1
|
Sun L, Liu S, Wu G, Shen H, Zhu Y, Huang W, Huang H, Peng D, Zeng S, Guan J. Strong, tough, and UV-resistant polylactic acid composites by incorporating doped carbon dots. Int J Biol Macromol 2025; 308:142416. [PMID: 40122416 DOI: 10.1016/j.ijbiomac.2025.142416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2024] [Revised: 03/08/2025] [Accepted: 03/21/2025] [Indexed: 03/25/2025]
Abstract
The application of polylactic acid (PLA) is still restricted due to its suboptimal mechanical and thermal properties, as well as its vulnerability to oxidative degradation under ultraviolet light (UV). To enhance these properties, fluorine, nitrogen, sulfur-doped carbon dots (FNS-CDs) were fabricated in this study and further employed as nano-reinforcing materials for PLA. Here, FNS-CDs were obtained via the solvothermal method, with citric acid and 3-fluoroaniline serving as carbon, fluorine, and nitrogen sources, while dimethylsulfoxide functioned as the solvent and sulfur source. Subsequently, PLA-based composites were produced by the melt blending technique through blending FNS-CDs with PLA. With the optimal loading of FNS-CDs, the resulting PLA-based composites exhibited remarkable strength and toughness, excellent thermal stability, and efficient UV resistance. Compared with pure PLA, the tensile strength and tensile toughness of PLA-based composites containing 1.5 wt% FNS-CDs increased by 81.4 % and 147.6 % respectively, the crystallinity rose by 25.5 %, and the UV-resistance value was also significantly enhanced. This research demonstrates the considerable potential applications of doped carbon dots in the field of high performance and multi-functional polymer composites.
Collapse
Affiliation(s)
- Ling Sun
- School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| | - Song Liu
- China State Construction International Engineering Limited, Hefei 230092, China
| | - Guoqi Wu
- China Energy Conservation DADI (Hangzhou) Environmental Remediation Co., Ltd., Hangzhou 310021, China
| | - Huangzhe Shen
- School of Municipal and Environmental Engineering, Jilin Jianzhu University, Changchun 130118, China
| | - Yu Zhu
- School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China.
| | - Weichen Huang
- School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| | - Haozhe Huang
- School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| | - Daizhong Peng
- School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China
| | - Shaohua Zeng
- School of Chemistry & Chemical Engineering, Anhui University, Hefei 230601, China; Anhui Anli Material Technology Co., Ltd., Hefei 231283, China.
| | - Jun Guan
- China State Construction International Engineering Limited, Hefei 230092, China
| |
Collapse
|
2
|
Chen M, Zhou M, Wang Y, Mao C, Pang S, Meng T, Yang X. Carboxymethyl cellulose and sodium alginate-enhanced hydrogel for carbon dots loading: A novel platform for pH sensing and sensitive detection of Al 3+ and Ag . Int J Biol Macromol 2025; 307:141955. [PMID: 40074127 DOI: 10.1016/j.ijbiomac.2025.141955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2025] [Revised: 02/19/2025] [Accepted: 03/09/2025] [Indexed: 03/14/2025]
Abstract
To address the challenges associated with the storage and application of traditional carbon dot (CDs) solutions, this study introduces a cyan fluorescent carbon dot-based hydrogel (CDs-SCH). The hydrogel was synthesized by integrating cyan fluorescent CDs, derived from penicillamine and m-phenylenediamine, with carboxymethylcellulose (CMC) and sodium alginate (SA), which was then mixed with acrylamide (AM). The resulting CDs-SCH hydrogel was extensively characterized, focusing on its morphology, chemical structure, and fluorescence behavior. The fluorescence intensity of the hydrogel was enhanced by 3.23 times compared to the original CDs. The fluorescence response of the CDs-SCH hydrogel to pH variations was examined, demonstrating its capability to visually monitor the freshness of aquatic products such as fish and shrimp. Furthermore, Al3+ and Ag+ ions were found to significantly modulate the fluorescence, with Al3+ enhancing and Ag+ quenching the fluorescence, displaying reliable detection limits and linearity. The hydrogel's ability to detect glutathione (GSH) via Ag+ reduction to Ag was also explored. Additionally, the hydrogel exhibited stable Al3+ adsorption, with the process following pseudo-second-order kinetics and the Langmuir adsorption model. As a versatile and responsive material, the CDs-SCH hydrogel holds potential for applications in intelligent food packaging and environmental ion detection.
Collapse
Affiliation(s)
- Miaomiao Chen
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
| | - Meng Zhou
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
| | - Yunyun Wang
- Department of Anesthesia, China-Japan Union Hospital of Jilin University, Changchun 130033, PR China.
| | - Caihong Mao
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China
| | - Shujie Pang
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China.
| | - Ting Meng
- Changchun Dongshi Technology (Group) Co., Ltd, Changchun 130031, China.
| | - Xudong Yang
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, China.
| |
Collapse
|
3
|
Zhou M, Chen M, Wang Y, Mao C, Zhang Y, Liu J, Zhang X, Pang S, Yang X. Construction of carbon dot-embedded fluorescent hydrogels based on oxidized gum arabic-gelatin Schiff base for Cr(VI) detection applications. Int J Biol Macromol 2025; 294:139466. [PMID: 39761895 DOI: 10.1016/j.ijbiomac.2025.139466] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/16/2024] [Accepted: 01/01/2025] [Indexed: 01/11/2025]
Abstract
In this study, a novel nitrogen-doped carbon quantum dot/oxidized gum arabic-gelatin-based fluorescent probe (NAH) was prepared using gelatin (GL) and gum arabic (AG) biomolecules. The primary network structure of this hydrogel consisted of polyacrylamide (PAM), while a secondary network structure was constructed between oxidized gum arabic and gelatin through the reaction of the Schiff base, which significantly enhanced the mechanical properties, the stress and strain of NAH reached 266.47 KPa and 2175.75 %. Nitrogen-doped carbon dots (NCDs) with yellow fluorescence emission properties were synthesized by hydrothermal method using salicylic acid as the carbon source and o-phenylenediamine as the nitrogen source. The fluorescent sensor obtained by compounding NCDs with hydrogel was able to selectively detect Cr(VI). The linear range of its detection was 0-90 μM, and the detection limit was 0.19 μM. The maximum theoretical adsorption capacity of the NAH hydrogel was 169.4 mg/g, and its adsorption isotherm conformed to the Langmuir adsorption isotherm model, and the adsorption kinetics conformed to the quasi-secondary kinetic model. Compared with the NCDs solution, the NAH hydrogel showed superior comprehensive performance, especially in solving the problem of recovery of NCDs. Meanwhile, this hydrogel provides an effective insight into the efficient detection and adsorption of environmental pollutants.
Collapse
Affiliation(s)
- Meng Zhou
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, PR China
| | - Miaomiao Chen
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, PR China
| | - Yunyun Wang
- Department of Anesthesia, China-Japan Union Hospital of Jilin University, Changchun 130033, PR China
| | - Caihong Mao
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, PR China
| | - Yu Zhang
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, PR China
| | - Junmei Liu
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, PR China
| | - Xikun Zhang
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, PR China
| | - Shujie Pang
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, PR China.
| | - Xudong Yang
- School of Chemical Engineering, Changchun University of Technology, Changchun 130012, PR China.
| |
Collapse
|
4
|
Paramasivam G, Palem VV, Meenakshy S, Suresh LK, Gangopadhyay M, Antherjanam S, Sundramoorthy AK. Advances on carbon nanomaterials and their applications in medical diagnosis and drug delivery. Colloids Surf B Biointerfaces 2024; 241:114032. [PMID: 38905812 DOI: 10.1016/j.colsurfb.2024.114032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/23/2024] [Accepted: 06/09/2024] [Indexed: 06/23/2024]
Abstract
Carbon nanomaterials are indispensable due to their unique properties of high electrical conductivity, mechanical strength and thermal stability, which makes them important nanomaterials in biomedical applications and waste management. Limitations of conventional nanomaterials, such as limited surface area, difficulty in fine tuning electrical or thermal properties and poor dispersibility, calls for the development of advanced nanomaterials to overcome such limitations. Commonly, carbon nanomaterials were synthesized by chemical vapor deposition (CVD), laser ablation or arc discharge methods. The advancement in these techniques yielded monodispersed carbon nanotubes (CNTs) and allows p-type and n-type doping to enhance its electrical and catalytic activities. The functionalized CNTs showed exceptional mechanical, electrical and thermal conductivity (3500-5000 W/mK) properties. On the other hand, carbon quantum dots (CQDs) exhibit strong photoluminescence properties with high quantum yield. Carbon nanohorns are another fascinating type of nanomaterial that exhibit a unique structure with high surface area and excellent adsorption properties. These carbon nanomaterials could improve waste management by adsorbing pollutants from water and soil, enabling precise environmental monitoring, while enhancing wastewater treatment and drug delivery systems. Herein, we have discussed the potentials of all these carbon nanomaterials in the context of innovative waste management solutions, fostering cleaner environments and healthier ecosystems for diverse biomedical applications such as biosensing, drug delivery, and environmental monitoring.
Collapse
Affiliation(s)
- Gokul Paramasivam
- Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, Tamil Nadu 602105, India.
| | - Vishnu Vardhan Palem
- Department of Biomedical Engineering, Sri Ramakrishna Engineering College, Coimbatore, Tamil Nadu, 641022 India
| | - Simi Meenakshy
- Department of Chemistry, Amrita Vishwa Vidhyapeetham, Amritapuri, Kollam, Kerala 690525, India
| | - Lakshmi Krishnaa Suresh
- Department of Chemistry, Amrita Vishwa Vidhyapeetham, Amritapuri, Kollam, Kerala 690525, India
| | - Moumita Gangopadhyay
- Department of Chemistry, Amrita Vishwa Vidhyapeetham, Amritapuri, Kollam, Kerala 690525, India
| | - Santhy Antherjanam
- Department of Chemistry, Amrita Vishwa Vidhyapeetham, Amritapuri, Kollam, Kerala 690525, India
| | - Ashok K Sundramoorthy
- Centre for Nano-Biosensors, Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, No.162, Poonamallee High Road, Velappanchavadi, Chennai, Tamil Nadu 600077, India.
| |
Collapse
|
5
|
Gong X, Xu Q, Li J, Ma Y, Li X, Wu W, Wang H. Hydrophobic Mn-Doped Solid-State Red-Emitting Carbon Nanodots with AIE Effect and Their Hydrogel Composites for Color-Changing Anticounterfeiting. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2304673. [PMID: 37731094 DOI: 10.1002/smll.202304673] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/11/2023] [Indexed: 09/22/2023]
Abstract
The aggregation-caused quenching has always limited the high concentration and solid-state applications of carbon nanodots. While the aggregation-induced emission effect, dominated by intramolecular motion, may be an effective means to solve this problem. Here, hydrophobic solid-state red-light carbon nanodots (M-CDs) with 95% yield are synthesized by a one-step hydrothermal method using 2,2'-dithiodibenzoic acid as the carbon source and manganese acetate as the dopant source. The disulfide bond of 2,2'-dithiodibenzoic acid serves as the symmetry center of molecular rotation and Mn catalyzes the synthesis of M-CDs, which promotes the formation of the central graphitic carbon structure. The M-CDs/agar hydrogel composites can achieve fluorescence transition behavior because of the special fluorescence transition properties of M-CDs. When this composite hydrogel is placed in water, water molecules contact with M-CDs through the network structure of the hydrogels, making the aggregated hydrogels of M-CDs fluorescence orange-red under 365 nm excitation. While in dimethyl sulfoxide, water molecules in the hydrogels network are replaced and the M-CDs fluoresce blue when dispersed, providing a potential application in information encryption. In addition, high-performance monochromatic light-emitting diode (LED) devices are prepared by compounding M-CDs with epoxy resin and coating them on 365 nm LED chips.
Collapse
Affiliation(s)
- Xiao Gong
- The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, 310003, P. R. China
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Qingqing Xu
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Jiurong Li
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Yan Ma
- The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, 310003, P. R. China
| | - Xiaoyan Li
- The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, 310003, P. R. China
| | - Wanze Wu
- State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, P. R. China
| | - Hangxiang Wang
- The First Affiliated Hospital, NHC Key Laboratory of Combined Multi-Organ Transplantation, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, Zhejiang University School of Medicine, Hangzhou, 310003, P. R. China
- Jinan Microecological Biomedicine Shandong Laboratory, Jinan, 250117, P. R. China
| |
Collapse
|
6
|
Al-Mashriqi HS, Sanga P, Chen J, Li X, Xiao J, Li Y, Qiu H. Green-emitting carbon dots as a "turn on" fluorescence bio-probe for highly sensitive and selective detection of lipase in human serum. Anal Bioanal Chem 2024; 416:971-981. [PMID: 38082135 DOI: 10.1007/s00216-023-05086-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 11/13/2023] [Accepted: 11/28/2023] [Indexed: 01/23/2024]
Abstract
Enzyme activity assays play a crucial role in numerous fields, including biotechnology, the food industry, and clinical diagnostics. Lipases are particularly important enzymes due to their widespread use in lipid metabolism and esterification reactions. Here, we present a pioneering method for the sensitive and selective determination of lipase activity using green carbon dots (G-CDs) for first time. G-CDs are a fascinating class of carbon nanomaterials with unique optical properties and biocompatibility, making them ideal candidates for enzyme activity assays. This approach eliminates the need for traditional fluorophores or chromogenic substrates, reducing costs, fast response time (1 min), and environmental impact with a quantum yield (QY) of 7.42%. As designed, the G-CDs fluorescent probe turn-on demonstrated a reliable linear detection range from 0 to 9 mg/mL under ideal conditions, with detection limit of 0.01 mg/mL and limit of quantification (LOQ) of 0.045 mg/mL, respectively. Furthermore, the G-CDs system was thoroughly evaluated in human serum samples, showing recoveries ranging from 100.0 to 105.0%. These findings highlight the promising applicability of the G-CDs probe for lipase detection, yielding highly favorable results.
Collapse
Affiliation(s)
- Haitham Saad Al-Mashriqi
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100039, China
| | - Pascaline Sanga
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100039, China
| | - Jia Chen
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
- Xinjiang Uygur Autonomous Product Quality Supervision and Inspection Institute, Urumqi, 830000, China.
| | - Xin Li
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100039, China
| | - Jing Xiao
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100039, China
| | - Yan Li
- Xinjiang Uygur Autonomous Product Quality Supervision and Inspection Institute, Urumqi, 830000, China
| | - Hongdeng Qiu
- CAS Key Laboratory of Chemistry of Northwestern Plant Resources and Key Laboratory for Natural Medicine of Gansu Province, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
- University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, 100039, China.
| |
Collapse
|
7
|
Ullah I, Suliman H, Alamzeb M, Abid OUR, Sohail M, Ullah M, Haleem A, Omer M. An insight into recent developments of copper, silver and gold carbon dots: cancer diagnostics and treatment. Front Bioeng Biotechnol 2023; 11:1292641. [PMID: 38162182 PMCID: PMC10757632 DOI: 10.3389/fbioe.2023.1292641] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 11/20/2023] [Indexed: 01/03/2024] Open
Abstract
Cancer is one of the most fatal diseases globally, however, advancement in the field of nanoscience specifically novel nanomaterials with nano-targeting of cancer cell lines has revolutionized cancer diagnosis and therapy and has thus attracted the attention of researchers of related fields. Carbon Dots (CDs)-C-based nanomaterials-have emerged as highly favorable candidates for simultaneous bioimaging and therapy during cancer nano-theranostics due to their exclusive innate FL and theranostic characteristics exhibited in different preclinical results. Recently, different transition metal-doped CDs have enhanced the effectiveness of CDs manifold in biomedical applications with minimum toxicity. The use of group-11 (Cu, Ag and Au) with CDs in this direction have recently gained the attention of researchers because of their encouraging results. This review summarizes the current developments of group-11 (Cu, Ag and Au) CDs for early diagnosis and therapy of cancer including their nanocomposites, nanohybrids and heterostructures etc. All The manuscript highlights imaging applications (FL, photoacoustic, MRI etc.) and therapeutic applications (phototherapy, photodynamic, multimodal etc.) of Cu-, Ag- and Au-doped CDs reported as nanotheranostic agents for cancer treatment. Sources of CDs and metals alogwith applications to give a comparative analysis have been given in the tabulated form at the end of manuscript. Further, future prospects and challenges have also been discussed.
Collapse
Affiliation(s)
- Ihsan Ullah
- Institute of Chemical Sciences, University of Swat, Swat, Pakistan
| | - Hazrat Suliman
- Institute of Chemical Sciences, University of Swat, Swat, Pakistan
| | | | | | - Muhammad Sohail
- Institute of Chemical Sciences, University of Swat, Swat, Pakistan
| | - Mohib Ullah
- Department of Chemistry, Balochistan University of Information Technology Engineering and Management Sciences (BUITEMS), Takatu Campus, Quetta, Pakistan
| | - Abdul Haleem
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang, China
| | - Muhammad Omer
- Institute of Chemical Sciences, University of Swat, Swat, Pakistan
| |
Collapse
|
8
|
Sun L, Liu H, Ye Y, Lei Y, Islam R, Tan S, Tong R, Miao YB, Cai L. Smart nanoparticles for cancer therapy. Signal Transduct Target Ther 2023; 8:418. [PMID: 37919282 PMCID: PMC10622502 DOI: 10.1038/s41392-023-01642-x] [Citation(s) in RCA: 245] [Impact Index Per Article: 122.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 07/24/2023] [Accepted: 09/05/2023] [Indexed: 11/04/2023] Open
Abstract
Smart nanoparticles, which can respond to biological cues or be guided by them, are emerging as a promising drug delivery platform for precise cancer treatment. The field of oncology, nanotechnology, and biomedicine has witnessed rapid progress, leading to innovative developments in smart nanoparticles for safer and more effective cancer therapy. In this review, we will highlight recent advancements in smart nanoparticles, including polymeric nanoparticles, dendrimers, micelles, liposomes, protein nanoparticles, cell membrane nanoparticles, mesoporous silica nanoparticles, gold nanoparticles, iron oxide nanoparticles, quantum dots, carbon nanotubes, black phosphorus, MOF nanoparticles, and others. We will focus on their classification, structures, synthesis, and intelligent features. These smart nanoparticles possess the ability to respond to various external and internal stimuli, such as enzymes, pH, temperature, optics, and magnetism, making them intelligent systems. Additionally, this review will explore the latest studies on tumor targeting by functionalizing the surfaces of smart nanoparticles with tumor-specific ligands like antibodies, peptides, transferrin, and folic acid. We will also summarize different types of drug delivery options, including small molecules, peptides, proteins, nucleic acids, and even living cells, for their potential use in cancer therapy. While the potential of smart nanoparticles is promising, we will also acknowledge the challenges and clinical prospects associated with their use. Finally, we will propose a blueprint that involves the use of artificial intelligence-powered nanoparticles in cancer treatment applications. By harnessing the potential of smart nanoparticles, this review aims to usher in a new era of precise and personalized cancer therapy, providing patients with individualized treatment options.
Collapse
Affiliation(s)
- Leming Sun
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Hongmei Liu
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yanqi Ye
- Sorrento Therapeutics Inc., 4955 Directors Place, San Diego, CA, 92121, USA
| | - Yang Lei
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Rehmat Islam
- School of Life Sciences, Engineering Research Center of Chinese Ministry of Education for Biological Diagnosis, Treatment and Protection Technology and Equipment in Special Environment, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Sumin Tan
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Rongsheng Tong
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Yang-Bao Miao
- Department of Haematology, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| | - Lulu Cai
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Department of Pharmacy, Sichuan Provincial People's Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China.
| |
Collapse
|
9
|
Zhang Z, Xu Y, Zhu T, Sang Z, Guo X, Sun Y, Hao Y, Wang W. Hypoxia mitigation by manganese-doped carbon dots for synergistic photodynamic therapy of oral squamous cell carcinoma. Front Bioeng Biotechnol 2023; 11:1153196. [PMID: 37152644 PMCID: PMC10157228 DOI: 10.3389/fbioe.2023.1153196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Accepted: 04/12/2023] [Indexed: 05/09/2023] Open
Abstract
Photodynamic therapy (PDT) is widely used for cancer treatment due to its non-invasive and precise effectiveness, however, hypoxia in the tumor microenvironment greatly limits the efficacy of photodynamic therapy. Compared with conventional photosensitizers, carbon dots (CDs) have great potential. Therefore, developing a water-soluble, low-toxicity photosensitizer based on CDs is particularly important, especially one that can enhance the photodynamic efficacy using the tumor microenvironment to produce oxygen. Herein, manganese-doped carbon dot (Mn-CDs, ∼2.7 nm) nanoenzymes with excellent biocompatibility were prepared by a solvothermal method using ethylenediaminetetraacetic acid manganese disodium salt hydrate and o-phenylenediamine as precursors. TEM, AFM, HR-TEM, XRD, XPS, FT-IR, ζ potential, DLS, UV-Vis, and PL spectra were used to characterize the Mn-CDs. Cancer resistance was assessed using the CCK-8 kit, calcein AM versus propidium iodide (PI) kit, and the Annexin V-FITC/PI cell apoptosis assay kit. The obtained Mn-CDs have excellent near-infrared emission properties, stability, and efficient 1O2 generation. Notably, the manganese doping renders CDs with catalase (CAT)-like activity, which leads to the decomposition of acidic H2O2 in situ to generate O2, enhancing the PDT efficacy against OSCC-9 cells under 635 nm (300 mW·cm-2) irradiation. Thus, this work provides a simple and feasible method for the development of water-soluble photosensitizers with oxygen production, presenting good biosafety for PDT in hypoxic tumors.
Collapse
Affiliation(s)
- Zhe Zhang
- School of Stomatology of Qingdao University, Qingdao, China
| | - Yongzhi Xu
- School of Stomatology of Qingdao University, Qingdao, China
| | - Tingting Zhu
- School of Stomatology of Qingdao University, Qingdao, China
| | - Zhiqin Sang
- School of Stomatology of Qingdao University, Qingdao, China
| | - Xiaoli Guo
- School of Stomatology of Qingdao University, Qingdao, China
| | - Yu Sun
- School of Stomatology of Qingdao University, Qingdao, China
| | - Yuanping Hao
- School of Stomatology of Qingdao University, Qingdao, China
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China
- *Correspondence: Yuanping Hao, ; Wanchun Wang,
| | - Wanchun Wang
- School of Stomatology of Qingdao University, Qingdao, China
- Qingdao Stomatological Hospital Affiliated to Qingdao University, Qingdao, China
- *Correspondence: Yuanping Hao, ; Wanchun Wang,
| |
Collapse
|
10
|
Synthesis and recognition behavior studies of indole derivatives. INORG CHEM COMMUN 2022. [DOI: 10.1016/j.inoche.2022.110020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Zhao Y, Yang Q, Liu D, Liu T, Xing L. Neurotoxicity of nanoparticles: Insight from studies in zebrafish. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 242:113896. [PMID: 35870347 DOI: 10.1016/j.ecoenv.2022.113896] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/11/2022] [Accepted: 07/16/2022] [Indexed: 06/15/2023]
Abstract
Nanoparticles are widely used in industry and personal care, and they inevitably end up in people's bodies and the environment. The widespread use of nanoparticles has raised new concerns about their neurotoxicity, as nanoparticles can enter the nervous system by blood-brain barrier. In neurotoxicity testing, the zebrafish provides powerful tools to overcome the limitations of other models. This paper will provide a comprehensive review of the power of zebrafish in neurotoxicity tests and the neurotoxic effects of nanoparticles, including inorganic, organic, and metal-based nanoparticles, on zebrafish from different perspectives. Such information can be used to predict not only the effects of nanoparticles on other species exposed to the aquatic environment but also the neurotoxicity of nanoparticles in humans.
Collapse
Affiliation(s)
- Yongmei Zhao
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products,Nantong University, Nantong, China; Department of Pharmacology, Nantong University, Nantong, China
| | - Qiongxia Yang
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products,Nantong University, Nantong, China
| | - Dong Liu
- School of Life Sciences, Co-innovation Center of Neuroregeneration, Jiangsu Key Laboratory of Neuroregeneration, Nantong University, Nantong 226001, China
| | - Tianqing Liu
- NICM Health Research Institute, Western Sydney University, Westmead, Australia.
| | - Lingyan Xing
- Key Laboratory of Neuroregeneration of Jiangsu and the Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products,Nantong University, Nantong, China.
| |
Collapse
|
12
|
Liang Y, Zhang Y, Li M, Meng Z, Gong S, Du W, Yang Y, Wang Z, Wang S. A camphor-based fluorescent probe with high selectivity and sensitivity for formaldehyde detection in real food samples and living zebrafish. Microchem J 2022. [DOI: 10.1016/j.microc.2022.107305] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
13
|
Small nanoparticles bring big prospect: The synthesis, modification, photoluminescence and sensing applications of carbon dots. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.09.085] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
14
|
Fluorescent carbon dots for sensing metal ions and small molecules. CHINESE JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1016/j.cjac.2021.09.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
15
|
Waste-to-wealth: Functional biomass carbon dots based on bee pollen waste and application. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2021.12.094] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Liu YY, An JD, Wang TT, Li Y, Ding B. Hydrothermal assembly, structural diversity, and photocatalytic characterization of two polyoxometalates-based hybrid Cu II and Cu I coordination polymers with 2,6-(1,2,4-triazole-4-yl)pyridine. INORG NANO-MET CHEM 2021. [DOI: 10.1080/24701556.2020.1813767] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Affiliation(s)
- Yuan-Yuan Liu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic–Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, Tianjin, PR China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, PR China
| | - Jun-Dan An
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic–Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, Tianjin, PR China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, PR China
| | - Tian-Tian Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic–Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, Tianjin, PR China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, PR China
| | - Yong Li
- Tianjin Normal University, Tianjin, PR China
| | - Bin Ding
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules, MOE Key Laboratory of Inorganic–Organic Hybrid Functional Material Chemistry, College of Chemistry, Tianjin Normal University, Tianjin, PR China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education), Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin, PR China
| |
Collapse
|
17
|
Zhou Q, Wu Y, Li Z, Li Y, Liu M, Qu T, Chen C. Measurement of mercury with highly selective fluorescent chemoprobe by carbon dots and silver nanoparticles. CHEMOSPHERE 2021; 274:129959. [PMID: 33979911 DOI: 10.1016/j.chemosphere.2021.129959] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/28/2021] [Accepted: 02/09/2021] [Indexed: 05/24/2023]
Abstract
This work describes a novel fluorescent chemoprobe that uses carbon dots and silver nanoparticles (AgNPs) to monitor mercury ions in aqueous samples attributed to the principle of inner filter effect. The fluorescent response signal of the carbon dots is diminished by AgNPs, attributed to inner filter effect, and is restored with the addition of Hg2+. The fluorescent chemoprobe was specific over the range from 0.01 to 2.5 μM and a high sensitivity of 3.6 nM. The chemoprobe was validated using real local aqueous samples, and the spike recoveries of 97.4%-103% were excellent and satisfied. The data indicated that the developed fluorescent chemoprobe was sensitive, selective, stable and reliable. This fluorescent chemoprobe provides a sensitive tool with broad prospects for mercury detection in aqueous samples and the work will offer ideas for designing and constructing novel fluorescent probes.
Collapse
Affiliation(s)
- Qingxiang Zhou
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Yalin Wu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China; Beijing Municipal Research Institute of Environmental Protection, Beijing, 100037, China
| | - Zhi Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Yanhui Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Menghua Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Tongxu Qu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China
| | - Chunmao Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum-Beijing, Beijing, 102249, China.
| |
Collapse
|
18
|
Bi A, Liu M, Huang S, Zheng F, Ding J, Wu J, Tang G, Zeng W. Construction and theoretical insights into the ESIPT fluorescent probe for imaging formaldehyde in vitro and in vivo. Chem Commun (Camb) 2021; 57:3496-3499. [PMID: 33690773 DOI: 10.1039/d1cc00429h] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
We report the first ESIPT-based probe ABTB, for the highly sensitive and selective imaging of formaldehyde (FA). The various theoretical calculations have been systematically performed, and clearly unravel the lighting mechanism of the fluorescent probe for FA. Additionally, the probe was successfully applied in monitoring endogenous FA in the brain of AD mice.
Collapse
Affiliation(s)
- Anyao Bi
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha, 410013, P. R. China.
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Xu M, Li G, Zhang H, Chen X, Li Y, Yao Q, Xie M. Sequential delivery of dual drugs with nanostructured lipid carriers for improving synergistic tumor treatment effect. Drug Deliv 2021; 27:983-995. [PMID: 32611218 PMCID: PMC8216445 DOI: 10.1080/10717544.2020.1785581] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
To improve synergistic anticancer efficacy and minimize the adverse effects of chemotherapeutic drugs, temozolomide (TMZ) and curcumin (CUR) co-loaded nanostructured lipid carriers (NLCs) were prepared by microemulsion in this study. And the physicochemical properties, drug release behavior, intracellular uptake efficiency, in vitro and in vivo anticancer effects of TMZ/CUR-NLCs were evaluated. TMZ/CUR-NLCs showed enhanced inhibitory effects on glioma cells compared to single drug loaded NLCs, which may be owing to that the quickly released CUR can sensitize the cancer cells to TMZ. The inhibitory mechanism is a combination of S phase cell cycle arrest associated with induced apoptosis. Notably, TMZ/CUR-NLCs can accumulate at brain and tumor sites effectively and perform a significant synergistic anticancer effect in vivo. More importantly, the toxic effects of TMZ/CUR-NLCs on major organs and normal cells at the same therapeutic dosage were not observed. In conclusion, NLCs are promising nanocarriers for delivering dual chemotherapeutic drugs sequentially, showing potentials in the synergistic treatment of tumors while reducing adverse effects both in vitro and in vivo.
Collapse
Affiliation(s)
- Man Xu
- Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China.,Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Guangmeng Li
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Haoxiang Zhang
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Xiaoming Chen
- Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| | - Yi Li
- School of Materials, The University of Manchester, Manchester, UK
| | - Qianming Yao
- Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China
| | - Maobin Xie
- Qingyuan People's Hospital, The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan, China.,Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
20
|
Gong L, Zhao L, Tan M, Pan T, He H, Wang Y, He X, Li W, Tang L, Nie L. Two-Photon Fluorescent Nanomaterials and Their Applications in Biomedicine. J Biomed Nanotechnol 2021; 17:509-528. [PMID: 35057882 DOI: 10.1166/jbn.2021.3052] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
In recent years, two-photon excited (TPE) materials have attracted great attentions because of their excellent advantages over conventional one-photon excited (OPE) materials, such as deep tissue penetration, three-dimensional spatial selectivity and low phototoxicity. Also, they have
been widely applied in lots of field, such as biosensing, imaging, photo-catalysis, photoelectric conversion, and therapy. In this article, we review recent advances in vibrant topic of two-photon fluorescent nanomaterials, including organic molecules, quantum dots (QDs), carbon dots (CDs)
and metal nanoclus-ters (MNCs). The optical properties, synthetic methods and important applications of TPE nanomaterials in biomedical field, such as biosensing, imaging and therapy are introduced. Also, the probable challenges and perspectives in the forthcoming development of two-photon
fluorescent nanomaterials are addressed.
Collapse
Affiliation(s)
- Liang Gong
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology Zhuzhou 412007, P. R. China
| | - Lan Zhao
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology Zhuzhou 412007, P. R. China
| | - Miduo Tan
- Zhuzhou Central Hospital, Zhuzhou 412007, P. R. China
| | - Ting Pan
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology Zhuzhou 412007, P. R. China
| | - Huai He
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology Zhuzhou 412007, P. R. China
| | - Yulin Wang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology Zhuzhou 412007, P. R. China
| | - Xuliang He
- Zhuzhou People’s Hospital, Zhuzhou 412007, P. R. China
| | - Wenjun Li
- Zhuzhou People’s Hospital, Zhuzhou 412007, P. R. China
| | - Li Tang
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology Zhuzhou 412007, P. R. China
| | - Libo Nie
- Hunan Key Laboratory of Biomedical Nanomaterials and Devices, Hunan University of Technology Zhuzhou 412007, P. R. China
| |
Collapse
|
21
|
Li W, Zhang Y, Wang Y, Ma Y, Wang D, Li H, Ye X, Yin F, Li Z. Nucleic acids induced peptide-based AIE nanoparticles for fast cell imaging. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.09.054] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
22
|
Zhang M, Cheng J, Luo J, Hu J, Zhang Y, Sun Z, Cao P, Kong H, Qu H, Zhao Y. Development of Ecofriendly Carbon Dots for Improving Solubility and Antinociceptive Activity of Glycyrrhizic Acid. J Biomed Nanotechnol 2021; 17:640-651. [DOI: 10.1166/jbn.2021.3058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The therapeutic potential of glycyrrhizic acid (GA) with various pharmacological properties is extremely limited owing to its poor water solubility. To solve this problem, nanocarrier-nontoxic Glycyrrhizae Radix et Rhizoma-derived carbon dots (GRR-CDs) with a narrow particle
distribution of (1.90 ±0.44) nm were developed by an ecofriendly, simple and low-cost calcination method using GRR as the sole precursor. Then, the solubility of GA was shown to be prominently improved up to 27 times by GRR-CDs via a convenient and cost-effective ultrasonic dispersion
method without needing to add any organic reagent. Various technologies were further used to demonstrate the interaction between GA and GRR-CDs. In addition, a release study in vitro exhibited a sustained release of GA for 24 h with a higher release ratio of up to 92.87% compared with
that of pure GA. A significantly higher antinociceptive activity of the GRR-CDs-GA complexes compared to unprocessed GRR-CDs and GA was further demonstrated in both hot-plate model and acetic acid-induced writhing model. These results support the promising application of GRR-CDs as a potential
tool for improving the solubility and antinociceptive activity of poorly water-soluble drugs, such as GA.
Collapse
Affiliation(s)
- Meiling Zhang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jinjun Cheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Juan Luo
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Jie Hu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yue Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Ziwei Sun
- National Institute of Traditional Chinese Medicine Constitution and Preventive Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Peng Cao
- Beijing University of Chinese Medicine Third Affiliated Hospital, Beijing 100029, China
| | - Hui Kong
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Huihua Qu
- Center of Scientific Experiment, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yan Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| |
Collapse
|
23
|
Wang P, Yan Y, Zhang Y, Gao T, Ji H, Guo S, Wang K, Xing J, Dong Y. An Improved Synthesis of Water-Soluble Dual Fluorescence Emission Carbon Dots from Holly Leaves for Accurate Detection of Mercury Ions in Living Cells. Int J Nanomedicine 2021; 16:2045-2058. [PMID: 33731993 PMCID: PMC7957229 DOI: 10.2147/ijn.s298152] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Accepted: 02/23/2021] [Indexed: 12/15/2022] Open
Abstract
Background Carbon dots (CDs) emitting near-infrared fluorescence were recently synthesized from green leaves. However, the Hg2+ detection of CDs was limited because of the insufficient water solubility, low fluorescence and poor stability. Methods Dual fluorescence emission water-soluble CD (Dual-CD) was prepared through a solvothermal method from holly leaves and low toxic PEI1.8k. PEG was further grafted onto the surface to improve the water solubility and stability. Results The Dual-CD solution can emit 487 nm and 676 nm fluorescence under single excitation and exhibit high quantum yield of 16.8%. The fluorescence at 678 nm decreased remarkably while the emission at 470 nm was slightly affected by the addition of Hg2+. The ratiometric Hg2+ detection had a wide linear range of 0–100 μM and low detection limit of 14.0 nM. In A549 cells, there was a good linear relation between F487/F676 and the concentration of Hg2+ in the range of 0–60 μM; the detection limit was 477 nM. Furthermore, Dual-CD showed visual fluorescence change under Hg2+. Conclusion Dual-CD has ratiometric responsiveness to Hg2+ and can be applied for quantitative Hg2+ detection in living cells.
Collapse
Affiliation(s)
- Pengchong Wang
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China.,School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Yan Yan
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China.,School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Ying Zhang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Tingting Gao
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Hongrui Ji
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Shiyan Guo
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Ke Wang
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Jianfeng Xing
- School of Pharmacy, Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| | - Yalin Dong
- Department of Pharmacy, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, People's Republic of China
| |
Collapse
|
24
|
Barium charge transferred doped carbon dots with ultra-high quantum yield photoluminescence of 99.6% and applications. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2020.05.037] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
25
|
Sekar A, Yadav R, Basavaraj N. Fluorescence quenching mechanism and the application of green carbon nanodots in the detection of heavy metal ions: a review. NEW J CHEM 2021. [DOI: 10.1039/d0nj04878j] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
This review article highlights the quenching mechanism and applications of green CNDs for the detection of metal ions.
Collapse
Affiliation(s)
- Anithadevi Sekar
- Department of Chemistry
- Madras Christian College
- Affiliated to the University of Madras
- Chennai
- India
| | - Rakhi Yadav
- Department of Chemistry
- Madras Christian College
- Affiliated to the University of Madras
- Chennai
- India
| | - Nivetha Basavaraj
- Department of Chemistry
- Madras Christian College
- Affiliated to the University of Madras
- Chennai
- India
| |
Collapse
|
26
|
Ang WL, Boon Mee CAL, Sambudi NS, Mohammad AW, Leo CP, Mahmoudi E, Ba-Abbad M, Benamor A. Microwave-assisted conversion of palm kernel shell biomass waste to photoluminescent carbon dots. Sci Rep 2020; 10:21199. [PMID: 33273663 PMCID: PMC7712893 DOI: 10.1038/s41598-020-78322-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Accepted: 11/20/2020] [Indexed: 02/06/2023] Open
Abstract
In the present work, palm kernel shell (PKS) biomass waste has been used as a low-cost and easily available precursor to prepare carbon dots (CDs) via microwave irradiation method. The impacts of the reacting medium: water and diethylene glycol (DEG), and irradiation period, as well as the presence of chitosan on the CDs properties, have been investigated. The synthesized CDs were characterized by several physical and optical analyses. The performance of the CDs in terms of bacteria cell imaging and copper (II) ions sensing and removal were also explored. All the CDs possessed a size of 6-7 nm in diameter and the presence of hydroxyl and alkene functional groups indicated the successful transformation of PKS into CDs with carbon core consisting of C = C elementary unit. The highest quantum yield (44.0%) obtained was from the CDs synthesised with DEG as the reacting medium at irradiation period of 1 min. It was postulated that the high boiling point of DEG resulted in a complete carbonisation of PKS into CDs. Subsequently, the absorbance intensity and photoluminescence intensity were also much higher compared to other precursor formulation. All the CDs fluoresced in the bacteria culture, and fluorescence quenching occurred in the presence of heavy metal ions. These showed the potential of CDs synthesised from PKS could be used for cellular imaging and detection as well as removal of heavy metal ions.
Collapse
Affiliation(s)
- Wei Lun Ang
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia.
- Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia.
| | - Cheldclos A L Boon Mee
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia
| | - Nonni Soraya Sambudi
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
- Center for Advanced Integrated Membrane System (AIMS), Universiti Teknologi PETRONAS, 32610, Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Abdul Wahab Mohammad
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia
- Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia
| | - Choe Peng Leo
- School of Chemical Engineering, Engineering Campus, Universiti Sains Malaysia, 14300, Nibong Tebal, Penang, Malaysia
| | - Ebrahim Mahmoudi
- Department of Chemical and Process Engineering, Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia
- Centre for Sustainable Process Technology (CESPRO), Faculty of Engineering and Built Environment, Universiti Kebangsaan Malaysia, 43600, Bangi, Selangor Darul Ehsan, Malaysia
| | - Muneer Ba-Abbad
- Gas Processing Centre, Qatar University, P.O. Box 2713, Doha, Qatar
| | | |
Collapse
|
27
|
Self-assembled fluorescent tripeptide nanoparticles for bioimaging and drug delivery applications. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2020.07.011] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
28
|
Bright Mn-doped carbon dots for the determination of permanganate and L-ascorbic acid by a fluorescence on-off-on strategy. Mikrochim Acta 2020; 187:659. [PMID: 33201322 DOI: 10.1007/s00604-020-04604-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022]
Abstract
A one-pot hydrothermal synthesis of manganese-doped carbon dots (Mn-CDs) is reported for fluorescent "on-off-on" determination of Mn(VII) and L-ascorbic acid (L-AA) in aqueous solution and living cells. Mn-CDs were prepared by using sulfanilic acid, tetrakis(hydroxymethyl)phosphonium chloride, and Mn(II) chloride as precursors. Mn-CDs were characterized by several spectroscopic methods and microscopic techniques. Mn-CDs show distinctly long fluorescence lifetime (12.39 ± 0.07 ns) and high absolute fluorescence quantum yield (around 37%) with excitation and emission wavelengths of 362 and 500 nm, respectively. Mn-CDs exhibit no significant cytotoxicity to human cervical carcinoma HeLa cells and human embryonic kidney HEK-293T cells at 200 μg mL-1 level after 48 h incubation. The fluorescence of Mn-CDs at 500 nm (excited at 362 nm) is quenched efficiently by Mn(VII) and can be further recovered after the addition of L-AA, resulting in a fluorescent "on-off-on" assay for the determination of Mn(VII) and L-AA. Under optimal experimental conditions, the linear response covers the 3 to 150 μM Mn(VII) concentration range and the 3 to 140 μM L-AA concentration range. This method offers relatively low detection limits of 0.66 μM for Mn(VII) and 0.90 μM for L-AA. This strategy was applied to visual determination of Mn(VII) and L-AA in living HeLa cells with satisfying results. Graphical abstract Schematic presentation of bright Mn-CD-based fluorescence "on-off-on" assay for both Mn(VII) and L-AA. This fluorescent assay possessed low detection limit of 0.66 μM for Mn(VII) and 0.90 μM for L-AA. This strategy was applied for visual determination of Mn(VII) and L-AA in living HeLa cells with satisfying results.
Collapse
|
29
|
Gao X, Guo M, Liu M, Zhang L, Yao Z. A fluorometric and colorimetric approach for the rapid detection of berberine hydrochloride based on an anionic polythiophene derivative. LUMINESCENCE 2020; 36:668-673. [PMID: 33179429 DOI: 10.1002/bio.3986] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 11/05/2020] [Accepted: 11/07/2020] [Indexed: 11/06/2022]
Abstract
In this report, we develop a dual-output sensor with fluorometric and colorimetric responses, for the rapid and simple detection of berberine hydrochloride (BRH) in 100% aqueous solution based on an anionic polythiophene derivative, poly(2-(2-(4-methylthiophen-3-yloxy)-ethyl) malonic acid) (PTMA). The sensing performance and mechanism were carefully examined by absorption and emission spectra. It can be applied to quantitatively detect BRH in aqueous solution with a detection limit 0.27 μM. The appealing performance of the sensor was demonstrated to originate from the electrostatic and π-π interactions between PTMA and BRH, which promoted the conformational change and aggregation of the PTMA backbone. Moreover, this method allowed rapid detection of BRH in urine samples and BRH tablets with high accuracy.
Collapse
Affiliation(s)
- Xiao Gao
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China.,College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
| | - Mingwei Guo
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
| | - Ming Liu
- Technical Center for Safety of Industrial Products of Tianjin Customs District, Tianjin Key Laboratory of Port Non-Traditional Security (NTS) Risk Prevention and Control Science and Technology, Laboratory of Emergency Inspection and Testing for Toxicological Safety Assessment of Import and Export Food Safety of General Administration of Customs, Tianjin, China
| | - Li Zhang
- School of Materials Science and Engineering, Zhengzhou University, Zhengzhou, China
| | - Zhiyi Yao
- College of Food Science & Nutritional Engineering, China Agricultural University, Beijing, China
| |
Collapse
|
30
|
Liu W, Huang G, Su X, Li S, Wang Q, Zhao Y, Liu Y, Luo J, Li Y, Li C, Yuan D, Hong H, Chen X, Chen T. Zebrafish: A Promising Model for Evaluating the Toxicity of Carbon Dot-Based Nanomaterials. ACS APPLIED MATERIALS & INTERFACES 2020; 12:49012-49020. [PMID: 33074666 DOI: 10.1021/acsami.0c17492] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/09/2023]
Abstract
Carbon dots (CDs) exhibit a wide range of desirable properties including excellent photoluminescence, photostability, and water solubility, making them ideally suitable for use in the context of drug delivery, bioimaging, and related biomedical applications. Before these CDs can be translated for use in humans, however, further research regarding their in vivo toxicity is required. Owing to their low cost, rapid growth, and significant homology to humans, zebrafish (Danio rerio) are commonly employed as in vivo model systems in the toxicity studies of nanomaterials. In the present report, our group employed a hydrothermal approach to synthesize CDs and then assessed their toxicity in zebrafish. The resultant CDs were roughly 2.4 nm spheroid particles that emitted strong blue fluorescence in response to the excitation at 365 nm. These CDs did not induce any evident embryonic toxicity or did cause any apparent teratogenic effects during hatching or development when dosed at 150 μg/mL. However, significant effects were observed in zebrafish embryos at CD concentrations >200 μg/mL, including pericardial and yolk sac edema, delayed growth, spinal cord flexure, and death. These high CD concentrations were further associated with the reduction in zebrafish larval locomotor activity and decreased dopamine levels, reduced frequencies of tyrosine hydroxylase-positive dopaminergic neurons, and multiple organ damage. Further studies will be required to fully understand the mechanistic basis for CD-mediated neurotoxicity, with such studies being essential to fully understand the translational potential of these unique nanomaterials.
Collapse
Affiliation(s)
- Wei Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Gang Huang
- State Key Laboratory of Non-Food Biomass and Enzyme Technology, Guangxi Academy of Sciences, Nanning 530007, China
| | - Xiaoying Su
- School of Pharmaceutical Science, Guangzhou University of Chinese Medicine, Guangzhou 511400, China
| | - Siyi Li
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Qun Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yuying Zhao
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Yao Liu
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Jingshan Luo
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Ye Li
- Department of Pharmacy, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou 510630, China
| | - Chuwen Li
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Dongsheng Yuan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Honghai Hong
- Department of Clinical Laboratory, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou 510150, China
| | - Xiaojia Chen
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau 999078, China
| | - Tongkai Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| |
Collapse
|
31
|
Liu G, Ma X, Tang Y, Miao P. Ratiometric fluorescence method for ctDNA analysis based on the construction of a DNA four-way junction. Analyst 2020; 145:1174-1178. [PMID: 32016264 DOI: 10.1039/d0an00044b] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
We present a novel ratiometric fluorescent biosensor for ctDNA analysis based on the construction of a DNA four-way junction (FWJ). Three fuel strands for the FWJ are firstly designed and prepared. Another essential strand for the formation of the structure is the DNA product generated from target ctDNA initiated strand displacement amplification. With the transformation of the DNA structure, the FRET states of two fluorophores change and the ratiometric fluorescence response can be recorded to indicate the level of the initial ctDNA. The proposed method also has excellent capability to discriminate mismatches and shows potential practical utility for clinical samples.
Collapse
Affiliation(s)
- Guangxing Liu
- CAS Key Lab of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, China.
| | | | | | | |
Collapse
|
32
|
Abstract
Early diagnosis of diseases is of great importance because it increases the chance of a cure and significantly reduces treatment costs. Thus, development of rapid, sensitive, and reliable biosensing techniques is essential for the benefits of human life and health. As such, various nanomaterials have been explored to improve performance of biosensors, among which, carbon dots (CDs) have received enormous attention due to their excellent performance. In this Review, the recent advancements of CD-based biosensors have been carefully summarized. First, biosensors are classified according to their sensing strategies, and the role of CDs in these sensors is elaborated in detail. Next, several typical CD-based biosensors (including CD-only, enzymatic, antigen-antibody, and nucleic acid biosensors) and their applications are fully discussed. Last, advantages, challenges, and perspectives on the future trends of CD-based biosensors are highlighted.
Collapse
Affiliation(s)
- Chunyu Ji
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, Yunnan 650091, People’s Republic of China
| | - Yiqun Zhou
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Roger M. Leblanc
- Department of Chemistry, University of Miami, 1301 Memorial Drive, Coral Gables, Florida 33146, United States
| | - Zhili Peng
- National Center for International Research on Photoelectric and Energy Materials, School of Materials and Energy, Yunnan University, Kunming, Yunnan 650091, People’s Republic of China
| |
Collapse
|
33
|
Fabrication of ZnO/Carbon Quantum Dots Composite Sensor for Detecting NO Gas. SENSORS 2020; 20:s20174961. [PMID: 32887307 PMCID: PMC7506710 DOI: 10.3390/s20174961] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2020] [Revised: 08/30/2020] [Accepted: 09/01/2020] [Indexed: 12/03/2022]
Abstract
ZnO and carbon quantum dots (CQDs) were synthesized by a hydrothermal method, and CQDs were doped into ZnO by a grinding method to fabricate a ZnO/CQDs composite. The X-ray diffraction and the scanning electron microscope revealed that the as-prepared ZnO has a structure of wurtzite hexagonal ZnO and a morphology of a flower-like microsphere which can provide more surface areas to adsorbed gases. The ZnO/CQDs composite has a higher gas sensitivity response to NO gas than ZnO microspheres. A gas sensitivity test of the ZnO/CQDs composite showed that the sensor had a high NO response (238 for 100 ppm NO) and NO selectivity. The detection limit of the ZnO/CQDs composite to NO was 100 ppb and the response and recovery times were 34 and 36 s, respectively. The active functional group provided by CQDs has a significant effect on NO gas sensitivity, and the gas sensitivity mechanism of the ZnO/CQDs composite is discussed.
Collapse
|
34
|
Zuo P, Chen Z, Yu F, Zhang J, Zuo W, Gao Y, Liu Q. An easy synthesis of nitrogen and phosphorus co-doped carbon dots as a probe for chloramphenicol. RSC Adv 2020; 10:32919-32926. [PMID: 35516483 PMCID: PMC9056625 DOI: 10.1039/d0ra04228e] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 07/28/2020] [Indexed: 11/21/2022] Open
Abstract
Heteroatom doping in carbon dots (CDs) was found to be an efficient way to regulate the structure of electronic energy levels and enhance the fluorescence characteristics of CDs. Nevertheless, most reported fabrication processes of heteroatom-doped CDs are rigorous and complex. Herein, a facile and novel strategy was developed to rapidly prepare nitrogen and phosphorus co-doped CDs (N,P-CDs) using acetic acid as the carbon source, and arginine, 1,2-ethylenediamine (EDA) and diphosphorus pentoxide as the dopants, respectively. The optical, morphological and structural characterizations of the synthesized N,P-CDs were investigated via UV and photoluminescence spectroscopy, X-ray photoelectron spectroscopy, TEM, and FT-IR spectroscopy. The N,P-CDs display outstanding fluorescence stability under high ionic strength (1.6 M KCl), and long time UV irradiation, indicating that they can be used as favorable candidates for fluorescent probes. The fluorescence of N,P-CDs was selectively quenched by chloramphenicol (CAP) with a short response time. The linear range of the response to CAP was from 0.8 to 70 μM with a limit of detection of 0.36 μM (S/N = 3). Notably, the fabricated N,P-CDs were employed for the highly selective and sensitive detection of CAP in milk samples, indicating their potential applications in biologically related areas.
Collapse
Affiliation(s)
- Pengli Zuo
- Central Laboratory, Linyi Central Hospital Linyi 276400 China +86 539 2256919 +86 539 2256919
| | - Zhongguang Chen
- Central Laboratory, Linyi Central Hospital Linyi 276400 China +86 539 2256919 +86 539 2256919
| | - Fengling Yu
- Central Laboratory, Linyi Central Hospital Linyi 276400 China +86 539 2256919 +86 539 2256919
| | - Jinyu Zhang
- Central Laboratory, Linyi Central Hospital Linyi 276400 China +86 539 2256919 +86 539 2256919
| | - Wei Zuo
- Central Laboratory, Linyi Central Hospital Linyi 276400 China +86 539 2256919 +86 539 2256919
| | - Yanli Gao
- Central Laboratory, Linyi Central Hospital Linyi 276400 China +86 539 2256919 +86 539 2256919
| | - Qingyou Liu
- Linyi Center for Disease Prevention and Control Linyi 276000 China
| |
Collapse
|
35
|
Selective recognition of Zn(II) ions in live cells based on chelation enhanced near-infrared fluorescent probe. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119640] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
36
|
Kou X, Zhang X, Shao X, Jiang C, Ning L. Recent advances in optical aptasensor technology for amplification strategies in cancer diagnostics. Anal Bioanal Chem 2020; 412:6691-6705. [PMID: 32642836 DOI: 10.1007/s00216-020-02774-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 05/25/2020] [Accepted: 06/16/2020] [Indexed: 02/06/2023]
Abstract
Aptamers are chemically synthetic single-stranded DNA or RNA molecules selected by molecular evolution. They have been widely used as attractive tools in biosensing and bioimaging because they can bind to a large variety of targets with high sensitivity and high affinity and specificity. As recognition elements, aptamers contribute in particular to cancer diagnostics by recognizing different cancer biomarkers, while they can also facilitate ultrasensitive detection by further employing signal amplification elements. Optical techniques have been widely used for direct and real-time monitoring of cancer-related biomolecules and bioprocesses due to the high sensitivity, quick response, and simple operation, which has greatly benefited cancer diagnostics. In this review, we highlight recent advances in optical platform-based sensing strategies for cancer diagnostics aided by aptamers. Limitations and current challenges are also discussed.
Collapse
Affiliation(s)
- Xinyue Kou
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, Jiangsu, China
| | - Xujia Zhang
- Kangda College of Nanjing Medical University, Lianyungang, 222000, Jiangsu, China
| | - Xuejun Shao
- Department of Clinical Laboratory, Children's Hospital of Soochow University, Suzhou, 215025, Jiangsu, China
| | - Chenyu Jiang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou, 215163, Jiangsu, China. .,Jinan Guokeyigong Science and Technology Development Co., Ltd., Jinan, 250103, Shandong, China.
| | - Limin Ning
- School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, Nanjing, 210023, Jiangsu, China.
| |
Collapse
|
37
|
Wang XZ, Du J, Xiao NN, Zhang Y, Fei L, LaCoste JD, Huang Z, Wang Q, Wang XR, Ding B. Driving force to detect Alzheimer's disease biomarkers: application of a thioflavine T@Er-MOF ratiometric fluorescent sensor for smart detection of presenilin 1, amyloid β-protein and acetylcholine. Analyst 2020; 145:4646-4663. [PMID: 32458857 DOI: 10.1039/d0an00440e] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Currently, the highly sensitive detection of Alzheimer's Disease (AD) biomarkers, namely presenilin 1, amyloid β-protein (Aβ), and acetylcholine (ACh), is vital to helping us prevent and diagnose AD. In this work, a novel metal-organic framework [Er(L)(DMF)1.27]n (Er-MOF) (H3L = terphenyl-3,4'',5-tricarboxylic acid) has been synthesized by solvothermal and ultrasonic methods. Further, through the post-synthesis assembly strategy, the fluorescent dye thioflavine T (ThT) has been introduced into Er-MOF to construct a dual-emission ThT@Er-MOF ratiometric fluorescent sensor. This is the first time that ThT@Er-MOF has been successfully applied in the highly sensitive detection of three main Alzheimer's disease biomarkers in the cerebrospinal fluid through three different low cost and facile detection strategies. Firstly, with the spilted DNA strategy, this is the first time that ThT@Er-MOF can be applied in the label-free detection of SSODN (part of the presenilin 1 gene). Secondly, for the detection of Aβ, because ThT can be specifically combined with Aβ and has an excellent characteristic fluorescence band, the dual-emission ThT@Er-MOF sensor can be selectively applied to detect Aβ over the analog protein, which shows far more sensitivity than other Aβ sensors. Thirdly, through the acetylcholine esterase (AchE) enzymatic cleavage and release strategy, ThT@Er-MOF enhances the detection of acetylcholine (ACh) with a low limit of detection (LOD) value (0.03226 nM). It should be noticed that the three different detection methods are low cost and facile. This study also provides the first example of utilizing laser scanning confocal microscopy (LSCM) to investigate the fluorescence resonance energy transfer (FRET) detection mechanism by ThT@Er-MOF in more detail. The location of FRET occurrence and FRET efficiency can also be investigated by LSCM, which can be helpful to understand the FRET detection process by these unique MOF-based hybrid materials.
Collapse
Affiliation(s)
- Xing Ze Wang
- Key Laboratory of Inorganic-Organic Hybrid Functional Material Chemistry (Tianjin Normal University), Ministry of Education, Tianjin Key Laboratory of Structure and Performance for Functional Molecule, College of Chemistry, Tianjin Normal University, 393 Binshui West Road, Tianjin 300387, PR China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Le TH, Lee HJ, Kim JH, Park SJ. Detection of Ferric Ions and Catecholamine Neurotransmitters via Highly Fluorescent Heteroatom Co-Doped Carbon Dots. SENSORS (BASEL, SWITZERLAND) 2020; 20:E3470. [PMID: 32575578 PMCID: PMC7349486 DOI: 10.3390/s20123470] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/03/2020] [Accepted: 06/16/2020] [Indexed: 12/23/2022]
Abstract
Carbon dots (CDs) demonstrate very poor fluorescence quantum yield (QY). In this study, with the help of a hydrothermal method, we combined CDs with nitrogen and phosphorus elements belonging to the VA group (in the periodic table) to form heteroatom co-doped CDs, i.e., nitrogen and phosphorus co-doped carbon dots (NPCDs). These displayed a significant improvement in the QY (up to 84%), which was as much as four times than that of CDs synthesized by the same method. The as-prepared NPCDs could be used as an "off-on" fluorescence detector for the rapid and effective sensing of ferric ions (Fe3+) and catecholamine neurotransmitters (CNs) such as dopamine (DA), adrenaline (AD), and noradrenaline (NAD). The fluorescence of NPCDs was "turned off" and the emission wavelength was slightly red-shifted upon increasing the Fe3+ concentration. However, when CNs were incorporated, the fluorescence of NPCDs was recovered in a short response time; this indicated that CN concentration could be monitored, relying on enhancing the fluorescence signal of NPCDs. As a result, NPCDs are considered as a potential fluorescent bi-sensor for Fe3+ and CN detection. Particularly, in this research, we selected DA as the representative neurotransmitter of the CN group along with Fe3+ to study the sensing system based on NPCDs. The results exhibited good linear ranges with a limit of detection (LOD) of 0.2 and 0.1 µM for Fe3+ and DA, respectively.
Collapse
Affiliation(s)
| | | | | | - Sang Joon Park
- Department of Chemical and Biological Engineering, Gachon University, Seongnam 13120, Korea; (T.H.L.); (H.J.L.); (J.H.K.)
| |
Collapse
|
39
|
Luo Q, Ding H, Hu X, Xu J, Sadat A, Xu M, Primo FL, Tedesco AC, Zhang H, Bi H. Sn 4+ complexation with sulfonated-carbon dots in pursuit of enhanced fluorescence and singlet oxygen quantum yield. Dalton Trans 2020; 49:6950-6956. [PMID: 32352111 DOI: 10.1039/d0dt01187h] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Here we report a novel strategy to crosslink the surface of sulfonated-carbon dots (S-CDs) by complexing SnCl4 with sulfonate groups (-SO3-) on the CDs in aqueous solution. The S-CDs show an average photoluminescence (PL) quantum yield of 21% and a mean diameter of 3.8 nm. After being complexed with Sn4+, the as-obtained Sn@S-CDs present a reduced size of 1.8 nm and a higher PL quantum yield of 32%. More interestingly, the Sn@S-CDs show an enhanced singlet oxygen (1O2) quantum yield as high as 37% compared to that of the S-CDs (27%). In the HepG2 cell line as a model, the Sn@S-CDs exhibit a remarkable cell imaging effect and in vitro PDT efficiency. Therefore, our study proposes a simple but effective cross-linking strategy to synthesize CDs incorporated with metal ions, for the purpose of achieving an enhanced fluorescence intensity and a higher 1O2 quantum yield.
Collapse
Affiliation(s)
- Qinghua Luo
- School of Chemistry and Chemical Engineering, Anhui Key Laboratory of Modern Biomanufacturing, Anhui University, Hefei 230601, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
40
|
Wu D, Wang D, Ye X, Yuan K, Xie Y, Li B, Huang C, Kuang T, Yu Z, Chen Z. Fluorescence detection of Escherichia coli on mannose modified ZnTe quantum dots. CHINESE CHEM LETT 2020. [DOI: 10.1016/j.cclet.2019.11.029] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
41
|
Kou X, Jiang S, Park SJ, Meng LY. A review: recent advances in preparations and applications of heteroatom-doped carbon quantum dots. Dalton Trans 2020; 49:6915-6938. [PMID: 32400806 DOI: 10.1039/d0dt01004a] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Carbon quantum dots (CQDs) are widely used in optoelectronic catalysis, biological imaging, and ion probes owing to their low toxicity, stable photoluminescence, and ease of chemical modification. However, the low fluorescence yield and monochromatic fluorescence of CQDs limit their practical applications. This review summarizes the commonly used approaches for improving the fluorescence efficiency of CQDs doped with non-metallic (heteroatom) elements. Herein, three types of heteroatom-doped CQDs have been investigated: (1) CQDs doped with a single heteroatom; (2) CQDs doped with two heteroatoms; and (3) CQDs doped with three heteroatoms. The limitations and future perspectives of doped CQDs from the viewpoint of producing CQDs for specific applications, especially for bioimaging and light emitting diodes, have also been discussed herein.
Collapse
Affiliation(s)
- Xiaoli Kou
- Department of Chemical Engineering, Yanbian University, Park Road 977, Yanji 133002, Jilin Province, PR China
| | | | | | | |
Collapse
|
42
|
Liu YY, An JD, Wang TT, Li Y, Ding B. Solvo-thermal Preparation and Characterization of Two Cd II
Coordination Polymers Constructed From 2,6-(1,2,4-Triazole-4-yl)pyridine and 5-R-Isophthalic Acid (R = Nitro, Sulfo). Z Anorg Allg Chem 2020. [DOI: 10.1002/zaac.202000119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yuan-Yuan Liu
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; MOE Key Laboratory of InorganicOrganic Hybrid Functional Material Chemistry; Tianjin Normal University; 300387 Tianjin P. R. China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; 300071 Tianjin P. R. China
| | - Jun-Dan An
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; MOE Key Laboratory of InorganicOrganic Hybrid Functional Material Chemistry; Tianjin Normal University; 300387 Tianjin P. R. China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; 300071 Tianjin P. R. China
| | - Tian-Tian Wang
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; MOE Key Laboratory of InorganicOrganic Hybrid Functional Material Chemistry; Tianjin Normal University; 300387 Tianjin P. R. China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; 300071 Tianjin P. R. China
| | - Yong Li
- Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Tianjin Normal University; 300387 Tianjin P. R. China
| | - Bin Ding
- Tianjin Key Laboratory of Structure and Performance for Functional Molecules; MOE Key Laboratory of InorganicOrganic Hybrid Functional Material Chemistry; Tianjin Normal University; 300387 Tianjin P. R. China
- Key Laboratory of Advanced Energy Materials Chemistry (Ministry of Education); Collaborative Innovation Center of Chemical Science and Engineering (Tianjin); Nankai University; 300071 Tianjin P. R. China
| |
Collapse
|
43
|
Xiao J, Hao X, Miao C, Li F, Huang J, Lin X, Chen M, Wu X, Weng S. Determination of chondroitin sulfate in synovial fluid and drug by ratiometric fluorescence strategy based on carbon dots quenched FAM-labeled ssDNA. Colloids Surf B Biointerfaces 2020; 192:111030. [PMID: 32353709 DOI: 10.1016/j.colsurfb.2020.111030] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2020] [Revised: 03/31/2020] [Accepted: 04/07/2020] [Indexed: 12/19/2022]
Abstract
Chondroitin sulfate (CS) plays an increasingly important role in clinical settings and pharmacy quality control. However, sensitive and simple methods for CS detection remain limited. In this work, positively charged nitrogen doped carbon dots (P-NCDs) with internal luminescence and quenching property to FAM-labeled random-sequence ssDNA (F-ssDNA) were prepared by a simple heating method. P-NCDs attached and quenched F-ssDNA through electrostatic interaction to form the system of P-NCDs and F-ssDNA (P-NCDs/F-ssDNA) with retained fluorescence intensity of P-NCDs. The highly negatively charged CS reacted electrostatically with P-NCDs and then replaced F-ssDNA in P-NCDs/F-ssDNA to recover the fluorescence intensity of the original quenched F-ssDNA while retaining the internal fluorescence intensity of P-NCDs. Thus, by using restored F-ssDNA as the signal controlled by adding CS to P-NCDs/F-ssDNA, a ratiometric fluorescence strategy based on the retained fluorescence of P-NCDs as reference signal was fabricated through synchronous fluorescence spectrometry for the sensitive detection of CS. Under the optimal experimental conditions, a linear equation for CS was obtained for CS concentration within the range of 0.05-2.0 μg/mL. The method was also successfully applied for the accurate determination of CS in joint fluid samples of arthritic patients, chondroitin sulfate tablets, and chondroitin sulfate eye drops, suggesting its appreciable application potential in the clinic.
Collapse
Affiliation(s)
- Jiecheng Xiao
- Department of Orthopedic Surgery, the Affiliated Hospital of Putian University, Putian 351100, China
| | - Xiaoli Hao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Chenfang Miao
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Fenglan Li
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Jianyong Huang
- Department of Pharmaceutical, Fujian Medical University Union Hospital, Fuzhou 350001, China.
| | - Xinhua Lin
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| | - Min Chen
- Department of Orthopedic Surgery, Fujian Medical University Union Hospital, Fuzhou 350001, China.
| | - Xianwei Wu
- Department of Orthopedic Surgery, the Affiliated Hospital of Putian University, Putian 351100, China.
| | - Shaohuang Weng
- Department of Pharmaceutical Analysis, School of Pharmacy, Fujian Medical University, Fuzhou 350122, China
| |
Collapse
|
44
|
Jiang Y, Miao P. DNA Dumbbell and Chameleon Silver Nanoclusters for miRNA Logic Operations. RESEARCH (WASHINGTON, D.C.) 2020; 2020:1091605. [PMID: 32342044 PMCID: PMC7071348 DOI: 10.34133/2020/1091605] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2019] [Accepted: 02/17/2020] [Indexed: 04/26/2023]
Abstract
Multiplex miRNA analysis is a fundamental issue for exploring a complex biological system and early diagnosis of miRNA-related diseases. Herein, we have developed a series of novel logic gates for miRNA analysis coupling DNA nanostructures and chameleon silver nanoclusters (AgNCs). DNA dumbbell structures are firstly designed with two independent nucleation sequences for AgNCs at the 5' and 3' ends, respectively. By introducing different miRNA inputs, separations of two AgNCs are controlled and the fluorescence property of AgNCs changes. By studying the ratiometric fluorescence responses, sensitive and selective analysis of multiple miRNAs can be achieved. The present work provides powerful tools for miRNA diagnostics and may also guide future DNA nanostructure-based logic gates.
Collapse
Affiliation(s)
- Yiting Jiang
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of
Sciences, Suzhou 215163, China
- University of Science and Technology of China, Hefei 230026, China
| | - Peng Miao
- Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of
Sciences, Suzhou 215163, China
- University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
45
|
Wang Y, Hao X, Liang L, Gao L, Ren X, Wu Y, Zhao H. A coumarin-containing Schiff base fluorescent probe with AIE effect for the copper(ii) ion. RSC Adv 2020; 10:6109-6113. [PMID: 35497414 PMCID: PMC9049598 DOI: 10.1039/c9ra10632d] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 01/26/2020] [Indexed: 01/12/2023] Open
Abstract
A novel coumarin-derived Cu2+-selective Schiff base fluorescent “turn-off” chemosensor CTPE was successfully obtained, which showed an AIE effect. It could identify Cu2+ by quenching its fluorescence. The lower limit of detection was 0.36 μM. CTPE can act as a highly selective and sensitive fluorescence probe for detecting Cu2+. A novel coumarin-derived Schiff base fluorescent “turn-off” chemosensor with AIE effect showed selectivity towards Cu2+. The recognition mechanism is presented.![]()
Collapse
Affiliation(s)
- Ying Wang
- College of Chemistry and Environmental Science
- Hebei University
- Baoding
- P. R. China
| | - Xiaohui Hao
- College of Physics Science and Technology
- Hebei University
- Baoding
- P. R. China
| | - Lixun Liang
- College of Chemistry and Environmental Science
- Hebei University
- Baoding
- P. R. China
| | - Luyao Gao
- College of Chemistry and Environmental Science
- Hebei University
- Baoding
- P. R. China
| | - Xumin Ren
- College of Chemistry and Environmental Science
- Hebei University
- Baoding
- P. R. China
| | - Yonggang Wu
- College of Chemistry and Environmental Science
- Hebei University
- Baoding
- P. R. China
| | - Hongchi Zhao
- College of Chemistry and Environmental Science
- Hebei University
- Baoding
- P. R. China
| |
Collapse
|
46
|
Zhou R, Cui G, Hu Y, Qi Q, Huang W, Yang L. An effective biocompatible fluorescent probe for bisulfite detection in aqueous solution, living cells, and mice. RSC Adv 2020; 10:25352-25357. [PMID: 35517487 PMCID: PMC9055347 DOI: 10.1039/d0ra03329d] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 06/05/2020] [Indexed: 02/05/2023] Open
Abstract
Sulfur dioxide, an air pollutant, is easily hydrated to sulfites and bisulfites and extremely harmful to human health. On the other hand, endogenous sulfur dioxide is the fourth gasotransmitter. In view of the above, it is worth developing an effective method for the detection of these compounds. In this paper, a novel colorimetric fluorescent probe (Hcy-Mo), based on hemi-cyanine, for bisulfites is reported. Hcy-Mo shows excellent selectivity for bisulfites over various other species including cysteine, glutathione, CN−, and HS−, and undergoes 1,4-addition reactions at the C-4 atom of the ethylene group. The reaction can be completed in 30 s in a PBS buffer solution and displays high sensitivity (limit of detection is 80 nM) for bisulfites. Test paper experiments show that the probe can be used for bisulfite detection in aqueous solutions. In addition, Hcy-Mo exhibits excellent cell permeability and low cytotoxicity for the successful detection of bisulfites in living MDA-MB-231 cells and in living mice, implying that this probe would be of great benefit to biological researchers for investigating the detailed biological and pharmacological functions of bisulfites in biological systems. Sulfur dioxide, an air pollutant, is easily hydrated to sulfites and bisulfites and extremely harmful to human health.![]()
Collapse
Affiliation(s)
- Ruqiao Zhou
- State Key Laboratory of Biotherapy and Cancer Center
- West China Hospital
- Sichuan University
- Chengdu
- P. R. China
| | - Guiling Cui
- West China School of Pharmacy
- Sichuan University
- Chengdu
- China
| | - Yuefu Hu
- West China School of Pharmacy
- Sichuan University
- Chengdu
- China
| | - Qingrong Qi
- West China School of Pharmacy
- Sichuan University
- Chengdu
- China
| | - Wencai Huang
- School of Chemical Engineering
- Sichuan University
- Chengdu
- China
| | - Li Yang
- State Key Laboratory of Biotherapy and Cancer Center
- West China Hospital
- Sichuan University
- Chengdu
- P. R. China
| |
Collapse
|
47
|
Sahadev N, Anappara AA. Photo-to-thermal conversion: effective utilization of futile solid-state carbon quantum dots (CQDs) for energy harvesting applications. NEW J CHEM 2020. [DOI: 10.1039/d0nj01804j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dominant non-radiative electronic de-excitation in fluorescence quenched CQDs in the solid state results in excellent photo-to-thermal transduction in the system.
Collapse
Affiliation(s)
- Nishaina Sahadev
- Photonic Materials and Devices Laboratory
- Department of Physics
- National Institute of Technology Calicut
- Kozhikode 673601
- India
| | - Aji A. Anappara
- Photonic Materials and Devices Laboratory
- Department of Physics
- National Institute of Technology Calicut
- Kozhikode 673601
- India
| |
Collapse
|
48
|
Zan M, Li C, Zhu D, Rao L, Meng QF, Chen B, Xie W, Qie X, Li L, Zeng X, Li Y, Dong WF, Liu W. A novel “on–off–on” fluorescence assay for the discriminative detection of Cu(ii) and l-cysteine based on red-emissive Si-CDs and cellular imaging applications. J Mater Chem B 2020; 8:919-927. [DOI: 10.1039/c9tb02681a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Copper ions (Cu2+) and l-cysteine (l-Cys) in the human body always play critical roles in various physiological processes, while abnormal Cu2+ and l-Cys concentrations in the biological system lead to many diseases.
Collapse
|
49
|
Stan CS, Coroabă A, Ursu EL, Secula MS, Simionescu BC. Fe(III) doped carbon nanodots with intense green photoluminescence and dispersion medium dependent emission. Sci Rep 2019; 9:18893. [PMID: 31827161 PMCID: PMC6906313 DOI: 10.1038/s41598-019-55264-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Accepted: 11/21/2019] [Indexed: 11/16/2022] Open
Abstract
The preparation and investigation of Fe(III) doped carbon nanodots (CNDs) with intense green photoluminescence and emission dependence on the dispersion medium are reported. Their unusual photoluminescence is especially highlighted in water where the initial blue emission is gradually shifted to intense deep green, while in other common solvents (chloroform, acetone etc.) this behavior has not been observed. Through embedding in a polymer matrix (e.g., PVA) the color transition becomes reversible and dependent on water content, ranging from a full blue emission, when completely dried, to an intense green emission, when wetted. The preparation path of the Fe(III) doped CNDs undergoes two main stages involving the initial obtaining of Fe(III)-N-Hydroxyphthalimide complex and then a thermal processing through controlled pyrolysis. Morphostructural investigations of the prepared Fe(III) doped CNDs were performed through TG, FT-IR, XPS, DLS, TEM and AFM techniques whereas absolute PLQY, steady state and lifetime fluorescence were used to highlight their luminescence properties. The results issued from structural and fluorescence investigations bring new insights on the particular mechanisms involved in CNDs photoluminescence, a topic still open to debate.
Collapse
Affiliation(s)
- Corneliu Sergiu Stan
- Gheorghe Asachi Technical University of Iasi, Faculty of Chemical Engineering and Environmental Protection, Iasi, 700050, Romania.
| | - Adina Coroabă
- Petru Poni Institute of Macromolecular Chemistry, Department of Chemistry, Iasi, 700487, Romania
| | - Elena Laura Ursu
- Petru Poni Institute of Macromolecular Chemistry, Department of Chemistry, Iasi, 700487, Romania
| | - Marius Sebastian Secula
- Gheorghe Asachi Technical University of Iasi, Faculty of Chemical Engineering and Environmental Protection, Iasi, 700050, Romania
| | - Bogdan C Simionescu
- Gheorghe Asachi Technical University of Iasi, Faculty of Chemical Engineering and Environmental Protection, Iasi, 700050, Romania
- Petru Poni Institute of Macromolecular Chemistry, Department of Chemistry, Iasi, 700487, Romania
| |
Collapse
|
50
|
Li W, Liu Y, Wang B, Song H, Liu Z, Lu S, Yang B. Kilogram-scale synthesis of carbon quantum dots for hydrogen evolution, sensing and bioimaging. CHINESE CHEM LETT 2019. [DOI: 10.1016/j.cclet.2019.06.040] [Citation(s) in RCA: 110] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|