1
|
Xu Y, Gao Z, Liu J, Yang Q, Xu S. Role of gut microbiome in suppression of cancers. Gut Microbes 2025; 17:2495183. [PMID: 40254597 PMCID: PMC12013426 DOI: 10.1080/19490976.2025.2495183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2024] [Revised: 03/23/2025] [Accepted: 04/14/2025] [Indexed: 04/22/2025] Open
Abstract
The pathogenesis of cancer is closely related to the disruption of homeostasis in the human body. The gut microbiome plays crucial roles in maintaining the homeostasis of its host throughout lifespan. In recent years, a large number of studies have shown that dysbiosis of the gut microbiome is involved in the entire process of cancer initiation, development, and prognosis by influencing the host immune system and metabolism. Some specific intestinal bacteria promote the occurrence and development of cancers under certain conditions. Conversely, some other specific intestinal bacteria suppress the oncogenesis and progression of cancers, including inhibiting the occurrence of cancers, delaying the progression of cancers and boosting the therapeutic effect on cancers. The promoting effects of the gut microbiome on cancers have been comprehensively discussed in the previous review. This article will review the latest advances in the roles and mechanisms of gut microbiome in cancer suppression, providing a new perspective for developing strategies of cancer prevention and treatment.
Collapse
Affiliation(s)
- Yao Xu
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P. R. China
- Department of Dermatology, Huashan Hospital, Fudan University, Shanghai, P. R. China
| | - Zhaoyu Gao
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P. R. China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, P. R. China
- Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, P. R. China
| | - Jiaying Liu
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P. R. China
| | - Qianqian Yang
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P. R. China
| | - Shunjiang Xu
- Central Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, P. R. China
- The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Shijiazhuang, P. R. China
- Hebei Key Laboratory of Brain Science and Psychiatric-Psychologic Disease, Shijiazhuang, P. R. China
| |
Collapse
|
2
|
Arrizabalaga L, Melero I, Berraondo P, Aranda F. Routing immunomodulatory cytokine-encoded mRNAs to the omentum: turning an enemy into an ally in peritoneal metastasis. Oncoimmunology 2025; 14:2510998. [PMID: 40418646 PMCID: PMC12118438 DOI: 10.1080/2162402x.2025.2510998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2025] [Revised: 05/07/2025] [Accepted: 05/14/2025] [Indexed: 05/28/2025] Open
Abstract
Peritoneal metastases remain a significant clinical challenge owing to the immunosuppressive nature of the omentum, which serves as a protective niche for disseminated tumor cells. Our recent study explored the targeted delivery of immunomodulatory cytokine-encoded mRNAs to the omentum, aiming to shift its role from a tumor-supportive site to an immune-activating ally. Our findings highlight the potential of cytokine mRNA delivery as a novel and safe immunotherapeutic strategy for peritoneal metastases.
Collapse
Affiliation(s)
- Leire Arrizabalaga
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| | - Ignacio Melero
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Department of Oncology, Clínica Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- Nuffield Department of Medicine and Oxford Center for Immuno-Oncology, University of Oxford, Oxford, UK
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Pedro Berraondo
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
- Department of Oncology, Clínica Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), Madrid, Spain
| | - Fernando Aranda
- Program of Immunology and Immunotherapy, Cima Universidad de Navarra, Cancer Center Clínica Universidad de Navarra (CCUN), Pamplona, Spain
- Navarra Institute for Health Research (IDISNA), Pamplona, Spain
| |
Collapse
|
3
|
Talebi F, Gregucci F, Ahmed J, Ben Chetrit N, D. Brown B, Chan TA, Chand D, Constanzo J, Demaria S, I. Gabrilovich D, Golden E, Godkin A, Guha C, P. Gupta G, Hasan A, G. Herrera F, Kaufman H, Li D, A. Melcher A, McDonald S, Merghoub T, Monjazeb AM, Paris S, Pitroda S, Sadanandam A, Schaue D, Santambrogio L, Szapary P, Sage J, W. Welsh J, Wilkins A, H. Young K, Wennerberg E, Zitvogel L, Galluzzi L, Deutsch E, C. Formenti S. Updates on radiotherapy-immunotherapy combinations: Proceedings of 8th Annual ImmunoRad Conference. Oncoimmunology 2025; 14:2507856. [PMID: 40401900 PMCID: PMC12101595 DOI: 10.1080/2162402x.2025.2507856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2025] [Revised: 05/12/2025] [Accepted: 05/13/2025] [Indexed: 05/23/2025] Open
Abstract
The annual ImmunoRad Conference has established itself as a recurrent occasion to explore the possibility of combining radiation therapy (RT) and immunotherapy (IT) for clinical cancer management. Bringing together a number of preclinical and clinical leaders in the fields of radiation oncology, immuno-oncology and IT, this annual event fosters indeed essential conversations and fruitful exchanges on how to address existing challenges to expand the therapeutic value of RT-IT combinations. The 8th edition of the ImmunoRad Conference, which has been held in October 2024 at the Weill Cornell Medical College of New York City, highlighted exciting preclinical and clinical advances at the interface between RT and IT, setting the stage for extra progress toward extended benefits for patients with an increasing variety of tumor types. Here, we critically summarize the lines of investigation that have been discussed at the occasion of the 8th Annual ImmunoRad Conference.
Collapse
Affiliation(s)
- Fereshteh Talebi
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Fabiana Gregucci
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Jalal Ahmed
- Icahn Genomics Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nir Ben Chetrit
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Brian D. Brown
- Icahn Genomics Institute, Department of Immunology and Immunotherapy, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Timothy A. Chan
- Department of Cancer Sciences, Global Center for Immunotherapy and Precision Immuno-Oncology, Cleveland Clinic, Cleveland, OH, USA
- Case Western University School of Medicine, Cleveland, OH, USA
| | | | - Julie Constanzo
- Institut de Recherche en Cancérologie de Montpellier (IRCM), INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier (ICM), Montpellier, France
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | | | - Encouse Golden
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | - Andrew Godkin
- Division of Infection and Immunity/Systems Immunity University Research Institute, School of Medicine, Cardiff University, Cardiff, UK
| | - Chandan Guha
- Departments of Radiation Oncology and Pathology, Albert Einstein College of Medicine, New York, NY, USA
| | - Gaorav P. Gupta
- Department of Radiation Oncology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | | | - Fernanda G. Herrera
- AGORA Cancer Research Center, Swiss Cancer Center Leman, Lausanne, Switzerland
- Services of Radiation Oncology and Immuno-Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
- Department of Oncology, Ludwig Institute of Cancer Research, University of Lausanne, Lausanne, Switzerland
| | | | - Donna Li
- University of Wisconsin, Madison, WI, USA
| | - Alan A. Melcher
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Sierra McDonald
- UNC Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, NC, USA
| | - Taha Merghoub
- Swim Across America and Ludwig Collaborative Laboratory, Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center and Parker Institute for Cancer Immunotherapy, Weill Cornell Medicine, New York, NY, USA
| | - Arta M. Monjazeb
- Department of Radiation Oncology, University of California, San Diego, CA, USA
| | | | - Sean Pitroda
- Department of Radiation and Cellular Oncology and Ludwig Center for Metastasis Research, University of Chicago, Chicago, IL, USA
| | - Anguraj Sadanandam
- Division of Molecular Pathology, The Institute of Cancer Research, London, UK
| | - Dörthe Schaue
- Department of Radiation Oncology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Laura Santambrogio
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| | | | - Julien Sage
- Departments of Genetics and Pediatrics, Stanford University, Stanford, California
| | - James W. Welsh
- Department of Radiation Oncology, MD Anderson Cancer Center, University of Texas, Houston, TX, USA
| | - Anna Wilkins
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Kristina H. Young
- Division of Radiation Oncology, The Oregon Clinic, Portland, OR, USA
- Earle A. Chiles Research Institute, Providence Cancer Institute, Portland, OR, USA
| | - Eric Wennerberg
- Division of Radiotherapy and Imaging, The Institute of Cancer Research, London, UK
| | - Laurence Zitvogel
- Gustave Roussy, INSERM U1015, Division of Medicine, Paris-Saclay University, Center of Clinical Investigations BIOTHERIS, Villejuif, France
| | - Lorenzo Galluzzi
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Eric Deutsch
- Department of Radiation Oncology, Gustave Roussy, INSERM U1030, Division of Medicine, Paris-Saclay University, RHU LySAIRI “Lymphocyte-Sparing Artificial Intelligence-guided Radio-Immunotherapy”, Villejuif, France
| | - Silvia C. Formenti
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
4
|
Galluzzi L, Buqué A. Paradoxical control of multifocal mammary oncogenesis by radiation therapy. Oncoimmunology 2025; 14:2458886. [PMID: 39873285 PMCID: PMC11776481 DOI: 10.1080/2162402x.2025.2458886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 01/04/2025] [Accepted: 01/08/2025] [Indexed: 01/30/2025] Open
Abstract
In an immunocompetent mouse model of multifocal, metachronous HR+ mammary carcinogenesis, we have recently demonstrated that a superior control of primary neoplastic lesions by focal radiotherapy does not necessarily translate into improved oncosuppression at non-irradiated (pre)malignant tissues. These data point to a link between local tumor control by radiotherapy and systemic oncogenesis that remains to be fully understood.
Collapse
Affiliation(s)
- Lorenzo Galluzzi
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Aitziber Buqué
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| |
Collapse
|
5
|
Soler-Agesta R, Beltrán-Visiedo M, Sato A, Yamazaki T, Guilbaud E, Yim CY, Congenie MT, Ames TD, Anel A, Galluzzi L. Partial mitochondrial involvement in the antiproliferative and immunostimulatory effects of PT-112. Oncoimmunology 2025; 14:2507245. [PMID: 40386940 PMCID: PMC12091903 DOI: 10.1080/2162402x.2025.2507245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2025] [Revised: 04/18/2025] [Accepted: 05/13/2025] [Indexed: 05/20/2025] Open
Abstract
PT-112 is a novel small molecule exhibiting promising clinical activity in patients with solid tumors. PT-112 kills malignant cells by inhibiting ribosome biogenesis while promoting the emission of immunostimulatory signals. Accordingly, PT-112 is an authentic immunogenic cell death (ICD) inducer and synergizes with immune checkpoint inhibitors in preclinical models of mammary and colorectal carcinoma. Moreover, PT-112 monotherapy has led to durable clinical responses, some of which persisting after treatment discontinuation. Mitochondrial outer membrane permeabilization (MOMP) regulates the cytotoxicity and immunogenicity of various anticancer agents. Here, we harnessed mouse mammary carcinoma TS/A cells to test whether genetic alterations affecting MOMP influence PT-112 activity. As previously demonstrated, PT-112 elicited robust antiproliferative and cytotoxic effects against TS/A cells, which were preceded by the ICD-associated exposure of calreticulin (CALR) on the cell surface, and accompanied by the release of HMGB1 in the culture supernatant. TS/A cells responding to PT-112 also exhibited eIF2α phosphorylation and cytosolic mtDNA accumulation, secreted type I IFN, and exposed MHC Class I molecules as well as the co-inhibitory ligand PD-L1 on their surface. Acute cytotoxicity and HMGB1 release caused by PT-112 in TS/A cells were influenced by MOMP competence. Conversely, PT-112 retained antiproliferative effects and its capacity to drive type I IFN secretion as well as CALR, MHC Class I and PD-L1 exposure on the cell surface irrespective of MOMP defects. These data indicate a partial involvement of MOMP in the mechanisms of action of PT-112, suggesting that PT-112 is active across various tumor types, including malignancies with MOMP defects.
Collapse
Affiliation(s)
- Ruth Soler-Agesta
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Promontory Therapeutics, New York, NY, USA
| | - Manuel Beltrán-Visiedo
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Ai Sato
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Takahiro Yamazaki
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
| | - Emma Guilbaud
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | | | | | | | - Alberto Anel
- Biochemistry and Molecular and Cell Biology, Aragón Health Research Institute (IIS-Aragón), University of Zaragoza, Zaragoza, Spain
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| |
Collapse
|
6
|
Zheng P, Xiao Y, Wu Z, Wang Q, Lv Y, Niu W, Zhang Y, Xiao J, Cao J, Li M, Lei P, Huang T. Tumor-secreted galectin-3 suppresses antitumor response by inducing IL-10 + B cells. J Immunother Cancer 2025; 13:e011445. [PMID: 40449954 DOI: 10.1136/jitc-2024-011445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/17/2025] [Indexed: 06/03/2025] Open
Abstract
BACKGROUND Breast cancer is the leading cause of cancer-related deaths among women globally. Tumor-secreted proteins foster an immunosuppressive environment, enabling immune evasion and reducing the effectiveness of antitumor immunity. Interleukin (IL)-10, an immune-regulatory cytokine, is upregulated in breast cancer (BRCA), but the underlying mechanism remains unclear. METHODS In silico analysis was used to identify candidate genes associated with IL-10 expression. Mouse model of BRCA and in vitro co-culture assays were conducted to identify immune cells responsible for IL-10 upregulation. The efficacy of galectin-3 (Gal-3) inhibition combined with chemotherapy was also evaluated. RESULTS Tumor-secreted Gal-3 served as a key immunosuppressive factor in BRCA. Gal-3 promoted IL-10 production in B cells, thus impairing antitumor immunity. Mechanistically, Gal-3 triggered CD45 polymerization, reducing its phosphatase activity and subsequently activating STAT3 to promote IL-10 production. Knockdown of STAT3 or its blockade abrogated Gal-3-induced IL-10 upregulation. Furthermore, Gal-3 inhibition combined with chemotherapy significantly reduced tumor growth and enhanced antitumor immunity. CONCLUSIONS Gal-3 is a crucial regulator of immune evasion in BRCA. Targeting Gal-3 may improve the efficacy of BRCA therapies.
Collapse
Affiliation(s)
- Peng Zheng
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yunxiao Xiao
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Zhenghao Wu
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Qianheng Wang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yibing Lv
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Wenhao Niu
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Yirui Zhang
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Junyi Xiao
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Jing Cao
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Mingxuan Li
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ping Lei
- Department of Immunology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Tao Huang
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
7
|
Luo Y, Jin X, Huang L, Zeng D, Zhang N, Tang S, Luo S, Syed SE, Dai R, Li Q, Liang S. RUNX1/SLAMF3 Axis Drives Immunosuppression to Contribute to Colorectal Cancer Liver Metastasis by Blocking Phagocytosis and Depleting C1QC + Tumor-Associated Macrophages. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e06641. [PMID: 40448626 DOI: 10.1002/advs.202506641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2025] [Revised: 05/15/2025] [Indexed: 06/02/2025]
Abstract
Colorectal cancer liver metastasis (CRLM) is a leading cause of death in colorectal cancer (CRC) patients and is characterized by an immunosuppressive tumor microenvironment (TME). This study employs mouse in vivo selection to isolate highly metastatic CRLM derivatives for profiling their transcriptomic, proteomic, and metabolomic alterations associated with CRLM. Notably, the expression of SLAMF3 is significantly upregulated in CRLM derivatives and its knockdown effectively suppresses CRLM in mice. RUNX1 transcriptionally upregulates SLAMF3 expression and combined targeting of the RUNX1/SLAMF3 axis synergistically suppresses liver metastasis in mice. In parallel, SLAMF3 suppresses macrophage-mediated phagocytosis of CRC cells through the SHP-1/2/mTORC1 pathway. Conversely, SLAMF3 knockdown promotes M1 polarization in liver metastases and activates the CCL signaling pathway between macrophages and CD8+ T cells. It also reduces the exhausted CD8+ T cells in liver metastases and the expression of inhibitory receptors PD-1 and TIM-3, thus alleviating the immunosuppressive TME. Clinically, activation of the RUNX1/SLAMF3 axis is closely associated with CRLM progression and correlates with a reduced proportion of clinically beneficial C1QC⁺ tumor-associated macrophages (TAMs). Collectively, these findings identify the RUNX1/SLAMF3 axis as a key driver of immunosuppressive TME remodeling and CRLM progression, highlighting its potential as a promising therapeutic target for CRLM.
Collapse
Affiliation(s)
- Yinheng Luo
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Xiaoli Jin
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Lan Huang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Dejia Zeng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| | - Nan Zhang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Shiyu Tang
- The Second Department of Gastrointestinal Surgery, The Affiliated Hospital of North Sichuan Medical College, Sichuan, P. R. China
| | - Shu Luo
- Department of Medical Oncology, Suining First People's Hospital, Suining, Sichuan, P. R. China
| | - Samina Ejaz Syed
- Department of Biochemistry and Biotechnology, Baghdad Campus, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Ruiwu Dai
- Department of General Surgery, The General Hospital of Western Theater Command, Chengdu, 610083, China
| | - Qiu Li
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, P. R. China
| | - Shufang Liang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, P. R. China
| |
Collapse
|
8
|
Bull EC, Singh A, Harden AM, Soanes K, Habash H, Toracchio L, Carrabotta M, Schreck C, Shah KM, Riestra PV, Chantoiseau M, Da Costa MEM, Moquin-Beaudry G, Pantziarka P, Essiet EA, Gerrand C, Gartland A, Bojmar L, Fahlgren A, Marchais A, Papakonstantinou E, Tomazou EM, Surdez D, Heymann D, Cidre-Aranaz F, Fromigue O, Sexton DW, Herold N, Grünewald TGP, Scotlandi K, Nathrath M, Green D. Targeting metastasis in paediatric bone sarcomas. Mol Cancer 2025; 24:153. [PMID: 40442778 PMCID: PMC12121159 DOI: 10.1186/s12943-025-02365-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2025] [Accepted: 05/22/2025] [Indexed: 06/02/2025] Open
Abstract
Paediatric bone sarcomas (e.g. Ewing sarcoma, osteosarcoma) comprise significant biological and clinical heterogeneity. This extreme heterogeneity affects response to systemic therapy, facilitates inherent and acquired drug resistance and possibly underpins the origins of metastatic disease, a key component implicit in cancer related death. Across all cancers, metastatic models have offered competing accounts on when dissemination occurs, either early or late during tumorigenesis, whether metastases at different foci arise independently and directly from the primary tumour or give rise to each other, i.e. metastases-to-metastases dissemination, and whether cell exchange occurs between synchronously growing lesions. Although it is probable that all the above mechanisms can lead to metastatic disease, clinical observations indicate that distinct modes of metastasis might predominate in different cancers. Around 70% of patients with bone sarcoma experience metastasis during their disease course but the fundamental molecular and cell mechanisms underlying spread are equivocal. Newer therapies such as tyrosine kinase inhibitors have shown promise in reducing metastatic relapse in trials, nonetheless, not all patients respond and 5-year overall survival remains at ~ 50%. Better understanding of potential bone sarcoma biological subgroups, the role of the tumour immune microenvironment, factors that promote metastasis and clinical biomarkers of prognosis and drug response are required to make progress. In this review, we provide a comprehensive overview of the approaches to manage paediatric patients with metastatic Ewing sarcoma and osteosarcoma. We describe the molecular basis of the tumour immune microenvironment, cell plasticity, circulating tumour cells and the development of the pre-metastatic niche, all required for successful distant colonisation. Finally, we discuss ongoing and upcoming patient clinical trials, biomarkers and gene regulatory networks amenable to the development of anti-metastasis medicines.
Collapse
Affiliation(s)
- Emma C Bull
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Archana Singh
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, UK
- Amity Institute of Biotechnology, Amity Institute of Integrative Sciences and Health, Amity University Haryana, Gurugram, India
| | - Amy M Harden
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Kirsty Soanes
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, UK
| | - Hala Habash
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
| | - Lisa Toracchio
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Marianna Carrabotta
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Christina Schreck
- Children's Cancer Research Center, Klinikum Rechts Der Isar, Technical University of Munich, Munich, Germany
| | - Karan M Shah
- School of Medicine and Population Health, The University of Sheffield, Sheffield, UK
| | - Paulina Velasco Riestra
- Biomedical and Clinical Sciences, Division of Surgery, Orthopaedics and Oncology, Linköping University, Linköping, Sweden
| | | | - Maria Eugénia Marques Da Costa
- Gustave Roussy Institute, Villejuif, France
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer Campus, Villejuif, France
| | | | - Pan Pantziarka
- Anticancer Fund, Meise, Belgium
- The George Pantziarka TP53 Trust, London, UK
| | | | - Craig Gerrand
- Orthopaedic Oncology, Royal National Orthopaedic Hospital, Stanmore, UK
| | - Alison Gartland
- School of Medicine and Population Health, The University of Sheffield, Sheffield, UK
| | - Linda Bojmar
- Biomedical and Clinical Sciences, Division of Surgery, Orthopaedics and Oncology, Linköping University, Linköping, Sweden
| | - Anna Fahlgren
- Biomedical and Clinical Sciences, Division of Cell and Neurobiology, Linköping University, Linköping, Sweden
| | | | - Evgenia Papakonstantinou
- Pediatric Hematology-Oncology, Ippokratio General Hospital of Thessaloniki, Thessaloniki, Greece
| | - Eleni M Tomazou
- St. Anna Children's Cancer Research Institute, Vienna, Austria
- Center for Cancer Research, Medical University of Vienna, Vienna, Austria
| | - Didier Surdez
- Faculty of Medicine, Balgrist University Hospital, University of Zurich, Zurich, Switzerland
| | - Dominique Heymann
- School of Medicine and Population Health, The University of Sheffield, Sheffield, UK
- UMR6286, Nantes Université, CNRS, US2B, Nantes, France
- Institut de Cancérologie de L'Ouest, Saint-Herblain, France
| | - Florencia Cidre-Aranaz
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Division of Translational Pediatric Sarcoma Research, German Cancer Consortium (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
| | - Olivia Fromigue
- Inserm UMR981, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France
| | - Darren W Sexton
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, UK
| | - Nikolas Herold
- Childhood Cancer Research Unit, Department of Women's and Children's Health, Karolinska Institutet, Stockholm, Sweden
- Paediatric Oncology, Astrid Lindgren Children's Hospital, Karolinska University Hospital, Stockholm, Sweden
| | - Thomas G P Grünewald
- Hopp Children's Cancer Center (KiTZ), Heidelberg, Germany
- German Cancer Research Center (DKFZ), Division of Translational Pediatric Sarcoma Research, German Cancer Consortium (DKTK), Heidelberg, Germany
- National Center for Tumor Diseases (NCT), NCT Heidelberg, a partnership between DKFZ and Heidelberg University Hospital, Heidelberg, Germany
- Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Katia Scotlandi
- Laboratory of Experimental Oncology, IRCCS Istituto Ortopedico Rizzoli, Bologna, Italy
| | - Michaela Nathrath
- Children's Cancer Research Center, Klinikum Rechts Der Isar, Technical University of Munich, Munich, Germany
- Pediatric Oncology, Klinikum Kassel, Kassel, Germany
| | - Darrell Green
- Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich, UK.
| |
Collapse
|
9
|
Allela OQB, Al-Hussainy AF, Sanghvi G, Roopashree R, Kashyap A, Anand DA, Panigrahi R, Garifulina LM, Taher SG, Alwan M, Jawad M, Mushtaq H. Tumor immune evasion and the Let-7 family: insights into mechanisms and therapies. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04283-9. [PMID: 40423803 DOI: 10.1007/s00210-025-04283-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Accepted: 05/09/2025] [Indexed: 05/28/2025]
Abstract
Tumor immune evasion is a complex and adaptive mechanism that allows cancer cells to escape immune detection and destruction, contributing to malignancy progression and poor therapeutic outcomes. This review article explores the integral role of the let-7 family of microRNAs (miRNAs) in mediating tumor immune evasion, particularly how these regulators influence the tumor microenvironment (TME) and immune cell functionality. The let-7 family, known for its tumor-suppressive roles, modulates key immune checkpoints, including PD-L1, and pathways linked to immune response regulation, such as the STAT3/SOCS axis, impacts macrophage polarization and modulates immune cell function. Dysregulation of let-7 miRNAs can enhance tumor immune evasion through mechanisms such as downregulating major histocompatibility complex (MHC) expressions, promoting immunosuppressive cell populations, and manipulating metabolic pathways, which together establish an immunosuppressive TME. Conversely, specific let-7 members show potential in restoring anti-tumor immunity by reversing immune suppression and improving T cell responses. By synthesizing current research, this article underscores the dual role of let-7 in both promoting and inhibiting tumor immune evasion, suggesting their potential as therapeutic targets and biomarkers in cancer immunotherapy. Future studies on the context-dependent roles and advanced delivery systems for let-7-targeting therapies are crucial for enhancing immunotherapeutic efficacy and improving patient outcomes across malignancies.
Collapse
Affiliation(s)
| | | | - Gaurav Sanghvi
- Department of Microbiology, Faculty of Science, Marwadi University Research Center, Marwadi University, Rajkot, Gujarat, 360003, India
| | - R Roopashree
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Aditya Kashyap
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India
| | - D Alex Anand
- Department of Biomedical, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Rajashree Panigrahi
- Department of Microbiology, IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, 751003, India
| | | | - Sada Ghalib Taher
- College of Health and Medical Technology, National University of Science and Technology, Dhi Qar, 64001, Iraq
| | - Mariem Alwan
- Pharmacy college, Al-Farahidi University, Baghdad, Iraq
| | - Mahmood Jawad
- Department of Pharmacy, Al-Zahrawi University College, Karbala, Iraq
| | | |
Collapse
|
10
|
Cosentino K, Verduijn J, Galluzzi L. VDAC2 enforces a mitochondrial checkpoint to cancer immunity. Nat Immunol 2025:10.1038/s41590-025-02171-1. [PMID: 40389564 DOI: 10.1038/s41590-025-02171-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/21/2025]
Affiliation(s)
- Katia Cosentino
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy.
| | - Joost Verduijn
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Lorenzo Galluzzi
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
11
|
Perez-Medina M, Benito-Lopez JJ, Aguilar-Cazares D, Lopez-Gonzalez JS. A Comprehensive Review of Long Non-Coding RNAs in the Cancer-Immunity Cycle: Mechanisms and Therapeutic Implications. Int J Mol Sci 2025; 26:4821. [PMID: 40429961 PMCID: PMC12111859 DOI: 10.3390/ijms26104821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2025] [Revised: 05/10/2025] [Accepted: 05/16/2025] [Indexed: 05/29/2025] Open
Abstract
Long non-coding RNAs (lncRNAs) have emerged as pivotal regulators of the dynamic interplay between cancer progression and immune responses. This review explored their influence on key processes of the cancer-immunity cycle, such as immune cell differentiation, antigen presentation, and tumor immunogenicity. By modulating tumor escape from the immune response, therapeutic resistance, and tumor-stroma interactions, lncRNAs actively shape the tumor microenvironment. Due to their growing knowledge in the area of immune suppression, directly intervening in the induction of regulatory T cells (Tregs), M2 macrophages, and regulating immune checkpoint pathways such as PD-L1, CTLA-4, and others, lncRNAs can be considered promising therapeutic targets. Advances in single-cell technologies and immunotherapy have significantly expanded our understanding of lncRNA-driven regulatory networks, paving the way for novel precision medicine approaches. Ultimately, we discussed how targeting lncRNAs could enhance cancer immunotherapy, offering new avenues for biomarker discovery and therapeutic intervention.
Collapse
Affiliation(s)
- Mario Perez-Medina
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City 14080, Mexico; (M.P.-M.); (J.J.B.-L.); (D.A.-C.)
- Asociación Para Evitar la Ceguera en México, I. A. P., Mexico City 04030, Mexico
| | - Jesus J. Benito-Lopez
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City 14080, Mexico; (M.P.-M.); (J.J.B.-L.); (D.A.-C.)
| | - Dolores Aguilar-Cazares
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City 14080, Mexico; (M.P.-M.); (J.J.B.-L.); (D.A.-C.)
| | - Jose S. Lopez-Gonzalez
- Laboratorio de Investigacion en Cancer Pulmonar, Departamento de Enfermedades Cronico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosio Villegas”, Mexico City 14080, Mexico; (M.P.-M.); (J.J.B.-L.); (D.A.-C.)
| |
Collapse
|
12
|
Goto N, Agudo J, Yilmaz ÖH. Early immune evasion in colorectal cancer: interplay between stem cells and the tumor microenvironment. Trends Cancer 2025:S2405-8033(25)00112-8. [PMID: 40382216 DOI: 10.1016/j.trecan.2025.04.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Revised: 04/23/2025] [Accepted: 04/24/2025] [Indexed: 05/20/2025]
Abstract
Most colorectal cancers (CRCs) are characterized by a low mutational burden and an immune-cold microenvironment, limiting the efficacy of immune checkpoint blockade (ICB) therapies. While advanced tumors exhibit diverse immune evasion mechanisms, emerging evidence suggests that aspects of immune escape arise much earlier, within precancerous lesions. In this review, we discuss how early driver mutations and epigenetic alterations contribute to the establishment of an immunosuppressive microenvironment in CRC. We also highlight the dynamic crosstalk between cancer cells, stromal niche cells, and immune cells driving immune evasion and liver metastasis. A deeper understanding of these early events may guide the development of more effective preventive and therapeutic strategies for CRC.
Collapse
Affiliation(s)
- Norihiro Goto
- Joan and Sanford I. Weill Department of Medicine, Division of Gastroenterology & Hepatology, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA; Jill Roberts Institute for Research in Inflammatory Bowel Disease, Weill Cornell Medicine, Cornell University, New York, NY 10021, USA.
| | - Judith Agudo
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Immunology, Harvard Medical School, Boston, MA 02215, USA; Ludwig Center at Harvard, Boston, MA 02215, USA; Parker Institute for Cancer Immunotherapy at Dana-Farber Cancer Institute, Boston, MA 02215, USA; New York Stem Cell Foundation, New York, NY 10019, USA
| | - Ömer H Yilmaz
- Department of Biology, The David H. Koch Institute for Integrative Cancer Research at MIT, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Broad Institute of Massachusetts Institute of Technology and Harvard, Cambridge, MA 02142, USA; Department of Pathology, Beth Israel Deaconess Hospital and Harvard Medical School, Boston, MA 02114, USA; Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
13
|
Baldassarre G, L de la Serna I, Vallette FM. Death-ision: the link between cellular resilience and cancer resistance to treatments. Mol Cancer 2025; 24:144. [PMID: 40375296 PMCID: PMC12080166 DOI: 10.1186/s12943-025-02339-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2025] [Accepted: 04/22/2025] [Indexed: 05/18/2025] Open
Abstract
One of the key challenges in defeating advanced tumors is the ability of cancer cells to evade the selective pressure imposed by chemotherapy, targeted therapies, immunotherapy and cellular therapies. Both genetic and epigenetic alterations contribute to the development of resistance, allowing cancer cells to survive initially effective treatments. In this narration, we explore how genetic and epigenetic regulatory mechanisms influence the state of tumor cells and their responsiveness to different therapeutic strategies. We further propose that an altered balance between cell growth and cell death is a fundamental driver of drug resistance. Cell death programs exist in various forms, shaped by cell type, triggering factors, and microenvironmental conditions. These processes are governed by temporal and spatial constraints and appear to be more heterogeneous than previously understood. To capture the intricate interplay between death-inducing signals and survival mechanisms, we introduce the concept of Death-ision. This framework highlights the dynamic nature of cell death regulation, determining whether specific cancer cell clones evade or succumb to therapy. Building on this understanding offers promising strategies to counteract resistant clones and enhance therapeutic efficacy. For instance, combining DNMT inhibitors with immune checkpoint blockade may counteract YAP1-driven resistance or the use of transcriptional CDK inhibitors could prevent or overcome chemotherapy resistance. Death-ision aims to provide a deeper understanding of the diversity and evolution of cell death programs, not only at diagnosis but also throughout disease progression and treatment adaptation.
Collapse
Affiliation(s)
- Gustavo Baldassarre
- Division of Molecular Oncology, Centro di Riferimento Oncologico di Aviano (CRO) IRCCS, National Cancer Institute, Aviano, 33081, Italy.
| | - Ivana L de la Serna
- Department of Cell and Cancer Biology, University of Toledo College of Medicine and Life Sciences, Toledo, OH, 43614, USA.
| | - François M Vallette
- Centre de Recherche en Cancérologie et Immunologie Intégrées Nantes Angers (CRCI2 NA), INSERM UMR1307/CNRS UMR 6075/Nantes Université/Univ. Angers. Nantes, 44007, Nantes, France.
- Institut de Cancérologie de L'Ouest (ICO), 44085, Saint-Herblain, France.
| |
Collapse
|
14
|
Li S, Zhou X, Feng H, Huang K, Chen M, Lin M, Lin H, Deng Z, Chen Y, Liao W, Zhang Z, Chen J, Guan B, Su T, Feng Z, Shu G, Yu A, Pan Y, Fu L. Deciphering the Immunomodulatory Function of GSN + Inflammatory Cancer-Associated Fibroblasts in Renal Cell Carcinoma Immunotherapy: Insights From Pan-Cancer Single-Cell Landscape and Spatial Transcriptomics Analysis. Cell Prolif 2025:e70062. [PMID: 40375605 DOI: 10.1111/cpr.70062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2025] [Revised: 04/13/2025] [Accepted: 05/02/2025] [Indexed: 05/18/2025] Open
Abstract
The heterogeneity of cancer-associated fibroblasts (CAFs) could affect the response to immune checkpoint inhibitor (ICI) therapy. However, limited studies have investigated the role of inflammatory CAFs (iCAFs) in ICI therapy using pan-cancer single-cell RNA sequencing (scRNA-seq) and spatial transcriptomics sequencing (ST-seq) analysis. We performed pan-cancer scRNA-seq and ST-seq analyses to identify the subtype of GSN+ iCAFs, exploring its spatial distribution characteristics in the context of ICI therapy. The pan-cancer scRNA-seq and bulk RNA-seq data are incorporated to develop the Caf.Sig model, which predicts ICI response based on CAF gene signatures and machine learning approaches. Comprehensive scRNA-seq analysis, along with in vivo and in vitro experiments, investigates the mechanisms by which GSN+ iCAFs influence ICI efficacy. The Caf.Sig model demonstrates well performances in predicting ICI therapy response in pan-cancer patients. A higher proportion of GSN+ iCAFs is observed in ICI non-responders compared to responders in the pan-cancer landscape and clear cell renal cell carcinoma (ccRCC). Using real-world immunotherapy data, the Caf.Sig model accurately predicts ICI response in pan-cancer, potentially linked to interactions between GSN+ iCAFs and CD8+ Tex cells. ST-seq analysis confirms that interactions and cellular distances between GSN+ iCAFs and CD8+ exhausted T (Tex) cells impact ICI efficacy. In a co-culture system of primary CAFs, primary tumour cells and CD8+ T cells, downregulation of GSN on CAFs drives CD8+ T cells towards a dysfunctional state in ccRCC. In a subcutaneously tumour-grafted mouse model, combining GSN overexpression with ICI treatment achieves optimal efficacy in ccRCC. Our study provides the Caf.Sig model as an outperforming approach for patient selection of ICI therapy, and advances our understanding of CAF biology and suggests potential therapeutic strategies for upregulating GSN in CAFs in cancer immunotherapy.
Collapse
Affiliation(s)
- Shan Li
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, China
- Department of Urology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Xinwei Zhou
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Haoqian Feng
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Kangbo Huang
- Department of Urology, Sun Yat-Sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, China
| | - Minyu Chen
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Mingjie Lin
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Hansen Lin
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zebing Deng
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, China
| | - Yuhang Chen
- Department of Geniturinary Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, China
| | - Wuyuan Liao
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhengkun Zhang
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jinwei Chen
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Bohong Guan
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Tian Su
- Department of Pediatric Intensive Care Unit (PICU), Guangdong Provincial People's Hospital Heyuan Hospital, Heyuan, Guangdong, China
| | - Zihao Feng
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Guannan Shu
- Department of Urology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou Institute of Pediatrics, Guangdong Provincial Clinical Research Center for Child Health, Guangzhou, China
| | - Anze Yu
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yihui Pan
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Liangmin Fu
- Department of Urology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Uro-Oncology Institute of Central South University, Changsha, Hunan, China
- Department of Urology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China
- Key Laboratory of Diabetes Immunology (Central South University), Ministry of Education, National Clinical Research Center for Metabolic Disease, Changsha, Hunan, China
| |
Collapse
|
15
|
Guilbaud E, Naulin F, Meziani L, Deutsch E, Galluzzi L. Impact of radiation therapy on the immunological tumor microenvironment. Cell Chem Biol 2025; 32:678-693. [PMID: 40280118 DOI: 10.1016/j.chembiol.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2024] [Revised: 02/22/2025] [Accepted: 04/03/2025] [Indexed: 04/29/2025]
Abstract
External beam radiation therapy (RT) is a cornerstone of modern cancer management, being utilized in both curative and palliative settings due to its safety, efficacy, and widespread availability. A primary biological effect of RT is DNA damage, which leads to significant cytostatic and cytotoxic effects. Importantly, malignant cells possess a limited capacity for DNA repair compared to normal cells, and when combined with irradiation techniques that minimize damage to healthy tissues, this creates an advantageous therapeutic window. However, the clinical effectiveness of RT also appears to involve both direct and indirect interactions between RT and non-transformed components of the tumoral ecosystem, particularly immune cells. In this review, we describe the molecular and cellular mechanisms by which irradiated cancer cells modify the immunological tumor microenvironment and how such changes ultimately impact tumor growth.
Collapse
Affiliation(s)
- Emma Guilbaud
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Flavie Naulin
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA; Department of Radiotherapy, Gustave Roussy Cancer Campus, Villejuif, France; INSERM RAMO-IT U1030, Villejuif, France; Faculty of Medicine, University of Paris-Saclay, Le Kremlin, Bicêtre, France
| | - Lydia Meziani
- Department of Radiotherapy, Gustave Roussy Cancer Campus, Villejuif, France; INSERM RAMO-IT U1030, Villejuif, France; Faculty of Medicine, University of Paris-Saclay, Le Kremlin, Bicêtre, France
| | - Eric Deutsch
- Department of Radiotherapy, Gustave Roussy Cancer Campus, Villejuif, France; INSERM RAMO-IT U1030, Villejuif, France; Faculty of Medicine, University of Paris-Saclay, Le Kremlin, Bicêtre, France.
| | - Lorenzo Galluzzi
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
16
|
Zhang S, Chen C, Mo C, Fan N, Ning Z, Wang Z, Ding H. A clinical study of RC48-ADC combined with PD-1 inhibitor in bladder preservation therapy for muscle-invasive bladder cancer (MIBC)-based on real-world data analysis. Int Urol Nephrol 2025:10.1007/s11255-025-04567-2. [PMID: 40369357 DOI: 10.1007/s11255-025-04567-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 05/01/2025] [Indexed: 05/16/2025]
Abstract
OBJECTIVES This study aimed to evaluate the efficacy and safety of RC48-ADC combined with PD-1 inhibitors in bladder preservation therapy for muscle-invasive bladder cancer (MIBC), and to explore the differences in treatment outcomes between primary and recurrent cases, as well as patients at different clinical stages. METHODS A retrospective analysis was conducted on 32 patients with clinically non-metastatic MIBC who received ≥ 3 cycles of RC48-ADC combined with PD-1 inhibitor therapy. Clinical efficacy was assessed through integrated imaging and histopathological evaluations. RESULTS Among the 32 patients, the 1-year progression-free survival (PFS) rate was 84.4%, the objective response rate (ORR) was 68.8%, and the 1-year bladder preservation rate was 68.8%. The primary group was superior to the recurrent group in PFS (94.7% vs. 69.2%), ORR (78.9% vs. 53.8%), and 1-year bladder preservation rate (78.9% vs. 53.8%). Similarly, T2-stage patients exhibited better clinical responses than T3-stage patients in PFS (85.0% vs. 75.0%), ORR (80.0% vs. 54.5%), and 1-year bladder preservation rate (80.0% vs. 54.5%). Treatment-related adverse events (AEs) were predominantly grade I-II, with no severe immune-related complications reported. CONCLUSIONS The combination of RC48-ADC and PD-1 inhibitors significantly improves bladder preservation rates in MIBC patients with a favorable safety profile, particularly in primary and T2-stage cases. This regimen provides a personalized therapeutic strategy for patients unsuitable for conventional treatments.
Collapse
Affiliation(s)
- Shaolong Zhang
- Department of Urology, Gansu Province Clinical Research Center for urinary system disease, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Chuanjian Chen
- Department of Urology, Gansu Province Clinical Research Center for urinary system disease, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Chunhao Mo
- Department of Urology, Gansu Province Clinical Research Center for urinary system disease, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Ning Fan
- Department of Urology, Gansu Province Clinical Research Center for urinary system disease, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Zhongyun Ning
- Department of Urology, Gansu Province Clinical Research Center for urinary system disease, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Zhiping Wang
- Department of Urology, Gansu Province Clinical Research Center for urinary system disease, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China
| | - Hui Ding
- Department of Urology, Gansu Province Clinical Research Center for urinary system disease, The Second Hospital & Clinical Medical School, Lanzhou University, Lanzhou, China.
| |
Collapse
|
17
|
Bertok T, Pinkeova A, Lorencova L, Datkova A, Hires M, Jane E, Tkac J. Glycoproteomics of Gastrointestinal Cancers and Its Use in Clinical Diagnostics. J Proteome Res 2025. [PMID: 40368336 DOI: 10.1021/acs.jproteome.5c00095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2025]
Abstract
Cancer is a leading cause of death worldwide, resulting in substantial economic costs. Because cancer is a complex, heterogeneous group of diseases affecting a variety of cells, its detection may sometimes be difficult. Herein we review a large group of the gastrointestinal cancers (oral, esophageal, stomach, pancreatic, liver, and bowel cancers) and the possibility of using glycans conjugated to protein backbones for less-invasive diagnoses than the commonly used endoscopic approaches. The reality of bacterial N-glycosylation and the effect of epithelial mucosa on gut microbiota are discussed. Current advantages, barriers, and advantages in the prospective use of selected glycomic approaches in clinical practice are also detailed.
Collapse
Affiliation(s)
- Tomas Bertok
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovak Republic
| | - Andrea Pinkeova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovak Republic
- Glycanostics, Kudlakova 7, 841 01 Bratislava, Slovak Republic
| | - Lenka Lorencova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovak Republic
| | - Anna Datkova
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovak Republic
| | - Michal Hires
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovak Republic
| | - Eduard Jane
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovak Republic
- Glycanostics, Kudlakova 7, 841 01 Bratislava, Slovak Republic
| | - Jan Tkac
- Institute of Chemistry, Slovak Academy of Sciences, Dubravska cesta 9, 845 38 Bratislava, Slovak Republic
- Glycanostics, Kudlakova 7, 841 01 Bratislava, Slovak Republic
| |
Collapse
|
18
|
Zhang K, Zhang Y, Xiang P, Wang Y, Li Y, Jiang S, Zhang Y, Chen M, Su W, Li X, Li S. Advances in T Cell-Based Cancer Immunotherapy: From Fundamental Mechanisms to Clinical Prospects. Mol Pharm 2025. [PMID: 40359327 DOI: 10.1021/acs.molpharmaceut.4c01502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
T cells and their T cell receptors (TCRs) play crucial roles in the adaptive immune system's response against pathogens and tumors. However, immunosenescence, characterized by declining T cell function and quantity with age, significantly impairs antitumor immunity. Recent years have witnessed remarkable progress in T cell-based cancer treatments, driven by a deeper understanding of T cell biology and innovative screening technologies. This review comprehensively examines T cell maturation mechanisms, T cell-mediated antitumor responses, and the implications of thymic involution on T cell diversity and cancer prognosis. We discuss recent advances in adoptive T cell therapies, including tumor-infiltrating lymphocyte (TIL) therapy, engineered T cell receptor (TCR-T) therapy, and chimeric antigen receptor T cell (CAR-T) therapy. Notably, we highlight emerging DNA-encoded library technologies in mammalian cells for high-throughput screening of TCR-antigen interactions, which are revolutionizing the discovery of novel tumor antigens and optimization of TCR affinity. The review also explores strategies to overcome challenges in the solid tumor microenvironment and emerging approaches to enhance the efficacy of T cell therapy. As our understanding of T cell biology deepens and screening technologies advances, T cell-based immunotherapies show increasing promise for delivering durable clinical benefits to a broader patient population.
Collapse
Affiliation(s)
- Kaili Zhang
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yi Zhang
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Pan Xiang
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yi Wang
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yifan Li
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Shuze Jiang
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Yuxuan Zhang
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Min Chen
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| | - Weijun Su
- School of Medicine, Nankai University, Tianjin 300071, China
| | - Xiaoling Li
- Cell Biotechnology Laboratory, Tianjin Cancer Hospital Airport Hospital, Tianjin 300308, China
- National Clinical Research Center for Cancer, Tianjin 300060, China
- Haihe Laboratory of Synthetic Biology, Tianjin 300090, China
| | - Shuai Li
- Department of Molecular Pharmacology, Tianjin Medical University Cancer Institute and Hospital; National Clinical Research Center for Cancer; Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Tianjin 300060, China
| |
Collapse
|
19
|
Majeed NS, Mohammed MH, Hatem ZA, El-Sehrawy AAMA, Ganesan S, Singh A, Akoul MA, Sudan P, Singh R, Hamad HA. Interplay between NETosis and the lncRNA-microRNA regulatory axis in the immunopathogenesis of cancer. J Physiol Biochem 2025:10.1007/s13105-025-01082-x. [PMID: 40358898 DOI: 10.1007/s13105-025-01082-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Accepted: 04/14/2025] [Indexed: 05/15/2025]
Abstract
Neutrophil extracellular traps (NETs), web-like complex structures secreted by neutrophils, have emerged as key players in the modulation of immune responses and the immunopathogenesis of immune disorders. Initially described for their antimicrobial function, NETs now play a part in the fundamental processes of cancer biology, including cancer initiation, metastatic dissemination, and immune evasion strategies. NETs hijack anti-tumor immunity by entrapping circulating cancer cells, fostering the growth of tumors, and reorganizing the tumor microenvironment such that it is pro-malignancy. Emerging evidence emphasizes the role of NETosis coupled with non-coding RNAs-long non-coding RNAs (lncRNAs) and microRNAs (miRNAs)-as key regulators of gene expression and controllers of processes vital for cancer growth, such as immune response and programmed cell death processes like apoptosis, necroptosis, pyroptosis, and ferroptosis. Aberrantly expressed non-coding RNAs have been attributed to immune dysregulation and excessive NET production, promoting tumor growth. NETs are also associated with a myriad of pathological conditions, such as autoimmune disorders, cystic fibrosis, sepsis, and thrombotic disorders. New therapeutic approaches-such as DNase therapy and PAD4 inhibitors-target NET production and their degradation to modify immune function and the efficiency of immunotherapies. Further clarification of the intricate interactions of NETosis, lncRNAs, and miRNAs has the potential to establish new strategies for the suppression of the growth of tumors and preventing immune evasion. This review seeks to elucidate the interactions between NETosis and the regulatory networks involving non-coding RNAs that significantly contribute to the immunopathogenesis of cancer.
Collapse
Affiliation(s)
| | - Mohammed Hashim Mohammed
- Medical Laboratory Techniques department, College of Health and medical technology, Al-Maarif University, Anbar, Iraq.
| | - Zainab Amer Hatem
- College of Science, Biotechnology Department, Diyala University, Diyala, Iraq
| | | | - Subbulakshmi Ganesan
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to be University), Bangalore, Karnataka, India
| | - Abhayveer Singh
- Centre for Research Impact & Outcome, Chitkara University Institute of Engineering and Technology, Chitkara University, Rajpura, Punjab, 140401, India
| | - Marwa Azeez Akoul
- Biotechnology Department, College of Applied Science, Fallujah University, Anbar, Iraq
| | - Puneet Sudan
- Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, Punjab, 140307, India
| | - Roshni Singh
- NIMS Institute of Pharmacy, NIMS University Rajasthan, Jaipur, India
| | - Hamad Ali Hamad
- Department of Pathological Analysis, Collage of Applied Sciences, University of Fallujah, Fallujah, Iraq
| |
Collapse
|
20
|
Zhang Y, Xu Y, Zhong W, Zhao J, Liu X, Gao X, Chen M, Wang M. Vitamin D and Immune Checkpoint Inhibitors in Lung Cancer: A Synergistic Approach to Enhancing Treatment Efficacy. Int J Mol Sci 2025; 26:4511. [PMID: 40429656 PMCID: PMC12111780 DOI: 10.3390/ijms26104511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2025] [Revised: 04/27/2025] [Accepted: 04/28/2025] [Indexed: 05/29/2025] Open
Abstract
Lung cancer, a malignant neoplasm that is globally prevalent and characterized by high incidence and mortality rates, has seen the rise of immune checkpoint inhibitors (ICIs) as a crucial systemic treatment. However, a subset of patients exhibits suboptimal responses to ICIs. Recently, studies revealed the role of vitamin D in inflammation modulation, cell differentiation, and cancer prevention. Vitamin D precisely modulates immune responses and inflammatory states within the tumor microenvironment (TME) by targeting both innate and adaptive immunity. These effects may reduce immune tolerance to ICIs and synergistically enhance their therapeutic efficacy. Here, we review vitamin D metabolism in lung cancer patients, as well as its anti-tumor mechanisms, immune regulation, and the significant promise of vitamin D in lung cancer immunotherapy and adjuvant therapeutic strategies. Further research is imperative to surmount these challenges and fully realize vitamin D's potential in improving lung cancer immunotherapy outcomes.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Minjiang Chen
- Department of Respiratory & Critical Care Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100730, China; (Y.Z.); (Y.X.); (W.Z.); (J.Z.); (X.L.); (X.G.); (M.W.)
| | | |
Collapse
|
21
|
Xiang QY, Zuo M, Zhou JH, Feng C. EBV-positive diffuse large B cell lymphoma secondary to activated phosphoinositide 3 kinase δ syndrome type 1 (APDS1): a case report and literature review. Front Immunol 2025; 16:1583405. [PMID: 40406111 PMCID: PMC12095188 DOI: 10.3389/fimmu.2025.1583405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Accepted: 04/11/2025] [Indexed: 05/26/2025] Open
Abstract
Activated phosphoinositide 3-kinase δ syndrome (APDS), an inborn error of immunity associated with gain-of-function mutations in the PIK3CD gene, is characterized by dysregulated PI3Kδ signaling. The clinical spectrum commonly includes recurrent respiratory infections and lymphoproliferative manifestations. We present an adolescent male with APDS1 manifesting recurrent sinopulmonary infections, generalized lymphadenopathy, hepatosplenomegaly, gastrointestinal manifestations, and combined T-cell/B-cell lymphopenia, complicated by Epstein-Barr virus-positive diffuse large B-cell lymphoma (EBV+ DLBCL). Whole-exome sequencing identified a heterozygous PIK3CD variant (c.3061G>A p.Glu1021Lys), supporting the molecular diagnosis of APDS1. This case adds to emerging evidence linking APDS1 with EBV-driven lymphomagenesis, thereby further supporting the critical role of PI3K δ pathway dysregulation in promoting EBV-associated lymphoid malignancies.
Collapse
Affiliation(s)
- Qiu-yuan Xiang
- Department of Hematology, The Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Min Zuo
- Department of Pathology, The Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Ji-Hao Zhou
- Department of Hematology, The Second Clinical Medical College of Jinan University, Shenzhen, China
| | - Chun Feng
- Department of Hematology, The Second Clinical Medical College of Jinan University, Shenzhen, China
| |
Collapse
|
22
|
Jia Y, Li J, Mei W, Zhang H, Wang Z, Xie X, Gao C, Xu X, Li F. Pan-HDAC inhibitor LAQ824 inhibits the progression of pancreatic ductal adenocarcinoma and suppresses immune escape by promoting antigen presentation. Int Immunopharmacol 2025; 154:114528. [PMID: 40158429 DOI: 10.1016/j.intimp.2025.114528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2025] [Revised: 03/17/2025] [Accepted: 03/18/2025] [Indexed: 04/02/2025]
Abstract
Pancreatic cancer is the seventh leading cause of cancer-related deaths worldwide, with a dismal 5-year survival rate. New drugs targeting pancreatic ductal adenocarcinoma (PDAC), the primary pathological subtype, are urgently needed. LAQ824, a novel pan-histone deacetylase inhibitor (HDACi), has shown anti-tumor activity in various cancers, but its effects on PDAC remain unexplored. This study investigates the therapeutic potential of LAQ824 in PDAC and its role in modulating immune escape mechanisms. Using a subcutaneous tumor model in C57BL/6 J mice, LAQ824's anti-tumor effects were evaluated. In vitro and in vivo experiments-including IHC, flow cytometry, RNA sequencing, and single-cell RNA sequencing-demonstrated that LAQ824 inhibits tumor proliferation, suppresses the epithelial-mesenchymal transition (EMT), and induces apoptosis. LAQ824 also enhances immunogenicity by upregulating MHC-I-mediated antigen presentation, increasing immune cell infiltration, and promoting CD8+ T cell maturation and differentiation. Mechanistically, LAQ824 upregulated MHC-I expression by enhancing chromatin accessibility of related genes, with HDAC1 identified as a key repressor of MHC-I in PDAC cells. In conclusion, we found that LAQ824 has a significant anti-tumor effect in PDAC. LAQ824 not only directly affects general biological behaviors such as proliferation, apoptosis, and EMT, but also increases the immunogenicity of tumor cells by upregulating the expression of MHC-I in PDAC, which promotes the antigen presentation process and enhances anti-tumor immunity. By showcasing LAQ824's potential as a therapeutic target against PDAC, the present study provides novel insights into the link between epigenetic regulation and immunogenicity in PDAC.
Collapse
Affiliation(s)
- Yuchen Jia
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Beijing, China
| | - Jie Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Beijing, China
| | - Wentong Mei
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Beijing, China; Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital & Institute, Beijing, China
| | - Haoyu Zhang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Beijing, China
| | - Zheng Wang
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Beijing, China
| | - Xiaozhou Xie
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Beijing, China
| | - Chongchong Gao
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Beijing, China.
| | - Xiaoqing Xu
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Beijing, China.
| | - Fei Li
- Department of General Surgery, Xuanwu Hospital, Capital Medical University, No.45 Changchun Street, Beijing, China.
| |
Collapse
|
23
|
Bolini L, Knott SRV, Galluzzi L. A macrophage-neutrophil program drives mammary carcinogenesis. Trends Cancer 2025; 11:427-429. [PMID: 40251071 DOI: 10.1016/j.trecan.2025.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Accepted: 04/01/2025] [Indexed: 04/20/2025]
Abstract
The molecular and cellular pathways through which breast cancer evades immunosurveillance remain poorly understood. Recent data from Camargo et al. demonstrate that - on recruitment to the tumor microenvironment by ductal macrophages - a heterogeneous population of neutrophils can establish physical contacts with malignant cells within spatial niches that sustain mammary oncogenesis.
Collapse
Affiliation(s)
- Lukas Bolini
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Simon R V Knott
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Lorenzo Galluzzi
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
24
|
Buqué A, Bloy N, Petroni G, Jiménez-Cortegana C, Sato A, Iribarren C, Yamazaki T, Galassi C, Hensler M, Bhinder B, Guarracino A, Rippon B, Beltran-Visiedo M, Soler-Agesta R, Pannellini T, Fucikova J, Demaria S, Zhou XK, Elemento O, Formenti SC, Galluzzi L. Impact of radiation therapy dose, fractionation, and immunotherapeutic partner in a mouse model of hormone receptor-positive mammary carcinogenesis. J Natl Cancer Inst 2025; 117:934-947. [PMID: 39661487 PMCID: PMC12058254 DOI: 10.1093/jnci/djae329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/26/2024] [Accepted: 12/04/2024] [Indexed: 12/13/2024] Open
Abstract
BACKGROUND Hormone receptor-positive (HR+) breast cancer responds poorly to immune checkpoint inhibitors (ICIs). In some settings, radiation therapy (RT) has been shown to mediate immunostimulatory effects and promote ICI sensitivity. METHODS We investigated whether hypofractionated RT may be successfully combined with ICIs in a mouse model of multifocal, metachronous HR+ mammary carcinogenesis. We hypothesized that focal RT targeting the first detectable (primary) tumor combined with ICIs may generate effective immunity, delaying the development of new lesions. RESULTS Focal RT in various doses and fractionations limited primary tumor growth, with an optimum for a 20-Gy × 2 regimen (ablative in approximately 90% of mice). The degree of primary disease control, however, did not necessarily correlate with overall survival extension because of changes in the development of new neoplastic lesions contributing to global tumor burden. Adding a PD-1 blocker to focal RT delivered in a 10-Gy × 3, 20-Gy × 2, or 8-Gy × 6 regimen failed to alter overall survival extension enabled by RT alone. Similar results were obtained with a CTLA4 blocker, an IL-1β inhibitor, and a PD-1 blocker plus recombinant FLT3LG when combined with the 10-Gy × 3 regimen. CONCLUSIONS In this model of HR+ mammary carcinogenesis, RT to the primary tumor ameliorates overall survival (to an extent based on dose and fractionation). Increasing local control through RT alone or RT plus immunotherapy beyond a hitherto undefined threshold, however, does not necessarily inhibit the development of subsequent nonirradiated neoplasms and hence does not necessarily provide extra overall survival benefits.
Collapse
Affiliation(s)
- Aitziber Buqué
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, United States
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadephia, PA 19111, United States
| | - Norma Bloy
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, United States
| | - Giulia Petroni
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, United States
- Department of Experimental and Clinical Medicine, University of Florence, Florence 50134, Italy
| | | | - Ai Sato
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, United States
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadephia, PA 19111, United States
| | - Cristina Iribarren
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, United States
| | - Takahiro Yamazaki
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, United States
| | - Claudia Galassi
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, United States
| | | | - Bhavneet Bhinder
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY 10065, United States
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY 10065, United States
- Institute for Computational Biomedicine, Weill Cornell Medicine, New York, NY 10065, United States
| | - Andrea Guarracino
- Department of Genetics, Genomics, and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, United States
- Human Technopole, Milan 20157, Italy
| | - Brady Rippon
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY 10065, United States
| | - Manuel Beltran-Visiedo
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, United States
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadephia, PA 19111, United States
| | - Ruth Soler-Agesta
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, United States
- Department of Biochemistry and Molecular and Cell Biology, University of Zaragoza/Aragón Health Research Institute, Zaragoza 50009, Spain
| | - Tania Pannellini
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, United States
| | - Jitka Fucikova
- Sotio, Prague 170 00, Czech Republic
- Department of Immunology, Charles University, 2nd Faculty of Medicine, and University Hospital Motol, Prague 150 06, Czech Republic
| | - Sandra Demaria
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, United States
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, United States
| | - Xi Kathy Zhou
- Department of Population Health Sciences, Weill Cornell Medicine, New York, NY 10065, United States
| | - Olivier Elemento
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY 10065, United States
| | - Silvia C Formenti
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, United States
- Sandra and Edward Meyer Cancer Center, New York, NY 10065, United States
- Department of Medicine, Weill Cornell Medicine, New York, NY 10065, United States
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY 10065, United States
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadephia, PA 19111, United States
- Caryl and Israel Englander Institute for Precision Medicine, New York, NY 10065, United States
- Sandra and Edward Meyer Cancer Center, New York, NY 10065, United States
| |
Collapse
|
25
|
Cai Q, Cai X, Shubhra QTH. Mitochondrial transfer drives immune evasion in tumor microenvironment. Trends Cancer 2025; 11:424-426. [PMID: 40268608 DOI: 10.1016/j.trecan.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2025] [Accepted: 04/01/2025] [Indexed: 04/25/2025]
Abstract
Tumors subvert T cell metabolism through diverse mechanisms. Ikeda et al. reveal mitochondrial transfer as a tumor-driven immune evasion strategy, where cancer cells deliver dysfunctional mitochondria to T cells, impairing metabolism and inducing exhaustion. These findings highlight mitochondrial dynamics as a promising therapeutic target to improve immunotherapy outcomes.
Collapse
Affiliation(s)
- Qiang Cai
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China.
| | - Xiaojun Cai
- School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou 325027, China
| | - Quazi T H Shubhra
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan 430060, China; Institute of Chemistry, University of Silesia in Katowice, Szkolna 9, 40-006 Katowice, Poland.
| |
Collapse
|
26
|
Zhang W, Yuan S, Zhang Z, Fu S, Liu S, Liu J, Ma Q, Xia Z, Gu P, Gao S, Zhang Z, Zhang X, Liu Y, Zhang N. Regulating tumor cells to awaken T cell antitumor function and enhance melanoma immunotherapy. Biomaterials 2025; 316:123034. [PMID: 39709849 DOI: 10.1016/j.biomaterials.2024.123034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2024] [Revised: 11/26/2024] [Accepted: 12/18/2024] [Indexed: 12/24/2024]
Abstract
Tumor cells transmit various immunosuppressive signals and induce a dysfunctional state in T cells, which essentially leads to immune escape and tumor progression. However, developing effective strategies to counteract the domestication of T cells by tumor cells remains a challenge. Here, we prepared pH-responsive lipid nanoparticles (NL/PLDs) co-loaded with PCSK9 shRNA, lonidamine (LND), and low-dose doxorubicin (DOX). NL/PLDs can awaken domesticated T cells function by sending pro-activation, pro-recognition, and pro-killing signals by increasing tumor immunogenicity, increasing the expression of major histocompatibility complex I (MHC-I) on tumor cells, and alleviating the suppression effect of tumor-secreted lactic acid (LA) on the T cell effector function, respectively. In melanoma-bearing mice, NL/PLDs effectively relieved tumor immunosuppressive microenvironment (TIME) and enhanced the antitumor immunity mediated by CD8+ T cells. Furthermore, when combined with aPD-1, NL/PLDs demonstrated strong antitumor effects and increased immunotherapeutic efficacy. This regulatory strategy provides new insights for enhancing immunotherapy by regulating tumor immunosuppressive signals and shows significant potential for clinical tumor treatment.
Collapse
Affiliation(s)
- Weihan Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Shijun Yuan
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Zipeng Zhang
- Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, 250062, China
| | - Shunli Fu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Shujun Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Jinhu Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Qingping Ma
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Zhenxing Xia
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Panpan Gu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Shuying Gao
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Zhiyue Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| | - Xinke Zhang
- Department of Pharmacology, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Quality Research and Evaluation of Carbohydrate-Based Medicine, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Yongjun Liu
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China.
| | - Na Zhang
- Department of Pharmaceutics, Key Laboratory of Chemical Biology (Ministry of Education), NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, 250012, China
| |
Collapse
|
27
|
Xie L, Liu J, Yang Z, Chen H, Wang Y, Du X, Fu Y, Song P, Yu J. Microrobotic Swarms for Cancer Therapy. RESEARCH (WASHINGTON, D.C.) 2025; 8:0686. [PMID: 40302783 PMCID: PMC12038165 DOI: 10.34133/research.0686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 03/27/2025] [Accepted: 04/04/2025] [Indexed: 05/02/2025]
Abstract
Microrobotic swarms hold great promise for the revolution of cancer treatment. The coordination of miniaturized microrobots offers a unique approach to treating cancers at the cellular level with enhanced delivery efficiency and environmental adaptability. Prior studies have summarized the design, functionalization, and biomedical applications of microrobotic swarms. The strategies for actuation and motion control of swarms have also been introduced. In this review, we first give a detailed introduction to microrobot swarming. We then explore the design of microrobots and microrobotic swarms specifically engineered for cancer therapy, with a focus on tumor targeting, infiltration, and therapeutic efficacy. Moreover, the latest developments in active delivery methods and imaging techniques that enhance the precision of these systems are discussed. Finally, we categorize and analyze the various cancer therapies facilitated by functional microrobotic swarms, highlighting their potential to revolutionize treatment strategies for different cancer types.
Collapse
Affiliation(s)
- Leiming Xie
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), Shenzhen 518129, China
- School of Science and Engineering,
The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Jinbo Liu
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), Shenzhen 518129, China
- School of Science and Engineering,
The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Zhen Yang
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), Shenzhen 518129, China
- School of Science and Engineering,
The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Hui Chen
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), Shenzhen 518129, China
- School of Science and Engineering,
The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Yibin Wang
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), Shenzhen 518129, China
- School of Science and Engineering,
The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Xingzhou Du
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), Shenzhen 518129, China
- School of Science and Engineering,
The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| | - Yongping Fu
- Department of Cardiovascular Medicine,
Affiliated Hospital of Shaoxing University, Shaoxing 312000, China
| | - Peng Song
- Department of Interventional Therapy, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital and Shenzhen Hospital,
Chinese Academy of Medical Sciences and Peking Union Medical College, Shenzhen 518116, China
| | - Jiangfan Yu
- Shenzhen Institute of Artificial Intelligence and Robotics for Society (AIRS), Shenzhen 518129, China
- School of Science and Engineering,
The Chinese University of Hong Kong, Shenzhen, Shenzhen 518172, China
| |
Collapse
|
28
|
Ma Z, Wang Y, Wang W, Wei C, Liu Z, Li Z, Ye Y, Mao Y, Yuan Y, Huang Z, Zhang J, Cao Y, Mao X, Zhang Y, Jin X, Yin J, Li G, Zheng L, Liu Z, Li X, Liang X, Liu Z. Targeting VSIG4 + tissue-resident macrophages enhances T cell cytotoxicity and immunotherapy efficacy in cancer. Dev Cell 2025:S1534-5807(25)00249-7. [PMID: 40339578 DOI: 10.1016/j.devcel.2025.04.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Revised: 02/23/2025] [Accepted: 04/16/2025] [Indexed: 05/10/2025]
Abstract
Tissue-resident macrophage (TRM) is crucial for organ development and homeostasis. However, the role of TRM-derived tumor-associated macrophage (TAM) subpopulations in cancer remains unclear. Using single-cell RNA sequencing and lineage tracing, we reported a TRM-derived TAM subpopulation, characterized by VSIG4 overexpression in testicular cancer. Macroscopically, such subpopulation was also found in tumors such as hepatocellular carcinoma, lung cancer, and glioblastoma. It was associated with poor prognosis and the suppression of CD8+ T-cell-dependent immunity via VSIG4. Notably, VSIG4 promoted immunosuppressive effects through direct or indirect modes, including interacting with receptors on CD8+ T cells or inducing transcription of IL-11 in TAMs. More importantly, MEF2C was identified as a key transcription factor that maintained VSIG4 expression and determined the biological behaviors of VSIG4+ TAMs. In preclinical models, targeting VSIG4+ TAMs via VSIG4 or MEF2C demonstrated a favorable effect of enhancing the efficacy of immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Zikun Ma
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Urology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China.
| | - Yuzhao Wang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Urology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Weikai Wang
- BGI Research, Chongqing 401329, China; College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chen Wei
- BGI Research, Chongqing 401329, China
| | - Zhenhua Liu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Urology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Zhiyong Li
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Urology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Yunlin Ye
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Urology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Yize Mao
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Pancreatobiliary Surgery, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Yunfei Yuan
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Zhenkun Huang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Liver Surgery, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Ji Zhang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Neurosurgery/Neuro-Oncology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Yun Cao
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Pathology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China
| | - Xiaopeng Mao
- Department of Urology, the First Affiliated Hospital of Sun Yat-Sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, China
| | - Yan Zhang
- BGI Research, Shenzhen 518083, China
| | - Xin Jin
- BGI Research, Shenzhen 518083, China; State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen 518083, China
| | - Jianhua Yin
- BGI Research, Shenzhen 518083, China; State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen 518083, China
| | - Guibo Li
- BGI Research, Chongqing 401329, China; State Key Laboratory of Genome and Multi-omics Technologies, BGI Research, Shenzhen 518083, China
| | - Limin Zheng
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, China
| | - Zhaoyuan Liu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Xiangdong Li
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Urology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China.
| | - Xiaoyu Liang
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Radiation Oncology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China.
| | - Zhuowei Liu
- Sun Yat-Sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China; Department of Urology, Sun Yat-Sen University Cancer Center, Guangzhou 510060, China; Sun Yat-sen University Cancer Center Gansu Hospital, Lanzhou 730050, China.
| |
Collapse
|
29
|
Zhu X, Wang Z, Ye X, Liang P, Chen L, Chen J, Li C, Zhu J, Zhuo S, Yang L, Yang L, Chen Y. Short-term methionine deprivation inhibits TCA cycle and regulates macrophage polarization through uncharged tRNA and PDHA1 phosphorylation. J Nutr Biochem 2025; 143:109939. [PMID: 40306332 DOI: 10.1016/j.jnutbio.2025.109939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 03/05/2025] [Accepted: 04/24/2025] [Indexed: 05/02/2025]
Abstract
Methionine restriction diet has been extensively studied for its beneficial effects on metabolic health and aging. However, the impact of methionine deprivation on glucose metabolism per se and macrophage functions remains incompletely understood. In this study, we analyzed the functional roles of methionine deprivation on glucose flux and macrophage polarization. We used metabolic flux to investigate how methionine deprivation affected glucose metabolism. The functions of methionine deficiency on macrophage polarization and the underlying mechanisms were studied at both the cellular and animal levels. We found that short-term methionine deprivation represses the tricarboxylic acid (TCA) cycle in mitochondria, accompanied by rapid phosphorylation of the E1 subunit of pyruvate dehydrogenase (PDH) complex, PDHA1. This phosphorylation by methionine deprivation is dependent on increased levels of uncharged tRNA but is independent of GCN2. Furthermore, methionine deprivation promotes M1-like polarization of macrophages, consistent with metabolic reprogramming. Notably, the proinflammatory effect of methionine deprivation on macrophages is also mediated by PDHA1 phosphorylation and increases in uncharged tRNA, but independent of GCN2. Our study not only elucidates a direct regulatory role of methionine depletion on the TCA cycle but also reveals that such a regulation is tightly linked to the modulation of macrophage polarization.
Collapse
Affiliation(s)
- Xinyu Zhu
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China
| | - Zinan Wang
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoyi Ye
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Puyang Liang
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lingling Chen
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jinzhu Chen
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chenchen Li
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Jing Zhu
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Shixuan Zhuo
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lanzexin Yang
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lifeng Yang
- Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yan Chen
- School of Life Science and Technology, ShanghaiTech University, Shanghai, China; Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
| |
Collapse
|
30
|
Liu R, Jiang X, Dong R, Zhang Y, Gai C, Wei P. Revealing the mechanisms and therapeutic potential of immune checkpoint proteins across diverse protein families. Front Immunol 2025; 16:1499663. [PMID: 40356928 PMCID: PMC12066663 DOI: 10.3389/fimmu.2025.1499663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2024] [Accepted: 03/28/2025] [Indexed: 05/15/2025] Open
Abstract
Host immune responses to antigens are tightly regulated through the activation and inhibition of synergistic signaling networks that maintain homeostasis. Stimulatory checkpoint molecules initiate attacks on infected or tumor cells, while inhibitory molecules halt the immune response to prevent overreaction and self-injury. Multiple immune checkpoint proteins are grouped into families based on common structural domains or origins, yet the variability within and between these families remains largely unexplored. In this review, we discuss the current understanding of the mechanisms underlying the co-suppressive functions of CTLA-4, PD-1, and other prominent immune checkpoint pathways. Additionally, we examine the IgSF, PVR, TIM, SIRP, and TNF families, including key members such as TIGIT, LAG-3, VISTA, TIM-3, SIRPα, and OX40. We also highlight the unique dual role of VISTA and SIRPα in modulating immune responses under specific conditions, and explore potential immunotherapeutic pathways tailored to the distinct characteristics of different immune checkpoint proteins. These insights into the unique advantages of checkpoint proteins provide new directions for drug discovery, emphasizing that emerging immune checkpoint molecules could serve as targets for novel therapies in cancer, autoimmune diseases, infectious diseases, and transplant rejection.
Collapse
Affiliation(s)
| | | | | | | | - Cong Gai
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Peng Wei
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
31
|
Seo ES, Lee SK, Son YM. Multifaceted functions of tissue-resident memory T cells in tumorigenesis and cancer immunotherapy. Cancer Immunol Immunother 2025; 74:184. [PMID: 40285796 PMCID: PMC12033165 DOI: 10.1007/s00262-025-04035-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/24/2025] [Indexed: 04/29/2025]
Abstract
Tissue-resident memory T (TRM) cells are well reported as a strong protective first line of defense against foreign antigens in non-lymphoid tissues. Moreover, TRM cells have demonstrated critical protective roles in antitumor immunity, contributing to enhanced survival and tumor growth inhibition across various cancer types. However, surprisingly, recent studies suggest that TRM cells can exhibit paradoxical effects, potentially promoting tumor progression under certain conditions and leading to adverse outcomes during antitumor immune responses. Understanding the complexities of TRM cell functions will enable us to harness their potential in advancing cancer immunotherapy more effectively. Therefore, this review comprehensively investigates the dual roles of TRM cells in different tumor contexts, highlighting their protective functions in combating cancers and their unfavorable potential to exacerbate tumor development. Additionally, we explore the implications of TRM cell behaviors for future cancer treatment strategies, emphasizing the need for further research to optimize the therapeutic exploitation of TRM cells while mitigating their deleterious effects.
Collapse
Affiliation(s)
- Eun Sang Seo
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Sung-Kyu Lee
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Young Min Son
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
32
|
Kan L, Yu Y, Wang Y, Shi L, Fan T, Chen H, Ren C. The application of organoids in investigating immune evasion in the microenvironment of gastric cancer and screening novel drug candidates. Mol Cancer 2025; 24:125. [PMID: 40287758 PMCID: PMC12032790 DOI: 10.1186/s12943-025-02328-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2024] [Accepted: 04/10/2025] [Indexed: 04/29/2025] Open
Abstract
Gastric cancer (GC) is a prevalent digestive system tumor, the fifth most diagnosed cancer worldwide, and a leading cause of cancer deaths. GC is distinguished by its pronounced heterogeneity and a dynamically evolving tumor microenvironment (TME). The lack of accurate disease models complicates the understanding of its mechanisms and impedes the discovery of novel drugs. A growing body of evidence suggests that GC organoids, developed using organoid culture technology, preserve the genetic, phenotypic, and behavioral characteristics. GC organoids hold significant potential for predicting treatment responses in individual patients. This review provides a comprehensive overview of the current clinical treatment strategies for GC, as well as the history, construction and clinical applications of organoids. The focus is on the role of organoids in simulating the TME to explore mechanisms of immune evasion and intratumoral microbiota in GC, as well as their applications in guiding clinical drug therapy and facilitating novel drug screening. Furthermore, we summarize the limitations of GC organoid models and underscore the need for continued technological advancements to benefit both basic and translational oncological research.
Collapse
Affiliation(s)
- Liuyue Kan
- Department of Laboratory Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Ying Yu
- Department of Laboratory Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Yaxue Wang
- Department of Laboratory Medicine, Medical College, Yangzhou University, Yangzhou, China
| | - Lei Shi
- Department of General Surgery, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, No. 98 Western Nantong Road, Yangzhou, 225001, China
| | - Tingyuan Fan
- Department of Laboratory Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Hui Chen
- Department of Geriatrics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, No. 98 Western Nantong Road, Yangzhou, 225001, China.
- Northern Jiangsu People's Hospital Affiliated to Yangzhou University, No. 98, Western Nantong Road, Yangzhou, 225001, China.
| | - Chuanli Ren
- Department of Laboratory Medicine, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, Yangzhou, China.
- Department of Laboratory Medicine, The Yangzhou Clinical Medical College of Xuzhou Medical University, Yangzhou, China.
- The Yangzhou Clinical Medical College of Xuzhou Medical University, No. 98, Western Nantong Road, Yangzhou, 225001, China.
| |
Collapse
|
33
|
Huang Z, Li L, Zhao X, Jin H, Shen M, Li B, Zeng Y, Zhang Q, Wang Q, Wang M, Yang L. scRNA-seq reveals that VEGF signaling mediates the response to neoadjuvant anlotinib combined with PD-1 blockade therapy in non-small cell lung cancer. J Transl Med 2025; 23:478. [PMID: 40281576 PMCID: PMC12032801 DOI: 10.1186/s12967-025-06485-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2025] [Accepted: 04/11/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND Clinical trials have shown that neoadjuvant anlotinib combined with PD-1 blockade therapy can prolong the survival of patients with driver gene negative non-small cell lung cancer (NSCLC), but some patients fail to benefit from the combination therapy. METHODS To explore the potential drug resistance mechanism and predict the efficacy of neoadjuvant therapy in NSCLC patients, we used scRNA-seq to observe and analyze the dynamic changes of immune cells, stromal cells and cancer cells in NSCLC patients who received neoadjuvant combination therapy. We analyzed transcriptome data of ~ 47,000 single cells from 9 NSCLC patients, including 3 treatment naïve patients, 3 post-treatment patients with major pathological response (MPR), and 3 Non-MPR patients. Subsequently, the infiltration of immune cells was detected by immunohistochemistry and multiplex immunofluorescence in NSCLC. RESULTS In MPR patients, we found that neoadjuvant therapy reduced the expression of the T cell exhausted signature, reduced the transition of T_THEMIS cells to Tregs, and enhanced the positive feedback between CD4+ T cells and PAX5+ memory B cells. In Non-MPR patients, tumor-associated macrophages (TAMs) dampen therapeutic efficiency by being the hub of cell communication. TAMs and fibroblasts stimulate endothelial cells via VEGF, endothelial ZEB1 may up-regulate FLT1 (VEGFR) expression in response to anlotinib, and VEGFR+ endothelial cell signature can predict survival of NSCLC cohort in TCGA. In addition, PLA2G4A, the key enzyme in the VEGF pathway, was highly expressed in the tumor cells of Non-MPR patients after anlotinib treatment. In 135 NSCLC patients, we confirmed by immunohistochemistry that PLA2G4A was positively correlated with poor prognosis and Tregs infiltration. CONCLUSION In conclusion, VEGF signaling dependent dynamic changes in endothelial and epithelial cells are deeply involved in the formation of anlotinib resistance and immunosuppression phenotypes in NSCLC patients.
Collapse
Affiliation(s)
- Ziqi Huang
- Department of Immunology, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, China
| | - Li Li
- Department of Immunology, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, China
| | - Xiaohe Zhao
- Department of Immunology, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, China
| | - Haixia Jin
- Department of Immunology, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, China
| | - Meng Shen
- Department of Immunology, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, China
| | - Baihui Li
- Department of Esophageal Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin, China
| | - Yu Zeng
- Department of Immunology, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, China
| | - Qinfen Zhang
- Department of Immunology, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, China
| | - Qiyu Wang
- Department of Immunology, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, China
| | - Meng Wang
- Department of Lung Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, China.
| | - Lili Yang
- Department of Immunology, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Immunology and Biotherapy, State Key Laboratory of Druggability Evaluation and Systematic Translational Medicine, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Tiyuanbei, Hexi District, Tianjin, 300060, China.
| |
Collapse
|
34
|
Kos M, Mertowska P, Mertowski S, Roliński J, Krasińska-Płachta A, Urbanowicz T, Gogacz M, Grywalska E. From Defense to Disease: How the Immune System Fuels Epithelial-Mesenchymal Transition in Ovarian Cancer. Int J Mol Sci 2025; 26:4041. [PMID: 40362280 PMCID: PMC12072087 DOI: 10.3390/ijms26094041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/11/2025] [Accepted: 04/22/2025] [Indexed: 05/15/2025] Open
Abstract
Ovarian cancer is one of the most deadly gynecological cancers, with over 300 thousand new cases per year, most of which are diagnosed in advanced stages. The limited availability of effective biomarkers and lack of characteristic symptoms make early diagnosis difficult, resulting in a five-year survival rate of 30-40%. Mutations in the BRCA1 and BRCA2 genes and abnormalities of signaling pathways such as PI3K/AKT and TP53 play a key role in the progression of ovarian cancer. The immune system, which can act against tumors, often supports tumor development in the ovarian cancer microenvironment through immunoevasion, which is influenced by cytokines such as IL-6, IL-10, and TGF-β. Epithelial-to-mesenchymal transition (EMT) allows cancer cells to acquire mesenchymal characteristics, increasing their invasiveness and metastatic capacity. Immunological factors, including pro-inflammatory cytokines and signals from the tumor microenvironment regulate the EMT process. This review aims to present the role of EMT in ovarian cancer progression, its interactions with the immune system, and potential biomarkers and therapeutic targets. Modulation of the immune response and inhibition of EMT may constitute the basis for personalized therapies, which opens new possibilities for improving the prognosis and efficacy of treatment in patients with ovarian cancer.
Collapse
Affiliation(s)
- Michał Kos
- II Clinic of Gynecology, Medical University of Lublin, 20-093 Lublin, Poland; (M.K.); (M.G.)
| | - Paulina Mertowska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (S.M.); (E.G.)
| | - Sebastian Mertowski
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (S.M.); (E.G.)
| | - Jacek Roliński
- Department of Clinical Immunology, Medical University of Lublin, 4a Chodźki Street, 20-093 Lublin, Poland;
| | | | - Tomasz Urbanowicz
- Cardiac Surgery and Transplantology Department, Poznan University of Medical Sciences, 61-848 Poznan, Poland
| | - Marek Gogacz
- II Clinic of Gynecology, Medical University of Lublin, 20-093 Lublin, Poland; (M.K.); (M.G.)
| | - Ewelina Grywalska
- Department of Experimental Immunology, Medical University of Lublin, 20-093 Lublin, Poland; (S.M.); (E.G.)
| |
Collapse
|
35
|
Verdys P, Johansen AZ, Gupta A, Presti M, Dionisio E, Madsen DH, Curioni-Fontecedro A, Donia M. Acquired resistance to immunotherapy in solid tumors. Trends Mol Med 2025:S1471-4914(25)00061-9. [PMID: 40274520 DOI: 10.1016/j.molmed.2025.03.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 02/11/2025] [Accepted: 03/21/2025] [Indexed: 04/26/2025]
Abstract
Acquired resistance to immunotherapy (ARI) is a major challenge in solid tumors, limiting long-term success in up to 65% of patients who initially respond to immunotherapy. Defining ARI clinically remains complex, but ongoing efforts aim to establish standardized criteria. This review describes recent insights into ARI, revealing complex mechanisms involving both tumor-intrinsic mechanisms - such as antigen loss and presentation defects, interferon γ (IFNγ) insensitivity, tumor-mediated T cell exclusion, and metabolic reprogramming - as well as extrinsic factors such as inhibitory molecule upregulation, immunosuppressive cells, extracellular matrix (ECM) remodeling, and dysbiotic microbiota. Understanding the development of ARI is crucial for prevention and effective interventions. The integration of innovative strategies and translational research on appropriately collected samples is key to overcoming ARI and ensuring durable benefits for patients.
Collapse
Affiliation(s)
- Perrine Verdys
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Astrid Z Johansen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Anurag Gupta
- Department of Medical Oncology, University of Fribourg, Fribourg, Switzerland
| | - Mario Presti
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Edoardo Dionisio
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | - Daniel H Madsen
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark
| | | | - Marco Donia
- National Center for Cancer Immune Therapy (CCIT-DK), Department of Oncology, Copenhagen University Hospital, Herlev, Denmark.
| |
Collapse
|
36
|
Guilbaud E, Galluzzi L. Tumor immunology: a short IL18 cleavage product promotes cancer immunosurveillance. Signal Transduct Target Ther 2025; 10:129. [PMID: 40263267 PMCID: PMC12015515 DOI: 10.1038/s41392-025-02213-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Revised: 03/11/2025] [Accepted: 03/18/2025] [Indexed: 04/24/2025] Open
Affiliation(s)
- Emma Guilbaud
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Lorenzo Galluzzi
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
37
|
Zhu X, Yin G, Xu J, Tang X, Yu F. Dendrobium huoshanense polysaccharide inhibits NSCLC proliferation and immune evasion via FXR1-IL-35 axis signaling pathway. J Nat Med 2025:10.1007/s11418-025-01894-7. [PMID: 40259042 DOI: 10.1007/s11418-025-01894-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 03/10/2025] [Indexed: 04/23/2025]
Abstract
Dendrobium huoshanense has received special attention for its advantages in the treatment of lung cancer, but the underlying molecular mechanisms are not yet well understood. First, we obtained 8 active ingredients and 159 effective action targets of Dendrobium huoshanense using network pharmacology, and searching target interactions through STRING, constructing the PPI network and KEGG, GO and Hallmark enrichment analysis. Then, we combined target's enrichment analysis and GSEA enrichment analysis of IL-35, indicating the mechanism of cDHPs for non-small cell lung cancer (NSCLC) may be related to tight junction and NSCLC pathway. Further, FXR1 and ACTR3 were identified as core therapeutic targets, and high expression of FXR1 or ACTR3 was significantly associated with poor prognosis of patients. The analysis of single-cell data also indicated that the percentage of CD4-CTLA4-Treg cells may be increased by the expression of IL-35, resulting in a suppressive immune microenvironment. Next, In vivo experiment, we detected iTr35 by flow cytometry, detected IL-35 level by RT-PCR, Western blotting and ELISA, and detected NK cell activity to explore the immunomodulatory effects and anti-tumor mechanism of cDHPs. After cDHPs administration, the conversion of CD4+ T cells to iTr35 is inhibited, p35 and EBI3 in both protein and mRNA levels, the levels of IL-35 and IL-4 in serum decreased. The levels of IFN-γ, while the activity of NK cells in mice increased, enhancing the anti-tumor immune effect of the organism. Finally, analysis of sequencing data from the immunotherapy cohort of tumor-bearing mice obtained from the TISMO database shows that the combination of cDHPs and PD-1/PD-L1 antibodies improves effector and thus PD-1/PD-L1 antibody efficacy. These findings suggest that cDHPs inhibit NSCLC proliferation and immune escape via the FXR1-IL-35 axis signaling pathway.
Collapse
Affiliation(s)
- Xinying Zhu
- Translational Medicine Center, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, Anhui Province, China
| | - Guoquan Yin
- Clinical Laboratory, Yangzhou Blood Center in Jiangsu Province, Yangzhou, 225007, Jiangsu Province, China
| | - Jiaqian Xu
- Department of Medical Microbiology and Immunology, School of Preclinical Medicine, Wannan Medical College, Wuhu, 241001, Anhui Province, China
| | - Xiaolei Tang
- Translational Medicine Center, The Second Affiliated Hospital of Wannan Medical College, Wuhu, 241000, Anhui Province, China
| | - Fangliu Yu
- Department of Medical Microbiology and Immunology, School of Preclinical Medicine, Wannan Medical College, Wuhu, 241001, Anhui Province, China.
| |
Collapse
|
38
|
Gupta G, Samuel VP, M RM, Rani B, Sasikumar Y, Nayak PP, Sudan P, Goyal K, Oliver BG, Chakraborty A, Dua K. Caspase-independent cell death in lung cancer: from mechanisms to clinical applications. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2025:10.1007/s00210-025-04149-0. [PMID: 40257494 DOI: 10.1007/s00210-025-04149-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Accepted: 04/05/2025] [Indexed: 04/22/2025]
Abstract
Caspase-independent cell death (CICD) has recently become a very important mechanism in lung cancer, in particular, to overcome a critical failure in apoptotic cell death that is common to disease progression and treatment failures. The pathways involved in CICD span from necroptosis, ferroptosis, mitochondrial dysfunction, and autophagy-mediated cell death. Its potential therapeutic applications have been recently highlighted. Glutathione peroxidase 4 (GPX4) inhibition-driven ferroptosis has overcome drug resistance in non-small cell lung cancer (NSCLC). In addition, necroptosis involving RIPK1 and RIPK3 causes tumor cell death and modulation of immune responses in the tumor microenvironment (TME). Mitochondrial pathways are critical for CICD through modulation of metabolic and redox homeostasis. Ferroptosis is amplified by mitochondrial reactive oxygen species (ROS) and lipid peroxidation in lung cancer cells, and mitochondrial depolarization induces oxidative stress and leads to cell death. In addition, mitochondria-mediated autophagy, or mitophagy, results in the clearance of damaged organelles under stress conditions, while this function is also linked to CICD when dysregulated. The role of cell death through autophagy regulated by ATG proteins and PI3K/AKT/mTOR pathway is dual: to suppress tumor and to sensitize cells to therapy. A promising approach to enhancing therapeutic outcomes involves targeting mechanisms of CICD, including inducing ferroptosis by SLC7A11 inhibition, modulating mitochondrial ROS generation, or combining inhibition of autophagy with chemotherapy. Here, we review the molecular underpinnings of CICD, particularly on mitochondrial pathways and their potential to transform lung cancer treatment.
Collapse
Affiliation(s)
- Gaurav Gupta
- Centre for Research Impact & Outcome, Chitkara College of Pharmacy, Chitkara University, Rajpura, Punjab, 140401, India
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Ajman, United Arab Emirates
| | - Vijaya Paul Samuel
- Department of Anatomy, RAK College of Medicine, RAK Medical and Health Sciences University, Ras Al Khaimah, UAE
| | - Rekha M M
- Department of Chemistry and Biochemistry, School of Sciences, JAIN (Deemed to Be University), Bangalore, Karnataka, India
| | - Bindu Rani
- Department of Medicine, National Institute of Medical Sciences, NIMS University Rajasthan, Jaipur, India
| | - Y Sasikumar
- Department of CHEMISTRY, Sathyabama Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Priya Priyadarshini Nayak
- Department of Medical Oncology IMS and SUM Hospital, Siksha 'O' Anusandhan (Deemed to Be University), Bhubaneswar, Odisha, 751003, India
| | - Puneet Sudan
- Department of Pharmacy, Chandigarh Pharmacy College, Chandigarh Group of Colleges-Jhanjeri, Mohali, 140307, Punjab, India
| | - Kavita Goyal
- Department of Biotechnology, Graphic Era (Deemed to Be University), Clement Town, Dehradun, 248002, India
| | - Brian G Oliver
- Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia
- School of Life Sciences, University of Technology Sydney, Ultimo, NSW, 2007, Australia
| | - Amlan Chakraborty
- Faculty of Biology, Medicine and Health, The University of Manchester, Oxford Road, Manchester, M13 9PL, UK
- Cardiovascular Disease Program, Biomedicine Discovery Institute and Department of Pharmacology, Monash University, Clayton, VIC, 3800, Australia
| | - Kamal Dua
- Woolcock Institute of Medical Research, Macquarie University, Sydney, NSW, Australia.
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
- Faculty of Health, Australian Research Centre in Complementary and Integrative Medicine, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| |
Collapse
|
39
|
Dusi S, Bronte V, De Sanctis F. IL-27: overclocking cytotoxic T lymphocytes to boost cancer immunotherapy. Signal Transduct Target Ther 2025; 10:126. [PMID: 40254608 PMCID: PMC12009969 DOI: 10.1038/s41392-025-02212-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2025] [Revised: 03/12/2025] [Accepted: 03/18/2025] [Indexed: 04/22/2025] Open
Affiliation(s)
- Silvia Dusi
- Veneto Institute of Oncology IOV-IRCCS, Padua, Italy
| | | | - Francesco De Sanctis
- Department of Medicine, Section of Immunology, University of Verona, Verona, Italy.
| |
Collapse
|
40
|
Lin J, Gong Z, Lu Y, Cai J, Zhang J, Tan J, Huang Z, Chen S. Recent Progress and Potential of G4 Ligands in Cancer Immunotherapy. Molecules 2025; 30:1805. [PMID: 40333779 PMCID: PMC12029830 DOI: 10.3390/molecules30081805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Revised: 04/13/2025] [Accepted: 04/15/2025] [Indexed: 05/09/2025] Open
Abstract
G-quadruplex (G4) structures are non-canonical nucleic acid conformations that play crucial roles in gene regulation, DNA replication, and telomere maintenance. Recent studies have highlighted G4 ligands as promising anticancer agents due to their ability to modulate oncogene expression and induce DNA damage. By stabilizing G4 structures, these ligands affect tumor progression. Additionally, they have been implicated in tumor immunity modulation, particularly through the activation and immunogenic cell death induction of the cyclic GMP-AMP synthase (cGAS)-stimulator of interferon genes (STING) signaling pathway. Moreover, their disruption of telomere maintenance and regulation of key oncogenes, such as c-MYC and KRAS, position them as candidates for immune-based therapeutic interventions. Despite their therapeutic potential, challenges remain in optimizing their clinical applications, particularly in patient stratification and elucidating their immunomodulatory effects. This review provides a comprehensive overview of the mechanisms through which G4 ligands influence tumor progression and immune regulation, highlighting their potential role in future cancer immunotherapy strategies.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Shuobin Chen
- School of Pharmaceutical Sciences, Sun Yat-sen University, Guangzhou 510006, China; (J.L.); (Z.G.); (Y.L.); (J.C.); (J.Z.); (J.T.); (Z.H.)
| |
Collapse
|
41
|
Huang C, Wang L, Zhuo C, Chen W, Fan H, Hong Y, Zhang Y, Zhou D, Lin W, Zhang L, Zhao J, Chen S, Yu C, Ye Y. ID3 enhances PD-L1 expression by restructuring MYC to promote colorectal cancer immune evasion. Proc Natl Acad Sci U S A 2025; 122:e2423490122. [PMID: 40208940 PMCID: PMC12012548 DOI: 10.1073/pnas.2423490122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2024] [Accepted: 03/12/2025] [Indexed: 04/12/2025] Open
Abstract
The inhibitor of DNA binding protein ID3 has been associated with the progression of colorectal cancer (CRC). Despite its significance, its specific role in the immune evasion strategies utilized by CRC remains unclear. RNA-seq analysis revealed that ID3 was positively associated with the PD-L1 immune checkpoint. We further demonstrated that tumor cell-expressed ID3 enhanced PD-L1 expression, suppressed the infiltration and activation of CD8+ T cells, and facilitated the immune evasion of CRC cells. Additionally, we found that knockdown of ID3 significantly enhanced the effectiveness of PD-L1 antibody blockade treatment in combating CRC, reduced the upregulation of PD-L1 induced by the antibody, and altered the immune microenvironment within CRC. Mechanistically, ID3 interacted with the transcription factor MYC and reconstructed the four-dimensional structure of MYC, thereby enhancing its binding affinity to the PD-L1 promoter and augmenting PD-L1 transcriptional activity. By integrating analysis of ChIP-seq, RNA-seq, and ImmPort gene sets, we found that ID3's DNA-assisted binding function was widespread and could either enhance or suppress gene transcription, not only affecting tumor immune escape through immune checkpoints but also regulating various cytokines and immune cells involved in tumor immunity. In conclusion, our study uncovers a mechanism by which ID3 promotes immune evasion in CRC and implicates that targeting ID3 may improve the efficacy of anti-PD-1/PD-L1 immunotherapy.
Collapse
Affiliation(s)
- Chuanzhong Huang
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Medical University, Fuzhou350014, People’s Republic of China
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou350122, China
- Fujian Provincial Key Laboratory of Translational Cancer Medicine, Fuzhou350014, People’s Republic of China
| | - Ling Wang
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Medical University, Fuzhou350014, People’s Republic of China
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou350122, China
| | - Changhua Zhuo
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Medical University, Fuzhou350014, People’s Republic of China
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou350122, China
| | - Wenxin Chen
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou350122, China
| | - Hongmei Fan
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Medical University, Fuzhou350014, People’s Republic of China
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou350122, China
| | - Yilin Hong
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen361102, People’s Republic of China
| | - Yu Zhang
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Medical University, Fuzhou350014, People’s Republic of China
| | - Dongmei Zhou
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Medical University, Fuzhou350014, People’s Republic of China
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou350122, China
| | - Wansong Lin
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Medical University, Fuzhou350014, People’s Republic of China
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou350122, China
| | - Lingyu Zhang
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Medical University, Fuzhou350014, People’s Republic of China
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou350122, China
| | - Jingjing Zhao
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Medical University, Fuzhou350014, People’s Republic of China
| | - Shuping Chen
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Medical University, Fuzhou350014, People’s Republic of China
- School of Basic Medical Sciences, Fujian Medical University, Fuzhou350122, China
| | - Chundong Yu
- State Key Laboratory of Cellular Stress Biology, School of Life Sciences, Faculty of Medicine and Life Sciences, Xiamen University, Xiamen361102, People’s Republic of China
| | - Yunbin Ye
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fujian Medical University, Fuzhou350014, People’s Republic of China
| |
Collapse
|
42
|
Urzì O, Olofsson Bagge R, Crescitelli R. Extracellular vesicles in uveal melanoma - Biological roles and diagnostic value. Cancer Lett 2025; 615:217531. [PMID: 39914771 DOI: 10.1016/j.canlet.2025.217531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/29/2025] [Accepted: 02/03/2025] [Indexed: 02/27/2025]
Abstract
Uveal melanoma (UM), which originates from the uveal tract of the eye, is the most common and aggressive intraocular cancer in adults. The detection of genetic markers is crucial for an accurate diagnosis, but this requires tumor biopsies that can be challenging to obtain. Extracellular vesicles (EVs) have emerged as potential biomarkers for UM due to their presence in biological fluids and their ability to carry disease-related biomolecules such as proteins and nucleic acids. Increasing evidence indicates that EVs released from UM cells play crucial roles in UM development, including cancer progression, pre-metastatic niche formation, and metastasis. Moreover, many studies have demonstrated that UM-derived EVs carry proteins and microRNAs that might be used as biomarkers. This review explores the role of EVs in UM, focusing on their biological functions and their potential as diagnostic and prognostic biomarkers of UM. Additionally, current challenges to the use of UM-derived EVs in clinical translation were identified, as well as perspectives and future directions in the field.
Collapse
Affiliation(s)
- Ornella Urzì
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; St. Anna Children's Cancer Research Institute (CCRI), Vienna, Austria.
| | - Roger Olofsson Bagge
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Surgery, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden.
| | - Rossella Crescitelli
- Sahlgrenska Center for Cancer Research, Department of Surgery, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.
| |
Collapse
|
43
|
Peng H, Chen Q, Ye L, Wang W. A Senescence-Associated Gene Signature for Prognostic Prediction and Therapeutic Targeting in Adrenocortical Carcinoma. Biomedicines 2025; 13:894. [PMID: 40299539 PMCID: PMC12025298 DOI: 10.3390/biomedicines13040894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/23/2025] [Accepted: 03/30/2025] [Indexed: 04/30/2025] Open
Abstract
Background/Objectives: Cellular senescence plays a critical role in tumorigenesis, immune cell infiltration, and treatment response. Adrenocortical carcinoma (ACC) is a malignant tumor that lacks effective therapies. This study aimed to construct and validate a senescence-related gene signature as an independent prognostic predictor for ACC and explore its impact on the tumor microenvironment, immunotherapy, and chemotherapy response. Methods: Data were collected from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO) database. Using Kaplan-Meier survival analysis, LASSO penalized Cox regression and multivariable Cox regression, we identified a prognostic model with four senescence-related genes (HJURP, CDK1, FOXM1, and CHEK1). The model's prognostic value was validated through survival analysis, risk score curves, and receiver operating characteristic (ROC) curves. Tumor mutation burden was assessed with maftools, and the tumor microenvironment was analyzed using CIBERSORT and ESTIMATE. Immune and chemotherapeutic responses were assessed through Tumor Immune Dysfunction and Exclusion (TIDE) and OncoPredict. Results: The risk score derived from our model showed a strong association with overall survival (OS) in ACC patients (p < 0.001, HR = 2.478). Higher risk scores were correlated with more advanced tumor stages and a greater frequency of somatic mutations. Differentially expressed genes (DEGs) that were downregulated in the high-risk group were significantly enriched in immune-related pathways. Furthermore, high-risk patients were predicted to have reduced sensitivity to immunotherapy (p = 0.02). Bioinformatics analysis identified potential chemotherapeutic agents, including BI-2536 and MIM1, as more effective treatment options for high-risk patients. Conclusions: Our findings indicate that this prognostic model may serve as a valuable tool for predicting overall survival (OS) and treatment responses in ACC patients, including those receiving chemotherapy and immunotherapy.
Collapse
Affiliation(s)
- Hangya Peng
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (H.P.); (Q.C.)
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qiujing Chen
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (H.P.); (Q.C.)
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
- Institute of Cardiovascular Diseases, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Lei Ye
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (H.P.); (Q.C.)
| | - Weiqing Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; (H.P.); (Q.C.)
| |
Collapse
|
44
|
Li YH, Huang XJ, Zhao XY. Translational study of the regulatory mechanism by which immune synapses enhance immune cell function. Cancer Lett 2025; 614:217542. [PMID: 39924076 DOI: 10.1016/j.canlet.2025.217542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Revised: 01/29/2025] [Accepted: 02/07/2025] [Indexed: 02/11/2025]
Abstract
Immune synapses, which were initially discovered at the interface between antigen-presenting cells (APCs) and T cells, are special structures formed at the contact site between antigen-presenting cells and immune cells and constitute the structural basis for immune cells to kill tumours and synthesise antibodies. Their structures are very similar to those of neural synapses in the nervous system, and they contain different functional structural regions. With the development of cell visualization research, scientists have increasingly conducted in-depth research on immune synapses. At present, it is known that T cells, B cells, and NK cells can form different immune synapses with target cells. Immune synapses formed by different cell subsets as well as CAR-T cells have their own characteristics, mainly in terms of their structure, formation process and regulatory mechanism. Therefore, how to enhance immune cell killing function by enhancing immune synaptic function has long been a research hotspot. At present, the killing function of immune cells can be enhanced by influencing the signalling molecules of immune synapses and the cell microenvironment and modifying the structure of immune synapses. Through a review of the factors affecting immune synapses, we can better explore the target for enhancing immune system function.
Collapse
Affiliation(s)
- Ya-Hui Li
- Peking University People's Hospital, Peking University Institute of Haematology, National Clinical Research Center for Haematologic Disease, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, Peking University, Beijing, China
| | - Xiao-Jun Huang
- Peking University People's Hospital, Peking University Institute of Haematology, National Clinical Research Center for Haematologic Disease, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, Peking University, Beijing, China
| | - Xiang-Yu Zhao
- Peking University People's Hospital, Peking University Institute of Haematology, National Clinical Research Center for Haematologic Disease, Beijing Key Laboratory of Cell and Gene Therapy for Hematologic Malignancies, Peking University, Beijing, China.
| |
Collapse
|
45
|
Galluzzi L. T cell exhaustion: early or late in tumour progression? Nat Rev Immunol 2025; 25:227-228. [PMID: 40038448 DOI: 10.1038/s41577-025-01158-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Affiliation(s)
- Lorenzo Galluzzi
- Cancer Signaling and Microenvironment Program, Fox Chase Cancer Center, Philadelphia, PA, USA.
| |
Collapse
|
46
|
Ahvati H, Roudi R, Sobhani N, Safari F. CD47 as a potent target in cancer immunotherapy: A review. Biochim Biophys Acta Rev Cancer 2025; 1880:189294. [PMID: 40057140 DOI: 10.1016/j.bbcan.2025.189294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/22/2025] [Accepted: 03/02/2025] [Indexed: 03/22/2025]
Abstract
Cancer is the second-highest cause of death worldwide. Accordingly, finding new cancer treatments is of great interest to researchers. The current platforms to fight cancer such as chemotherapy, radiotherapy, and surgery are limited in efficacy, especially in the metastatic setting. In this war against cancer, the immune system is a powerful ally, but tumor cells often outsmart it through alternative pathways. Cluster of differentiation 47 (CD47), a protein that normally prevents healthy cells from being attacked by immune cells, is often overexpressed on cancer cells. This makes CD47 a prime target for immunotherapy. Blocking of CD47 has the potential to unleash the immune system's cell populations-such as myeloid cells, macrophages, and T cells-to allow the immune system to discover and destroy cancer cells more successfully. In this review, we aimed to provide the latest information and findings about the roles of CD47 in the regulation of various cellular pathways and, thus, the importance of CD47 as a potential target in cancer therapy.
Collapse
Affiliation(s)
- Hiva Ahvati
- School of Biology, College of Science, University of Tehran, Tehran, Iran
| | - Raheleh Roudi
- Department of Radiology, Molecular Imaging Program at Stanford, Stanford University, Stanford, CA 94305, USA.
| | - Navid Sobhani
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Fatemeh Safari
- Department of Biology, Faculty of Science, University of Guilan, Rasht, Iran
| |
Collapse
|
47
|
Li Z, Zhao D, Zhu C. Predicting colorectal adenoma recurrence: the role of systemic inflammatory markers and insulin resistance. Scand J Gastroenterol 2025; 60:300-306. [PMID: 40009759 DOI: 10.1080/00365521.2025.2469801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 02/01/2025] [Accepted: 02/16/2025] [Indexed: 02/28/2025]
Abstract
BACKGROUND Colorectal adenomas (CRA) exhibit high recurrence rates following endoscopic resection. Insulin resistance (IR) and chronic inflammation, increasingly prevalent due to unhealthy lifestyles, are key factors in CRA development. This study aimed to evaluate the predictive power of combining the inflammation score with the triglyceride-glucose (TyG) index for CRA recurrence. METHODS We conducted a comprehensive analysis of the clinical characteristics of 847 CRA patients who underwent endoscopic resection. Postoperative recurrence of CRA was assessed using logistic regression analyses to determine odds ratios (ORs) and 95% confidence intervals (CIs). The receiver operating characteristic (ROC) curve analysis was utilized to predict the risk of CRA recurrence based on the inflammation score and TyG index. RESULTS Among the 847 CRA included in the study, 126 experienced recurrences. Logistic regression analysis identified NLR (OR 2.641, 95% CI 1.982-3.549), TyG (OR 1.494, 95% CI 1.146-1.956), three or more adenomas (OR 2.182, 95% CI 1.431-3.322) and CRA larger than 10 mm (OR 1.917, 95% CI 1.267-2.921) as independent risk factors for CRA recurrence. ROC curves demonstrated the efficacy of NLR (AUC 0.701, 95% CI 0.652-0.750) and TyG (AUC 0.607, 95% CI 0.553-0.660) in predicting CRA recurrence. The combination of NLR, TyG and adenoma characteristics showed improved performance in predicting CRA recurrence (AUC 0.762, 95% CI 0.718-0.805). CONCLUSIONS Elevated NLR and TyG were associated with an increased risk of CRA recurrence. The integration of NLR and TyG with CRA characteristics significantly enhanced the predictive power for CRA recurrence.
Collapse
Affiliation(s)
- Zhiqiang Li
- Department of Gastroenterology, Beijing Zhongguancun Hospital, Beijing, China
| | - Danyun Zhao
- Department of Gastroenterology, Beijing Zhongguancun Hospital, Beijing, China
| | - Chunyan Zhu
- Department of Gastroenterology, Beijing Zhongguancun Hospital, Beijing, China
| |
Collapse
|
48
|
Yu Z, Cao L, Shen Y, Chen J, Li H, Li C, Yin JY, Li Y, Meng Y, Li X. Inducing Cuproptosis with Copper Ion-Loaded Aloe Emodin Self-Assembled Nanoparticles for Enhanced Tumor Photodynamic Immunotherapy. Adv Healthc Mater 2025; 14:e2404612. [PMID: 39998287 DOI: 10.1002/adhm.202404612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 02/05/2025] [Indexed: 02/26/2025]
Abstract
Immunotherapy has fundamentally transformed the clinical treatment landscape for non-small cell lung cancer (NSCLC). While its effectiveness is ultimately limited by patient heterogeneity and immunosuppressive tumor microenvironment. Photodynamic therapy (PDT), as an emerging antitumor immunotherapy, has shown its unique therapeutic advantages. However, previous studies often overlooked the potential toxicity of photosensitizers (PS), making the discovery of safe and effective PS a pressing clinical need. In this study, Aloe Emodin (AE), a medicinal plant natural compound, was loaded with copper ions (Cu), and self-assembled into nanoparticles (NPs) under the modification of PEG2k-DSPE-FA. NPs can target, accumulate, and reside within tumor sites, responsively releasing copper ions and AE, thus dual-functioning by inducing tumor cell death via cuproptosis and enhancing PDT effects. The LLC tumor-bearing mouse model demonstrated that NPs induce the maturation of dendritic cells (DCs) in vivo, promote lymphocyte infiltration, transform "cold tumors" into "hot tumors" and significantly enhance the efficacy of immune checkpoint blockade (ICB). This study provides experimental evidence of AE as a clinically promising PDT agent and offers a novel perspective for the synergistic treatment of clinical NSCLC.
Collapse
Affiliation(s)
- Zhen Yu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China
| | - Lei Cao
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410008, P. R. China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410008, P. R. China
| | - Yue Shen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China
| | - Jieqi Chen
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China
| | - Huizhen Li
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China
| | - Chengmin Li
- Department of pathology and Institute of Medical Sciences, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China
| | - Ji-Ye Yin
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China
- Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410008, P. R. China
- Engineering Research Center of Applied Technology of Pharmacogenomics, Ministry of Education, 110 Xiangya Road, Changsha, 410008, P. R. China
| | - Yueqin Li
- Institute of Integrative Medicine, Department of Integrated Chinese and Western Medicine, Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Yingcai Meng
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China
| | - Xiangping Li
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, Hunan, 410008, P. R. China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, P. R. China
| |
Collapse
|
49
|
Manini C, Larrinaga G, Angulo JC, López JI. Hot Spots in Urogenital Basic Cancer Research and Clinics. Cancers (Basel) 2025; 17:1173. [PMID: 40227699 PMCID: PMC11987958 DOI: 10.3390/cancers17071173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2025] [Revised: 03/28/2025] [Accepted: 03/29/2025] [Indexed: 04/15/2025] Open
Abstract
Urogenital cancer is very common in the male population of Western countries, a problem of major concern for public health systems, and a frequent test subject for oncological research. In this narrative, we identify the main hot topics for clinics and the basic science of urological cancer in the last few years (from 2021 onwards), considering the information given in the abstracts of almost 300 original articles published in outstanding journals of pathology, urology, and basic science. Once defined, for the top ten list of hot topics (the 2022 WHO update on the classification of urinary and male genital tumors, new entities in kidney cancer, urinary cancer-omics, update on the Gleason grading system, targeted therapies and other novel therapies in renal cancer, news on non-muscle invasive urothelial carcinoma, artificial intelligence in urologic cancer, intratumor heterogeneity influence in therapeutic failures in urologic neoplasms, intratumor microbiome and its influence in urologic tumor aggressiveness, and ecological principles and mathematics applied to urogenital cancer study), each issue is independently reviewed in an attempt to put together the most relevant updates and/or useful features accompanied by selected illustrations. This review article addresses some of the most interesting and current hot spots in urogenital basic cancer research and clinics and is mainly aimed toward clinicians, including pathologists, urologists, and oncologists. Readers are invited to explore each topic for further, more detailed information, in addition to the references provided.
Collapse
Affiliation(s)
- Claudia Manini
- Department of Pathology, San Giovanni Bosco Hospital, ASL Città di Torino, 10154 Turin, Italy;
| | - Gorka Larrinaga
- Department of Nursing, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain;
- Department of Physiology, Faculty of Medicine and Nursing, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Biobizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - Javier C. Angulo
- Clinical Department, Faculty of Medical Sciences, European University of Madrid, 28905 Getafe, Spain;
| | - José I. López
- Biobizkaia Health Research Institute, 48903 Barakaldo, Spain
| |
Collapse
|
50
|
Zhong X, Zhang Z, Gao R, Ren S, Li S, Zhang M, Fang J, Hou Y. Multi-omics pan-cancer analysis reveals the diagnostic and prognostic value of C8orf76, with experimental validation of its impact on lung adenocarcinoma cell proliferation. Front Genet 2025; 16:1524422. [PMID: 40206508 PMCID: PMC11979282 DOI: 10.3389/fgene.2025.1524422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 03/10/2025] [Indexed: 04/11/2025] Open
Abstract
Background Chromosome 8 open reading frame 76 (C8orf76) is a nuclear protein-encoding gene, has received limited attention in current study. Multi-omics pan-cancer analysis focused on the diagnosis, prognosis, immune cell infiltration, methylation, and anti-cancer drug sensitivity remains an enigma. The effect of C8orf76 on lung adenocarcinoma (LUAD) is unknown. Methods Multi-omics pan-cancer analysis by utilizing datasets including UALCAN, TIMER 2.0, Human Protein Atlas (HPA), The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), cBioPortal, Gene Expression Profiling Interactive Analysis (GEPIA), OncoDB, and MethSurv datasets, were conducted to analyze C8orf76 across 33 cancer types. Furthermore, differential R packages were uesd for an in-depth analysis of C8orf76. The correlation between C8orf76 expression and diagnostic, prognosis, genetic alteration, mRNA modification, DNA methylation, lncRNA-miRNA-C8orf76 regulatory network, immune cell infiltration, and anti-tumor drugs response were explored to evaluate the potential roles of C8orf76. Most importantly, experiments including quantitative polymerase chain reaction (qPCR), RNA interference (RNAi), Western blotting (WB), and Edu staining, were performed for experimental verification. Results It was noted that the C8orf76 expression was markedly elevated across multiple tumor types. Moreover, C8orf76 showed potential as a diagnostic and prognostic biomarker. Besides, it was confirmed that the expression of C8orf76 was related to DNA methylation, mRNA modification, and the infiltration of immune cells. The lncRNA-miRNA-C8orf76 network was established in the study of LUAD. Experimental validation in LUAD A549 cells demonstrated that the knockdown of C8orf76 significantly inhibited cell proliferation in LUAD. Conclusion The present study is the first to report that the multi-omics pan-cancer analysis predicts C8orf76 as a promising target in cancer prognosis, diagnosis, immunology, and chemotherapy, highlighting its influence on cell proliferation in LUAD with experimental validation.
Collapse
Affiliation(s)
- Xiaohong Zhong
- Department of Clinical Laboratory, Qilu Hospital of Shandong University Dezhou Hospital (Dezhou People’s Hospital), Dezhou, Shandong, China
| | - Zhiyong Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University Dezhou Hospital (Dezhou People’s Hospital), Dezhou, Shandong, China
| | - Rongjing Gao
- Department of Clinical Laboratory, Qilu Hospital of Shandong University Dezhou Hospital (Dezhou People’s Hospital), Dezhou, Shandong, China
| | - Shiqi Ren
- Department of Clinical Laboratory, Qilu Hospital of Shandong University Dezhou Hospital (Dezhou People’s Hospital), Dezhou, Shandong, China
| | - Shifang Li
- Department of Clinical Laboratory, Qilu Hospital of Shandong University Dezhou Hospital (Dezhou People’s Hospital), Dezhou, Shandong, China
| | - Miao Zhang
- Department of Clinical Laboratory, Qilu Hospital of Shandong University Dezhou Hospital (Dezhou People’s Hospital), Dezhou, Shandong, China
| | - Jie Fang
- Pneumology Department, Qilu Hospital of Shandong University Dezhou Hospital (Dezhou People’s Hospital), Dezhou, Shandong, China
| | - Yanjiao Hou
- Department of Clinical Laboratory, Qilu Hospital of Shandong University Dezhou Hospital (Dezhou People’s Hospital), Dezhou, Shandong, China
| |
Collapse
|