1
|
Zhang WZ, Wu CY, Lai H. A Review on the Role of DNA Methylation in Aortic Disease Associated With Marfan Syndrome. Cardiol Res 2025; 16:169-177. [PMID: 40370619 PMCID: PMC12074684 DOI: 10.14740/cr2033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Accepted: 03/08/2025] [Indexed: 05/16/2025] Open
Abstract
Marfan syndrome (MFS) is a genetic disorder primarily affecting the connective tissue, with cardiovascular complications as the leading cause of mortality. While mutations in the FBN1 gene are the primary cause, the severity and progression of the disease can vary significantly among individuals. DNA methylation, a key epigenetic regulatory mechanism, has garnered attention in MFS research, particularly regarding methylation changes in the FBN1 locus and their effects on fibrillin-1 expression. Differential methylation and expression of genes related to inflammation (e.g., interleukin (IL)-10, IL-17) and oxidative stress (e.g., PON2, TP53INP1) have been linked to MFS aortic pathology. These alterations likely contribute to disease progression by influencing inflammatory responses, smooth muscle cell apoptosis, and biomechanical properties of the aorta. The transforming growth factor-beta (TGF-β) signaling pathway plays a central role in MFS pathology, with aberrant methylation of related genes potentially elevating active TGF-β levels and exacerbating aortic lesions. Notably, tissue-specific methylation patterns, especially in smooth muscle cells of the aorta, remain poorly understood. A deeper understanding of DNA methylation's role in MFS could pave the way for early interventions and epigenetic-targeted therapies.
Collapse
Affiliation(s)
- Wei Ze Zhang
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chen Ye Wu
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Hao Lai
- Department of Cardiac Surgery, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
2
|
Finnegan EJ, Crisp PA, Zhang P, Eglitis-Sexton J, Greenwood J, Hintzsche J, Li J, Taylor J, Wallace X, Swain S. Testing the potential of zebularine to induce heritable changes in crop growth and development. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2025; 138:26. [PMID: 39792151 PMCID: PMC11723894 DOI: 10.1007/s00122-024-04799-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Accepted: 12/09/2024] [Indexed: 01/12/2025]
Abstract
KEY MESSAGE Zebularine-treated wheat uncovered a phenotype with characteristics of an epigenetically regulated trait, but major chromosomal aberrations, not DNA methylation changes, are the cause, making zebularine unsuitable for epigenetic breeding. Breeding to identify disease-resistant and climate-tolerant high-yielding wheats has led to yield increases over many years, but new hardy, higher yielding varieties are still needed to improve food security in the face of climate change. Traditional breeding to develop new cultivars of wheat is a lengthy process taking more than seven years from the initial cross to cultivar release. The speed of breeding can be enhanced by using modern technologies including high-throughput phenomics, genomic selection, and directed mutation via CRISPR. Here we test the concept of modifying gene regulation by transiently disrupting DNA methylation with the methyltransferase inhibitor, zebularine (Zeb), as a means to uncover novel phenotypes in an elite cultivar to facilitate breeding for epigenetically controlled traits. The development and architecture of the wheat inflorescence, including spikelet density, are an important component of yield, and both grain size and number have been extensively modified during domestication and breeding of wheat cultivars. We identified several Zeb-treated plants with a dominant mutation that increased spikelet density compared to the untreated controls. Our analysis showed that in addition to causing loss of DNA methylation, Zeb treatment resulted in major chromosomal abnormalities, including trisomy and the formation of a novel telocentric chromosome. We provide evidence that increased copy number of the domestication gene, Q, is the most likely cause of increased spikelet density in two Zeb-treated plants. Collateral damage to chromosomes in Zeb-treated plants suggests that this is not a viable approach to epigenetic breeding.
Collapse
Affiliation(s)
- E Jean Finnegan
- CSIRO Agriculture and Food, Canberra, ACT, 2601, Australia.
- Research School of Biology, Australian National University, Canberra, ACT, Australia.
| | - Peter A Crisp
- School of Agriculture and Food Sustainability, University of Queensland, St Lucia, QLD, Australia
| | - Peng Zhang
- Plant Breeding Institute, School of Life and Environmental Sciences, University of Sydney, Cobbitty, NSW, 2570, Australia
| | - Judith Eglitis-Sexton
- School of Agriculture and Food Sustainability, University of Queensland, St Lucia, QLD, Australia
| | - Julian Greenwood
- CSIRO Agriculture and Food, Canberra, ACT, 2601, Australia
- Research School of Biology, Australian National University, Canberra, ACT, Australia
| | - Jessica Hintzsche
- School of Agriculture and Food Sustainability, University of Queensland, St Lucia, QLD, Australia
- Queensland Alliance for Agriculture and Food Innovation, University of Queensland, St Lucia, QLD, Australia
| | - Jianbo Li
- Plant Breeding Institute, School of Life and Environmental Sciences, University of Sydney, Cobbitty, NSW, 2570, Australia
| | - Jen Taylor
- CSIRO Agriculture and Food, Canberra, ACT, 2601, Australia
| | | | - Stephen Swain
- CSIRO Agriculture and Food, Canberra, ACT, 2601, Australia
| |
Collapse
|
3
|
Wang Q, Ma C, Yang B, Zheng W, Liu X, Jian G. Dysregulation of DNA methylation in colorectal cancer: biomarker, immune regulation, and therapeutic potential. Int Immunopharmacol 2025; 145:113766. [PMID: 39644791 DOI: 10.1016/j.intimp.2024.113766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 11/16/2024] [Accepted: 11/30/2024] [Indexed: 12/09/2024]
Abstract
Colorectal cancer (CRC) is one of the most prevalent malignancies worldwide, with morbidity and mortality ranking third and second among all cancers, respectively. As a result of a sequence of genetic and DNA methylation alterations that gradually accumulate in the healthy colonic epithelium, colorectal adenomas and invasive adenocarcinomas eventually give rise to CRC. Global hypomethylation and promoter-specific DNA methylation are characteristics of CRC. The pathophysiological role of aberrant DNA methylation in malignant tumors has garnered significant interest in the last few decades. In addition, DNA methylation has been shown to play a critical role in influencing immune cell function and tumor immune evasion. This review summarizes the most recent research on DNA methylation changes in CRC, including the role of DNA methylation-related enzymes in CRC tumorigenesis and biomarkers for diagnosis, predictive and prognostic. Besides, we focus on the emerging potential of epigenetic interventions to enhance antitumor immune responses and improve the CRC clinical practice.
Collapse
Affiliation(s)
- Qin Wang
- School of Pharmacy, Southwest Minzu University, Chengdu, China; Department of Pathology, Yong Yoo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Chen Ma
- School of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Bin Yang
- School of Traditional Chinese Medicine, Capital Medical University, Beijing, China
| | - Wenxin Zheng
- School of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Xinya Liu
- School of Pharmacy, Southwest Minzu University, Chengdu, China
| | - Gu Jian
- School of Pharmacy, Southwest Minzu University, Chengdu, China
| |
Collapse
|
4
|
Wojciechowski M, Czapinska H, Krwawicz J, Rafalski D, Bochtler M. Cytosine analogues as DNA methyltransferase substrates. Nucleic Acids Res 2024; 52:9267-9281. [PMID: 38966999 PMCID: PMC11347137 DOI: 10.1093/nar/gkae568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 05/23/2024] [Accepted: 06/20/2024] [Indexed: 07/06/2024] Open
Abstract
DNA methyltransferases are drug targets for myelodysplastic syndrome (MDS), chronic myelomonocytic leukemia (CMML), acute myelogenous leukemia (AML) and possibly β-hemoglobinopathies. We characterize the interaction of nucleoside analogues in DNA with a prokaryotic CpG-specific DNA methyltransferase (M.MpeI) as a model for mammalian DNMT1 methyltransferases. We tested DNA containing 5-hydroxymethylcytosine (5hmC), 5-hydroxycytosine (5OHC), 5-methyl-2-pyrimidinone (in the ribosylated form known as 5-methylzebularine, 5mZ), 5,6-dihydro-5-azacytosine (dhaC), 5-fluorocytosine (5FC), 5-chlorocytosine (5ClC), 5-bromocytosine (5BrC) and 5-iodocytosine (5IC). Covalent complex formation was by far most efficient for 5FC. Non-covalent complexes were most abundant for dhaC and 5mZ. Surprisingly, we observed methylation of 5IC and 5BrC, and to a lesser extent 5ClC and 5FC, in the presence, but not the absence of small molecule thiol nucleophiles. For 5IC and 5BrC, we demonstrated by mass spectrometry that the reactions were due to methyltransferase driven dehalogenation, followed by methylation. Crystal structures of M.MpeI-DNA complexes capture the 'in' conformation of the active site loop for analogues with small or rotatable (5mZ) 5-substituents and its 'out' form for bulky 5-substituents. Since very similar 'in' and 'out' loop conformations were also observed for DNMT1, it is likely that our conclusions generalize to other DNA methyltransferases.
Collapse
Affiliation(s)
- Marek Wojciechowski
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
- Plant Breeding and Acclimatization Institute - National Research Institute, 05-870 Radzikow, Poland
| | - Honorata Czapinska
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
- Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Joanna Krwawicz
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
- Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw, Poland
- Department of Biochemistry, University of Oxford, Oxford, UK
| | - Dominik Rafalski
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
- Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw, Poland
| | - Matthias Bochtler
- International Institute of Molecular and Cell Biology, Trojdena 4, 02-109 Warsaw, Poland
- Institute of Biochemistry and Biophysics PAS, Pawinskiego 5a, 02-106 Warsaw, Poland
| |
Collapse
|
5
|
Joshi DC, Sharma A, Prasad S, Singh K, Kumar M, Sherawat K, Tuli HS, Gupta M. Novel therapeutic agents in clinical trials: emerging approaches in cancer therapy. Discov Oncol 2024; 15:342. [PMID: 39127974 PMCID: PMC11317456 DOI: 10.1007/s12672-024-01195-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Novel therapeutic agents in clinical trials offer a paradigm shift in the approach to battling this prevalent and destructive disease, and the area of cancer therapy is on the precipice of a trans formative revolution. Despite the importance of tried-and-true cancer treatments like surgery, radiation, and chemotherapy, the disease continues to evolve and adapt, making new, more potent methods necessary. The field of cancer therapy is currently witnessing the emergence of a wide range of innovative approaches. Immunotherapy, including checkpoint inhibitors, CAR-T cell treatment, and cancer vaccines, utilizes the host's immune system to selectively target and eradicate malignant cells while minimizing harm to normal tissue. The development of targeted medicines like kinase inhibitors and monoclonal antibodies has allowed for more targeted and less harmful approaches to treating cancer. With the help of genomics and molecular profiling, "precision medicine" customizes therapies to each patient's unique genetic makeup to maximize therapeutic efficacy while minimizing unwanted side effects. Epigenetic therapies, metabolic interventions, radio-pharmaceuticals, and an increasing emphasis on combination therapy with synergistic effects further broaden the therapeutic landscape. Multiple-stage clinical trials are essential for determining the safety and efficacy of these novel drugs, allowing patients to gain access to novel treatments while also furthering scientific understanding. The future of cancer therapy is rife with promise, as the integration of artificial intelligence and big data has the potential to revolutionize early detection and prevention. Collaboration among researchers, and healthcare providers, and the active involvement of patients remain the bedrock of the ongoing battle against cancer. In conclusion, the dynamic and evolving landscape of cancer therapy provides hope for improved treatment outcomes, emphasizing a patient-centered, data-driven, and ethically grounded approach as we collectively strive towards a cancer-free world.
Collapse
Affiliation(s)
- Deepak Chandra Joshi
- Department of Pharmacy, School of Chemical Sciences and Pharmacy, Central University of Rajasthan, Bandar Sindri, Dist., Ajmer, Rajasthan, India.
| | - Anurag Sharma
- Invertis Institute of Pharmacy, Invertis University Bareilly Uttar Pradesh, Bareilly, India
| | - Sonima Prasad
- Chandigarh University, Ludhiana-Chandigarh State Highway, Gharuan, Mohali, Punjab, 140413, India
| | - Karishma Singh
- Institute of Pharmaceutical Sciences, Faculty of Engineering and Technology, University of Lucknow, Lucknow, India
| | - Mayank Kumar
- Himalayan Institute of Pharmacy, Road, Near Suketi Fossil Park, Kala Amb, Hamidpur, Himachal Pradesh, India
| | - Kajal Sherawat
- Meerut Institute of Technology, Meerut, Uttar Pradesh, India
| | - Hardeep Singh Tuli
- Department of Bio-Sciences & Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, India
| | - Madhu Gupta
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, India.
| |
Collapse
|
6
|
Liang S, Liu M, Mu W, Gao T, Gao S, Fu S, Yuan S, Liu J, Liu Y, Jiang D, Zhang N. Nano-Regulator Inhibits Tumor Immune Escape via the "Two-Way Regulation" Epigenetic Therapy Strategy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305275. [PMID: 38110834 PMCID: PMC10916662 DOI: 10.1002/advs.202305275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 11/15/2023] [Indexed: 12/20/2023]
Abstract
Tumor immune escape caused by low levels of tumor immunogenicity and immune checkpoint-dependent suppression limits the immunotherapeutic effect. Herein, a "two-way regulation" epigenetic therapeutic strategy is proposed using a novel nano-regulator that inhibits tumor immune escape by upregulating expression of tumor-associated antigens (TAAs) to improve immunogenicity and downregulating programmed cell death 1 ligand 1 (PD-L1) expression to block programmed death-1 (PD-1)/PD-L1. To engineer the nano-regulator, the DNA methyltransferase (DNMT) inhibitor zebularine (Zeb) and the bromodomain-containing protein 4 (BRD4) inhibitor JQ1 are co-loaded into the cationic liposomes with condensing the toll-like receptor 9 (TLR9) agonist cytosine-phosphate-guanine (CpG) via electrostatic interactions to obtain G-J/ZL. Then, asparagine-glycine-arginine (NGR) modified material carboxymethyl-chitosan (CMCS) is coated on the surface of G-J/ZL to construct CG-J/ZL. CG-J/ZL is shown to target tumor tissue and disassemble under the acidic tumor microenvironment (TME). Zeb upregulated TAAs expression to improve the immunogenicity; JQ1 inhibited PD-L1 expression to block immune checkpoint; CpG promote dendritic cell (DC) maturation and reactivated the ability of tumour-associated macrophages (TAM) to kill tumor cells. Taken together, these results demonstrate that the nano-regulator CG-J/ZL can upregulate TAAs expression to enhance T-cell infiltration and downregulate PD-L1 expression to improve the recognition of tumor cells by T-cells, representing a promising strategy to improve antitumor immune response.
Collapse
Affiliation(s)
- Shuang Liang
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)School of Pharmaceutical SciencesCheeloo College of MedicineShandong University44 Wenhua Xi RoadJinanShandong250012China
| | - Meichen Liu
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)School of Pharmaceutical SciencesCheeloo College of MedicineShandong University44 Wenhua Xi RoadJinanShandong250012China
| | - Weiwei Mu
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)School of Pharmaceutical SciencesCheeloo College of MedicineShandong University44 Wenhua Xi RoadJinanShandong250012China
| | - Tong Gao
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)School of Pharmaceutical SciencesCheeloo College of MedicineShandong University44 Wenhua Xi RoadJinanShandong250012China
| | - Shuying Gao
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)School of Pharmaceutical SciencesCheeloo College of MedicineShandong University44 Wenhua Xi RoadJinanShandong250012China
| | - Shunli Fu
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)School of Pharmaceutical SciencesCheeloo College of MedicineShandong University44 Wenhua Xi RoadJinanShandong250012China
| | - Shijun Yuan
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)School of Pharmaceutical SciencesCheeloo College of MedicineShandong University44 Wenhua Xi RoadJinanShandong250012China
| | - Jinhu Liu
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)School of Pharmaceutical SciencesCheeloo College of MedicineShandong University44 Wenhua Xi RoadJinanShandong250012China
| | - Yongjun Liu
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)School of Pharmaceutical SciencesCheeloo College of MedicineShandong University44 Wenhua Xi RoadJinanShandong250012China
| | - Dandan Jiang
- Department of PharmacyHenan Provincial People's HospitalPeople's Hospital of Zhengzhou UniversityZhengzhouHenan450003China
| | - Na Zhang
- Department of PharmaceuticsKey Laboratory of Chemical Biology (Ministry of Education)School of Pharmaceutical SciencesCheeloo College of MedicineShandong University44 Wenhua Xi RoadJinanShandong250012China
| |
Collapse
|
7
|
Gasperini B, Falvino A, Piccirilli E, Tarantino U, Botta A, Visconti VV. Methylation of the Vitamin D Receptor Gene in Human Disorders. Int J Mol Sci 2023; 25:107. [PMID: 38203278 PMCID: PMC10779104 DOI: 10.3390/ijms25010107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 12/15/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
The Vitamin D Receptor (VDR) mediates the actions of 1,25-Dihydroxvitamin D3 (1,25(OH)2D3), which has important roles in bone homeostasis, growth/differentiation of cells, immune functions, and reduction of inflammation. Emerging evidences suggest that epigenetic modifications of the VDR gene, particularly DNA methylation, may contribute to the onset and progression of many human disorders. This review aims to summarize the available information on the role of VDR methylation signatures in different pathological contexts, including autoimmune diseases, infectious diseases, cancer, and others. The reversible nature of DNA methylation could enable the development of therapeutic strategies, offering new avenues for the management of these worldwide diseases.
Collapse
Affiliation(s)
- Beatrice Gasperini
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (B.G.); (A.F.); (V.V.V.)
| | - Angela Falvino
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (B.G.); (A.F.); (V.V.V.)
| | - Eleonora Piccirilli
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.P.); (U.T.)
| | - Umberto Tarantino
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (E.P.); (U.T.)
| | - Annalisa Botta
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (B.G.); (A.F.); (V.V.V.)
| | - Virginia Veronica Visconti
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (B.G.); (A.F.); (V.V.V.)
| |
Collapse
|
8
|
Katoh I, Tsukinoki K, Hata RI, Kurata SI. ΔNp63 silencing, DNA methylation shifts, and epithelial-mesenchymal transition resulted from TAp63 genome editing in squamous cell carcinoma. Neoplasia 2023; 45:100938. [PMID: 37778252 PMCID: PMC10544079 DOI: 10.1016/j.neo.2023.100938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 09/21/2023] [Indexed: 10/03/2023]
Abstract
TP63 (p63) is strongly expressed in lower-grade carcinomas of the head and neck, skin, breast, and urothelium to maintain a well-differentiated phenotype. TP63 has two transcription start sites at exons 1 and 3' that produce TAp63 and ΔNp63 isoforms, respectively. The major protein, ΔNp63α, epigenetically activates genes essential for epidermal/craniofacial differentiation, including ΔNp63 itself. To examine the specific role of weakly expressed TAp63, we disrupted exon 1 using CRISPR-Cas9 homology-directed repair in a head and neck squamous cell carcinoma (SCC) line. Surprisingly, TAp63 knockout cells having either monoallelic GFP cassette insertion paired with a frameshift deletion allele or biallelic GFP cassette insertion exhibited ΔNp63 silencing. Loss of keratinocyte-specific gene expression, switching of intermediate filament genes from KRT(s) to VIM, and suppression of cell-cell and cell-matrix adhesion components indicated the core events of epithelial-mesenchymal transition. Many of the positively and negatively affected genes, including ΔNp63, displayed local DNA methylation changes. Furthermore, ΔNp63 expression was partially rescued by transfection of the TAp63 knockout cells with TAp63α and application of DNA methyltransferase inhibitor zebularine. These results suggest that TAp63, a minor part of the TP63 gene, may be involved in the auto-activation mechanism of ΔNp63 by which the keratinocyte-specific epigenome is maintained in SCC.
Collapse
Affiliation(s)
- Iyoko Katoh
- Faculty of Dentistry, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, Kanagawa 238-8580, Japan.
| | - Keiichi Tsukinoki
- Department of Environmental Pathology, Graduate School of Dentistry, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, Kanagawa 238-8580, Japan
| | - Ryu-Ichiro Hata
- Faculty of Dentistry, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, Kanagawa 238-8580, Japan
| | - Shun-Ichi Kurata
- Faculty of Dentistry, Kanagawa Dental University, 82 Inaoka-cho, Yokosuka, Kanagawa 238-8580, Japan
| |
Collapse
|
9
|
Chu DT, Ngo AD, Wu CC. Epigenetics in cancer development, diagnosis and therapy. PROGRESS IN MOLECULAR BIOLOGY AND TRANSLATIONAL SCIENCE 2023; 198:73-92. [PMID: 37225325 DOI: 10.1016/bs.pmbts.2023.01.009] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
Cancer is a dangerous disease and one of the leading causes of death in the world. In 2020, there were nearly 10 million cancer deaths and approximately 20 million new cases. New cases and deaths from cancer are expected to increase further in the coming years. To have a deeper insight into the mechanism of carcinogenesis, epigenetics studies have been published and received much attention from scientists, doctors, and patients. Among alterations in epigenetics, DNA methylation and histone modification are studied by many scientists. They have been reported to be a major contributor in tumor formation and are involved in metastasis. From the understanding of DNA methylation and histone modification, effective, accurate and cost-effective methods for diagnosis and screening of cancer patients have been introduced. Furthermore, therapeutic approaches and drugs targeting altered epigenetics have also been clinically studied and have shown positive results in combating tumor progression. Several cancer drugs that rely on DNA methylation inactivation or histone modification have been approved by the FDA for the treatment of cancer patients. In summary, epigenetics changes such as DNA methylation or histone modification are take part in tumor growth, and they also have great prospect to study diagnostic and therapeutic methods of this dangerous disease.
Collapse
Affiliation(s)
- Dinh-Toi Chu
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam; Faculty of Applied Sciences, International School, Vietnam National University, Hanoi, Vietnam.
| | - Anh-Dao Ngo
- Center for Biomedicine and Community Health, International School, Vietnam National University, Hanoi, Vietnam
| | - Chia-Ching Wu
- Department of Cell Biology and Anatomy, College of Medicine, National Cheng Kung University, Tainan, Taiwan; International Center for Wound Repair and Regeneration, National Cheng Kung University, Tainan, Taiwan; Department of Biomedical Engineering, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
10
|
Bhootra S, Jill N, Shanmugam G, Rakshit S, Sarkar K. DNA methylation and cancer: transcriptional regulation, prognostic, and therapeutic perspective. MEDICAL ONCOLOGY (NORTHWOOD, LONDON, ENGLAND) 2023; 40:71. [PMID: 36602616 DOI: 10.1007/s12032-022-01943-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 12/25/2022] [Indexed: 01/06/2023]
Abstract
DNA methylation is one among the major grounds of cancer progression which is characterized by the addition of a methyl group to the promoter region of the gene thereby causing gene silencing or increasing the probability of mutations; however, in bacteria, methylation is used as a defense mechanism where DNA protection is by addition of methyl groups making restriction enzymes unable to cleave. Hypermethylation and hypomethylation both pose as leading causes of oncogenesis; the former being more frequent which occurs at the CpG islands present in the promoter region of the genes, whereas the latter occurs globally in various genomic sequences. Reviewing methylation profiles would help in the detection and treatment of cancers. Demethylation is defined as preventing methyl group addition to the cytosine DNA base which could cause cancers in case of global hypomethylation, however, upon further investigation; it could be used as a therapeutic tool as well as for drug design in cancer treatment. In this review, we have studied the molecules that induce and enzymes (DNMTs) that bring about methylation as well as comprehend the correlation between methylation with transcription factors and various signaling pathways. DNA methylation has also been reviewed in terms of how it could serve as a prognostic marker and the various therapeutic drugs that have come into the market for reversing methylation opening an avenue toward curing cancers.
Collapse
Affiliation(s)
- Sannidhi Bhootra
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Nandana Jill
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Geetha Shanmugam
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Sudeshna Rakshit
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India
| | - Koustav Sarkar
- Department of Biotechnology, SRM Institute of Science and Technology, Kattankulathur, Tamil Nadu, 603203, India.
| |
Collapse
|
11
|
Saha A, Chauhan MS, Manik RS, Palta P, Singla SK. Comparison the effects of 5-Aza-2'-deoxycytidine and zebularine on the in vitro development, blastocyst quality, methylation pattern and conception rate on handmade cloned buffalo embryos. Reprod Domest Anim 2023; 58:158-167. [PMID: 36214130 DOI: 10.1111/rda.14275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/09/2022] [Indexed: 01/07/2023]
Abstract
In this study we treated the handmade cloned (HMC) buffalo embryos with the DNA methylation inhibitors; 5-aza-2'-deoxycytidine (AzadC) or Zebularine individually after post-fusion and during in vitro culture till eighth day. The blastocysts production rate significantly improved (p < .01) after treating embryos independently with 5 nM AzadC and 5 nM zebularine compared with 2 and 10 nM AzadC or zebularine groups, respectively. The highest cleavage rates were obtained for 5 nM treatment of AzadC and zebularine compared with other treatments and untreated control group. Quality of blastocysts were evaluated using total cell number (TCN) and the ratio of number of inner cell mass (ICM) cells/total cell number (ICM/TCN). Zebularine treatments (2/5/10 nM) significantly improved both TCN and ICM/TCN ratio compared with AzadC treatments (2/5/10 nM); however, control group TCN and ICM/TCN ratio was found lower. The methylation percentage of pDS4.1 and B. bubalis satellite DNA were comparatively more attenuated with 5 nM zebularine than 5 nM AzadC treatment. The increased in vitro development rates of the treated embryos were correlated with the decreased level of DNA methylation and the improved blastocyst quality. Following transfer of 5 nM zebularine treated embryos to 6 recipients, 4 were found to be pregnant, though the pregnancies were not carried to full term.
Collapse
Affiliation(s)
- Ambikaprasanna Saha
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India.,Dum Dum Motijheel College, Kolkata, India
| | - Manmohan S Chauhan
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Radhey S Manik
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Prabhat Palta
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| | - Suresh K Singla
- Embryo Biotechnology Laboratory, Animal Biotechnology Centre, National Dairy Research Institute, Karnal, India
| |
Collapse
|
12
|
Sass P, Sosnowski P, Kamińska J, Deptuła M, Skoniecka A, Zieliński J, Rodziewicz-Motowidło S, Pikuła M, Sachadyn P. Examination of epigenetic inhibitor zebularine in treatment of skin wounds in healthy and diabetic mice. J Tissue Eng Regen Med 2022; 16:1238-1248. [PMID: 36350668 PMCID: PMC10099879 DOI: 10.1002/term.3365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 10/11/2022] [Accepted: 10/28/2022] [Indexed: 11/11/2022]
Abstract
DNA methyltransferase inhibitor zebularine was proven to induce regeneration in the ear pinna in mice. We utilized a dorsal skin wound model to further evaluate this epigenetic inhibitor in wound healing. Full-thickness excisional wounds were made on the dorsum of 2 and 10-month-old healthy BALB/c and 3 and 8-month-old diabetic (db/db) mice, followed by topical or intraperitoneal zebularine delivery. Depending on the strain, age, dose, and delivery, the zebularine treatments either had no effect or accelerated or delayed wound closure. In principle, zebularine applied topically moderately promoted wound closure in the healthy but markedly delayed in the diabetic mice, which was in line with decreased viability of cultured keratinocytes from diabetic patients exposed to zebularine. The histological analysis revealed an improvement in the architecture of restored skin in zebularine-treated mice, manifested as a distinct layered pattern resembling panniculus carnosus. The finding corresponds with the zebularine-mediated activation of the Wnt5a gene, an essential regulator of Wnt signaling, the pathway involved in hair follicle development, the process which in turn is connected with regenerative skin healing. Although zebularine did not remarkably accelerate wound healing, zebularine and other epigenetic inhibitors deserve further testing as potential drugs to improve the quality of restored skin.
Collapse
Affiliation(s)
- Piotr Sass
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, Gdańsk, Poland
| | - Paweł Sosnowski
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, Gdańsk, Poland
| | - Jolanta Kamińska
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, Gdańsk, Poland
| | - Milena Deptuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Division of Embryology, Medical University of Gdańsk, Gdańsk, Poland
| | - Aneta Skoniecka
- Laboratory of Tissue Engineering and Regenerative Medicine, Division of Embryology, Medical University of Gdańsk, Gdańsk, Poland
| | - Jacek Zieliński
- Department of Oncologic Surgery, Medical University of Gdańsk, Gdańsk, Poland
| | | | - Michał Pikuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Division of Embryology, Medical University of Gdańsk, Gdańsk, Poland
| | - Paweł Sachadyn
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, Gdańsk, Poland
| |
Collapse
|
13
|
The Protective Effect of Zebularine, an Inhibitor of DNA Methyltransferase, on Renal Tubulointerstitial Inflammation and Fibrosis. Int J Mol Sci 2022; 23:ijms232214045. [PMID: 36430531 PMCID: PMC9697081 DOI: 10.3390/ijms232214045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/06/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Renal fibrosis, the final pathway of chronic kidney disease, is caused by genetic and epigenetic mechanisms. Although DNA methylation has drawn attention as a developing mechanism of renal fibrosis, its contribution to renal fibrosis has not been clarified. To address this issue, the effect of zebularine, a DNA methyltransferase inhibitor, on renal inflammation and fibrosis in the murine unilateral ureteral obstruction (UUO) model was analyzed. Zebularine significantly attenuated renal tubulointerstitial fibrosis and inflammation. Zebularine decreased trichrome, α-smooth muscle actin, collagen IV, and transforming growth factor-β1 staining by 56.2%. 21.3%, 30.3%, and 29.9%, respectively, at 3 days, and by 54.6%, 41.9%, 45.9%, and 61.7%, respectively, at 7 days after UUO. Zebularine downregulated mRNA expression levels of matrix metalloproteinase (MMP)-2, MMP-9, fibronectin, and Snail1 by 48.6%. 71.4%, 31.8%, and 42.4%, respectively, at 7 days after UUO. Zebularine also suppressed the activation of nuclear factor-κB (NF-κB) and the expression of pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin (IL)-1β, and IL-6, by 69.8%, 74.9%, and 69.6%, respectively, in obstructed kidneys. Furthermore, inhibiting DNA methyltransferase buttressed the nuclear expression of nuclear factor (erythroid-derived 2)-like factor 2, which upregulated downstream effectors such as catalase (1.838-fold increase at 7 days, p < 0.01), superoxide dismutase 1 (1.494-fold increase at 7 days, p < 0.05), and NAD(P)H: quinone oxidoreduate-1 (1.376-fold increase at 7 days, p < 0.05) in obstructed kidneys. Collectively, these findings suggest that inhibiting DNA methylation restores the disrupted balance between pro-inflammatory and anti-inflammatory pathways to alleviate renal inflammation and fibrosis. Therefore, these results highlight the possibility of DNA methyltransferases as therapeutic targets for treating renal inflammation and fibrosis.
Collapse
|
14
|
Kamaraj P, Mukhopadhyay PP, George SK, Pati HN. Scalable Preparation of Zebularine via a Vorbrüggen Glycosylation. ORG PREP PROCED INT 2022. [DOI: 10.1080/00304948.2022.2136474] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Affiliation(s)
- Pasumpon Kamaraj
- Process Chemistry Division, Eurofins Advinus Ltd., Bangalore, India
| | | | - Shaji K. George
- Process Chemistry Division, Eurofins Advinus Ltd., Bangalore, India
| | - Hari N. Pati
- Process Chemistry Division, Eurofins Advinus Ltd., Bangalore, India
| |
Collapse
|
15
|
Li N, Zeng A, Wang Q, Chen M, Zhu S, Song L. Regulatory function of DNA methylation mediated lncRNAs in gastric cancer. Cancer Cell Int 2022; 22:227. [PMID: 35810299 PMCID: PMC9270757 DOI: 10.1186/s12935-022-02648-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Accepted: 06/28/2022] [Indexed: 12/31/2022] Open
Abstract
As one of the most common malignancies worldwide, gastric cancer contributes to cancer death with a high mortality rate partly responsible for its out-of-control progression as well as limited diagnosis. DNA methylation, one of the epigenetic events, plays an essential role in the carcinogenesis of many cancers, including gastric cancer. Long non-coding RNAs have emerged as the significant factors in the cancer progression functioned as the oncogene genes, the suppressor genes and regulators of signaling pathways over the decade. Intriguingly, increasing reports, recently, have claimed that abnormal DNA methylation regulates the expression of lncRNAs as tumor suppressor genes in gastric cancer and lncRNAs as regulators could exert the critical influence on tumor progression through acting on DNA methylation of other cancer-related genes. In this review, we summarized the DNA methylation-associated lncRNAs in gastric cancer which play a large impact on tumor progression, such as proliferation, invasion, metastasis and so on. Furthermore, the underlying molecular mechanism and signaling pathway might be developed as key points of gastric cancer range from diagnosis to prognosis and treatment in the future.
Collapse
Affiliation(s)
- Nan Li
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China
| | - Anqi Zeng
- Institute of Translational Pharmacology and Clinical Application, Sichuan Academy of Chinese Medical Science, Chengdu, Sichuan, 610041, People's Republic of China
| | - Qian Wang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China
| | - Maohua Chen
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China
| | - Shaomi Zhu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China.
| | - Linjiang Song
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, 611137, People's Republic of China.
| |
Collapse
|
16
|
Sosnowski P, Sass P, Słonimska P, Płatek R, Kamińska J, Baczyński Keller J, Mucha P, Peszyńska-Sularz G, Czupryn A, Pikuła M, Piotrowski A, Janus Ł, Rodziewicz-Motowidło S, Skowron P, Sachadyn P. Regenerative Drug Discovery Using Ear Pinna Punch Wound Model in Mice. Pharmaceuticals (Basel) 2022; 15:ph15050610. [PMID: 35631437 PMCID: PMC9145447 DOI: 10.3390/ph15050610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 01/25/2023] Open
Abstract
The ear pinna is a complex tissue consisting of the dermis, cartilage, muscles, vessels, and nerves. Ear pinna healing is a model of regeneration in mammals. In some mammals, including rabbits, punch wounds in the ear pinna close spontaneously; in common-use laboratory mice, they remain for life. Agents inducing ear pinna healing are potential regenerative drugs. We tested the effects of selected bioactive agents on 2 mm ear pinna wound closure in BALB/c mice. Our previous research demonstrated that a DNA methyltransferase inhibitor, zebularine, remarkably induced ear pinna regeneration. Although experiments with two other demethylating agents, RG108 and hydralazine, were unsuccessful, a histone deacetylase inhibitor, valproic acid, was another epigenetic agent found to increase ear hole closure. In addition, we identified a pro-regenerative activity of 4-ketoretinoic acid, a retinoic acid metabolite. Attempts to counteract the regenerative effects of the demethylating agent zebularine, with folates as methyl donors, failed. Surprisingly, a high dose of methionine, another methyl donor, promoted ear hole closure. Moreover, we showed that the regenerated areas of ear pinna were supplied with nerve fibre networks and blood vessels. The ear punch model proved helpful in testing the pro-regenerative activities of small-molecule compounds and observations of peripheral nerve regeneration.
Collapse
Affiliation(s)
- Paweł Sosnowski
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (P.S.); (P.S.); (P.S.); (R.P.); (J.K.); (J.B.K.)
| | - Piotr Sass
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (P.S.); (P.S.); (P.S.); (R.P.); (J.K.); (J.B.K.)
| | - Paulina Słonimska
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (P.S.); (P.S.); (P.S.); (R.P.); (J.K.); (J.B.K.)
| | - Rafał Płatek
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (P.S.); (P.S.); (P.S.); (R.P.); (J.K.); (J.B.K.)
| | - Jolanta Kamińska
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (P.S.); (P.S.); (P.S.); (R.P.); (J.K.); (J.B.K.)
| | - Jakub Baczyński Keller
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (P.S.); (P.S.); (P.S.); (R.P.); (J.K.); (J.B.K.)
| | - Piotr Mucha
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdańsk, 80-308 Gdańsk, Poland;
| | - Grażyna Peszyńska-Sularz
- Tri-City University Animal House—Research Service Centre, Medical University of Gdańsk, 80-211 Gdańsk, Poland;
| | - Artur Czupryn
- Laboratory of Neurobiology, Nencki Institute of Experimental Biology PAS, 02-093 Warsaw, Poland;
| | - Michał Pikuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdańsk, 80-211 Gdańsk, Poland;
| | - Arkadiusz Piotrowski
- Department of Biology and Pharmaceutical Botany, Faculty of Pharmacy, Medical University of Gdańsk, 80-416 Gdańsk, Poland;
| | | | | | - Piotr Skowron
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdańsk, 80-308 Gdańsk, Poland;
| | - Paweł Sachadyn
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland; (P.S.); (P.S.); (P.S.); (R.P.); (J.K.); (J.B.K.)
- Correspondence:
| |
Collapse
|
17
|
Verma A, Sinha A, Datta D. Modulation of DNA/RNA Methylation by Small-Molecule Modulators and Their Implications in Cancer. Subcell Biochem 2022; 100:557-579. [PMID: 36301506 DOI: 10.1007/978-3-031-07634-3_17] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Chromatin is an organized complex of DNA, histone proteins, and RNA. Chromatin modifications include DNA methylation, RNA methylation, and histone acetylation and methylation. The methylation of chromatin complexes predominantly alters the regulation of gene expression, and its deregulation is associated with several human diseases including cancer. Cancer is a disease characterized by dynamic changes in the genetic and epigenetic architecture of a cell. Altered DNA methylation by DNA methyltransferases (DNMTs) and m6A RNA methylation facilitate tumor initiation and progression and thus serve as critical targets for cancer therapy. Small-molecule modulators of these epigenetic targets are at the hotspots of current cancer drug discovery research. Indeed, recent studies have led to the discovery of several chemical modulators against these targets, some of which have already gained approval for cancer therapy while others are undergoing clinical trials. In this chapter, we will focus on the role of small-molecule modulators in regulating DNA/RNA methylation and their implications in cancer.
Collapse
Affiliation(s)
- Ayushi Verma
- Division of Cancer Biology, CSIR-Central Drug Research Institute (CDRI), Lucknow, India
| | - Abhipsa Sinha
- Division of Cancer Biology, CSIR-Central Drug Research Institute (CDRI), Lucknow, India
| | - Dipak Datta
- Division of Cancer Biology, CSIR-Central Drug Research Institute (CDRI), Lucknow, India.
| |
Collapse
|
18
|
Peng Z, Zhang Y, Shi D, Jia Y, Shi H, Liu H. miR-497-5p/SALL4 axis promotes stemness phenotype of choriocarcinoma and forms a feedback loop with DNMT-mediated epigenetic regulation. Cell Death Dis 2021; 12:1046. [PMID: 34732693 PMCID: PMC8566582 DOI: 10.1038/s41419-021-04315-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 09/17/2021] [Accepted: 10/07/2021] [Indexed: 12/13/2022]
Abstract
Choriocarcinoma stem-like cells (CSLCs) might be at the origin of choriocarcinoma development associated with drug resistance or relapse. Spalt-like transcription factor 4 (SALL4), which is considered to be a stemness-related gene, can be regulated by miRNAs. In this study, SALL4 result is associated with progression-free survival of choriocarcinoma patients and CSLC's stemness characteristics. In addition, it could be downregulated by miR-497-5p by direct binding. miR-497-5p silencing by hypermethylation promoted malignant CSLC phenotype in vitro and in vivo. Furthermore, increased DNA methyltransferases (DNMTs) by SALL4 upregulation inhibited miR-497-5p expression via hypermethylation promotion. SALL4 appeared to be a key factor in promoting stemness phenotype of choriocarcinoma. Silencing miR-497-5p and SALL4 promotes choriocarcinoma progression and forms a feedback loop with DNMT-mediated epigenetic regulation, playing a crucial role in stemness maintenance in choriocarcinoma.
Collapse
Affiliation(s)
- Zheng Peng
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Yi Zhang
- Department of Gynecology and Obstetrics, Xiangya Hospital of Central South University, Changsha, 410008, China
| | - Dazun Shi
- Department of Gynecology and Obstetrics, Xiangya Hospital of Central South University, Changsha, 410008, China
| | - Yanyan Jia
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Huirong Shi
- Department of Gynecology and Obstetrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Huining Liu
- Department of Gynecology and Obstetrics, Xiangya Hospital of Central South University, Changsha, 410008, China
| |
Collapse
|
19
|
Interplay between Epigenetics and Cellular Metabolism in Colorectal Cancer. Biomolecules 2021; 11:biom11101406. [PMID: 34680038 PMCID: PMC8533383 DOI: 10.3390/biom11101406] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/17/2021] [Accepted: 09/18/2021] [Indexed: 01/30/2023] Open
Abstract
Cellular metabolism alterations have been recognized as one of the most predominant hallmarks of colorectal cancers (CRCs). It is precisely regulated by many oncogenic signaling pathways in all kinds of regulatory levels, including transcriptional, post-transcriptional, translational and post-translational levels. Among these regulatory factors, epigenetics play an essential role in the modulation of cellular metabolism. On the one hand, epigenetics can regulate cellular metabolism via directly controlling the transcription of genes encoding metabolic enzymes of transporters. On the other hand, epigenetics can regulate major transcriptional factors and signaling pathways that control the transcription of genes encoding metabolic enzymes or transporters, or affecting the translation, activation, stabilization, or translocation of metabolic enzymes or transporters. Interestingly, epigenetics can also be controlled by cellular metabolism. Metabolites not only directly influence epigenetic processes, but also affect the activity of epigenetic enzymes. Actually, both cellular metabolism pathways and epigenetic processes are controlled by enzymes. They are highly intertwined and are essential for oncogenesis and tumor development of CRCs. Therefore, they are potential therapeutic targets for the treatment of CRCs. In recent years, both epigenetic and metabolism inhibitors are studied for clinical use to treat CRCs. In this review, we depict the interplay between epigenetics and cellular metabolism in CRCs and summarize the underlying molecular mechanisms and their potential applications for clinical therapy.
Collapse
|
20
|
Cortes LR, Cisternas CD, Cabahug INKV, Mason D, Ramlall EK, Castillo-Ruiz A, Forger NG. DNA Methylation and Demethylation Underlie the Sex Difference in Estrogen Receptor Alpha in the Arcuate Nucleus. Neuroendocrinology 2021; 112:636-648. [PMID: 34547753 PMCID: PMC8934748 DOI: 10.1159/000519671] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2021] [Accepted: 09/15/2021] [Indexed: 01/03/2023]
Abstract
INTRODUCTION Neurons expressing estrogen receptor (ER) ɑ in the arcuate (ARC) and ventromedial (VMH) nuclei of the hypothalamus sex-specifically control energy homeostasis, sexual behavior, and bone density. Females have more ERɑ neurons in the VMH and ARC than males, and the sex difference in the VMH is eliminated by neonatal treatment with testosterone or a DNA methylation inhibitor. OBJECTIVE Here, we tested the roles of testosterone and DNA methylation/demethylation in development of ERɑ in the ARC. METHODS ERɑ was examined at birth and weaning in mice that received vehicle or testosterone subcutaneously, and vehicle or DNA methyltransferase inhibitor intracerebroventricularly, as neonates. To examine effects of DNA demethylation on the ERɑ cell number in the ARC, mice were treated neonatally with small interfering RNAs against ten-eleven translocase enzymes. The methylation status of the ERɑ gene (Esr1) was determined in the ARC and VMH using pyrosequencing of bisulfite-converted DNA. RESULTS A sex difference in ERɑ in the ARC, favoring females, developed between birth and weaning and was due to programming effects of testosterone. Neonatal inhibition of DNA methylation decreased ERɑ in the ARC of females, and an inhibition of demethylation increased ERɑ in the ARC of males. The promoter region of Esr1 exhibited a small sex difference in percent of total methylation in the ARC (females > males) that was opposite to that in the VMH (males > females). CONCLUSION DNA methylation and demethylation regulate ERɑ cell number in the ARC, and methylation correlates with activation of Esr1 in this region.
Collapse
Affiliation(s)
- Laura R Cortes
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, USA
| | - Carla D Cisternas
- Instituto de Investigación Médica Mercedes y Martín Ferrreyra INIMEC-CONICET-UNC, Córdoba, Argentina
| | | | - Damian Mason
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, USA
| | - Emma K Ramlall
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, USA
| | | | - Nancy G Forger
- Neuroscience Institute, Georgia State University, Atlanta, Georgia, USA
| |
Collapse
|
21
|
Abstract
The term "epigenetics" refers to a series of meiotically/mitotically inheritable alterations in gene expression, related to environmental factors, without disruption on DNA sequences of bases. Recently, the pathophysiology of autoimmune diseases (ADs) has been closely linked to epigenetic modifications. Actually, epigenetic mechanisms can modulate gene expression or repression of targeted cells and tissues involved in autoimmune/inflammatory conditions acting as keys effectors in regulation of adaptive and innate responses. ADs, as systemic lupus erythematosus (SLE), a rare disease that still lacks effective treatment, is characterized by epigenetic marks in affected cells.Taking into account that epigenetic mechanisms have been proposed as a winning strategy in the search of new more specific and personalized therapeutics agents. Thus, pharmacology and pharmacoepigenetic studies about epigenetic regulations of ADs may provide novel individualized therapies. Focussing in possible implicated factors on development and predisposition of SLE, diet is feasibly one of the most important factors since it is linked directly to epigenetic alterations and these epigenetic changes may augment or diminish the risk of SLE. Nevertheless, several studies have guaranteed that dietary therapy could be a promise to SLE patients via prophylactic actions deprived of side effects of pharmacology, decreasing co-morbidities and improving lifestyle of SLE sufferers.Herein, we review and discuss the cross-link between epigenetic mechanisms on SLE predisposition and development, as well as the influence of dietary factors on regulation epigenetic modifications that would eventually make a positive impact on SLE patients.
Collapse
|
22
|
Gilmartin AG, Groy A, Gore ER, Atkins C, Long ER, Montoute MN, Wu Z, Halsey W, McNulty DE, Ennulat D, Rueda L, Pappalardi MB, Kruger RG, McCabe MT, Raoof A, Butlin R, Stowell A, Cockerill M, Waddell I, Ogilvie D, Luengo J, Jordan A, Benowitz AB. In vitro and in vivo induction of fetal hemoglobin with a reversible and selective DNMT1 inhibitor. Haematologica 2021; 106:1979-1987. [PMID: 32586904 PMCID: PMC8252945 DOI: 10.3324/haematol.2020.248658] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Accepted: 06/18/2020] [Indexed: 12/20/2022] Open
Abstract
Pharmacological induction of fetal hemoglobin (HbF) expression is an effective therapeutic strategy for the management of beta-hemoglobinopathies such as sickle cell disease. DNA methyltransferase (DNMT) inhibitors 5-azacytidine (5-aza) and 5-aza-2'-deoxycytidine (decitabine) have been shown to induce fetal hemoglobin expression in both preclinical models and clinical studies, but are not currently approved for the management of hemoglobinopathies. We report here the discovery of a novel class of orally bioavailable DNMT1-selective inhibitors as exemplified by GSK3482364. This molecule potently inhibits the methyltransferase activity of DNMT1, but not DNMT family members DNMT3A or DNMT3B. In contrast with cytidine analog DNMT inhibitors, the DNMT1 inhibitory mechanism of GSK3482364 does not require DNA incorporation and is reversible. In cultured human erythroid progenitor cells (EPCs), GSK3482364 decreased overall DNA methylation resulting in de-repression of the gamma globin genes HBG1 and HBG2 and increased HbF expression. In a transgenic mouse model of sickle cell disease, orally administered GSK3482364 caused significant increases in both HbF levels and in the percentage HbF-expressing erythrocytes, with good overall tolerability. We conclude that in these preclinical models, selective, reversible inhibition of DNMT1 is sufficient for the induction of HbF, and is well-tolerated. We anticipate that GSK3482364 will be a useful tool molecule for the further study of selective DNMT1 inhibition both in vitro and in vivo.
Collapse
Affiliation(s)
| | - Arthur Groy
- GlaxoSmithKline, Collegeville, Pennsylvania, PA, USA and
| | | | - Charity Atkins
- GlaxoSmithKline, Collegeville, Pennsylvania, PA, USA and
| | - Edward R. Long
- GlaxoSmithKline, Collegeville, Pennsylvania, PA, USA and
| | | | - Zining Wu
- GlaxoSmithKline, Collegeville, Pennsylvania, PA, USA and
| | - Wendy Halsey
- GlaxoSmithKline, Collegeville, Pennsylvania, PA, USA and
| | | | | | - Lourdes Rueda
- GlaxoSmithKline, Collegeville, Pennsylvania, PA, USA and
| | | | - Ryan G. Kruger
- GlaxoSmithKline, Collegeville, Pennsylvania, PA, USA and
| | | | - Ali Raoof
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, Manchester, UK
| | - Roger Butlin
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, Manchester, UK
| | - Alexandra Stowell
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, Manchester, UK
| | - Mark Cockerill
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, Manchester, UK
| | - Ian Waddell
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, Manchester, UK
| | - Donald Ogilvie
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, Manchester, UK
| | - Juan Luengo
- GlaxoSmithKline, Collegeville, Pennsylvania, PA, USA and
| | - Allan Jordan
- Drug Discovery Unit, Cancer Research UK Manchester Institute, University of Manchester, Alderley Park, Manchester, UK
| | | |
Collapse
|
23
|
Yap ZH, Kong WY, Azeez AR, Fang CM, Ngai SC. Anti-cancer Effects of Epigenetics Drugs Scriptaid and Zebularine in Human Breast Adenocarcinoma Cells. Anticancer Agents Med Chem 2021; 22:1582-1591. [PMID: 34102995 DOI: 10.2174/1871520621666210608103251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 04/09/2021] [Accepted: 04/19/2021] [Indexed: 12/24/2022]
Abstract
BACKGROUND High relapse and metastasis progression in breast cancer patients have prompted the need to explore alternative treatments. Epigenetic therapy has emerged as an attractive therapeutic strategy due to the reversibility of epigenome structures. OBJECTIVE This study investigated the anti-cancer effects of epigenetic drugs scriptaid and zebularine in human breast adenocarcinoma MDA-MB-231 and MCF-7 cells. METHODS First, the half maximal inhibitory concentration (IC50) of scriptaid, zebularine and the combination of both drugs on human breast adenocarcinoma MDA-MB-231 cells was determined. Next, MDA-MB-231 and MCF-7 cells were treated with scriptaid, zebularine and the combination of both. After treatments, the anti-cancer effects were evaluated via cell migration assay, cell cycle analysis and apoptotic studies, which included histochemical staining and reverse-transcriptase polymerase chain reaction (RT-PCR) of the apoptotic genes. RESULTS Both epigenetic drugs inhibited cell viability in a dose-dependent manner with 2 nM scriptaid, 8 µM zebularine and combination of 2 nM scriptaid and 2 µM zebularine. Both MDA-MB-231 and MCF-7 cells exhibited a reduction in cell migration after the treatments. In particular, MDA-MB-231 cells exhibited a significant reduction in cell migration (p < 0.05) after the treatments of zebularine and the combination of scriptaid and zebularine. Besides, cell cycle analysis demonstrated that scriptaid and the combination of both drugs could induce cell cycle arrest at the G0/G1 phase in both MDA-MB-231 and MCF-7 cells. Furthermore, histochemical staining allowed the observation of apoptotic features, such as nuclear chromatin condensation, cell shrinkage, membrane blebbing, nuclear chromatin fragmentation and cytoplasmic extension, in both MDA-MB-231 and MCF-7 cells after the treatments. Further apoptotic studies revealed that the upregulation of pro-apoptotic Bax, downregulation of anti-apoptotic Bcl-2 and elevation of Bax/Bcl-2 ratio were found in MDA-MB-231 cells treated with zebularine and MCF-7 cells treated with all drug regimens. CONCLUSION Collectively, these findings suggest that scriptaid and zebularine are potential anti-cancer drugs, either single or in combination, for the therapy of breast cancer. Further investigations of the gene regulatory pathways directed by scriptaid and zebularine are definitely warranted in the future.
Collapse
Affiliation(s)
- Zhi Hung Yap
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor. Malaysia
| | - Wei Yang Kong
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor. Malaysia
| | - Abdur Rahmaan Azeez
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor. Malaysia
| | - Chee-Mun Fang
- Division of Biomedical Sciences, School of Pharmacy, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor. Malaysia
| | - Siew Ching Ngai
- School of Biosciences, Faculty of Science and Engineering, University of Nottingham Malaysia, 43500 Semenyih, Selangor. Malaysia
| |
Collapse
|
24
|
Tan HW, Xu YM, Qin SH, Chen GF, Lau ATY. Epigenetic regulation of angiogenesis in lung cancer. J Cell Physiol 2021; 236:3194-3206. [PMID: 33078404 DOI: 10.1002/jcp.30104] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 09/08/2020] [Accepted: 09/30/2020] [Indexed: 02/05/2023]
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide, in which angiogenesis is highly required for lung cancer cell growth and metastasis. Genetic regulation of this multistep process is being studied extensively, however, relatively less is known about the epigenetic regulation of angiogenesis in lung cancer. Several epigenetic alterations contribute to regulating angiogenesis, such as epimodifications of DNA, posttranslational modification of histones, and expression of noncoding RNAs. Here, we review the current knowledge of the epigenetic regulation of angiogenesis and discuss the potential clinical applications of epigenetic-based anticancer therapy in lung cancer. Overall, epigenetic-based therapy will likely emerge as a prominent approach to treat lung cancer in the future.
Collapse
Affiliation(s)
- Heng Wee Tan
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Yan-Ming Xu
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - San-Hai Qin
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Guo-Feng Chen
- Department of Hepatobiliary Surgery, The Affiliated Huai'an No.1 People's Hospital of Nanjing Medical University, Huai'an, Jiangsu, People's Republic of China
| | - Andy T Y Lau
- Laboratory of Cancer Biology and Epigenetics, Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| |
Collapse
|
25
|
Lodewijk I, Nunes SP, Henrique R, Jerónimo C, Dueñas M, Paramio JM. Tackling tumor microenvironment through epigenetic tools to improve cancer immunotherapy. Clin Epigenetics 2021; 13:63. [PMID: 33761971 PMCID: PMC7992805 DOI: 10.1186/s13148-021-01046-0] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 03/01/2021] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Epigenetic alterations are known contributors to cancer development and aggressiveness. Additional to alterations in cancer cells, aberrant epigenetic marks are present in cells of the tumor microenvironment, including lymphocytes and tumor-associated macrophages, which are often overlooked but known to be a contributing factor to a favorable environment for tumor growth. Therefore, the main aim of this review is to give an overview of the epigenetic alterations affecting immune cells in the tumor microenvironment to provoke an immunosuppressive function and contribute to cancer development. Moreover, immunotherapy is briefly discussed in the context of epigenetics, describing both its combination with epigenetic drugs and the need for epigenetic biomarkers to predict response to immune checkpoint blockage. MAIN BODY Combining both topics, epigenetic machinery plays a central role in generating an immunosuppressive environment for cancer growth, which creates a barrier for immunotherapy to be successful. Furthermore, epigenetic-directed compounds may not only affect cancer cells but also immune cells in the tumor microenvironment, which could be beneficial for the clinical response to immunotherapy. CONCLUSION Thus, modulating epigenetics in combination with immunotherapy might be a promising therapeutic option to improve the success of this therapy. Further studies are necessary to (1) understand in depth the impact of the epigenetic machinery in the tumor microenvironment; (2) how the epigenetic machinery can be modulated according to tumor type to increase response to immunotherapy and (3) find reliable biomarkers for a better selection of patients eligible to immunotherapy.
Collapse
Affiliation(s)
- Iris Lodewijk
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales Y Tecnológicas (CIEMAT), 28040 Madrid, Spain
- Biomedical Research Institute I+12, University Hospital “12 de Octubre”, 28041 Madrid, Spain
| | - Sandra P. Nunes
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales Y Tecnológicas (CIEMAT), 28040 Madrid, Spain
- Biomedical Research Institute I+12, University Hospital “12 de Octubre”, 28041 Madrid, Spain
- Cancer Biology and Epigenetics Group – Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072 Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group – Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072 Porto, Portugal
- Department of Pathology, Portuguese Oncology Institute of Porto, 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar – University of Porto (ICBAS-UP), 4050-313 Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group – Research Center, Portuguese Oncology Institute of Porto (CI-IPOP), 4200-072 Porto, Portugal
- Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar – University of Porto (ICBAS-UP), 4050-313 Porto, Portugal
| | - Marta Dueñas
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales Y Tecnológicas (CIEMAT), 28040 Madrid, Spain
- Biomedical Research Institute I+12, University Hospital “12 de Octubre”, 28041 Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| | - Jesús M. Paramio
- Molecular Oncology Unit, Centro de Investigaciones Energéticas, Medioambientales Y Tecnológicas (CIEMAT), 28040 Madrid, Spain
- Biomedical Research Institute I+12, University Hospital “12 de Octubre”, 28041 Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC), 28029 Madrid, Spain
| |
Collapse
|
26
|
Jakobsen MK, Traynor S, Stæhr M, Duijf PG, Nielsen AY, Terp MG, Pedersen CB, Guldberg P, Ditzel HJ, Gjerstorff MF. The Cancer/Testis Antigen Gene VCX2 Is Rarely Expressed in Malignancies but Can Be Epigenetically Activated Using DNA Methyltransferase and Histone Deacetylase Inhibitors. Front Oncol 2021; 10:584024. [PMID: 33634013 PMCID: PMC7900521 DOI: 10.3389/fonc.2020.584024] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 12/14/2020] [Indexed: 01/25/2023] Open
Abstract
Identification of novel tumor-specific targets is important for the future development of immunotherapeutic strategies using genetically engineered T cells or vaccines. In this study, we characterized the expression of VCX2, a member of the VCX/Y cancer/testis antigen family, in a large panel of normal tissues and tumors from multiple cancer types using immunohistochemical staining and RNA expression data. In normal tissues, VCX2 was detected in the germ cells of the testis at all stages of maturation but not in any somatic tissues. Among malignancies, VCX2 was only found in tumors of a small subset of melanoma patients and thus rarely expressed compared to other cancer/testis antigens such as GAGE and MAGE-A. The expression of VCX2 correlated with that of other VCX/Y genes. Importantly, we found that expression of VCX2 was inversely correlated with promoter methylation and could be activated by treatment with a DNA methyltransferase inhibitor in multiple breast cancer and melanoma cell lines and a breast cancer patient-derived xenograft. The effect could be further potentiated by combining the DNA methyltransferase inhibitor with a histone deacetylase inhibitor. Our results show that the expression of VCX2 can be epigenetically induced in cancer cells and therefore could be an attractive target for immunotherapy of cancer.
Collapse
Affiliation(s)
- Mie K Jakobsen
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Sofie Traynor
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Mette Stæhr
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Pascal G Duijf
- Institute of Health and Biomedical Innovation, Faculty of Health, School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD, Australia.,University of Queensland Diamantina Institute, Translational Research Institute, The University of Queensland, Brisbane, QLD, Australia
| | - Aaraby Y Nielsen
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Mikkel G Terp
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Christina B Pedersen
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark
| | - Per Guldberg
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Molecular Diagnostics Group, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Henrik J Ditzel
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Oncology, Odense University Hospital, Odense, Denmark.,Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, Odense, Denmark
| | - Morten F Gjerstorff
- Department of Cancer and Inflammation Research, Institute for Molecular Medicine, University of Southern Denmark, Odense, Denmark.,Department of Oncology, Odense University Hospital, Odense, Denmark.,Academy of Geriatric Cancer Research (AgeCare), Odense University Hospital, Odense, Denmark
| |
Collapse
|
27
|
Boonjing P, Masuta Y, Nozawa K, Kato A, Ito H. The effect of zebularine on the heat-activated retrotransposon ONSEN in Arabidopsis thaliana and Vigna angularis. Genes Genet Syst 2020; 95:165-172. [PMID: 32741853 DOI: 10.1266/ggs.19-00046] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
The Ty1/copia-like retrotransposon ONSEN is conserved among Brassica species, as well as in beans, including adzuki bean (Vigna angularis (Willd.) Ohwi & Ohashi), which is one of the economically important crops in Japan. ONSEN has acquired a heat-responsive element that is recognized by plant heat stress defense factors, resulting in its transcription and the production of full-length extrachromosomal DNA under conditions with elevated temperatures. DNA methylation plays an important role in regulating the activation of this transposon in plants. Therefore, chemical inhibition of DNA methyltransferases has been utilized to study the effect of DNA methylation on transposon activation. To understand the effect of DNA methylation on ONSEN activation, Arabidopsis thaliana and adzuki bean seedlings were treated with zebularine, which is known to be an effective chemical demethylation agent. The results showed that ONSEN transcription levels were upregulated in zebularine-treated plants. Extrachromosomal DNA of ONSEN also accumulated in the treated plants.
Collapse
Affiliation(s)
| | | | - Kosuke Nozawa
- Graduate School of Life Science, Hokkaido University
| | | | | |
Collapse
|
28
|
Genitoni J, Vassaux D, Delaunay A, Citerne S, Portillo Lemus L, Etienne MP, Renault D, Stoeckel S, Barloy D, Maury S. Hypomethylation of the aquatic invasive plant, Ludwigia grandiflora subsp. hexapetala mimics the adaptive transition into the terrestrial morphotype. PHYSIOLOGIA PLANTARUM 2020; 170:280-298. [PMID: 32623739 DOI: 10.1111/ppl.13162] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Revised: 06/17/2020] [Accepted: 06/29/2020] [Indexed: 06/11/2023]
Abstract
Ongoing global changes affect ecosystems and open up new opportunities for biological invasion. The ability of invasive species to rapidly adapt to new environments represents a relevant model for studying short-term adaptation mechanisms. The aquatic invasive plant, Ludwigia grandiflora subsp. hexapetala, is classified as harmful in European rivers. In French wet meadows, this species has shown a rapid transition from aquatic to terrestrial environments with emergence of two distinct morphotypes in 5 years. To understand the heritable mechanisms involved in adjustment to such a new environment, we investigate both genetic and epigenetic as possible sources of flexibility involved in this fast terrestrial transition. We found a low overall genetic differentiation between the two morphotypes arguing against the possibility that terrestrial morphotype emerged from a new adaptive genetic capacity. Artificial hypomethylation was induced on both morphotypes to assess the epigenetic hypothesis. We analyzed global DNA methylation, morphological changes, phytohormones and metabolite profiles of both morphotype responses in both aquatic and terrestrial conditions in shoot and root tissues. Hypomethylation significantly affected morphological variables, phytohormone levels and the amount of some metabolites. The effects of hypomethylation depended on morphotypes, conditions and plant tissues, which highlighted differences among the morphotypes and their plasticity. Using a correlative integrative approach, we showed that hypomethylation of the aquatic morphotype mimicked the characteristics of the terrestrial morphotype. Our data suggest that DNA methylation rather than a new adaptive genetic capacity is playing a key role in L. grandiflora subsp. hexapetala plasticity during its rapid aquatic to terrestrial transition.
Collapse
Affiliation(s)
- Julien Genitoni
- ESE, Ecology and Ecosystem Health, Institut Agro, INRAE, Rennes, 35042, France
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), EA1207 USC1328 INRA, Université d'Orléans, Orléans, 45067, France
| | - Danièle Vassaux
- ESE, Ecology and Ecosystem Health, Institut Agro, INRAE, Rennes, 35042, France
| | - Alain Delaunay
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), EA1207 USC1328 INRA, Université d'Orléans, Orléans, 45067, France
| | - Sylvie Citerne
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, 78000, France
| | - Luis Portillo Lemus
- ESE, Ecology and Ecosystem Health, Institut Agro, INRAE, Rennes, 35042, France
| | - Marie-Pierre Etienne
- Institut Agro, CNRS, Université Rennes, IRMAR (Institut de Recherche Mathématique de Rennes) - UMR 6625, Rennes, F-35000, France
| | - David Renault
- UMR CNRS 6553 EcoBio, University of Rennes 1, Rennes, France
- Institut Universitaire de France, 1 rue Descartes, Paris, France
| | - Solenn Stoeckel
- IGEPP, INRAE, Institut Agro, Université Rennes, Le Rheu, 35653, France
| | - Dominique Barloy
- ESE, Ecology and Ecosystem Health, Institut Agro, INRAE, Rennes, 35042, France
| | - Stéphane Maury
- Laboratoire de Biologie des Ligneux et des Grandes Cultures (LBLGC), EA1207 USC1328 INRA, Université d'Orléans, Orléans, 45067, France
| |
Collapse
|
29
|
Exposing Hidden Targets: Combining epigenetic and immunotherapy to overcome cancer resistance. Semin Cancer Biol 2020; 65:114-122. [DOI: 10.1016/j.semcancer.2020.01.001] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2019] [Revised: 12/27/2019] [Accepted: 01/02/2020] [Indexed: 12/17/2022]
|
30
|
DNA Methylation as a Therapeutic Target for Bladder Cancer. Cells 2020; 9:cells9081850. [PMID: 32784599 PMCID: PMC7463638 DOI: 10.3390/cells9081850] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 02/06/2023] Open
Abstract
Bladder cancer (BC) is the tenth most frequent cancer worldwide and is associated with high mortality when diagnosed in its most aggressive form, which is not reverted by the current treatment options. Thus, the development of new therapeutic strategies, either alternative or complementary to the current ones, is of major importance. The disruption of normal epigenetic mechanisms, namely, DNA methylation, is a known early event in cancer development. Consequently, DNA methyltransferase (DNMT) inhibitors constitute a promising therapeutic target for the treatment of BC. Although these inhibitors, mainly nucleoside analogues such as 5-azacytidine (5-aza) and decitabine (DAC), cause re-expression of tumor suppressor genes, inhibition of tumor cell growth, and increased apoptosis in BC experimental models and clinical trials, they also show important drawbacks that prevent their use as a valuable option for the treatment of BC. However, their combination with chemotherapy and/or immune-checkpoint inhibitors could aid in their implementation in the clinical practice. Here, we provide a comprehensive review of the studies exploring the effects of DNA methylation inhibition using DNMTs inhibitors in BC, from in vitro and in vivo studies to clinical trials.
Collapse
|
31
|
Sanaei M, Kavoosi F. Effect of Zebularine in Comparison to and in Combination with Trichostatin A on CIP/KIP Family (p21Cip1/Waf1/Sdi1, p27Kip1, and p57Kip2), DNMTs (DNMT1, DNMT3a, and DNMT3b), Class I HDACs (HDACs 1, 2, 3) and Class II HDACs (HDACs 4, 5, 6) Gene Expression, Cell Growth Inhibition and Apoptosis Induction in Colon Cancer LS 174T Cell Line. Asian Pac J Cancer Prev 2020; 21:2131-2139. [PMID: 32711442 PMCID: PMC7573409 DOI: 10.31557/apjcp.2020.21.7.2131] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Indexed: 12/15/2022] Open
Abstract
Background: A pattern of epigenetic modifications and changes, DNA methylation and histone modification, is central to many human cancers. A variety of tumor suppressor genes (TSGs) have been demonstrated to be silenced because of histone deacetylation and DNA hypermethylation in several cancers. Recent in vitro studies have shown that two known mechanisms of epigenetic alteration consisting of methylation and histone deacetylation seem to be the best candidate mechanisms for inactivation of CIP/KIP family (p21Cip1/Waf1/Sdi1, and p27Kip1) in numerous cancers. Numerous investigations have indicated that DNA demethylating and histone deacetylase inhibitors (HDACIs) can restore the CIP/KIP family gene expression. Previously, we evaluated the effect of trichostatin A (TSA) and 5-aza-2′-deoxycytidine (5-AZA-CdR) on hepatocellular carcinoma (HCC). The present study was designed to investigate the effect of zebularine in comparison to and in combination with trichostatin A on p21Cip1/Waf1/Sdi1, p27Kip1, p57Kip2, DNMT1, DNMT3a and DNMT3b, Class I HDACs (HDACs 1, 2, 3) and Class II HDACs (HDACs 4, 5, 6) gene expression, cell growth inhibition and apoptosis induction in colon cancer LS 174T cell line. Materials and Methods: The colon cancer LS 174T cell line was cultured and treated with zebularine and TSA. To determine cell viability, apoptosis, and the relative expression level of the genes, MTT assay, cell apoptosis assay, and qRT-PCR were done respectively. Results: Both compounds significantly inhibited cell growth, and induced apoptosis. Furthermore, both compounds increased p21Cip1/Waf1/Sdi1, p27Kip1, and p57Kip2 significantly. Additionally, zebularine and TSA decreased DNMTs and HDACs gene expression respectively. Conclusion: The zebularine and trichostatin A can reactivate the CIP/KIP family through inhibition of DNMTs and HDACs genes activity.
Collapse
Affiliation(s)
- Masumeh Sanaei
- Research Center for Non-Communicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran
| | - Fraidoon Kavoosi
- Research Center for Non-Communicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran
| |
Collapse
|
32
|
Sanaei M, Kavoosi F. Investigation of the Effect of Zebularine in Comparison to and in Combination with Trichostatin A on p21Cip1/Waf1/ Sdi1, p27Kip1, p57Kip2, DNA Methyltransferases and Histone Deacetylases in Colon Cancer LS 180 Cell Line. Asian Pac J Cancer Prev 2020; 21:1819-1828. [PMID: 32592383 PMCID: PMC7568903 DOI: 10.31557/apjcp.2020.21.6.1819] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 06/26/2020] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND The heart of the cell cycle regulatory machine is a group of enzymes named cyclin-dependent kinases (Cdks). The active form of these enzymes includes a kinase and its partner, a cyclin. The regulation of cyclin-Cdk complexes is provided by Cdk inhibitors (CKIs) such as Cip/Kip family comprising p21Cip1/Waf1/Sdi1, p27Kip1, and p57Kip2. The hypermethylation and deacetylation of Cip/Kip gene family seem to be frequent in numerous cancers. It has been indicated that increased expression of DNMTs and HDACs contributes to cancer induction. Previously, we reported the effect of DNA demethylating agents and histone deacetylase inhibitors on histone deacetylase 1, DNA methyltransferase 1, and CIP/KIP family in colon cancer. The current study was designed to evaluate the effect of zebularine in comparison to and in combination with trichostatin A (TSA) on p21Cip1/Waf1/Sdi1, p27Kip1, p57Kip2, DNA methyltransferases (DNMT1, 3a and 3b) and histone deacetylases (HDAC1, 2, and 3) genes expression, cell growth inhibition and apoptosis induction in colon cancer LS 180 cell line. MATERIALS AND METHODS The colon cancer LS 180 cell line was cultured and treated with zebularine and TSA. To determine cell viability, apoptosis, and the relative expression level of the genes, MTT assay, cell apoptosis assay, and qRT-PCR were done respectively. RESULTS Both compounds significantly inhibited cell growth, and induced apoptosis. Furthermore, both compounds increased p21Cip1/Waf1/Sdi1, p27Kip1, and p57Kip2 significantly. Additionally, zebularine and TSA decreased DNMTs and HDACs gene expression respectively. CONCLUSION The zebularine and TSA can reactivate the CIP/KIP family through inhibition of DNMTs and HDACs genes activity. .
Collapse
Affiliation(s)
| | - Fraidoon Kavoosi
- Research Center for Non-communicable Diseases, Jahrom University of Medical Sciences, Jahrom, Iran.
| |
Collapse
|
33
|
Wong KK. DNMT1: A key drug target in triple-negative breast cancer. Semin Cancer Biol 2020; 72:198-213. [PMID: 32461152 DOI: 10.1016/j.semcancer.2020.05.010] [Citation(s) in RCA: 111] [Impact Index Per Article: 22.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Revised: 05/04/2020] [Accepted: 05/18/2020] [Indexed: 02/06/2023]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer. Altered epigenetics regulation including DNA hypermethylation by DNA methyltransferase 1 (DNMT1) has been implicated as one of the causes of TNBC tumorigenesis. In this review, the oncogenic functions rendered by DNMT1 in TNBCs, and DNMT1 inhibitors targeting TNBC cells are presented and discussed. In summary, DNMT1 expression is associated with poor breast cancer survival, and it is overexpressed in TNBC subtype. The oncogenic roles of DNMT1 in TNBCs include: (1) Repression of estrogen receptor (ER) expression; (2) Promotion of epithelial-mesenchymal transition (EMT) required for metastasis; (3) Induces cellular autophagy and; (4) Promotes the growth of cancer stem cells in TNBCs. DNMT1 confers these phenotypes by hypermethylating the promoter regions of ER, multiple tumor suppressor genes, microRNAs and epithelial markers involved in suppressing EMT. DNMT1 inhibitors exert anti-tumorigenic effects against TNBC cells. This includes the hypomethylating agents azacitidine, decitabine and guadecitabine that might sensitize TNBC patients to immune checkpoint blockade therapy. DNMT1 represents an epigenetic target for TNBC cells destruction as well as to derail their metastatic and aggressive phenotypes.
Collapse
Affiliation(s)
- Kah Keng Wong
- Department of Immunology, School of Medical Sciences, Universiti Sains Malaysia, 16150 Kubang Kerian, Kelantan, Malaysia.
| |
Collapse
|
34
|
Krzeminski P, García-Sanz R, Gutiérrez NC. Zebularine-induced myeloma cell death is accompanied by decreased c-Myc expression. Cell Oncol (Dordr) 2020; 43:743-750. [DOI: 10.1007/s13402-020-00516-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/03/2020] [Indexed: 12/15/2022] Open
|
35
|
Lu Y, Chan YT, Tan HY, Li S, Wang N, Feng Y. Epigenetic regulation in human cancer: the potential role of epi-drug in cancer therapy. Mol Cancer 2020; 19:79. [PMID: 32340605 PMCID: PMC7184703 DOI: 10.1186/s12943-020-01197-3] [Citation(s) in RCA: 289] [Impact Index Per Article: 57.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Accepted: 04/08/2020] [Indexed: 12/15/2022] Open
Abstract
Epigenetics is dynamic and heritable modifications to the genome that occur independently of DNA sequence. It requires interactions cohesively with various enzymes and other molecular components. Aberrant epigenetic alterations can lead to inappropriate onset of genetic expressions and promote tumorigenesis. As the epigenetic modifiers are susceptible to extrinsic factors and reversible, they are becoming promising targets in multiple cancer therapies. Recently, various epi-drugs have been developed and implicated in clinical use. The use of epi-drugs alone, or in combination with chemotherapy or immunotherapy, has shown compelling outcomes, including augmentation of anti-tumoral effects, overcoming drug resistance, and activation of host immune response.
Collapse
Affiliation(s)
- Yuanjun Lu
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pofulam, 000000, Hong Kong, Special Administrative Region of China
| | - Yau-Tuen Chan
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pofulam, 000000, Hong Kong, Special Administrative Region of China
| | - Hor-Yue Tan
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pofulam, 000000, Hong Kong, Special Administrative Region of China
| | - Sha Li
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pofulam, 000000, Hong Kong, Special Administrative Region of China
| | - Ning Wang
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pofulam, 000000, Hong Kong, Special Administrative Region of China.
| | - Yibin Feng
- School of Chinese Medicine, The University of Hong Kong, 10 Sassoon Road, Pofulam, 000000, Hong Kong, Special Administrative Region of China.
| |
Collapse
|
36
|
Ribatti D, Tamma R. Epigenetic control of tumor angiogenesis. Microcirculation 2020; 27:e12602. [PMID: 31863494 DOI: 10.1111/micc.12602] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 11/22/2019] [Accepted: 12/16/2019] [Indexed: 12/17/2022]
Abstract
The term "epigenetic" is used to refer to heritable alterations in chromatin that are not due to changes in DNA sequence. Different growth factors and vascular genes mediate the angiogenic process, which is regulated by epigenetic states of genes. The aim of this article is to analyze the role of epigenetic mechanisms in the control and regulation of tumor angiogenetic processes. The reversibility of epigenetic events in contrast to genetic aberrations makes them potentially suitable for therapeutic intervention. In this context, DNA methyltransferase (DNMT) and HDAC inhibitors indirectly-via the tumor cells-exhibit angiostatic effects in vivo, and inhibition of miRNAs can contribute to the development of novel anti-angiogenesis therapies.
Collapse
Affiliation(s)
- Domenico Ribatti
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| | - Roberto Tamma
- Department of Basic Medical Sciences, Neurosciences and Sensory Organs, University of Bari Medical School, Bari, Italy
| |
Collapse
|
37
|
Ribeiro ML, Reyes-Garau D, Armengol M, Fernández-Serrano M, Roué G. Recent Advances in the Targeting of Epigenetic Regulators in B-Cell Non-Hodgkin Lymphoma. Front Genet 2019; 10:986. [PMID: 31681423 PMCID: PMC6807552 DOI: 10.3389/fgene.2019.00986] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Accepted: 09/17/2019] [Indexed: 12/13/2022] Open
Abstract
In the last 10 years, major advances have been made in the diagnosis and development of selective therapies for several blood cancers, including B-cell non-Hodgkin lymphoma (B-NHL), a heterogeneous group of malignancies arising from the mature B lymphocyte compartment. However, most of these entities remain incurable and current treatments are associated with variable efficacy, several adverse events, and frequent relapses. Thus, new diagnostic paradigms and novel therapeutic options are required to improve the prognosis of patients with B-NHL. With the recent deciphering of the mutational landscapes of B-cell disorders by high-throughput sequencing, it came out that different epigenetic deregulations might drive and/or promote B lymphomagenesis. Consistently, over the last decade, numerous epigenetic drugs (or epidrugs) have emerged in the clinical management of B-NHL patients. In this review, we will present an overview of the most relevant epidrugs tested and/or used so far for the treatment of different subtypes of B-NHL, from first-generation epigenetic therapies like histone acetyl transferases (HDACs) or DNA-methyl transferases (DNMTs) inhibitors to new agents showing selectivity for proteins that are mutated, translocated, and/or overexpressed in these diseases, including EZH2, BET, and PRMT. We will dissect the mechanisms of action of these epigenetic inhibitors, as well as the molecular processes underlying their lack of efficacy in refractory patients. This review will also provide a summary of the latest strategies being employed in preclinical and clinical settings, and will point out the most promising lines of investigation in the field.
Collapse
Affiliation(s)
- Marcelo L. Ribeiro
- Laboratory of Experimental Hematology, Department of Hematology, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron University Hospital, Autonomous University of Barcelona, Barcelona, Spain
- Laboratory of Immunopharmacology and Molecular Biology, Sao Francisco University Medical School, Braganca Paulista, São Paulo, Brazil
| | - Diana Reyes-Garau
- Laboratory of Experimental Hematology, Department of Hematology, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron University Hospital, Autonomous University of Barcelona, Barcelona, Spain
| | - Marc Armengol
- Laboratory of Experimental Hematology, Department of Hematology, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron University Hospital, Autonomous University of Barcelona, Barcelona, Spain
| | - Miranda Fernández-Serrano
- Laboratory of Experimental Hematology, Department of Hematology, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron University Hospital, Autonomous University of Barcelona, Barcelona, Spain
| | - Gaël Roué
- Laboratory of Experimental Hematology, Department of Hematology, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron University Hospital, Autonomous University of Barcelona, Barcelona, Spain
| |
Collapse
|
38
|
Wei TT, Lin YT, Tang SP, Luo CK, Tsai CT, Shun CT, Chen CC. Metabolic targeting of HIF-1α potentiates the therapeutic efficacy of oxaliplatin in colorectal cancer. Oncogene 2019; 39:414-427. [PMID: 31477841 DOI: 10.1038/s41388-019-0999-8] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/25/2019] [Accepted: 08/15/2019] [Indexed: 12/14/2022]
Abstract
Drug resistance is a major problem limiting the efficacy of chemotherapy in cancer treatment, and the hypoxia-induced stabilization of HIF-1α plays a role in this process. HIF-1α overexpression has been observed in a variety of human cancers, including colorectal cancer (CRC). Therefore, targeting HIF-1α is a promising strategy for overcoming chemoresistance to enhance the efficacy of chemotherapies in CRC. Here, we show that DNMT inhibitors can induce HIF-1α degradation to overcome oxaliplatin resistance and enhance anti-CRC therapy. We found that a low-toxicity DNMT inhibitor, zebularine, could downregulate HIF-1α expression and overcome hypoxia-induced oxaliplatin resistance in HCT116 cells and showed efficacy in HCT116 xenograft models and AOM/DSS-induced CRC mouse models. Zebularine could induce the degradation of HIF-1α protein through hydroxylation. LC-MS analysis showed a decrease in succinate in various CRC cells under hypoxia and in colon tissues of AOM/DSS-induced CRC mice. The decrease was reversed by zebularine. Tumor angiogenesis was also reduced by zebularine. Furthermore, zebularine potentiated the anticancer effect of oxaliplatin in AOM/DSS-induced CRC models. This finding provides a new strategy in which an increase in HIF-1α hydroxylation could overcome oxaliplatin resistance to enhance anti-CRC therapy.
Collapse
Affiliation(s)
- Tzu-Tang Wei
- Department of Pharmacology and Graduate Institute of Forensic Medicine, National Taiwan University College of Medicine, 100, Taipei, Taiwan
| | - Yi-Ting Lin
- Department of Pharmacology and Graduate Institute of Forensic Medicine, National Taiwan University College of Medicine, 100, Taipei, Taiwan
| | - Shao-Pu Tang
- Department of Pharmacology and Graduate Institute of Forensic Medicine, National Taiwan University College of Medicine, 100, Taipei, Taiwan
| | - Cong-Kai Luo
- Department of Pharmacology and Graduate Institute of Forensic Medicine, National Taiwan University College of Medicine, 100, Taipei, Taiwan
| | - Chiou-Tsun Tsai
- Department of Pharmacology and Graduate Institute of Forensic Medicine, National Taiwan University College of Medicine, 100, Taipei, Taiwan
| | - Chia-Tung Shun
- Graduate Institute of Forensic Medicine, National Taiwan University College of Medicine, 100, Taipei, Taiwan.,Department of Pathology, National Taiwan University Hospital, 106, Taipei, Taiwan
| | - Ching-Chow Chen
- Department of Pharmacology and Graduate Institute of Forensic Medicine, National Taiwan University College of Medicine, 100, Taipei, Taiwan.
| |
Collapse
|
39
|
Quintanal-Villalonga Á, Molina-Pinelo S. Epigenetics of lung cancer: a translational perspective. Cell Oncol (Dordr) 2019; 42:739-756. [PMID: 31396859 DOI: 10.1007/s13402-019-00465-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Lung cancer remains the most common cause of cancer-related death, with a 5-year survival rate of only 18%. In recent years, the development of targeted pharmacological agents and immunotherapies has substantially increased the survival of a subset of patients. However, most patients lack such efficacious therapy and are, thus, treated with classical chemotherapy with poor clinical outcomes. Therefore, novel therapeutic strategies are urgently needed. In recent years, the development of epigenetic assays and their application to cancer research have highlighted the relevance of epigenetic regulation in the initiation, development, progression and treatment of lung cancer. CONCLUSIONS A variety of epigenetic modifications do occur at different steps of lung cancer development, some of which are key to tumor progression. The rise of cutting-edge technologies such as single cell epigenomics is, and will continue to be, crucial for uncovering epigenetic events at a single cell resolution, leading to a better understanding of the biology underlying lung cancer development and to the design of novel therapeutic options. This approach has already led to the development of strategies involving single agents or combined agents targeting epigenetic modifiers, currently in clinical trials. Here, we will discuss the epigenetics of every step of lung cancer development, as well as the translation of these findings into clinical applications.
Collapse
Affiliation(s)
| | - Sonia Molina-Pinelo
- Unidad Clínica de Oncología Médica, Radioterapia y Radiofísica, Instituto de Biomedicina de Sevilla (IBIS) (HUVR, CSIC, Universidad de Sevilla), Avda. Manuel Siurot s/n, 41013, Seville, Spain. .,CIBERONC, Instituto de Salud Carlos III, Madrid, Spain.
| |
Collapse
|
40
|
Sass P, Sosnowski P, Podolak-Popinigis J, Górnikiewicz B, Kamińska J, Deptuła M, Nowicka E, Wardowska A, Ruczyński J, Rekowski P, Rogujski P, Filipowicz N, Mieczkowska A, Peszyńska-Sularz G, Janus Ł, Skowron P, Czupryn A, Mucha P, Piotrowski A, Rodziewicz-Motowidło S, Pikuła M, Sachadyn P. Epigenetic inhibitor zebularine activates ear pinna wound closure in the mouse. EBioMedicine 2019; 46:317-329. [PMID: 31303499 PMCID: PMC6710911 DOI: 10.1016/j.ebiom.2019.07.010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 06/29/2019] [Accepted: 07/03/2019] [Indexed: 12/13/2022] Open
Abstract
BACKGROUND Most studies on regenerative medicine focus on cell-based therapies and transplantations. Small-molecule therapeutics, though proved effective in different medical conditions, have not been extensively investigated in regenerative research. It is known that healing potential decreases with development and developmental changes are driven by epigenetic mechanisms, which suggests epigenetic repression of regenerative capacity. METHODS We applied zebularine, a nucleoside inhibitor of DNA methyltransferases, to stimulate the regenerative response in a model of ear pinna injury in mice. FINDINGS We observed the regeneration of complex tissue that was manifested as improved ear hole repair in mice that received intraperitoneal injections of zebularine. Six weeks after injury, the mean hole area decreased by 83.2 ± 9.4% in zebularine-treated and by 43.6 ± 15.4% in control mice (p < 10-30). Combined delivery of zebularine and retinoic acid potentiated and accelerated this effect, resulting in complete ear hole closure within three weeks after injury. We found a decrease in DNA methylation and transcriptional activation of neurodevelopmental and pluripotency genes in the regenerating tissues. INTERPRETATION This study is the first to demonstrate an effective induction of complex tissue regeneration in adult mammals using zebularine. We showed that the synergistic action of an epigenetic drug (zebularine) and a transcriptional activator (retinoic acid) could be effectively utilized to induce the regenerative response, thus delineating a novel pharmacological strategy for regeneration. The strategy was effective in the model of ear pinna regeneration in mice, but zebularine acts on different cell types, therefore, a similar approach can be tested in other tissues and organs.
Collapse
Affiliation(s)
- Piotr Sass
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Paweł Sosnowski
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | | | - Bartosz Górnikiewicz
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Jolanta Kamińska
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland
| | - Milena Deptuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Ewa Nowicka
- Department of Clinical Anatomy, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Anna Wardowska
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | - Jarosław Ruczyński
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Piotr Rekowski
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | - Piotr Rogujski
- Laboratory of Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Natalia Filipowicz
- Faculty of Pharmacy, Medical University of Gdańsk, Gdańsk 80-416, Poland
| | - Alina Mieczkowska
- Faculty of Pharmacy, Medical University of Gdańsk, Gdańsk 80-416, Poland
| | - Grażyna Peszyńska-Sularz
- Tri-City Academic Laboratory Animal Centre, Research and Services Centre, Medical University of Gdańsk, 80-211 Gdańsk, Poland
| | | | - Piotr Skowron
- Department of Molecular Biotechnology, Faculty of Chemistry, University of Gdańsk, 80-308 Gdańsk, Poland
| | - Artur Czupryn
- Laboratory of Neurobiology, Nencki Institute of Experimental Biology, Polish Academy of Sciences, 02-093 Warsaw, Poland
| | - Piotr Mucha
- Department of Molecular Biochemistry, Faculty of Chemistry, University of Gdańsk, Gdańsk, Poland
| | | | | | - Michał Pikuła
- Laboratory of Tissue Engineering and Regenerative Medicine, Department of Embryology, Medical University of Gdańsk, 80-211 Gdańsk, Poland.
| | - Paweł Sachadyn
- Laboratory for Regenerative Biotechnology, Gdańsk University of Technology, 80-233 Gdańsk, Poland.
| |
Collapse
|
41
|
Taweechaipaisankul A, Kim GA, Jin JX, Lee S, Qasim M, Kim EH, Lee BC. Enhancement of epigenetic reprogramming status of porcine cloned embryos with zebularine, a DNA methyltransferase inhibitor. Mol Reprod Dev 2019; 86:1013-1022. [PMID: 31166644 DOI: 10.1002/mrd.23178] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 05/08/2019] [Accepted: 05/09/2019] [Indexed: 01/09/2023]
Abstract
Aberrant epigenetic reprogramming is known to be a major cause of inefficient somatic cell nuclear transfer (SCNT) in pigs, and use of epigenetic modification agents, such as DNA methyltransferase inhibitors (DNMTis), is a promising approach for enhancing SCNT efficacy. Here, we attempted to find the optimal condition of zebularine (Zb), a DNMTi, treatment on porcine SCNT embryos during in vitro culture (IVC). As results, treatment with 5 nM Zb for 24 hr showed the highest rate of embryo development to blastocyst compared to other groups (p < .05). Also, the relative intensities of global DNA methylation levels of anti-5-methylcytosine in pseudo-pronuclear (PNC), 2-cell and 4-cell stages were significantly lower in the Zb-treated group (p < .05), however, changes in methylation levels of centromeric satellite repeat were noted only in PNC and blastocyst stages. In addition, significant positive alterations in the relative expression of genes related to pluripotency (OCT4 and SOX2), histone acetylation (HAT1, HDAC1, HDAC2, and HDAC3) and DNA methylation (DNMT1 and DNMT3a) were observed compared to the control (p < .05). In conclusion, we found that Zb could modify DNA methylation levels in the early stages of porcine SCNT embryos and promote their developmental competence.
Collapse
Affiliation(s)
- Anukul Taweechaipaisankul
- Department of Theriogenology and Biotechnology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Geon A Kim
- Department of Theriogenology and Biotechnology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Jun-Xue Jin
- Department of Theriogenology and Biotechnology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.,Key Laboratory of Animal Cellular and Genetic Engineering of Heilongjiang Province, College of Life Science, Northeast Agricultural University, Heilongjiang, Harbin, China
| | - Sanghoon Lee
- Department of Theriogenology and Biotechnology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.,Futuristic Animal Resource & Research Center, Korea Research Institute of Bioscience and Biotechnology, Chungcheongbuk-do, Cheongju, Republic of Korea
| | - Muhammad Qasim
- Department of Theriogenology and Biotechnology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Eui Hyun Kim
- Department of Theriogenology and Biotechnology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Byeong Chun Lee
- Department of Theriogenology and Biotechnology, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
42
|
Wani AL, Shadab GHA. Brain, behavior and the journey towards neuroepigenetic therapeutics. Epigenomics 2019; 11:969-981. [PMID: 31144515 DOI: 10.2217/epi-2018-0014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Epigenetics has brought about a major shift in our understanding of biological mechanisms and their associated health effects. Strong epigenetic components have been found to be involved in the progression of many diseases. In several human diseases, including debilitating psychiatric disorders, altered epigenetic status has been found as one of the main causes. With continuous progress on drug development, researchers are enthusiastic toward epigenetic therapeutics which could possibly reverse epigenetic modifications. In this article certain developments in epigenetic therapeutics are highlighted, the indiscriminate use of which could also be associated with potential risk. These risks may partly be due to our limited knowledge on genes and the mechanisms underlying epigenetic involvement in different diseases. Epigenetic changes are fundamentally important for a large number of bodily functions; nonspecific usage of therapeutics could be potentially harmful therefore there is a need to harness epigenetics positively.
Collapse
Affiliation(s)
- Ab Latif Wani
- Cytogenetics & Molecular Toxicology Laboratory, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| | - Gg Hammad Ahmad Shadab
- Cytogenetics & Molecular Toxicology Laboratory, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh, 202002, India
| |
Collapse
|
43
|
Zhang Z, Wang J, Liu F, Yuan L, Ding M, Chen L, Yuan J, Yang K, Qian J, Lu W. Non-inflammatory emphysema induced by NO2 chronic exposure and intervention with demethylation 5-Azacytidine. Life Sci 2019; 221:121-129. [DOI: 10.1016/j.lfs.2019.02.022] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2018] [Revised: 02/01/2019] [Accepted: 02/09/2019] [Indexed: 01/04/2023]
|
44
|
Wu YS, Lee ZY, Chuah LH, Mai CW, Ngai SC. Epigenetics in Metastatic Breast Cancer: Its Regulation and Implications in Diagnosis, Prognosis and Therapeutics. Curr Cancer Drug Targets 2019; 19:82-100. [PMID: 29714144 DOI: 10.2174/1568009618666180430130248] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 02/21/2018] [Accepted: 04/03/2018] [Indexed: 02/06/2023]
Abstract
Despite advances in the treatment regimen, the high incidence rate of breast cancer (BC) deaths is mostly caused by metastasis. Recently, the aberrant epigenetic modifications, which involve DNA methylation, histone modifications and microRNA (miRNA) regulations become attractive targets to treat metastatic breast cancer (MBC). In this review, the epigenetic alterations of DNA methylation, histone modifications and miRNA regulations in regulating MBC are discussed. The preclinical and clinical trials of epigenetic drugs such as the inhibitor of DNA methyltransferase (DNMTi) and the inhibitor of histone deacetylase (HDACi), as a single or combined regimen with other epigenetic drug or standard chemotherapy drug to treat MBCs are discussed. The combined regimen of epigenetic drugs or with standard chemotherapy drugs enhance the therapeutic effect against MBC. Evidences that epigenetic changes could have implications in diagnosis, prognosis and therapeutics for MBC are also presented. Several genes have been identified as potential epigenetic biomarkers for diagnosis and prognosis, as well as therapeutic targets for MBC. Endeavors in clinical trials of epigenetic drugs against MBC should be continued although limited success has been achieved. Future discovery of epigenetic drugs from natural resources would be an attractive natural treatment regimen for MBC. Further research is warranted in translating research into clinical practice with the ultimate goal of treating MBC by epigenetic therapy in the near future.
Collapse
Affiliation(s)
- Yuan Seng Wu
- School of Biosciences, Faculty of Science, University of Nottingham Malaysia Campus, Selangor, Malaysia
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Zhong Yang Lee
- School of Biosciences, Faculty of Science, University of Nottingham Malaysia Campus, Selangor, Malaysia
| | - Lay-Hong Chuah
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
- Advanced Engineering Platform, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Chun Wai Mai
- Department of Pharmaceutical Chemistry, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Siew Ching Ngai
- School of Biosciences, Faculty of Science, University of Nottingham Malaysia Campus, Selangor, Malaysia
| |
Collapse
|
45
|
Nucleosidic DNA demethylating epigenetic drugs – A comprehensive review from discovery to clinic. Pharmacol Ther 2018; 188:45-79. [DOI: 10.1016/j.pharmthera.2018.02.006] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
46
|
Gailhouste L, Liew LC, Yasukawa K, Hatada I, Tanaka Y, Nakagama H, Ochiya T. Differentiation Therapy by Epigenetic Reconditioning Exerts Antitumor Effects on Liver Cancer Cells. Mol Ther 2018; 26:1840-1854. [PMID: 29759938 PMCID: PMC6035736 DOI: 10.1016/j.ymthe.2018.04.018] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2018] [Revised: 04/17/2018] [Accepted: 04/20/2018] [Indexed: 02/07/2023] Open
Abstract
Primary liver tumors are mainly represented by hepatocellular carcinoma (HCC), one of the most aggressive and resistant forms of cancer. Liver tumorigenesis is characterized by an accumulation of epigenetic abnormalities, leading to gene extinction and loss of hepatocyte differentiation. The aim of this work was to investigate the feasibility of converting liver cancer cells toward a less aggressive and differentiated phenotype using a process called epigenetic reconditioning. Here, we showed that an epigenetic regimen with non-cytotoxic doses of the demethylating compound 5-azacytidine (5-AZA) promoted an anti-cancer response by inhibiting HCC cell tumorigenicity. Furthermore, epigenetic reconditioning improved sorafenib response. Remarkably, epigenetic treatment was associated with a significant restoration of differentiation, as attested by the increased expression of characteristic hepatocyte markers in reconditioned cells. In particular, we showed that reexpression of these epigenetically silenced liver genes following 5-AZA treatment or after knockdown of DNA methyltransferase 1 (DNMT1) was the result of regional CpG demethylation. Lastly, we confirmed the efficacy of HCC differentiation therapy by epigenetic reconditioning using an in vivo tumor growth model. In summary, this work demonstrates that epigenetic reconditioning using the demethylating compound 5-AZA shows therapeutic significance for liver cancer and is potentially attractive for the treatment of solid tumors.
Collapse
Affiliation(s)
- Luc Gailhouste
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan.
| | - Lee Chuen Liew
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan; Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Ken Yasukawa
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan
| | - Izuho Hatada
- Laboratory of Genome Science, Biosignal Genome Resource Center, Institute for Molecular and Cellular Regulation, Gunma University, Maebashi, Japan
| | - Yasuhito Tanaka
- Department of Virology and Liver Unit, Nagoya City University Graduate School of Medical Sciences, Nagoya, Japan
| | - Hitoshi Nakagama
- Graduate School of Medicine, The University of Tokyo, Tokyo, Japan; National Cancer Center, Tokyo, Japan
| | - Takahiro Ochiya
- Division of Molecular and Cellular Medicine, National Cancer Center Research Institute, Tokyo, Japan.
| |
Collapse
|
47
|
Marques-Magalhães Â, Graça I, Henrique R, Jerónimo C. Targeting DNA Methyltranferases in Urological Tumors. Front Pharmacol 2018; 9:366. [PMID: 29706891 PMCID: PMC5909196 DOI: 10.3389/fphar.2018.00366] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2017] [Accepted: 03/28/2018] [Indexed: 12/14/2022] Open
Abstract
Urological cancers are a heterogeneous group of malignancies accounting for a considerable proportion of cancer-related morbidity and mortality worldwide. Aberrant epigenetic traits, especially altered DNA methylation patterns constitute a hallmark of these tumors. Nonetheless, these alterations are reversible, and several efforts have been carried out to design and test several epigenetic compounds that might reprogram tumor cell phenotype back to a normal state. Indeed, several DNMT inhibitors are currently under evaluation for therapeutic efficacy in clinical trials. This review highlights the critical role of DNA methylation in urological cancers and summarizes the available data on pre-clinical assays and clinical trials with DNMT inhibitors in bladder, kidney, prostate, and testicular germ cell cancers.
Collapse
Affiliation(s)
- Ângela Marques-Magalhães
- Cancer Biology and Epigenetics Group - Research Center, Portuguese Oncology Institute of Porto, Porto, Portugal
| | - Inês Graça
- Cancer Biology and Epigenetics Group - Research Center, Portuguese Oncology Institute of Porto, Porto, Portugal
| | - Rui Henrique
- Cancer Biology and Epigenetics Group - Research Center, Portuguese Oncology Institute of Porto, Porto, Portugal.,Department of Pathology, Portuguese Oncology Institute of Porto, Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| | - Carmen Jerónimo
- Cancer Biology and Epigenetics Group - Research Center, Portuguese Oncology Institute of Porto, Porto, Portugal.,Department of Pathology and Molecular Immunology, Institute of Biomedical Sciences Abel Salazar, University of Porto, Porto, Portugal
| |
Collapse
|
48
|
Sanna L, Marchesi I, Melone MAB, Bagella L. The role of enhancer of zeste homolog 2: From viral epigenetics to the carcinogenesis of hepatocellular carcinoma. J Cell Physiol 2018; 233:6508-6517. [PMID: 29574790 DOI: 10.1002/jcp.26545] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 02/16/2018] [Indexed: 12/17/2022]
Abstract
Nowadays, epigenetics covers a crucial role in different fields of science. The enhancer of zeste homolog 2 (EZH2), the catalytic subunit of the Polycomb Repressive Complex 2 (PRC2), is a big proponent of how epigenetic changes can affect the initiation and progression of several diseases. Through its catalytic activity, responsible for the tri-methylation of lysine 27 of the histone H3 (H3K27me3), EZH2 is a good target for both diagnosis and therapy of different pathologies. A large number of studies have demonstrated its crucial role in cancer initiation and progression. Nevertheless, only recently its function in virus diseases has been uncovered; therefore, EZH2 can be an important promoter of viral carcinogenesis. This review explores the role of EZH2 in viral epigenetics based on recent progress that demonstrated the role of this protein in virus environment. In particular, the review focuses on EZH2 behavior in Hepatitis B Virus, analyzing its role in the rise of Hepatocellular Carcinoma.
Collapse
Affiliation(s)
- Luca Sanna
- Department of Biomedical Science, and National Institute of Biostructures and Biosystems, University of Sassari, Sassari, Italy
| | - Irene Marchesi
- Department of Biomedical Science, and National Institute of Biostructures and Biosystems, University of Sassari, Sassari, Italy
| | - Mariarosa A B Melone
- Department of Medical, Surgical, Neurological, Metabolic Sciences and Aging, Second Division of Neurology, Center for Rare Neurological e Neuromuscular Diseases and Interuniversity Center for Research in Neurosciences, University of Campania Luigi Vanvitelli, Naples, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| | - Luigi Bagella
- Department of Biomedical Science, and National Institute of Biostructures and Biosystems, University of Sassari, Sassari, Italy.,Sbarro Institute for Cancer Research and Molecular Medicine, Department of Biology, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, Pennsylvania
| |
Collapse
|
49
|
Pan Y, Liu G, Zhou F, Su B, Li Y. DNA methylation profiles in cancer diagnosis and therapeutics. Clin Exp Med 2018; 18:1-14. [PMID: 28752221 DOI: 10.1007/s10238-017-0467-0] [Citation(s) in RCA: 267] [Impact Index Per Article: 38.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 06/16/2017] [Indexed: 12/12/2022]
Abstract
Cancer initiation and proliferation is regulated by both epigenetic and genetic events with epigenetic modifications being increasingly identified as important targets for cancer research. DNA methylation catalyzed by DNA methyltransferases (DNMTs) is one of the essential epigenetic mechanisms that control cell proliferation, apoptosis, differentiation, cell cycle, and transformation in eukaryotes. Recent progress in epigenetics revealed a deeper understanding of the mechanisms of tumorigenesis and provided biomarkers for early detection, diagnosis, and prognosis in cancer patients. Although DNA methylation biomarker possesses potential contributing to precision medicine, there are still limitations to be overcome before it reaches clinical setting. Hence, the current status of DNA methylation biomarkers was reviewed and the future use in clinic was also predicted.
Collapse
Affiliation(s)
- Yunbao Pan
- Department of Laboratory Medicine, Zhongnan Hospital, Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China
- Breast Tumor Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, Guangdong, China
| | - Guohong Liu
- School of Materials Science and Engineering, Sun Yat-Sen University, Guangzhou, 510275, Guangdong, China
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, 6767 Bertner Ave, Houston, TX, 77030, USA
| | - Fuling Zhou
- Department of Hematology, Zhongnan Hospital of Wuhan University, Wuhan, 430071, Hubei, China
| | - Bojin Su
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, 6767 Bertner Ave, Houston, TX, 77030, USA.
| | - Yirong Li
- Department of Laboratory Medicine, Zhongnan Hospital, Wuhan University, No.169 Donghu Road, Wuchang District, Wuhan, 430071, China.
| |
Collapse
|
50
|
Liang J, Yang F, Zhao L, Bi C, Cai B. Physiological and pathological implications of 5-hydroxymethylcytosine in diseases. Oncotarget 2018; 7:48813-48831. [PMID: 27183914 PMCID: PMC5217052 DOI: 10.18632/oncotarget.9281] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Accepted: 04/19/2016] [Indexed: 12/11/2022] Open
Abstract
Gene expression is the prerequisite of proteins. Diverse stimuli result in alteration of gene expression profile by base substitution for quite a long time. However, during the past decades, accumulating studies proved that bases modification is involved in this process. CpG islands (CGIs) are DNA fragments enriched in CpG repeats which mostly locate in promoters. They are frequently modified, methylated in most conditions, thereby suggesting a role of methylation in profiling gene expression. DNA methylation occurs in many conditions, such as cancer, embryogenesis, nervous system diseases etc. Recently, 5-hydroxymethylcytosine (5hmC), the product of 5-methylcytosine (5mC) demethylation, is emerging as a novel demethylation marker in many disorders. Consistently, conversion of 5mC to 5hmC has been proved in many studies. Here, we reviewed recent studies concerning demethylation via 5hmC conversion in several conditions and progress of therapeutics-associated with it in clinic. We aimed to unveil its physiological and pathological significance in diseases and to provide insight into its clinical application potential.
Collapse
Affiliation(s)
- Jing Liang
- Department of Pharmacology, Harbin Medical University (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, China
| | - Fan Yang
- Department of Pharmacology, Harbin Medical University (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, China
| | - Liang Zhao
- Department of Pharmacology, Harbin Medical University (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, China
| | - Chongwei Bi
- Department of Pharmacology, Harbin Medical University (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, China
| | - Benzhi Cai
- Department of Pharmacology, Harbin Medical University (The State-Province Key Laboratories of Biomedicine-Pharmaceutics of China), Harbin, China.,Institute of Clinical Pharmacy and Medicine, Academics of Medical Sciences of Heilongjiang Province, Harbin, China
| |
Collapse
|