1
|
Zhang Z, Sun Y, Zeng Z, Li D, Cao W, Lei S, Chen T. Identification of the clinical value and biological effects of TTN mutation in liver cancer. Mol Med Rep 2025; 31:165. [PMID: 40242970 PMCID: PMC12012433 DOI: 10.3892/mmr.2025.13530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/11/2025] [Indexed: 04/18/2025] Open
Abstract
Liver cancer, a malignant tumor of the digestive system, is a leading cause of cancer‑related mortality globally. Numerous genetic mutations associated with tumorigenesis have been identified, stemming from genomic instability. However, the clinical implications and therapeutic relevance of these mutations remain poorly understood. The present study evaluated the prognostic significance of titin (TTN) mutations in liver cancer by analyzing the mutation landscape of liver cancer tissues from The Cancer Genome Atlas (TCGA) database. The association between TTN mutations and drug susceptibility was subsequently examined using the OncoPredict algorithm and Cell Counting Kit‑8 (CCK‑8) assays. Furthermore, the impact of TTN mutations on hepatoma cell biology both in vivo and in vitro were assessed by reverse transcription‑quantitative PCR, protein stability assays, colony formation assays, tumor spheroid formation assays and subcutaneous tumor transplantation in BALB/c nude mice. Genetic analysis of the TCGA database revealed that TTN mutations are among the most frequent mutations in liver cancer. Patients with TTN mutations exhibited worse prognoses compared with those with the wild‑type allele. The OncoPredict algorithm and CCK‑8 assays revealed that TTN mutations are associated with altered drug sensitivity, particularly to GSK1904529A, nilotinib, 5‑fluorouracil (5‑FU) and sapitinib. Additionally, TTN mutations were shown to enhance TTN protein stability, decrease intracellular ferrous ion levels and significantly decrease liver cancer sensitivity to 5‑FU both in vitro and in vivo. The findings indicated that TTN mutations increase protein stability and lower intracellular ferrous ion levels, thereby suppressing ferroptosis and contributing to resistance to 5‑FU in hepatoma cells. These results suggest that TTN mutations are associated with poor prognosis in liver cancer and could serve as a predictive biomarker for liver cancer progression, prognosis and drug resistance.
Collapse
Affiliation(s)
- Zhixue Zhang
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
| | - Yating Sun
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
| | - Zhirui Zeng
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
- Guizhou Provincial Key Laboratory of Pathogenesis and Drug Research on Common Chronic Diseases, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
| | - Dahuan Li
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
| | - Wenpeng Cao
- Department of Anatomy, School of Basic Medicine, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
| | - Shan Lei
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
| | - Tengxiang Chen
- Department of Physiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
- Transformation Engineering Research Center of Chronic Disease Diagnosis and Treatment, Guizhou Medical University, Guiyang, Guizhou 550009, P.R. China
| |
Collapse
|
2
|
Leng B, Wang H, Ge Y, Sun X, Dong P, Dong X, Duan X, Wang Q, Xia Y, Ding L, Dai H, Liu T, Shi F, Zhang X, Yue J. Maintaining First-Line Therapy Plus Radiation Therapy May Prolong Progression-Free Survival and Delay Second-Line Therapy for Oligoprogressive Hepatocellular Carcinoma. Int J Radiat Oncol Biol Phys 2025; 122:325-338. [PMID: 39824367 DOI: 10.1016/j.ijrobp.2024.12.039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/01/2024] [Accepted: 12/31/2024] [Indexed: 01/20/2025]
Abstract
PURPOSE Optimal treatment strategies for patients with hepatocellular carcinoma with oligoprogression after first-line systemic therapy (FLST) remain undefined. We aimed to determine whether maintaining (ie, continuing) FLST plus radiation therapy (RT) for oligoprogressive lesions (m-FLST + RT) would result in progression-free survival (PFS) equal to or greater than that of second-line systemic therapy (s-SLST), either alone or with RT (s-SLST + RT). METHODS AND MATERIALS From October 2018 to February 2024, 154 patients from 7 medical centers who developed oligoprogression after FLST were enrolled and assigned to 1 of 3 groups based on post-oligoprogression treatment strategy: m-FLST + RT, s-SLST + RT, or s-SLST-only. The primary outcome was PFS, and early patterns of recurrence were noted. RESULTS At a median follow-up time of 8.4 months, the median PFS time was longer in the m-FLST + RT group (8.6 months) compared with the s-SLS-only group (3.1 months) (hazard ratio, 3.163; 95% CI, 2.133-4.690; P < .001) and the s-SLST + RT group (5.8 months) (hazard ratio, 2.183; 95% CI, 1.110-4.293; P = .006). Multivariate Cox analysis demonstrated that albumin-bilirubin (ALBI) grade and postoligoprogression treatment strategy were independent prognostic factors for PFS. Stratified analysis by ALBI grade showed that m-FLST + RT resulted in significantly longer median PFS in patients with both ALBI-1 and ALBI-2 compared with s-SLST-only (P < .001). Regarding subsequent patterns of relapse, the m-FLST + RT group had a lower rate of re-enlargement of recently oligoprogressive lesions (27.6%) than the s-SLST + RT (31.8%) and s-SLST-only (50.0%) groups. It also had the lowest rate of re-enlargement of previously identified metastases that did not progress during FLST (13.8%) compared with s-SLRT + RT (27.3%) and s-SLST-only (24.4%). CONCLUSIONS Our study suggests a potential clinical benefit of m-FLST + RT without the need for s-SLST and provides insights to optimize treatment strategies for oligoprogressive hepatocellular carcinoma.
Collapse
Affiliation(s)
- Boyu Leng
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Haohua Wang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China; Cheeloo College of Medicine, Shandong University Cancer Center, Jinan, Shandong, China
| | - Yunfan Ge
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China; Clinical Medical College, Shandong Second Medical University, Jinan, Shandong, China
| | - Xiaoli Sun
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Pingping Dong
- Department of Radiation Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xinzhe Dong
- Department of Radiation Oncology, Qilu Hospital of Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xuezhang Duan
- Department of Radiation Oncology, Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Quan Wang
- Department of Radiation Oncology, Senior Department of Oncology, the Fifth Medical Center of PLA General Hospital, Beijing, China
| | - Yaoxiong Xia
- Department of Radiation Oncology, Yunnan Cancer Hospital/The Third Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, China
| | - Lijuan Ding
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, Jilin, China
| | - Honghai Dai
- Department of Radiation Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Tianxing Liu
- Department of Radiation Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China; Cheeloo College of Medicine, Shandong University, Shandong, China
| | - Fang Shi
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiang Zhang
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| | - Jinbo Yue
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
3
|
Shan L, Gong M, Zhai D, Meng X, Liu J, Lv X. Research progress of CD73-adenosine signaling regulating hepatocellular carcinoma through tumor microenvironment. J Exp Clin Cancer Res 2025; 44:161. [PMID: 40420185 PMCID: PMC12105175 DOI: 10.1186/s13046-025-03416-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 05/10/2025] [Indexed: 05/28/2025] Open
Abstract
Adenosine signaling pathway is a kind of signal regulation hub widely existing in human body, which is involved in a series of physiological processes such as energy supply of body cells. CD73 is a highly concerned signaling protein in purine adenosine pathway, and its role in tumor development and prognosis has been paid more and more attention in recent years, especially in hepatocellular carcinoma (HCC). In this paper, the specific mechanism by which CD73-adenosine signaling regulates tumor microenvironment (TME) of liver cancer tumors was analyzed in detail, highlighting the importance of this pathway as a therapeutic target to combat tumor immunosuppression and enhance the anti-tumor immune response to prevent and treat hepatocellular carcinoma (HCC). In addition, a variety of current targeted therapeutic strategies for adenosine metabolic pathways are summarized, including the development of new drugs in the stage of preclinical research and clinical trials, and the mechanism of action, implementation possibility, and clinical effects of these therapies are discussed. By summarizing the latest scientific research results, in this review, we attempt to paint a panorama of the mechanism of adenosine action in tumor immunotherapy, with the aim to provide a solid theoretical basis and practical guidance for subsequent research and clinical application, ultimately promoting the development of more accurate and efficient tumor immunotherapy.
Collapse
Affiliation(s)
- Liang Shan
- Department of Pharmacy, The Second People's Hospital of Hefei (Hefei Hospital Affiliated to Anhui Medical University), Hefei, Anhui, 230000, China
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, Anhui, 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, 230032, China
- The Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui Province, 230032, China
| | - Mingxu Gong
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, Anhui, 230032, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, 230032, China
- The Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui Province, 230032, China
| | - Dandan Zhai
- Department of Pharmacy, The Second People's Hospital of Hefei (Hefei Hospital Affiliated to Anhui Medical University), Hefei, Anhui, 230000, China
| | - Xiangyun Meng
- Department of Pharmacy, The Second People's Hospital of Hefei (Hefei Hospital Affiliated to Anhui Medical University), Hefei, Anhui, 230000, China
| | - Jianjun Liu
- Department of Pharmacy, The Second People's Hospital of Hefei (Hefei Hospital Affiliated to Anhui Medical University), Hefei, Anhui, 230000, China.
| | - Xiongwen Lv
- Anhui Province Key Laboratory of Major Autoimmune Diseases, Anhui Medical University, Hefei, Anhui, 230032, China.
- Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui, 230032, China.
- The Key Laboratory of Major Autoimmune Diseases, Hefei, Anhui Province, 230032, China.
| |
Collapse
|
4
|
Yang C, Zhang Y, Liu Y, Wu X, Sun F. Study on the molecular mechanism of UBA52 and BARD1 regulating hepatocellular carcinoma through the PI3 K/AKT signaling pathway. Discov Oncol 2025; 16:840. [PMID: 40397202 PMCID: PMC12095107 DOI: 10.1007/s12672-025-02600-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 05/06/2025] [Indexed: 05/22/2025] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the leading causes of cancer-related deaths globally, with its development closely related to complex molecular mechanisms such as gene mutations and abnormal signaling pathways. However, the specific roles of many key genes remain unclear. UBA52 and BARD1 are important genes associated with protein degradation, DNA repair, and cell cycle regulation, but their mechanisms in liver cancer are not well understood. METHODS This study integrated HCC datasets (GSE135631, GSE184733, GSE202853) from the gene expression omnibus (GEO) database to screen for differentially expressed genes (DEGs), perform functional enrichment analysis, weighted gene co-expression network analysis (WGCNA), construct protein-protein interaction (PPI) networks, and conduct survival analysis. Western Blot (WB) and RT-qPCR experiments were used to verify the expression of UBA52 and BARD1 in liver cancer cells and their association with the PI3K/AKT signaling pathway. RESULTS Bioinformatics analysis identified UBA52 and BARD1 as core genes, showing high expression in HCC tissues and correlation with poor prognosis. Western Blot and RT-qPCR results further confirmed the high expression of UBA52 and BARD1 in HCC cell lines (HepG2 and Hep3b). PI3K inhibitors significantly downregulated the expression of UBA52 and BARD1, restored the levels of apoptosis-related factors (Fas, BAX, Caspase-3), and inhibited the expression of cell cycle-related proteins (Cyclin-D1, c-Myc). These findings suggest that UBA52 and BARD1 may regulate HCC cell proliferation, apoptosis, and metastasis through the PI3K/AKT signaling pathway. Furthermore, the molecular mechanism of hepatocellular carcinoma can be modulated by knocking out BARD1 or UBA52. CONCLUSION UBA52 and BARD1 are highly expressed in HCC, and their abnormal expression may promote the occurrence and development of liver cancer by regulating the PI3K/AKT signaling pathway and mechanisms related to apoptosis and cell cycle. The high expression of UBA52 and BARD1 is closely associated with poor prognosis, indicating their potential value as early diagnostic and targeted therapeutic biomarkers for HCC.
Collapse
Affiliation(s)
- Chenrui Yang
- Department of General Surgery, Danzhou People's Hospital (Danzhou People's Hospital Medical Group), 21-1 Datong Road, Nada Town, Danzhou City, 571700, Hainan, China
| | - Yanzhong Zhang
- Department of General Surgery, Danzhou People's Hospital (Danzhou People's Hospital Medical Group), 21-1 Datong Road, Nada Town, Danzhou City, 571700, Hainan, China.
| | - Yajuan Liu
- Department of Clinical Pharmacy, Danzhou People's Hospital (Danzhou People's Hospital Medical Group), 21-1 Datong Road, Nada Town, Danzhou City, 571700, Hainan, China
| | - Xiaoyong Wu
- Department of General Surgery, Danzhou People's Hospital (Danzhou People's Hospital Medical Group), 21-1 Datong Road, Nada Town, Danzhou City, 571700, Hainan, China
| | - Fangyuan Sun
- Department of General Surgery, Danzhou People's Hospital (Danzhou People's Hospital Medical Group), 21-1 Datong Road, Nada Town, Danzhou City, 571700, Hainan, China
| |
Collapse
|
5
|
Zhang L, Zhou B, Yang J, Ren C, Luo J, Li Z, Liu Q, Huang Z, Wu Z, Jiang N. MTFR2-Mediated Fission Drives Fatty Acid and Mitochondrial Co-Transfer from Hepatic Stellate Cells to Tumor Cells Fueling Oncogenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2416419. [PMID: 40365837 DOI: 10.1002/advs.202416419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 04/17/2025] [Indexed: 05/15/2025]
Abstract
The tumor margin of hepatocellular carcinoma (HCC) is a critical zone where cancer cells invade the surrounding stroma, exhibiting unique and more invasive metabolic and migratory features compared to the tumor center, driving tumor expansion beyond the primary lesion. Studies have shown that at this critical interface, HCC cells primarily rely on fatty acid oxidation to meet their energy demands, although the underlying mechanisms remain unclear. This study demonstrates that activated hepatic stellate cells (HSCs) at the tumor margin play a pivotal role in sustaining the metabolic needs of HCC cells. Specifically, it is discovered that mitochondrial fission regulator 2 (MTFR2) in HSCs interacts with dynamin-related protein 1 (DRP1, a known mitochondrial fission machinery), preventing its lysosomal degradation, which in turn promotes mitochondrial fission. This MTFR2-driven mitochondrial fission enhances the transfer of both fatty acids and mitochondria to HCC cells, supplying essential metabolic substrates and reinforcing the mitochondrial machinery critical for tumor growth. The findings suggest that targeting MTFR2-driven mitochondrial fission may offer a novel therapeutic avenue for interfering with the metabolic crosstalk between tumor cells and the stromal niche.
Collapse
Affiliation(s)
- La Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, College of Basic Medical Sciences of Chongqing Medical University, Chongqing, 400016, China
- Department of Pathology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, 400016, China
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Baoyong Zhou
- Department of Hepatobiliary Surgery, Bishan Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jun Yang
- Department of Anesthesiology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Cong Ren
- Department of Medicinal Chemistry College of Pharmacy, Chongqing Medical University, Chongqing, 400016, China
| | - Jing Luo
- Department of Pathology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, 400016, China
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhenghang Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, College of Basic Medical Sciences of Chongqing Medical University, Chongqing, 400016, China
| | - Qiang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, College of Basic Medical Sciences of Chongqing Medical University, Chongqing, 400016, China
| | - Zuotian Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, College of Basic Medical Sciences of Chongqing Medical University, Chongqing, 400016, China
| | - Zhongjun Wu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, College of Basic Medical Sciences of Chongqing Medical University, Chongqing, 400016, China
| | - Ning Jiang
- Department of Pathology, College of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
- Molecular Medicine Diagnostic and Testing Center, Chongqing Medical University, Chongqing, 400016, China
- Department of Pathology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
6
|
Li L, Dong J, Xu C, Wang S. Lactate drives senescence-resistant lineages in hepatocellular carcinoma via histone H2B lactylation of NDRG1. Cancer Lett 2025; 616:217567. [PMID: 39978571 DOI: 10.1016/j.canlet.2025.217567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2025] [Revised: 02/11/2025] [Accepted: 02/15/2025] [Indexed: 02/22/2025]
Abstract
Hepatocellular carcinoma (HCC) treatment options remain limited despite advances in targeted therapies for molecularly-defined cancers. To address tumor heterogeneity, we reconstructed HCC clonal evolution through single-cell RNA sequencing trajectory analysis, identifying 902 signature genes across seven cellular states. Weighted gene co-expression network analysis of public HCC datasets revealed tumor-grade-associated modules and established a 14-gene prognostic model linked to clonal evolution. Central to this model is the LDHA-NDRG1 axis - two hypoxia-responsive regulators showing coordinated spatiotemporal expression patterns during cancer progression. Dual-expressing cell lineages correlated with poor prognosis and senescence resistance through LDHA-mediated lactylation of histone H2B at K58 on NDRG1, an epigenetic mechanism connecting metabolic reprogramming to senescence evasion. Therapeutically, dual inhibition of this axis extended survival in metastatic HCC murine models. Our findings reveal that lactate-driven epigenetic modification via the LDHA-NDRG1 axis creates a molecularly distinct subpopulation enabling senescence resistance, providing mechanistic insights into HCC heterogeneity. This work proposes a precision medicine strategy targeting lactylation-mediated epigenetic regulation, with implications for developing combination therapies and patient stratification based on clonal evolution patterns.
Collapse
Affiliation(s)
- Lu Li
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; Department of Nephrology, Children's Hospital, Zhejiang University School of Medicine, National Clinical Research Center for Child Health, Hangzhou, 310022, China
| | - Jinyun Dong
- Center for Innovative Drug Research, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China.
| | - Chunwei Xu
- Zhejiang Cancer Hospital, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310000, China.
| | - Shiqun Wang
- Cancer Institute, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China; Center for Innovative Drug Research, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Hangzhou, 310022, China.
| |
Collapse
|
7
|
Naxerova K. Evolutionary paths towards metastasis. Nat Rev Cancer 2025:10.1038/s41568-025-00814-x. [PMID: 40263543 DOI: 10.1038/s41568-025-00814-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/18/2025] [Indexed: 04/24/2025]
Abstract
The evolution of metastasis in humans is considerably less well understood than the biology of early carcinogenesis. For over a century, clinicians and scientists have been debating whether metastatic potential is the intrinsic property of a cancer, pre-determined by the molecular characteristics of the tumour founder cell, or whether metastatic capacity evolves in a stepwise fashion as the tumour grows, akin to the multistage accumulation of oncogenic alterations that give rise to the first cancer cell. In this Perspective, I examine how genetic analyses of primary tumours and matched metastases can distinguish between these two competing metastasis evolution models, with particular emphasis on the utility of metastatic randomness - a quantitative measure that reflects whether metastases arise from a random selection of primary tumour subclones or whether they are enriched for descendants of privileged lineages that have acquired pro-metastatic traits. Probable metastasis evolution trajectories in tumours with high and low baseline metastatic capacity are discussed, along with the role of seeding rates and selection at different metastatic host sites. Finally, I argue that trailblazing insights into human metastasis biology are immediately possible if we make a concerted effort to apply existing experimental and theoretical tools to the right patient cohorts.
Collapse
Affiliation(s)
- Kamila Naxerova
- Department of Genetics, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
8
|
Notaro M, Borghetti M, Bresesti C, Giacca G, Kerzel T, Mercado CM, Beretta S, Monti M, Merelli I, Iaia S, Genua M, Annoni A, Canu T, Cristofori P, Degl'Innocenti S, Sanvito F, Rancoita PMV, Ostuni R, Gregori S, Naldini L, Squadrito ML. In vivo armed macrophages curb liver metastasis through tumor-reactive T-cell rejuvenation. Nat Commun 2025; 16:3471. [PMID: 40216735 PMCID: PMC11992024 DOI: 10.1038/s41467-025-58369-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 03/18/2025] [Indexed: 04/14/2025] Open
Abstract
Despite recent progress in cancer treatment, liver metastases persist as an unmet clinical need. Here, we show that arming liver and tumor-associated macrophages in vivo to co-express tumor antigens (TAs), IFNα, and IL-12 unleashes robust anti-tumor immune responses, leading to the regression of liver metastases. Mechanistically, in vivo armed macrophages expand tumor reactive CD8+ T cells, which acquire features of progenitor exhausted T cells and kill cancer cells independently of CD4+ T cell help. IFNα and IL-12 produced by armed macrophages reprogram antigen presenting cells and rewire cellular interactions, rescuing tumor reactive T cell functions. In vivo armed macrophages trigger anti-tumor immunity in distinct liver metastasis mouse models of colorectal cancer and melanoma, expressing either surrogate tumor antigens, naturally occurring neoantigens or tumor-associated antigens. Altogether, our findings support the translational potential of in vivo armed liver macrophages to expand and rejuvenate tumor reactive T cells for the treatment of liver metastases.
Collapse
Affiliation(s)
- Marco Notaro
- Vector Engineering and In vivo Tumor Targeting Unit, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Maristella Borghetti
- Vector Engineering and In vivo Tumor Targeting Unit, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Chiara Bresesti
- Vector Engineering and In vivo Tumor Targeting Unit, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Giovanna Giacca
- Vector Engineering and In vivo Tumor Targeting Unit, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Vita-Salute San Raffaele University, Milan, Italy
| | - Thomas Kerzel
- Vector Engineering and In vivo Tumor Targeting Unit, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Carl Mirko Mercado
- Vector Engineering and In vivo Tumor Targeting Unit, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Stefano Beretta
- BioInformatics Core, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Monti
- BioInformatics Core, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Ivan Merelli
- BioInformatics Core, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Iaia
- Mechanisms of Peripheral Tolerance Unit and Immune Core, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Marco Genua
- Genomics of the Innate Immune System Unit, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Annoni
- Mechanisms of Peripheral Tolerance Unit and Immune Core, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Tamara Canu
- Preclinical Imaging Facility, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Patrizia Cristofori
- GLP Test Facility, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Sara Degl'Innocenti
- GLP Test Facility, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Francesca Sanvito
- GLP Test Facility, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
- Pathology Unit, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | | | - Renato Ostuni
- Vita-Salute San Raffaele University, Milan, Italy
- Genomics of the Innate Immune System Unit, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Silvia Gregori
- Mechanisms of Peripheral Tolerance Unit and Immune Core, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Luigi Naldini
- Vita-Salute San Raffaele University, Milan, Italy
- Targeted Cancer Gene Therapy Unit, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Mario Leonardo Squadrito
- Vector Engineering and In vivo Tumor Targeting Unit, San Raffaele Telethon Institute for Gene Therapy, IRCCS San Raffaele Scientific Institute, Milan, Italy.
- Vita-Salute San Raffaele University, Milan, Italy.
| |
Collapse
|
9
|
Lan X, Zhang H, Chen ZY, Wang J, Zhang SC, Li Q, Ke JY, Wei W, Huang R, Tang X, Chen SP, Huang TT, Zhou YW. Suppressor of cytokine signaling 2 modulates regulatory T cell activity to suppress liver hepatocellular carcinoma growth and metastasis. World J Gastroenterol 2025; 31:100566. [PMID: 40248063 PMCID: PMC12001165 DOI: 10.3748/wjg.v31.i13.100566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/27/2024] [Accepted: 03/11/2025] [Indexed: 04/02/2025] Open
Abstract
BACKGROUND Liver hepatocellular carcinoma (LIHC) is a highly aggressive cancer with poor prognosis due to its complex tumor microenvironment (TME) and immune evasion. Regulatory T cells (Tregs) play a critical role in tumor progression. Suppressor of cytokine signaling 2 (SOCS2), a key immune regulator, may modulate Treg activity and impact LIHC growth and metastasis. AIM To explore how the SOCS2 affects Treg activity in LIHC and its impact on tumor growth and metastasis. METHODS LIHC transcriptome data from The Cancer Genome Atlas database were analyzed using Gene Set Enrichment Analysis, Estimation of Stromal and Immune Cells in Malignant Tumors Using Expression Data, and Cell-Type Identification by Estimating Relative Subsets of RNA Transcripts to evaluate immune pathways and Treg infiltration. Key prognostic genes were identified using Weighted Gene Co-expression Network Analysis and machine learning. In vitro, co-culture experiments, migration assays, apoptosis detection, and enzyme-linked immunosorbent assay were conducted. In vivo, tumor growth, metastasis, and apoptosis were assessed using subcutaneous and lung metastasis mouse models with hematoxylin and eosin staining, Terminal Deoxynucleotidyl Transferase dUTP Nick End Labeling, and immunohistochemistry analyses. RESULTS SOCS2 overexpression inhibited Treg cell activity, reducing LIHC cell migration and invasion while increasing apoptosis. In vivo, SOCS2 suppressed tumor growth and metastasis, confirming its therapeutic potential. CONCLUSION SOCS2 modulates CD4+ T function in the TME, contributing to LIHC progression. Targeting SOCS2 presents a potential therapeutic strategy for treating LIHC.
Collapse
Affiliation(s)
- Xi Lan
- Clinical Laboratory Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| | - Heng Zhang
- Clinical Laboratory Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| | - Ze-Yan Chen
- Clinical Laboratory Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| | - Jing Wang
- Clinical Laboratory Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| | - Shi-Chang Zhang
- Clinical Laboratory Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| | - Qing Li
- Clinical Laboratory Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| | - Juan-Yu Ke
- Clinical Laboratory Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| | - Wei Wei
- Clinical Laboratory Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| | - Rong Huang
- Clinical Laboratory Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| | - Xi Tang
- Clinical Laboratory Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| | - Si-Ping Chen
- Clinical Laboratory Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| | - Ting-Ting Huang
- Clinical Laboratory Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| | - Yi-Wen Zhou
- Clinical Laboratory Center, Shenzhen Hospital, Southern Medical University, Shenzhen 518101, Guangdong Province, China
| |
Collapse
|
10
|
Wang X, Liu Y, Zhang S, Zhang J, Lin X, Liang Y, Zong M, Hanley KL, Lee J, Karin M, Feng GS. Genomic and transcriptomic analyses of chemical hepatocarcinogenesis aggravated by oncoprotein loss. Hepatology 2025; 81:1181-1196. [PMID: 39397357 DOI: 10.1097/hep.0000000000001037] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 07/10/2024] [Indexed: 10/15/2024]
Abstract
BACKGROUND AND AIMS The chemical carcinogen diethylnitrosamine (DEN) is often used to induce HCC in mice. Curiously, several labs have reported that the removal of oncoproteins from hepatocytes exacerbated DEN-induced HCC, with mechanisms unknown. This study aimed at deciphering molecular mechanisms underlying the tumor suppressive effect of oncoproteins. APPROACH AND RESULTS We generated mutant mouse lines with hepatocyte-specific deletions of Met , Ptpn11 / Shp2 , Ikkβ , or Ctnnb1/β-catenin and assessed DEN-induced tumorigenesis in the wild-type and mutant mice. To systematically examine genetic and molecular signaling alterations, we performed whole exome and RNA-sequencing on liver samples collected at the pre-cancer and established cancer stages. Although the mutational profiles of DEN-induced tumors were barely different in wild-type and mutant mice, oncoprotein ablation increased DEN-induced mutational burdens, especially in Shp2-deficient tumors. RNA-sequencing revealed multiple changes in signaling pathways, in particular, upregulated epithelial-mesenchymal transition, cell migration, and tumor metastasis, as well as downregulated small molecule metabolism that was affected by oncoprotein ablation. We identified key molecules and pathways that are associated with hepatic innate immunity and implicated in liver tumorigenesis. In addition, we unveiled markedly changed expression of a few miRNAs in the human HCC database. CONCLUSIONS The aggravation of DEN-induced HCC progression seen on oncoprotein ablation could be caused by common and distinct genomic and signaling alterations. This study reveals a new level of complexity in hepatocarcinogenesis and elucidates molecular mechanisms underlying tumor evolution and recurrence.
Collapse
Affiliation(s)
- Xinyi Wang
- Department of Pathology, School of Medicine, La Jolla, California, USA
- Department of Molecular Biology, School of Biological Sciences, La Jolla, California, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, California, USA
| | - Yingluo Liu
- Department of Pathology, School of Medicine, La Jolla, California, USA
- Department of Molecular Biology, School of Biological Sciences, La Jolla, California, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, California, USA
| | - Shuo Zhang
- Department of Pathology, School of Medicine, La Jolla, California, USA
- Department of Molecular Biology, School of Biological Sciences, La Jolla, California, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, California, USA
| | - Jiemeng Zhang
- Department of Pathology, School of Medicine, La Jolla, California, USA
- Department of Molecular Biology, School of Biological Sciences, La Jolla, California, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, California, USA
| | - Xiaoxue Lin
- Department of Pathology, School of Medicine, La Jolla, California, USA
- Department of Molecular Biology, School of Biological Sciences, La Jolla, California, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, California, USA
| | - Yan Liang
- Department of Pathology, School of Medicine, La Jolla, California, USA
- Department of Molecular Biology, School of Biological Sciences, La Jolla, California, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, California, USA
| | - Min Zong
- Department of Pathology, School of Medicine, La Jolla, California, USA
- Department of Molecular Biology, School of Biological Sciences, La Jolla, California, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, California, USA
| | - Kaisa L Hanley
- Department of Pathology, School of Medicine, La Jolla, California, USA
- Department of Molecular Biology, School of Biological Sciences, La Jolla, California, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, California, USA
| | - Jin Lee
- Department of Pathology, School of Medicine, La Jolla, California, USA
- Department of Molecular Biology, School of Biological Sciences, La Jolla, California, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, California, USA
| | - Michael Karin
- Departments of Pharmacology and Pathology, University of California at San Diego, La Jolla, California, USA
| | - Gen-Sheng Feng
- Department of Pathology, School of Medicine, La Jolla, California, USA
- Department of Molecular Biology, School of Biological Sciences, La Jolla, California, USA
- Moores Cancer Center, University of California at San Diego, La Jolla, California, USA
| |
Collapse
|
11
|
Liu X, Kang X, Kang H, Yan H. The immunosuppressive role of MDSCs in HCC: mechanisms and therapeutic opportunities. Cell Commun Signal 2025; 23:155. [PMID: 40148954 PMCID: PMC11951757 DOI: 10.1186/s12964-025-02170-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Accepted: 03/23/2025] [Indexed: 03/29/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a prevalent malignancy with a significant global burden. Despite substantial advancements in HCC treatment in recent years, therapeutic efficacy remains constrained by immune evasion mechanisms within the tumor microenvironment (TME). Myeloid-derived suppressor cells (MDSCs), as critical immunosuppressive elements of the TME, have garnered increasing attention for their role in tumor progression. Recent studies emphasize their central involvement in promoting immune evasion, tolerance, and immunosuppression in HCC. This review examines the contributions of MDSCs to HCC pathogenesis, elucidates their underlying mechanisms, and discusses ongoing clinical trials, emphasizing their potential as therapeutic targets for improving clinical outcomes.
Collapse
Affiliation(s)
- Xiling Liu
- School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China
- Hebei Key Laboratory of Immune Mechanism of Major Infectious Diseases and New Technology of Diagnosis and Treatment, The Fifth Hospital of Shijiazhuang, Shijiazhuang, 050021, China
| | - Xichun Kang
- Beijing Fangshan District Center for Disease Control and Prevention, Beijing, 102488, China
| | - Haiyan Kang
- Hebei Key Laboratory of Immune Mechanism of Major Infectious Diseases and New Technology of Diagnosis and Treatment, The Fifth Hospital of Shijiazhuang, Shijiazhuang, 050021, China
- Department of the Sixth Infection, The Fifth Hospital of Shijiazhuang, Shijiazhuang, 050021, China
| | - Huimin Yan
- School of Public Health, Hebei Medical University, Shijiazhuang, 050017, China.
- Hebei Key Laboratory of Immune Mechanism of Major Infectious Diseases and New Technology of Diagnosis and Treatment, The Fifth Hospital of Shijiazhuang, Shijiazhuang, 050021, China.
| |
Collapse
|
12
|
Gao X, Cheng H, Teng M, Zhang H, Chen H, Qu S, Liu G. Optimizing interventional therapy: A homogeneous lipiodol formulation of Tirapazamine and Sorafenib responsive to post-embolization microenvironment. J Control Release 2025; 379:879-889. [PMID: 39880038 DOI: 10.1016/j.jconrel.2025.01.074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2024] [Revised: 01/10/2025] [Accepted: 01/24/2025] [Indexed: 01/31/2025]
Abstract
Transcatheter arterial chemoembolization (TACE) is the principal treatment option for patients with unresectable hepatocellular carcinoma (HCC). However, the hypoxic microenvironment following TACE can promote angiogenesis and suppress tumor ferroptosis, resulting in an unfavorable prognosis. Tirapazamine (TPZ), a hypoxia-activated prodrug with specific cytotoxicity for hypoxic cells, making it a potential candidate for TACE. To develop an effective hypoxia-responsive drug delivery platform for TACE, we propose a novel lipiodol embolic formulation that integrates TPZ and sorafenib (SFB) by super-stable homogeneous intermixed formulation technology (SHIFT). This approach achieves the manufacture of embolic agents with stable drug dispersion characteristics, fulfilling the need for sustained drug release in TACE. The prolonged tumor penetration of TPZ exhibited embolization-responsive tumor killing, and its combination with SFB can suppress hypoxia-induced angiogenesis and trigger tumor ferroptosis, maintaining low oxygen levels, thereby boosting the therapeutic efficacy of TPZ. Conversely, TPZ can combat the resistance to SFB in hypoxic tumor cells. In summary, this study developed a novel embolization drug formulation based on embolic hypoxic microenvironment. The synergistic mechanism of TPZ and SFB enhances the therapeutic effects of hypoxia-activated prodrugs and mitigates the adverse effects of hypoxia.
Collapse
Affiliation(s)
- Xing Gao
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, Fujian Engineering Research Center of Molecular Theranostic Technology, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Hongwei Cheng
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, Fujian Engineering Research Center of Molecular Theranostic Technology, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China; Zhuhai UM Science & Technology Research Institute, University of Macau, Macau 999078, China.
| | - Minglei Teng
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, Fujian Engineering Research Center of Molecular Theranostic Technology, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Hongrui Zhang
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, Fujian Engineering Research Center of Molecular Theranostic Technology, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Hu Chen
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, Fujian Engineering Research Center of Molecular Theranostic Technology, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Songnan Qu
- Zhuhai UM Science & Technology Research Institute, University of Macau, Macau 999078, China; Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Taipa, Macau 999078, China
| | - Gang Liu
- State Key Laboratory of Infectious Disease Vaccine Development, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, Fujian Engineering Research Center of Molecular Theranostic Technology, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China.
| |
Collapse
|
13
|
Xu X, Su J, Zhu R, Li K, Zhao X, Fan J, Mao F. From morphology to single-cell molecules: high-resolution 3D histology in biomedicine. Mol Cancer 2025; 24:63. [PMID: 40033282 PMCID: PMC11874780 DOI: 10.1186/s12943-025-02240-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Accepted: 01/18/2025] [Indexed: 03/05/2025] Open
Abstract
High-resolution three-dimensional (3D) tissue analysis has emerged as a transformative innovation in the life sciences, providing detailed insights into the spatial organization and molecular composition of biological tissues. This review begins by tracing the historical milestones that have shaped the development of high-resolution 3D histology, highlighting key breakthroughs that have facilitated the advancement of current technologies. We then systematically categorize the various families of high-resolution 3D histology techniques, discussing their core principles, capabilities, and inherent limitations. These 3D histology techniques include microscopy imaging, tomographic approaches, single-cell and spatial omics, computational methods and 3D tissue reconstruction (e.g. 3D cultures and spheroids). Additionally, we explore a wide range of applications for single-cell 3D histology, demonstrating how single-cell and spatial technologies are being utilized in the fields such as oncology, cardiology, neuroscience, immunology, developmental biology and regenerative medicine. Despite the remarkable progress made in recent years, the field still faces significant challenges, including high barriers to entry, issues with data robustness, ambiguous best practices for experimental design, and a lack of standardization across methodologies. This review offers a thorough analysis of these challenges and presents recommendations to surmount them, with the overarching goal of nurturing ongoing innovation and broader integration of cellular 3D tissue analysis in both biology research and clinical practice.
Collapse
Affiliation(s)
- Xintian Xu
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
- Department of Biochemistry and Molecular Biology, Beijing, Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Jimeng Su
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China
| | - Rongyi Zhu
- Department of Biochemistry and Molecular Biology, Beijing, Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Kailong Li
- Department of Biochemistry and Molecular Biology, Beijing, Key Laboratory of Protein Posttranslational Modifications and Cell Function, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Xiaolu Zhao
- State Key Laboratory of Female Fertility Promotion, Center for Reproductive Medicine, Department of Obstetrics and GynecologyNational Clinical Research Center for Obstetrics and Gynecology (Peking University Third Hospital)Key Laboratory of Assisted Reproduction (Peking University), Ministry of EducationBeijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Peking University Third Hospital, Beijing, China.
| | - Jibiao Fan
- College of Animal Science and Technology, Yangzhou University, Yangzhou, Jiangsu, China.
| | - Fengbiao Mao
- Institute of Medical Innovation and Research, Peking University Third Hospital, Beijing, China.
- Cancer Center, Peking University Third Hospital, Beijing, China.
- Beijing Key Laboratory for Interdisciplinary Research in Gastrointestinal Oncology (BLGO), Beijing, China.
| |
Collapse
|
14
|
Suvac A, Ashton J, Bristow RG. Tumour hypoxia in driving genomic instability and tumour evolution. Nat Rev Cancer 2025; 25:167-188. [PMID: 39875616 DOI: 10.1038/s41568-024-00781-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/21/2024] [Indexed: 01/30/2025]
Abstract
Intratumour hypoxia is a feature of all heterogenous solid tumours. Increased levels or subregions of tumour hypoxia are associated with an adverse clinical prognosis, particularly when this co-occurs with genomic instability. Experimental evidence points to the acquisition of DNA and chromosomal alterations in proliferating hypoxic cells secondary to inhibition of DNA repair pathways such as homologous recombination, base excision repair and mismatch repair. Cell adaptation and selection in repair-deficient cells give rise to a model whereby novel single-nucleotide mutations, structural variants and copy number alterations coexist with altered mitotic control to drive chromosomal instability and aneuploidy. Whole-genome sequencing studies support the concept that hypoxia is a critical microenvironmental cofactor alongside the driver mutations in MYC, BCL2, TP53 and PTEN in determining clonal and subclonal evolution in multiple tumour types. We propose that the hypoxic tumour microenvironment selects for unstable tumour clones which survive, propagate and metastasize under reduced immune surveillance. These aggressive features of hypoxic tumour cells underpin resistance to local and systemic therapies and unfavourable outcomes for patients with cancer. Possible ways to counter the effects of hypoxia to block tumour evolution and improve treatment outcomes are described.
Collapse
Affiliation(s)
- Alexandru Suvac
- Translational Oncogenomics Laboratory, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
- Manchester Cancer Research Centre, University of Manchester, Manchester, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Jack Ashton
- Translational Oncogenomics Laboratory, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK
- Manchester Cancer Research Centre, University of Manchester, Manchester, UK
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK
| | - Robert G Bristow
- Translational Oncogenomics Laboratory, Cancer Research UK Manchester Institute, University of Manchester, Manchester, UK.
- Manchester Cancer Research Centre, University of Manchester, Manchester, UK.
- Division of Cancer Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, UK.
| |
Collapse
|
15
|
Tang L, Peng S, Zhuang X, He Y, Song Y, Nie H, Zheng C, Pan Z, Lam AK, He M, Shi X, Li B, Xu WW. Tumor Metastasis: Mechanistic Insights and Therapeutic Intervention. MEDCOMM – ONCOLOGY 2025; 4. [DOI: 10.1002/mog2.70012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/10/2025] [Indexed: 03/04/2025]
Abstract
ABSTRACTMetastasis remains a leading cause of cancer‐related deaths, defined by a complex, multi‐step process in which tumor cells spread and form secondary growths in distant tissues. Despite substantial progress in understanding metastasis, the molecular mechanisms driving this process and the development of effective therapies remain incompletely understood. Elucidating the molecular pathways governing metastasis is essential for the discovery of innovative therapeutic targets. The rapid advancements in sequencing technologies and the expansion of biological databases have significantly deepened our understanding of the molecular drivers of metastasis and associated drug resistance. This review focuses on the molecular drivers of metastasis, particularly the roles of genetic mutations, epigenetic changes, and post‐translational modifications in metastasis progression. We also examine how the tumor microenvironment influences metastatic behavior and explore emerging therapeutic strategies, including targeted therapies and immunotherapies. Finally, we discuss future research directions, stressing the importance of novel treatment approaches and personalized strategies to overcome metastasis and improve patient outcomes. By integrating contemporary insights into the molecular basis of metastasis and therapeutic innovation, this review provides a comprehensive framework to guide future research and clinical advancements in metastatic cancer.
Collapse
Affiliation(s)
- Lin Tang
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, The Affiliated Traditional Chinese Medicine Hospital Guangzhou Medical University Guangzhou China
| | - Shao‐Cong Peng
- State Key Laboratory of Respiratory Disease, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes The Fifth Affiliated Hospital of Guangzhou Medical University Guangzhou China
| | - Xiao‐Wan Zhuang
- State Key Laboratory of Respiratory Disease, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes The Fifth Affiliated Hospital of Guangzhou Medical University Guangzhou China
| | - Yan He
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, The Affiliated Traditional Chinese Medicine Hospital Guangzhou Medical University Guangzhou China
| | - Yu‐Xiang Song
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, The Affiliated Traditional Chinese Medicine Hospital Guangzhou Medical University Guangzhou China
| | - Hao Nie
- Department of Radiation Oncology, The Fifth Affiliated Hospital Guangzhou Medical University Guangzhou China
| | - Can‐Can Zheng
- State Key Laboratory of Respiratory Disease, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes The Fifth Affiliated Hospital of Guangzhou Medical University Guangzhou China
| | - Zhen‐Yu Pan
- Department of Radiation Oncology, The Affiliated Huizhou Hospital Guangzhou Medical University Huizhou China
| | - Alfred King‐Yin Lam
- Cancer Molecular Pathology and Griffith Medical School Griffith University Gold Coast Queensland Australia
| | - Ming‐Liang He
- Department of Biomedical Sciences City University of Hong Kong Hong Kong China
| | - Xing‐Yuan Shi
- Department of Radiation Oncology, The Fifth Affiliated Hospital Guangzhou Medical University Guangzhou China
| | - Bin Li
- State Key Laboratory of Respiratory Disease, Key Laboratory of Biological Targeting Diagnosis, Therapy and Rehabilitation of Guangdong Higher Education Institutes The Fifth Affiliated Hospital of Guangzhou Medical University Guangzhou China
| | - Wen Wen Xu
- State Key Laboratory of Respiratory Disease, Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, The Affiliated Traditional Chinese Medicine Hospital Guangzhou Medical University Guangzhou China
| |
Collapse
|
16
|
Chan LL, Kwong TT, Yau JCW, Chan SL. Treatment for hepatocellular carcinoma after immunotherapy. Ann Hepatol 2025; 30:101781. [PMID: 39929474 DOI: 10.1016/j.aohep.2025.101781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Accepted: 02/02/2025] [Indexed: 02/20/2025]
Abstract
Immunotherapy has revolutionized the treatment landscape for advanced HCC, resulting in prolonged response and improved survival. With these results, a pressing question arises: what is the optimal treatment following first-line immunotherapy? Despite the benefits of immunotherapy, most patients will experience disease progression within six months and will require subsequent therapies. International guidelines recommend second-line multi-kinase inhibitors following progression on immunotherapy; however, this recommendation is primarily based on expert consensus rather than high-quality evidence. Nevertheless, real-world data indicate that these agents demonstrate similar efficacy and safety when used as first-line treatments. Conversely, it remains unclear whether continuing immunotherapy after progression is beneficial. In some cases, adding anti-CTLA-4 as salvage therapy has shown effectiveness. Molecular-directed therapies have also been tested, showing some initial promise, but further data is needed to confirm the benefits of this approach. Emerging evidence suggests that patients experiencing oligoprogression may benefit from local or locoregional therapies while continuing immunotherapy. In this review, we will discuss treatment strategies following progression after first-line immunotherapy.
Collapse
Affiliation(s)
- Landon L Chan
- Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Hong Kong Cancer Institute, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Tsz Tung Kwong
- Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Hong Kong Cancer Institute, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Johnny C W Yau
- Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Hong Kong Cancer Institute, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Stephen L Chan
- Department of Clinical Oncology, State Key Laboratory of Translational Oncology, Sir YK Pao Centre for Cancer, Hong Kong Cancer Institute, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
17
|
Gan C, Yuan Y, Shen H, Gao J, Kong X, Che Z, Guo Y, Wang H, Dong E, Xiao J. Liver diseases: epidemiology, causes, trends and predictions. Signal Transduct Target Ther 2025; 10:33. [PMID: 39904973 PMCID: PMC11794951 DOI: 10.1038/s41392-024-02072-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 10/06/2024] [Accepted: 11/12/2024] [Indexed: 02/06/2025] Open
Abstract
As a highly complex organ with digestive, endocrine, and immune-regulatory functions, the liver is pivotal in maintaining physiological homeostasis through its roles in metabolism, detoxification, and immune response. Various factors including viruses, alcohol, metabolites, toxins, and other pathogenic agents can compromise liver function, leading to acute or chronic injury that may progress to end-stage liver diseases. While sharing common features, liver diseases exhibit distinct pathophysiological, clinical, and therapeutic profiles. Currently, liver diseases contribute to approximately 2 million deaths globally each year, imposing significant economic and social burdens worldwide. However, there is no cure for many kinds of liver diseases, partly due to a lack of thorough understanding of the development of these liver diseases. Therefore, this review provides a comprehensive examination of the epidemiology and characteristics of liver diseases, covering a spectrum from acute and chronic conditions to end-stage manifestations. We also highlight the multifaceted mechanisms underlying the initiation and progression of liver diseases, spanning molecular and cellular levels to organ networks. Additionally, this review offers updates on innovative diagnostic techniques, current treatments, and potential therapeutic targets presently under clinical evaluation. Recent advances in understanding the pathogenesis of liver diseases hold critical implications and translational value for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Can Gan
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Yuan Yuan
- Aier Institute of Ophthalmology, Central South University, Changsha, China
| | - Haiyuan Shen
- Department of Oncology, the First Affiliated Hospital; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China
| | - Jinhang Gao
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Xiangxin Kong
- Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin, China
| | - Zhaodi Che
- Clinical Medicine Research Institute and Department of Anesthesiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Yangkun Guo
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
| | - Hua Wang
- Department of Oncology, the First Affiliated Hospital; The Key Laboratory of Anti-inflammatory and Immune Medicine, Ministry of Education, Anhui Medical University, Hefei, China.
| | - Erdan Dong
- Research Center for Cardiopulmonary Rehabilitation, University of Health and Rehabilitation Sciences Qingdao Hospital, School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao, China.
- Department of Cardiology and Institute of Vascular Medicine, Peking University Third Hospital, State Key Laboratory of Vascular Homeostasis and Remodeling, Peking University, Beijing, China.
| | - Jia Xiao
- Clinical Medicine Research Institute and Department of Anesthesiology, The First Affiliated Hospital of Jinan University, Guangzhou, China.
- Department of Gastroenterology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, China.
| |
Collapse
|
18
|
Zhou H, Zheng Z, Fan C, Zhou Z. Mechanisms and strategies of immunosenescence effects on non-small cell lung cancer (NSCLC) treatment: A comprehensive analysis and future directions. Semin Cancer Biol 2025; 109:44-66. [PMID: 39793777 DOI: 10.1016/j.semcancer.2025.01.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 12/29/2024] [Accepted: 01/02/2025] [Indexed: 01/13/2025]
Abstract
Non-small cell lung cancer (NSCLC), the most prevalent form of lung cancer, remains a leading cause of cancer-related mortality worldwide, particularly among elderly individuals. The phenomenon of immunosenescence, characterized by the progressive decline in immune cell functionality with aging, plays a pivotal role in NSCLC progression and contributes to the diminished efficacy of therapeutic interventions in older patients. Immunosenescence manifests through impaired immune surveillance, reduced cytotoxic responses, and increased chronic inflammation, collectively fostering a pro-tumorigenic microenvironment. This review provides a comprehensive analysis of the molecular, cellular, and genetic mechanisms of immunosenescence and its impact on immune surveillance and the tumor microenvironment (TME) in NSCLC. We explore how aging affects various immune cells, including T cells, B cells, NK cells, and macrophages, and how these changes compromise the immune system's ability to detect and eliminate tumor cells. Furthermore, we address the challenges posed by immunosenescence to current therapeutic strategies, particularly immunotherapy, which faces significant hurdles in elderly patients due to immune dysfunction. The review highlights emerging technologies, such as single-cell sequencing and CRISPR-Cas9, which offer new insights into immunosenescence and its potential as a therapeutic target. Finally, we outline future research directions, including strategies for rejuvenating the aging immune system and optimizing immunotherapy for older NSCLC patients, with the goal of improving treatment efficacy and survival outcomes. These efforts hold promise for the development of more effective, personalized therapies for elderly patients with NSCLC.
Collapse
Affiliation(s)
- Huatao Zhou
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha 410011, China
| | - Zilong Zheng
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha 410011, China
| | - Chengming Fan
- Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha 410011, China.
| | - Zijing Zhou
- Department of Pulmonary and Critical Care Medicine, the Second Xiangya Hospital, Central South University, Middle Renmin Road 139, Changsha 410011, China.
| |
Collapse
|
19
|
Jiang ZB, He QH, Kang LP, Jiang S, Liu JN, Xu C, Wang WJ, Wang XR, Wu QB, Huang DH. Rutecarpine Suppresses Non-Small Cell Lung Cancer Progression Through Activating the STING Pathway and Elevating CD8+ T Cells. Chem Biol Drug Des 2025; 105:e70070. [PMID: 39989173 DOI: 10.1111/cbdd.70070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 02/02/2025] [Accepted: 02/05/2025] [Indexed: 02/25/2025]
Abstract
Globally, non-small cell lung cancer (NSCLC) is the primary cause of cancer-related deaths. Rutecarpine (RUT), a quinazolinocarboline alkaloid that is naturally occurring and present in Chinese medicinal herbs, has been shown to have anticancer properties in several cancer cell lines. However, the specific antitumor mechanisms of RUT in NSCLC remain unclear. This study demonstrates that RUT induces apoptosis and significantly reduces the viability of NSCLC cell lines. This effect is achieved by stimulating intracellular ROS production, leading to mitochondrial dysfunction. The decreased cell viability observed with RUT treatment is attributed to the elimination of ROS and apoptosis through the suppression of ROS by N-acetylcysteine (NAC). Furthermore, RUT therapy elevated the production of CXCL10 and CCL5 in NSCLC cell lines and markedly activated the STING pathway in NSCLC cells. Mechanistically, RUT substantially decreased the levels of PD-L1 protein in NSCLC cells. Notably, in vivo experiments demonstrated that RUT significantly inhibits mouse NSCLC tumor growth in mice, exhibiting anti-tumor activity by elevating CD8+ T cells. These findings strongly support RUT as a promising anti-cancer drug for NSCLC.
Collapse
Affiliation(s)
- Ze-Bo Jiang
- Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai, Guangdong, China
- Zhuhai Hospital Affiliated to Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Qing-Hua He
- Day Ward, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Li-Ping Kang
- Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai, Guangdong, China
- Zhuhai Hospital Affiliated to Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Sha Jiang
- Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai, Guangdong, China
- Zhuhai Hospital Affiliated to Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| | - Jia-Ni Liu
- Department of Radiation Oncology, The Cancer Center of the Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, China
| | - Cong Xu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau (SAR), China
| | - Wen-Jun Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau (SAR), China
| | - Xuan-Run Wang
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau (SAR), China
| | - Qi-Biao Wu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macau (SAR), China
| | - Dong-Hui Huang
- Zhuhai Hospital of Integrated Traditional Chinese and Western Medicine, Zhuhai, Guangdong, China
- Zhuhai Hospital Affiliated to Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
| |
Collapse
|
20
|
Yan J, Jiang Z, Zhang S, Yu Q, Lu Y, Miao R, Tang Z, Fan J, Wu L, Duda DG, Zhou J, Yang X. Spatial‒temporal heterogeneities of liver cancer and the discovery of the invasive zone. Clin Transl Med 2025; 15:e70224. [PMID: 39924620 PMCID: PMC11807767 DOI: 10.1002/ctm2.70224] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Accepted: 01/19/2025] [Indexed: 02/11/2025] Open
Abstract
Solid tumours are intricate and highly heterogeneous ecosystems, which grow in and invade normal organs. Their progression is mediated by cancer cells' interaction with different cell types, such as immune cells, stromal cells and endothelial cells, and with the extracellular matrix. Owing to its high incidence, aggressive growth and resistance to local and systemic treatments, liver cancer has particularly high mortality rates worldwide. In recent decades, spatial heterogeneity has garnered significant attention as an unfavourable biological characteristic of the tumour microenvironment, prompting extensive research into its role in liver tumour development. Advances in spatial omics have facilitated the detailed spatial analysis of cell types, states and cell‒cell interactions, allowing a thorough understanding of the spatial and temporal heterogeneities of tumour microenvironment and informing the development of novel therapeutic approaches. This review illustrates the latest discovery of the invasive zone, and systematically introduced specific macroscopic spatial heterogeneities, pathological spatial heterogeneities and tumour microenvironment heterogeneities of liver cancer.
Collapse
Affiliation(s)
- Jiayan Yan
- Department of Liver Surgery & TransplantationLiver Cancer InstituteZhongshan HospitalFudan UniversityShanghaiChina
- Key Laboratory of Carcinogenesis and Cancer InvasionMinistry of EducationShanghaiChina
- Zhongshan‐BGI Precision Medical CenterZhongshan HospitalFudan UniversityShanghaiChina
| | - Zhifeng Jiang
- Department of Liver Surgery & TransplantationLiver Cancer InstituteZhongshan HospitalFudan UniversityShanghaiChina
- Key Laboratory of Carcinogenesis and Cancer InvasionMinistry of EducationShanghaiChina
- Zhongshan‐BGI Precision Medical CenterZhongshan HospitalFudan UniversityShanghaiChina
| | - Shiyu Zhang
- Department of Liver Surgery & TransplantationLiver Cancer InstituteZhongshan HospitalFudan UniversityShanghaiChina
- Key Laboratory of Carcinogenesis and Cancer InvasionMinistry of EducationShanghaiChina
- Zhongshan‐BGI Precision Medical CenterZhongshan HospitalFudan UniversityShanghaiChina
| | - Qichao Yu
- College of Life SciencesUniversity of Chinese Academy of SciencesBeijingChina
- BGI‐ShenzhenBeishan Industrial ZoneShenzhenChina
| | - Yijun Lu
- Department of Liver Surgery & TransplantationLiver Cancer InstituteZhongshan HospitalFudan UniversityShanghaiChina
- Key Laboratory of Carcinogenesis and Cancer InvasionMinistry of EducationShanghaiChina
- Zhongshan‐BGI Precision Medical CenterZhongshan HospitalFudan UniversityShanghaiChina
| | - Runze Miao
- Department of Liver Surgery & TransplantationLiver Cancer InstituteZhongshan HospitalFudan UniversityShanghaiChina
- Key Laboratory of Carcinogenesis and Cancer InvasionMinistry of EducationShanghaiChina
- Zhongshan‐BGI Precision Medical CenterZhongshan HospitalFudan UniversityShanghaiChina
| | - Zhaoyou Tang
- Department of Liver Surgery & TransplantationLiver Cancer InstituteZhongshan HospitalFudan UniversityShanghaiChina
- Key Laboratory of Carcinogenesis and Cancer InvasionMinistry of EducationShanghaiChina
| | - Jia Fan
- Department of Liver Surgery & TransplantationLiver Cancer InstituteZhongshan HospitalFudan UniversityShanghaiChina
- Key Laboratory of Carcinogenesis and Cancer InvasionMinistry of EducationShanghaiChina
| | - Liang Wu
- BGI‐ShenzhenBeishan Industrial ZoneShenzhenChina
| | - Dan G. Duda
- Steele Laboratories for Tumor BiologyDepartment of Radiation OncologyMassachusetts General Hospital and Harvard Medical SchoolBostonMassachusettsUSA
| | - Jian Zhou
- Department of Liver Surgery & TransplantationLiver Cancer InstituteZhongshan HospitalFudan UniversityShanghaiChina
- Key Laboratory of Carcinogenesis and Cancer InvasionMinistry of EducationShanghaiChina
| | - Xinrong Yang
- Department of Liver Surgery & TransplantationLiver Cancer InstituteZhongshan HospitalFudan UniversityShanghaiChina
- Key Laboratory of Carcinogenesis and Cancer InvasionMinistry of EducationShanghaiChina
| |
Collapse
|
21
|
Li J, Bai L, Xin Z, Song J, Chen H, Song X, Zhou J. TERT-TP53 mutations: a novel biomarker pair for hepatocellular carcinoma recurrence and prognosis. Sci Rep 2025; 15:3620. [PMID: 39880909 PMCID: PMC11779956 DOI: 10.1038/s41598-025-87545-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 01/20/2025] [Indexed: 01/31/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is the most prevalent form of liver cancer, and ranks among the most lethal malignancies globally, primarily due to its high rates of recurrence and metastasis. Despite the urgency, no reliable biomarkers currently exist for predicting tumor recurrence in HCC. Telomerase reverse transcriptase (TERT) promoter mutations (TERTpm) and cellular tumor antigen p53 mutations (TP53m) have been frequently documented in HCC, but their combined clinical significance remains undefined. In this study, we investigated the clinical implications of TERTpm, TP53m, and their co-occurrence in 50 HCC tissue samples using the next-generation sequencing (NGS) technology. We identified TERTpm (C228T) and TP53m in 16 (32%) and 24 (48%) samples, respectively. Our findings indicate that these mutations are more prevalent in male patients (100% for TERTpm, 83.33% for TP53m), in those with solitary tumors (87.5% for both), in individuals with G2-G3 hepatitis (100% / 83.3%), and in cases of moderately differentiated tumors (75.0% / 83.3%). Furthermore, patients with both TERTpm and TP53m exhibited a significantly higher risk of tumor relapse (P < 0.05) and shorter progression-free survival (P < 0.05). Collectively, our results suggest that presence of both TERTpm and TP53m may serve as a robust predictor of tumor recurrence and a marker of poor prognosis in HCC.
Collapse
Affiliation(s)
- Jin Li
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
- Med + Molecular Diagnostics Institute of West China Hospital/West China School of Medicine, Chengdu, China
| | - Ling Bai
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
- Med + Molecular Diagnostics Institute of West China Hospital/West China School of Medicine, Chengdu, China
| | - Zhaodan Xin
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
- Med + Molecular Diagnostics Institute of West China Hospital/West China School of Medicine, Chengdu, China
| | - Jiajia Song
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
- Med + Molecular Diagnostics Institute of West China Hospital/West China School of Medicine, Chengdu, China
| | - Hao Chen
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
- Med + Molecular Diagnostics Institute of West China Hospital/West China School of Medicine, Chengdu, China
| | - Xingbo Song
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.
- Med + Molecular Diagnostics Institute of West China Hospital/West China School of Medicine, Chengdu, China.
| | - Juan Zhou
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China.
- Med + Molecular Diagnostics Institute of West China Hospital/West China School of Medicine, Chengdu, China.
| |
Collapse
|
22
|
Dai H, Tao X, Shu Y, Liu F, Cheng X, Li X, Shu B, Luo H, Chen X, Cheng Z. Integrating single-cell RNA-Seq and bulk RNA-Seq data to explore the key role of fatty acid metabolism in hepatocellular carcinoma. Sci Rep 2025; 15:2077. [PMID: 39814999 PMCID: PMC11735836 DOI: 10.1038/s41598-025-85506-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Accepted: 01/03/2025] [Indexed: 01/18/2025] Open
Abstract
Hepatocellular carcinoma (HCC) is a predominant cause of cancer-related mortality globally, noted for its propensity towards late-stage diagnosis and scarcity of effective treatment modalities. The process of metabolic reprogramming, with a specific emphasis on lipid metabolism, is instrumental in the progression of HCC. Nevertheless, the precise mechanisms through which lipid metabolism impacts HCC and its viability as a therapeutic target have yet to be fully elucidated. In the current investigation, single-cell RNA sequencing in conjunction with weighted gene co-expression network analysis (WGCNA) was utilized to delineate lipid metabolism-related genes correlated with the prognostic outcomes of hepatocellular carcinoma (HCC). Data procurement encompassed transcriptomic and clinical datasets from HCC patients, sourced from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) repositories. Subsequent to this, consensus clustering analysis was implemented to stratify patients into distinct subgroups, contingent upon the expression patterns of lipid metabolism genes. Further analytical procedures involved functional enrichment analysis, evaluation of immune infiltration, and examination of the mutation landscape.PTGES3 was identified as a pivotal gene associated with lipid metabolism. Subsequent to its identification, cellular communication analysis was employed to assess the immunological attributes of PTGES3 within the tumor microenvironment. The functional role of PTGES3 was further corroborated through molecular docking simulations and in vitro experimental assays. We identified 27 genes associated with lipid metabolism, 18 of which exhibited significant correlation with overall survival in HCC patients. PTGES3 emerged as a central gene, demonstrating a robust association with immune cell infiltration and unfavorable prognosis. Cellular communication analysis revealed that PTGES3 exhibits the highest communication intensity with T cells, modulating the tumor microenvironment by potentiating the FN1/CD44 + MDK/NCL signaling pathway. Elevated expression of PTGES3 was linked to immunosuppressive cascades, diminished responsiveness to immunotherapy, and inferior overall survival outcomes. Molecular docking analysis indicated that etoposide, methotrexate, and doxorubicin could effectively bind to PTGES3. In vitro experiments confirmed that PTGES3 knockdown significantly impaired the proliferation, invasion, and migration of HCC cells. This study highlights the pivotal role of lipid metabolism in HCC progression and identifies PTGES3 as a potential prognostic biomarker and therapeutic target. These findings offer new insights into the development of targeted therapies for HCC, particularly in patients with high PTGES3 expression.
Collapse
Affiliation(s)
- Hua Dai
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xin Tao
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Yuansen Shu
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Fanrong Liu
- The Second Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xiaoping Cheng
- The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, China
| | - Xiushen Li
- Department of Traditional Chinese Medicine, Jiangxi Provincial Maternal and Child Health Hospital, Nanchang, Jiangxi, China
| | - Bairui Shu
- Zhongshan Medical College, Sun Yat sen University, Clinical Medicine 2023,11 class, Guangzhou, Guangdong, China
| | - Hongcheng Luo
- Department of Urology, The Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China.
| | - XuXiang Chen
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China.
| | - Zhaorui Cheng
- Department of Emergency, the Eighth Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China.
| |
Collapse
|
23
|
Wang J, Xiang JH, Peng XY, Liu M, Sun LJ, Zhang M, Zhang LY, Chen ZB, Tang ZQ, Cheng L. Characteristic alterations of gut microbiota and serum metabolites in patients with chronic tinnitus: a multi-omics analysis. Microbiol Spectr 2025; 13:e0187824. [PMID: 39555931 PMCID: PMC11705945 DOI: 10.1128/spectrum.01878-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Accepted: 10/21/2024] [Indexed: 11/19/2024] Open
Abstract
Chronic tinnitus is a central nervous system disorder. Currently, the effects of gut microbiota on tinnitus remain unexplored. To explore the connection between gut microbiota and tinnitus, we conducted 16S rRNA sequencing of fecal microbiota and serum metabolomic analysis in a cohort of 70 patients with tinnitus and 30 healthy volunteers. We used the weighted gene co-expression network method to analyze the relationship between the gut microbiota and the serum metabolites. The random forest technique was utilized to select metabolites and gut taxa to construct predictive models. A pronounced gut dysbiosis in the tinnitus group, characterized by reduced bacterial diversity, an increased Firmicutes/Bacteroidetes ratio, and some opportunistic bacteria including Aeromonas and Acinetobacter were enriched. In contrast, some beneficial gut probiotics decreased, including Lactobacillales and Lactobacillaceae. In serum metabolomic analysis, serum metabolic disturbances in tinnitus patients and these differential metabolites were enriched in pathways of neuroinflammation, neurotransmitter activity, and synaptic function. The predictive models exhibited great diagnostic performance, achieving 0.94 (95% CI: 0.85-0.98) and 0.96 (95% CI: 0.86-0.99) in the test set. Our study suggests that changes in gut microbiota could potentially influence the occurrence and chronicity of tinnitus, and exert regulatory effects through changes in serum metabolites. Overall, this research provides new perceptions into the potential role of gut microbiota and serum metabolite in the pathogenesis of tinnitus, and proposes the "gut-brain-ear" concept as a pathomechanism underlying tinnitus, with significant clinical diagnostic implications and therapeutic potential.IMPORTANCETinnitus affects millions of people worldwide. Severe cases may lead to sleep disorders, anxiety, and depression, subsequently impacting patients' lives and increasing societal healthcare expenditures. However, tinnitus mechanisms are poorly understood, and effective therapeutic interventions are currently lacking. We discovered the gut microbiota and serum metabolomics changes in patients with tinnitus, and provided the potential pathological mechanisms of dysregulated gut flora in chronic tinnitus. We proposed the innovative concept of the "gut-brain-ear axis," which underscores the exploration of gut microbiota impact on susceptibility to chronic tinnitus through serum metabolic profile modulation. We also reveal novel biomarkers associated with chronic tinnitus, offering a new conceptual framework for further investigations into the susceptibility of patients, potential treatment targets for tinnitus, and assessing patient prognosis. Subsequently, gut microbiota and serum metabolites can be used as molecular markers to assess the susceptibility and prognosis of tinnitus.Furthermore, fecal transplantation may be used to treat tinnitus.
Collapse
Affiliation(s)
- Jiang Wang
- Department of Otorhinolaryngology & Hearing International Jiangsu Ear and Hearing Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Jia-Hui Xiang
- Department of Breast Surgical Oncology, National Cancer Center & National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xu-Yuan Peng
- Department of Otorhinolaryngology & Hearing International Jiangsu Ear and Hearing Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Min Liu
- Department of Otorhinolaryngology & Hearing International Jiangsu Ear and Hearing Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Le-Jia Sun
- Department of General Surgery, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Min Zhang
- Department of Otorhinolaryngology & Hearing International Jiangsu Ear and Hearing Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Li-Yuan Zhang
- Department of Otorhinolaryngology & Hearing International Jiangsu Ear and Hearing Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Zhi-Bin Chen
- Department of Otorhinolaryngology & Hearing International Jiangsu Ear and Hearing Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| | - Zheng-Quan Tang
- School of Life Sciences, Anhui University, Hefei, China
- Key Laboratory of Human Microenvironment and Precision Medicine of Anhui Higher Education Institutes, Anhui University, Hefei, China
| | - Lei Cheng
- Department of Otorhinolaryngology & Hearing International Jiangsu Ear and Hearing Center, The First Affiliated Hospital, Nanjing Medical University, Nanjing, China
| |
Collapse
|
24
|
Ouyang Q, He W, Guo Y, Li L, Mao Y, Li X, Xiang S, Hu X, He J. Downregulation of hnRNPA1 inhibits hepatocellular carcinoma cell progression by modulating alternative splicing of ZNF207 exon 9. Front Oncol 2025; 14:1517459. [PMID: 39834948 PMCID: PMC11743940 DOI: 10.3389/fonc.2024.1517459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction Hepatocellular carcinoma (HCC) is the most prevalent liver cancer and a leading cause of cancer-related deaths worldwide. Heterogeneous nuclear ribonucleoprotein A1 (hnRNPA1) plays a critical role in RNA metabolism, including alternative splicing, which is linked to cancer progression. Our study investigated the role of hnRNPA1 in HCC and its potential as a therapeutic target. Methods We analyzed hnRNPA1 expression in HCC tissues compared to non-tumor tissues using RNA-seq and immunohistochemistry. hnRNPA1 was knocked down in Hep G2 cells to assess its impact on cell proliferation, migration, and apoptosis using scratch assays, flow cytometry, qPCR, and Western blot. We also explored the interaction between hnRNPA1 and ZNF207, as well as its splicing effects and downstream signaling pathways by RIP assay, bioinformatics, qPCR and Western blot. Results hnRNPA1 was significantly upregulated in HCC tissues compared to normal tissues, correlating with poor patient survival. hnRNPA1 knockdown reduced Hep G2 cell proliferation and migration while increasing apoptosis. We identified that hnRNPA1 bound to ZNF207 and regulated its exon 9 skipping, influencing ZNF207 splicing and the PI3K/Akt/mTOR pathway, key regulators of cell growth and survival. Conclusion Our findings demonstrate that hnRNPA1 promotes HCC progression by regulating ZNF207 splicing and the PI3K/Akt/mTOR pathway. hnRNPA1-ZNF207 interaction represents a potential therapeutic target for HCC, providing insights into the molecular mechanisms underlying HCC progression.
Collapse
Affiliation(s)
- Qi Ouyang
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Hunan Normal University, Changsha, China
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Wenhui He
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Yiping Guo
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Lin Li
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Ying Mao
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xiang Li
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Hunan Normal University, Changsha, China
| | - Shuanglin Xiang
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Xiang Hu
- State Key Laboratory of Developmental Biology of Freshwater Fish, College of Life Sciences, Hunan Normal University, Changsha, China
| | - Jun He
- Hunan Provincial Key Laboratory of Regional Hereditary Birth Defects Prevention and Control, Changsha Hospital for Maternal & Child Health Care Affiliated to Hunan Normal University, Hunan Normal University, Changsha, China
| |
Collapse
|
25
|
Lao Y, Jin Y, Wu S, Fang T, Wang Q, Sun L, Sun B. Deciphering a profiling based on multiple post-translational modifications functionally associated regulatory patterns and therapeutic opportunities in human hepatocellular carcinoma. Mol Cancer 2024; 23:283. [PMID: 39732660 PMCID: PMC11681642 DOI: 10.1186/s12943-024-02199-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 12/11/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND Posttranslational modifications (PTMs) play critical roles in hepatocellular carcinoma (HCC). However, the locations of PTM-modified sites across protein secondary structures and regulatory patterns in HCC remain largely uncharacterized. METHODS Total proteome and nine PTMs (phosphorylation, acetylation, crotonylation, ubiquitination, lactylation, N-glycosylation, succinylation, malonylation, and β-hydroxybutyrylation) in tumor sections and paired normal adjacent tissues derived from 18 HCC patients were systematically profiled by 4D-Label free proteomics analysis combined with PTM-based peptide enrichment. RESULTS We detected robust preferences in locations of intrinsically disordered protein regions (IDRs) with phosphorylated sites and other site biases to locate in folded regions. Integrative analyses revealed that phosphorylated and multiple acylated-modified sites are enriched in proteins containing RRM1 domain, and RNA splicing is the key feature of this subset of proteins, as indicated by phosphorylation and acylation of splicing factor NCL at multiple residues. We confirmed that NCL-S67, K398, and K646 cooperate to regulate RNA processing. CONCLUSION Together, this proteome profiling represents a comprehensive study detailing regulatory patterns based on multiple PTMs of HCC.
Collapse
Affiliation(s)
- Yuanxiang Lao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Innovative Institute of Tumor Immunity and Medicine (ITIM), Hefei, Anhui, China
- Anhui Provincial Innovation Institute for Pharmaceutical Basic Research, Hefei, Anhui, China
| | - Yirong Jin
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Innovative Institute of Tumor Immunity and Medicine (ITIM), Hefei, Anhui, China
- Anhui Provincial Innovation Institute for Pharmaceutical Basic Research, Hefei, Anhui, China
| | - Songfeng Wu
- Beijing Qinglian Biotech Co., Ltd, Beijing, China
| | - Ting Fang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Innovative Institute of Tumor Immunity and Medicine (ITIM), Hefei, Anhui, China
- Anhui Provincial Innovation Institute for Pharmaceutical Basic Research, Hefei, Anhui, China
| | - Qiang Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Innovative Institute of Tumor Immunity and Medicine (ITIM), Hefei, Anhui, China
- Anhui Provincial Innovation Institute for Pharmaceutical Basic Research, Hefei, Anhui, China
| | - Longqin Sun
- Beijing Qinglian Biotech Co., Ltd, Beijing, China
| | - Beicheng Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
- Anhui Province Key Laboratory of Tumor Immune Microenvironment and Immunotherapy, Innovative Institute of Tumor Immunity and Medicine (ITIM), Hefei, Anhui, China.
- Anhui Provincial Innovation Institute for Pharmaceutical Basic Research, Hefei, Anhui, China.
| |
Collapse
|
26
|
Dantzer C, Dif L, Vaché J, Basbous S, Billottet C, Moreau V. Specific features of ß-catenin-mutated hepatocellular carcinomas. Br J Cancer 2024; 131:1871-1880. [PMID: 39261716 PMCID: PMC11628615 DOI: 10.1038/s41416-024-02849-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/26/2024] [Accepted: 09/02/2024] [Indexed: 09/13/2024] Open
Abstract
CTNNB1, encoding the ß-catenin protein, is a key oncogene contributing to liver carcinogenesis. Hepatocellular carcinoma (HCC) is the most common form of primary liver cancer in adult, representing the third leading cause of cancer-related death. Aberrant activation of the Wnt/ß-catenin pathway, mainly due to mutations of the CTNNB1 gene, is observed in a significant subset of HCC. In this review, we first resume the major recent advances in HCC classification with a focus on CTNNB1-mutated HCC subclass. We present the regulatory mechanisms involved in β-catenin stabilisation, transcriptional activity and binding to partner proteins. We then describe specific phenotypic characteristics of CTNNB1-mutated HCC thanks to their unique gene expression patterns. CTNNB1-mutated HCC constitute a full-fledged subclass of HCC with distinct pathological features such as well-differentiated cells with low proliferation rate, association to cholestasis, metabolic alterations, immune exclusion and invasion. Finally, we discuss therapeutic approaches to target ß-catenin-mutated liver tumours and innovative perspectives for future drug developments.
Collapse
Affiliation(s)
| | - Lydia Dif
- University Bordeaux, INSERM, BRIC, U1312, Bordeaux, France
| | - Justine Vaché
- University Bordeaux, INSERM, BRIC, U1312, Bordeaux, France
| | - Sara Basbous
- University Bordeaux, INSERM, BRIC, U1312, Bordeaux, France
| | | | | |
Collapse
|
27
|
Xia B, Qiu L, Yue J, Si J, Zhang H. The metabolic crosstalk of cancer-associated fibroblasts and tumor cells: Recent advances and future perspectives. Biochim Biophys Acta Rev Cancer 2024; 1879:189190. [PMID: 39341468 DOI: 10.1016/j.bbcan.2024.189190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 09/22/2024] [Accepted: 09/23/2024] [Indexed: 10/01/2024]
Abstract
Tumor cells grow in a microenvironment with a lack of nutrients and oxygen. Cancer-associated fibroblasts (CAFs) as one major component of tumor microenvironment have strong ability to survive under stressful conditions through metabolic remodelling. Furthermore, CAFs are educated by tumor cells and help them adapt to the hostile microenvironment through their metabolic communication. By inducing catabolism, CAFs release nutrients into the microenvironment which are taken up by tumor cells to satisfy their metabolic requirements. Furthermore, CAFs can recycle toxic metabolic wastes produced by cancer cells into energetic substances, allowing cancer cells to undergo biosynthesis. Their metabolic crosstalk also enhances CAFs' pro-tumor phenotype and reshape the microenvironment facilitating tumor cells' metastasis and immune escape. In this review, we have analyzed the effect and mechanisms of metabolic crosstalk between tumor cells and CAFs. We also analyzed the future perspectives in this area from the points of CAFs heterogeneity, spatial metabonomics and patient-derived tumor organoids (PDOs). These information may deepen the knowledge of tumor metabolism regulated by CAFs and provide novel insights into the development of metabolism-based anti-cancer strategies.
Collapse
Affiliation(s)
- Bing Xia
- Department of Thoracic Oncology, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou Cancer Hospital, Hangzhou 310002, China
| | - Liqing Qiu
- Hangzhou Cancer Institution, Hangzhou Cancer Hospital, 310002, China
| | - Jing Yue
- Hangzhou Cancer Institution, Hangzhou Cancer Hospital, 310002, China
| | - Jingxing Si
- Cancer Center, Department of Radiology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang 310014, China
| | - Hongfang Zhang
- Hangzhou Cancer Institution, Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou Cancer Hospital, 310002, China.
| |
Collapse
|
28
|
Li Y, Li Z, Tang Y, Zhuang X, Feng W, Boor PPC, Buschow S, Sprengers D, Zhou G. Unlocking the therapeutic potential of the NKG2A-HLA-E immune checkpoint pathway in T cells and NK cells for cancer immunotherapy. J Immunother Cancer 2024; 12:e009934. [PMID: 39486805 PMCID: PMC11529472 DOI: 10.1136/jitc-2024-009934] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 09/29/2024] [Indexed: 11/04/2024] Open
Abstract
Immune checkpoint blockade, which enhances the reactivity of T cells to eliminate cancer cells, has emerged as a potent strategy in cancer therapy. Besides T cells, natural killer (NK) cells also play an indispensable role in tumor surveillance and destruction. NK Group 2 family of receptor A (NKG2A), an emerging co-inhibitory immune checkpoint expressed on both NK cells and T cells, mediates inhibitory signal via interaction with its ligand human leukocyte antigen-E (HLA-E), thereby attenuating the effector and cytotoxic functions of NK cells and T cells. Developing antibodies to block NKG2A, holds promise in restoring the antitumor cytotoxicity of NK cells and T cells. In this review, we delve into the expression and functional significance of NKG2A and HLA-E, elucidating how the NKG2A-HLA-E axis contributes to tumor immune escape via signal transduction mechanisms. Furthermore, we provide an overview of clinical trials investigating NKG2A blockade, either as monotherapy or in combination with other therapeutic antibodies, highlighting the responses of the immune system and the clinical benefits for patients. We pay special attention to additional immune co-signaling molecules that serve as potential targets on both NK cells and T cells, aiming to evoke more robust immune responses against cancer. This review offers an in-depth exploration of the NKG2A-HLA-E pathway as a pivotal checkpoint in the anti-tumor responses, paving the way for new immunotherapeutic strategies to improve cancer patient outcomes.
Collapse
Affiliation(s)
- Yan Li
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Zhu Li
- Department of Dermatology, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Yisen Tang
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Xiaomei Zhuang
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
- Digestive Diseases Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Wanhua Feng
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| | - Patrick P C Boor
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Sonja Buschow
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Dave Sprengers
- Department of Gastroenterology and Hepatology, Erasmus MC-University Medical Center Rotterdam, Rotterdam, Netherlands
| | - Guoying Zhou
- Scientific Research Center, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
- Guangdong Provincial Key Laboratory of Digestive Cancer Research, The Seventh Affiliated Hospital of Sun Yat-sen University, Shenzhen, Guangdong, China
| |
Collapse
|
29
|
Ma X, Xie J, Li B, Shan H, Jia Z, Liu W, Dong Y, Han S, Jin Q. Weighted gene co-expression network analysis and single-cell sequence analysis uncover immune landscape and reveal hub genes of necroptosis in macrophages in myocardial ischaemia-reperfusion injury. Int Immunopharmacol 2024; 140:112761. [PMID: 39079349 DOI: 10.1016/j.intimp.2024.112761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/08/2024] [Accepted: 07/22/2024] [Indexed: 09/01/2024]
Abstract
Myocardial ischaemia-reperfusion injury (MIRI) caused by the treatment of acute myocardial infarction (AMI) is the primary cause of severe ventricular remodelling, heart failure (HF), and high mortality. In recent studies, research on the role of necroptosis in MIRI has focused on cardiomyocytes, but new biomarkers and immunocyte mechanisms of necroptosis are rarely studied. In the present study, weighted gene co-expression network analysis (WGCNA) algorithms were used to establish a weighted gene co-expression network, and Casp1, Hpse, Myd88, Ripk1, and Tpm3 were identified as biological markers of necroptosis using least absolute shrinkage, selection operator (LASSO) regression and support vector machine (SVM) feature selection algorithms. The role and discriminatory power of these five genes in MIRI had never been studied. Single-cell and cell-talk analyses showed that hub genes of necroptosis were focused on macrophages, which mediate the functions of monocytes, fibroblasts, haematopoietic stem cells, and cardiomyocytes, primarily through the TNF/TNFRSF1A interaction. The polarisation and functional activation of macrophages were affected by the MIF signalling network (MIF CD74/CXCR4 and MIF CD74/CD44) of other cells. The results of the immune infiltration assay showed that the five genes involved in necroptosis were significantly related to the infiltration and functional activity of M2 macrophages. TWS-119 is predicted to be a molecular drug that targets key MIRI genes. A mouse model was established to confirm the expression of five hub genes, and ventricular remodelling increased with time after ischaemia-reperfusion injury (IRI). Therefore, Casp1, Hpse, Myd88, Ripk1, and Tpm3 may be key genes regulating necroptosis and polarisation in macrophages, and causing ventricular remodelling.
Collapse
Affiliation(s)
- Xiaowen Ma
- 960th Hospital of the Joint Logistic Support Force, China
| | - Jiqing Xie
- 960th Hospital of the Joint Logistic Support Force, China
| | - Bin Li
- 960th Hospital of the Joint Logistic Support Force, China
| | - Hui Shan
- 960th Hospital of the Joint Logistic Support Force, China
| | - Zonghu Jia
- 960th Hospital of the Joint Logistic Support Force, China
| | - Wenyan Liu
- 960th Hospital of the Joint Logistic Support Force, China
| | - Yubo Dong
- 960th Hospital of the Joint Logistic Support Force, China
| | - Shufang Han
- 960th Hospital of the Joint Logistic Support Force, China.
| | - Qun Jin
- 960th Hospital of the Joint Logistic Support Force, China.
| |
Collapse
|
30
|
Qi F, Gao N, Li J, Zhou C, Jiang J, Zhou B, Guo L, Feng X, Ji J, Cai Q, Yang L, Zhu R, Que X, Wu J, Xi W, Qin W, Zhang J. A multidimensional recommendation framework for identifying biological targets to aid the diagnosis and treatment of liver metastasis in patients with colorectal cancer. Mol Cancer 2024; 23:239. [PMID: 39449040 PMCID: PMC11515508 DOI: 10.1186/s12943-024-02155-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024] Open
Abstract
The quest to understand the molecular mechanisms of tumour metastasis and identify pivotal biomarkers for cancer therapy is increasing in importance. Single-omics analyses, constrained by their focus on a single biological layer, cannot fully elucidate the complexities of tumour molecular profiles and can thus overlook crucial molecular targets. In response to this limitation, we developed a multiobjective recommendation system (RJH-Metastasis 1.0) anchored in a multiomics knowledge graph to integrate genome, transcriptome, and proteome data and corroborative literature evidence and then conducted comprehensive analyses of colorectal cancer with liver metastasis (CRCLM). A total of 25 key genes significantly associated with CRCLM were recommended by our system, and GNB1, GATAD2A, GBP2, MACROD1, and EIF5B were further highlighted. Specifically, GNB1 presented fewer mutations but elevated RNA transcription and protein expression in CRCLM patients. The role of GNB1 in promoting the malignant behaviours of colon cancer cells was demonstrated via in vitro and in vivo studies. Aberrant expression of GNB1 could be regulated by METTL1-driven m7G modification. METTL1 knockdown decreased m7G modification in the 3' UTR of GNB1, increasing its mRNA transcription and translation during liver metastasis. Furthermore, GNB1 induced the formation of an immunosuppressive microenvironment by promoting the CLEC2C-KLRB1 interaction between memory B cells and KLRB1+PD-1+CD8+ cells. GNB1 expression and the efficacy of PD-1 antibody-based treatment in CRCLM patients were significantly correlated. In summary, our recommendation system can be used for effective exploration of key molecules in colorectal cancer, among which GNB1 was identified as a critical CRCLM promoter and immunotherapy biomarker in colorectal cancer patients.
Collapse
Affiliation(s)
- Feng Qi
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China.
| | - Na Gao
- Department of Laboratory Medicine, Zhongnan Hospital of Wuhan University, Wuhan University, Wuhan, 430071, P. R. China
| | - Jia Li
- Department of Thoracic Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 20025, P. R. China
| | - Chenfei Zhou
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Jinling Jiang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Bin Zhou
- Department of Hepatic Surgery IV, Eastern Hepatobiliary Surgery Hospital, Naval Medical University, Shanghai, 200438, P. R. China
| | - Liting Guo
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Xiaohui Feng
- Department of Oncology, Loujiang New City Hospital of Taicang (Taicang Branch of Ruijin Hospital Affiliated with Shanghai Jiao Tong University School of Medicine), Suzhou, 215400, P. R. China
| | - Jun Ji
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Qu Cai
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Liu Yang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Rongjia Zhu
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Xinyi Que
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Junwei Wu
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China
| | - Wenqi Xi
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China.
| | - Wenxing Qin
- Department of Medical Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, P. R. China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China.
| | - Jun Zhang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, P. R. China.
| |
Collapse
|
31
|
Gong D, Arbesfeld-Qiu JM, Perrault E, Bae JW, Hwang WL. Spatial oncology: Translating contextual biology to the clinic. Cancer Cell 2024; 42:1653-1675. [PMID: 39366372 PMCID: PMC12051486 DOI: 10.1016/j.ccell.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 08/01/2024] [Accepted: 09/06/2024] [Indexed: 10/06/2024]
Abstract
Microscopic examination of cells in their tissue context has been the driving force behind diagnostic histopathology over the past two centuries. Recently, the rise of advanced molecular biomarkers identified through single cell profiling has increased our understanding of cellular heterogeneity in cancer but have yet to significantly impact clinical care. Spatial technologies integrating molecular profiling with microenvironmental features are poised to bridge this translational gap by providing critical in situ context for understanding cellular interactions and organization. Here, we review how spatial tools have been used to study tumor ecosystems and their clinical applications. We detail findings in cell-cell interactions, microenvironment composition, and tissue remodeling for immune evasion and therapeutic resistance. Additionally, we highlight the emerging role of multi-omic spatial profiling for characterizing clinically relevant features including perineural invasion, tertiary lymphoid structures, and the tumor-stroma interface. Finally, we explore strategies for clinical integration and their augmentation of therapeutic and diagnostic approaches.
Collapse
Affiliation(s)
- Dennis Gong
- Center for Systems Biology, Department of Radiation Oncology, Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Jeanna M Arbesfeld-Qiu
- Center for Systems Biology, Department of Radiation Oncology, Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard University, Graduate School of Arts and Sciences, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Ella Perrault
- Center for Systems Biology, Department of Radiation Oncology, Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard University, Graduate School of Arts and Sciences, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Jung Woo Bae
- Center for Systems Biology, Department of Radiation Oncology, Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - William L Hwang
- Center for Systems Biology, Department of Radiation Oncology, Center for Cancer Research, Massachusetts General Hospital, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA; Harvard University, Graduate School of Arts and Sciences, Cambridge, MA, USA; Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
32
|
Feng F, Wu J, Chi Q, Wang S, Liu W, Yang L, Song G, Pan L, Xu K, Wang C. Lactylome Analysis Unveils Lactylation-Dependent Mechanisms of Stemness Remodeling in the Liver Cancer Stem Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2405975. [PMID: 39099416 PMCID: PMC11481176 DOI: 10.1002/advs.202405975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 07/23/2024] [Indexed: 08/06/2024]
Abstract
Lactate plays a critical role as an energy substrate, metabolite, and signaling molecule in hepatocellular carcinoma (HCC). Intracellular lactate-derived protein lysine lactylation (Kla) is identified as a contributor to the progression of HCC. Liver cancer stem cells (LCSCs) are believed to be the root cause of phenotypic and functional heterogeneity in HCC. However, the impact of Kla on the biological processes of LCSCs remains poorly understood. Here enhanced glycolytic metabolism, lactate accumulation, and elevated levels of lactylation are observed in LCSCs compared to HCC cells. H3K56la was found to be closely associated with tumourigenesis and stemness of LCSCs. Notably, a comprehensive examination of the lactylome and proteome of LCSCs and HCC cells identified the ALDOA K230/322 lactylation, which plays a critical role in promoting the stemness of LCSCs. Furthermore, this study demonstrated the tight binding between aldolase A (ALDOA) and dead box deconjugate enzyme 17 (DDX17), which is attenuated by ALDOA lactylation, ultimately enhancing the regulatory function of DDX17 in maintaining the stemness of LCSCs. This investigation highlights the significance of Kla in modulating the stemness of LCSCs and its impact on the progression of HCC. Targeting lactylation in LCSCs may offer a promising therapeutic approach for treating HCC.
Collapse
Affiliation(s)
- Fan Feng
- Hubei Shizhen LaboratoryWuhan430065China
- School of PharmacyHubei University of Chinese MedicineWuhan430065China
| | - Jiaqin Wu
- School of Laboratory MedicineHubei University of Chinese MedicineWuhan430065China
- National Innovation and Attracting Talents “111” baseKey Laboratory of Biorheological Science and TechnologyMinistry of EducationCollege of BioengineeringChongqing UniversityChongqing400000China
| | - Qingjia Chi
- Department of Engineering Structure and MechanicsSchool of ScienceWuhan University of TechnologyWuhan430070China
| | - Shunshun Wang
- Hubei Shizhen LaboratoryWuhan430065China
- School of PharmacyHubei University of Chinese MedicineWuhan430065China
| | - Wanqian Liu
- National Innovation and Attracting Talents “111” baseKey Laboratory of Biorheological Science and TechnologyMinistry of EducationCollege of BioengineeringChongqing UniversityChongqing400000China
| | - Li Yang
- National Innovation and Attracting Talents “111” baseKey Laboratory of Biorheological Science and TechnologyMinistry of EducationCollege of BioengineeringChongqing UniversityChongqing400000China
| | - Guanbin Song
- National Innovation and Attracting Talents “111” baseKey Laboratory of Biorheological Science and TechnologyMinistry of EducationCollege of BioengineeringChongqing UniversityChongqing400000China
| | - Lianhong Pan
- Chongqing Key Laboratory of Development and Utilization of Genuine Medicinal Materials in Three Gorges Reservoir AreaChongqing Engineering Research Center of Antitumor Natural DrugsChongqing Three Gorges Medical CollegeChongqing400030China
| | - Kang Xu
- Hubei Shizhen LaboratoryWuhan430065China
- School of PharmacyHubei University of Chinese MedicineWuhan430065China
- Center of Traditional Chinese Medicine Modernization for Liver DiseasesHubei University of Chinese MedicineWuhan430065China
| | - Chunli Wang
- Hubei Shizhen LaboratoryWuhan430065China
- School of Laboratory MedicineHubei University of Chinese MedicineWuhan430065China
| |
Collapse
|
33
|
Cheng X, Cao Y, Liu X, Li Y, Li Q, Gao D, Yu Q. Single-cell and spatial omics unravel the spatiotemporal biology of tumour border invasion and haematogenous metastasis. Clin Transl Med 2024; 14:e70036. [PMID: 39350478 PMCID: PMC11442492 DOI: 10.1002/ctm2.70036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2024] [Revised: 08/14/2024] [Accepted: 09/16/2024] [Indexed: 10/04/2024] Open
Abstract
Solid tumours exhibit a well-defined architecture, comprising a differentiated core and a dynamic border that interfaces with the surrounding tissue. This border, characterised by distinct cellular morphology and molecular composition, serves as a critical determinant of the tumour's invasive behaviour. Notably, the invasive border of the primary tumour represents the principal site for intravasation of metastatic cells. These cells, known as circulating tumour cells (CTCs), function as 'seeds' for distant dissemination and display remarkable heterogeneity. Advancements in spatial sequencing technology are progressively unveiling the spatial biological features of tumours. However, systematic investigations specifically targeting the characteristics of the tumour border remain scarce. In this comprehensive review, we illuminate key biological insights along the tumour body-border-haematogenous metastasis axis over the past five years. We delineate the distinctive landscape of tumour invasion boundaries and delve into the intricate heterogeneity and phenotype of CTCs, which orchestrate haematogenous metastasis. These insights have the potential to explain the basis of tumour invasion and distant metastasis, offering new perspectives for the development of more complex and precise clinical interventions and treatments.
Collapse
Affiliation(s)
- Xifu Cheng
- Department of Gastroenterology and Hepatologythe Second Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchangChina
- Department of Pathogen Biology and ImmunologySchool of Basic Medical SciencesJiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Yuke Cao
- Department of Gastroenterology and Hepatologythe Second Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Xiangyi Liu
- Queen Mary SchoolJiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Yuanheng Li
- Queen Mary SchoolJiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Qing Li
- Department of Oncologythe Second Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Dian Gao
- Department of Gastroenterology and Hepatologythe Second Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchangChina
- Department of Pathogen Biology and ImmunologySchool of Basic Medical SciencesJiangxi Medical CollegeNanchang UniversityNanchangChina
| | - Qiongfang Yu
- Department of Gastroenterology and Hepatologythe Second Affiliated HospitalJiangxi Medical CollegeNanchang UniversityNanchangChina
| |
Collapse
|
34
|
Wang J, Alhaskawi A, Dong Y, Tian T, Abdalbary SA, Lu H. Advances in spatial multi-omics in tumors. TUMORI JOURNAL 2024; 110:327-339. [PMID: 39185632 DOI: 10.1177/03008916241271458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2024]
Abstract
Single-cell techniques have convincingly demonstrated that tumor tissue usually contains multiple genetically defined cell subclones with different gene mutation sets as well as various transcriptional profiles, but the spatial heterogeneity of the microenvironment and the macrobiological characteristics of the tumor ecosystem have not been described. For the past few years, spatial multi-omics technologies have revealed the cellular interactions, microenvironment, and even systemic tumor-host interactions in the tumor ecosystem at the spatial level, which can not only improve classical therapies such as surgery, radiotherapy, and chemotherapy but also promote the development of emerging targeted therapies in immunotherapy. Here, we review some emerging spatial omics techniques in cancer research and therapeutic applications and propose prospects for their future development.
Collapse
Affiliation(s)
- Junyan Wang
- The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Ahmad Alhaskawi
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Yanzhao Dong
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Tu Tian
- Department of Plastic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Sahar Ahmed Abdalbary
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
- Department of Orthopedic Physical Therapy, Faculty of Physical Therapy, Nahda University in Beni Suef, Beni Suef, Egypt
| | - Hui Lu
- The First Affiliated Hospital, Zhejiang University, Hangzhou, China
- Department of Orthopedics, The First Affiliated Hospital, Zhejiang University, Hangzhou, China
| |
Collapse
|
35
|
Wang N, Hong W, Wu Y, Chen Z, Bai M, Wang W, Zhu J. Next-generation spatial transcriptomics: unleashing the power to gear up translational oncology. MedComm (Beijing) 2024; 5:e765. [PMID: 39376738 PMCID: PMC11456678 DOI: 10.1002/mco2.765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Revised: 08/30/2024] [Accepted: 09/03/2024] [Indexed: 10/09/2024] Open
Abstract
The growing advances in spatial transcriptomics (ST) stand as the new frontier bringing unprecedented influences in the realm of translational oncology. This has triggered systemic experimental design, analytical scope, and depth alongside with thorough bioinformatics approaches being constantly developed in the last few years. However, harnessing the power of spatial biology and streamlining an array of ST tools to achieve designated research goals are fundamental and require real-world experiences. We present a systemic review by updating the technical scope of ST across different principal basis in a timeline manner hinting on the generally adopted ST techniques used within the community. We also review the current progress of bioinformatic tools and propose in a pipelined workflow with a toolbox available for ST data exploration. With particular interests in tumor microenvironment where ST is being broadly utilized, we summarize the up-to-date progress made via ST-based technologies by narrating studies categorized into either mechanistic elucidation or biomarker profiling (translational oncology) across multiple cancer types and their ways of deploying the research through ST. This updated review offers as a guidance with forward-looking viewpoints endorsed by many high-resolution ST tools being utilized to disentangle biological questions that may lead to clinical significance in the future.
Collapse
Affiliation(s)
- Nan Wang
- Cosmos Wisdom Biotech Co. LtdHangzhouChina
| | - Weifeng Hong
- Department of Radiation OncologyZhejiang Cancer HospitalHangzhouChina
- Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouChina
- Zhejiang Key Laboratory of Radiation OncologyHangzhouChina
| | - Yixing Wu
- Department of Pulmonary and Critical Care MedicineZhongshan HospitalFudan UniversityShanghaiChina
| | - Zhe‐Sheng Chen
- Department of Pharmaceutical SciencesCollege of Pharmacy and Health SciencesInstitute for BiotechnologySt. John's UniversityQueensNew YorkUSA
| | - Minghua Bai
- Department of Radiation OncologyZhejiang Cancer HospitalHangzhouChina
- Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouChina
- Zhejiang Key Laboratory of Radiation OncologyHangzhouChina
| | | | - Ji Zhu
- Department of Radiation OncologyZhejiang Cancer HospitalHangzhouChina
- Hangzhou Institute of Medicine (HIM)Chinese Academy of SciencesHangzhouChina
- Zhejiang Key Laboratory of Radiation OncologyHangzhouChina
| |
Collapse
|
36
|
Xiong X, Wang X, Liu CC, Shao ZM, Yu KD. Deciphering breast cancer dynamics: insights from single-cell and spatial profiling in the multi-omics era. Biomark Res 2024; 12:107. [PMID: 39294728 PMCID: PMC11411917 DOI: 10.1186/s40364-024-00654-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 09/10/2024] [Indexed: 09/21/2024] Open
Abstract
As one of the most common tumors in women, the pathogenesis and tumor heterogeneity of breast cancer have long been the focal point of research, with the emergence of tumor metastasis and drug resistance posing persistent clinical challenges. The emergence of single-cell sequencing (SCS) technology has introduced novel approaches for gaining comprehensive insights into the biological behavior of malignant tumors. SCS is a high-throughput technology that has rapidly developed in the past decade, providing high-throughput molecular insights at the individual cell level. Furthermore, the advent of multitemporal point sampling and spatial omics also greatly enhances our understanding of cellular dynamics at both temporal and spatial levels. The paper provides a comprehensive overview of the historical development of SCS, and highlights the most recent advancements in utilizing SCS and spatial omics for breast cancer research. The findings from these studies will serve as valuable references for future advancements in basic research, clinical diagnosis, and treatment of breast cancer.
Collapse
Affiliation(s)
- Xin Xiong
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xin Wang
- Department of Anesthesiology, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Cui-Cui Liu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhi-Ming Shao
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ke-Da Yu
- Department of Breast Surgery, Key Laboratory of Breast Cancer in Shanghai, Cancer Institute, Fudan University Shanghai Cancer Center, Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
37
|
Chan YT, Zhang C, Wu J, Lu P, Xu L, Yuan H, Feng Y, Chen ZS, Wang N. Biomarkers for diagnosis and therapeutic options in hepatocellular carcinoma. Mol Cancer 2024; 23:189. [PMID: 39242496 PMCID: PMC11378508 DOI: 10.1186/s12943-024-02101-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 08/23/2024] [Indexed: 09/09/2024] Open
Abstract
Liver cancer is a global health challenge, causing a significant social-economic burden. Hepatocellular carcinoma (HCC) is the predominant type of primary liver cancer, which is highly heterogeneous in terms of molecular and cellular signatures. Early-stage or small tumors are typically treated with surgery or ablation. Currently, chemotherapies and immunotherapies are the best treatments for unresectable tumors or advanced HCC. However, drug response and acquired resistance are not predictable with the existing systematic guidelines regarding mutation patterns and molecular biomarkers, resulting in sub-optimal treatment outcomes for many patients with atypical molecular profiles. With advanced technological platforms, valuable information such as tumor genetic alterations, epigenetic data, and tumor microenvironments can be obtained from liquid biopsy. The inter- and intra-tumoral heterogeneity of HCC are illustrated, and these collective data provide solid evidence in the decision-making process of treatment regimens. This article reviews the current understanding of HCC detection methods and aims to update the development of HCC surveillance using liquid biopsy. Recent critical findings on the molecular basis, epigenetic profiles, circulating tumor cells, circulating DNAs, and omics studies are elaborated for HCC diagnosis. Besides, biomarkers related to the choice of therapeutic options are discussed. Some notable recent clinical trials working on targeted therapies are also highlighted. Insights are provided to translate the knowledge into potential biomarkers for detection and diagnosis, prognosis, treatment response, and drug resistance indicators in clinical practice.
Collapse
Affiliation(s)
- Yau-Tuen Chan
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Cheng Zhang
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Junyu Wu
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Pengde Lu
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Lin Xu
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Hongchao Yuan
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong
| | - Zhe-Sheng Chen
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong.
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, 8000 Utopia Parkway, Queens, NY, 11439, USA.
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, Pok Fu Lam, Hong Kong.
| |
Collapse
|
38
|
Liu Y, Yang H, Li T, Zhang N. Immunotherapy in liver cancer: overcoming the tolerogenic liver microenvironment. Front Immunol 2024; 15:1460282. [PMID: 39295859 PMCID: PMC11409253 DOI: 10.3389/fimmu.2024.1460282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Accepted: 08/21/2024] [Indexed: 09/21/2024] Open
Abstract
Liver cancer is a major global health concern, ranking among the top causes of cancer-related deaths worldwide. Despite advances in medical research, the prognosis for liver cancer remains poor, largely due to the inherent limitations of current therapies. Traditional treatments like surgery, radiation, and chemotherapy often fail to provide long-term remission and are associated with significant side effects. Immunotherapy has emerged as a promising avenue for cancer treatment, leveraging the body's immune system to target and destroy cancer cells. However, its application in liver cancer has been limited. One of the primary challenges is the liver's unique immune microenvironment, which can inhibit the effectiveness of immunotherapeutic agents. This immune microenvironment creates a barrier, leading to drug resistance and reducing the overall efficacy of treatment. Recent studies have focused on understanding the immunological landscape of liver cancer to develop strategies that can overcome these obstacles. By identifying the specific factors within the liver that contribute to immune suppression and drug resistance, researchers aim to enhance the effectiveness of immunotherapy. Prospective strategies include combining immunotherapy with other treatments, using targeted therapies to modulate the immune microenvironment, and developing new agents that can bypass or counteract the inhibitory mechanisms in the liver. These advancements hold promise for improving outcomes in liver cancer treatment.
Collapse
Affiliation(s)
- Yanju Liu
- Department of Infectious Diseases, Weifang People’s Hospital, Weifang, Shandong, China
| | - Hongyuan Yang
- Department of Infectious Diseases, Weifang People’s Hospital, Weifang, Shandong, China
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University, Xi’an, China
| | - Na Zhang
- Department of Infectious Diseases, Weifang People’s Hospital, Weifang, Shandong, China
| |
Collapse
|
39
|
Testa U. Recent developments in molecular targeted therapies for hepatocellular carcinoma in the genomic era. Expert Rev Mol Diagn 2024; 24:803-827. [PMID: 39194003 DOI: 10.1080/14737159.2024.2392278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Accepted: 08/11/2024] [Indexed: 08/29/2024]
Abstract
INTRODUCTION Primary liver cancer is a major health problem being the sixth most frequent cancer in the world and the third cause of cancer-related death in the world. The most common histological type of liver cancer is hepatocellular carcinoma (HCC, 75-80%). AREAS COVERED Based on primary literature, this review provides an updated analysis of studies of genetic characterization of HCC at the level of gene mutation profiling, copy number alterations, and gene expression, with the definition of molecular subgroups and the identification of some molecular biomarkers and therapeutic targets. Recent therapeutic developments are also highlighted. EXPERT OPINION Deepening the understanding of the molecular complexity of HCC is progressively paving the way for the development of more personalized treatment approaches. Two important strategies involve the definition and validation of molecularly defined therapeutic targets in a subset of HCC patients and the identification of suitable biomarkers for approved systematic therapies (multikinase inhibitors and immunotherapies). The extensive molecular characterization of patients at the genomic and transcriptomic levels and the inclusion of detailed and relevant translational studies in clinical trials will represent a fundamental tool for improving the benefit of systemic therapies in HCC.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Rome, Italy
| |
Collapse
|
40
|
Xiong D, Yu H, Sun ZJ. Unlocking T cell exhaustion: Insights and implications for CAR-T cell therapy. Acta Pharm Sin B 2024; 14:3416-3431. [PMID: 39220881 PMCID: PMC11365448 DOI: 10.1016/j.apsb.2024.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2024] [Revised: 03/20/2024] [Accepted: 04/01/2024] [Indexed: 09/04/2024] Open
Abstract
Chimeric antigen receptor T (CAR-T) cell therapy as a form of adoptive cell therapy (ACT) has shown significant promise in cancer treatment, demonstrated by the FDA-approved CAR-T cell therapies targeting CD19 or B cell maturation antigen (BCMA) for hematological malignancies, albeit with moderate outcomes in solid tumors. However, despite these advancements, the efficacy of CAR-T therapy is often compromised by T cell exhaustion, a phenomenon that impedes the persistence and effector function of CAR-T cells, leading to a relapse rate of up to 75% in patients treated with CD19 or CD22 CAR-T cells for hematological malignancies. Strategies to overcome CAR-T exhaustion employ state-of-the-art genomic engineering tools and single-cell sequencing technologies. In this review, we provide a comprehensive understanding of the latest mechanistic insights into T cell exhaustion and their implications for the current efforts to optimize CAR-T cell therapy. These insights, combined with lessons learned from benchmarking CAR-T based products in recent clinical trials, aim to address the challenges posed by T cell exhaustion, potentially setting the stage for the development of tailored next-generation approaches to cancer treatment.
Collapse
Affiliation(s)
- Dian Xiong
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Science, Wuhan University, Wuhan 430079, China
| | - Haijun Yu
- Department of Radiation and Medical Oncology, Hubei Province Cancer Clinical Study Center, Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Science, Wuhan University, Wuhan 430079, China
| |
Collapse
|
41
|
Ahmed F, Mishra NK, Alghamdi OA, Khan MI, Ahmad A, Khan N, Rehan M. Deciphering KDM8 dysregulation and CpG methylation in hepatocellular carcinoma using multi-omics and machine learning. Epigenomics 2024; 16:961-983. [PMID: 39072393 PMCID: PMC11370911 DOI: 10.1080/17501911.2024.2374702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 06/25/2024] [Indexed: 07/30/2024] Open
Abstract
Aim: This study investigates the altered expression and CpG methylation patterns of histone demethylase KDM8 in hepatocellular carcinoma (HCC), aiming to uncover insights and promising diagnostics biomarkers.Materials & methods: Leveraging TCGA-LIHC multi-omics data, we employed R/Bioconductor libraries and Cytoscape to analyze and construct a gene correlation network, and LASSO regression to develop an HCC-predictive model.Results: In HCC, KDM8 downregulation is correlated with CpGs hypermethylation. Differential gene correlation analysis unveiled a liver carcinoma-associated network marked by increased cell division and compromised liver-specific functions. The LASSO regression identified a highly accurate HCC prediction signature, prominently featuring CpG methylation at cg02871891.Conclusion: Our study uncovers CpG hypermethylation at cg02871891, possibly influencing KDM8 downregulation in HCC, suggesting these as promising biomarkers and targets.
Collapse
Affiliation(s)
- Firoz Ahmed
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Nitish Kumar Mishra
- Department of Structural Biology, St. Jude Children's Research Hospital, Memphis, TN, 38015, USA
| | - Othman A Alghamdi
- Department of Biological Sciences, College of Science, University of Jeddah, Jeddah, Saudi Arabia
| | - Mohammad Imran Khan
- Research Center, King Faisal Specialist Hospital & Research Centre, Jeddah, Saudi Arabia
- Department of Biochemistry & Molecular Medicine, College of Medicine, Al-Faisal University, Riyadh, Saudi Arabia
| | - Aamir Ahmad
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, 3050, Qatar
| | - Nargis Khan
- Snyder Institute of Chronic Diseases, Health Research & Innovation Center, Cumming School of Medicine, University of Calgary, Alberta, Canada
- Department of Microbiology, Immunology & Infectious Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| | - Mohammad Rehan
- Snyder Institute of Chronic Diseases, Health Research & Innovation Center, Cumming School of Medicine, University of Calgary, Alberta, Canada
- Department of Microbiology, Immunology & Infectious Diseases, Cumming School of Medicine, University of Calgary, Alberta, Canada
| |
Collapse
|
42
|
Peeters F, Cappuyns S, Piqué-Gili M, Phillips G, Verslype C, Lambrechts D, Dekervel J. Applications of single-cell multi-omics in liver cancer. JHEP Rep 2024; 6:101094. [PMID: 39022385 PMCID: PMC11252522 DOI: 10.1016/j.jhepr.2024.101094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/18/2024] [Accepted: 03/27/2024] [Indexed: 07/20/2024] Open
Abstract
Primary liver cancer, more specifically hepatocellular carcinoma (HCC), remains a significant global health problem associated with increasing incidence and mortality. Clinical, biological, and molecular heterogeneity are well-known hallmarks of cancer and HCC is considered one of the most heterogeneous tumour types, displaying substantial inter-patient, intertumoural and intratumoural variability. This heterogeneity plays a pivotal role in hepatocarcinogenesis, metastasis, relapse and drug response or resistance. Unimodal single-cell sequencing techniques have already revolutionised our understanding of the different layers of molecular hierarchy in the tumour microenvironment of HCC. By highlighting the cellular heterogeneity and the intricate interactions among cancer, immune and stromal cells before and during treatment, these techniques have contributed to a deeper comprehension of tumour clonality, hematogenous spreading and the mechanisms of action of immune checkpoint inhibitors. However, major questions remain to be elucidated, with the identification of biomarkers predicting response or resistance to immunotherapy-based regimens representing an important unmet clinical need. Although the application of single-cell multi-omics in liver cancer research has been limited thus far, a revolution of individualised care for patients with HCC will only be possible by integrating various unimodal methods into multi-omics methodologies at the single-cell resolution. In this review, we will highlight the different established single-cell sequencing techniques and explore their biological and clinical impact on liver cancer research, while casting a glance at the future role of multi-omics in this dynamic and rapidly evolving field.
Collapse
Affiliation(s)
- Frederik Peeters
- Digestive Oncology, Department of Gastroenterology, University Hospitals Leuven, Leuven, Belgium
- Laboratory of Clinical Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
- VIB Centre for Cancer Biology, Leuven, Belgium
| | - Sarah Cappuyns
- Digestive Oncology, Department of Gastroenterology, University Hospitals Leuven, Leuven, Belgium
- Laboratory of Clinical Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
- VIB Centre for Cancer Biology, Leuven, Belgium
| | - Marta Piqué-Gili
- Liver Cancer Translational Research Laboratory, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Gino Phillips
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
- VIB Centre for Cancer Biology, Leuven, Belgium
| | - Chris Verslype
- Digestive Oncology, Department of Gastroenterology, University Hospitals Leuven, Leuven, Belgium
- Laboratory of Clinical Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Diether Lambrechts
- Laboratory for Translational Genetics, Department of Human Genetics, KU Leuven, Leuven, Belgium
- VIB Centre for Cancer Biology, Leuven, Belgium
| | - Jeroen Dekervel
- Digestive Oncology, Department of Gastroenterology, University Hospitals Leuven, Leuven, Belgium
- Laboratory of Clinical Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| |
Collapse
|
43
|
Jin Y, Zuo Y, Li G, Liu W, Pan Y, Fan T, Fu X, Yao X, Peng Y. Advances in spatial transcriptomics and its applications in cancer research. Mol Cancer 2024; 23:129. [PMID: 38902727 PMCID: PMC11188176 DOI: 10.1186/s12943-024-02040-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 06/10/2024] [Indexed: 06/22/2024] Open
Abstract
Malignant tumors have increasing morbidity and high mortality, and their occurrence and development is a complicate process. The development of sequencing technologies enabled us to gain a better understanding of the underlying genetic and molecular mechanisms in tumors. In recent years, the spatial transcriptomics sequencing technologies have been developed rapidly and allow the quantification and illustration of gene expression in the spatial context of tissues. Compared with the traditional transcriptomics technologies, spatial transcriptomics technologies not only detect gene expression levels in cells, but also inform the spatial location of genes within tissues, cell composition of biological tissues, and interaction between cells. Here we summarize the development of spatial transcriptomics technologies, spatial transcriptomics tools and its application in cancer research. We also discuss the limitations and challenges of current spatial transcriptomics approaches, as well as future development and prospects.
Collapse
Affiliation(s)
- Yang Jin
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yuanli Zuo
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Gang Li
- Department of Thoracic Surgery, The Public Health Clinical Center of Chengdu, Chengdu, 610061, China
| | - Wenrong Liu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Yitong Pan
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ting Fan
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xin Fu
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaojun Yao
- Department of Thoracic Surgery, The Public Health Clinical Center of Chengdu, Chengdu, 610061, China.
| | - Yong Peng
- Laboratory of Molecular Oncology, Frontiers Science Center for Disease-related Molecular Network, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, China.
- Frontier Medical Center, Tianfu Jincheng Laboratory, Chengdu, 610212, China.
| |
Collapse
|
44
|
Li L, Xie W, Zhan L, Wen S, Luo X, Xu S, Cai Y, Tang W, Wang Q, Li M, Xie Z, Deng L, Zhu H, Yu G. Resolving tumor evolution: a phylogenetic approach. JOURNAL OF THE NATIONAL CANCER CENTER 2024; 4:97-106. [PMID: 39282584 PMCID: PMC11390690 DOI: 10.1016/j.jncc.2024.03.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 02/28/2024] [Accepted: 03/20/2024] [Indexed: 09/19/2024] Open
Abstract
The evolutionary dynamics of cancer, characterized by its profound heterogeneity, demand sophisticated tools for a holistic understanding. This review delves into tumor phylogenetics, an essential approach bridging evolutionary biology with oncology, offering unparalleled insights into cancer's evolutionary trajectory. We provide an overview of the workflow, encompassing study design, data acquisition, and phylogeny reconstruction. Notably, the integration of diverse data sets emerges as a transformative step, enhancing the depth and breadth of evolutionary insights. With this integrated perspective, tumor phylogenetics stands poised to redefine our understanding of cancer evolution and influence therapeutic strategies.
Collapse
Affiliation(s)
- Lin Li
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Wenqin Xie
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Li Zhan
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shaodi Wen
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Department of Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital, Nanjing, China
| | - Xiao Luo
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shuangbin Xu
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Division of Laboratory Medicine, Microbiome Center, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Yantong Cai
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Wenli Tang
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Qianwen Wang
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ming Li
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Zijing Xie
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Lin Deng
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Hongyuan Zhu
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Guangchuang Yu
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
45
|
Lu B, Liu Y, Yao Y, Yang T, Zhang H, Yang X, Huang R, Zhou W, Pan X, Cui X. Advances in sequencing and omics studies in prostate cancer: unveiling molecular pathogenesis and clinical applications. Front Oncol 2024; 14:1355551. [PMID: 38800374 PMCID: PMC11116611 DOI: 10.3389/fonc.2024.1355551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 04/16/2024] [Indexed: 05/29/2024] Open
Abstract
Background Prostate cancer (PCa) is one of the most threatening health problems for the elderly males. However, our understanding of the disease has been limited by the research technology for a long time. Recently, the maturity of sequencing technology and omics studies has been accelerating the studies of PCa, establishing themselves as an essential impetus in this field. Methods We assessed Web of Science (WoS) database for publications of sequencing and omics studies in PCa on July 3rd, 2023. Bibliometrix was used to conduct ulterior bibliometric analysis of countries/affiliations, authors, sources, publications, and keywords. Subsequently, purposeful large amounts of literature reading were proceeded to analyze research hotspots in this field. Results 3325 publications were included in the study. Research associated with sequencing and omics studies in PCa had shown an obvious increase recently. The USA and China were the most productive countries, and harbored close collaboration. CHINNAIYAN AM was identified as the most influential author, and CANCER RESEARCH exhibited huge impact in this field. Highly cited publications and their co-citation relationships were used to filtrate literatures for subsequent literature reading. Based on keyword analysis and large amounts of literature reading, 'the molecular pathogenesis of PCa' and 'the clinical application of sequencing and omics studies in PCa' were summarized as two research hotspots in the field. Conclusion Sequencing technology had a deep impact on the studies of PCa. Sequencing and omics studies in PCa helped researchers reveal the molecular pathogenesis, and provided new possibilities for the clinical practice of PCa.
Collapse
Affiliation(s)
- Bingnan Lu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yifan Liu
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuntao Yao
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianyue Yang
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haoyu Zhang
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyue Yang
- Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Runzhi Huang
- Department of Burn Surgery, The First Affiliated Hospital of Naval Medical University, Shanghai, China
| | - Wang Zhou
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiuwu Pan
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xingang Cui
- Department of Urology, Xinhua Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
46
|
Zhu Y, Tan H, Wang J, Zhuang H, Zhao H, Lu X. Molecular insight into T cell exhaustion in hepatocellular carcinoma. Pharmacol Res 2024; 203:107161. [PMID: 38554789 DOI: 10.1016/j.phrs.2024.107161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 03/17/2024] [Accepted: 03/26/2024] [Indexed: 04/02/2024]
Abstract
Hepatocellular carcinoma is one of the leading causes of cancer-related mortality globally. The emergence of immunotherapy has been shown to be a promising therapeutic approach for hepatocellular carcinoma in recent years. It has been well known that T cell plays a key role in current immunotherapy. However, sustained exposure to antigenic stimulation within the tumor microenvironment may lead to T cell exhaustion, which may cause treatment ineffectiveness. Therefore, reversing T cell exhaustion has been an important issue for the clinical application of immunotherapy, and a comprehensive understanding of the intricacies surrounding T cell exhaustion and its underlying mechanisms is imperative for devising strategies to overcome the T cell exhaustion during treatment. In this review, we summarized the reported drivers of T cell exhaustion in hepatocellular carcinoma and delineate potential ways to reverse it. Additionally, we discussed the interplay among metabolic plasticity, epigenetic regulation, and transcriptional factors in exhausted T cells in hepatocellular carcinoma, and their implication for future clinical applications.
Collapse
Affiliation(s)
- Yonghua Zhu
- Department of General Surgery, Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huabing Tan
- Department of Infectious Diseases, Hepatology Institute, Renmin Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China; Shiyan Key Laboratory of Virology, Hubei University of Medicine, Shiyan, Hubei Province 442000, China
| | - Jincheng Wang
- Graduate School of Biomedical Science and Engineering, Hokkaido University, Japan
| | - Haiwen Zhuang
- Department of General Surgery, Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huanbin Zhao
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN 38105, USA.
| | - Xiaojie Lu
- Department of General Surgery, Liver Transplantation Center, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.
| |
Collapse
|