1
|
Guerrero M, Proaño-Pérez E, Serrano-Candelas E, García-Valverde A, Carrillo-Rodríguez B, Rosell J, Serrano C, Martin M. Preclinical study of microphthalmia-associated transcription factor inhibitor ML329 in gastrointestinal stromal tumor growth. MOLECULAR THERAPY. ONCOLOGY 2025; 33:200983. [PMID: 40343114 PMCID: PMC12060441 DOI: 10.1016/j.omton.2025.200983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 02/15/2025] [Accepted: 04/09/2025] [Indexed: 05/11/2025]
Abstract
Gastrointestinal stromal tumors (GISTs) comprise about 80% of mesenchymal neoplasms in the gastrointestinal tract. Although imatinib mesylate is the preferred treatment, the development of drug resistance highlights the need for novel therapeutic strategies. Recently, we have identified the microphthalmia-associated transcription factor (MITF) as a critical player in pro-survival signaling and tumor growth. This study investigates the effects of MITF inhibition using ML329, an MITF pathway inhibitor, on GIST cell viability in vitro and in NMRI-nu/nu mouse xenograft models. ML329 suppresses growth in imatinib-sensitive (GIST-T1) and -resistant (GIST 430/654) cell lines, impairs MITF targets such as BCL2 and CDK2, and induces S-G2/M cell-cycle arrest. In vivo, ML329 is well tolerated and significantly reduces tumor growth in established imatinib-sensitive and -resistant GIST models. These findings underscore the importance of MITF in GIST growth and support its inhibition as a promising therapeutic approach.
Collapse
Affiliation(s)
- Mario Guerrero
- Biochemistry and Molecular Biology Unit, Biomedicine Department, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| | - Elizabeth Proaño-Pérez
- Biochemistry and Molecular Biology Unit, Biomedicine Department, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Multidisciplinary and Translational Research in Inflammation and Immunoallergy (METRI A), Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
- Facultad de Ciencias de la Salud, Universidad Técnica de Ambato, Ambato 180105, Ecuador
- Nutrigenx, Universidad Técnica de Ambato, Ambato 180105, Ecuador
| | - Eva Serrano-Candelas
- Biochemistry and Molecular Biology Unit, Biomedicine Department, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Multidisciplinary and Translational Research in Inflammation and Immunoallergy (METRI A), Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| | - Alfonso García-Valverde
- Sarcoma Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron University Hospital, 08035 Barcelona, Spain
| | - Berenice Carrillo-Rodríguez
- Biochemistry and Molecular Biology Unit, Biomedicine Department, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
| | - Jordi Rosell
- Sarcoma Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron University Hospital, 08035 Barcelona, Spain
| | - César Serrano
- Sarcoma Translational Research Program, Vall d’Hebron Institute of Oncology (VHIO), Vall d’Hebron University Hospital, 08035 Barcelona, Spain
- Department of Medical Oncology, Vall d'Hebron University Hospital, 08035 Barcelona, Spain
| | - Margarita Martin
- Biochemistry and Molecular Biology Unit, Biomedicine Department, Faculty of Medicine and Health Sciences, University of Barcelona, 08036 Barcelona, Spain
- Multidisciplinary and Translational Research in Inflammation and Immunoallergy (METRI A), Institut d'Investigacions Biomediques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain
| |
Collapse
|
2
|
Di Masi P, Colangeli M, Simonetti M, Bianchi G, Righi A, Bilancia G, Palmerini E, Crombé A, Spinnato P. Clear Cell Sarcoma of Soft Tissues: Radiological Analysis of 14 Patients-MRI Findings Related to Metastatic Disease. Diagnostics (Basel) 2025; 15:1027. [PMID: 40310428 PMCID: PMC12025808 DOI: 10.3390/diagnostics15081027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2025] [Revised: 04/15/2025] [Accepted: 04/16/2025] [Indexed: 05/02/2025] Open
Abstract
Background/Objectives: Clear cell sarcoma (CCS) is a very uncommon, aggressive soft-tissue sarcoma (STS) with a dismal prognosis. In the current literature, there are very limited data focused on the radiological features of CCS. Our study's objective was to describe CCS pre-treatment's peculiar imaging characteristics (MRI above all) and to assess if some radiologic features may predict patients' outcomes with regard to the occurrence of distant metastases. Methods: Our single-center experience includes all the patients with a histological diagnosis of CCS and available radiological and clinical data: 14 patients (8M, 6F, mean age 39.4 years old) were included. The available pre-treatment MRI or contrast-enhanced computed tomography (CECT) studies were examined using an analytical grid that incorporated characteristics from the most recent STS research. The occurrence of metastatic disease was matched with radiological features from baseline imaging studies. Results: MRI was available in 13 patients and CECT in 1 patient. The mean longest diameter (LD) was 50.5 mm ± 29.2. In 10 cases (71.4%), the tumor was deeply seated. MRI revealed a slightly high signal intensity (SI) on T1-WI and a high SI on T2-WI in every subject. At baseline, metastases were already present in 5/14 (35.7%) patients, 3 more developed metastases during the following 5 years (8/14, 57.1%), and 2 additional developed late-onset metastasis after more than 5 years from the diagnosis (total of 10/14 metastatic patients 71.4%). LD and metastasis at diagnosis were significantly correlated (Pearson correlation = 72%, p-value = 0.004). A pre-treatment LD > 4 cm was significantly associated with the development of distant metastases within 5 years from diagnosis and in subsequent follow-up (p = 0.0003). LD > 4 cm represents an increase in risk of metastatic disease within 5 years and during the course of follow-up (OR = 195.00, 95%CI: 3.36-11285.55, p = 0.01). The presence of MRI signs of macroscopic necrosis represented an increase in risk of metastatic disease within 5 years (OR = 15.00, 95%CI: 1.03-218.31-p = 0.04). Conclusions: The identification of MRI features of aggressive biology is a key element for an early referral to sarcoma centers. In our study, a LD > 4 cm and the presence of MRI signs of macroscopic necrosis at the baseline images resulted in being a predictor of metastatic disease.
Collapse
Affiliation(s)
- Paola Di Masi
- Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Marco Colangeli
- Department of Orthopaedic Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Mario Simonetti
- Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Giuseppe Bianchi
- Department of Orthopaedic Oncology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Alberto Righi
- Department of Pathology, IRCCS Istituto Ortopedico Rizzoli, 40316 Bologna, Italy
| | - Gabriele Bilancia
- Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Emanuela Palmerini
- Osteoncology, Soft Tissue and Bone Sarcomas, Innovative Therapy Unit, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
- Sylvester Comprehensive Cancer Center, University of Miami, Miami, FL 33124, USA
- Miller School of Medicine, University of Miami, Miami, FL 33124, USA
| | - Amandine Crombé
- Department of Musculoskeletal Imaging, Pellegrin University Hospital, 33076 Bordeaux, France
| | - Paolo Spinnato
- Diagnostic and Interventional Radiology, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| |
Collapse
|
3
|
Chung JS, Ramani V, Guo L, Popat V, Cruz PD, Xu L, Hammers H, Ariizumi K. Acquired resistance to immune checkpoint therapy is caused by glycoprotein non-metastatic melanoma protein B signal cascade. COMMUNICATIONS MEDICINE 2025; 5:79. [PMID: 40114009 PMCID: PMC11926377 DOI: 10.1038/s43856-025-00786-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 02/25/2025] [Indexed: 03/22/2025] Open
Abstract
BACKGROUND Acquired resistance (AR) is a major limitation of immune checkpoint inhibitor (ICI) therapy when treating renal cell carcinoma (RCC). Understanding who will get AR is currently unknown. We hypothesized the T-cell-inhibitory glycoprotein non-metastatic melanoma protein B (GPNMB) to be a prognostic marker for patients with AR. METHODS Alongside other markers, GPNMB was measured in the blood of RCC patients (n = 39) several times after starting ICI treatment and analyzed for association with Response Evaluation Criteria in Solid Tumors (RECIST) tumor response. To better understand the role of GPNMB in AR, we created an ICI-resistant RenCa mouse kidney cancer model by repeatedly selecting the largest tumors that grew in ICI-treated mice. RESULTS Here we show that among patients who positively respond to ICI, a subset of patients (n = 9) acquire resistance within 2 years that coincides with an increase in serum GPNMB. Our mouse model recapitulates this elevation in GPNMB at the onset of AR which is triggered by cytoplasmic motif signaling via the Programmed cell death ligand 1 (PDL1) receptor that is known to protect tumors from Interferon-gamma (IFN-γ) cytotoxicity. This PDL1-induced signal leads to upregulation of the SRY-box transcription factor 10 (SOX10), dysregulation of the microphthalmia-associated transcription factor (MITF) pathway, and overexpression of GPNMB. Indeed, activation of SOX10-MITF signaling is present in plasma cell-free RNA from RCC patients who develop AR. CONCLUSIONS Elevation of the SOX10-MITF-GPNMB signal cascade via the PDL1 receptor leads to AR. Therefore, GPNMB can be both a prognosticator of and a potential treatment target for overcoming AR to ICI treatment in RCC.
Collapse
Affiliation(s)
- Jin-Sung Chung
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Vijay Ramani
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Medpace, Irving, TX, USA
| | - Lei Guo
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Vinita Popat
- Department of Obstetrics & Gynecology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Ponciano D Cruz
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
- Dermatology Section (Medical Service), North Texas Veterans Affairs Medical Center, Dallas, TX, USA
| | - Lin Xu
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Hans Hammers
- Department of Hematology Oncology, The University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Kiyoshi Ariizumi
- Department of Dermatology, The University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
4
|
Lu Z, Dong H, Tu Z, Liu H. Expression, molecular mechanisms and therapeutic potentials of ATF1 in cancers. Life Sci 2025; 360:123256. [PMID: 39580140 DOI: 10.1016/j.lfs.2024.123256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2024] [Revised: 11/06/2024] [Accepted: 11/14/2024] [Indexed: 11/25/2024]
Abstract
Activating transcription factor 1 (ATF1) is a crucial cellular regulator, with its misregulation implicated in numerous cancers. As a key player in the ATF/CREB family, ATF1 modulates gene expression in response to extracellular signals, significantly impacting cancer progression. This review examines ATF1's structural features, its role in tumorigenesis, and its potential therapeutic applications. Data from various databases consistently show ATF1 overexpression in diverse cancers, associated with poor prognosis and aggressive phenotypes. The review explores ATF1's complex regulatory mechanisms, influencing cell proliferation, apoptosis, migration, invasion, and therapeutic resistance, and its interactions with regulatory networks. Emerging strategies targeting ATF1, such as engineered antibodies, natural compounds, and small molecule inhibitors, show efficacy in preclinical models. ATF1 may also act as a biomarker for personalized therapeutic response and resistance. Future research should focus on ATF1's role in the tumor microenvironment and its interaction with the immune system, potentially leading to new immunotherapeutic strategies. A deeper understanding of ATF1 could enhance cancer treatment and patient outcomes.
Collapse
Affiliation(s)
- Ziwen Lu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Hangyu Dong
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Zhigang Tu
- School of Life Sciences, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Hanqing Liu
- School of Pharmacy, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
5
|
Bianco JR, Li Y, Petranyi A, Fabian Z. EWSR1::ATF1 Translocation: A Common Tumor Driver of Distinct Human Neoplasms. Int J Mol Sci 2024; 25:13693. [PMID: 39769457 PMCID: PMC11728112 DOI: 10.3390/ijms252413693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 12/15/2024] [Accepted: 12/19/2024] [Indexed: 01/12/2025] Open
Abstract
Cancer is among the leading causes of mortality in developed countries due to limited available therapeutic modalities and high rate of morbidity. Although malignancies might show individual genetic landscapes, recurring aberrations in the neoplastic genome have been identified in the wide range of transformed cells. These include translocations of frequently affected loci of the human genetic material like the Ewing sarcoma breakpoint region 1 (EWSR1) of chromosome 22 that results in malignancies with mesodermal origin. These cytogenetic defects frequently result in the genesis of fusion genes involving EWSR1 and a number of genes from partner loci. One of these chromosomal rearrangements is the reciprocal translocation between the q13 and q12 loci of chromosome 12 and 22, respectively, that is believed to initiate cancer formation by the genesis of a novel, chimeric transcription factor provoking dysregulated gene expression. Since soft-tissue neoplasms carrying t(12;22)(q13;q12) have very poor prognosis and clinical modalities specifically targeting t(12;22)(q13;q12)-harboring cells are not available to date, understanding this DNA aberration is not only timely but urgent. Here, we review our current knowledge of human malignancies carrying the specific subset of EWSR1 rearrangements that leads to the expression of the EWSR1::ATF1 tumor-driver chimeric protein.
Collapse
Affiliation(s)
- Julia Raffaella Bianco
- School of Medicine and Dentistry, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK; (J.R.B.); (Y.L.)
| | - YiJing Li
- School of Medicine and Dentistry, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK; (J.R.B.); (Y.L.)
| | - Agota Petranyi
- Centre of Excellence for Pancreatic Diseases, Semmelweis University, 1083 Budapest, Hungary;
| | - Zsolt Fabian
- School of Medicine and Dentistry, Faculty of Clinical and Biomedical Sciences, University of Central Lancashire, Preston PR1 2HE, UK; (J.R.B.); (Y.L.)
- Translocon Biotechnologies PLC, Akademia u. 6, 1056 Budapest, Hungary
| |
Collapse
|
6
|
Czarnecka AM, Chmiel P, Błoński PJ, Świtaj T, Rogala P, Falkowski S, Koseła-Paterczyk H, Teterycz P, Morysiński T, Spałek M, Wągrodzki M, Rutkowski P. Real-world outcomes of metastatic clear cell sarcoma sequential chemotherapy. J Chemother 2024:1-12. [PMID: 38973299 DOI: 10.1080/1120009x.2024.2372524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 06/21/2024] [Indexed: 07/09/2024]
Abstract
Clear cell sarcoma is an ultra-rare chemoresistant subtype of soft tissue sarcoma. This retrospective analysis aimed to clarify the efficacy of palliative chemotherapy in CCS by assessing response rates, progression-free survival (PFS), and overall survival (OS) at a referral center. A retrospective analysis of palliative treatment was conducted on patients with CCS treated at the sarcoma unit from 1997 to 2023. Treatment responses were assessed using RECIST criteria, and the Kaplan-Meier method was used to calculate PFS and OS. The analysis covered 23 CCS chemotherapy-treated patients with 11 (47.8%) men. The median age at the palliative treatment start was 32 years (range 18-59). The median follow-up was 8.2 months. Four patients were referred to our centre for M1 disease, and 6 received perioperative chemotherapy and progressed during follow-up. In the first line, 14 patients received anthracycline-based chemotherapy (60.9%), five were treated with ifosfamide (HD-IFO), and four received other regimens. One patient (4.3%) achieved partial response (PR), and 12 patients (52.2%) achieved stable disease (SD) as the best response. Median PFS in 1 line was 2.79 months (95% CI: 2.04-8.38), and 1.76 months (95% CI: 0.72-6.97) in the second line. The median OS from first-line palliative chemotherapy was 8.2 months (95% CI: 6.2-14), and the second-line palliative chemotherapy mOS was 4.6 months (95% CI: 3.9-NA). Perioperatively anthracycline-pretreated worsened patients' median PFS in the M1 setting. Poor responses to conventional chemotherapy were observed in CCS, indicating a need for further clinical trials in this indication.
Collapse
Affiliation(s)
- Anna M Czarnecka
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
- Department of Experimental Pharmacology, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Paulina Chmiel
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
- Medical Faculty, Medical University of Warsaw, Warsaw, Poland
| | - Piotr J Błoński
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
- Medical Faculty, Medical University of Warsaw, Warsaw, Poland
| | - Tomasz Świtaj
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Paweł Rogala
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Sławomir Falkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Hanna Koseła-Paterczyk
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Paweł Teterycz
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
- Department of Computational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Tadeusz Morysiński
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Mateusz Spałek
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
- Department of Radiotherapy I, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Michał Wągrodzki
- Department of Pathology, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland
| |
Collapse
|
7
|
Kucinski JP, Calderon D, Kendall GC. Biological and therapeutic insights from animal modeling of fusion-driven pediatric soft tissue sarcomas. Dis Model Mech 2024; 17:dmm050704. [PMID: 38916046 PMCID: PMC11225592 DOI: 10.1242/dmm.050704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024] Open
Abstract
Survival for children with cancer has primarily improved over the past decades due to refinements in surgery, radiation and chemotherapy. Although these general therapies are sometimes curative, the cancer often recurs, resulting in poor outcomes for patients. Fusion-driven pediatric soft tissue sarcomas are genetically defined by chromosomal translocations that create a chimeric oncogene. This distinctive, almost 'monogenic', genetic feature supports the generation of animal models to study the respective diseases in vivo. This Review focuses on a subset of fusion-driven pediatric soft tissue sarcomas that have transgenic animal tumor models, which includes fusion-positive and infantile rhabdomyosarcoma, synovial sarcoma, undifferentiated small round cell sarcoma, alveolar soft part sarcoma and clear cell sarcoma. Studies using the animal models of these sarcomas have highlighted that pediatric cancers require a specific cellular state or developmental stage to drive tumorigenesis, as the fusion oncogenes cause different outcomes depending on their lineage and timing of expression. Therefore, understanding these context-specific activities could identify targetable activities and mechanisms critical for tumorigenesis. Broadly, these cancers show dependencies on chromatin regulators to support oncogenic gene expression and co-opting of developmental pathways. Comparative analyses across lineages and tumor models will further provide biological and therapeutic insights to improve outcomes for these children.
Collapse
Affiliation(s)
- Jack P. Kucinski
- Center for Childhood Cancer Research, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA
- Molecular, Cellular, and Developmental Biology PhD Program, The Ohio State University, Columbus, OH 43210, USA
| | - Delia Calderon
- Center for Childhood Cancer Research, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA
- Molecular, Cellular, and Developmental Biology PhD Program, The Ohio State University, Columbus, OH 43210, USA
| | - Genevieve C. Kendall
- Center for Childhood Cancer Research, The Abigail Wexner Research Institute, Nationwide Children's Hospital, Columbus, OH 43215, USA
- Molecular, Cellular, and Developmental Biology PhD Program, The Ohio State University, Columbus, OH 43210, USA
- Department of Pediatrics, The Ohio State University College of Medicine, Columbus, OH 43215, USA
| |
Collapse
|
8
|
Rotaru V, Chitoran E, Mitroiu MN, Ionescu SO, Neicu A, Cirimbei C, Alecu M, Gelal A, Prie AD, Simion L. Intestinal Clear Cell Sarcoma-A Case Presentation of an Extremely Rare Tumor and Literature Review. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:847. [PMID: 38929464 PMCID: PMC11205295 DOI: 10.3390/medicina60060847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/28/2024]
Abstract
Background: Clear cell sarcoma (CCS) is an extremely rare form of sarcoma representing less than 1% of all soft-tissue sarcomas. It has morphological, structural, and immunohistochemical similarities to malignant melanoma, affecting young adults and equally affecting both sexes, and is usually located in the tendinous sheaths and aponeuroses of the limbs. Gastrointestinal localization is exceptional, with less than 100 cases reported thus far. The gene fusion of activating transcription factor 1 (ATF1) and the Ewing sarcoma breakpoint region 1 (EWSR1) are pathognomonic for clear cell sarcoma, representing the key to the diagnosis. CCS is an extremely aggressive tumor, with >30% having distant or lymphatic metastasis at the time of diagnostic, and it has a high recurrence rate of over 80% in the first year after diagnosis and a high tendency for metastatic dissemination. Given the rarity of this tumor, there is no standardized treatment. Early diagnosis and radical surgery are essential in the treatment of CCS both for the primary tumor and for recurrence or metastasis. Chemo-radiotherapy has very little effect and is rarely indicated, and the role of targeted therapies is still under investigation. Case presentation: We present an extremely rare case of intestinal CSS in a 44-year-old Caucasian female. The patient, asymptomatic, first presented for a routine checkup and was diagnosed with mild iron-deficiency anemia. Given her family history of multiple digestive cancers, additional investigations were requested (gastroscopy, colonoscopy, tumoral markers and imaging) and the results were all within normal limits. In the subsequent period, the patient experienced mild diffuse recurrent abdominal pain, which occurred every 2-3 months. Two years later, the patient presented with symptoms of intestinal obstruction and underwent an emergency laparotomy followed by segmental enterectomy and regional lymphadenectomy for stenotic tumor of the jejunum. Histology, immunohistochemistry, and genetic testing established the diagnosis of CCS. No adjuvant therapy was indicated. Initially, no signs of recurrence or metastasis were detected, but after 30 and 46 months, respectively, from the primary treatment, the patient developed liver metastasis and pericolic peritoneal implants treated by atypical hepatic resections and right hemicolectomy. The patient remains under observation.
Collapse
Affiliation(s)
- Vlad Rotaru
- General Surgery Department 10, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- General Surgery and Surgical Oncology Department I, Bucharest Institute of Oncology “Prof. Dr. Al. Trestioreanu”, 022328 Bucharest, Romania
| | - Elena Chitoran
- General Surgery Department 10, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- General Surgery and Surgical Oncology Department I, Bucharest Institute of Oncology “Prof. Dr. Al. Trestioreanu”, 022328 Bucharest, Romania
| | - Madalina Nicoleta Mitroiu
- General Surgery and Surgical Oncology Department I, Bucharest Institute of Oncology “Prof. Dr. Al. Trestioreanu”, 022328 Bucharest, Romania
| | - Sinziana Octavia Ionescu
- General Surgery Department 10, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- General Surgery and Surgical Oncology Department I, Bucharest Institute of Oncology “Prof. Dr. Al. Trestioreanu”, 022328 Bucharest, Romania
| | - Ariana Neicu
- Pathology Department, Bucharest Institute of Oncology “Prof. Dr. Al. Trestioreanu”, 022328 Bucharest, Romania
| | - Ciprian Cirimbei
- General Surgery Department 10, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- General Surgery and Surgical Oncology Department I, Bucharest Institute of Oncology “Prof. Dr. Al. Trestioreanu”, 022328 Bucharest, Romania
| | - Mihnea Alecu
- General Surgery Department 10, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- General Surgery and Surgical Oncology Department I, Bucharest Institute of Oncology “Prof. Dr. Al. Trestioreanu”, 022328 Bucharest, Romania
| | - Aisa Gelal
- General Surgery and Surgical Oncology Department I, Bucharest Institute of Oncology “Prof. Dr. Al. Trestioreanu”, 022328 Bucharest, Romania
| | - Andra Delia Prie
- General Surgery and Surgical Oncology Department I, Bucharest Institute of Oncology “Prof. Dr. Al. Trestioreanu”, 022328 Bucharest, Romania
| | - Laurentiu Simion
- General Surgery Department 10, “Carol Davila” University of Medicine and Pharmacy, 050474 Bucharest, Romania
- General Surgery and Surgical Oncology Department I, Bucharest Institute of Oncology “Prof. Dr. Al. Trestioreanu”, 022328 Bucharest, Romania
| |
Collapse
|
9
|
Takeiwa T, Ikeda K, Horie K, Inoue S. Role of RNA binding proteins of the Drosophila behavior and human splicing (DBHS) family in health and cancer. RNA Biol 2024; 21:1-17. [PMID: 38551131 PMCID: PMC10984136 DOI: 10.1080/15476286.2024.2332855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Revised: 02/19/2024] [Accepted: 03/15/2024] [Indexed: 04/02/2024] Open
Abstract
RNA-binding proteins (RBPs) play crucial roles in the functions and homoeostasis of various tissues by regulating multiple events of RNA processing including RNA splicing, intracellular RNA transport, and mRNA translation. The Drosophila behavior and human splicing (DBHS) family proteins including PSF/SFPQ, NONO, and PSPC1 are ubiquitously expressed RBPs that contribute to the physiology of several tissues. In mammals, DBHS proteins have been reported to contribute to neurological diseases and play crucial roles in cancers, such as prostate, breast, and liver cancers, by regulating cancer-specific gene expression. Notably, in recent years, multiple small molecules targeting DBHS family proteins have been developed for application as cancer therapeutics. This review provides a recent overview of the functions of DBHS family in physiology and pathophysiology, and discusses the application of DBHS family proteins as promising diagnostic and therapeutic targets for cancers.
Collapse
Affiliation(s)
- Toshihiko Takeiwa
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi-ku, Tokyo, Japan
| | - Kazuhiro Ikeda
- Division of Systems Medicine & Gene Therapy, Faculty of Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Kuniko Horie
- Division of Systems Medicine & Gene Therapy, Faculty of Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| | - Satoshi Inoue
- Department of Systems Aging Science and Medicine, Tokyo Metropolitan Institute for Geriatrics and Gerontology, Itabashi-ku, Tokyo, Japan
- Division of Systems Medicine & Gene Therapy, Faculty of Medicine, Saitama Medical University, Hidaka, Saitama, Japan
| |
Collapse
|
10
|
Santasusagna S, Zhu S, Jawalagatti V, Carceles-Cordon M, Ertel A, Garcia-Longarte S, Song WM, Fujiwara N, Li P, Mendizabal I, Petrylak DP, Kelly WK, Reddy EP, Wang L, Schiewer MJ, Lujambio A, Karnes J, Knudsen KE, Cordon-Cardo C, Dong H, Huang H, Carracedo A, Hoshida Y, Rodriguez-Bravo V, Domingo-Domenech J. Master Transcription Factor Reprogramming Unleashes Selective Translation Promoting Castration Resistance and Immune Evasion in Lethal Prostate Cancer. Cancer Discov 2023; 13:2584-2609. [PMID: 37676710 PMCID: PMC10714140 DOI: 10.1158/2159-8290.cd-23-0306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/28/2023] [Accepted: 09/05/2023] [Indexed: 09/08/2023]
Abstract
Signaling rewiring allows tumors to survive therapy. Here we show that the decrease of the master regulator microphthalmia transcription factor (MITF) in lethal prostate cancer unleashes eukaryotic initiation factor 3B (eIF3B)-dependent translation reprogramming of key mRNAs conferring resistance to androgen deprivation therapy (ADT) and promoting immune evasion. Mechanistically, MITF represses through direct promoter binding eIF3B, which in turn regulates the translation of specific mRNAs. Genome-wide eIF3B enhanced cross-linking immunoprecipitation sequencing (eCLIP-seq) showed specialized binding to a UC-rich motif present in subsets of 5' untranslated regions. Indeed, translation of the androgen receptor and major histocompatibility complex I (MHC-I) through this motif is sensitive to eIF3B amount. Notably, pharmacologic targeting of eIF3B-dependent translation in preclinical models sensitizes prostate cancer to ADT and anti-PD-1 therapy. These findings uncover a hidden connection between transcriptional and translational rewiring promoting therapy-refractory lethal prostate cancer and provide a druggable mechanism that may transcend into effective combined therapeutic strategies. SIGNIFICANCE Our study shows that specialized eIF3B-dependent translation of specific mRNAs released upon downregulation of the master transcription factor MITF confers castration resistance and immune evasion in lethal prostate cancer. Pharmacologic targeting of this mechanism delays castration resistance and increases immune-checkpoint efficacy. This article is featured in Selected Articles from This Issue, p. 2489.
Collapse
Affiliation(s)
- Sandra Santasusagna
- Department of Urology, Mayo Comprehensive Cancer Center, Rochester, Minnesota
- Department of Biochemistry and Molecular Biology, Mayo Comprehensive Cancer Center, Rochester, Minnesota
| | - Shijia Zhu
- Department of Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, Minnesota
| | - Vijayakumar Jawalagatti
- Department of Urology, Mayo Comprehensive Cancer Center, Rochester, Minnesota
- Department of Biochemistry and Molecular Biology, Mayo Comprehensive Cancer Center, Rochester, Minnesota
| | | | - Adam Ertel
- Department of Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Saioa Garcia-Longarte
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Won-Min Song
- Department of Genetics and Genome Sciences, Tisch Cancer Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Naoto Fujiwara
- Department of Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Peiyao Li
- Department of Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Isabel Mendizabal
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
| | - Daniel P. Petrylak
- Department of Oncology, Yale Comprehensive Cancer Center, Yale School of Medicine, New Haven, Connecticut
| | - William Kevin Kelly
- Department of Oncology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - E. Premkumar Reddy
- Department of Oncological Sciences, Tisch Cancer Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Liguo Wang
- Department of Biochemistry and Molecular Biology, Mayo Comprehensive Cancer Center, Rochester, Minnesota
| | - Matthew J. Schiewer
- Department of Pharmacology, Physiology, and Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Amaia Lujambio
- Department of Oncological Sciences, Tisch Cancer Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jeffrey Karnes
- Department of Urology, Mayo Comprehensive Cancer Center, Rochester, Minnesota
| | - Karen E. Knudsen
- Department of Pharmacology, Physiology, and Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Carlos Cordon-Cardo
- Department of Pathology. Tisch Cancer Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Haidong Dong
- Department of Urology, Mayo Comprehensive Cancer Center, Rochester, Minnesota
- Department of Immunology, Mayo Comprehensive Cancer Center, Rochester, Minnesota
| | - Haojie Huang
- Department of Urology, Mayo Comprehensive Cancer Center, Rochester, Minnesota
- Department of Biochemistry and Molecular Biology, Mayo Comprehensive Cancer Center, Rochester, Minnesota
| | - Arkaitz Carracedo
- Center for Cooperative Research in Biosciences (CIC bioGUNE), Basque Research and Technology Alliance (BRTA), Derio, Spain
- Ikerbasque, Basque Foundation for Science, Bilbao, Spain
- Traslational prostate cancer Research Lab, CIC bioGUNE-Basurto, Biocruces Bizkaia Health Research Institute CIC bioGUNE, Bizkaia Technology Park, Derio, Spain
- CIBERONC, Madrid, Spain
- Biochemistry and Molecular Biology Department, University of the Basque Country (UPV/EHU), Bilbao, Spain
| | - Yujin Hoshida
- Department of Medicine, Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Veronica Rodriguez-Bravo
- Department of Urology, Mayo Comprehensive Cancer Center, Rochester, Minnesota
- Department of Biochemistry and Molecular Biology, Mayo Comprehensive Cancer Center, Rochester, Minnesota
| | - Josep Domingo-Domenech
- Department of Urology, Mayo Comprehensive Cancer Center, Rochester, Minnesota
- Department of Biochemistry and Molecular Biology, Mayo Comprehensive Cancer Center, Rochester, Minnesota
| |
Collapse
|
11
|
Towery EA, Papke DJ. Emerging mesenchymal tumour types and biases in the era of ubiquitous sequencing. J Clin Pathol 2023; 76:802-812. [PMID: 37550012 DOI: 10.1136/jcp-2022-208684] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/24/2023] [Indexed: 08/09/2023]
Abstract
New tumour types are being described at increasing frequency, and most new tumour types are now identified via retrospective review of next-generation sequencing data. This contrasts with the traditional, morphology-based method of identifying new tumour types, and while the sequencing-based approach has accelerated progress in the field, it has also introduced novel and under-recognised biases. Here, we discuss tumour types identified based on morphology, including superficial CD34-positive fibroblastic tumour, pseudoendocrine sarcoma and cutaneous clear cell tumour with melanocytic differentiation and ACTIN::MITF fusion. We also describe tumour types identified primarily by next-generation sequencing, including epithelioid and spindle cell rhabdomyosarcoma, round cell neoplasms with EWSR1::PATZ1 fusion, cutaneous melanocytic tumour with CRTC1::TRIM11 fusion, clear cell tumour with melanocytic differentiation and MITF::CREM fusion and GLI1-altered mesenchymal neoplasms, including nested glomoid neoplasm.
Collapse
|
12
|
Tamiya H, Urushihara N, Shizuma K, Ogawa H, Nakai S, Wakamatsu T, Takenaka S, Kakunaga S. SHARPIN Enhances Ferroptosis in Synovial Sarcoma Cells via NF-κB- and PRMT5-Mediated PGC1α Reduction. Cancers (Basel) 2023; 15:3484. [PMID: 37444594 DOI: 10.3390/cancers15133484] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/25/2023] [Accepted: 07/01/2023] [Indexed: 07/15/2023] Open
Abstract
Sarcoma is a rare type of cancer for which new therapeutic agents are required. Ferroptosis is a nonapoptotic cell death triggered by iron-mediated lipid peroxidation. We found that TFRC, an iron uptake protein, was expressed at higher levels in sarcoma cell lines than in noncancer and carcinoma cell lines. Glutathione peroxidase 4 (GPX4) protects cells against ferroptosis, and its inhibition using RAS-selective lethal 3 (RSL3) had an antitumor effect that was more pronounced in sarcoma cell lines, particularly synovial sarcoma cells, compared to non-sarcoma cells. Because NF-κB can provoke ferroptosis, we examined the role of SHARPIN, an activator of NF-κB, in sarcoma. We found that SHARPIN expression was significantly associated with reduced survival in cohorts of patients with cancer, including sarcoma. In addition, SHARPIN promoted the sensitivity of sarcoma cells to ferroptosis. Further analyses revealed that the PGC1α/NRF2/SLC7A11 axis and BNIP3L/NIX-mediated mitophagy are regulated through NF-κB and PRMT5 downstream of SHARPIN. Our findings suggest that ferroptosis could have a therapeutic effect in sarcoma, particularly in subpopulations with high TFRC and SHARPIN expression.
Collapse
Affiliation(s)
- Hironari Tamiya
- Department of Rehabilitation, Osaka International Cancer Institute, Osaka 541-8567, Japan
- Department of Orthopaedic Surgery, Osaka International Cancer Institute, Osaka 541-8567, Japan
| | - Naoko Urushihara
- Nitto Joint Research Department for Nucleic Acid Medicine, Research Center, Osaka International Cancer Institute, Osaka 541-8567, Japan
| | - Kazuko Shizuma
- Nitto Joint Research Department for Nucleic Acid Medicine, Research Center, Osaka International Cancer Institute, Osaka 541-8567, Japan
| | - Hisataka Ogawa
- Nitto Joint Research Department for Nucleic Acid Medicine, Research Center, Osaka International Cancer Institute, Osaka 541-8567, Japan
| | - Sho Nakai
- Department of Orthopaedic Surgery, Osaka International Cancer Institute, Osaka 541-8567, Japan
| | - Toru Wakamatsu
- Department of Orthopaedic Surgery, Osaka International Cancer Institute, Osaka 541-8567, Japan
| | - Satoshi Takenaka
- Department of Orthopaedic Surgery, Osaka International Cancer Institute, Osaka 541-8567, Japan
| | - Shigeki Kakunaga
- Department of Orthopaedic Surgery, Osaka International Cancer Institute, Osaka 541-8567, Japan
| |
Collapse
|
13
|
Mae H, Outani H, Imura Y, Chijimatsu R, Inoue A, Kotani Y, Yasuda N, Nakai S, Nakai T, Takenaka S, Okada S. Targeting the Clear Cell Sarcoma Oncogenic Driver Fusion Gene EWSR1::ATF1 by HDAC Inhibition. CANCER RESEARCH COMMUNICATIONS 2023; 3:1152-1165. [PMID: 37405123 PMCID: PMC10317042 DOI: 10.1158/2767-9764.crc-22-0518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 04/13/2023] [Accepted: 06/05/2023] [Indexed: 07/06/2023]
Abstract
Clear cell sarcoma (CCS), a rare but extremely aggressive malignancy with no effective therapy, is characterized by the expression of the oncogenic driver fusion gene EWSR1::ATF1. In this study, we performed a high-throughput drug screening, finding that the histone deacetylase inhibitor vorinostat exerted an antiproliferation effect with the reduced expression of EWSR1::ATF1. We expected the reduced expression of EWSR1::ATF1 to be due to the alteration of chromatin accessibility; however, assay for transposase-accessible chromatin using sequencing and a cleavage under targets and release using nuclease assay revealed that chromatin structure was only slightly altered, despite histone deacetylation at the EWSR1::ATF1 promoter region. Alternatively, we found that vorinostat treatment reduced the level of BRD4, a member of the bromodomain and extraterminal motif protein family, at the EWSR1::ATF1 promoter region. Furthermore, the BRD4 inhibitor JQ1 downregulated EWSR1::ATF1 according to Western blotting and qPCR analyses. In addition, motif analysis revealed that vorinostat treatment suppressed the transcriptional factor SOX10, which directly regulates EWSR1::ATF1 expression and is involved in CCS proliferation. Importantly, we demonstrate that a combination therapy of vorinostat and JQ1 synergistically enhances antiproliferation effect and EWSR1::ATF1 suppression. These results highlight a novel fusion gene suppression mechanism achieved using epigenetic modification agents and provide a potential therapeutic target for fusion gene-related tumors. Significance This study reveals the epigenetic and transcriptional suppression mechanism of the fusion oncogene EWSR1::ATF1 in clear cell sarcoma by histone deacetylase inhibitor treatment as well as identifying SOX10 as a transcription factor that regulates EWSR1::ATF1 expression.
Collapse
Affiliation(s)
- Hirokazu Mae
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hidetatsu Outani
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yoshinori Imura
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Ryota Chijimatsu
- Center for Comprehensive Genomic Medicine, Okayama University Hospital, Okayama, Japan
| | - Akitomo Inoue
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Yuki Kotani
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Naohiro Yasuda
- Department of Orthopedic Surgery, Osaka National Hospital, Osaka, Japan
| | - Sho Nakai
- Musculoskeletal Oncology Service, Osaka International Cancer Institute, Osaka, Japan
| | - Takaaki Nakai
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Satoshi Takenaka
- Musculoskeletal Oncology Service, Osaka International Cancer Institute, Osaka, Japan
| | - Seiji Okada
- Department of Orthopedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| |
Collapse
|
14
|
Alkashash A, Samiei A, Alomari AK. The new and old in superficial mesenchymal tumors with uncertain origin and/or melanocytic differentiation. Semin Diagn Pathol 2023; 40:258-266. [PMID: 37120349 DOI: 10.1053/j.semdp.2023.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023]
Affiliation(s)
- Ahmad Alkashash
- Department of Pathology and Laboratory Medicine, Indiana University, School of Medicine, Indianapolis, IN, United States
| | - Azadeh Samiei
- Department of Pathology and Laboratory Medicine, Indiana University, School of Medicine, Indianapolis, IN, United States
| | - Ahmed K Alomari
- Department of Pathology and Laboratory Medicine, Indiana University, School of Medicine, Indianapolis, IN, United States.
| |
Collapse
|
15
|
Rasmussen SV, Wozniak A, Lathara M, Goldenberg JM, Samudio BM, Bickford LR, Nagamori K, Wright H, Woods AD, Chauhan S, Lee CJ, Rudzinski ER, Swift MK, Kondo T, Fisher DE, Imyanitov E, Machado I, Llombart-Bosch A, Andrulis IL, Gokgoz N, Wunder J, Mirotaki H, Nakamura T, Srinivasa G, Thway K, Jones RL, Huang PH, Berlow NE, Schöffski P, Keller C. Functional genomics of human clear cell sarcoma: genomic, transcriptomic and chemical biology landscape for clear cell sarcoma. Br J Cancer 2023; 128:1941-1954. [PMID: 36959380 PMCID: PMC10147623 DOI: 10.1038/s41416-023-02222-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 02/14/2023] [Accepted: 02/24/2023] [Indexed: 03/25/2023] Open
Abstract
BACKGROUND Systemic therapy for metastatic clear cell sarcoma (CCS) bearing EWSR1-CREB1/ATF1 fusions remains an unmet clinical need in children, adolescents, and young adults. METHODS To identify key signaling pathway vulnerabilities in CCS, a multi-pronged approach was taken: (i) genomic and transcriptomic landscape analysis, (ii) integrated chemical biology interrogations, (iii) development of CREB1/ATF1 inhibitors, and (iv) antibody-drug conjugate testing (ADC). The first approach encompassed DNA exome and RNA deep sequencing of the largest human CCS cohort yet reported consisting of 47 patient tumor samples and 8 cell lines. RESULTS Sequencing revealed recurrent mutations in cell cycle checkpoint, DNA double-strand break repair or DNA mismatch repair genes, with a correspondingly low to intermediate tumor mutational burden. DNA multi-copy gains with corresponding high RNA expression were observed in CCS tumor subsets. CCS cell lines responded to the HER3 ADC patritumab deruxtecan in a dose-dependent manner in vitro, with impaired long term cell viability. CONCLUSION These studies of the genomic, transcriptomic and chemical biology landscape represent a resource 'atlas' for the field of CCS investigation and drug development. CHK inhibitors are identified as having potential relevance, CREB1 inhibitors non-dependence of CCS on CREB1 activity was established, and the potential utility of HER3 ADC being used in CCS is found.
Collapse
Affiliation(s)
| | - Agnieszka Wozniak
- University Hospitals Leuven, Department of General Medical Oncology, and Laboratory of Experimental Oncology, KU Leuven, Leuven Cancer Institute, Leuven, Belgium
| | | | | | | | | | - Kiyo Nagamori
- Children's Cancer Therapy Development Institute, Beaverton, OR, USA
| | | | - Andrew D Woods
- Children's Cancer Therapy Development Institute, Beaverton, OR, USA
| | - Shefali Chauhan
- Children's Cancer Therapy Development Institute, Beaverton, OR, USA
| | - Che-Jui Lee
- University Hospitals Leuven, Department of General Medical Oncology, and Laboratory of Experimental Oncology, KU Leuven, Leuven Cancer Institute, Leuven, Belgium
| | - Erin R Rudzinski
- Department of Pathology, Seattle Children's Hospital, Seattle, WA, USA
| | - Michael K Swift
- Children's Cancer Therapy Development Institute, Beaverton, OR, USA
| | - Tadashi Kondo
- Division of Rare Cancer Research, National Cancer Center Research Institute, Tokyo, Japan
| | - David E Fisher
- Department of Hematology/Oncology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Evgeny Imyanitov
- N.N. Petrov National Medicine Research Center of Oncology, St. Petersburg, Russia
| | - Isidro Machado
- Pathology Department, Instituto Valenciano de Oncología and Patologika Laboratorio, Hospital QuironSalud, Valencia, Spain
| | | | - Irene L Andrulis
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - Nalan Gokgoz
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Jay Wunder
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- University Musculoskeletal Oncology Unit, Mount Sinai Hospital, Toronto, ON, Canada
- Division of Orthopaedic Surgery, Department of Surgery, University of Toronto, Toronto, Canada
| | | | - Takuro Nakamura
- The Cancer Institute, Japanese Foundation for Cancer Research, Tokyo, Japan
| | | | - Khin Thway
- Sarcoma Unit, Royal Marsden Hospital, Division of Molecular Pathology, Institute of Cancer Research, London, UK
| | - Robin L Jones
- Sarcoma Unit, Royal Marsden Hospital, Division of Clinical Studies, Institute of Cancer Research, London, UK
| | - Paul H Huang
- Sarcoma Unit, Royal Marsden Hospital, Division of Molecular Pathology, Institute of Cancer Research, London, UK.
| | - Noah E Berlow
- Children's Cancer Therapy Development Institute, Beaverton, OR, USA.
| | - Patrick Schöffski
- University Hospitals Leuven, Department of General Medical Oncology, and Laboratory of Experimental Oncology, KU Leuven, Leuven Cancer Institute, Leuven, Belgium
| | - Charles Keller
- Children's Cancer Therapy Development Institute, Beaverton, OR, USA.
| |
Collapse
|
16
|
Fischer GM, Papke DJ. Gene fusions in superficial mesenchymal neoplasms: Emerging entities and useful diagnostic adjuncts. Semin Diagn Pathol 2023:S0740-2570(23)00046-1. [PMID: 37156707 DOI: 10.1053/j.semdp.2023.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 04/24/2023] [Indexed: 05/10/2023]
Abstract
Cutaneous mesenchymal neoplasms are diagnostically challenging because of their overlapping morphology, and, often, the limited tissue in skin biopsy specimens. Molecular and cytogenetic techniques have identified characteristic gene fusions in many of these tumor types, findings that have expanded our understanding of disease pathogenesis and motivated development of useful ancillary diagnostic tools. Here, we provide an update of new findings in tumor types that can occur in the skin and superficial subcutis, including dermatofibrosarcoma protuberans, benign fibrous histiocytoma, epithelioid fibrous histiocytoma, angiomatoid fibrous histiocytoma, glomus tumor, myopericytoma/myofibroma, non-neural granular cell tumor, CIC-rearranged sarcoma, hybrid schwannoma/perineurioma, and clear cell sarcoma. We also discuss recently described and emerging tumor types that can occur in superficial locations and that harbor gene fusions, including nested glomoid neoplasm with GLI1 alterations, clear cell tumor with melanocytic differentiation and ACTIN::MITF translocation, melanocytic tumor with CRTC1::TRIM11 fusion, EWSR1::SMAD3-rearranged fibroblastic tumor, PLAG1-rearranged fibroblastic tumor, and superficial ALK-rearranged myxoid spindle cell neoplasm. When possible, we discuss how fusion events mediate the pathogenesis of these tumor types, and we also discuss the related diagnostic and therapeutic implications of these events.
Collapse
Affiliation(s)
- Grant M Fischer
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States of America
| | - David J Papke
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, United States of America.
| |
Collapse
|
17
|
Odintsov I, Jagannathan JP, Al-Ibraheemi A, Selig MK, Newman ET, Fletcher CDM, Nielsen GP, Hornick JL. Primary Clear Cell Sarcoma of Bone: Clinicopathologic Study of a Rare Presentation. Am J Surg Pathol 2023; 47:354-360. [PMID: 36730915 DOI: 10.1097/pas.0000000000001988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Clear cell sarcoma (CCS) is an uncommon malignant mesenchymal neoplasm of young adults with a predilection for tendons and aponeuroses of distal extremities, a distinctive nested growth pattern, melanocytic differentiation, and usually an EWSR1::ATF1 fusion. Distinction from melanoma can be challenging but is critical for clinical management. Rare cases of primary bone CCS have been reported. The purpose of this study was to evaluate the clinicopathologic features of a series of primary bone CCS. Three cases of primary bone CCS were identified out of 140 CCS diagnosed between 2010 and 2021. Two patients were female, and 1 patient was male; ages were 19, 47, and 61 years. All tumors arose in the long bones of the extremities (femur, humerus, fibula). Two tumors also involved regional lymph nodes at presentation. Two showed characteristic histologic features, in the form of nests and fascicles of uniform epithelioid to spindle cells with prominent nucleoli and pale eosinophilic to clear cytoplasm; 1 tumor showed sheet-like growth, unusual focal pleomorphism, and more notable nuclear atypia. By immunohistochemistry, S100 protein was positive in 2/3 cases, SOX10 in 3/3, HMB-45 in 2/3, MiTF in 2/2, and melan A in 1/3. All cases were confirmed to harbor EWSR1 rearrangement and EWSR1::ATF1 fusion or t(12;22). On follow-up, all 3 patients developed metastases and died of disease, 5, 18, and 21 months after diagnosis. In summary, CCS rarely presents in the skeleton. At such locations, distinction from metastatic melanoma is particularly challenging. Clinical and pathologic features are similar to conventional CCS of soft tissue. Primary bone CCS may pursue an aggressive clinical course.
Collapse
Affiliation(s)
| | | | - Alyaa Al-Ibraheemi
- Department of Pathology, Boston Children's Hospital, Harvard Medical School
| | | | - Erik T Newman
- Orthopedic Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | | | | | | |
Collapse
|
18
|
Wetterwald L, Riggi N, Kyriazoglou A, Dei Tos G, Dei Tos A, Digklia A. Clear cell sarcoma: state-of-the art and perspectives. Expert Rev Anticancer Ther 2023; 23:235-242. [PMID: 36811446 DOI: 10.1080/14737140.2023.2183846] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
INTRODUCTION Clear cell sarcoma (CCS) is an ultrarare soft tissue sarcoma (STS) with a poor prognosis due to its propensity to metastasize and its low chemosensitivity. The standard treatment of localized CCS consists of wide surgical excision with or without additive radiotherapy. However, unresectable CCS is generally treated with conventional systemic therapies available for treatment of STS despite the weak scientific evidence to support its use. AREAS COVERED In this review, we discuss the clinicopathologic characteristics of CSS, as well as the current treatment landscape and future therapeutic approaches. EXPERT OPINION The current treatment strategy of advanced CCSs, based on STSs regimens, shows a lack of effective options. Combination therapiesin particular, the association of immunotherapy and TKIs, represent a promising approach. Translational studies are needed in order to decipher the regulatory mechanisms involved in the oncogenesis of this ultrarare sarcoma and identify potential molecular targets.
Collapse
Affiliation(s)
- Laureline Wetterwald
- Oncology Department, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne University Lausanne, Switzerland
| | - Nicolò Riggi
- Experimental Pathology, Institute of Pathology, Lausanne University Lausanne, Switzerland
| | | | - Giovanni Dei Tos
- Oncology Department, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne University Lausanne, Switzerland
| | - Angelo Dei Tos
- Department of Pathology, Azienda Ospedale-Università Padova Padua, Italy.,Department of Medicine, University of Padua School of Medicine Padua, Italy
| | - Antonia Digklia
- Oncology Department, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne University Lausanne, Switzerland.,Sarcoma Center, Centre Hospitalier Universitaire Vaudois (CHUV), Lausanne University Lausanne, Switzerland
| |
Collapse
|
19
|
Liu Z, Chen K, Dai J, Xu P, Sun W, Liu W, Zhao Z, Bennett SP, Li P, Ma T, Lin Y, Kawakami A, Yu J, Wang F, Wang C, Li M, Chase P, Hodder P, Spicer TP, Scampavia L, Cao C, Pan L, Dong J, Chen Y, Yu B, Guo M, Fang P, Fisher DE, Wang J. A unique hyperdynamic dimer interface permits small molecule perturbation of the melanoma oncoprotein MITF for melanoma therapy. Cell Res 2023; 33:55-70. [PMID: 36588115 PMCID: PMC9810709 DOI: 10.1038/s41422-022-00744-5] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/17/2022] [Indexed: 01/03/2023] Open
Abstract
Microphthalmia transcription factor (MITF) regulates melanocyte development and is the "lineage-specific survival" oncogene of melanoma. MITF is essential for melanoma initiation, progression, and relapse and has been considered an important therapeutic target; however, direct inhibition of MITF through small molecules is considered impossible, due to the absence of a ligand-binding pocket for drug design. Here, our structural analyses show that the structure of MITF is hyperdynamic because of its out-of-register leucine zipper with a 3-residue insertion. The dynamic MITF is highly vulnerable to dimer-disrupting mutations, as we observed that MITF loss-of-function mutations in human Waardenburg syndrome type 2 A are frequently located on the dimer interface and disrupt the dimer forming ability accordingly. These observations suggest a unique opportunity to inhibit MITF with small molecules capable of disrupting the MITF dimer. From a high throughput screening against 654,650 compounds, we discovered compound TT-012, which specifically binds to dynamic MITF and destroys the latter's dimer formation and DNA-binding ability. Using chromatin immunoprecipitation assay and RNA sequencing, we showed that TT-012 inhibits the transcriptional activity of MITF in B16F10 melanoma cells. In addition, TT-012 inhibits the growth of high-MITF melanoma cells, and inhibits the tumor growth and metastasis with tolerable toxicity to liver and immune cells in animal models. Together, this study demonstrates a unique hyperdynamic dimer interface in melanoma oncoprotein MITF, and reveals a novel approach to therapeutically suppress MITF activity.
Collapse
Affiliation(s)
- Zaizhou Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Kaige Chen
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou, Guangdong, China
- School of Life Sciences, University of Science and Technology of China, Hefei, Anhui, China
| | - Jun Dai
- Department of Dermatology, Cutaneous Biology Research Center, Mass. General Hospital, Harvard Medical School, Boston, MA, USA
- School of Pharmacy, University of Wisconsin-Madison, Madison, WI, USA
| | - Peng Xu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Wei Sun
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Wanlin Liu
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Zhixin Zhao
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | | | - Peifeng Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Tiancheng Ma
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yuqi Lin
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Akinori Kawakami
- Department of Dermatology, Cutaneous Biology Research Center, Mass. General Hospital, Harvard Medical School, Boston, MA, USA
| | - Jing Yu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Fei Wang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Chunxi Wang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Miao Li
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Peter Chase
- Scripps Research, Jupiter, FL, USA
- BMS Inc., Lawrenceville, NJ, USA
| | - Peter Hodder
- Scripps Research, Jupiter, FL, USA
- Amgen Inc., Thousand Oaks, CA, USA
| | | | | | - Chunyang Cao
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Lifeng Pan
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Jiajia Dong
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Yong Chen
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China.
| | - Biao Yu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
| | - Min Guo
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- Kangma-Healthcode Biotech Co., Ltd., Shanghai, China.
| | - Pengfei Fang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
| | - David E Fisher
- Department of Dermatology, Cutaneous Biology Research Center, Mass. General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Jing Wang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China.
- School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, Zhejiang, China.
| |
Collapse
|
20
|
Han X, Li Q, Wang EH, Liu N. Clear cell sarcoma of soft tissue with plasmacytoid morphology: A rare case report. Medicine (Baltimore) 2022; 101:e31631. [PMID: 36343072 PMCID: PMC9646632 DOI: 10.1097/md.0000000000031631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
RATIONALE Clear cell sarcoma of soft tissue (CCSST) is a rare malignant tumor that occurs in the extremities of young adults. CCSST has been documented to have atypical histopathological features, such as epidermotropism or myxoid differentiation, which may set pitfalls in the differential diagnosis. We report a case of CCSST with plasmacytoid morphology which has never been described. PATIENT CONCERNS A 15-year-old male, presented with a 5-cm mass in his left inguinal area. DIAGNOSIS Positron emission tomography-computed tomography examination showed nodules in the left groin and the lung, the latter was considered metastasis. A core needle biopsy with the diagnosis of CCSST with plasmacytoid morphology was made according to histology, immunostaining, and molecular analysis. INTERVENTIONS The patient received chemotherapy of doxorubicin and ifosfamide. OUTCOMES The patient failed to respond to the standard chemotherapy and deceased twelve months after diagnosis. LESSONS This special case of CCSST with plasmacytoid features demonstrated a morphological variation never been documented and may easily lead to misdiagnosis. For such cases, molecular analysis is essential to provide solid evidence for accurate diagnosis.
Collapse
Affiliation(s)
- Xu Han
- Department of Pathology, the First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Qingchang Li
- Department of Pathology, the First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - En-Hua Wang
- Department of Pathology, the First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
| | - Nan Liu
- Department of Pathology, the First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang, China
- *Correspondence: Nan Liu, Department of Pathology, First Affiliated Hospital and College of Basic Medical Sciences, China Medical University, Shenyang 110001, China (e-mail: )
| |
Collapse
|
21
|
Li X, Huang J, Liu C, Chen J, Wang S, Wei S, Yang M, Qin Q. Grouper ATF1 plays an antiviral role in response to iridovirus and nodavirus infection. FISH & SHELLFISH IMMUNOLOGY 2022; 130:380-390. [PMID: 36150412 DOI: 10.1016/j.fsi.2022.09.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Transcription factor ATF1 is a member of the ATF/CREB family of the CREB subfamily and is involved in physiological processes such as tumorigenesis, organ development, reproduction, cell survival, and apoptosis in mammals. However, studies on ATF1 in fish have been relatively poorly reported, especially on its role in antiviral immunity in fish. In this study, ATF1 from orange-spotted grouper (named EcATF1) were cloned and characterized. Molecular characterization analysis showed that EcATF1 encodes a 307-amino-acid protein, containing PKID and bZIP_CREB1 domains. Homology analysis showed that had the highest homology with E. lanceolatus(88.93%). Tissue expression pattern showed that EcATF1 was extensively distributed in twelve selected tissues, with higher expression in the skin, gill, liver and spleen. Subcellular localization analysis showed that EcATF1 was distributed in the nucleus of GS cells. EcATF1 overexpression inhibits Singapore grouper iridovirus (SGIV) and red-spotted grouper nervous necrosis virus (RGNNV) replication, as evidenced by a diminished degree of CPE induced by SGIV and RGNNV and a reduction in the level of viral gene transcription and viral capsid protein expression. Furthermore, EcATF1 overexpression upregulated interferon pathway-related genes and proinflammatory factors, and increased the promoter activities of IFN, IFN stimulated response element (ISRE), and nuclear factor κB(NFκB). Meanwhile, EcATF1 overexpression positive regulate the MHC-I signaling pathway, and upregulated the promoter activity of MHC-I. Collectively, these data demonstrate that EcATF1 plays an important role during the host antiviral immune response. This study provides insights into the function of ATF1 in the immune system of lower vertebrates.
Collapse
Affiliation(s)
- Xinshuai Li
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Jianling Huang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Cuiyu Liu
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Jinpeng Chen
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Shaowen Wang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Shina Wei
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China
| | - Min Yang
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China.
| | - Qiwei Qin
- Joint Laboratory of Guangdong Province and Hong Kong Region on Marine Bioresource Conservation and Exploitation, College of Marine Sciences, South China Agricultural University, Guangzhou, 510642, China; Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou, 510642, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266000, China.
| |
Collapse
|
22
|
Li BX, David LL, Davis LE, Xiao X. Protein arginine methyltransferase 5 is essential for oncogene product EWSR1-ATF1-mediated gene transcription in clear cell sarcoma. J Biol Chem 2022; 298:102434. [PMID: 36041632 PMCID: PMC9513783 DOI: 10.1016/j.jbc.2022.102434] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 08/23/2022] [Accepted: 08/24/2022] [Indexed: 11/17/2022] Open
Abstract
Transcription dysregulation is common in sarcomas driven by oncogenic transcription factors. Clear cell sarcoma of soft tissue (CCSST) is a rare sarcoma with poor prognosis presently with no therapy. It is characterized by a balanced t(12;22) (q13;q12) chromosomal translocation, resulting in a fusion of the Ewing's sarcoma gene EWSR1 with activating transcription factor 1 (ATF1) to give an oncogene EWSR1-ATF1. Unlike normal ATF1, whose transcription activity is dependent on phosphorylation, EWSR1-ATF1 is constitutively active to drive ATF1-dependent gene transcription to cause tumorigenesis. No EWSR1-ATF1-targeted therapies have been identified due to the challenges in targeting intracellular transcription factors. Through proteomics screening to identify potential druggable targets for CCSST, we discovered protein arginine methyltransferase 5 (PRMT5) as a novel protein to interact with EWSR1-ATF1. PRMT5 is a type II protein arginine methyltransferase to symmetrically dimethylate arginine residues in substrate proteins to regulate a diverse range of activities including gene transcription, RNA splicing, and DNA repair. We found that PRMT5 enhances EWSR1-ATF1-mediated gene transcription to sustain CCSST cell proliferation. Genetic silencing of PRMT5 in CCSST cells resulted in severely impaired cell proliferation and EWSR1-ATF1-driven transcription. Furthermore, we demonstrate that the clinical-stage PRMT5 inhibitor JNJ-64619178 potently and efficaciously inhibited CCSST cell growth in vitro and in vivo. These results provide new insights into PRMT5 as a transcription regulator and warrant JNJ-64619178 for further clinical development to treat CCSST patients.
Collapse
Affiliation(s)
- Bingbing X Li
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, USA.
| | - Larry L David
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, USA
| | - Lara E Davis
- Knight Cancer Institute, Oregon Health & Science University, Portland, USA; Division of Hematology and Medical Oncology, Department of Medicine, Oregon Health & Science University, Portland, USA
| | - Xiangshu Xiao
- Department of Chemical Physiology and Biochemistry, Oregon Health & Science University, Portland, USA; Knight Cancer Institute, Oregon Health & Science University, Portland, USA.
| |
Collapse
|
23
|
Cutaneous Melanocytic Tumor With CRTC1::TRIM11 Translocation: An Emerging Entity Analyzed in a Series of 41 Cases. Am J Surg Pathol 2022; 46:1457-1466. [PMID: 35993578 DOI: 10.1097/pas.0000000000001952] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Cutaneous melanocytic tumor with CRTC1::TRIM11 fusion (CMTCT) is a recently described dermally based neoplasm with melanocytic differentiation. It can easily be confused with clear cell sarcoma and metastatic melanoma. Our understanding of this lesion, including its potential for aggressive disease, has been limited by the small number of previously reported cases (13) and the limited clinical follow-up data. Here, we report a series of 41 CMTCT confirmed by molecular studies. We find that the lesion shows highly uniform and reproducible morphologic, immunohistochemical, and genetic features across a wide variety of anatomic locations and age groups. Among 22 cases with follow-up, 1 local recurrence and 1 nodal metastasis were identified. Our data support the classification of CMTCT as a unique nosologic entity and emphasize the importance of distinguishing this entity from its histologic mimics, especially clear cell sarcoma and metastatic melanoma, to guide therapy and establish accurate prognostic expectations.
Collapse
|
24
|
Lang M, Pramstaller PP, Pichler I. Crosstalk of organelles in Parkinson's disease - MiT family transcription factors as central players in signaling pathways connecting mitochondria and lysosomes. Mol Neurodegener 2022; 17:50. [PMID: 35842725 PMCID: PMC9288732 DOI: 10.1186/s13024-022-00555-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 07/01/2022] [Indexed: 11/10/2022] Open
Abstract
Living organisms constantly need to adapt to their surrounding environment and have evolved sophisticated mechanisms to deal with stress. Mitochondria and lysosomes are central organelles in the response to energy and nutrient availability within a cell and act through interconnected mechanisms. However, when such processes become overwhelmed, it can lead to pathologies. Parkinson's disease (PD) is a common neurodegenerative disorder (NDD) characterized by proteinaceous intracellular inclusions and progressive loss of dopaminergic neurons, which causes motor and non-motor symptoms. Genetic and environmental factors may contribute to the disease etiology. Mitochondrial dysfunction has long been recognized as a hallmark of PD pathogenesis, and several aspects of mitochondrial biology are impaired in PD patients and models. In addition, defects of the autophagy-lysosomal pathway have extensively been observed in cell and animal models as well as PD patients' brains, where constitutive autophagy is indispensable for adaptation to stress and energy deficiency. Genetic and molecular studies have shown that the functions of mitochondria and lysosomal compartments are tightly linked and influence each other. Connections between these organelles are constituted among others by mitophagy, organellar dynamics and cellular signaling cascades, such as calcium (Ca2+) and mTOR (mammalian target of rapamycin) signaling and the activation of transcription factors. Members of the Microphthalmia-associated transcription factor family (MiT), including MITF, TFE3 and TFEB, play a central role in regulating cellular homeostasis in response to metabolic pressure and are considered master regulators of lysosomal biogenesis. As such, they are part of the interconnection between mitochondria and lysosome functions and therefore represent attractive targets for therapeutic approaches against NDD, including PD. The activation of MiT transcription factors through genetic and pharmacological approaches have shown encouraging results at ameliorating PD-related phenotypes in in vitro and in vivo models. In this review, we summarize the relationship between mitochondrial and autophagy-lysosomal functions in the context of PD etiology and focus on the role of the MiT pathway and its potential as pharmacological target against PD.
Collapse
Affiliation(s)
- Martin Lang
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy.
| | - Peter P Pramstaller
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy.,Department of Neurology, University Medical Center Schleswig-Holstein, Campus Lübeck, Lübeck, Germany
| | - Irene Pichler
- Institute for Biomedicine, Eurac Research, Affiliated Institute of the University of Lübeck, Bolzano, Italy
| |
Collapse
|
25
|
Möller E, Praz V, Rajendran S, Dong R, Cauderay A, Xing YH, Lee L, Fusco C, Broye LC, Cironi L, Iyer S, Rengarajan S, Awad ME, Naigles B, Letovanec I, Ormas N, Finzi G, La Rosa S, Sessa F, Chebib I, Petur Nielsen G, Digklia A, Spentzos D, Cote GM, Choy E, Aryee M, Stamenkovic I, Boulay G, Rivera MN, Riggi N. EWSR1-ATF1 dependent 3D connectivity regulates oncogenic and differentiation programs in Clear Cell Sarcoma. Nat Commun 2022; 13:2267. [PMID: 35477713 PMCID: PMC9046276 DOI: 10.1038/s41467-022-29910-4] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 04/07/2022] [Indexed: 11/26/2022] Open
Abstract
Oncogenic fusion proteins generated by chromosomal translocations play major roles in cancer. Among them, fusions between EWSR1 and transcription factors generate oncogenes with powerful chromatin regulatory activities, capable of establishing complex gene expression programs in permissive precursor cells. Here we define the epigenetic and 3D connectivity landscape of Clear Cell Sarcoma, an aggressive cancer driven by the EWSR1-ATF1 fusion gene. We find that EWSR1-ATF1 displays a distinct DNA binding pattern that requires the EWSR1 domain and promotes ATF1 retargeting to new distal sites, leading to chromatin activation and the establishment of a 3D network that controls oncogenic and differentiation signatures observed in primary CCS tumors. Conversely, EWSR1-ATF1 depletion results in a marked reconfiguration of 3D connectivity, including the emergence of regulatory circuits that promote neural crest-related developmental programs. Taken together, our study elucidates the epigenetic mechanisms utilized by EWSR1-ATF1 to establish regulatory networks in CCS, and points to precursor cells in the neural crest lineage as candidate cells of origin for these tumors. The relationship between cellular histogenesis and molecular phenotypes for the EWSR1- ATF1 fusion in clear cell sarcoma (CCS) requires further characterization. Here, the authors investigate the EWSR1-ATF1 gene regulation networks in CCS cell lines, primary tumors, and mesenchymal stem cells.
Collapse
Affiliation(s)
- Emely Möller
- Experimental Pathology Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Viviane Praz
- Experimental Pathology Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Sanalkumar Rajendran
- Experimental Pathology Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Rui Dong
- Department of Pathology and Cancer Center, Massachusetts General Hospital, Charlestown, MA, USA
| | - Alexandra Cauderay
- Experimental Pathology Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Department of Pathology and Cancer Center, Massachusetts General Hospital, Charlestown, MA, USA
| | - Yu-Hang Xing
- Department of Pathology and Cancer Center, Massachusetts General Hospital, Charlestown, MA, USA
| | - Lukuo Lee
- Department of Pathology and Cancer Center, Massachusetts General Hospital, Charlestown, MA, USA
| | - Carlo Fusco
- Experimental Pathology Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Liliane C Broye
- Experimental Pathology Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Luisa Cironi
- Experimental Pathology Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Sowmya Iyer
- Department of Pathology and Cancer Center, Massachusetts General Hospital, Charlestown, MA, USA
| | - Shruthi Rengarajan
- Department of Pathology and Cancer Center, Massachusetts General Hospital, Charlestown, MA, USA
| | - Mary E Awad
- Department of Pathology and Cancer Center, Massachusetts General Hospital, Charlestown, MA, USA
| | - Beverly Naigles
- Department of Pathology and Cancer Center, Massachusetts General Hospital, Charlestown, MA, USA
| | - Igor Letovanec
- Department of Histopathology, Central Institute, Valais Hospital, Sion, Switzerland.,Institute of Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Nicola Ormas
- Department of Pathology, ASST Sette Laghi, Varese, Italy
| | - Giovanna Finzi
- Department of Pathology, ASST Sette Laghi, Varese, Italy
| | - Stefano La Rosa
- Institute of Pathology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.,Pathology Unit, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Fausto Sessa
- Pathology Unit, Department of Medicine and Surgery, University of Insubria, Varese, Italy
| | - Ivan Chebib
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - G Petur Nielsen
- Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA
| | - Antonia Digklia
- Department of Oncology, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Dimitrios Spentzos
- Department of Orthopaedic Surgery, Massachusetts General Hospital, Boston, MA, USA
| | - Gregory M Cote
- Department of Medicine, Division of Hematology and Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Edwin Choy
- Department of Medicine, Division of Hematology and Oncology, Massachusetts General Hospital, Boston, MA, USA
| | - Martin Aryee
- Department of Pathology and Cancer Center, Massachusetts General Hospital, Charlestown, MA, USA.,Broad Institute, Cambridge, MA, USA
| | - Ivan Stamenkovic
- Experimental Pathology Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland
| | - Gaylor Boulay
- Department of Pathology and Cancer Center, Massachusetts General Hospital, Charlestown, MA, USA
| | - Miguel N Rivera
- Department of Pathology and Cancer Center, Massachusetts General Hospital, Charlestown, MA, USA.,Broad Institute, Cambridge, MA, USA
| | - Nicolò Riggi
- Experimental Pathology Service, Lausanne University Hospital and University of Lausanne, Lausanne, Switzerland.
| |
Collapse
|
26
|
Evangelou Z, Linos K. Nevus, melanoma or something else? Mesenchymal neoplasms with melanocytic differentiation. J Cutan Pathol 2022; 49:747-759. [PMID: 35338512 DOI: 10.1111/cup.14232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 03/13/2022] [Accepted: 03/20/2022] [Indexed: 11/30/2022]
Abstract
The overwhelming majority of cutaneous neoplasms with melanocytic differentiation are nevi, melanomas and more rarely melanocytomas. Nevertheless, there is also a group of mesenchymal neoplasms with genuine melanocytic differentiation which can create diagnostic difficulties with significant repercussions. These can rarely present as primary or metastatic cutaneous lesions. Theones that are relevant to a dermatopathologist include malignant melanotic nerve sheath tumor, perivascular epithelioid cell neoplasm and clear cell sarcoma. This work will provide a thorough review of clinical presentation, morphologic and immunohistochemical features as well as molecular pathogenesis of these tumors. We hope to familiarize the general dermatopathology readership with a group of neoplasms of mesenchymal lineage exhibiting melanocytic differentiation and ultimately avoid diagnostic misadventures. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zoi Evangelou
- Department of Pathology, Faculty of Medicine, School of Health Sciences, University of Ioannina, Ioannina, Greece
| | - Konstantinos Linos
- Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Lebanon, New Hampshire, USA.,Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
27
|
Kerrison WGJ, Lee ATJ, Thway K, Jones RL, Huang PH. Current Status and Future Directions of Immunotherapies in Soft Tissue Sarcomas. Biomedicines 2022; 10:573. [PMID: 35327375 PMCID: PMC8945421 DOI: 10.3390/biomedicines10030573] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/22/2022] [Accepted: 02/24/2022] [Indexed: 12/15/2022] Open
Abstract
Immunotherapy in soft tissue sarcoma (STS) has experienced a surge of interest in the past decade, contributing to an expanding number of therapeutic options for this extremely heterogenous group of rare malignancies. Immune checkpoint inhibitors (CPIs) targeting the PD-1 and CTLA-4 axes have demonstrated promising responses in a select number of STS subtypes, including rarer subtypes, such as alveolar soft part sarcoma, SWI/SNF-deficient sarcomas, clear cell sarcoma, and angiosarcoma. Multiple pan-subtype sarcoma trials have facilitated the study of possible predictive biomarkers of the CPI response. It has also become apparent that certain therapies, when combined with CPIs, can enhance response rates, although the specific mechanisms of this possible synergy remain unconfirmed in STS. In addition to CPIs, several other immune targeting agents, including anti-tumour-associated macrophage and antigen-directed therapies, are now under assessment in STS with promising efficacy in some subtypes. In this article, we review the state of the art in immunotherapy in STS, highlighting the pre-clinical and clinical data available for this promising therapeutic strategy.
Collapse
Affiliation(s)
- William G. J. Kerrison
- Division of Molecular Pathology, The Institute of Cancer Research, Sutton SM2 5NG, UK; (W.G.J.K.); (K.T.)
| | | | - Khin Thway
- Division of Molecular Pathology, The Institute of Cancer Research, Sutton SM2 5NG, UK; (W.G.J.K.); (K.T.)
- The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK;
| | - Robin L. Jones
- The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK;
- Division of Clinical Studies, The Institute of Cancer Research, London SW3 6JB, UK
| | - Paul H. Huang
- Division of Molecular Pathology, The Institute of Cancer Research, Sutton SM2 5NG, UK; (W.G.J.K.); (K.T.)
| |
Collapse
|
28
|
Sidlik Muskatel R, Pillar N, Godefroy J, Lotem M, Goldstein G. Case report: Robust response of metastatic clear cell sarcoma treated with cabozantinib and immunotherapy. Front Pediatr 2022; 10:940927. [PMID: 36275056 PMCID: PMC9582433 DOI: 10.3389/fped.2022.940927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 08/29/2022] [Indexed: 11/17/2022] Open
Abstract
Clear Cell Sarcoma (CCS), also referred to as malignant melanoma of soft parts, is a rare and aggressive malignant tumor. It comprises 1% of all soft tissue sarcomas and is known to be radio- and chemotherapy resistant. CCS shares morphological and immunohistochemical features with malignant melanoma, including melanin biosynthesis and melanocytic markers. However, it is distinct for the presence of EWSR1-ATF1 translocation which activates MITF transcription factor. We report here of an aggressive case of CCS in a 9-year-old patient, which demonstrates the critical role of molecular analysis in the diagnosis and treatment of uncommon cancer variants in the era of personalized medicine. The EWSR1-ATF1 translocation induces pathological c-Met activation, and so, following unsuccessful CTLA4 and PD-1 blockade immunotherapy, the child received cabozantinib, a small molecule tyrosine kinase inhibitor, with the intent to block c-Met oncogenic effect. In parallel, active immunization, using hapten di-nitrophenyl modified autologous tumor cells was administered with monotherapy PD-1 inhibitor nivolumab. Under this "triplet" therapy, the patient attained an initial partial response and was progression-free for 2 years, in good performance status and resumed schooling. Based on our observation, cabozantinib can be used as an effective and potentially life-prolonging treatment in CCS. We suggest that priming the child's immune system using her autologous tumor and combating T cell exhaustion with PD-1 blockade may have synergized with the targeted therapy. Combining targeted and immunotherapy is a rapidly growing practice in solid tumors and provides a glimpse of hope in situations that previously lacked any treatment option.
Collapse
Affiliation(s)
- Rakefet Sidlik Muskatel
- The Dyna and Fala Weinstock Department of Pediatric Hematology Oncology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Nir Pillar
- Department of Pathology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Jeremy Godefroy
- Hadassah Hebrew University Medical Center, Nuclear Medicine Institute, Jerusalem, Israel
| | - Michal Lotem
- Center for Melanoma and Cancer Immunotherapy, Hadassah Hebrew University Medical Center, Sharett Institute of Oncology, Jerusalem, Israel
| | - Gal Goldstein
- The Dyna and Fala Weinstock Department of Pediatric Hematology Oncology, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| |
Collapse
|
29
|
Papke DJ, Hornick JL. Recent advances in the diagnosis, classification and molecular pathogenesis of cutaneous mesenchymal neoplasms. Histopathology 2021; 80:216-232. [DOI: 10.1111/his.14450] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Accepted: 07/13/2021] [Indexed: 12/01/2022]
Affiliation(s)
- D J Papke
- Department of Pathology Brigham and Women’s Hospital and Harvard Medical School Boston MA USA
| | - J L Hornick
- Department of Pathology Brigham and Women’s Hospital and Harvard Medical School Boston MA USA
| |
Collapse
|
30
|
Shi X, Huang X, Chen R, Li Y, Xu Y, Zhang W, Zhu Q, Zha X, Wang J. The transcribed ultraconserved element uc.51 promotes the proliferation and metastasis of breast cancer by stabilizing NONO. Clin Exp Metastasis 2021; 38:551-571. [PMID: 34714466 DOI: 10.1007/s10585-021-10128-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/15/2021] [Indexed: 12/22/2022]
Abstract
Long noncoding RNAs have recently emerged as significant contributors to cancers, including breast cancer (BC). One class of long noncoding RNAs called transcribed ultraconserved regions (T-UCRs) is highly conserved in many species and closely related to diverse physiological and pathological processes. However, the function of T-UCRs in BC remains largely unclear. In this study, we identified uc.51, a T-UCR that is overexpressed in both BC tissues and cell lines and is correlated with larger tumor size. Loss- and gain-of-function assays were performed in vitro and demonstrated that uc.51 promotes the proliferation, migration, and invasion of BC cells. Mechanistically, non-POU domain-containing octamer-binding protein (NONO) was found to physically interact with uc.51 by RNA pulldown followed by mass spectrometry. This interaction was further verified by RNA immunoprecipitation. Moreover, uc.51 positively regulated the expression of NONO, maintained its stability through the ubiquitin-proteasome system, and activated the phosphorylation of CREB. Rescue experiments demonstrated that NONO overexpression compensated for the attenuated influence on BC progression resulting from downregulation of uc.51, indicating that NONO functions downstream of uc.51. In vivo functional experiments also revealed a positive correlation between uc.51 expression and tumor size. Ki-67 and NONO levels in the lv-uc.51-shRNA group were decreased compared with those in the lv-con-shRNA group, according to the immunohistochemical staining results, and a decreased incidence of distant metastasis was observed in the lv-uc.51-shRNA group in the xenograft model. Collectively, our results reveal a substantial role for the uc.51-NONO axis in BC progression and indicate that the uc.51-NONO axis has potential to be a therapeutic target for BC.
Collapse
Affiliation(s)
- Xiaoqing Shi
- Department of Breast Disease, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210000, China
| | - Xiaofeng Huang
- Department of Breast Disease, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210000, China
| | - Rui Chen
- Department of Breast Disease, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210000, China
| | - Yan Li
- Department of Breast Disease, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210000, China
| | - Yinggang Xu
- Department of Breast Disease, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210000, China
| | - Weiwei Zhang
- Department of Breast Disease, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210000, China
| | - Qiannan Zhu
- Department of Breast Disease, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210000, China
| | - Xiaoming Zha
- Department of Breast Disease, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210000, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 210000, China.
| | - Jue Wang
- Department of Breast Disease, The First Affiliated Hospital of Nanjing Medical University, No. 300 Guangzhou Road, Nanjing, 210000, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 210000, China.
| |
Collapse
|
31
|
Lee CJ, Modave E, Boeckx B, Stacchiotti S, Rutkowski P, Blay JY, Debiec-Rychter M, Sciot R, Lambrechts D, Wozniak A, Schöffski P. Histopathological and Molecular Profiling of Clear Cell Sarcoma and Correlation with Response to Crizotinib: An Exploratory Study Related to EORTC 90101 "CREATE" Trial. Cancers (Basel) 2021; 13:cancers13236057. [PMID: 34885165 PMCID: PMC8657105 DOI: 10.3390/cancers13236057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 11/23/2021] [Accepted: 11/28/2021] [Indexed: 11/20/2022] Open
Abstract
Simple Summary Clear cell sarcoma (CCSA) is a rare subtype of soft tissue sarcoma characterized by EWSR1 rearrangement and subsequent MET upregulation. The European Organisation for Research and Treatment of Cancer 90101 phase II trial evaluated the MET inhibitor crizotinib in CCSA but resulted in only sporadic responses. The aim of this exploratory study was to identify the molecular alterations potentially relevant for the treatment outcome by using archival CCSA samples and trial-related clinical data. We characterized MET signaling and revealed an infrequent activation of MET, which may explain the lack of response to crizotinib in the disease cohort. Based on sequencing analyses, we discovered copy number alterations, mutations and dysregulated pathways with potentially predictive or prognostic values for patients’ outcomes. This work describes the molecular heterogeneity in CCSA and provides deep insight into the biology of this ultra-rare malignancy, which may potentially lead to better therapeutic approaches. Abstract Clear cell sarcoma (CCSA) is characterized by a chromosomal translocation leading to EWSR1 rearrangement, resulting in aberrant transcription of multiple genes, including MET. The EORTC 90101 phase II trial evaluated the MET inhibitor crizotinib in CCSA but resulted in only sporadic responses. We performed an in-depth histopathological and molecular analysis of archival CCSA samples to identify alterations potentially relevant for the treatment outcome. Immunohistochemical characterization of MET signaling was performed using a tissue microarray constructed from 32 CCSA cases. The DNA from 24 available tumor specimens was analyzed by low-coverage whole-genome sequencing and whole-exome sequencing for the detection of recurrent copy number alterations (CNAs) and mutations. A pathway enrichment analysis was performed to identify the pathways relevant for CCSA tumorigenesis. Kaplan–Meier estimates and Fisher’s exact test were used to correlate the molecular findings with the clinical features related to crizotinib treatment, aiming to assess a potential association with the outcomes. The histopathological analysis showed the absence of a MET ligand and MET activation, with the presence of MET itself in most of cases. However, the expression/activation of MET downstream molecules was frequently observed, suggesting the role of other receptors in CCSA signal transduction. Using sequencing, we detected a number of CNAs at the chromosomal arm and region levels. The most common alteration was a gain of 8q24.21, observed in 83% of the cases. The loss of chromosomes 9q and 12q24 was associated with shorter survival. Based on exome sequencing, 40 cancer-associated genes were found to be mutated in more than one sample, with SRGAP3 and KMT2D as the most common alterations (each in four cases). The mutated genes encoded proteins were mainly involved in receptor tyrosine kinase signaling, polymerase-II transcription, DNA damage repair, SUMOylation and chromatin organization. Disruption in chromatin organization was correlated with longer progression-free survival in patients receiving crizotinib. Conclusions: The infrequent activation of MET may explain the lack of response to crizotinib observed in the majority of cases in the clinical trial. Our work describes the molecular heterogeneity in CCSA and provides further insight into the biology of this ultra-rare malignancy, which may potentially lead to better therapeutic approaches for CCSA.
Collapse
Affiliation(s)
- Che-Jui Lee
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium; (C.-J.L.); (A.W.)
| | - Elodie Modave
- VIB Center for Cancer Biology, VIB and Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium; (E.M.); (B.B.); (D.L.)
| | - Bram Boeckx
- VIB Center for Cancer Biology, VIB and Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium; (E.M.); (B.B.); (D.L.)
| | - Silvia Stacchiotti
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale Tumori, 120133 Milano, Italy;
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 00001 Warsaw, Poland;
| | - Jean-Yves Blay
- Department of Medical Oncology, Centre Centre Léon Bérard & Université Claude Bernard Lyon I, 69008 Lyon, France;
| | - Maria Debiec-Rychter
- Department of Human Genetics, University Hospitals Leuven, KU Leuven, 3000 Leuven, Belgium;
| | - Raf Sciot
- Department of Pathology, University Hospitals Leuven, KU Leuven, 3000 Leuven, Belgium;
| | - Diether Lambrechts
- VIB Center for Cancer Biology, VIB and Department of Human Genetics, KU Leuven, 3000 Leuven, Belgium; (E.M.); (B.B.); (D.L.)
| | - Agnieszka Wozniak
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium; (C.-J.L.); (A.W.)
| | - Patrick Schöffski
- Laboratory of Experimental Oncology, Department of Oncology, KU Leuven, 3000 Leuven, Belgium; (C.-J.L.); (A.W.)
- Department of General Medical Oncology, Leuven Cancer Institute, University Hospitals Leuven, 3000 Leuven, Belgium
- Correspondence: ; Tel.: +32-16-341019
| |
Collapse
|
32
|
Kumar S, Sánchez-Álvarez M, Lolo FN, Trionfetti F, Strippoli R, Cordani M. Autophagy and the Lysosomal System in Cancer. Cells 2021; 10:cells10102752. [PMID: 34685734 PMCID: PMC8534995 DOI: 10.3390/cells10102752] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 10/01/2021] [Accepted: 10/05/2021] [Indexed: 12/19/2022] Open
Abstract
Autophagy and the lysosomal system, together referred to as the autophagolysosomal system, is a cellular quality control network which maintains cellular health and homeostasis by removing cellular waste including protein aggregates, damaged organelles, and invading pathogens. As such, the autophagolysosomal system has roles in a variety of pathophysiological disorders, including cancer, neurological disorders, immune- and inflammation-related diseases, and metabolic alterations, among others. The autophagolysosomal system is controlled by TFEB, a master transcriptional regulator driving the expression of multiple genes, including autophagoly sosomal components. Importantly, Reactive Oxygen Species (ROS) production and control are key aspects of the physiopathological roles of the autophagolysosomal system, and may hold a key for synergistic therapeutic interventions. In this study, we reviewed our current knowledge on the biology and physiopathology of the autophagolysosomal system, and its potential for therapeutic intervention in cancer.
Collapse
Affiliation(s)
- Suresh Kumar
- Autophagy Inflammation and Metabolism Center of Biomedical Research Excellence, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
- Department of Molecular Genetics and Microbiology, University of New Mexico Health Sciences Center, Albuquerque, NM 87131, USA
- Department of Biological Sciences and Bioengineering, Indian Institute of Technology, Kanpur 208016, India
- Correspondence: (S.K.); (R.S.)
| | - Miguel Sánchez-Álvarez
- Mechanoadaptation & Caveolae Biology Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain; (M.S.-Á.); (F.-N.L.)
| | - Fidel-Nicolás Lolo
- Mechanoadaptation & Caveolae Biology Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain; (M.S.-Á.); (F.-N.L.)
| | - Flavia Trionfetti
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy;
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Via Portuense, 292, 00149 Rome, Italy
| | - Raffaele Strippoli
- Mechanoadaptation & Caveolae Biology Laboratory, Cell and Developmental Biology Area, Centro Nacional de Investigaciones Cardiovasculares (CNIC), Melchor Fernández Almagro, 3, 28029 Madrid, Spain; (M.S.-Á.); (F.-N.L.)
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, 00161 Rome, Italy;
- National Institute for Infectious Diseases L. Spallanzani, IRCCS, Via Portuense, 292, 00149 Rome, Italy
- Correspondence: (S.K.); (R.S.)
| | | |
Collapse
|
33
|
Panza E, Ozenberger BB, Straessler KM, Barrott JJ, Li L, Wang Y, Xie M, Boulet A, Titen SW, Mason CC, Lazar AJ, Ding L, Capecchi MR, Jones KB. The clear cell sarcoma functional genomic landscape. J Clin Invest 2021; 131:e146301. [PMID: 34156976 DOI: 10.1172/jci146301] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 06/18/2021] [Indexed: 11/17/2022] Open
Abstract
Clear cell sarcoma (CCS) is a deadly malignancy affecting adolescents and young adults. It is characterized by reciprocal translocations resulting in expression of the chimeric EWSR1-ATF1 or EWSR1-CREB1 fusion proteins, driving sarcomagenesis. Besides these characteristics, CCS has remained genomically uncharacterized. Copy number analysis of human CCSs showed frequent amplifications of the MITF locus and chromosomes 7 and 8. Few alterations were shared with Ewing sarcoma or desmoplastic, small round cell tumors, which are other EWSR1-rearranged tumors. Exome sequencing in mouse tumors generated by expression of EWSR1-ATF1 from the Rosa26 locus demonstrated no other repeated pathogenic variants. Additionally, we generated a new CCS mouse by Cre-loxP-induced chromosomal translocation between Ewsr1 and Atf1, resulting in copy number loss of chromosome 6 and chromosome 15 instability, including amplification of a portion syntenic to human chromosome 8, surrounding Myc. Additional experiments in the Rosa26 conditional model demonstrated that Mitf or Myc can contribute to sarcomagenesis. Copy number observations in human tumors and genetic experiments in mice rendered, for the first time to our knowledge, a functional landscape of the CCS genome. These data advance efforts to understand the biology of CCS using innovative models that will eventually allow us to validate preclinical therapies necessary to achieve longer and better survival for young patients with this disease.
Collapse
Affiliation(s)
- Emanuele Panza
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, USA.,Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Benjamin B Ozenberger
- Departments of Orthopaedics and Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Krystal M Straessler
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, USA.,Departments of Orthopaedics and Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Jared J Barrott
- Departments of Orthopaedics and Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Li Li
- Departments of Orthopaedics and Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Yanliang Wang
- Departments of Orthopaedics and Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Mingchao Xie
- Departments of Medicine and Genetics, McDonnell Genome Institute, Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Anne Boulet
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Simon Wa Titen
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Clinton C Mason
- Department of Pediatrics, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Alexander J Lazar
- Departments of Pathology and Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Li Ding
- Departments of Medicine and Genetics, McDonnell Genome Institute, Siteman Cancer Center, Washington University School of Medicine, St. Louis, Missouri, USA
| | - Mario R Capecchi
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, Utah, USA
| | - Kevin B Jones
- Departments of Orthopaedics and Oncological Sciences, Huntsman Cancer Institute, University of Utah School of Medicine, Salt Lake City, Utah, USA
| |
Collapse
|
34
|
Wang H, Zhu Y, Chen H, Yang N, Wang X, Li B, Ying P, He H, Cai Y, Zhang M, Niu S, Li Y, Lu Z, Peng X, Zou D, Zhong R, Chang J, Dai M, Tian J, Miao X. Colorectal cancer risk variant rs7017386 modulates two oncogenic lncRNAs expression via ATF1-mediated long-range chromatin loop. Cancer Lett 2021; 518:140-151. [PMID: 34274452 DOI: 10.1016/j.canlet.2021.07.021] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/26/2021] [Accepted: 07/12/2021] [Indexed: 01/02/2023]
Abstract
The activating transcription factor 1 (ATF1) has been identified as a vital pathogenic factor in the progression of colorectal cancer (CRC), whiles, the precise regulatory mechanisms remain elusive. Here, we comprehensively characterized the ATF1 cistrome by RNA-seq and ChIP-seq assays in CRC cell lines. As the results, we identified 358 genes differentially regulated and 15,029 ATF1 binding sites and demonstrated that ATF1 was widely involved in major signaling pathways in CRC, such as Wnt, TNF, Jak-STAT. Subsequently, by the expression quantitative trait loci (eQTL) analyses, we found that rs7017386 was associated with the expression of CCAT1 and PVT1 in the Wnt pathway. By a two-stage population study with 6,131 CRC cases and 10,022 healthy controls, we identified the variant was associated with CRC risk. Mechanistically, we found rs7017386 allele-specifically enhanced the binding affinity of ATF1 and promoted the expressions of PVT1 and CCAT1, via forming a long-range chromatin loop. Moreover, those two lncRNAs could synergistically facilitate c-Myc expression to activate the Wnt pathway in CRC progression. Our findings not only demonstrated the transcriptomic profiling of ATF1 in CRC, but also provided important clues for the etiology of CRC.
Collapse
Affiliation(s)
- Haoxue Wang
- Department of Epidemiology and Biostatistics, And the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ying Zhu
- Department of Epidemiology and Biostatistics, And the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongda Chen
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Nan Yang
- Department of Epidemiology and Biostatistics, And the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiaoyang Wang
- Department of Epidemiology and Biostatistics, And the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Bin Li
- Department of Epidemiology and Biostatistics, And the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pingting Ying
- Department of Epidemiology and Biostatistics, And the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Heng He
- Department of Epidemiology and Biostatistics, And the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yimin Cai
- Department of Epidemiology and Biostatistics, And the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ming Zhang
- Department of Epidemiology and Biostatistics, And the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Siyuan Niu
- Department of Epidemiology and Biostatistics, And the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yue Li
- Department of Epidemiology and Biostatistics, And the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zequn Lu
- Department of Epidemiology and Biostatistics, And the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiating Peng
- Department of Epidemiology and Biostatistics, And the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Danyi Zou
- Department of Epidemiology and Biostatistics, And the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rong Zhong
- Department of Epidemiology and Biostatistics, And the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiang Chang
- Department of Epidemiology and Biostatistics, And the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Min Dai
- Office of Cancer Screening, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianbo Tian
- Department of Epidemiology and Biostatistics, And the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Xiaoping Miao
- Department of Epidemiology and Biostatistics, And the Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
35
|
Structural basis for the dimerization mechanism of human transcription factor E3. Biochem Biophys Res Commun 2021; 569:41-46. [PMID: 34225079 DOI: 10.1016/j.bbrc.2021.06.091] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/23/2021] [Accepted: 06/27/2021] [Indexed: 11/23/2022]
Abstract
The transcription factor for immunoglobulin heavy-chain enhancer 3 (TFE3) is a member of the microphthalmia (MiT/TFE) transcription factor family. Dysregulation of TFE3 due to chromosomal abnormalities is associated with a subset of human renal cell carcinoma. Little structural information of this key transcription factor has been reported. In this study, we determined the crystal structure of the helix-loop-helix leucine zipper (HLH-Lz) domain of human TFE3 to a resolution of 2.6 Å. The HLH-Lz domain is critical for the dimerization and function of TFE3. Our structure showed that the conserved HLH region formed a four-helix bundle structure with a predominantly hydrophobic core, and the leucine zipper region contributed to the function of TFE3 by promoting dimer interaction and providing partner selectivity. Together, our results elucidated the dimerization mechanism of this important transcription factor, providing the structural basis for the development of inhibiting strategies for treating TFE3 dysregulated diseases.
Collapse
|
36
|
Establishment of an Academic Tissue Microarray Platform as a Tool for Soft Tissue Sarcoma Research. Sarcoma 2021; 2021:6675260. [PMID: 34413700 PMCID: PMC8369337 DOI: 10.1155/2021/6675260] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 02/05/2021] [Accepted: 02/18/2021] [Indexed: 02/06/2023] Open
Abstract
Soft tissue sarcoma (STS) is a heterogeneous family of rare mesenchymal tumors, characterized by histopathological and molecular diversity. Tissue microarray (TMA) is a tool that allows performing research in orphan diseases in a more efficient and cost-effective way. TMAs are paraffin blocks consisting of multiple small representative tissue cores from biological samples, for example, from multiple donors, diverse sites of disease, or multiple different diseases. In 2015, we began constructing TMAs using archival tumor material from STS patients. Specimens were well annotated in terms of histopathological diagnosis, treatment, and clinical follow-up of the tissue donors. Each TMA block contains duplicate or triplicate 1.0–1.5 mm tissue cores from representative tumor areas selected by sarcoma pathologists. The construction of TMAs was performed with TMA Grand Master (3DHistech). So far, we have established disease-specific TMAs from 7 STS subtypes: gastrointestinal stromal tumor (72 cases included in the array), alveolar soft part sarcoma (n = 12 + 47), clear cell sarcoma (n = 22 + 32), leiomyosarcoma (n = 55), liposarcoma (n = 42), inflammatory myofibroblastic tumor (n = 12 + 21), and alveolar rhabdomyosarcoma (n = 24). We also constructed a multisarcoma TMA covering a representative number of important histopathological subtypes on arrays for screening purposes, namely, angiosarcoma, dedifferentiated liposarcoma, pleomorphic liposarcoma, and myxoid liposarcoma, leiomyosarcoma, malignant peripheral nerve sheath tumor, myxofibrosarcoma, rhabdomyosarcoma, synovial sarcoma, and undifferentiated pleomorphic sarcoma, with 7–11 individual cases per subtype. We are currently expanding the list of TMAs with additional sarcoma entities, considering the heterogeneity of this family of tumors. Our extensive STS TMA platform is suitable for rapid and cost-effective morphological, immunohistochemical, and molecular characterization of the tumor as well as for the identification of potential novel diagnostic markers and drug targets. It is readily available for collaborative projects with research partners.
Collapse
|
37
|
|
38
|
Kubota Y, Tanaka K, Hisaoka M, Daa T, Iwasaki T, Kawano M, Itonaga I, Tsumura H. Primary clear cell sarcoma of the femur: a unique case with RT-PCR and direct sequencing confirmation of EWSR1/ATF1 fusion gene. BMC Musculoskelet Disord 2021; 22:99. [PMID: 33478436 PMCID: PMC7819310 DOI: 10.1186/s12891-021-03969-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 01/11/2021] [Indexed: 12/18/2022] Open
Abstract
Background It is very rare for clear cell sarcomas (CCS) to arise in the bone. During diagnosis, it is important to distinguish primary CCS of bone from bone metastasis of melanoma because this difference fundamentally changes the therapeutic options. Recently, characteristic fusion genes of CCS have been detected using reverse transcription polymerase chain reaction (RT-PCR) or direct sequencing which allowed to distinguish CCS from melanoma. However, there was no study applying these analyses with positive results. In this case, we describe the use of fusion gene analysis to diagnose a primary CCS of the bone. Case presentation A 36-year-old male presented with a four-months history of left knee pain. Magnetic resonance imaging showed a lesion in the left femoral medial epicondyle. Histological examination of the biopsy specimen revealed proliferating oval or rounded cells. These cells had clear cytoplasm arranged in fascicles or compact nests with frequent deposits of brown pigment. Furthermore, immunohistochemistry analysis revealed that tumor cells were positive for S-100 protein, HMB-45, Melan-A, and SOX10. It stained negative for CD34 and BRAF v600e. Conclusively, detection of the EWSR1/ATF1 fusion gene using RT-PCR and direct sequencing confirmed that the lesion was a primary CCS of the bone. Wide-margin resection and reconstruction with a tumor endoprosthesis were performed. Conclusions Herein, we diagnosed a rare case of primary CCS of the bone by detecting EWSR1/ATF1 fusion gene using RT-PCR and direct sequencing. Since fluorescence-in situ hybridization (FISH) and RT-PCR could show false positive by mainly due to technical problems, it is better to perform direct sequencing to confidently diagnose the tumor as a primary CCS especially at very rare site such as bone.
Collapse
Affiliation(s)
- Yuta Kubota
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka Hasama, 879-5593, Yufu City, Oita, Japan
| | - Kazuhiro Tanaka
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka Hasama, 879-5593, Yufu City, Oita, Japan.
| | - Masanori Hisaoka
- Department of Pathology and Oncology, School of Medicine, University of Occupational and Environmental Health, 1-1 Iseigaoka, Yahatanishi-ku, 807-8555, Kitakyushu, Japan
| | - Tsutomu Daa
- Department of Diagnostic Pathology, Faculty of Medicine, Oita University, 1-1 Idaigaoka Hasama, 879-5593, Yufu City, Oita, Japan
| | - Tatsuya Iwasaki
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka Hasama, 879-5593, Yufu City, Oita, Japan
| | - Masanori Kawano
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka Hasama, 879-5593, Yufu City, Oita, Japan
| | - Ichiro Itonaga
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka Hasama, 879-5593, Yufu City, Oita, Japan
| | - Hiroshi Tsumura
- Department of Orthopaedic Surgery, Faculty of Medicine, Oita University, 1-1 Idaigaoka Hasama, 879-5593, Yufu City, Oita, Japan
| |
Collapse
|
39
|
de la Fouchardiere A, Pissaloux D, Tirode F, Hanna J. Clear cell tumor with melanocytic differentiation and MITF-CREM translocation: a novel entity similar to clear cell sarcoma. Virchows Arch 2021; 479:841-846. [PMID: 33462743 DOI: 10.1007/s00428-021-03027-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/24/2020] [Accepted: 01/11/2021] [Indexed: 01/21/2023]
Abstract
The presence of melanocytic differentiation in tumors of non-melanocyte origin is uncommon and is typically associated with the overexpression of MITF, the master regulator of melanin synthesis, or another member of the MIT/TFE3 family. In clear cell sarcoma, the presence of either an EWSR1-ATF1 or EWSR1-CREB1 translocation-derived fusion protein is thought to drive melanocytic differentiation by directly stimulating the expression of MITF. Here, we describe a clear cell neoplasm with melanocytic differentiation that is characterized by a novel MITF-CREM gene fusion. CREM is the third member of the ATF1/CREB1/CREM family, and the nature of the MITF-CREM fusion appears analogous to the EWSR1-ATF1 and EWSR1-CREB1 fusions. Thus, this MITF-CREM-rearranged clear cell tumor represents a novel entity with morphologic, immunohistochemical, and molecular similarity to clear cell sarcoma.
Collapse
Affiliation(s)
| | - Daniel Pissaloux
- Département de Biopathologie, Centre Léon Bérard, 28, rue Laennec, 69008, Lyon, France
| | - Franck Tirode
- Département de Biopathologie, Centre Léon Bérard, 28, rue Laennec, 69008, Lyon, France
| | - John Hanna
- Department of Pathology, Brigham and Women's Hospital and Harvard Medical School, 75 Francis Street, Boston, MA, 02115, USA.
| |
Collapse
|
40
|
Kitami K, Yoshihara M, Koya Y, Sugiyama M, Iyoshi S, Uno K, Mogi K, Tano S, Fujimoto H, Nawa A, Kikkawa F, Kajiyama H. Microphthalmia-Associated Transcription Factor-Dependent Melanoma Cell Adhesion Molecule Activation Promotes Peritoneal Metastasis of Ovarian Cancer. Int J Mol Sci 2020; 21:E9776. [PMID: 33371469 PMCID: PMC7767511 DOI: 10.3390/ijms21249776] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/17/2020] [Accepted: 12/18/2020] [Indexed: 11/16/2022] Open
Abstract
Ovarian cancer (OvCa) is one of the leading causes of death due to its high metastasis rate to the peritoneum. Recurrent peritoneal tumors also develop despite the use of conventional platinum-based chemotherapies. Therefore, it is still important to explore the factors associated with peritoneal metastasis, as these predict the prognosis of patients with OvCa. In this study, we investigated the function of microphthalmia-associated transcription factor (MITF), which contributes to the development of melanoma, in epithelial ovarian cancer (OvCa). High MITF expression was significantly associated with a poor prognosis in OvCa. Notably, MITF contributed to the motility and invasion of OvCa cells, and specifically with their peri-mesothelial migration. In addition, MITF-positive cells expressed the melanoma cell adhesion molecule (MCAM/CD146), which was initially identified as a marker of melanoma progression and metastasis, and MCAM expression was regulated by MITF. MCAM was also identified as a significant prognostic factor for poor progression-free survival in patients with OvCa. Collectively, our results suggest that MITF is a novel therapeutic target that potentially promotes peritoneal metastasis of OvCa.
Collapse
Affiliation(s)
- Kazuhisa Kitami
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan; (K.K.); (S.I.); (K.U.); (K.M.); (S.T.); (H.F.); (F.K.); (H.K.)
| | - Masato Yoshihara
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan; (K.K.); (S.I.); (K.U.); (K.M.); (S.T.); (H.F.); (F.K.); (H.K.)
| | - Yoshihiro Koya
- Bell Research Center, Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan; (M.S.); (A.N.)
| | - Mai Sugiyama
- Bell Research Center, Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan; (M.S.); (A.N.)
| | - Shohei Iyoshi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan; (K.K.); (S.I.); (K.U.); (K.M.); (S.T.); (H.F.); (F.K.); (H.K.)
- Spemann Graduate School of Biology and Medicine, University of Freiburg, Albertstr. 19A, 79104 Freiburg, Germany
| | - Kaname Uno
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan; (K.K.); (S.I.); (K.U.); (K.M.); (S.T.); (H.F.); (F.K.); (H.K.)
- Faculty of Medicine, Lund University, Sölvegatan 19, 22184 Lund, Sweden
| | - Kazumasa Mogi
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan; (K.K.); (S.I.); (K.U.); (K.M.); (S.T.); (H.F.); (F.K.); (H.K.)
| | - Sho Tano
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan; (K.K.); (S.I.); (K.U.); (K.M.); (S.T.); (H.F.); (F.K.); (H.K.)
| | - Hiroki Fujimoto
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan; (K.K.); (S.I.); (K.U.); (K.M.); (S.T.); (H.F.); (F.K.); (H.K.)
| | - Akihiro Nawa
- Bell Research Center, Department of Obstetrics and Gynecology Collaborative Research, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan; (M.S.); (A.N.)
| | - Fumitaka Kikkawa
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan; (K.K.); (S.I.); (K.U.); (K.M.); (S.T.); (H.F.); (F.K.); (H.K.)
| | - Hiroaki Kajiyama
- Department of Obstetrics and Gynecology, Nagoya University Graduate School of Medicine, 65 Tsuruma-cho, Showa-ku, Nagoya 466-8550, Japan; (K.K.); (S.I.); (K.U.); (K.M.); (S.T.); (H.F.); (F.K.); (H.K.)
| |
Collapse
|
41
|
Ballesteros-Álvarez J, Dilshat R, Fock V, Möller K, Karl L, Larue L, Ögmundsdóttir MH, Steingrímsson E. MITF and TFEB cross-regulation in melanoma cells. PLoS One 2020; 15:e0238546. [PMID: 32881934 PMCID: PMC7470386 DOI: 10.1371/journal.pone.0238546] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 08/18/2020] [Indexed: 01/24/2023] Open
Abstract
The MITF, TFEB, TFE3 and TFEC (MiT-TFE) proteins belong to the basic helix-loop-helix family of leucine zipper transcription factors. MITF is crucial for melanocyte development and differentiation, and has been termed a lineage-specific oncogene in melanoma. The three related proteins MITF, TFEB and TFE3 have been shown to be involved in the biogenesis and function of lysosomes and autophagosomes, regulating cellular clearance pathways. Here we investigated the cross-regulatory relationship of MITF and TFEB in melanoma cells. Like MITF, the TFEB and TFE3 genes are expressed in melanoma cells as well as in melanoma tumors, albeit at lower levels. We show that the MITF and TFEB proteins, but not TFE3, directly affect each other's mRNA and protein expression. In addition, the subcellular localization of MITF and TFEB is subject to regulation by the mTOR signaling pathway, which impacts their cross-regulatory relationship at the transcriptional level. Our work shows that the relationship between MITF and TFEB is multifaceted and that the cross-regulatory interactions of these factors need to be taken into account when considering pathways regulated by these proteins.
Collapse
Affiliation(s)
- Josué Ballesteros-Álvarez
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, BioMedical Center, University of Iceland, Reykjavík, Iceland
| | - Ramile Dilshat
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, BioMedical Center, University of Iceland, Reykjavík, Iceland
| | - Valerie Fock
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, BioMedical Center, University of Iceland, Reykjavík, Iceland
| | - Katrín Möller
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, BioMedical Center, University of Iceland, Reykjavík, Iceland
| | - Ludwig Karl
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, BioMedical Center, University of Iceland, Reykjavík, Iceland
| | - Lionel Larue
- Institut Curie, PSL Research University, INSERM U1021, Normal and Pathological Development of Melanocytes, Orsay, France
- Univ Paris-Sud, Univ Paris-Saclay, CNRS UMR 3347, Orsay, France
- Equipe Labellisée Ligue Contre le Cancer
| | | | - Eiríkur Steingrímsson
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, BioMedical Center, University of Iceland, Reykjavík, Iceland
- * E-mail:
| |
Collapse
|
42
|
Alhatem A, Nudelman M, Schwartz RA, Hassoun P, Malliah RB, Lambert WC. Primary Cutaneous Clear Cell Sarcoma, Clinical Outcome With Sentinel Lymph Nodes Status. Am J Clin Pathol 2020; 153:799-810. [PMID: 32157275 DOI: 10.1093/ajcp/aqaa009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
OBJECTIVES Primary cutaneous clear cell sarcoma (PCS) is a rare malignancy and difficult to differentiate from melanoma. We investigated factors influencing survival and recurrence. METHODS An institutional cancer registry and literature search were used for a retrospective study. Only clear cell sarcoma cases with a primary site of skin and subcutaneous tissue were included. Kaplan-Meier and Cox regression analyses were used to assess survival time and hazard ratios. RESULTS Three eligible cases were identified at our institution. In addition, the PubMed and Google Scholar reviews identified 1,878 items, with 23 patients with PCS. The median age was 25 years with 62% female. The tumors ranged in size from 0.4 to 4.5 cm. Cytogenetics showed t(12;22)(q13;q12) in all cases and a unique variant of t(2;22)(q32.3;q12) in one case. Surgery was the most common treatment, followed by chemotherapy/radiation. PCS recurred in 46% of patients with a median relapse-free survival time of 15 months. Only two known PCS-related mortalities were recorded, at 38 and 60 months following initial diagnosis. Smaller tumor size and negative sentinel lymph node biopsy (SLNB) status were significantly associated with a better disease-free survival. CONCLUSIONS Tumor size and SLNB status influence PCS survival and recurrence. More research is needed due to the rarity of this disease.
Collapse
Affiliation(s)
- Albert Alhatem
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark
- Department of Pathology and Laboratory Medicine, Hackensack Meridian Health, Hackensack, NJ
| | | | - Robert A Schwartz
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark
- Department of Dermatology, Rutgers New Jersey Medical School, Newark
| | - Patrice Hassoun
- Department of Pathology and Laboratory Medicine, Hackensack Meridian Health, Hackensack, NJ
| | - Rajit B Malliah
- Department of Pathology and Laboratory Medicine, Hackensack Meridian Health, Hackensack, NJ
| | - W Clark Lambert
- Department of Pathology, Immunology and Laboratory Medicine, Rutgers New Jersey Medical School, Newark
- Department of Dermatology, Rutgers New Jersey Medical School, Newark
| |
Collapse
|
43
|
Nakai S, Tamiya H, Imura Y, Nakai T, Yasuda N, Wakamatsu T, Tanaka T, Outani H, Takenaka S, Hamada K, Myoui A, Araki N, Ueda T, Yoshikawa H, Naka N. Eribulin Suppresses Clear Cell Sarcoma Growth by Inhibiting Cell Proliferation and Inducing Melanocytic Differentiation Both Directly and Via Vascular Remodeling. Mol Cancer Ther 2019; 19:742-754. [PMID: 31796507 DOI: 10.1158/1535-7163.mct-19-0358] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 09/16/2019] [Accepted: 11/27/2019] [Indexed: 11/16/2022]
Abstract
Clear cell sarcoma (CCS) is a rare but chemotherapy-resistant and often fatal high-grade soft-tissue sarcoma (STS) characterized by melanocytic differentiation under control of microphthalmia-associated transcription factor (MITF). Eribulin mesilate (eribulin) is a mechanistically unique microtubule inhibitor commonly used for STS treatment, particularly liposarcoma and leiomyosarcoma. In this study, we examined the antitumor efficacy of eribulin on four human CCS cell lines and two mouse xenograft models. Eribulin inhibited CCS cell proliferation by inducing cell-cycle arrest and apoptosis, shrunk CCS xenograft tumors, and increased tumor vessel density. Eribulin induced MITF protein upregulation and stimulated tumor cell melanocytic differentiation through ERK1/2 inactivation (a MITF negative regulator) in vitro and in vivo Moreover, tumor reoxygenation, probably caused by eribulin-induced vascular remodeling, attenuated cell growth and inhibited ERK1/2 activity, thereby upregulating MITF expression and promoting melanocytic differentiation. Finally, downregulation of MITF protein levels modestly debilitated the antiproliferative effect of eribulin on CCS cells. Taken together, eribulin suppresses CCS through inhibition of cell proliferation and promotion of tumor differentiation by acting both directly on tumor cells and indirectly through tumor reoxygenation.
Collapse
Affiliation(s)
- Sho Nakai
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Hironari Tamiya
- Musculoskeletal Oncology Service, Osaka International Cancer Institute, Osaka, Japan
| | - Yoshinori Imura
- Musculoskeletal Oncology Service, Osaka International Cancer Institute, Osaka, Japan
| | - Takaaki Nakai
- Department of Orthopaedic Surgery, Kawachi General Hospital, Kawachi, Japan
| | - Naohiro Yasuda
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Toru Wakamatsu
- Musculoskeletal Oncology Service, Osaka International Cancer Institute, Osaka, Japan
| | - Takaaki Tanaka
- Musculoskeletal Oncology Service, Osaka International Cancer Institute, Osaka, Japan
| | - Hidetatsu Outani
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Satoshi Takenaka
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Kenichiro Hamada
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Akira Myoui
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Nobuhito Araki
- Department of Orthopaedic Surgery, Ashiya Municipal Hospital, Ashiya, Japan
| | - Takafumi Ueda
- Department of Orthopaedic Surgery, Osaka National Hospital, Osaka, Japan
| | - Hideki Yoshikawa
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan
| | - Norifumi Naka
- Department of Orthopaedic Surgery, Osaka University Graduate School of Medicine, Osaka, Japan. .,Musculoskeletal Oncology Service, Osaka International Cancer Institute, Osaka, Japan
| |
Collapse
|
44
|
Cell-type dependent enhancer binding of the EWS/ATF1 fusion gene in clear cell sarcomas. Nat Commun 2019; 10:3999. [PMID: 31488818 PMCID: PMC6728361 DOI: 10.1038/s41467-019-11745-1] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 08/02/2019] [Indexed: 12/13/2022] Open
Abstract
Clear cell sarcoma (CCS) is a rare soft tissue sarcoma caused by the EWS/ATF1 fusion gene. Here, we established induced pluripotent stem cells (iPSCs) from EWS/ATF1-controllable murine CCS cells harboring sarcoma-associated genetic abnormalities. Sarcoma-iPSC mice develop secondary sarcomas immediately after EWS/ATF1 induction, but only in soft tissue. EWS/ATF1 expression induces oncogene-induced senescence in most cell types in sarcoma-iPSC mice but prevents it in sarcoma cells. We identify Tppp3-expressing cells in peripheral nerves as a cell-of-origin for these sarcomas. We show cell type-specific recruitment of EWS/ATF1 to enhancer regions in CCS cells. Finally, epigenetic silencing at these enhancers induces senescence and inhibits CCS cell growth through altered EWS/ATF1 binding. Together, we propose that distinct responses to premature senescence are the basis for the cell type-specificity of cancer development. The EWS-ATF1 fusion gene causes clear cell sarcoma (CCS). Here, the authors show that the downstream effects of EWS-ATF1 expression are strictly context dependent, and reveal the cell of origin for CCS to be Tppp3-expressing cells in peripheral nerves.
Collapse
|
45
|
Tian J, Chang J, Gong J, Lou J, Fu M, Li J, Ke J, Zhu Y, Gong Y, Yang Y, Zou D, Peng X, Yang N, Mei S, Wang X, Zhong R, Cai K, Miao X. Systematic Functional Interrogation of Genes in GWAS Loci Identified ATF1 as a Key Driver in Colorectal Cancer Modulated by a Promoter-Enhancer Interaction. Am J Hum Genet 2019; 105:29-47. [PMID: 31204011 PMCID: PMC6612518 DOI: 10.1016/j.ajhg.2019.05.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 05/06/2019] [Indexed: 01/02/2023] Open
Abstract
Genome-wide association studies (GWASs) have identified approximately 100 colorectal cancer (CRC) risk loci. However, the causal genes in these loci have not been systematically interrogated. We conducted a high-throughput RNA-interference functional screen to identify the genes essential for proliferation in the CRC risk loci of Asian populations. We found that ATF1, located in the 12q13.12 region, functions as an oncogene that facilitates cell proliferation; ATF1 has the most significant effect of the identified genes and promotes CRC xenograft growth by affecting cell apoptosis. Next, by integrating a fine-mapping analysis, a two-stage affected-control study consisting of 6,213 affected individuals and 10,388 controls, and multipronged experiments, we elucidated that two risk variants, dbSNP: rs61926301 and dbSNP: rs7959129, that located in the ATF1 promoter and first intron, respectively, facilitate a promoter-enhancer interaction, mediated by the synergy of SP1 and GATA3, to upregulate ATF1 expression, thus synergistically predisposing to CRC risk (OR = 1.77, 95% CI = 1.42-2.21, p = 3.16 × 10-7; Pmultiplicative-interaction = 1.20 × 10-22; Padditive-interaction = 6.50 × 10-3). Finally, we performed RNA-seq and ChIP-seq assays in CRC cells treated with ATF1 overexpression in order to dissect the target programs of ATF1. Results showed that ATF1 activates a subset of genes, including BRAF, NRAS, MYC, BIRC2, DAAM1, MAML2, STAT1, ID1, and NKD2, related to apoptosis, Wnt, TGF-β, and MAPK pathways, and these effects could cooperatively increase the risk of CRC. These findings reveal the clinical potential of ATF1 in CRC development and illuminate a promoter-enhancer interaction module between the ATF1 regulatory elements dbSNP: rs61926301 and dbSNP: rs7959129, and they bring us closer to understanding the molecular drivers of cancer.
Collapse
Affiliation(s)
- Jianbo Tian
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan 430030, China
| | - Jiang Chang
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan 430030, China
| | - Jing Gong
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan 430030, China
| | - Jiao Lou
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan 430030, China; Department of Quality Management, Shanghai Center for Clinical Laboratory, Shanghai 200126, China
| | - Mingpeng Fu
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jiaoyuan Li
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan 430030, China
| | - Juntao Ke
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan 430030, China
| | - Ying Zhu
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan 430030, China
| | - Yajie Gong
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan 430030, China
| | - Yang Yang
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan 430030, China
| | - Danyi Zou
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan 430030, China
| | - Xiating Peng
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan 430030, China
| | - Nan Yang
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan 430030, China
| | - Shufang Mei
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan 430030, China
| | - Xiaoyang Wang
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan 430030, China
| | - Rong Zhong
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan 430030, China
| | - Kailin Cai
- Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Xiaoping Miao
- Department of Epidemiology and Biostatistics, Key Laboratory for Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Sciences and Technology, Wuhan 430030, China.
| |
Collapse
|
46
|
Abstract
Among the various genes that can be rearranged in soft tissue neoplasms associated with nonrandom chromosomal translocations, EWSR1 is the most frequent one to partner with other genes to generate recurrent fusion genes. This leads to a spectrum of clinically and pathologically diverse mesenchymal and nonmesenchymal neoplasms, variably manifesting as small round cell, spindle cell, clear cell or adipocytic tumors, or tumors with distinctive myxoid stroma. This review summarizes the growing list of mesenchymal neoplasms that are associated with EWSR1 gene rearrangements.
Collapse
Affiliation(s)
- Khin Thway
- Sarcoma Unit, Royal Marsden Hospital, The Royal Marsden NHS Foundation Trust, 203 Fulham Road, London SW3 6JJ, UK.
| | - Cyril Fisher
- Department of Musculoskeletal Pathology, Royal Orthopaedic Hospital NHS Foundation Trust, Robert Aitken Institute for Clinical Research, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
47
|
Abstract
In this review, Goding and Arnheiter present the current understanding of MITF's role and regulation in development and disease and highlight key areas where our knowledge of MITF regulation and function is limited. All transcription factors are equal, but some are more equal than others. In the 25 yr since the gene encoding the microphthalmia-associated transcription factor (MITF) was first isolated, MITF has emerged as a key coordinator of many aspects of melanocyte and melanoma biology. Like all transcription factors, MITF binds to specific DNA sequences and up-regulates or down-regulates its target genes. What marks MITF as being remarkable among its peers is the sheer range of biological processes that it appears to coordinate. These include cell survival, differentiation, proliferation, invasion, senescence, metabolism, and DNA damage repair. In this article we present our current understanding of MITF's role and regulation in development and disease, as well as those of the MITF-related factors TFEB and TFE3, and highlight key areas where our knowledge of MITF regulation and function is limited.
Collapse
Affiliation(s)
- Colin R Goding
- Ludwig Institute for Cancer Research, Nuffield Department of Clinical Medicine, University of Oxford, Headington, Oxford OX3 7DQ, United Kingdom
| | - Heinz Arnheiter
- National Institute of Neurological Disorders and Stroke, National Institutes of Heath, Bethesda, Maryland 20824, USA
| |
Collapse
|
48
|
Chen G, Sun S, Du Z, Sun Y, Pan Z, Che X, Xie R. Intra-Extracranial Primary Clear Cell Sarcoma: The First Report and Review of the Literature. World Neurosurg 2019; 126:e1140-e1146. [PMID: 30880192 DOI: 10.1016/j.wneu.2019.02.216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2018] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 10/27/2022]
Abstract
BACKGROUND Clear cell sarcoma (CCS) is a rare malignant soft tissue tumor with poor prognosis owing to metastasis and insensitive response to chemotherapy and radiotherapy. METHODS We first searched PubMed and Embase using the terms "clear cell sarcoma," "malignant melanoma of soft tissue," "head," and "neck." In the 15 articles selected for literature review, only 27% (4/15) of patients were diagnosed with primary CCS of the head. Pathologically, those tumors arose from either the scalp or the superficial temporal fascia, but none invaded the skull and brain. Next, the search was performed in the same database using the terms "clear cell sarcoma," "malignant melanoma of soft tissue," and "bone," and only 24 articles were selected. RESULTS In the case reported here, a 36-year-old woman was found to have a palpable mass located at the left temporal-occipital region, and surgical finding confirmed the invasion into the skull and the brain. The diagnosis of primary CCS was made because of the detection of t(12;22)(q13;q12) in >50% of tumor cells by fluorescence in situ hybridization, and metastasis to the lymph nodes and lungs was discovered by postoperative positron emission tomography-computed tomography. CONCLUSIONS To the best of our knowledge, this is the first case of primary central nervous system CCS. Primary CCS may involve the skull and should be one of the differential diagnoses for intra-extracranial communicating tumors. Further research on biological characteristics and molecular targeted therapy of CCS are needed to improve its poor prognosis.
Collapse
Affiliation(s)
- Gong Chen
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Shifeng Sun
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Zunguo Du
- Department of Pathology, Huashan Hospital, Fudan University, Shanghai, China
| | - Yirui Sun
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Zhiguang Pan
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Xiaoming Che
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China
| | - Rong Xie
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
49
|
Kawashima K, Saigo C, Kito Y, Hanamatsu Y, Egawa Y, Takeuchi T. CD151 confers metastatic potential to clear cell sarcoma of the soft tissue in animal model. Oncol Lett 2019; 17:4811-4818. [PMID: 31186687 PMCID: PMC6507424 DOI: 10.3892/ol.2019.10164] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 01/31/2019] [Indexed: 12/12/2022] Open
Abstract
Cluster of differentiation 151 (CD151) is a potent therapeutic target for regulating tumor metastasis. In the present study, the role of CD151 in clear cell sarcoma of soft tissue was examined using a xenoplanted tumor model, which had high rates of metastasis. A clear cell sarcoma cell line, HS-MM, which was transplanted to the aponeuroses of the thighs, the most affected sites of human clear cell sarcoma, exhibited robust lymphatic invasion and nodal metastasis in SCID-beige mice. Serial in vivo passaging of peritoneally disseminated tumor cells accelerated the metastatic activity, which was accompanied by increased CD151 expression, and were designated as HS-MMhigh. Notably, inoculation of anti-CD151 antibody significantly suppressed the lymphatic invasion, peritoneal dissemination and distant metastasis of the present clear cell sarcoma model without affecting local tumor growth at the transplantation site. Small interfering RNA (siRNA)-mediated downregulation of CD151 did not alter cell proliferation, but significantly inhibited Matrigel invasion activity of HS-MMhigh cells. Downregulation of CD151 impaired matrix metalloproteinase-9 activity and phosphorylation of SMAD3 protein in HS-MMhigh cells. The present results suggest that CD151 may contribute to invasion and metastasis of clear cell sarcoma of soft tissue. Therefore, CD151 may serve as a potent target to regulate metastasis of clear cell sarcoma.
Collapse
Affiliation(s)
- Keisuke Kawashima
- Department of Pathology and Translational Research, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Chiemi Saigo
- Department of Pathology and Translational Research, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Yusuke Kito
- Department of Pathology and Translational Research, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Yuki Hanamatsu
- Department of Pathology and Translational Research, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| | - Yuki Egawa
- Division of Pathology, Shizuoka City Shizuoka Hospital, Shizuoka 420-630, Japan
| | - Tamotsu Takeuchi
- Department of Pathology and Translational Research, Gifu University Graduate School of Medicine, Gifu 501-1194, Japan
| |
Collapse
|
50
|
Seoane M, Buhs S, Iglesias P, Strauss J, Puller AC, Müller J, Gerull H, Feldhaus S, Alawi M, Brandner JM, Eggert D, Du J, Thomale J, Wild PJ, Zimmermann M, Sternsdorf T, Schumacher U, Nollau P, Fisher DE, Horstmann MA. Lineage-specific control of TFIIH by MITF determines transcriptional homeostasis and DNA repair. Oncogene 2019; 38:3616-3635. [PMID: 30651597 PMCID: PMC6756118 DOI: 10.1038/s41388-018-0661-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 12/05/2018] [Indexed: 11/15/2022]
Abstract
The melanocytic lineage, which is prominently exposed to ultraviolet radiation (UVR) and radiation-independent oxidative damage, requires specific DNA-damage response mechanisms to maintain genomic and transcriptional homeostasis. The coordinate lineage-specific regulation of intricately intertwined DNA repair and transcription is incompletely understood. Here we demonstrate that the Microphthalmia-associated transcription factor (MITF) directly controls general transcription and UVR-induced nucleotide excision repair by transactivation of GTF2H1 as a core element of TFIIH. Thus, MITF ensures the rapid resumption of transcription after completion of strand repair and maintains transcriptional output, which is indispensable for survival of the melanocytic lineage including melanoma in vitro and in vivo. Moreover, MITF controls c-MYC implicated in general transcription by transactivation of far upstream binding protein 2 (FUBP2/KSHRP), which induces c-MYC pulse regulation through TFIIH, and experimental depletion of MITF results in consecutive loss of CDK7 in the TFIIH-CAK subcomplex. Targeted for proteasomal degradation, CDK7 is dependent on transactivation by MITF or c-MYC to maintain a steady state. The dependence of TFIIH-CAK on sequence-specific MITF and c-MYC constitutes a previously unrecognized mechanism feeding into super-enhancer-driven or other oncogenic transcriptional circuitries, which supports the concept of a transcription-directed therapeutic intervention in melanoma.
Collapse
Affiliation(s)
- Marcos Seoane
- Research Institute Children's Cancer Center Hamburg, Hamburg, 20246, Germany.,Department of Pediatric Hematology and Oncology, University Medical Center Hamburg, Hamburg, 20246, Germany
| | - Sophia Buhs
- Research Institute Children's Cancer Center Hamburg, Hamburg, 20246, Germany.,Department of Pediatric Hematology and Oncology, University Medical Center Hamburg, Hamburg, 20246, Germany
| | - Pablo Iglesias
- Research Institute Children's Cancer Center Hamburg, Hamburg, 20246, Germany.,Department of Pediatric Hematology and Oncology, University Medical Center Hamburg, Hamburg, 20246, Germany
| | - Julia Strauss
- Research Institute Children's Cancer Center Hamburg, Hamburg, 20246, Germany.,Department of Pediatric Hematology and Oncology, University Medical Center Hamburg, Hamburg, 20246, Germany
| | - Ann-Christin Puller
- Research Institute Children's Cancer Center Hamburg, Hamburg, 20246, Germany.,Department of Pediatric Hematology and Oncology, University Medical Center Hamburg, Hamburg, 20246, Germany
| | - Jürgen Müller
- Research Institute Children's Cancer Center Hamburg, Hamburg, 20246, Germany.,Department of Pediatric Hematology and Oncology, University Medical Center Hamburg, Hamburg, 20246, Germany
| | - Helwe Gerull
- Research Institute Children's Cancer Center Hamburg, Hamburg, 20246, Germany.,Department of Pediatric Hematology and Oncology, University Medical Center Hamburg, Hamburg, 20246, Germany
| | - Susanne Feldhaus
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg, Hamburg, 20246, Germany
| | - Malik Alawi
- Bioinformatics Service Facility, University Medical Center Hamburg, Hamburg, 20246, Germany.,Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, 20251, Germany
| | - Johanna M Brandner
- Department of Dermatology, University Medical Center Hamburg, Hamburg, 20246, Germany
| | - Dennis Eggert
- Heinrich Pette Institute, Leibniz Institute for Experimental Virology, Hamburg, 20251, Germany.,Max-Planck-Institute for the Structure and Dynamics of Matter, Hamburg, 22761, Germany
| | - Jinyan Du
- Department of Pediatric Oncology, Dana Farber Cancer Institute, Harvard Medical School, Boston, MA, 02115, USA.,Merrimack Pharmaceuticals, Cambridge, MA, 02139, USA
| | - Jürgen Thomale
- Institute of Cell Biology, University Duisburg-Essen, Essen, 45122, Germany
| | - Peter J Wild
- Institute of Surgical Pathology, University Hospital Zürich, Zürich, 8091, Switzerland
| | - Martin Zimmermann
- Department of Pediatric Hematology and Oncology, Medical School Hannover, Hannover, 30625, Germany
| | - Thomas Sternsdorf
- Research Institute Children's Cancer Center Hamburg, Hamburg, 20246, Germany.,Department of Pediatric Hematology and Oncology, University Medical Center Hamburg, Hamburg, 20246, Germany
| | - Udo Schumacher
- Institute of Anatomy and Experimental Morphology, University Medical Center Hamburg, Hamburg, 20246, Germany
| | - Peter Nollau
- Research Institute Children's Cancer Center Hamburg, Hamburg, 20246, Germany.,Department of Pediatric Hematology and Oncology, University Medical Center Hamburg, Hamburg, 20246, Germany
| | - David E Fisher
- Department of Dermatology, Cutaneous Biology Research Center, Massachusetts General Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Martin A Horstmann
- Research Institute Children's Cancer Center Hamburg, Hamburg, 20246, Germany. .,Department of Pediatric Hematology and Oncology, University Medical Center Hamburg, Hamburg, 20246, Germany.
| |
Collapse
|