina Markovska
- Department of Pediatrics, Division of Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
- Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Jose Arias-Umana
- Department of Pediatrics, Division of Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
- Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Cell and Molecular Biology Graduate Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Robert Hapke
- Department of Pediatrics, Division of Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
- Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Cell and Molecular Biology Graduate Program, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Inyoung Jung
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Peng Xu
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dorota Klysz
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Malek Bashti
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Patrick J Quinn
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Katalin Sandor
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
| | - Wenxi Zhang
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Junior Hall
- Department of Pediatrics, Division of Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
- Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Caleb Lareau
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129 USA
| | - Stephan A Grupp
- Department of Pediatrics, Division of Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
- Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Joseph A Fraietta
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Microbiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Elena Sotillo
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ansuman T Satpathy
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
- Gladstone-UCSF Institute of Genomic Immunology, San Francisco, CA 94158, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129 USA
| | - Crystal L Mackall
- Center for Cancer Cell Therapy, Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129 USA
- Division of Hematology, Oncology, Stem Cell Transplantation and Regenerative Medicine, Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
- Division of Blood and Marrow Transplantation and Cell Therapy, Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Evan W Weber
- Department of Pediatrics, Division of Oncology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
- Center for Childhood Cancer Research, The Children's Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Raymond G. Perelman Center for Cellular and Molecular Therapeutics, The Children's Hospital of Philadelphia, Philadelphia, PA, 19104, USA
- Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Center for Cellular Immunotherapies, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129 USA
| |
Collapse
|
33
|
Giordano Attianese GMP, Ash S, Irving M. Coengineering specificity, safety, and function into T cells for cancer immunotherapy. Immunol Rev 2023; 320:166-198. [PMID: 37548063 DOI: 10.1111/imr.13252] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 07/03/2023] [Indexed: 08/08/2023]
Abstract
Adoptive T-cell transfer (ACT) therapies, including of tumor infiltrating lymphocytes (TILs) and T cells gene-modified to express either a T cell receptor (TCR) or a chimeric antigen receptor (CAR), have demonstrated clinical efficacy for a proportion of patients and cancer-types. The field of ACT has been driven forward by the clinical success of CD19-CAR therapy against various advanced B-cell malignancies, including curative responses for some leukemia patients. However, relapse remains problematic, in particular for lymphoma. Moreover, for a variety of reasons, relative limited efficacy has been demonstrated for ACT of non-hematological solid tumors. Indeed, in addition to pre-infusion challenges including lymphocyte collection and manufacturing, ACT failure can be attributed to several biological processes post-transfer including, (i) inefficient tumor trafficking, infiltration, expansion and retention, (ii) chronic antigen exposure coupled with insufficient costimulation resulting in T-cell exhaustion, (iii) a range of barriers in the tumor microenvironment (TME) mediated by both tumor cells and suppressive immune infiltrate, (iv) tumor antigen heterogeneity and loss, or down-regulation of antigen presentation machinery, (v) gain of tumor intrinsic mechanisms of resistance such as to apoptosis, and (vi) various forms of toxicity and other adverse events in patients. Affinity-optimized TCRs can improve T-cell function and innovative CAR designs as well as gene-modification strategies can be used to coengineer specificity, safety, and function into T cells. Coengineering strategies can be designed not only to directly support the transferred T cells, but also to block suppressive barriers in the TME and harness endogenous innate and adaptive immunity. Here, we review a selection of the remarkable T-cell coengineering strategies, including of tools, receptors, and gene-cargo, that have been developed in recent years to augment tumor control by ACT, more and more of which are advancing to the clinic.
Collapse
Affiliation(s)
- Greta Maria Paola Giordano Attianese
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Sarah Ash
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Melita Irving
- Department of Oncology, Ludwig Institute for Cancer Research Lausanne, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
34
|
Bulliard Y, Andersson BS, Baysal MA, Damiano J, Tsimberidou AM. Reprogramming T cell differentiation and exhaustion in CAR-T cell therapy. J Hematol Oncol 2023; 16:108. [PMID: 37880715 PMCID: PMC10601191 DOI: 10.1186/s13045-023-01504-7] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 10/12/2023] [Indexed: 10/27/2023] Open
Abstract
T cell differentiation is a highly regulated, multi-step process necessary for the progressive establishment of effector functions, immunological memory, and long-term control of pathogens. In response to strong stimulation, as seen in severe or chronic infections or cancer, T cells acquire a state of hypo-responsiveness known as exhaustion, limiting their effector function. Recent advances in autologous chimeric antigen receptor (CAR)-T cell therapies have revolutionized the treatment of hematologic malignancies by taking advantage of the basic principles of T cell biology to engineer products that promote long-lasting T cell response. However, many patients' malignancies remain unresponsive to treatment or are prone to recur. Discoveries in T cell biology, including the identification of key regulators of differentiation and exhaustion, offer novel opportunities to have a durable impact on the fate of CAR-T cells after infusion. Such next-generation CAR-T cell therapies and their clinical implementation may result in the next leap forward in cancer treatment for selected patients. In this context, this review summarizes the foundational principles of T cell differentiation and exhaustion and describes how they can be utilized and targeted to further improve the design and efficacy of CAR-T cell therapies.
Collapse
Affiliation(s)
| | - Borje S Andersson
- Department of Stem Cell Transplantation and Cellular Therapy, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Boulevard, Houston, TX, 77030, USA
| | - Mehmet A Baysal
- Unit 455, Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA
| | - Jason Damiano
- Appia Bio, 6160 Bristol Pkwy, Culver City, CA, 90230, USA
| | - Apostolia M Tsimberidou
- Unit 455, Department of Investigational Cancer Therapeutics, The University of Texas MD Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX, 77030, USA.
| |
Collapse
|
35
|
Kropp KN, Klebanoff CA. Less, but better: A simplified design for T cell redirection and conditional payload delivery. Cancer Cell 2022; 40:1454-1456. [PMID: 36513045 DOI: 10.1016/j.ccell.2022.11.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Combining immune receptor engineering with conditional expression of accessory molecules holds great promise for advancing the field of cell-based immunotherapies. In this issue of Cancer Cell, Smole et al. introduce a modular single vector system to simultaneously redirect T cell specificity toward cancer antigens while achieving activation-gated delivery of customizable payloads.
Collapse
Affiliation(s)
- Korbinian N Kropp
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA; Center for Cell Engineering, MSKCC, New York, NY 10065, USA
| | - Christopher A Klebanoff
- Immuno-Oncology Service, Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center (MSKCC), New York, NY 10065, USA; Center for Cell Engineering, MSKCC, New York, NY 10065, USA; Parker Institute for Cancer Immunotherapy, MSKCC, New York, NY 10065, USA; Weill Cornell Medical College, New York, NY 10065, USA.
| |
Collapse
|