1
|
Chintakindi J, Lahane GP, Dhar A, Mir A. Engineered Ti 3C 2(O,Cl) MXenes with dual functionalization: a new Frontier in targeted head and neck squamous cell carcinoma and breast adenocarcinoma. J Mater Chem B 2025. [PMID: 40375828 DOI: 10.1039/d5tb00302d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/18/2025]
Abstract
Ti3C2Tx MXenes have attracted significant attention in the realm of anticancer therapeutics owing to their remarkable properties, including cyto-compatibility and targeted drug delivery capabilities. In this study, Ti3C2 was intentionally modified with both chlorine and oxygen surface groups, as each of these functional groups have individually demonstrated promising anticancer properties. Our aim was to combine them in a single compound to explore how this dual-functionalized material might perform in a therapeutic context. This study synthesizes Ti3C2(O,Cl) MXenes using a novel electrochemical etching technique that allows for precise tailoring of the surface terminations with O and Cl groups. The synthesised Ti3C2(O,Cl) has biological activity in two cancerous (FaDu and MCF-7) and two normal (H9C2 and HEK-293) cell lines. The results of cytotoxicity data showed that the observed toxic effects were higher against cancerous cells (∼91%) than normal cells (∼40%). The mechanisms of potential toxicity were also elucidated. The synthesized Ti3C2(O,Cl) MXene has an effect on oxidative stress, resulting in an increase of more than 91.44% in reactive oxygen species (ROS) production in malignant cells. The results of this study provide major insights to date into the biological activity of Ti3C2(O,Cl) MXenes and develop their application in anticancer treatments.
Collapse
Affiliation(s)
- Jhansi Chintakindi
- Department of Chemical Engineering, BITS Pilani, Hyderabad Campus, Telangana, India.
| | | | - Arti Dhar
- Department of Pharmacy, BITS Pilani, Hyderabad Campus, Telangana, India.
| | - Afkham Mir
- Department of Chemical Engineering, BITS Pilani, Hyderabad Campus, Telangana, India.
| |
Collapse
|
2
|
Priyadarshi N, Kaushal S, Garg P, Sagar P, Gupta R, Kaur J, Kumar A, Kumar S, Singhal NK. Advances in photothermal therapy for cancer and bacterial cells ablation using various nanomaterials. Adv Colloid Interface Sci 2025; 342:103541. [PMID: 40328073 DOI: 10.1016/j.cis.2025.103541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2024] [Revised: 04/28/2025] [Accepted: 04/29/2025] [Indexed: 05/08/2025]
Abstract
Bacterial pathogens can cause severe infections leading to mortality and morbidity. The current method of treatment for bacteria is the use of multiple antibiotics. Due to the overuse of antibiotics, many bacteria have become antibiotic-resistant. An alternative and effective treatment for bacterial infection is needed, and photothermal therapy (PTT) has emerged as a new solution for treating bacterial infection. Similarly, one of the main challenges in cancer treatment is the overuse of drugs that have multiple side effects. In recent years, there have been significantly more research activities in alternative therapy for pathogenic bacteria and cancer cells. Recently, PTT has also been used to treat various medical conditions like cancer, bacterial infections, or bacterial biofilm. Different kinds of nanomaterials like gold nanoparticles (AuNPs), Graphene Oxide (GO), Carbon nanotubes (CNTs), etc. have been explored for this purpose. In this particular review, we will elaborate on different kinds of nanomaterials (metallic, non-metallic, polymeric) widely used for PTT applications for bacteria and cancer cells. These kinds of nanoparticles have strong absorption in the NIR region and can convert light energy into heat energy, leading to hyperthermia. Further different types of PTT will be elaborated on, along with challenges and future applications. The current review will pave a new way for the therapeutic potential of different nanomaterials for bacterial infection and cancer treatment.
Collapse
Affiliation(s)
- Nitesh Priyadarshi
- National Agri-Food and Biomanufacturing Institute (NABI), Sector-81, S.A.S. Nagar, Mohali, Punjab, India
| | - Shimayali Kaushal
- National Agri-Food and Biomanufacturing Institute (NABI), Sector-81, S.A.S. Nagar, Mohali, Punjab, India
| | - Priyanka Garg
- National Agri-Food and Biomanufacturing Institute (NABI), Sector-81, S.A.S. Nagar, Mohali, Punjab, India
| | - Poonam Sagar
- National Agri-Food and Biomanufacturing Institute (NABI), Sector-81, S.A.S. Nagar, Mohali, Punjab, India
| | - Ritika Gupta
- National Agri-Food and Biomanufacturing Institute (NABI), Sector-81, S.A.S. Nagar, Mohali, Punjab, India
| | - Jaspreet Kaur
- National Agri-Food and Biomanufacturing Institute (NABI), Sector-81, S.A.S. Nagar, Mohali, Punjab, India
| | - Aman Kumar
- Department of Physics, Punjab Engineering College (Deemed to be University), Chandigarh 160012, India
| | - Sandeep Kumar
- Department of Physics, Punjab Engineering College (Deemed to be University), Chandigarh 160012, India
| | - Nitin Kumar Singhal
- National Agri-Food and Biomanufacturing Institute (NABI), Sector-81, S.A.S. Nagar, Mohali, Punjab, India.
| |
Collapse
|
3
|
Zhu X, Bi C, Cao W, Li S, Yuan C, Xu P, Wang D, Chen Q, Zhang L. A self-assembled copper-artemisinin nanoprodrug as an efficient reactive oxygen species amplified cascade system for cancer treatment. J Mater Chem B 2024; 12:8902-8910. [PMID: 39206758 DOI: 10.1039/d4tb01237b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Chemodynamic therapy (CDT) is a tumor-specific intervention methodology, which is based on the upregulation of reactive oxygen species (ROS) content by triggering the Fenton or Fenton-like reaction within the tumor microenvironment (TME). However, there are still challenges in achieving high-efficiency CDT on account of both the limited intracellular hydrogen peroxide (H2O2) and delivery efficiency of Fenton metal ions. Copper-based nanotherapeutic systems have attracted extensive attention and have been widely applied in the construction of nanotherapeutic systems and multimodal synergistic therapy. Herein, we propose a strategy to synergize chemotherapy drugs that upregulate intracellular ROS content with chemodynamic therapy and construct an artemisinin-copper nanoprodrug for proof-of-concept. With the proposed biomimetic self-assembly strategy, we successfully construct an injectable nanoprodrug with suitable size distribution and high drug loading content (68.1 wt%) through the self-assembly of amphiphilic artemisinin prodrug and copper ions. After reaching the TME, both Cu2+ ions and free AH drugs can be released from AHCu nanoprodrugs. Subsequently, the disassembled Cu2+ ions are converted into Cu+ ions by consuming the intracellular GSH. The generated Cu+ ions serve as a highly efficient Fenton-like reagent for robust ROS generation from both AH and tumor-over-produced H2O2. Results show that the nanoprodrug can realize the cascade amplification of ROS generation via artemisinin delivery and subsequent in situ Fenton-like reaction and a high tumor inhibition rate of 62.48% in vivo. This work provides a promising strategy for the design and development of an efficient nanoprodrug for tumor-specific treatment.
Collapse
Affiliation(s)
- Xueyu Zhu
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China.
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
- Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparations and Clinical Pharmacy, Hefei, 230001, China
| | - Chenyang Bi
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Materials Science & Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, CAS High Magnetic Field Laboratory, University of Science and Technology of China, Hefei, 230026, China
| | - Wei Cao
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China.
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
- Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparations and Clinical Pharmacy, Hefei, 230001, China
| | - Shuangshuang Li
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China.
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
- Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparations and Clinical Pharmacy, Hefei, 230001, China
| | - Chuting Yuan
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Materials Science & Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, CAS High Magnetic Field Laboratory, University of Science and Technology of China, Hefei, 230026, China
| | - Pengping Xu
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Materials Science & Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, CAS High Magnetic Field Laboratory, University of Science and Technology of China, Hefei, 230026, China
| | - Dongdong Wang
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Materials Science & Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, CAS High Magnetic Field Laboratory, University of Science and Technology of China, Hefei, 230026, China
| | - Qianwang Chen
- Hefei National Laboratory for Physical Sciences at Microscale, Department of Materials Science & Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, CAS High Magnetic Field Laboratory, University of Science and Technology of China, Hefei, 230026, China
| | - Lei Zhang
- Institute of Clinical Pharmacology, Anhui Medical University, Hefei, 230032, China.
- Department of Pharmacy, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China.
- Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparations and Clinical Pharmacy, Hefei, 230001, China
| |
Collapse
|
4
|
Pektas H, Demidov Y, Ahvan A, Abie N, Georgieva VS, Chen S, Farè S, Brachvogel B, Mathur S, Maleki H. MXene-Integrated Silk Fibroin-Based Self-Assembly-Driven 3D-Printed Theragenerative Scaffolds for Remotely Photothermal Anti-Osteosarcoma Ablation and Bone Regeneration. ACS MATERIALS AU 2023; 3:711-726. [PMID: 38089660 PMCID: PMC10636780 DOI: 10.1021/acsmaterialsau.3c00040] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Revised: 08/20/2023] [Accepted: 08/29/2023] [Indexed: 12/30/2023]
Abstract
Aiming to address the bone regeneration and cancer therapy functionalities in one single material, in this study, we developed a dual-functional theragenerative three-dimensional (3D) aerogel-based composite scaffold from hybridization of photo-cross-linked silk fibroin (SF) biopolymer with MXene (Ti3C2) two-dimensional (2D) nanosheets. To fabricate the scaffold, we first develop a dual-cross-linked SF-based aerogel scaffold through 3D printing and photo-cross-linking of the self-assembly-driven methacrylate-modified SF (SF-MA) gel with controlled pore size, macroscopic geometry, and mechanical stability. In the next step, to endow a remotely controlled photothermal antiosteosarcoma ablation function to fabricated aerogel scaffold, MXene 2D nanosheets with strong near-infrared (NIR) photon absorption properties were integrated into the 3D-printed scaffolds. While 3D-printed MXene-modified dual-cross-linked SF composite scaffolds can mediate the in vitro growth and proliferation of preosteoblastic cell lines, they also endow a strong photothermal effect upon remote irradiation with NIR laser but also significantly stimulate bone mineral deposition on the scaffold surface. Additionally, besides the local release of the anticancer model drug, the generated heat (45-53 °C) mediated the photothermal ablation of cancer cells. The developed aerogel-based composites and chosen therapeutic techniques are thought to render a significant breakthrough in biomaterials' future clinical applications.
Collapse
Affiliation(s)
- Hadice
Kübra Pektas
- Department
of Chemistry, Institute of Inorganic Chemistry, University of Cologne, Cologne 50939, Germany
| | - Yan. Demidov
- Department
of Chemistry, Institute of Inorganic Chemistry, University of Cologne, Cologne 50939, Germany
| | - Aslin Ahvan
- Department
of Chemistry, Institute of Inorganic Chemistry, University of Cologne, Cologne 50939, Germany
| | - Nahal Abie
- Department
of Chemistry, Institute of Inorganic Chemistry, University of Cologne, Cologne 50939, Germany
- Department
of Chemistry, Materials and Chemical Engineering, Politecnico di Milano, Milano 20054, Italy
| | - Veronika S. Georgieva
- Experimental
Neonatology, Department of Pediatrics and Adolescent Medicine, University of Cologne, Cologne 50939, Germany
- Center
for Biochemistry, Medical Faculty, University
of Cologne, Cologne 50923, Germany
| | - Shiyi Chen
- Department
of Chemistry, Institute of Inorganic Chemistry, University of Cologne, Cologne 50939, Germany
| | - Silvia Farè
- Department
of Chemistry, Materials and Chemical Engineering, Politecnico di Milano, Milano 20054, Italy
| | - Bent Brachvogel
- Experimental
Neonatology, Department of Pediatrics and Adolescent Medicine, University of Cologne, Cologne 50939, Germany
- Center
for Biochemistry, Medical Faculty, University
of Cologne, Cologne 50923, Germany
| | - Sanjay Mathur
- Department
of Chemistry, Institute of Inorganic Chemistry, University of Cologne, Cologne 50939, Germany
| | - Hajar Maleki
- Department
of Chemistry, Institute of Inorganic Chemistry, University of Cologne, Cologne 50939, Germany
- Center
for Molecular Medicine Cologne, CMMC Research Center, Robert-Koch-Str. 21, Cologne 50931, Germany
| |
Collapse
|
5
|
Sun L, Liu H, Ye Y, Lei Y, Islam R, Tan S, Tong R, Miao YB, Cai L. Smart nanoparticles for cancer therapy. Signal Transduct Target Ther 2023; 8:418. [PMID: 37919282 PMCID: PMC10622502 DOI: 10.1038/s41392-023-01642-x] [Citation(s) in RCA: 245] [Impact Index Per Article: 122.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/24/2023] [Accepted: 09/05/2023] [Indexed: 11/04/2023] Open
Abstract
Smart nanoparticles, which can respond to biological cues or be guided by them, are emerging as a promising drug delivery platform for precise cancer treatment. The field of oncology, nanotechnology, and biomedicine has witnessed rapid progress, leading to innovative developments in smart nanoparticles for safer and more effective cancer therapy. In this review, we will highlight recent advancements in smart nanoparticles, including polymeric nanoparticles, dendrimers, micelles, liposomes, protein nanoparticles, cell membrane nanoparticles, mesoporous silica nanoparticles, gold nanoparticles, iron oxide nanoparticles, quantum dots, carbon nanotubes, black phosphorus, MOF nanoparticles, and others. We will focus on their classification, structures, synthesis, and intelligent features. These smart nanoparticles possess the ability to respond to various external and internal stimuli, such as enzymes, pH, temperature, optics, and magnetism, making them intelligent systems. Additionally, this review will explore the latest studies on tumor targeting by functionalizing the surfaces of smart nanoparticles with tumor-specific ligands like antibodies, peptides, transferrin, and folic acid. We will also summarize different types of drug delivery options, including small molecules, peptides, proteins, nucleic acids, and even living cells, for their potential use in cancer therapy. While the potential of smart nanoparticles is promising, we will also acknowledge the challenges and clinical prospects associated with their use. Finally, we will propose a blueprint that involves the use of artificial intelligence-powered nanoparticles in cancer treatment applications. By harnessing the potential of smart nanoparticles, this review aims to usher in a new era of precise and personalized cancer therapy, providing patients with individualized treatment options.
Collapse
Affiliation(s)
- Leming Sun
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Hongmei Liu
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yanqi Ye
- Sorrento Therapeutics Inc., 4955 Directors Place, San Diego, CA, 92121, USA
| | - Yang Lei
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Rehmat Islam
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Sumin Tan
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Rongsheng Tong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yang-Bao Miao
- Department of Haematology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Lulu Cai
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
6
|
Al-Jawuschi N, Chen S, Abie N, Fischer T, Fare S, Maleki HH. Self-Assembly-Driven Bi 2S 3 Nanobelts Integrated a Silk-Fibroin-Based 3D-Printed Aerogel-Based Scaffold with a Dual-Network Structure for Photothermal Bone Cancer Therapy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2023; 39:4326-4337. [PMID: 36930783 DOI: 10.1021/acs.langmuir.2c03334] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Multifunctional all-in-one biomaterial combining the therapeutic and regeneration functionalities for successive tumor therapy and tissue regeneration is in high demand in interdisciplinary research. In this study, a three-dimensional (3D) aerogel-based composite scaffold with a dual-network structure generated through self-assembly and photo-cross-linking with combined properties of photothermally triggered controlled anticancer drug release and photothermal cancer cell ablation was successfully fabricated. The fabrication of composites consists of self-assembly of a silk fibroin methacrylate (SF-MA) biopolymer incorporated with hydrothermally driven bismuth sulfide (Bi2S3) methacrylate nanobelts, followed by a photo-cross-linking-assisted 3D-printing process. The developed scaffolds presented hierarchically organized porosity and excellent photothermal conversion thanks to the strong near-infrared (NIR) photon absorption of incorporated Bi2S3 nanobelts inside the scaffold matrix. The heat generated in the scaffold mediated by laser irradiation has not only triggered controlled and prolonged release of the anticancer drug but also significantly ablated the bone cancer cells adhered on the scaffold. In addition, the developed 3D composite scaffolds have demonstrated excellent biodegradability for organic and inorganic network constituents at different media, enabling them as potential implants to be replaced by de novo tissue. In combination of chemotherapy and photothermal therapy, the multifunctional 3D-printed composite aerogel scaffold is expected to be an excellent implantable material in bone tissue engineering (BTE) for successive cancer therapy and tissue regeneration.
Collapse
Affiliation(s)
- Noor Al-Jawuschi
- Department of Chemistry, Institute of Inorganic Chemistry, University of Cologne, 50939 Cologne, Germany
| | - Shiyi Chen
- Department of Chemistry, Institute of Inorganic Chemistry, University of Cologne, 50939 Cologne, Germany
| | - Nahal Abie
- Department of Chemistry, Institute of Inorganic Chemistry, University of Cologne, 50939 Cologne, Germany
- Department of Chemistry, Materials and Chemical Engineering, Politecnico di Milano, 20133 Milano, Italy
| | - Thomas Fischer
- Department of Chemistry, Institute of Inorganic Chemistry, University of Cologne, 50939 Cologne, Germany
| | - Silvia Fare
- Department of Chemistry, Materials and Chemical Engineering, Politecnico di Milano, 20133 Milano, Italy
| | - Hajar Homa Maleki
- Department of Chemistry, Institute of Inorganic Chemistry, University of Cologne, 50939 Cologne, Germany
- Center for Molecular Medicine Cologne (CMMC), Robert-Koch-Straße 21, 50931 Cologne, Germany
| |
Collapse
|
7
|
Pretto T, Franca M, Zani V, Gross S, Pedron D, Pilot R, Signorini R. A Sol-Gel/Solvothermal Synthetic Approach to Titania Nanoparticles for Raman Thermometry. SENSORS (BASEL, SWITZERLAND) 2023; 23:2596. [PMID: 36904800 PMCID: PMC10007076 DOI: 10.3390/s23052596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 02/15/2023] [Accepted: 02/19/2023] [Indexed: 06/18/2023]
Abstract
The accurate determination of the local temperature is one of the most important challenges in the field of nanotechnology and nanomedicine. For this purpose, different techniques and materials have been extensively studied in order to identify both the best-performing materials and the techniques with greatest sensitivity. In this study, the Raman technique was exploited for the determination of the local temperature as a non-contact technique and titania nanoparticles (NPs) were tested as nanothermometer Raman active material. Biocompatible titania NPs were synthesized following a combination of sol-gel and solvothermal green synthesis approaches, with the aim of obtaining pure anatase samples. In particular, the optimization of three different synthesis protocols allowed materials to be obtained with well-defined crystallite dimensions and good control over the final morphology and dispersibility. TiO2 powders were characterized by X-ray diffraction (XRD) analyses and room-temperature Raman measurements, to confirm that the synthesized samples were single-phase anatase titania, and using SEM measurements, which clearly showed the nanometric dimension of the NPs. Stokes and anti-Stokes Raman measurements were collected, with the excitation laser at 514.5 nm (CW Ar/Kr ion laser), in the temperature range of 293-323 K, a range of interest for biological applications. The power of the laser was carefully chosen in order to avoid possible heating due to the laser irradiation. The data support the possibility of evaluating the local temperature and show that TiO2 NPs possess high sensitivity and low uncertainty in the range of a few degrees as a Raman nanothermometer material.
Collapse
Affiliation(s)
- Thomas Pretto
- Department of Chemical Science, University of Padova, Via Marzolo 1, I-35131 Padova, Italy
| | - Marina Franca
- Department of Chemical Science, University of Padova, Via Marzolo 1, I-35131 Padova, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti 9, I-50121 Firenze, Italy
| | - Veronica Zani
- Department of Chemical Science, University of Padova, Via Marzolo 1, I-35131 Padova, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti 9, I-50121 Firenze, Italy
| | - Silvia Gross
- Department of Chemical Science, University of Padova, Via Marzolo 1, I-35131 Padova, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti 9, I-50121 Firenze, Italy
- Institute for Chemical Technology and Polymer Chemistry (ITCP), Karlsruhe Institute of Technology (KIT), 76131 Karlsruhe, Germany
| | - Danilo Pedron
- Department of Chemical Science, University of Padova, Via Marzolo 1, I-35131 Padova, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti 9, I-50121 Firenze, Italy
| | - Roberto Pilot
- Department of Chemical Science, University of Padova, Via Marzolo 1, I-35131 Padova, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti 9, I-50121 Firenze, Italy
| | - Raffaella Signorini
- Department of Chemical Science, University of Padova, Via Marzolo 1, I-35131 Padova, Italy
- Consorzio Interuniversitario Nazionale per la Scienza e Tecnologia dei Materiali (INSTM), Via G. Giusti 9, I-50121 Firenze, Italy
| |
Collapse
|
8
|
Kalyane D, Polaka S, Vasdev N, Tekade RK. CD44-Receptor Targeted Gold-Doxorubicin Nanocomposite for Pulsatile Chemo-Photothermal Therapy of Triple-Negative Breast Cancer Cells. Pharmaceutics 2022; 14:pharmaceutics14122734. [PMID: 36559228 PMCID: PMC9787590 DOI: 10.3390/pharmaceutics14122734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 11/25/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
This study reports the CD44 receptor-targeted gold-doxorubicin nanocomposite (TGNC-DOX) for pulsatile chemo-photothermal therapy of triple-negative breast cancer (TNBC). The developed TGNC-DOX was nanometric, having a particle size of 71.34 ± 3.66 nm. The doxorubicin was loaded by electrostatic interaction with high entrapment and loading efficiency (>75%). TGNC-DOX showed potent photothermal response and reversible photothermal stability following irradiation with 808 nm NIR laser irradiation. Further, TGNC-DOX showed laser-responsive and pH-dependent drug release behavior suggesting its suitability for chemo-photothermal therapy, specifically at the tumor microenvironment site. Cellular viability, cellular uptake, ROS generation, and apoptosis assays suggested selective localization of TGNC-DOX in cancer cells that showed a significant cytotoxic effect against MDA-MB-231 breast cancer cells. Moreover, the developed TGNC-DOX showed ferroptosis in MDA-MB-231 cells. The event of TGNC-DOX-mediated thermal ablation is marked by a significant generation of reactive oxygen species (ROS) and apoptosis, as affirmed by flow cytometry. NIR-808 laser-responsive photothermal therapy of cancer cells was found to be more effective than without NIR-808 laser-treated cells, suggesting the fundamental role of photothermal ablation. The outcome concludes developed TGNC-DOX is a novel and potential tool to mediate laser-guided chemo-photothermal ablation treatment of cancer cells.
Collapse
|
9
|
Chen Z, Lu S, Zhang Z, Huang X, Zhao H, Wei J, Li F, Yuan K, Su L, Xiong Y. Green photoreduction synthesis of dispersible gold nanoparticles and their direct in situ assembling in multidimensional substrates for SERS detection. Mikrochim Acta 2022; 189:275. [PMID: 35829782 DOI: 10.1007/s00604-022-05379-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Accepted: 06/26/2022] [Indexed: 11/26/2022]
Abstract
Gold nanoparticles (AuNPs) and their composites have been applied in surface-enhanced Raman scattering (SERS) detection methods, owing to their stable and excellent surface plasmon resonance. Unfortunately, methods for synthesizing AuNPs often require harsh conditions and complicated external steps. Additionally, removing residual surfactants or unreacted reductants is critical for improving the sensitivity of SERS detection, especially when employing AuNPs-assembled multidimensional substrates. In this study, we propose a simple and green method for AuNPs synthesis via photoreduction, which does not require external surfactant additives or stabilizers. All the processes were completed within 20 min. Along this way, only methanol was employed as the electron acceptor. Based on this photoreduction synthesis strategy, AuNPs can be directly and circularly assembled in situ in multidimensional substrates for SERS detection. The removal of residual methanol was easy because of its low boiling point. This strategy was employed for the preparation of three different dimensional SERS substrates: filter paper@AuNPs, g-C3N4@AuNPs, and MIL-101(Cr)@AuNPs. The limit of detection of filter paper@AuNPs for thiabendazole SERS detection was 1.0 × 10-7 mol/L, while the limits of detection of g-C3N4@AuNPs and MIL-101(Cr)@AuNPs for malachite green SERS detection were both 5.0 × 10-11 mol/L. This strategy presents potential in AuNP doping materials and SERS detection.
Collapse
Affiliation(s)
- Zhengyi Chen
- Pharmacy School, Guilin Medical University, Guilin, 541004, People's Republic of China.
| | - Shengyong Lu
- College of Food and Bioengineering, Hezhou University, Hezhou, 542899, People's Republic of China
| | - Zhi Zhang
- College of Food and Bioengineering, Hezhou University, Hezhou, 542899, People's Republic of China
| | - Xuemei Huang
- Pharmacy School, Guilin Medical University, Guilin, 541004, People's Republic of China
| | - Hao Zhao
- Pharmacy School, Guilin Medical University, Guilin, 541004, People's Republic of China
| | - Jiaxin Wei
- Pharmacy School, Guilin Medical University, Guilin, 541004, People's Republic of China
| | - Fengling Li
- Pharmacy School, Guilin Medical University, Guilin, 541004, People's Republic of China
| | - Kunting Yuan
- Capital Construction Department, Guilin Medical University, Guilin, 541004, People's Republic of China
| | - Linjing Su
- College of Food and Bioengineering, Hezhou University, Hezhou, 542899, People's Republic of China.
| | - Yuhao Xiong
- College of Food and Bioengineering, Hezhou University, Hezhou, 542899, People's Republic of China.
| |
Collapse
|
10
|
Kumar N, Chamoli P, Misra M, Manoj MK, Sharma A. Advanced metal and carbon nanostructures for medical, drug delivery and bio-imaging applications. NANOSCALE 2022; 14:3987-4017. [PMID: 35244647 DOI: 10.1039/d1nr07643d] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Nanoparticles (NPs) offer great promise for biomedical, environmental, and clinical applications due to their several unique properties as compared to their bulk counterparts. In this review article, we overview various types of metal NPs and magnetic nanoparticles (MNPs) in monolithic form as well as embedded into polymer matrices for specific drug delivery and bio-imaging fields. The second part of this review covers important carbon nanostructures that have gained tremendous attention recently in such medical applications due to their ease of fabrication, excellent biocompatibility, and biodegradability at both cellular and molecular levels for phototherapy, radio-therapeutics, gene-delivery, and biotherapeutics. Furthermore, various applications and challenges involved in the use of NPs as biomaterials are also discussed following the future perspectives of the use of NPs in biomedicine. This review aims to contribute to the applications of different NPs in medicine and healthcare that may open up new avenues to encourage wider research opportunities across various disciplines.
Collapse
Affiliation(s)
- Neeraj Kumar
- Department of Metallurgical Engineering, SOE, O.P. Jindal University, Raigarh 496109, India
- Department of Metallurgical and Materials Engineering, NIT Raipur, Raipur, 492010, India
| | - Pankaj Chamoli
- School of Basic & Applied Sciences, Department of Physics, Shri Guru Ram Rai University, Dehradun-248001, Uttarakhand, India
| | - Mrinmoy Misra
- Department of Mechatronics, School of Automobile, Mechanical and Mechatronics, Manipal University Jaipur, 303007 Rajasthan, India
| | - M K Manoj
- Department of Metallurgical and Materials Engineering, NIT Raipur, Raipur, 492010, India
| | - Ashutosh Sharma
- Department of Materials Science and Engineering, Ajou University, Suwon-16499, South Korea.
| |
Collapse
|
11
|
Cao T, Tong W, Feng F, Zhang S, Li Y, Liang S, Wang X, Chen Z, Zhang Y. H 2O 2 generation enhancement by ultrasonic nebulisation with a zinc layer for spray disinfection. CHEMICAL ENGINEERING JOURNAL (LAUSANNE, SWITZERLAND : 1996) 2022. [PMID: 34899039 DOI: 10.1016/j.cej.2022.134886] [Citation(s) in RCA: 84] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
With the outbreak of COVID-19, microbial pollution has gained increasing attention as a threat to human health. Consequently, many research efforts are being devoted to the development of efficient disinfection methods. In this context, hydrogen peroxide (H2O2) stands out as a green and broad-spectrum disinfectant, which can be produced and sprayed in the air directly by cavitation in ultrasonic nebulisation. However, the yield of H2O2 obtained by ultrasonic nebulisation is too low to satisfy the requirements for disinfection by spraying and needs to be improved to achieve efficient disinfection of the air and objects. Herein, we report the introduction of a zinc layer into an ultrasonic nebuliser to improve the production of H2O2 and generate additional Zn2+ by self-corrosion, achieving good disinfecting performance. Specifically, a zinc layer was assembled on the oscillator plate of a commercial ultrasonic nebuliser, resulting in a 21-fold increase in the yield of H2O2 and the production of 4.75 μg/mL Zn2+ in the spraying droplets. When the generated water mist was used to treat a bottle polluted with Escherichia coli for 30 min, the sterilisation rate reached 93.53%. This ultrasonic nebulisation using a functional zinc layer successfully enhanced the production of H2O2 while generating Zn2+, providing a platform for the development of new methodologies of spray disinfection.
Collapse
Affiliation(s)
- Tingting Cao
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Wangshu Tong
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Feng Feng
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Shuting Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Yanan Li
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Shaojie Liang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Xin Wang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Zhensheng Chen
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| | - Yihe Zhang
- Beijing Key Laboratory of Materials Utilization of Nonmetallic Minerals and Solid Wastes National Laboratory of Mineral Materials, School of Materials Science and Technology, China University of Geosciences, Beijing 100083, China
| |
Collapse
|
12
|
Tian T, Ruan J, Zhang J, Zhao CX, Chen D, Shan J. Nanocarrier-Based Tumor-Targeting Drug Delivery Systems for Hepatocellular Carcinoma Treatments: Enhanced Therapeutic Efficacy and Reduced Drug Toxicity. J Biomed Nanotechnol 2022; 18:660-676. [PMID: 35715919 DOI: 10.1166/jbn.2022.3297] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Hepatocellular carcinoma (HCC), due to the lack of efficient diagnostic methods and short of available treatments, becomes the third main cause of cancer deaths. Novel treatments for HCCs are thus in great need. The fast-growing area of drug delivery provides intriguing possibility to design nanocarriers with unique properties. The nanocarriers performanced as drug deliver vehicles enable the design of diverse drug delivery systems, which could serve multiple purposes, including improved bioavailability, controlled or triggered release and targeted delivery, leading to enhanced drug efficacy and lowered drug toxicity. This paper provides an overview on the types of delivery vehicles, functions of drug nanocarriers and types of ligand-based targeting systems and highlights the advances made towards better HCC treatments.
Collapse
Affiliation(s)
- Tian Tian
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, People's Republic of China
| | - Jian Ruan
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, People's Republic of China
| | - Jia Zhang
- College of Energy Engineering and State Key Laboratory of Fluid Power and Mechatronic Systems, Zhejiang University, Hangzhou 310027, Zhejiang Province, People's Republic of China
| | - Chun-Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Dong Chen
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, People's Republic of China
| | - Jianzhen Shan
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310003, Zhejiang Province, People's Republic of China
| |
Collapse
|
13
|
Zheng C, Liu X, Kong Y, Zhang L, Song Q, Zhao H, Han L, Jiao J, Feng Q, Wang L. Hyperthermia based individual in situ recombinant vaccine enhances lymph nodes drainage for de novo antitumor immunity. Acta Pharm Sin B 2022; 12:3398-3409. [PMID: 35967281 PMCID: PMC9366229 DOI: 10.1016/j.apsb.2022.02.026] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Revised: 01/10/2022] [Accepted: 02/12/2022] [Indexed: 12/20/2022] Open
Abstract
The continuing challenges that limit effectiveness of tumor therapeutic vaccines were high heterogeneity of tumor immunogenicity, low bioactivity of antigens, as well as insufficient lymph nodes (LNs) drainage of antigens and adjuvants. Transportation of in situ neoantigens and adjuvants to LNs may be an effective approach to solve the abovementioned problems. Therefore, an FA-TSL/AuNCs/SV nanoplatform was constructed by integrating simvastatin (SV) adjuvant loaded Au nanocages (AuNCs) as cores (AuNCs/SV) and folic acid modified thermal-sensitive liposomes (FA-TSL) as shells to enhance de novo antitumor immunity. After accumulation in tumor guided by FA, AuNCs mediated photothermal therapy (PTT) induced the release of tumor-derived protein antigens (TDPAs) and the shedding of FA-TSL. Exposed AuNCs/SV soon captured TDPAs to form in situ recombinant vaccine (AuNCs/SV/TDPAs). Subsequently, AuNCs/SV/TDPAs could efficiently transport to draining LNs owing to the hyperthermia induced vasodilation effect and small particle size, achieving co-delivery of antigens and adjuvant for initiation of specific T cell response. In melanoma bearing mice, FA-TSL/AuNCs/SV and laser irradiation effectively ablated primary tumor, against metastatic tumors and induced immunological memory. This approach served a hyperthermia enhanced platform drainage to enable robust personalized cancer vaccination.
Collapse
|
14
|
Wang R, Zhou G, Yang Y, Wang S, Gao S, Gao D, Wang X. Prostate-Specific Membrane Antigen-1-Mediated Au@SiO₂@Au Core-Shell Nanoparticles: Targeting Prostate Cancer to Enhance Photothermal Therapy and Fluorescence Imaging. J Biomed Nanotechnol 2022; 18:158-165. [PMID: 35180908 DOI: 10.1166/jbn.2022.3229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The advantages of deep tissue penetration and the high spatial accuracy of photothermal therapy have been widely studied. Gold, as a photothermal material, has received particular attention. Different sizes and shapes of gold have been studied and characterized for their varying photothermal properties. The core-shell structure of gold nanoparticles and silica enhances the photothermal conversion through the coupling effect between gold clusters on the material's surface. With excellent photothermal conversion performance, the core-shell nanoparticles can quickly reach 40 °C in 200 s under the irradiation of 808 nm, 1.5 W·cm-2. The highest conversion temperature of these nanoparticles is 56 °C, and the photothermal conversion rate is 45%. In vitro cell experiments displayed that NPs with targeted function can efficiently aggregate in prostate cancer cells and effectively kill cells. In vitro experiments showed that the tumor cells of mice after photothermal treatment completely disappeared after 15 days, which fully demonstrated the potential of the nanoparticles for targeted photothermal therapy.
Collapse
Affiliation(s)
- Ruizhi Wang
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Guofeng Zhou
- Shanghai Institute of Medical Imaging, Shanghai, 200032, PR China
| | - Yuchan Yang
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, 201203, PR China
| | - Shiqing Wang
- Department of Radiology, Huadong Hospital, Fudan University, Shanghai, 200040, PR China
| | - Shanshan Gao
- Shanghai Institute of Medical Imaging, Shanghai, 200032, PR China
| | - Dongmei Gao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| | - Xiaolin Wang
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, PR China
| |
Collapse
|
15
|
Manivasagan P, Joe A, Han HW, Thambi T, Selvaraj M, Chidambaram K, Kim J, Jang ES. Recent advances in multifunctional nanomaterials for photothermal-enhanced Fenton-based chemodynamic tumor therapy. Mater Today Bio 2022; 13:100197. [PMID: 35036895 PMCID: PMC8753377 DOI: 10.1016/j.mtbio.2021.100197] [Citation(s) in RCA: 46] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 12/27/2021] [Accepted: 12/28/2021] [Indexed: 12/13/2022] Open
Abstract
Photothermal (PT)-enhanced Fenton-based chemodynamic therapy (CDT) has attracted a significant amount of research attention over the last five years as a highly effective, safe, and tumor-specific nanomedicine-based therapy. CDT is a new emerging nanocatalyst-based therapeutic strategy for the in situ treatment of tumors via the Fenton reaction or Fenton-like reaction, which has got fast progress in recent years because of its high specificity and activation by endogenous substances. A variety of multifunctional nanomaterials such as metal-, metal oxide-, and metal-sulfide-based nanocatalysts have been designed and constructed to trigger the in situ Fenton or Fenton-like reaction within the tumor microenvironment (TME) to generate highly cytotoxic hydroxyl radicals (•OH), which is highly efficient for the killing of tumor cells. However, research is still required to enhance the curative outcomes and minimize its side effects. Specifically, the therapeutic efficiency of certain CDTs is still hindered by the TME, including low levels of endogenous hydrogen peroxide (H2O2), overexpression of reduced glutathione (GSH), and low catalytic efficacy of Fenton or Fenton-like reactions (pH 5.6-6.8), which makes it difficult to completely cure cancer using monotherapy. For this reason, photothermal therapy (PTT) has been utilized in combination with CDT to enhance therapeutic efficacy. More interestingly, tumor heating during PTT not only causes damage to the tumor cells but can also accelerate the generation of •OH via the Fenton and Fenton-like reactions, thus enhancing the CDT efficacy, providing more effective cancer treatment when compared with monotherapy. Currently, synergistic PT-enhanced CDT using multifunctional nanomaterials with both PT and chemodynamic properties has made enormous progress in cancer theranostics. However, there has been no comprehensive review on this subject published to date. In this review, we first summarize the recent progress in PT-enhanced Fenton-based CDT for cancer treatment. We then discuss the potential and challenges in the future development of PT-enhanced Fenton-based nanocatalytic tumor therapy for clinical application.
Collapse
Affiliation(s)
- Panchanathan Manivasagan
- Department of Chemical and Biological Engineering and R&E Center for Chemical and Biological Engineering (BK21 FOUR), Korea University, Seoul, 02841, Republic of Korea
- Department of Applied Chemistry, Kumoh National Institute of Technology, Daehak-ro 61, Gumi, Gyeongbuk, 39177, Republic of Korea
| | - Ara Joe
- Department of Applied Chemistry, Kumoh National Institute of Technology, Daehak-ro 61, Gumi, Gyeongbuk, 39177, Republic of Korea
| | - Hyo-Won Han
- Department of Applied Chemistry, Kumoh National Institute of Technology, Daehak-ro 61, Gumi, Gyeongbuk, 39177, Republic of Korea
| | - Thavasyappan Thambi
- School of Chemical Engineering, Theranostic Macromolecules Research Center, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Manickam Selvaraj
- Department of Chemistry, Faculty of Science, King Khalid University, Abha, 61413, Saudi Arabia
| | - Kumarappan Chidambaram
- Department of Pharmacology & Toxicology, School of Pharmacy, King Khalid University, Abha, 62529, Saudi Arabia
| | - Jungbae Kim
- Department of Chemical and Biological Engineering and R&E Center for Chemical and Biological Engineering (BK21 FOUR), Korea University, Seoul, 02841, Republic of Korea
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Eue-Soon Jang
- Department of Applied Chemistry, Kumoh National Institute of Technology, Daehak-ro 61, Gumi, Gyeongbuk, 39177, Republic of Korea
| |
Collapse
|
16
|
Nanomaterials-based hyperthermia: A literature review from concept to applications in chemistry and biomedicine. J Therm Biol 2022; 104:103201. [DOI: 10.1016/j.jtherbio.2022.103201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 01/22/2022] [Accepted: 01/24/2022] [Indexed: 10/19/2022]
|
17
|
Wang S, Liu X, Wang S, Ouyang L, Li H, Ding J, Deng G, Zhou W. Imatinib co-loaded targeted realgar nanocrystal for synergistic therapy of chronic myeloid leukemia. J Control Release 2021; 338:190-200. [PMID: 34428479 DOI: 10.1016/j.jconrel.2021.08.035] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 08/18/2021] [Accepted: 08/19/2021] [Indexed: 11/26/2022]
Abstract
Discovery of BCR-ABL1 tyrosine kinase inhibitors (TKIs) has revolutionized the therapy of chronic myeloid leukemia (CML), a malignant myeloproliferative disease characterized by abnormal activation of BCR-ABL fusion oncoprotein with protein tyrosine kinase (PTK) activity. However, the long-term treatment outcomes with TKIs are strongly limited by multiple drug resistances, resulting in relapse albeit with initial high response rate. Here, we reported a realgar (As4S4) nanocrystal-based delivery system to reverse drug resistance for synergistic CML therapy. While As4S4 is extremely insoluble in water, bovine serum albumin (BSA) was rationally screened to effectively stabilize As4S4 nanocrystal with uniformed size of ~40 nm. Imatinib (IMA), a representative TKIs, can be readily loaded into the hydrophobic domain of BSA to develop As4S4/IMA co-delivery system. Mechanistically, IMA inhibits PTK activity, while As4S4 degrades BCR-ABL1, which co-contribute to tumor suppression via complementary pathways for synergistic effect. Moreover, the nanosystem was modified with folic acid (FA) to enable tumor targetability, which has been demonstrated both in vitro and in vivo, resulting in robust tumor growth inhibition and significantly prolonged mice survival without any noticeable adverse effects. This work designed a synergistic nanoplatform for targeted CML therapy, provided a strategy to address the key limitation of As4S4 for biomedical applications, and highlighted the advantages of the combination between traditional Chinese and western medicine for diseases treatment.
Collapse
Affiliation(s)
- Shengmei Wang
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, China
| | - Xuanjun Liu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Shengfeng Wang
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, China; Department of Pharmacy, The Third Xiangya Hospital, Central South University, Changsha, Hunan 410013, China
| | - Linqi Ouyang
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, China
| | - Hui Li
- Hunan Traditional Chinese Medical College, Zhuzhou, Hunan 412008, China
| | - Jinsong Ding
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China
| | - Guiming Deng
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, China
| | - Wenhu Zhou
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan 410007, China; Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, Hunan 410013, China.
| |
Collapse
|
18
|
Sun T, Zhang G, Ning T, Chen Q, Chu Y, Luo Y, You H, Su B, Li C, Guo Q, Jiang C. A Versatile Theranostic Platform for Colorectal Cancer Peritoneal Metastases: Real-Time Tumor-Tracking and Photothermal-Enhanced Chemotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2102256. [PMID: 34398516 PMCID: PMC8529449 DOI: 10.1002/advs.202102256] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/30/2021] [Indexed: 06/13/2023]
Abstract
A versatile tumor-targeting stimuli-responsive theranostic platform for peritoneal metastases of colorectal cancer is proposed in this work for tumor tracking and photothermal-enhanced chemotherapy. A quenched photosensitizer ("off" state) is developed and escorted into a tumor-targeting oxaliplatin-embedded micelle. Once reaching the tumor cell, the micelle is clasped to release free oxaliplatin, as well as the "off" photosensitizer, which is further activated ("turned-on") in the tumor reducing microenvironment to provide optical imaging and photothermal effect. The combined results from hyperthermia-enhanced chemotherapy, deep penetration, perfused O2 , and the leveraged GSH-ROS imbalance in tumor cells are achieved for improved antitumor efficacy and reduced systematic toxicity.
Collapse
Affiliation(s)
- Tao Sun
- Key Laboratory of Smart Drug Delivery (Ministry of Education)Minhang HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan University826 Zhangheng RoadShanghai201203China
| | - Guangping Zhang
- Shandong Province Key Laboratory of Medical Physics and Image Processing TechnologySchool of Physics and Electronics and Institute of Materials and Clean EnergyShandong Normal University1 University RoadJinan250358P. R. China
| | - Tingting Ning
- Key Laboratory of Smart Drug Delivery (Ministry of Education)Minhang HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan University826 Zhangheng RoadShanghai201203China
| | - Qinjun Chen
- Key Laboratory of Smart Drug Delivery (Ministry of Education)Minhang HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan University826 Zhangheng RoadShanghai201203China
| | - Yongchao Chu
- Key Laboratory of Smart Drug Delivery (Ministry of Education)Minhang HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan University826 Zhangheng RoadShanghai201203China
| | - Yifan Luo
- Key Laboratory of Smart Drug Delivery (Ministry of Education)Minhang HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan University826 Zhangheng RoadShanghai201203China
| | - Haoyu You
- Key Laboratory of Smart Drug Delivery (Ministry of Education)Minhang HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan University826 Zhangheng RoadShanghai201203China
| | - Boyu Su
- Key Laboratory of Smart Drug Delivery (Ministry of Education)Minhang HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan University826 Zhangheng RoadShanghai201203China
| | - Chao Li
- Key Laboratory of Smart Drug Delivery (Ministry of Education)Minhang HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan University826 Zhangheng RoadShanghai201203China
| | - Qin Guo
- Key Laboratory of Smart Drug Delivery (Ministry of Education)Minhang HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan University826 Zhangheng RoadShanghai201203China
| | - Chen Jiang
- Key Laboratory of Smart Drug Delivery (Ministry of Education)Minhang HospitalState Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain ScienceInstitutes of Brain ScienceDepartment of PharmaceuticsSchool of PharmacyFudan University826 Zhangheng RoadShanghai201203China
| |
Collapse
|
19
|
Shan X, Zhang X, Wang C, Zhao Z, Zhang S, Wang Y, Sun B, Luo C, He Z. Molecularly engineered carrier-free co-delivery nanoassembly for self-sensitized photothermal cancer therapy. J Nanobiotechnology 2021; 19:282. [PMID: 34544447 PMCID: PMC8454134 DOI: 10.1186/s12951-021-01037-6] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Accepted: 09/10/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Photothermal therapy (PTT) has been extensively investigated as a tumor-localizing therapeutic modality for neoplastic disorders. However, the hyperthermia effect of PTT is greatly restricted by the thermoresistance of tumor cells. Particularly, the compensatory expression of heat shock protein 90 (HSP90) has been found to significantly accelerate the thermal tolerance of tumor cells. Thus, a combination of HSP90 inhibitor and photothermal photosensitizer is expected to significantly enhance antitumor efficacy of PTT through hyperthermia sensitization. However, it remains challenging to precisely co-deliver two or more drugs into tumors. METHODS A carrier-free co-delivery nanoassembly of gambogic acid (GA, a HSP90 inhibitor) and DiR is ingeniously fabricated based on a facile and precise molecular co-assembly technique. The assembly mechanisms, photothermal conversion efficiency, laser-triggered drug release, cellular uptake, synergistic cytotoxicity of the nanoassembly are investigated in vitro. Furthermore, the pharmacokinetics, biodistribution and self-enhanced PTT efficacy were explored in vivo. RESULTS The nanoassembly presents multiple advantages throughout the whole drug delivery process, including carrier-free fabrication with good reproducibility, high drug co-loading efficiency with convenient dose adjustment, synchronous co-delivery of DiR and GA with long systemic circulation, as well as self-tracing tumor accumulation with efficient photothermal conversion. As expected, HSP90 inhibition-augmented PTT is observed in a 4T1 tumor BALB/c mice xenograft model. CONCLUSION Our study provides a novel and facile dual-drug co-assembly strategy for self-sensitized cancer therapy.
Collapse
Affiliation(s)
- Xinzhu Shan
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Xuanbo Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Chen Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Zhiqiang Zhao
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Shenwu Zhang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Yuequan Wang
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Bingjun Sun
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Cong Luo
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| | - Zhonggui He
- Department of Pharmaceutics, Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| |
Collapse
|
20
|
Lu Y, Peng Z, Zhu D, Jia Y, Taledaohan A, Li Y, Liu J, Wang Y, Wang Y. RGD Peptide and PAD4 Inhibitor-Loaded Gold Nanorods for Chemo-Photothermal Combined Therapy to Inhibit Tumor Growth, Prevent Lung Metastasis and Improve Biosafety. Int J Nanomedicine 2021; 16:5565-5580. [PMID: 34429600 PMCID: PMC8379711 DOI: 10.2147/ijn.s319210] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Accepted: 08/02/2021] [Indexed: 01/21/2023] Open
Abstract
Purpose A targeted drug delivery system that combines protein-arginine deiminase type-4 (PAD4) inhibitors YW3-56 (356) with PTT of NPs is constructed to both decrease the accumulation of gold in metabolic organs and reduce the dose of chemotherapeutic agents. Patients and Methods In vitro cytotoxicity test and in vivo S180 tumor-bearing mice model were used to compare antitumor activity of 356-modified gold nanospheres and nanorods. The A549 tumor-bearing mice model was also exploited in antitumor assessment. In addition, ICP-MS, blood cell analyzer and blood biochemistry analyzer are applied for assessing the biosafety of NPs. Results Both 356-modified gold nanospheres and nanorods showed antitumor activity. However, 356-loaded gold nanorods are found to have better tumor inhibitory activity than 356-loaded gold nanospheres in the presence of laser and without laser irradiation. Thus, 356-loaded gold nanorods are selected to be applied for chemo-photothermal combined therapy on in vivo. We find that combination therapy could inhibit tumor growth and reduce lung tumor metastasis and inflammatory infiltration compared with individual therapy. It triggers apoptosis in tumor tissue observed by TUNEL assay and TEM pictures. Conclusion Thus, an RGD targeting and PAD4 inhibitor-loaded system are established based on chemo-photothermal combined therapy. It could inhibit tumor growth, prevent lung metastasis and improve biosafety.
Collapse
Affiliation(s)
- Yu Lu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing, 100069, People's Republic of China.,Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing Laboratory of Oral Health, Beijing, 100069, People's Republic of China
| | - Zidong Peng
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing, 100069, People's Republic of China.,Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing Laboratory of Oral Health, Beijing, 100069, People's Republic of China
| | - Di Zhu
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing, 100069, People's Republic of China.,Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing Laboratory of Oral Health, Beijing, 100069, People's Republic of China
| | - Yijiang Jia
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing, 100069, People's Republic of China.,Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing Laboratory of Oral Health, Beijing, 100069, People's Republic of China
| | - Ayijiang Taledaohan
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing, 100069, People's Republic of China.,Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing Laboratory of Oral Health, Beijing, 100069, People's Republic of China
| | - Yuanming Li
- Invasive Tumor Therapies Center, Beijing Hospital, National Center of Gerontology, Beijing, 100730, People's Republic of China
| | - Jiawang Liu
- Medicinal Chemistry Core, The University of Tennessee Health Science Center, 579 College of Pharmacy Building, Memphis, TN, 38163, USA
| | - Yanming Wang
- School of Life Sciences, Henan University, Kaifeng, 475004, People's Republic of China
| | - Yuji Wang
- Department of Medicinal Chemistry, College of Pharmaceutical Sciences of Capital Medical University, Beijing, 100069, People's Republic of China.,Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing Laboratory of Oral Health, Beijing, 100069, People's Republic of China
| |
Collapse
|
21
|
Rashid B, Anwar A, Shahabuddin S, Mohan G, Saidur R, Aslfattahi N, Sridewi N. A Comparative Study of Cytotoxicity of PPG and PEG Surface-Modified 2-D Ti 3C 2 MXene Flakes on Human Cancer Cells and Their Photothermal Response. MATERIALS (BASEL, SWITZERLAND) 2021; 14:4370. [PMID: 34442891 PMCID: PMC8400087 DOI: 10.3390/ma14164370] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/26/2021] [Accepted: 07/27/2021] [Indexed: 12/24/2022]
Abstract
The MXenes are a novel family of 2-D materials with promising biomedical activity, however, their anticancer potential is still largely unexplored. In this study, a comparative cytotoxicity investigation of Ti3C2 MXenes with polypropylene glycol (PPG), and polyethylene glycol (PEG) surface-modified 2-D Ti3C2 MXene flakes has been conducted towards normal and cancerous human cell lines. The wet chemical etching method was used to synthesize MXene followed by a simple chemical mixing method for surface modification of Ti3C2 MXene with PPG and PEG molecules. SEM and XRD analyses were performed to examine surface morphology and elemental composition, respectively. FTIR and UV-vis spectroscopy were used to confirm surface modification and light absorption, respectively. The cell lines used to study the cytotoxicity of MXene and surface-modified MXenes in this study were normal (HaCaT and MCF-10A) and cancerous (MCF-7 and A375) cells. These cell lines were also used as controls (without exposure to study material and irradiation) to measure their baseline cell viability under the same lab environment. The surface-modified MXenes exhibited a sharp reduction in cell viability towards both normal (HaCaT and MCF-10A) and cancerous (MCF-7 and A375) cells but cytotoxicity was more pronounced towards cancerous cell lines. This may be due to the difference in cell metabolism and the occurrence of high pre-existing levels of reactive oxygen species (ROS) within cancerous cells. The highest toxicity towards both normal and cancerous cell lines was observed with PEGylated MXenes followed by PPGylated and bare MXenes. The normal cell's viability was barely above 70% threshold with 250 mg/L PEGylated MXene concentration whereas PPGylated and bare MXene were less toxic towards normal cells, even at 500 mg/L concentration. Moreover, the toxicity was found to be directly related to the type of cell lines. In general, the HaCaT cell line exhibited the lowest toxicity while toxicity was highest in the case of the A375 cell line. The photothermal studies revealed high photo response for PEGylated MXene followed by PPGylated and bare MXenes. However, the PPGylated MXene's lower cytotoxicity towards normal cells while comparable toxicity towards malignant cells as compared to PEGylated MXenes makes the former a relatively safe and effective anticancer agent.
Collapse
Affiliation(s)
- Bushra Rashid
- Faculty of Defence Science and Technology, National Defence University of Malaysia, Kuala Lumpur 57000, Malaysia
- Primary & Secondary Health Care Department, Govt. of Punjab, Lahore 54000, Pakistan
| | - Ayaz Anwar
- Department of Biological Sciences, School of Medical and Life Sciences, Sunway University, Subang Jaya 47500, Malaysia
| | - Syed Shahabuddin
- Department of Chemistry, School of Technology, Pandit Deendayal Energy University, Gandhinagar 382007, India
- Faculty of Applied Sciences, Universiti Teknologi MARA, Cawangan Negeri Sembilan, Kampus Kuala Pilah, Kuala Pilah, Shah Alam 40450, Malaysia
| | - Gokula Mohan
- Institute of Biological Sciences, Faculty of Science, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Rahman Saidur
- Research Centre for Nano-Materials and Energy Technology (RCNMET), School of Engineering and Technology, Sunway University, Petaling Jaya 47500, Malaysia
| | - Navid Aslfattahi
- Department of Mechanical Engineering, Faculty of Engineering, University of Malaya, Kuala Lumpur 50603, Malaysia
| | - Nanthini Sridewi
- Faculty of Defence Science and Technology, National Defence University of Malaysia, Kuala Lumpur 57000, Malaysia
| |
Collapse
|
22
|
Chen X, Ruan H, Ma Z, Hu J, Xu W, Yin L, Fu S. Polymerase Chain Reaction in the Detection of miR-455-5p and Sphingosine-1 Phosphate Proteins in Cervical Carcinoma with the Help of Gold Nanoparticles-Based. J Biomed Nanotechnol 2021; 17:1535-1544. [PMID: 34544531 DOI: 10.1166/jbn.2021.3138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This study aimed to detect miR-455-5p and S1PR1 proteins using nanoparticle-assisted polymerase chain reaction (nano-PCR) to determine their correlation with cervical carcinoma prognosis. To achieve this study's goals, we selected 48 cervical carcinoma patients between January 2014 to January 2016 and subjected them to the miR-455-5p test by nano-PCR. The collected samples were then divided into two groups based on miR-455-5p levels. We had four HeLa cell groups, one group as the control, and one group overexpressed the miR-455-5p protein. A third group was miR-455-5p silent, and a separate group overexpressed both the miR-455-5p and S1PR1 proteins. Results also proved that the nano-PCR had a higher sensitivity than RT-PCR, and patients with poor prognosis had lesser miR-455-5p levels. Similarly, high levels of miR-455-5 contributed to cancer cell apoptosis and migration inhibition by targeting S1PR1 expression negatively. These two biomarkers are therefore significantly related to the prognosis of cervical carcinoma patients.
Collapse
Affiliation(s)
- Xinping Chen
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, 570228, Hainan, PR China
| | - Heqiu Ruan
- Central Laboratory, Hainan General Hospital, Hainan Hospital Affiliated to the Hainan Medical College, Hainan Provincial Key Laboratory of Cell and Molecular Genetic Translational Medicine, Haikou, Hainan Province 570311, China
| | - Zhichao Ma
- Central Laboratory, Hainan General Hospital, Hainan Hospital Affiliated to the Hainan Medical College, Hainan Provincial Key Laboratory of Cell and Molecular Genetic Translational Medicine, Haikou, Hainan Province 570311, China
| | - Junjie Hu
- Central Laboratory, Hainan General Hospital, Hainan Hospital Affiliated to the Hainan Medical College, Hainan Provincial Key Laboratory of Cell and Molecular Genetic Translational Medicine, Haikou, Hainan Province 570311, China
| | - Weihua Xu
- Central Laboratory, Hainan General Hospital, Hainan Hospital Affiliated to the Hainan Medical College, Hainan Provincial Key Laboratory of Cell and Molecular Genetic Translational Medicine, Haikou, Hainan Province 570311, China
| | - Liyan Yin
- Key Laboratory of Tropical Biological Resources of Ministry of Education, Hainan University, Haikou, 570228, Hainan, PR China
| | - Shengmiao Fu
- Central Laboratory, Hainan General Hospital, Hainan Hospital Affiliated to the Hainan Medical College, Hainan Provincial Key Laboratory of Cell and Molecular Genetic Translational Medicine, Haikou, Hainan Province 570311, China
| |
Collapse
|
23
|
Mild hyperthermia-enhanced chemo-photothermal synergistic therapy using doxorubicin-loaded gold nanovesicles. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.03.080] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
24
|
Yi X, Duan QY, Wu FG. Low-Temperature Photothermal Therapy: Strategies and Applications. RESEARCH (WASHINGTON, D.C.) 2021; 2021:9816594. [PMID: 34041494 PMCID: PMC8125200 DOI: 10.34133/2021/9816594] [Citation(s) in RCA: 112] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/03/2021] [Accepted: 03/01/2021] [Indexed: 12/13/2022]
Abstract
Although photothermal therapy (PTT) with the assistance of nanotechnology has been considered as an indispensable strategy in the biomedical field, it still encounters some severe problems that need to be solved. Excessive heat can induce treated cells to develop thermal resistance, and thus, the efficacy of PTT may be dramatically decreased. In the meantime, the uncontrollable diffusion of heat can pose a threat to the surrounding healthy tissues. Recently, low-temperature PTT (also known as mild PTT or mild-temperature PTT) has demonstrated its remarkable capacity of conquering these obstacles and has shown excellent performance in bacterial elimination, wound healing, and cancer treatments. Herein, we summarize the recently proposed strategies for achieving low-temperature PTT based on nanomaterials and introduce the synthesis, characteristics, and applications of these nanoplatforms. Additionally, the combination of PTT and other therapeutic modalities for defeating cancers and the synergistic cancer therapeutic effect of the combined treatments are discussed. Finally, the current limitations and future directions are proposed for inspiring more researchers to make contributions to promoting low-temperature PTT toward more successful preclinical and clinical disease treatments.
Collapse
Affiliation(s)
- Xiulin Yi
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Qiu-Yi Duan
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| | - Fu-Gen Wu
- State Key Laboratory of Bioelectronics, School of Biological Science and Medical Engineering, Southeast University, 2 Sipailou Road, Nanjing 210096, China
| |
Collapse
|
25
|
Zhou Y, Wang Z, Peng Y, Wang F, Deng L. Gold Nanomaterials as a Promising Integrated Tool for Diagnosis and Treatment of Pathogenic Infections-A Review. J Biomed Nanotechnol 2021; 17:744-770. [PMID: 34082865 DOI: 10.1166/jbn.2021.3075] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
This review summarizes research on functionalized gold nanomaterials as pathogen detection sensors and pathogen elimination integrated tools. After presenting the challenge of current severe threat from pathogenic bacteria and the increasingly serious growth rate of drug resistance, the first section mainly introduces the conspectus of gold nanostructures from synthesis, characterization, physicochemical properties and applications of gold nanomaterials. The next section deals with gold nanomaterials-based pathogen detection sensors such as colorimetric sensors, fluorescence sensors and Surface-Enhanced Raman Scattering sensors. We then discuss strategies based on gold nanomaterials for eliminating pathogenic infections, such as the dual sterilization strategy for grafting gold nanomaterials with antibacterial substances, photothermal antibacterial and photodynamic antibacterial methods. The fourth part briefly introduces the comprehensive strategy for diagnosis and sterilization of pathogen infection based on gold nanomaterials, such as the diagnosis and treatment strategy for pathogen infection using Roman signals real-time monitoring and photothermal sterilization. A concluding section that summarizes the current status and challenges of the novel diagnosis and treatment integrated strategy for pathogenic infections, gives an outlook on potential future perspectives.
Collapse
Affiliation(s)
- Yan Zhou
- Department of Microbiology, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
| | - Zefeng Wang
- Department of Microbiology, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
| | - Yanling Peng
- Department of Microbiology, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
| | - Feiying Wang
- Department of Microbiology, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
| | - Le Deng
- Department of Microbiology, College of Life Science, Hunan Normal University, Changsha 410081, Hunan, China
| |
Collapse
|
26
|
Wang M, Xie J, Fu Y, Zhou Y, Wang M. Silencing of cluster determinant 36 transmitted by gold nanoparticles inhibits the occurrence and progression of breast cancer by down-regulating the peroxisome proliferative activated receptor signaling pathway. MATERIALS EXPRESS 2021; 11:789-800. [DOI: 10.1166/mex.2021.1981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Breast cancer is the most commonly diagnosed tumor in women worldwide. Although a range of therapeutic strategies have been developed in recent years, the outcome for patients is often poor. The purpose of this study was to explore the molecular mechanisms of the membrane glycoprotein
CD36 in breast cancer. Cells from breast cancer cell lines were transfected with gold nanoparticles protected by liposomes, as gene vectors. Cell counting kit 8 assays were performed to determine cell variability, EdU straining assays were used to evaluate cell proliferation, and colony formation
assays were performed to detect cell colony ability. The number of cells involved in migration and invasion was counted using Transwell assays. Lymphangiogenesis formation was assessed using lymphangiogenesis formation assay. Xenograft tumor mice were established, to analyze the effects of
CD36. Quantitative real-time polymerase chain reaction (qRT-PCR), western blotting, and immunohistochemistry (IHC) were performed to estimate the expression of genes. Silencing of CD36 inhibited cell variability, proliferation, colony formation, lymphangiogenesis, and repressed cell migration
and invasion in vitro. Overexpression of PPAR reversed the effects of the silencing of CD36, and the effects of PPAR upregulation were blocked by PPAR inhibitor. In vivo, tumor growth and lymphangiogenesis and PPAR activation were suppressed by the silencing of CD36. Silencing
of CD36 also inhibited the variability, proliferation, colony formation, lymphangiogenesis, migration and invasion of breast cancer cells by suppressing PPAR signaling pathway activation. The CD36 gene was transfected with gold nanoparticles which improved the efficiency of gene transfection.
The use of gold nanoparticles provides a new way to study the effects of genes on tumor cells.
Collapse
Affiliation(s)
- Maohua Wang
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, PR China
| | - Jian Xie
- Department of General Surgery, Yongchuan Hospital of Chongqing Medical University, Chongqing, 402160, PR China
| | - Yong Fu
- Department of Breast Surgery, Dianjiang People’s Hospital of Chongqing, 402160, Chongqing, PR China
| | - Yongchun Zhou
- Key Laboratory of Lung Cancer, Cancer Center, The Third Affiliated Hospital of Kunming Medical University, Tumor Hospital of Yunnan, Kunming, 650000, Yunnan, PR China
| | - Maohua Wang
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400000, PR China
| |
Collapse
|
27
|
Huang J, You X, Xin P, Gu Z, Chen C, Wu J. Egg white as a natural and safe biomaterial for enhanced cancer therapy. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.12.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
|
28
|
Wang L, Chen S, Pei W, Huang B, Niu C. Magnetically targeted erythrocyte membrane coated nanosystem for synergistic photothermal/chemotherapy of cancer. J Mater Chem B 2021; 8:4132-4142. [PMID: 32270160 DOI: 10.1039/d0tb00364f] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Combination photothermal therapy (PTT)/chemotherapy has become an emerging cancer treatment strategy in recent years. However, one of the important challenges in the development of nanomedicines is escaping immune recognition and the phagocytosis by the reticuloendothelial system (RES) to ultimately maximize tumor accumulation. In this work, a cell membrane-coated magnetically targeted drug delivery nanosystem was developed for synergistic PTT/chemotherapy of cancer. Importantly, this nanosystem can cleverly escape identification and clearance from the immune system, effectively prolong the blood circulation time and accurately accumulate in the target tumor tissues. This provides a new strategy to realize extraordinary antitumor effect by a unique design with cell membrane cloaking, magnetic targeting, drug delivery and synergistic PTT/chemotherapy.
Collapse
Affiliation(s)
- Long Wang
- Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China and Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Sijie Chen
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| | - Wenjing Pei
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| | - Biying Huang
- Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| | - Chengcheng Niu
- Research Center of Ultrasonography, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China and Department of Ultrasound Diagnosis, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, China.
| |
Collapse
|
29
|
Gong L, Zhao L, Tan M, Pan T, He H, Wang Y, He X, Li W, Tang L, Nie L. Two-Photon Fluorescent Nanomaterials and Their Applications in Biomedicine. J Biomed Nanotechnol 2021; 17:509-528. [PMID: 35057882 DOI: 10.1166/jbn.2021.3052] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In recent years, two-photon excited (TPE) materials have attracted great attentions because of their excellent advantages over conventional one-photon excited (OPE) materials, such as deep tissue penetration, three-dimensional spatial selectivity and low phototoxicity. Also, they have
been widely applied in lots of field, such as biosensing, imaging, photo-catalysis, photoelectric conversion, and therapy. In this article, we review recent advances in vibrant topic of two-photon fluorescent nanomaterials, including organic molecules, quantum dots (QDs), carbon dots (CDs)
and metal nanoclus-ters (MNCs). The optical properties, synthetic methods and important applications of TPE nanomaterials in biomedical field, such as biosensing, imaging and therapy are introduced. Also, the probable challenges and perspectives in the forthcoming development of two-photon
fluorescent nanomaterials are addressed.
Collapse
Affiliation(s)
- Liang Gong
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology Zhuzhou 412007, P. R. China
| | - Lan Zhao
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology Zhuzhou 412007, P. R. China
| | - Miduo Tan
- Zhuzhou Central Hospital, Zhuzhou 412007, P. R. China
| | - Ting Pan
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology Zhuzhou 412007, P. R. China
| | - Huai He
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology Zhuzhou 412007, P. R. China
| | - Yulin Wang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology Zhuzhou 412007, P. R. China
| | - Xuliang He
- Zhuzhou People’s Hospital, Zhuzhou 412007, P. R. China
| | - Wenjun Li
- Zhuzhou People’s Hospital, Zhuzhou 412007, P. R. China
| | - Li Tang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology Zhuzhou 412007, P. R. China
| | - Libo Nie
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology Zhuzhou 412007, P. R. China
| |
Collapse
|
30
|
Liao J, Han R, Wu Y, Qian Z. Review of a new bone tumor therapy strategy based on bifunctional biomaterials. Bone Res 2021; 9:18. [PMID: 33727543 PMCID: PMC7966774 DOI: 10.1038/s41413-021-00139-z] [Citation(s) in RCA: 133] [Impact Index Per Article: 33.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 12/09/2020] [Accepted: 12/21/2020] [Indexed: 02/08/2023] Open
Abstract
Bone tumors, especially those in osteosarcoma, usually occur in adolescents. The standard clinical treatment includes chemotherapy, surgical therapy, and radiation therapy. Unfortunately, surgical resection often fails to completely remove the tumor, which is the main cause of postoperative recurrence and metastasis, resulting in a high mortality rate. Moreover, bone tumors often invade large areas of bone, which cannot repair itself, and causes a serious effect on the quality of life of patients. Thus, bone tumor therapy and bone regeneration are challenging in the clinic. Herein, this review presents the recent developments in bifunctional biomaterials to achieve a new strategy for bone tumor therapy. The selected bifunctional materials include 3D-printed scaffolds, nano/microparticle-containing scaffolds, hydrogels, and bone-targeting nanomaterials. Numerous related studies on bifunctional biomaterials combining tumor photothermal therapy with enhanced bone regeneration were reviewed. Finally, a perspective on the future development of biomaterials for tumor therapy and bone tissue engineering is discussed. This review will provide a useful reference for bone tumor-related disease and the field of complex diseases to combine tumor therapy and tissue engineering.
Collapse
Grants
- The National Key Research and Development Program of China (2017YFC1103500, 2017YFC1103502), NSFC 31771096, NSFC 31930067, #x00A0;NSFC 31525009, 1·3·5 project for disciplines of excellence, West China Hospital, Sichuan University (ZYGD18002)
- the National Natural Science Foundation (31972925), Sichuan Science and Technology Program (2020YJ0065), Sichuan University Spark Project (2018SCUH0029), State Key Laboratory of Oral Diseases Foundation (SKLOD202016)
Collapse
Affiliation(s)
- Jinfeng Liao
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Ruxia Han
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Yongzhi Wu
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, P.R. China
| | - Zhiyong Qian
- State Key Laboratory of Oral Diseases, National Clinical Research Centre for Oral Diseases, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, West China Medical School, Sichuan University, Chengdu, Sichuan, P.R. China.
| |
Collapse
|
31
|
Li K, Lu M, Xia X, Huang Y. Recent advances in photothermal and RNA interfering synergistic therapy. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.09.010] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
32
|
Hou M, Zhong Y, Zhang L, Xu Z, Kang Y, Xue P. Polydopamine (PDA)-activated cobalt sulfide nanospheres responsive to tumor microenvironment (TME) for chemotherapeutic-enhanced photothermal therapy. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.08.009] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
33
|
The effect of drug position on the properties of paclitaxel-conjugated gold nanoparticles for liver tumor treatment. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.08.044] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
34
|
Fan R, Chen C, Hou H, Chuan D, Mu M, Liu Z, Liang R, Guo G, Xu J. Tumor Acidity and Near‐Infrared Light Responsive Dual Drug Delivery Polydopamine‐Based Nanoparticles for Chemo‐Photothermal Therapy. ADVANCED FUNCTIONAL MATERIALS 2021. [DOI: 10.1002/adfm.202009733] [Citation(s) in RCA: 85] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Affiliation(s)
- Rangrang Fan
- Department of Neurosurgery West China Hospital Sichuan University Chengdu 610041 P. R. China
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University and Collaborative Innovation Center for Biotherapy Chengdu 610041 P. R. China
| | - Caili Chen
- School of Basic Medical Sciences Xinxiang Medical University Xinxiang Henan 453003 P. R. China
| | - Huan Hou
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University and Collaborative Innovation Center for Biotherapy Chengdu 610041 P. R. China
| | - Di Chuan
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University and Collaborative Innovation Center for Biotherapy Chengdu 610041 P. R. China
| | - Min Mu
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University and Collaborative Innovation Center for Biotherapy Chengdu 610041 P. R. China
| | - Zhiyong Liu
- Department of Neurosurgery West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Ruichao Liang
- Department of Neurosurgery West China Hospital Sichuan University Chengdu 610041 P. R. China
| | - Gang Guo
- State Key Laboratory of Biotherapy and Cancer Center West China Hospital Sichuan University and Collaborative Innovation Center for Biotherapy Chengdu 610041 P. R. China
| | - Jianguo Xu
- Department of Neurosurgery West China Hospital Sichuan University Chengdu 610041 P. R. China
| |
Collapse
|
35
|
Sun J, Wan Z, Xu J, Luo Z, Ren P, Zhang B, Diao D, Huang Y, Li S. Tumor size-dependent abscopal effect of polydopamine-coated all-in-one nanoparticles for immunochemo-photothermal therapy of early- and late-stage metastatic cancer. Biomaterials 2020; 269:120629. [PMID: 33387938 DOI: 10.1016/j.biomaterials.2020.120629] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/05/2020] [Accepted: 12/20/2020] [Indexed: 12/16/2022]
Abstract
Metastatic cancer is a persistent clinical enigma, which requires combination of several treatment modules. Here, we developed an all-in-one nanomedicine strategy to systemically co-deliver photosensitive, chemotherapeutic, and immunomodulating agents for effective immunochemo-photothermal therapy (PTT) to inhibit both primary tumor and distal metastatic tumor. Two types of polydopamine (dp)-coated nanoparticles (NPs) (N/PGEM/dp-5 and N/PGEM/dp-16) co-loaded with gemcitabine (GEM) and NLG919, a potent indoleamine-2, 3-dioxygenase (IDO) inhibitor, were prepared. N/PGEM/dp-16 NPs with a thicker dp coating layer showed higher photothermal conversion ability, more favorable biodistribution profile and better tumor inhibition effect compared to N/PGEM/dp-5 NPs with a thinner coating layer. Combination with laser irradiation further enhanced the tumor inhibition effect of N/PGEM/dp-16 NPs. In an "early metastatic" pancreatic cancer PANC02 model with small distal tumors, introduction of NLG and dp coating improved the inhibition effect on both primary and distal tumors. Compared to N/PGEM/dp-16, N/PGEM/dp-16 plus laser irradiation further enhanced the inhibition effect on primary tumor, but didn't improve the abscopal antitumor effect. When the initial volume of distal tumor was sufficiently large in a "late metastasis" model, a more dramatic abscopal antitumor effect was achieved, resulting in a significant growth inhibition of both primary tumor and the unirradiated distal tumor. Furthermore, laser irradiation can amplify the immunochemo-NPs-mediated innate and adaptive immune responses in both tumors. This work demonstrated a distal tumor-size dependent abscopal effect, and provided a perspective for future design of more effective immunochemo-PTT nano-formulations for early- and late-stage metastatic tumors.
Collapse
Affiliation(s)
- Jingjing Sun
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA; University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| | - Zhuoya Wan
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA; University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Jieni Xu
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA; University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Zhangyi Luo
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA; University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Pengfei Ren
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA; University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Bei Zhang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA; University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Dingwei Diao
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA; University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Yixian Huang
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA; University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Song Li
- Center for Pharmacogenetics, Department of Pharmaceutical Sciences, School of Pharmacy, University of Pittsburgh, Pittsburgh, PA, 15261, USA; University of Pittsburgh Cancer Institute, University of Pittsburgh, Pittsburgh, PA, 15261, USA.
| |
Collapse
|
36
|
|
37
|
Elsewedy HS, Dhubiab BEA, Mahdy MA, Elnahas HM. Development, optimization, and evaluation of PEGylated brucine-loaded PLGA nanoparticles. Drug Deliv 2020; 27:1134-1146. [PMID: 32729331 PMCID: PMC7470130 DOI: 10.1080/10717544.2020.1797237] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 07/13/2020] [Accepted: 07/13/2020] [Indexed: 12/19/2022] Open
Abstract
The application of nanotechnology to drug delivery systems for cancer therapy has progressively received great attention. The most heavily investigated approach is the development of nanoparticles (NPs) utilizing biodegradable and biocompatible polymers such as poly (lactic-co-glycolic acid) (PLGA). These NPs could be further improved by surface modification utilizing a hydrophilic biodegradable polymer such as polyethylene glycol (PEG) to achieve passive targeting. Modified NPs can deliver drugs such as brucine (BRU), which has shown its potential in cancer therapy. The objective of the current investigation was to develop and evaluate the passive targeting of long-circulating PLGA NPs loaded with BRU. NPs were characterized in terms of drug-excipient compatibility studies, including FTIR and DSC; physicochemical evaluations including particle size, zeta potential, morphological evaluation, entrapment efficiency and percentage yield; total serum protein adsorbed onto NP surfaces; and in vitro release of the loaded drug. Factorial design was employed to attain optimal PLGA-loaded NPs. Finally, the in vivo anti-tumor activity of BRU-loaded PLGA NPs was evaluated in tumor-bearing mice. The NPs obtained had smooth surfaces with particle sizes ranged from 94 ± 3.05 to 253 ± 8.7 nm with slightly positive surface charge ranged from 1.09 ± 0.15 to 3.71 ± 0.44 mV. Entrapment of BRU ranged between 37.5 ± 1.8% and 77 ± 1.3% with yields not less than 70.8%. Total protein adsorbed was less than 25.5 µg total protein/1 mg NP. In vitro drug release was less than 99.1% at 168 h. Finally, significant reductions in tumor growth rate and mortality rate were observed for PEG PLGA NP formulations compared to both BRU solution and naked NPs.
Collapse
Affiliation(s)
- Heba S. Elsewedy
- Department of Pharmaceutics and Industrial
Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig,
Egypt
- Department of Pharmaceutical Sciences, College
of Clinical Pharmacy, King Faisal University, Saudi
Arabia
| | - Bandar E. Al Dhubiab
- Department of Pharmaceutical Sciences, College
of Clinical Pharmacy, King Faisal University, Saudi
Arabia
| | - Mahmoud A. Mahdy
- Department of Pharmaceutics and Industrial
Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig,
Egypt
| | - Hanan M. Elnahas
- Department of Pharmaceutics and Industrial
Pharmacy, Faculty of Pharmacy, Zagazig University, Zagazig,
Egypt
| |
Collapse
|
38
|
Du C, Ding Y, Qian J, Zhang R, Dong CM. Dual drug-paired polyprodrug nanotheranostics reverse multidrug resistant cancers via mild photothermal-cocktail chemotherapy. J Mater Chem B 2020; 7:5306-5319. [PMID: 31411235 DOI: 10.1039/c9tb01368g] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Combating multidrug resistance (MDR) of tumors is still challenging for clinical chemotherapy, cocktail chemotherapy (CCT), and currently widely-studied nanodrug-based treatments. Inspired by different MDR-overcoming and antitumor mechanisms of CCT and photothermal therapy (PT), a dual drug-paired polyprodrug nanoparticle (PDCN25-CDDP) was constructed to achieve the combination therapy PT-CCT for reversing MDR and combating multidrug resistant cancers. The PT-CCT treatment can greatly downregulate the P-gp expression level and achieve utmost MDR-reversal and antitumor efficacy by both a cocktail effect of CCT and a synergistic effect of CCT with PT; meanwhile, PT can inhibit the expression of heat shock protein 90 and enhance the thermosensitivity of cancer cells. Upon NIR irradiation, PDCN25-CDDPin vivo produced a selective tumor accumulation effect and relatively deep tumor penetration, as evidenced by fluorescent and photoacoustic imaging and CLSM. The mild PT-CCT treatment completely eradicated MCF-7/ADR and OVCAR-3/DDP tumors without skin damage or tumor recurrence for 30 days, exhibiting synergistic MDR-reversal and superior antitumor efficacy in vivo. Importantly, this work provides an innovative strategy for reversing MDR and combating DOX-resistant breast and CDDP-resistant ovarian cancers.
Collapse
Affiliation(s)
- Chang Du
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Yue Ding
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Jiwen Qian
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| | - Rong Zhang
- Department of Obstetrics and Gynecology, Shanghai Fengxian Central Hospital, Southern Medical University, Shanghai 201499, P. R. China.
| | - Chang-Ming Dong
- School of Chemistry and Chemical Engineering, Shanghai Key Laboratory of Electrical Insulation and Thermal Aging, Shanghai Jiao Tong University, Shanghai 200240, P. R. China.
| |
Collapse
|
39
|
Shang T, Yu X, Han S, Yang B. Nanomedicine-based tumor photothermal therapy synergized immunotherapy. Biomater Sci 2020; 8:5241-5259. [PMID: 32996922 DOI: 10.1039/d0bm01158d] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The emerging anti-tumor immunotherapy has made significant progress in clinical application. However, single immunotherapy is not effective for all anti-tumor treatments, owing to the low objective response rate and the risk of immune-related side effects. Meanwhile, photothermal therapy (PTT) has attracted significant attention because of its non-invasiveness, spatiotemporal controllability and small side effects. Combining PTT with immunotherapy overcomes the issue that single photothermal therapy cannot eradicate tumors with metastasis and recurrence. However, it improves the therapeutic effect of immunotherapy, as the photothermal therapy usually promotes release of tumor-related antigens, triggers immune response by the immunogenic cell death (ICD), thereby, endowing unique synergistic mechanisms for cancer therapy. This review summarizes recent research advances in utilizing nanomedicines for PTT in combination with immunotherapy to improve the outcome of cancer treatment. The strategies include immunogenic cell death, immune agonists and cancer vaccines, immune checkpoint blockades and tumor specific monoclonal antibodies, and small-molecule immune inhibitors. The combination of synergized PTT-immunotherapy with other therapeutic strategies is also discussed.
Collapse
Affiliation(s)
- Tongyi Shang
- The Sixth Affiliated Hospital, Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, P. R. China.
| | | | | | | |
Collapse
|
40
|
Hao Y, Chen Y, He X, Yang F, Han R, Yang C, Li W, Qian Z. Near-infrared responsive 5-fluorouracil and indocyanine green loaded MPEG-PCL nanoparticle integrated with dissolvable microneedle for skin cancer therapy. Bioact Mater 2020; 5:542-552. [PMID: 32346657 PMCID: PMC7176747 DOI: 10.1016/j.bioactmat.2020.04.002] [Citation(s) in RCA: 105] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/05/2020] [Accepted: 04/05/2020] [Indexed: 02/05/2023] Open
Abstract
The prevalence of skin cancer is rising along with the rapid population aging in recent years. Traditional therapies, such as surgical treatment, radiotherapy, chemotherapy, photodynamic therapy, and immunotherapy, may accompany serious side effects, limiting their clinical benefits. According to the biological characteristics of skin cancer, we have already established two kinds of synergetic systems of photothermal therapy (microneedle) and chemotherapy, containing gold nanorods (GNR). Although the microneedle system exhibited great potential for skin cancer treatment, the system could be still improved further. So, we designed a near-infrared light-responsive 5-fluorouracil (5-Fu) and indocyanine green (ICG) loaded monomethoxy-poly (ethylene glycol)-polycaprolactone (MPEG-PCL) nanoparticle (5-Fu-ICG-MPEG-PCL), and then 5-Fu-ICG-MPEG-PCL was integrated with a hyaluronic acid dissolvable microneedle system (HA MN) to get 5-Fu-ICG-MPEG-PCL loaded HA MN for treating skin cancers, including human epidermoid cancer and melanoma. In this system, hyaluronic acid, the microneedle carrier, possesses good skin penetration ability and is approved by FDA as a pharmaceutical adjuvant; 5-Fu is recommended by FDA for skin cancer treatment; ICG, a photothermal agent, possesses a strong photothermal ability and is approved by FDA for its use in the human body. We hypothesized that 5-Fu-ICG-MPEG-PCL could be delivered by the dissolvable microneedle through the skin, and the release behavior of the drug in the nanoparticle could be controlled by near-infrared light for achieving a single-dose cure of skin cancer, improving the cure rate of skin cancer and providing a new idea and possibility for the clinical treatment of skin cancer.
Collapse
Affiliation(s)
- Ying Hao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, PR China
| | - YuWen Chen
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, PR China
| | - XinLong He
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, PR China
| | - Fan Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, PR China
| | - RuXia Han
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, PR China
| | - ChengLi Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, PR China
| | - Wei Li
- Department of Dermatovenereology, West China Hospital, Sichuan University, Chengdu, 610041, PR China
| | - ZhiYong Qian
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, and Collaborative Innovation Center of Biotherapy, Chengdu, 610041, PR China
| |
Collapse
|
41
|
Teng M, Zhou S, Zhang R, Zhang Y, Xu Y, Fu X. Extract Derived From Black Rice Functions as a Photothermal Agent for Suppressing Tumor Growth and Metastasis. Front Bioeng Biotechnol 2020; 8:904. [PMID: 32850748 PMCID: PMC7423996 DOI: 10.3389/fbioe.2020.00904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Accepted: 07/14/2020] [Indexed: 01/08/2023] Open
Abstract
It remains a challenge to develop an effective therapeutic agent with low cost and good biocompatibility for cancer therapy. Based on its dark color, we hypothesized that, the extraction from black rice grains, denoted BRE, could serve as a photothermal conversion agent. The results showed that BRE confers a high photothermal conversion efficiency up to 54.13%. The combination of BRE and near infrared (NIR) treatment enables effective photothermal tumor ablation, and suppress tumor metastasis via inhibiting the epithelial-mesenchymal transition (EMT) pathway. In addition, BRE exhibits no obvious toxicity in vivo. Therefore, BRE could serve as a promising photothermal therapy agent with a low toxicity to treat cancer.
Collapse
Affiliation(s)
- Muzhou Teng
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Shuyi Zhou
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Rongjun Zhang
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Yu Zhang
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Yang Xu
- School of Basic Medical Sciences, Southern Medical University, Guangzhou, China.,The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Xuemei Fu
- The Eighth Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| |
Collapse
|
42
|
Liu X, Jin Y, Liu T, Yang S, Zhou M, Wang W, Yu H. Iron-Based Theranostic Nanoplatform for Improving Chemodynamic Therapy of Cancer. ACS Biomater Sci Eng 2020; 6:4834-4845. [DOI: 10.1021/acsbiomaterials.0c01009] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Xiao Liu
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Yilan Jin
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Tingting Liu
- Department of Medical Imaging, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, China
| | - Shengju Yang
- Department of Dermatology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province 226001, China
| | - Mengxue Zhou
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Weiqi Wang
- School of Pharmacy, Nantong University, Nantong, Jiangsu Province 226001, China
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| | - Haijun Yu
- State Key Laboratory of Drug Research & Center of Pharmaceutics, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China
| |
Collapse
|
43
|
Wu S, Li Y, Zhang R, Fan K, Ding W, Xu L, Zhang L. Persistent luminescence-polypyrrole nanocomposite for dual-modal imaging and photothermal therapy of mammary cancer. Talanta 2020; 221:121435. [PMID: 33076064 DOI: 10.1016/j.talanta.2020.121435] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/15/2020] [Accepted: 07/18/2020] [Indexed: 12/18/2022]
Abstract
Multifunctional nanocomposites that possess imaging and high-performance therapeutic features are experiencing a surge in interest in the precision clinical anticancer treatment. In this work, we reported the fabrication and bio-application of a novel persistent luminescence-polypyrrole nanocomposite (LPLNP@SPP) for photoacoustic/persistent luminescence (PA/PL) dual-modal imaging guided photothermal therapy (PTT). The construction of LPLNP@SPP avoids the PL quenching of LPLNP-OH by the polypyrrole-coating, and thus enables the combination of PL and PTT. The LPLNP@SPP shows excellent biocompatibility, long lasting near-infrared (NIR) PL emitting without in situ excitation and high-contrast PA signals. Meanwhile, this nanocomposite exhibits strong NIR absorbance and exceptional photothermal conversion capability, which provides notable potential for imaging-guided antitumor therapy. Thus, our work highlights the dual-functional core-shell LPLNP@SPP as a feasible theranostic nanoplatform for cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Shuqi Wu
- School of Life Sciences, Key Laboratory of Space Bioscience & Biotechnology, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yang Li
- School of Life Sciences, Key Laboratory of Space Bioscience & Biotechnology, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Ruofei Zhang
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Kelong Fan
- CAS Engineering Laboratory for Nanozyme, Key Laboratory of Protein and Peptide Pharmaceutical, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Weihang Ding
- School of Life Sciences, Key Laboratory of Space Bioscience & Biotechnology, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Letong Xu
- School of Life Sciences, Key Laboratory of Space Bioscience & Biotechnology, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Lianbing Zhang
- School of Life Sciences, Key Laboratory of Space Bioscience & Biotechnology, Northwestern Polytechnical University, Xi'an, 710072, China.
| |
Collapse
|
44
|
A photosensitizer-loaded zinc oxide-polydopamine core-shell nanotherapeutic agent for photodynamic and photothermal synergistic therapy of cancer cells. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.05.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
45
|
Chen Z, Tu Y, Zhang D, Liu C, Zhou Y, Li X, Wu X, Liu R. A thermosensitive nanoplatform for photoacoustic imaging and NIR light triggered chemo-photothermal therapy. Biomater Sci 2020; 8:4299-4307. [DOI: 10.1039/d0bm00810a] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
A thermosensitive nanoplatform CDTSL achieves NIR light controlled drug release and can be applied for photoacoustic imaging and chemo-photothermal therapy.
Collapse
Affiliation(s)
- Zikang Chen
- Guangdong Provincial Key Laboratory of Medical Image Processing
- School of Biomedical Engineering
- Southern Medical University
- Guangzhou
- P.R. China
| | - Yinuo Tu
- Department of Thoracic Surgery
- Huiqiao Medical Center
- Nanfang Hospital
- Southern Medical University
- Guangzhou
| | - Di Zhang
- Guangdong Provincial Key Laboratory of Medical Image Processing
- School of Biomedical Engineering
- Southern Medical University
- Guangzhou
- P.R. China
| | - Chuang Liu
- Department of Thoracic Surgery
- Huiqiao Medical Center
- Nanfang Hospital
- Southern Medical University
- Guangzhou
| | - Yuping Zhou
- Guangdong Provincial Key Laboratory of Medical Image Processing
- School of Biomedical Engineering
- Southern Medical University
- Guangzhou
- P.R. China
| | - Xiang Li
- Department of Thoracic Surgery
- Huiqiao Medical Center
- Nanfang Hospital
- Southern Medical University
- Guangzhou
| | - Xu Wu
- Department of Thoracic Surgery
- Huiqiao Medical Center
- Nanfang Hospital
- Southern Medical University
- Guangzhou
| | - Ruiyuan Liu
- Guangdong Provincial Key Laboratory of Medical Image Processing
- School of Biomedical Engineering
- Southern Medical University
- Guangzhou
- P.R. China
| |
Collapse
|
46
|
Zhang S, Cheng Y. Boronic acid-engineered gold nanoparticles for cytosolic protein delivery. Biomater Sci 2020; 8:3741-3750. [DOI: 10.1039/d0bm00679c] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Boronic acid-engineered gold nanoparticles for effective cytosolic protein delivery with the help of hypertonicity.
Collapse
Affiliation(s)
- Song Zhang
- South China Advanced Institute for Soft Matter Science and Technology
- School of Molecular Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
| | - Yiyun Cheng
- South China Advanced Institute for Soft Matter Science and Technology
- School of Molecular Science and Engineering
- South China University of Technology
- Guangzhou 510640
- China
| |
Collapse
|
47
|
Facile preparation of pH-responsive PEGylated prodrugs for activated intracellular drug delivery. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.04.052] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
48
|
Wei W, Zhang X, Zhang S, Wei G, Su Z. Biomedical and bioactive engineered nanomaterials for targeted tumor photothermal therapy: A review. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 104:109891. [DOI: 10.1016/j.msec.2019.109891] [Citation(s) in RCA: 155] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Revised: 06/04/2019] [Accepted: 06/12/2019] [Indexed: 12/24/2022]
|
49
|
Zhang L, Chen Q, Zou X, Chen J, Hu L, Dong Z, Zhou J, Chen Y, Liu Z, Cheng L. Intelligent protein-coated bismuth sulfide and manganese oxide nanocomposites obtained by biomineralization for multimodal imaging-guided enhanced tumor therapy. J Mater Chem B 2019; 7:5170-5181. [PMID: 31384859 DOI: 10.1039/c9tb00991d] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Radiotherapy (RT) has been used clinically to overcome cancer in recent decades. However, the abnormal tumor microenvironment (TME), involving hypoxia, acidosis and a dense extracellular matrix, is found to be related to the resistance of tumors to RT. Herein, intelligent bovine serum albumin (BSA)-coated Bi2S3 and MnO2 (Bi2S3-MnO2) nanocomposites synthesized via biomineralization are capable of modulating the hypoxic TME effectively to enhance the efficacy of RT. After intravenous injection, the BSA-Bi2S3-MnO2 nanocomposites show efficient accumulation in tumors, where endogenous H2O2 can react with MnO2 to generate oxygen in situ, leading to increased tumor oxygenation to overcome the hypoxia-associated resistance to RT. Moreover, the photothermal effect induced by the BSA-Bi2S3-MnO2 nanocomposites further relieves hypoxia in the TME and, finally, synergistically improves the effects of RT. In this work, we present a simple strategy to fabricate intelligent therapeutic nanoparticles to improve therapeutic efficiency towards cervical cancer.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| | - Qian Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Xinwei Zou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| | - Jiawen Chen
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Lvzhong Hu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| | - Ziliang Dong
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Jinhua Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| | - Youguo Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China.
| | - Zhuang Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Liang Cheng
- Institute of Functional Nano & Soft Materials (FUNSOM), Collaborative Innovation Center of Suzhou Nano Science and Technology, Jiangsu Key Laboratory for Carbon-Based Functional Materials and Devices, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
50
|
Khafaji M, Zamani M, Golizadeh M, Bavi O. Inorganic nanomaterials for chemo/photothermal therapy: a promising horizon on effective cancer treatment. Biophys Rev 2019; 11:335-352. [PMID: 31102198 PMCID: PMC6557961 DOI: 10.1007/s12551-019-00532-3] [Citation(s) in RCA: 80] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2019] [Accepted: 04/25/2019] [Indexed: 02/06/2023] Open
Abstract
During the last few decades, nanotechnology has established many essential applications in the biomedical field and in particular for cancer therapy. Not only can nanodelivery systems address the shortcomings of conventional chemotherapy such as limited stability, non-specific biodistribution and targeting, poor water solubility, low therapeutic indices, and severe toxic side effects, but some of them can also provide simultaneous combination of therapies and diagnostics. Among the various therapies, the combination of chemo- and photothermal therapy (CT-PTT) has demonstrated synergistic therapeutic efficacies with minimal side effects in several preclinical studies. In this regard, inorganic nanostructures have been of special interest for CT-PTT, owing to their high thermal conversion efficiency, application in bio-imaging, versatility, and ease of synthesis and surface modification. In addition to being used as the first type of CT-PTT agents, they also include the most novel CT-PTT systems as the potentials of new inorganic nanomaterials are being more and more discovered. Considering the variety of inorganic nanostructures introduced for CT-PTT applications, enormous effort is needed to perform translational research on the most promising nanomaterials and to comprehensively evaluate the potentials of newly introduced ones in preclinical studies. This review provides an overview of most novel strategies used to employ inorganic nanostructures for cancer CT-PTT as well as cancer imaging and discusses current challenges and future perspectives in this area.
Collapse
Affiliation(s)
- Mona Khafaji
- Department of Chemistry, Sharif University of Technology, Tehran, Iran.
| | - Masoud Zamani
- Institute for Biotechnology and Environment (IBE), Sharif University of Technology, Tehran, Iran
| | - Mortaza Golizadeh
- Institute for Biotechnology and Environment (IBE), Sharif University of Technology, Tehran, Iran
| | - Omid Bavi
- Department of Mechanical and Aerospace Engineering, Shiraz University of Technology, Shiraz, Iran.
| |
Collapse
|