1
|
Sikligar K, Patil RS, Zhang C, Kelley S, Ishtaweera P, Wagle DV, Barnes CL, Baker GA, Atwood JL. Nanotoroids or Coordination Networks: Molecular Constructs at the Mercy of Anions. Inorg Chem 2025; 64:4884-4891. [PMID: 40020083 DOI: 10.1021/acs.inorgchem.4c04755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/18/2025]
Abstract
Pyrogallol[4]arene (PgC) macrocycles, owing to their preorganized structures, are known to form dimeric (M8L2), hexameric (M24L6), and dodecameric (M24L12) nanocapsules, as well as coordination networks. However, the role of anions in the formation of varied geometries and stoichiometries of PgCs is understudied. In this study, we explore the assembly of pyrogallol[4]arene with strontium iodide, forming metal-organic nanotoroids (M10L8), and with strontium nitrate, which forms coordination networks. Preliminary fluorescence spectroscopy experiments with dyes such as coumarin 153 and Nile red confirm that these nanotoroidal channels can effectively host dye molecules, making them suitable for diverse applications, including drug delivery. Furthermore, the nanotoroids and surface defects of the crystals can serve as a template to grow gold nanosheets.
Collapse
Affiliation(s)
- Kanishka Sikligar
- Department of Chemistry, University of Missouri-Columbia, 601 S College Ave., Columbia, Missouri 65211, United States
| | - Rahul S Patil
- Department of Chemistry, University of Missouri-Columbia, 601 S College Ave., Columbia, Missouri 65211, United States
| | - Chen Zhang
- Department of Chemistry, University of Missouri-Columbia, 601 S College Ave., Columbia, Missouri 65211, United States
| | - Steven Kelley
- Department of Chemistry, University of Missouri-Columbia, 601 S College Ave., Columbia, Missouri 65211, United States
| | - Piyuni Ishtaweera
- Department of Chemistry, University of Missouri-Columbia, 601 S College Ave., Columbia, Missouri 65211, United States
| | - Durgesh V Wagle
- Department of Chemistry and Physics, Florida Gulf Coast University, 10501 FGCU Blvd. S., Fort Myers, Florida 33965, United States
| | - Charles L Barnes
- Department of Chemistry, University of Missouri-Columbia, 601 S College Ave., Columbia, Missouri 65211, United States
| | - Gary A Baker
- Department of Chemistry, University of Missouri-Columbia, 601 S College Ave., Columbia, Missouri 65211, United States
| | - Jerry L Atwood
- Department of Chemistry, University of Missouri-Columbia, 601 S College Ave., Columbia, Missouri 65211, United States
| |
Collapse
|
2
|
Ruengsuk A, Vigromsitdet S, Saekee A, Wichannananon P, Sangtawesin T, Sukwattanasinitt M, Tantirungrotechai J, Harding DJ, Bunchuay T. Single-Atom Tuning of Pyridine-Strapped Pillar[5]arene Capsules for Specific Guest Binding. Org Lett 2025; 27:2093-2097. [PMID: 39992802 PMCID: PMC11894638 DOI: 10.1021/acs.orglett.5c00110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Revised: 02/08/2025] [Accepted: 02/21/2025] [Indexed: 02/26/2025]
Abstract
Pyridine bis(carboxamide)-strapped pillar[5]arene capsules were synthesized with the serendipitous formation of macrotricyclic products. The structural integrity of the supramolecular capsules, determined by the specific orientation of a single nitrogen atom, controls the electronic properties of the confined binding cavity, facilitating length-selective recognition of aliphatic organic guests with nitrile, isocyanide, and amine functional groups with exceptional host-guest binding affinity and selectivity for 1,2-diaminoethane (Ka > 104 M-1) in a polar organic solvent.
Collapse
Affiliation(s)
- Araya Ruengsuk
- Department
of Chemistry and Center of Excellence for Innovation in Chemistry
(PERCH-CIC), Faculty of Science, Mahidol
University, Bangkok 10400, Thailand
| | - Sutthipoj Vigromsitdet
- Department
of Chemistry and Center of Excellence for Innovation in Chemistry
(PERCH-CIC), Faculty of Science, Mahidol
University, Bangkok 10400, Thailand
| | - Amporn Saekee
- Department
of Chemistry and Center of Excellence for Innovation in Chemistry
(PERCH-CIC), Faculty of Science, Mahidol
University, Bangkok 10400, Thailand
| | - Pornnaphat Wichannananon
- Agriculture
Production Science Research and Development Division, Department of Agriculture, 50 Phahonyothin Rd, Lat Yao, Chatuchak, Bangkok 10900, Thailand
| | - Tanagorn Sangtawesin
- Thailand
Institute of Nuclear Technology (Public Organization), 9/9 moo 7, Saimoon Ongkharak District, Nakhon Nayok 26120, Thailand
| | | | - Jonggol Tantirungrotechai
- Department
of Chemistry and Center of Excellence for Innovation in Chemistry
(PERCH-CIC), Faculty of Science, Mahidol
University, Bangkok 10400, Thailand
| | - David J. Harding
- School
of Chemistry, Institute of Science, Suranaree
University of Technology, Nakhon
Ratchasima 30000, Thailand
| | - Thanthapatra Bunchuay
- Department
of Chemistry and Center of Excellence for Innovation in Chemistry
(PERCH-CIC), Faculty of Science, Mahidol
University, Bangkok 10400, Thailand
| |
Collapse
|
3
|
Jiang Z, Chen Z, Yu X, Lu S, Xu W, Yu B, Stern CL, Li SY, Zhao Y, Liu X, Han Y, Chen S, Cai K, Shen D, Ma K, Li X, Chen AXY. Engineering Helical Chirality in Metal-Coordinated Cyclodextrin Nanochannels. J Am Chem Soc 2025; 147:7325-7335. [PMID: 39964363 DOI: 10.1021/jacs.4c14123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2025]
Abstract
Helicates are a defining element of DNAs and proteins, with functions that are critical to a variety of biological processes. Cyclodextrins are promising candidates for forging multiple-stranded helicates with well-defined helicity, but a lack of available tools has precluded the construction of artificial helical nanochannels with a controllable geometry and helicity from these widely available chiral building blocks. Herein, we disclose a family of Ag6L2 helical nanochannels that can be readily assembled from α-cyclodextrin-derived ligands through coordination between pyridinyl groups and Ag+ cations. We discovered that the nanochannels exhibit either an M or a P helicity when the Ag+ cations adopt a tetrahedral coordination geometry while losing most of their helicity when the Ag+ cations are linearly coordinated. Both the geometry and helicity of the nanochannels can be precisely controlled by simply changing the number of methyl groups at the ortho positions of the pyridinyl ligands. The tetracoordinated Ag+ cations interconnect the helical nanochannels into an infinite two-dimensional coordinative network characterized by hexagonal tessellation. Theoretical calculations, which reveal lower energies of the helical conformations observed in crystals compared with those of their inverted counterparts, support the experimental results.
Collapse
Affiliation(s)
- Zhiyuan Jiang
- Department of Chemistry, The University of Hong Kong, Hong Kong, Hong Kong SAR 999077, China
| | - Zhi Chen
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Xiujun Yu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Shuai Lu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Wenmin Xu
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Bo Yu
- Research Institute for Intelligent Wearable Systems, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China
| | - Charlotte L Stern
- Department of Chemistry, Northwestern University, 2145 Sheridan Road, Evanston, Illinois 60208, United States
| | - Shu-Yi Li
- Department of Chemistry, The University of Hong Kong, Hong Kong, Hong Kong SAR 999077, China
| | - Yue Zhao
- Department of Chemistry, The University of Hong Kong, Hong Kong, Hong Kong SAR 999077, China
| | - Xinzhi Liu
- Department of Chemistry, The University of Hong Kong, Hong Kong, Hong Kong SAR 999077, China
| | - Yeqiang Han
- Department of Chemistry, The University of Hong Kong, Hong Kong, Hong Kong SAR 999077, China
| | - Shuqi Chen
- Department of Chemistry, The University of Hong Kong, Hong Kong, Hong Kong SAR 999077, China
| | - Kang Cai
- College of Chemistry, Nankai University, Tianjin 300071, China
| | - Dengke Shen
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, China
| | - Kaikai Ma
- Research Institute for Intelligent Wearable Systems, School of Fashion and Textiles, The Hong Kong Polytechnic University, Kowloon, Hong Kong SAR 999077, China
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong 518060, China
| | - Aspen X-Y Chen
- Department of Chemistry, The University of Hong Kong, Hong Kong, Hong Kong SAR 999077, China
| |
Collapse
|
4
|
Khariushin IV, Ovsyannikov AS, Baudron SA, Ward JS, Kiesilä A, Rissanen K, Kalenius E, Chessé M, Nowicka B, Solovieva SE, Antipin IS, Bulach V, Ferlay S. Face-controlled chirality induction in octahedral thiacalixarene-based porous coordination cages. NANOSCALE 2025; 17:1980-1989. [PMID: 39651803 DOI: 10.1039/d4nr03622k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Nanosized chiral octahedral M32 coordination cages were prepared via self-assembly of sulfonylcalix[4]arene tetranuclear M(II) clusters (M = Co or Ni) with enantiomerically enriched linkers based on tris(dipyrrinato)cobalt(III) complexes, appended with peripheral carboxylic groups. Two pairs of enantiomers of cages were obtained and unambiguously characterized from a structural point of view, using single crystal X-ray diffraction. Chiral-HPLC was used to evidence the enantiomers. In the solid state, the compounds present intrinsic and extrinsic porosity: the intrinsic porosity is linked with the size of the cages, which present an inner diameter of ca. 19 Å. The obtained solid-state supramolecular architectures demonstrated good performances as adsorbents for water and 2-butanol guest molecules.
Collapse
Affiliation(s)
- Ivan V Khariushin
- Université de Strasbourg, CNRS, CMC UMR 7140, F-67000 Strasbourg, France.
| | - Alexander S Ovsyannikov
- Arbuzov Institute of Organic and Physical Chemistry, FRC Kazan Scientific Center, Russian Academy of Sciences, Arbuzova 8, Kazan 420088, Russian Federation
| | - Stéphane A Baudron
- Université de Strasbourg, CNRS, CMC UMR 7140, F-67000 Strasbourg, France.
| | - Jas S Ward
- University of Jyvaskyla, Department of Chemistry, 40014 Jyväskylä, Finland
| | - Anniina Kiesilä
- University of Jyvaskyla, Department of Chemistry, 40014 Jyväskylä, Finland
| | - Kari Rissanen
- University of Jyvaskyla, Department of Chemistry, 40014 Jyväskylä, Finland
| | - Elina Kalenius
- University of Jyvaskyla, Department of Chemistry, 40014 Jyväskylä, Finland
| | - Matthieu Chessé
- LIMA UMR 7042, Université de Strasbourg et CNRS et UHA, European School of Chemistry, Polymers and Materials (ECPM), 25 Rue Becquerel, F-67087 Strasbourg, France
| | - Beata Nowicka
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, 30-387 Kraków, Poland
| | | | - Igor S Antipin
- Kazan Federal University, Kremlevskaya 18, Kazan 420008, Russian Federation
| | - Véronique Bulach
- Université de Strasbourg, CNRS, CMC UMR 7140, F-67000 Strasbourg, France.
| | - Sylvie Ferlay
- Université de Strasbourg, CNRS, CMC UMR 7140, F-67000 Strasbourg, France.
| |
Collapse
|
5
|
Li K, Liu M, Li Z, Chen M, Wang J, Yuan J, Jiang Z, Li Y, Wang P, Liu D. Heterometallic-Organic Cages with Customized Cavities: Constructed by Bottom-Up Step-Wise Coordination-Driven Self-Assembly. Chemistry 2024; 30:e202402499. [PMID: 39152769 DOI: 10.1002/chem.202402499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 07/20/2024] [Accepted: 08/16/2024] [Indexed: 08/19/2024]
Abstract
Accurately synthesizing coordination-driven metal-organic cages with customized shape and cavity remains a great challenge for chemists. In this work, a bottom-up step-wise coordination-driven self-assembly approach was put forward. Employing this strategy, three terpyridyl heterometallic-organic truncated tetrahedral cages with different sizes and cavity were precisely synthesized. Firstly, the coordination of tripodal organic ligands with Ru2+ afforded dendritic metal-organic ligands L1-L3. Then the Ru building blocks complexed with Fe2+ and shrunk to form the desired heterometallic-organic cages (C1-C3). These discrete heterometallic-organic supramolecular cages were fully characterized and displayed the large and open cavities varied from 7205 Å3 to 9384 Å3. Notably, these cages could not be directly constructed by single-step assembly process using initial organic ligands or dimeric metal-organic ligands, indicative of the irreplaceability of a bottom-up step-wise assembly strategy for size-customized architectures. This work paves a new way for precisely constructing metal-organic cages with well-defined cavities.
Collapse
Affiliation(s)
- Kaixiu Li
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Mingliang Liu
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Zhengguang Li
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Mingzhao Chen
- Country Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Area, Guangzhou University, Guangzhou, 510006, China
| | - Jun Wang
- Country Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Area, Guangzhou University, Guangzhou, 510006, China
| | - Jie Yuan
- School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, China
| | - Zhilong Jiang
- Country Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Area, Guangzhou University, Guangzhou, 510006, China
| | - Yiming Li
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| | - Pingshan Wang
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
- Country Key Laboratory for Water Quality and Conservation of the Pearl River Delta, Ministry of Education, Institute of Environmental Research at Greater Area, Guangzhou University, Guangzhou, 510006, China
| | - Die Liu
- Department of Organic and Polymer Chemistry, Hunan Key Laboratory of Micro & Nano Materials Interface Science, College of Chemistry and Chemical Engineering, Central South University, Changsha, Hunan, 410083, China
| |
Collapse
|
6
|
Ward JS, Kruger PE. Chameleonic Cages: Encapsulation of Anionic, Neutral, and Cationic Guest Species within [Fe 4L 4] 8+ Tetrahedral Cages Synthesised from the tris(4-aminophenyl)phosphate pro-Ligand. Chemistry 2024:e202402547. [PMID: 39087783 DOI: 10.1002/chem.202402547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2024] [Revised: 08/01/2024] [Accepted: 08/01/2024] [Indexed: 08/02/2024]
Abstract
An adaptable Fe(II) tetrahedral cage, [Fe4L4][BF4]8 (L=tris(4-(((E)-pyridin-2-ylmethylene)amino)phenyl) phosphate), has been synthesised via self-assembly. By modulating the orientation of its pendant P=O groups, the cage was found to be capable of encapsulating anionic, neutral, and cationic guests, which were confirmed in the solid state via single-crystal X-ray diffraction (SCXRD) and in solution by high-resolution mass spectroscopy (HR-MS), as well as by NMR (1H, 19F, 31P) studies where possible.
Collapse
Affiliation(s)
- Jas S Ward
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Physical and Chemical Sciences, University of Canterbury, 8041, Christchurch, New Zealand
- Current address: University of Jyvaskyla, Department of Chemistry, 40014, Jyväskylä, Finland
| | - Paul E Kruger
- MacDiarmid Institute for Advanced Materials and Nanotechnology, School of Physical and Chemical Sciences, University of Canterbury, 8041, Christchurch, New Zealand
| |
Collapse
|
7
|
Lorenzetto T, Bordignon F, Munarin L, Mancin F, Fabris F, Scarso A. Substrate Selectivity Imparted by Self-Assembled Molecular Containers and Catalysts. Chemistry 2024; 30:e202301811. [PMID: 37466005 DOI: 10.1002/chem.202301811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 07/14/2023] [Accepted: 07/17/2023] [Indexed: 07/20/2023]
Abstract
Recent trends in catalysis are devoted to mimicking some peculiar features of enzymes like site selectivity, through functional group recognition, and substrate selectivity, through recognition of the entire surface of the substrate. The latter is a specific feature of enzymes that is seldomly present in homogeneous catalysis. Supramolecular catalysis, thanks to the self-assembly of simple subunits, enables the creation of cavities and surfaces whose confinement effects drive the preferential binding of a substrate among others with consequent substrate selectivity. The topic is an emerging field that exploits recognition phenomena to discriminate the reagents based on their size and shape. This review deals this cutting-edge field of research covering examples of supramolecular self-assembled molecular containers and catalysts operating in organic as well as aqueous media, with special emphasis for catalytic systems dealing with direct competitive experiments involving two or more substrates.
Collapse
Affiliation(s)
- Tommaso Lorenzetto
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari di Venezia, Via Torino 155, Venezia Mestre, 30172, Italy
| | - Francesca Bordignon
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari di Venezia, Via Torino 155, Venezia Mestre, 30172, Italy
- Dipartimento di Scienze Chimiche, Università degli studi di Padova, via Marzolo 1, Padova, 35100, Italy
| | - Luca Munarin
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari di Venezia, Via Torino 155, Venezia Mestre, 30172, Italy
| | - Fabrizio Mancin
- Dipartimento di Scienze Chimiche, Università degli studi di Padova, via Marzolo 1, Padova, 35100, Italy
| | - Fabrizio Fabris
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari di Venezia, Via Torino 155, Venezia Mestre, 30172, Italy
| | - Alessandro Scarso
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca' Foscari di Venezia, Via Torino 155, Venezia Mestre, 30172, Italy
| |
Collapse
|
8
|
He L, Li L, Wang SC, Chan YT. Sequential self-assembly of calix[4]resorcinarene-based heterobimetallic Cd 8Pt 8 nano-Saturn complexes. Chem Commun (Camb) 2023; 59:11500-11503. [PMID: 37622211 DOI: 10.1039/d3cc03414c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/26/2023]
Abstract
A rational molecular design strategy is introduced for selective metal-ligand coordination, enabling the quantitative self-assembly of heterobimetallic nano-Saturn complexes. During the sequential multicomponent self-assembly, the CdII ions and organometallic trans-PtII motifs demonstrate preferential binding to specific ligands. The pre-designed directive interactions allow for precise control over the structural characteristics.
Collapse
Affiliation(s)
- Lipeng He
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
- Key Laboratory of Nonferrous Metals Chemistry and Resources Utilization of Gansu Province, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, P. R. China
| | - Lijie Li
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
- School of Physical Science and Technology, Lanzhou University, Lanzhou 730000, P. R. China
| | - Shi-Cheng Wang
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
| | - Yi-Tsu Chan
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|
9
|
Yin H, Cheng Q, Bardelang D, Wang R. Challenges and Opportunities of Functionalized Cucurbiturils for Biomedical Applications. JACS AU 2023; 3:2356-2377. [PMID: 37772183 PMCID: PMC10523374 DOI: 10.1021/jacsau.3c00273] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 07/09/2023] [Accepted: 07/10/2023] [Indexed: 09/30/2023]
Abstract
Cucurbit[n]uril (CB[n]) macrocycles (especially CB[5] to CB[8]) have shown exceptional attributes since their discovery in 2000. Their stability, water solubility, responsiveness to several stimuli, and remarkable binding properties have enabled a growing number of biological applications. Yet, soon after their discovery, the challenge of their functionalization was set. Nevertheless, after more than two decades, a myriad of CB[n] derivatives has been described, many of them used in cells or in vivo for advanced applications. This perspective summarizes key advances of this burgeoning field and points to the next opportunities and remaining challenges to fully express the potential of these fascinating macrocycles in biology and biomedical sciences.
Collapse
Affiliation(s)
- Hang Yin
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute
of Chinese Medical Sciences, University
of Macau, Taipa, Macau 999078, China
| | - Qian Cheng
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute
of Chinese Medical Sciences, University
of Macau, Taipa, Macau 999078, China
| | | | - Ruibing Wang
- State
Key Laboratory of Quality Research in Chinese Medicine, Institute
of Chinese Medical Sciences, University
of Macau, Taipa, Macau 999078, China
| |
Collapse
|
10
|
Pramanik S, Saha P, Ghosh P, Mukhopadhyay C. Substrate Switchable Pathway for Selective Construction of Bridged Dibenzo[b,f][1,5]diazocines and Bridged Spiromethanodibenzo[ b, e]azepines. ACS OMEGA 2023; 8:20579-20588. [PMID: 37323403 PMCID: PMC10268268 DOI: 10.1021/acsomega.3c01046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 05/17/2023] [Indexed: 06/17/2023]
Abstract
An operationally simple method for the synthesis of bridged dibenzo[b,f][1,5]diazocines and bridged spiromethanodibenzo[b,e]azepines exhibiting bridged eight-membered and seven-membered molecular architecture is reported. This unique approach is based on substrate selective mechanistic pathway, including an unprecendented aerial oxidation-driven mechanism for the synthesis of bridged spiromethanodibenzo[b,e]azepines. The reaction is highly atom economic, and in addition, it allows the construction of two rings and four bonds in a single operation under metal-free condition. The easy availability of β enaminone and ortho phathalaldehyde as starting materials and the simple operation make this approach suitable for the preparation of important dibenzo[b,f][1,5]diazocine and spiromethanodibenzo[b,e]azepine cores.
Collapse
Affiliation(s)
- Sayan Pramanik
- Department
of Chemistry, University of Calcutta, 92 APC Road, Kolkata 700009, India
| | - Pinaki Saha
- Department
of Chemistry, R. K. Mission Residential
College, Narendrapur, Kolkata 700103, India
| | - Prasanta Ghosh
- Department
of Chemistry, R. K. Mission Residential
College, Narendrapur, Kolkata 700103, India
| | - Chhanda Mukhopadhyay
- Department
of Chemistry, University of Calcutta, 92 APC Road, Kolkata 700009, India
| |
Collapse
|
11
|
Hu X, Han M, Wang L, Shao L, Peeyush Y, Du J, Kelley SP, Dalgarno SJ, Atwood DA, Feng S, Atwood JL. A copper-seamed coordination nanocapsule as a semiconductor photocatalyst for molecular oxygen activation. Chem Sci 2023; 14:4532-4537. [PMID: 37152257 PMCID: PMC10155914 DOI: 10.1039/d3sc00318c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/07/2023] [Indexed: 05/09/2023] Open
Abstract
Here we report that a Cu2+-seamed coordination nanocapsule can serve as an efficient semiconductor photocatalyst for molecular oxygen activation. This capsule was constructed through a redox reaction facilitated self-assembly of cuprous bromide and C-pentyl-pyrogallol[4]arene. Photophysical and electrochemical studies revealed its strong visible-light absorption and photocurrent polarity switching effect. This novel molecular solid material is capable of activating molecular oxygen into reactive oxygen species under simulated sunlight irradiation. The oxygen activation process has been exploited for catalyzing aerobic oxidation reactions. The present work provides new insights into designing nonporous discrete metal-organic supramolecular assemblies for solar-driven molecular oxygen activation.
Collapse
Affiliation(s)
- Xiangquan Hu
- Department of Chemistry, University of Missouri-Columbia 601 S College Ave Columbia MO 65211 USA
| | - Meirong Han
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University Taiyuan 030006 P. R. China
| | - Leicheng Wang
- Institute for Advanced Interdisciplinary Research, University of Jinan Jinan 250022 P. R. China
| | - Li Shao
- Department of Chemistry, University of Missouri-Columbia 601 S College Ave Columbia MO 65211 USA
| | - Yadav Peeyush
- Department of Chemistry, University of Missouri-Columbia 601 S College Ave Columbia MO 65211 USA
| | - Jialei Du
- Institute for Advanced Interdisciplinary Research, University of Jinan Jinan 250022 P. R. China
| | - Steven P Kelley
- Department of Chemistry, University of Missouri-Columbia 601 S College Ave Columbia MO 65211 USA
| | - Scott J Dalgarno
- Institute of Chemical Sciences, Heriot-Watt University Riccarton Edinburgh EH14 4AS UK
| | - David A Atwood
- Department of Chemistry, University of Kentucky Lexington KY 40506 USA
| | - Sisi Feng
- Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Institute of Molecular Science, Shanxi University Taiyuan 030006 P. R. China
| | - Jerry L Atwood
- Department of Chemistry, University of Missouri-Columbia 601 S College Ave Columbia MO 65211 USA
| |
Collapse
|
12
|
Metallic–Organic Cages (MOCs) with Heterometallic Character: Flexibility-Enhancing MOFs. Catalysts 2023. [DOI: 10.3390/catal13020317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The dichotomy between metal–organic frameworks (MOFs) and metal–organic cages (MOCs) opens up the research spectrum of two fields which, despite having similarities, both have their advantages and disadvantages. Due to the fact that they have cavities inside, they also have applicability in the porosity sector. Bloch and coworkers within this evolution from MOFs to MOCs manage to describe a MOC with a structure of Cu2 paddlewheel Cu4L4 (L = bis(pyrazolyl)methane) with high precision thanks to crystallographic analyses of X-ray diffraction and also SEM-EDX. Then, also at the same level of concreteness, they were able to find the self-assembly of Pd(II)Cl2 moieties on the available nitrogen donor atoms leading to a [Cu4(L(PdCl2))4] structure. Here, calculations of the DFT density functional allow us to reach an unusual precision given the magnitude and structural complexity, explaining how a pyrazole ring of each bis(pyprazolyl)methane ligand must rotate from an anti to a syn conformation, and a truncation of the MOC structure allows us to elucidate, in the absence of the MOC constraint and its packing in the crystal, that the rotation is almost barrierless, as well as also explain the relative stability of the different conformations, with the anti being the most stable conformation. Characterization calculations with Mayer bond orders (MBO) and noncovalent interaction (NCI) plots discern what is important in the interaction of this type of cage with PdCl2 moieties, also CuCl2 by analogy, as well as simple molecules of water, since the complex is stable in this solvent. However, the L ligand is proved to not have the ability to stabilize an H2O molecule.
Collapse
|
13
|
Chen X, Chen H, Fraser Stoddart J. The Story of the Little Blue Box: A Tribute to Siegfried Hünig. Angew Chem Int Ed Engl 2023; 62:e202211387. [PMID: 36131604 PMCID: PMC10099103 DOI: 10.1002/anie.202211387] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Indexed: 02/02/2023]
Abstract
The tetracationic cyclophane, cyclobis(paraquat-p-phenylene), also known as the little blue box, constitutes a modular receptor that has facilitated the discovery of many host-guest complexes and mechanically interlocked molecules during the past 35 years. Its versatility in binding small π-donors in its tetracationic state, as well as forming trisradical tricationic complexes with viologen radical cations in its doubly reduced bisradical dicationic state, renders it valuable for the construction of various stimuli-responsive materials. Since the first reports in 1988, the little blue box has been featured in over 500 publications in the literature. All this research activity would not have been possible without the seminal contributions carried out by Siegfried Hünig, who not only pioneered the syntheses of viologen-containing cyclophanes, but also revealed their rich redox chemistry in addition to their ability to undergo intramolecular π-dimerization. This Review describes how his pioneering research led to the design and synthesis of the little blue box, and how this redox-active host evolved into the key component of molecular shuttles, switches, and machines.
Collapse
Affiliation(s)
- Xiao‐Yang Chen
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIllinois 60208USA
| | - Hongliang Chen
- Stoddart Institute of Molecular ScienceDepartment of ChemistryZhejiang UniversityHangzhou310027China
- ZJU-Hangzhou Global Scientific and Technological Innovation CenterHangzhou311215China
| | - J. Fraser Stoddart
- Department of ChemistryNorthwestern University2145 Sheridan RoadEvanstonIllinois 60208USA
- Stoddart Institute of Molecular ScienceDepartment of ChemistryZhejiang UniversityHangzhou310027China
- ZJU-Hangzhou Global Scientific and Technological Innovation CenterHangzhou311215China
- School of ChemistryUniversity of New South WalesSydneyNSW 2052Australia
| |
Collapse
|
14
|
Shivanyuk A, Lagerna O, Dolgonos GA, Rozhkov V, Shishkina S, Lukin O, Poyarkov A, Fetyukhin V. Two‐ and Three‐Phase Self‐assembly of Molecular Capsules. ChemistrySelect 2022. [DOI: 10.1002/slct.202200666] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Alexander Shivanyuk
- I.F. Lab Ltd. Representative of Life Chemicals Inc. in Ukraine 5 Murmanska str. Kyiv 02000 Ukraine
| | - Oleksandra Lagerna
- I.F. Lab Ltd. Representative of Life Chemicals Inc. in Ukraine 5 Murmanska str. Kyiv 02000 Ukraine
| | - Grygoriy A. Dolgonos
- I.F. Lab Ltd. Representative of Life Chemicals Inc. in Ukraine 5 Murmanska str. Kyiv 02000 Ukraine
| | - Vladimir Rozhkov
- Institute of Organic Chemistry National Academy of Science of Ukraine 5 Murmanska str. Kyiv 02000 Ukraine
| | - Svetlana Shishkina
- SSI Institute for Single Crystals National Academy of Science of Ukraine 60 Nauky ave. Kharkiv 61001 Ukraine
| | - Oleg Lukin
- I.F. Lab Ltd. Representative of Life Chemicals Inc. in Ukraine 5 Murmanska str. Kyiv 02000 Ukraine
| | - Alexey Poyarkov
- I.F. Lab Ltd. Representative of Life Chemicals Inc. in Ukraine 5 Murmanska str. Kyiv 02000 Ukraine
| | - Volodymyr Fetyukhin
- I.F. Lab Ltd. Representative of Life Chemicals Inc. in Ukraine 5 Murmanska str. Kyiv 02000 Ukraine
| |
Collapse
|
15
|
Chloride anion-induced dimer capsule based on a polyfluorinated macrocycle meta-WreathArene. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.108042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
16
|
Kim S, Lee DH, Park KM, Jung JH, Lee SS, Park IH. Unexpected Solvent-Dependent Self-Assembly of Alkali Metal Complexes of Calix[6]- mono-crown-4: Dinuclear Bowls, a Pseudo-Capsule, and a One-Dimensional Polymer. Inorg Chem 2022; 61:18213-18220. [DOI: 10.1021/acs.inorgchem.2c03020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Seulgi Kim
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, South Korea
| | - Dong Hee Lee
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, South Korea
| | - Ki-Min Park
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, South Korea
| | - Jong Hwa Jung
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, South Korea
| | - Shim Sung Lee
- Department of Chemistry and Research Institute of Natural Sciences, Gyeongsang National University, Jinju 52828, South Korea
| | - In-Hyeok Park
- Graduate School of Analytical Science and Technology (GRAST), Chungnam National University, Daejeon 34134, South Korea
| |
Collapse
|
17
|
|
18
|
Hkiri S, Steinmetz M, Schurhammer R, Sémeril D. Encapsulated Neutral Ruthenium Catalyst for Substrate‐Selective Oxidation of Alcohols. Chemistry 2022; 28:e202201887. [DOI: 10.1002/chem.202201887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Indexed: 11/06/2022]
Affiliation(s)
- Shaima Hkiri
- Synthèse Organométallique et Catalyse, UMR-CNRS 7177-Institut de Chimie de Strasbourg Université de Strasbourg 4 rue Blaise Pascal 67008 Strasbourg France
| | - Maxime Steinmetz
- Synthèse Organométallique et Catalyse, UMR-CNRS 7177-Institut de Chimie de Strasbourg Université de Strasbourg 4 rue Blaise Pascal 67008 Strasbourg France
| | - Rachel Schurhammer
- Laboratoire de Modélisation et Simulations Moléculaires, UMR-CNRS 7140-Chimie de la Matière Complexe Université de Strasbourg 4 rue Blaise Pascal 67008 Strasbourg France
| | - David Sémeril
- Synthèse Organométallique et Catalyse, UMR-CNRS 7177-Institut de Chimie de Strasbourg Université de Strasbourg 4 rue Blaise Pascal 67008 Strasbourg France
| |
Collapse
|
19
|
El-Lateef HMA, El-Dabea T, Khalaf MM, Abu-Dief AM. Innovation of Imine Metal Chelates as Corrosion Inhibitors at Different Media: A Collective Study. Int J Mol Sci 2022; 23:9360. [PMID: 36012623 PMCID: PMC9409127 DOI: 10.3390/ijms23169360] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/27/2022] [Accepted: 08/09/2022] [Indexed: 01/03/2023] Open
Abstract
The corrosion inhibition of transition metal chelates derived from Schiff base ligands was tested for (mild, copper, stainless, aluminum and carbon) steel in various concentrations of (HCl, HNO3 and H2SO4) acidic medium at 25 °C through (weight loss, potentiodynamic polarization, polarization curves, electrochemical impedance spectroscopy (EIS) and open circuit potential measurements (OCP)) techniques. The studied compounds were identified with various spectral, analytical and physico-chemical techniques. It was observed that the investigated compounds had a significant inhibitory impact on the corrosion of diverse steels in the medium investigated. The analysis shows that increasing the dose of the studied complexes improves the corresponding inhibitory efficiency values. Negative results of Gibb's free adsorption energy (ΔGads0) prove the suppression process's spontaneous and physical adsorption, which contradicts the Langmuir adsorption isotherm. As a result of this insight, a novel bridge between nuclearity driven coordinated inorganic chemistry and materials, as well as corrosion control, has been built. This review provides an overview of the use of Schiff bases and associated transition metals as potential corrosion inhibitors, including the factors that influence their application.
Collapse
Affiliation(s)
- Hany M. Abd El-Lateef
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
- Chemistry Department, Faculty of Science, Sohag University, Sohag 82534, Egypt
| | - Tarek El-Dabea
- Chemistry Department, Faculty of Science, Sohag University, Sohag 82534, Egypt
| | - Mai M. Khalaf
- Department of Chemistry, College of Science, King Faisal University, P.O. Box 400, Al-Ahsa 31982, Saudi Arabia
- Chemistry Department, Faculty of Science, Sohag University, Sohag 82534, Egypt
| | - Ahmed M. Abu-Dief
- Chemistry Department, Faculty of Science, Sohag University, Sohag 82534, Egypt
- Chemistry Department, College of Science, Taibah University, Madinah 344, Saudi Arabia
| |
Collapse
|
20
|
Wu G, Li F, Tang B, Zhang X. Molecular Engineering of Noncovalent Dimerization. J Am Chem Soc 2022; 144:14962-14975. [PMID: 35969112 DOI: 10.1021/jacs.2c02434] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Dimers are probably the simplest model to facilitate the understanding of fundamental physical and chemical processes that take place in much-expanded systems like aggregates, crystals, and other solid states. The molecular interplay within a dimer differentiates it from the corresponding monomeric state and determines its features. Molecular engineering of noncovalent dimerization through applied supramolecular restrictions enables additional control over molecular interplay, particularly over its dynamic aspect. This Perspective introduces the recent effort that has been made in the molecular engineering of noncovalent dimerization, including supramolecular dimers, folda-dimers, and macrocyclic dimers. It showcases how the variation in supramolecular restrictions endows molecular-based materials with improved performance and/or functions like enhanced emission, room-temperature phosphorescence, and effective catalysis. We particularly discuss pseudostatic dimers that can sustain molecular interplay for a long period of time, yet are still flexible enough to adapt to variations. The pseudostatic feature allows for active species to decay along an alternate pathway, thereby spinning off emerging features that are not readily accessible from conventional dynamic systems.
Collapse
Affiliation(s)
- Guanglu Wu
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Fei Li
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China
| | - Bohan Tang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Xi Zhang
- State Key Laboratory of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, China.,Key Laboratory of Organic Optoelectronics & Molecular Engineering, Department of Chemistry, Tsinghua University, Beijing 100084, China
| |
Collapse
|
21
|
Bujol RJ, Fronczek FR, Elgrishi N. On the synthesis and characterization of two different titanium-based supramolecular structures of identical stoichiometry. J COORD CHEM 2022. [DOI: 10.1080/00958972.2022.2109149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
Affiliation(s)
- Ryan J. Bujol
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, USA
| | - Frank R. Fronczek
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, USA
| | - Noémie Elgrishi
- Department of Chemistry, Louisiana State University, Baton Rouge, LA, USA
| |
Collapse
|
22
|
Yong MT, Linder-Patton OM, Bloch WM. Assembly of a Heterometallic Cu(II)-Pd(II) Cage by Post-assembly Metal Insertion. Inorg Chem 2022; 61:12863-12869. [PMID: 35920858 DOI: 10.1021/acs.inorgchem.2c02046] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Porous structures based on multi-metallic motifs are receiving growing interest, but their general preparation still remains a challenge. Here, we report the self-assembly and structure of a CuII metal-organic cage (MOC) that is functionalized with free bis(pyrazolyl)methane sites. The homometallic Cu4L4 cage is isolated as a water-stable crystalline solid, and its formation is dependent on metal-ligand stoichiometry and the pre-organization of the Cu2 paddlewheel. We show by X-ray diffraction and SEM-EDX that PdII chloride can be quantitatively inserted into the free chelating sites of the MOC to yield a [Cu4(L(PdCl2))4] structure. Moreover, the solvent employed in the metalation dictates the solid-state isomerism of the heterometallic cage─a further handle to control the MOC's structural diversity and permanent porosity.
Collapse
Affiliation(s)
- Mei Tieng Yong
- Department of Chemistry, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Oliver M Linder-Patton
- Department of Chemistry, The University of Adelaide, Adelaide, South Australia 5005, Australia
| | - Witold M Bloch
- Department of Chemistry, The University of Adelaide, Adelaide, South Australia 5005, Australia.,Institute for Nanoscale Science and Technology, College of Science and Engineering, Flinders University, Adelaide, South Australia 5042, Australia
| |
Collapse
|
23
|
McTernan C, Davies JA, Nitschke JR. Beyond Platonic: How to Build Metal-Organic Polyhedra Capable of Binding Low-Symmetry, Information-Rich Molecular Cargoes. Chem Rev 2022; 122:10393-10437. [PMID: 35436092 PMCID: PMC9185692 DOI: 10.1021/acs.chemrev.1c00763] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Indexed: 12/17/2022]
Abstract
The field of metallosupramolecular chemistry has advanced rapidly in recent years. Much work in this area has focused on the formation of hollow self-assembled metal-organic architectures and exploration of the applications of their confined nanospaces. These discrete, soluble structures incorporate metal ions as 'glue' to link organic ligands together into polyhedra.Most of the architectures employed thus far have been highly symmetrical, as these have been the easiest to prepare. Such high-symmetry structures contain pseudospherical cavities, and so typically bind roughly spherical guests. Biomolecules and high-value synthetic compounds are rarely isotropic, highly-symmetrical species. To bind, sense, separate, and transform such substrates, new, lower-symmetry, metal-organic cages are needed. Herein we summarize recent approaches, which taken together form the first draft of a handbook for the design of higher-complexity, lower-symmetry, self-assembled metal-organic architectures.
Collapse
Affiliation(s)
| | | | - Jonathan R. Nitschke
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
24
|
Thanasekaran P, Lin B, Valaboju A, Lan C, Chang C, Lee C, Wu J, Bhattacharya D, Tseng T, Lee H, Hsu C, Lu K. Molecular mechanics of glove‐like re(I) metallacycles: Toward light‐activated molecular catchers. J CHIN CHEM SOC-TAIP 2022. [DOI: 10.1002/jccs.202200103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
| | - Bo‐Chao Lin
- Institute of Chemistry, Academia Sinica Taipei Taiwan
| | | | | | - Che‐Hao Chang
- Institute of Chemistry, Academia Sinica Taipei Taiwan
| | - Chung‐Chou Lee
- Material and Chemical Research Laboratories Industrial Technology Research Institute Hsinchu Taiwan
| | - Jing‐Yun Wu
- Department of Applied Chemistry National Chi Nan University Nantou Taiwan
| | | | - Tien‐Wen Tseng
- Department of Chemical Engineering National Taipei University of Technology Taipei Taiwan
| | | | - Chao‐Ping Hsu
- Institute of Chemistry, Academia Sinica Taipei Taiwan
- Division of Physics National Center for Theoretical Sciences Taipei Taiwan
| | - Kuang‐Lieh Lu
- Institute of Chemistry, Academia Sinica Taipei Taiwan
| |
Collapse
|
25
|
Lorenzetto T, Frigatti D, Fabris F, Scarso A. Nanoconfinement Effects of Micellar Media in Asymmetric Catalysis. Adv Synth Catal 2022. [DOI: 10.1002/adsc.202200225] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Tommaso Lorenzetto
- Dipartimento di Scienze Molecolari e Nanosistemi Università Ca' Foscari Venezia Via Torino 155 30172 Venezia Mestre Italy
| | - Davide Frigatti
- Dipartimento di Scienze Molecolari e Nanosistemi Università Ca' Foscari Venezia Via Torino 155 30172 Venezia Mestre Italy
| | - Fabrizio Fabris
- Dipartimento di Scienze Molecolari e Nanosistemi Università Ca' Foscari Venezia Via Torino 155 30172 Venezia Mestre Italy
| | - Alessandro Scarso
- Dipartimento di Scienze Molecolari e Nanosistemi Università Ca' Foscari Venezia Via Torino 155 30172 Venezia Mestre Italy
| |
Collapse
|
26
|
Liu Y, Liu FZ, Yan K. Mechanochemical Access to a Short-Lived Cyclic Dimer Pd 2 L 2 : An Elusive Kinetic Species En Route to Molecular Triangle Pd 3 L 3 and Molecular Square Pd 4 L 4. Angew Chem Int Ed Engl 2022; 61:e202116980. [PMID: 35191567 DOI: 10.1002/anie.202116980] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Indexed: 11/08/2022]
Abstract
Pd-based molecular square Pd4 L4 and triangle Pd3 L3 represent the molecular ancestors of metal-coordination polyhedra that have been an integral part of the field for the last 30 years. Conventional solution-based reactions between cis-protected Pd ions and 2,2'-bipyridine exclusively give Pd4 L4 and/or Pd3 L3 as the sole products. We herein show that, under solvent-free mechanochemical conditions, the self-assembly energy landscape can be thermodynamically manipulated to form an elusive cyclic dimer Pd2 L2 for the first time. In the absence of solvent, Pd2 L2 is indefinitely stable in the solid-state, but converts rapidly to its thermodynamic products Pd3 L3 and Pd4 L4 in solution, confirming Pd2 L2 as a short-lived kinetic species in the solution-based self-assembly process. Our results highlight how mechanochemistry grants access to a vastly different chemical space than available under conventional solution conditions. This provides a unique opportunity to isolate elusive species in self-assembly processes that are too reactive to both "see" and "capture".
Collapse
Affiliation(s)
- Yan Liu
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - Fang-Zi Liu
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| | - KaKing Yan
- School of Physical Science and Technology, ShanghaiTech University, 201210, Shanghai, China
| |
Collapse
|
27
|
Saha R, Mondal B, Mukherjee PS. Molecular Cavity for Catalysis and Formation of Metal Nanoparticles for Use in Catalysis. Chem Rev 2022; 122:12244-12307. [PMID: 35438968 DOI: 10.1021/acs.chemrev.1c00811] [Citation(s) in RCA: 105] [Impact Index Per Article: 35.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The employment of weak intermolecular interactions in supramolecular chemistry offers an alternative approach to project artificial chemical environments like the active sites of enzymes. Discrete molecular architectures with defined shapes and geometries have become a revolutionary field of research in recent years because of their intrinsic porosity and ease of synthesis using dynamic non-covalent/covalent interactions. Several porous molecular cages have been constructed from simple building blocks by self-assembly, which undergoes many self-correction processes to form the final architecture. These supramolecular systems have been developed to demonstrate numerous applications, such as guest stabilization, drug delivery, catalysis, smart materials, and many other related fields. In this respect, catalysis in confined nanospaces using such supramolecular cages has seen significant growth over the years. These porous discrete cages contain suitable apertures for easy intake of substrates and smooth release of products to exhibit exceptional catalytic efficacy. This review highlights recent advancements in catalytic activity influenced by the nanocavities of hydrogen-bonded cages, metal-ligand coordination cages, and dynamic or reversible covalently bonded organic cages in different solvent media. Synthetic strategies for these three types of supramolecular systems are discussed briefly and follow similar and simplistic approaches manifested by simple starting materials and benign conditions. These examples demonstrate the progress of various functionalized molecular cages for specific chemical transformations in aqueous and nonaqueous media. Finally, we discuss the enduring challenges related to porous cage compounds that need to be overcome for further developments in this field of work.
Collapse
Affiliation(s)
- Rupak Saha
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560 012, India
| | - Bijnaneswar Mondal
- Department of Chemistry, Guru Ghasidas Vishwavidyalaya, Bilaspur-495 009, Chhattisgarh, India
| | - Partha Sarathi Mukherjee
- Department of Inorganic and Physical Chemistry, Indian Institute of Science, Bangalore-560 012, India
| |
Collapse
|
28
|
Lorenzetto T, Fabris F, Scarso A. A resorcin[4]arene hexameric capsule as a supramolecular catalyst in elimination and isomerization reactions. Beilstein J Org Chem 2022; 18:337-349. [PMID: 35422886 PMCID: PMC8978922 DOI: 10.3762/bjoc.18.38] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/16/2022] [Indexed: 12/27/2022] Open
Abstract
The hexameric resorcin[4]arene capsule as a self-assembled organocatalyst promotes a series of reactions like the carbonyl-ene cyclization of (S)-citronellal preferentially to isopulegol, the water elimination from 1,1-diphenylethanol, the isomerization of α-pinene and β-pinene preferentially to limonene and minor amounts of camphene. The role of the supramolecular catalyst consists in promoting the protonation of the substrates leading to the formation of cationic intermediates that are stabilized within the cavity with consequent peculiar features in terms of acceleration and product selectivity. In all cases the catalytic activity displayed by the hexameric capsule is remarkable if compared to many other strong Brønsted or Lewis acids.
Collapse
Affiliation(s)
- Tommaso Lorenzetto
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari di Venezia, via Torino 155, 30172, Mestre-Venezia, Italy
| | - Fabrizio Fabris
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari di Venezia, via Torino 155, 30172, Mestre-Venezia, Italy
| | - Alessandro Scarso
- Dipartimento di Scienze Molecolari e Nanosistemi, Università Ca’ Foscari di Venezia, via Torino 155, 30172, Mestre-Venezia, Italy
| |
Collapse
|
29
|
Chwastek M, Cmoch P, Szumna A. Anion-Based Self-assembly of Resorcin[4]arenes and Pyrogallol[4]arenes. J Am Chem Soc 2022; 144:5350-5358. [PMID: 35274940 PMCID: PMC8972256 DOI: 10.1021/jacs.1c11793] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
![]()
Spatial sequestration
of molecules is a prerequisite for the complexity
of biological systems, enabling the occurrence of numerous, often
non-compatible chemical reactions and processes in one cell at the
same time. Inspired by this compartmentalization concept, chemists
design and synthesize artificial nanocontainers (capsules and cages)
and use them to mimic the biological complexity and for new applications
in recognition, separation, and catalysis. Here, we report the formation
of large closed-shell species by interactions of well-known polyphenolic
macrocycles with anions. It has been known since many years that C-alkyl
resorcin[4]arenes (R4C) and C-alkyl pyrogallol[4]arenes
(P4C) narcissistically self-assemble in nonpolar solvents
to form hydrogen-bonded capsules. Here, we show a new interaction
model that additionally involves anions as interacting partners and
leads to even larger capsular species. Diffusion-ordered spectroscopy
and titration experiments indicate that the anion-sealed species have
a diameter of >26 Å and suggest stoichiometry (M)6(X–)24 and tight ion pairing
with cations. This self-assembly is effective in a nonpolar environment
(THF and benzene but not in chloroform), however, requires initiation
by mechanochemistry (dry milling) in the case of non-compatible solubility.
Notably, it is common among various polyphenolic macrocycles (M) having diverse geometries and various conformational lability.
Collapse
Affiliation(s)
- Monika Chwastek
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Piotr Cmoch
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Agnieszka Szumna
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
30
|
Liu Y, Liu F, Yan K. Mechanochemical Access to a Short‐Lived Cyclic Dimer Pd
2
L
2
: An Elusive Kinetic Species En Route to Molecular Triangle Pd
3
L
3
and Molecular Square Pd
4
L
4. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Yan Liu
- School of Physical Science and Technology ShanghaiTech University 201210 Shanghai China
| | - Fang‐Zi Liu
- School of Physical Science and Technology ShanghaiTech University 201210 Shanghai China
| | - KaKing Yan
- School of Physical Science and Technology ShanghaiTech University 201210 Shanghai China
| |
Collapse
|
31
|
Poole III DA, Bobylev EO, Mathew S, Reek JNH. Entropy directs the self-assembly of supramolecular palladium coordination macrocycles and cages. Chem Sci 2022; 13:10141-10148. [PMID: 36128226 PMCID: PMC9430592 DOI: 10.1039/d2sc03154j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 08/09/2022] [Indexed: 12/02/2022] Open
Abstract
The self-assembly of palladium-based cages is frequently rationalized via the cumulative enthalpy (ΔH) of bonds between coordination nodes (M, i.e., Pd) and ligand (L) components. This focus on enthalpic rationale limits the complete understanding of the Gibbs free energy (ΔG) for self-assembly, as entropic (ΔS) contributions are overlooked. Here, we present a study of the M2linL3 intermediate species (M = dinitrato(N,N,N′,N′-tetramethylethylenediamine)palladium(ii), linL = 4,4′-bipyridine), formed during the synthesis of triangle-shaped (M3linL3) and square-shaped (M4linL4) coordination macrocycles. Thermochemical analyses by variable temperature (VT) 1H-NMR revealed that the M2linL3 intermediate exhibited an unfavorable (relative) ΔS compared to M3linL3 (triangle, ΔTΔS = +5.22 kcal mol−1) or M4linL4 (square, ΔTΔS = +2.37 kcal mol−1) macrocycles. Further analysis of these constructs with molecular dynamics (MD) identified that the self-assembly process is driven by ΔG losses facilitated by increases in solvation entropy (ΔSsolv, i.e., depletion of solvent accessible surface area) that drives the self-assembly from “open” intermediates toward “closed” macrocyclic products. Expansion of our computational approach to the analysis of self-assembly in PdnbenL2n cages (benL = 4,4'-(5-ethoxy-1,3-phenylene)dipyridine), demonstrated that ΔSsolv contributions drive the self-assembly of both thermodynamic cage products (i.e., Pd12benL24) and kinetically-trapped intermediates (i.e., Pd8cL16). These studies demonstrate that ΔS drives the self-assembly of supramolecular palladium-based coordination macrocycles and cages. As this ΔS contribution arises from solvation, these findings broadly reflect the thermodynamic drive of self-assembly to form compact structures.![]()
Collapse
Affiliation(s)
- D. A. Poole III
- Homogeneous, Supramolecular, and Bioinspired Catalysis Group, van ‘t Hoff Institute for Molecular Science (HIMS), University of Amsterdam (UvA), Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - E. O. Bobylev
- Homogeneous, Supramolecular, and Bioinspired Catalysis Group, van ‘t Hoff Institute for Molecular Science (HIMS), University of Amsterdam (UvA), Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - S. Mathew
- Homogeneous, Supramolecular, and Bioinspired Catalysis Group, van ‘t Hoff Institute for Molecular Science (HIMS), University of Amsterdam (UvA), Science Park 904, 1098 XH Amsterdam, The Netherlands
| | - J. N. H. Reek
- Homogeneous, Supramolecular, and Bioinspired Catalysis Group, van ‘t Hoff Institute for Molecular Science (HIMS), University of Amsterdam (UvA), Science Park 904, 1098 XH Amsterdam, The Netherlands
| |
Collapse
|
32
|
Virovets AV, Peresypkina E, Scheer M. Structural Chemistry of Giant Metal Based Supramolecules. Chem Rev 2021; 121:14485-14554. [PMID: 34705437 DOI: 10.1021/acs.chemrev.1c00503] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
The review presents a bird-eye view on the state of research in the field of giant nonbiological discrete metal complexes and ions of nanometer size, which are structurally characterized by means of single-crystal X-ray diffraction, using the crystal structure as a common key feature. The discussion is focused on the main structural features of the metal clusters, the clusters containing compact metal oxide/hydroxide/chalcogenide core, ligand-based metal-organic cages, and supramolecules as well as on the aspects related to the packing of the molecules or ions in the crystal and the methodological aspects of the single-crystal neutron and X-ray diffraction of these compounds.
Collapse
Affiliation(s)
- Alexander V Virovets
- Institute of Inorganic Chemistry, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany
| | - Eugenia Peresypkina
- Institute of Inorganic Chemistry, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany
| | - Manfred Scheer
- Institute of Inorganic Chemistry, University of Regensburg, Universitaetsstr. 31, 93053 Regensburg, Germany
| |
Collapse
|
33
|
Wang Z, Villa Santos C, Legrand A, Haase F, Hara Y, Kanamori K, Aoyama T, Urayama K, Doherty CM, Smales GJ, Pauw BR, Colón YJ, Furukawa S. Multiscale structural control of linked metal-organic polyhedra gel by aging-induced linkage-reorganization. Chem Sci 2021; 12:12556-12563. [PMID: 34703541 PMCID: PMC8494050 DOI: 10.1039/d1sc02883a] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 08/20/2021] [Indexed: 12/03/2022] Open
Abstract
Assembly of permanently porous metal-organic polyhedra/cages (MOPs) with bifunctional linkers leads to soft supramolecular networks featuring both porosity and processability. However, the amorphous nature of such soft materials complicates their characterization and thus limits rational structural control. Here we demonstrate that aging is an effective strategy to control the hierarchical network of supramolecular gels, which are assembled from organic ligands as linkers and MOPs as junctions. Normally, the initial gel formation by rapid gelation leads to a kinetically trapped structure with low controllability. Through a controlled post-synthetic aging process, we show that it is possible to tune the network of the linked MOP gel over multiple length scales. This process allows control on the molecular-scale rearrangement of interlinking MOPs, mesoscale fusion of colloidal particles and macroscale densification of the whole colloidal network. In this work we elucidate the relationships between the gel properties, such as porosity and rheology, and their hierarchical structures, which suggest that porosity measurement of the dried gels can be used as a powerful tool to characterize the microscale structural transition of their corresponding gels. This aging strategy can be applied in other supramolecular polymer systems particularly containing kinetically controlled structures and shows an opportunity to engineer the structure and the permanent porosity of amorphous materials for further applications.
Collapse
Affiliation(s)
- Zaoming Wang
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University Yoshida, Sakyo-ku Kyoto 606-8501 Japan
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Christian Villa Santos
- Department of Chemical and Biomolecular Engineering, University of Notre Dame Notre Dame IN 46556 USA
| | - Alexandre Legrand
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| | - Frederik Haase
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University Yoshida, Sakyo-ku Kyoto 606-8501 Japan
| | - Yosuke Hara
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa, Sakyo-ku Kyoto 606-8502 Japan
| | - Kazuyoshi Kanamori
- Department of Chemistry, Graduate School of Science, Kyoto University Kitashirakawa, Sakyo-ku Kyoto 606-8502 Japan
| | - Takuma Aoyama
- Department of Macromolecular Science and Engineering, Kyoto Institute of Technology Matsugasaki, Sakyo-ku Kyoto 606-8585 Japan
| | - Kenji Urayama
- Department of Macromolecular Science and Engineering, Kyoto Institute of Technology Matsugasaki, Sakyo-ku Kyoto 606-8585 Japan
| | - Cara M Doherty
- Manufacturing, Commonwealth Scientific and Industrial Research Organisation Clayton South Victoria Australia
| | - Glen J Smales
- Bundesanstalt für Materialforschung und -prüfung (BAM) Unter den Eichen 87 12205 Berlin Germany
| | - Brian R Pauw
- Bundesanstalt für Materialforschung und -prüfung (BAM) Unter den Eichen 87 12205 Berlin Germany
| | - Yamil J Colón
- Department of Chemical and Biomolecular Engineering, University of Notre Dame Notre Dame IN 46556 USA
| | - Shuhei Furukawa
- Institute for Integrated Cell-Material Science (WPI-iCeMS), Kyoto University Yoshida, Sakyo-ku Kyoto 606-8501 Japan
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Katsura, Nishikyo-ku Kyoto 615-8510 Japan
| |
Collapse
|
34
|
Kandasamy B, Lee E, Long DL, Bell N, Cronin L. Exploring the Geometric Space of Metal-Organic Polyhedrons (MOPs) of Metal-Oxo Clusters. Inorg Chem 2021; 60:14772-14778. [PMID: 34549944 PMCID: PMC8493551 DOI: 10.1021/acs.inorgchem.1c01987] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
Metal organic polyhedra (MOPs) such
as coordination cages and clusters
are increasingly utilized across many fields, but their geometrically
selective assembly during synthesis is nontrivial. When ligand coordination
along these polyhedral edges is arranged in an unsymmetrical mode
or the bridging ligand itself is nonsymmetric, a vast combinatorial
space of potential isomers exists complicating formation and isolation.
Here we describe two generalizable combinatorial methodologies to
explore the geometrical space and enumerate the configurational isomers
of MOPs with discrimination of the chiral and achiral structures.
The methodology has been applied to the case of the octahedron {Bi6Fe13L12} which has unsymmetrical coordination
of a carboxylate ligand (L) along its edges. For these polyhedra,
the enumeration methodology revealed 186 distinct isomers, including
74 chiral pairs and 38 achiral. To explore the programming of these,
we then used a range of ligands to synthesize several configurational
isomers. Our analysis demonstrates that ligand halo-substituents influence
isomer symmetry and suggests that more symmetric halo-substituted
ligands counterintuitively yield lower symmetry isomers. We performed
mass spectrometry studies of these {Bi6Fe13L12} clusters to evaluate their stability and aggregation behavior
in solution and the gas phase showing that various isomers have different
levels of aggregation in solution. We describe
combinatorial methodologies to explore the geometrical
space and enumerate the configurational isomers of metal organic polyhedra
with discrimination of the chiral and achiral structures. The methodology
was applied to the octahedral {Bi6Fe13L12} which has an unsymmetrical coordination of a carboxylate
ligands (L) along its edges. For these polyhedra, the enumeration
methodology revealed 186 distinct isomers, including 74 chiral pairs
and 38 achiral. We used a range of ligands to synthesize several configurational
isomers.
Collapse
Affiliation(s)
| | - Edward Lee
- School of Chemistry, The University of Glasgow, Glasgow G12 8QQ, U.K
| | - De-Liang Long
- School of Chemistry, The University of Glasgow, Glasgow G12 8QQ, U.K
| | - Nicola Bell
- School of Chemistry, The University of Glasgow, Glasgow G12 8QQ, U.K
| | - Leroy Cronin
- School of Chemistry, The University of Glasgow, Glasgow G12 8QQ, U.K
| |
Collapse
|
35
|
Lin HY, Zhou LY, Xu L. Photocatalysis in Supramolecular Fluorescent Metallacycles and Metallacages. Chem Asian J 2021; 16:3805-3816. [PMID: 34529337 DOI: 10.1002/asia.202100942] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/13/2021] [Indexed: 11/08/2022]
Abstract
The utilization of photocatalytic techniques for achieving light-to-fuel conversion is a promising way to ease the shortage of energy and degradation of the ecological environment. Fluorescent metallacycles and metallacages have drawn considerable attention and have been used in widespread fields due to easy preparation and their abundant functionality including photocatalysis. This review covers recent advances in photocatalysis in discrete supramolecular fluorescent metallacycles and metallacages. The developments in the utilization of the metallacycles skeletons and the effect of fluorescence-resonance energy transfer for photocatalysis are discussed. Furthermore, the use of the ligands decorated by organic chromophores or redox metal sites in metallacages as photocatalysts and their ability to encapsulate appropriate catalytic cofactors for photocatalysis are summarized. For the sake of brevity, macrocycles and cages with inorganic coordination complexes such as ruthenium complexes and iridium complexes are not included in this minireview.
Collapse
Affiliation(s)
- Hong-Yu Lin
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Le-Yong Zhou
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| | - Lin Xu
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, School of Chemistry and Molecular Engineering, East China Normal University, 3663 N. Zhongshan Road, Shanghai, 200062, P. R. China
| |
Collapse
|
36
|
Shao L, Hu X, Sikligar K, Baker GA, Atwood JL. Coordination Polymers Constructed from Pyrogallol[4]arene-Assembled Metal-Organic Nanocapsules. Acc Chem Res 2021; 54:3191-3203. [PMID: 34329553 DOI: 10.1021/acs.accounts.1c00275] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Coordination polymers, commonly known as infinite crystalline lattices, are versatile networks and have diverse potential applications in the fields of gas storage, molecular separation, catalysis, optics, and drug delivery, among other areas. Secondary building blocks, mainly incorporating rigid polydentate organic linkers and metal ions or clusters, are commonly employed to construct coordination polymers. Recently, novel building blocks such as coordination polyhedra have been utilized as metal nodes to fabricate coordination polymers. Benefiting from the rigid porous structure of the coordination polyhedron, prefabricated designer "pores" can be incorporated in this type of coordinate polymer. In this Account, coordination polymers built by pyrogallol[4]arene-assembled metal-organic nanocapsules are summarized. This class of metal-organic nanocapsule possesses the following advantages that make them excellent candidates in the construction of coordination polymers: (i) Various geometrical shapes with different volumes of the inner cavities can be obtained from these capsules. Among them, the two main categories illustrated are dimeric and hexameric capsules, which comprise two and six pyrogallol[4]arenes units, respectively. (ii) A wide range of possible metal ions ranging from main group metals to transition metals and even lanthanides have been demonstrated to seam the capsules. Therefore, these coordination polymers can be endowed with fascinating functionalities such as magnetism, semiconductivity, luminescence, and radioactivity. (iii) Up to 24 metal ions have been successfully embedded on the surface of the nanocapsule, each a potential reaction site in the construction of coordination polymers, opening up pathways for the formation of multidimensional frameworks.In this Account, we focus primarily on the synthesis and the structural information on pyrogallol[4]arene-derived coordination polymers. Coordination polymers can be formed by introducing linkers with two coordination sites, using pyrogallol[4]arenes with coordination sites on the tail, or even via metal ions cross-linking with each other. Machine learning was recently developed to help us predict and screen the structures of the coordination polymers. With single crystal analysis in hand, detailed structural information provides a molecular-level perspective. Significantly, following the formation of coordination polymers, the overall shape and structure of the discrete metal-organic nanocapsules remains essentially unchanged, with full retention of the prefabricated pores. If a rigid linker is used to connect capsules, more than one lattice void with different volumes can be found within the framework. Thus, molecules with different sizes could potentially be encapsulated within these coordination polymers. In addition, flexible ligands can also be employed as linkers. For example, polymers have been employed as large linkers that transform the crystalline coordination polymers into polymer matrices, paving the way toward the synthesis of advanced functional materials. Overall, coordination polymers constructed with pyrogallol[4]arene-assembled metal-organic nanocapsules show wide diversity and tunability in structure and fascinating properties, as well as the promise of built-in functionality in the future.
Collapse
Affiliation(s)
- Li Shao
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Xiangquan Hu
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Kanishka Sikligar
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Gary A. Baker
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| | - Jerry L. Atwood
- Department of Chemistry, University of Missouri, Columbia, Missouri 65211, United States
| |
Collapse
|
37
|
Kim I, Dhamija A, Hwang IC, Lee H, Ko YH, Kim K. One-pot Synthesis of a Truncated Cone-shaped Porphyrin Macrocycle and Its Self-assembly into Permanent Porous Material. Chem Asian J 2021; 16:3209-3212. [PMID: 34398522 DOI: 10.1002/asia.202100787] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/06/2021] [Indexed: 11/09/2022]
Abstract
Here, we report the synthesis of a truncated cone-shaped triangular porphyrinic macrocycle, P3 L3 , via a single step imine condensation of a cis-diaminophenylporphyrin and a bent dialdehyde-based linker as building units. X-ray diffraction analysis reveals that the truncated cone-shaped P3 L3 molecules are stacked on top of each other by π⋯π and CH⋯π interactions, to form 1.7 nm wide hollow columns in the solid state. The formation of the triangular macrocycle is corroborated by quantum chemical calculations. The permanent porosity of the P3 L3 crystals is demonstrated by several gas sorption experiments and powder X-ray diffraction analysis.
Collapse
Affiliation(s)
- Ikjin Kim
- Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Avinash Dhamija
- Center for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea
| | - In-Chul Hwang
- Center for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea
| | - Hochan Lee
- Division of Advanced Materials Science, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| | - Young Ho Ko
- Center for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea
| | - Kimoon Kim
- Center for Self-assembly and Complexity (CSC), Institute for Basic Science (IBS), Pohang, 37673, Republic of Korea.,Department of Chemistry, Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea
| |
Collapse
|
38
|
Dipalladium(II,II)-assembled molecular capsules that unsymmetrically encapsulate a nitrate via hydrogen bonding. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
39
|
Pavlović RZ, Lalisse RF, Hansen AL, Waudby CA, Lei Z, Güney M, Wang X, Hadad CM, Badjić JD. From Selection to Instruction and Back: Competing Conformational Selection and Induced Fit Pathways in Abiotic Hosts. Angew Chem Int Ed Engl 2021; 60:19942-19948. [PMID: 34125989 DOI: 10.1002/anie.202107091] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Indexed: 12/15/2022]
Abstract
Two limiting cases of molecular recognition, induced fit (IF) and conformational selection (CS), play a central role in allosteric regulation of natural systems. The IF paradigm states that a substrate "instructs" the host to change its shape after complexation, while CS asserts that a guest "selects" the optimal fit from an ensemble of preexisting host conformations. With no studies that quantitatively address the interplay of two limiting pathways in abiotic systems, we herein and for the first time describe the way by which twisted capsule M-1, encompassing two conformers M-1(+) and M-1(-), trap CX4 (X=Cl, Br) to give CX4 ⊂M-1(+) and CX4 ⊂M-1(-), with all four states being in thermal equilibrium. With the assistance of 2D EXSY, we found that CBr4 would, at its lower concentrations, bind M-1 via a M-1(+)→M-1(-)→CBr4 ⊂M-1(-) pathway corresponding to conformational selection. For M-1 complexing CCl4 though, data from 2D EXSY measurements and 1D NMR line-shape analysis suggested that lower CCl4 concentrations would favor CS while the IF pathway prevailed at higher proportions of the guest. Since CS and IF are not mutually exclusive, we reason that our work sets the stage for characterizing the dynamics of a wide range of already existing hosts to broaden our fundamental understanding of their action. The objective is to master the way in which encapsulation takes place for designing novel and allosteric sequestering agents, catalysts and chemosensors akin to those found in nature.
Collapse
Affiliation(s)
- Radoslav Z Pavlović
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
| | - Remy F Lalisse
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
| | - Alexandar L Hansen
- Campus Chemical Instrument Center, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
| | - Christopher A Waudby
- Institute of Structural and Molecular Biology, University College London, London, WC1E 6BT, UK
| | - Zhiquan Lei
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
| | - Murat Güney
- Agri Ibrahim Çeçen University, Department of Chemistry, 04100, Agri, Turkey
| | - Xiuze Wang
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
| | - Christopher M Hadad
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
| | - Jovica D Badjić
- Department of Chemistry & Biochemistry, The Ohio State University, 100 West 18th Avenue, Columbus, OH, 43210, USA
| |
Collapse
|
40
|
Pavlović RZ, Lalisse RF, Hansen AL, Waudby CA, Lei Z, Güney M, Wang X, Hadad CM, Badjić JD. From Selection to Instruction and Back: Competing Conformational Selection and Induced Fit Pathways in Abiotic Hosts. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202107091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Radoslav Z. Pavlović
- Department of Chemistry & Biochemistry The Ohio State University 100 West 18th Avenue Columbus OH 43210 USA
| | - Remy F. Lalisse
- Department of Chemistry & Biochemistry The Ohio State University 100 West 18th Avenue Columbus OH 43210 USA
| | - Alexandar L. Hansen
- Campus Chemical Instrument Center The Ohio State University 100 West 18th Avenue Columbus OH 43210 USA
| | - Christopher A. Waudby
- Institute of Structural and Molecular Biology University College London London WC1E 6BT UK
| | - Zhiquan Lei
- Department of Chemistry & Biochemistry The Ohio State University 100 West 18th Avenue Columbus OH 43210 USA
| | - Murat Güney
- Agri Ibrahim Çeçen University Department of Chemistry 04100 Agri Turkey
| | - Xiuze Wang
- Department of Chemistry & Biochemistry The Ohio State University 100 West 18th Avenue Columbus OH 43210 USA
| | - Christopher M. Hadad
- Department of Chemistry & Biochemistry The Ohio State University 100 West 18th Avenue Columbus OH 43210 USA
| | - Jovica D. Badjić
- Department of Chemistry & Biochemistry The Ohio State University 100 West 18th Avenue Columbus OH 43210 USA
| |
Collapse
|
41
|
Michalak M, Bisek B, Nowacki M, Górecki M. Base-Catalyzed, Solvent-Free Synthesis of Rigid V-Shaped Epoxydibenzo[ b, f][1,5]diazocines. J Org Chem 2021; 86:8955-8969. [PMID: 34161097 PMCID: PMC8279491 DOI: 10.1021/acs.joc.1c00884] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
A novel method for
the synthesis of epoxydibenzo[b,f][1,5]diazocines exhibiting a V-shaped molecular
architecture is reported. The unique approach is based on unprecedented
base-catalyzed, solvent-free autocondensation and cross-condensation
of fluorinated o-aminophenones. The structure of
the newly synthesized diazocines was confirmed independently by X-ray
analysis and chiroptical methods. The rigidity of the diazocine scaffold
allowed for the separation of the racemate into single enantiomers
that proved to be thermally stable up to 140 °C. Furthermore,
the inertness of the diazocine scaffold was demonstrated by performing
a series of typical transformations, including transition metal-catalyzed
reactions, proceeding without affecting the bis-hemiaminal subunit.
Collapse
Affiliation(s)
- Michał Michalak
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Bartosz Bisek
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Michał Nowacki
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Marcin Górecki
- Institute of Organic Chemistry, Polish Academy of Sciences, Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
42
|
Liu XC, Lin L. Controlling the Self-Assembly of Metal-Cages organic and transdermal drug delivery. INORG CHEM COMMUN 2021. [DOI: 10.1016/j.inoche.2021.108660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
43
|
Wu T, Jiang Z, Xue X, Wang SC, Chen M, Wang J, Liu H, Yan J, Chan YT, Wang P. Molecular hexagram and octagram: Position determined 3D metallo-supermolecules and concentration-induced transformation. CHINESE CHEM LETT 2021. [DOI: 10.1016/j.cclet.2021.01.052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
44
|
Akine S. Control of guest binding behavior of metal-containing host molecules by ligand exchange. Dalton Trans 2021; 50:4429-4444. [PMID: 33877165 DOI: 10.1039/d1dt00048a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This review describes the control of guest binding behavior of metal-containing host molecules that is driven by ligand exchange reactions at the metal centers. Recently, a vast number of metal-containing host molecules including metal-assisted self-assembled structures have been developed, and the structural transformation after construction of the host framework has now been of interest from the viewpoint of functional switching and tuning. Among the various kinds of chemical transformations, ligand exchange has a great advantage in the structural conversions of metal-containing hosts, because ligand exchange usually proceeds under mild conditions that do not affect the host framework. In this review, the structural transformations are classified into three types: (1) weak-link approach, (2) subcomponent substitution, and (3) post-metalation modification, according to the type of coordination motif. The control of their guest binding behavior by the structural transformations is discussed in detail.
Collapse
Affiliation(s)
- Shigehisa Akine
- Nano Life Science Institute (WPI-NanoLSI), Kanazawa University, Kakuma-machi, Kanazawa 920-1192, Japan.
| |
Collapse
|
45
|
|
46
|
Solvent-Controlled Self-Assembled Oligopyrrolic Receptor. Molecules 2021; 26:molecules26061771. [PMID: 33809927 PMCID: PMC8004224 DOI: 10.3390/molecules26061771] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/13/2021] [Accepted: 03/18/2021] [Indexed: 11/16/2022] Open
Abstract
We report a fully organic pyridine-tetrapyrrolic U-shaped acyclic receptor 10, which prefers a supramolecular pseudo-macrocyclic dimeric structure (10)2 in a less polar, non-coordinating solvent (e.g., CHCl3). Conversely, when it is crystalized from a polar, coordinating solvent (e.g., N,N-dimethylformamide, DMF), it exhibited an infinite supramolecular one-dimensional (1D) “zig-zag” polymeric chain, as inferred from the single-crystal X-ray structures. This supramolecular system acts as a potential receptor for strong acids, e.g., p-toluenesulfonic acid (PTSA), methane sulfonic acid (MSA), H2SO4, HNO3, and HCl, with a prominent colorimetric response from pale yellow to deep red. The receptor can easily be recovered from the organic solution of the host–guest complex by simple aqueous washing. It was observed that relatively stronger acids with pKa < −1.92 in water were able to interact with the receptor, as inferred from 1H NMR titration in tetrahydrofuran-d8 (THF-d8) and ultraviolet–visible (UV–vis) spectroscopic titrations in anhydrous THF at 298 K. Therefore, this new dynamic supramolecular receptor system may have potentiality in materials science research.
Collapse
|
47
|
Hang X, Bi Y. Thiacalix[4]arene-supported molecular clusters for catalytic applications. Dalton Trans 2021; 50:3749-3758. [PMID: 33651066 DOI: 10.1039/d0dt04233a] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Thiacalixarenes are intriguing ligands that have attracted sustained interest because of their changeable conformations and excellent coordination ability. Thiacalix[4]arene analogues, which can bind metal ions to form modular second building units, are capable of constructing molecular-based functional materials with defined structures and various applications via directional coordination assembly. Due to rich metal-sulfur bonds, thiacalix[4]arene-based molecular clusters also exhibit diverse properties compared to other clusters. In particular, the combination of thiacalixarenes with currently popular molecular architectures, such as high-nuclearity clusters and coordination cages, has shown special catalytic performances. In this perspective, the latest advances in catalytic applications of thiacalix[4]arene-based molecular clusters, including molecular clusters themselves as catalysts and coordination cages serving as reaction vessels encapsulating metal nano-components for catalysis, are highlighted.
Collapse
Affiliation(s)
- Xinxin Hang
- College of Chemistry, Chemical Engineering and Environmental Engineering, Liaoning Shihua University, Fushun, Liaoning 113001, P. R. China.
| | | |
Collapse
|
48
|
Li Z, Wang Y, Baryshnikov G, Shen S, Zhang M, Zou Q, Ågren H, Zhu L. Lighting up solid states using a rubber. Nat Commun 2021; 12:908. [PMID: 33568677 PMCID: PMC7876014 DOI: 10.1038/s41467-021-21253-w] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Accepted: 01/13/2021] [Indexed: 11/10/2022] Open
Abstract
It is crucial and desirable to develop green and high-efficient strategies to regulate solid-state structures and their related material properties. However, relative to solution, it is more difficult to break and generate chemical bonds in solid states. In this work, a rubbing-induced photoluminescence on the solid states of ortho-pyridinil phenol family was achieved. This rubbing response relied on an accurately designed topochemical tautomerism, where a negative charge, exactly provided by the triboelectric effect of a rubber, can induce a proton transfer in a double H-bonded dimeric structure. This process instantaneously led to a bright-form tautomer that can be stabilized in the solid-state settings, leading to an up to over 450-fold increase of the fluorescent quantum yield of the materials. The property can be repeatedly used due to the reversibility of the tautomerism, enabling encrypted applications. Moreover, a further modification to the structure can be accomplished to achieve different properties, opening up more possibilities for the design of new-generation smart materials. Changes in molecular properties due to stimuli response are critically important for the development of new materials. However, most processes are slow or inefficient in the solid state. Here the authors demonstrate property switching in the solid state using a rubbing-induced tautomerism in multiple hydrogen-bonded donor-acceptor couples.
Collapse
Affiliation(s)
- Zhongyu Li
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
| | - Yanjie Wang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
| | - Gleb Baryshnikov
- Division of Theoretical Chemistry and Biology School of Biotechnology, KTH Royal Institute of Technology, Stockholm, Sweden.,Tomsk State University, Tomsk, Russia
| | - Shen Shen
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
| | - Man Zhang
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China
| | - Qi Zou
- Shanghai Key Laboratory of Materials Protection and Advanced Materials in Electric Power, Shanghai University of Electric Power, Shanghai, China
| | - Hans Ågren
- Tomsk State University, Tomsk, Russia.,Department of Physics and Astronomy, Uppsala University, Uppsala, Sweden
| | - Liangliang Zhu
- State Key Laboratory of Molecular Engineering of Polymers, Department of Macromolecular Science, Fudan University, Shanghai, China.
| |
Collapse
|
49
|
Zhu J, Bošković F, Nguyen BNT, Nitschke JR, Keyser UF. Kinetics of Toehold-Mediated DNA Strand Displacement Depend on Fe II4L 4 Tetrahedron Concentration. NANO LETTERS 2021; 21:1368-1374. [PMID: 33508195 PMCID: PMC7886027 DOI: 10.1021/acs.nanolett.0c04125] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 12/29/2020] [Indexed: 06/12/2023]
Abstract
The toehold-mediated strand displacement reaction (SDR) is a powerful enzyme-free tool for molecular manipulation, DNA computing, signal amplification, etc. However, precise modulation of SDR kinetics without changing the original design remains a significant challenge. We introduce a new means of modulating SDR kinetics using an external stimulus: a water-soluble FeII4L4 tetrahedral cage. Our results show that the presence of a flexible phosphate group and a minimum toehold segment length are essential for FeII4L4 binding to DNA. SDRs mediated by toehold ends in different lengths (3-5) were investigated as a function of cage concentration. Their reaction rates all first increased and then decreased as cage concentration increased. We infer that cage binding on the toehold end slows SDR, whereas the stabilization of intermediates that contain two overhangs accelerates SDR. The tetrahedral cage thus serves as a versatile tool for modulation of SDR kinetics.
Collapse
Affiliation(s)
- Jinbo Zhu
- Cavendish Laboratory, University of
Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United
Kingdom
| | - Filip Bošković
- Cavendish Laboratory, University of
Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United
Kingdom
| | - Bao-Nguyen T. Nguyen
- Department of Chemistry, University of
Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Jonathan R. Nitschke
- Department of Chemistry, University of
Cambridge, Lensfield Road, Cambridge CB2 1EW, United
Kingdom
| | - Ulrich F. Keyser
- Cavendish Laboratory, University of
Cambridge, JJ Thomson Avenue, Cambridge CB3 0HE, United
Kingdom
| |
Collapse
|
50
|
Alimi LO, Alyami MZ, Chand S, Baslyman W, Khashab NM. Coordination-based self-assembled capsules (SACs) for protein, CRISPR-Cas9, DNA and RNA delivery. Chem Sci 2021; 12:2329-2344. [PMID: 34163998 PMCID: PMC8179292 DOI: 10.1039/d0sc05975g] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 01/11/2021] [Indexed: 12/15/2022] Open
Abstract
Biologics, such as functional proteins and nucleic acids, have recently dominated the drug market and comprise seven out of the top 10 best-selling drugs. Biologics are usually polar, heat sensitive, membrane impermeable and subject to enzymatic degradation and thus require systemic routes of administration and delivery. Coordination-based delivery vehicles, which include nanosized extended metal-organic frameworks (nMOFs) and discrete coordination cages, have gained a lot of attention because of their remarkable biocompatibility, in vivo stability, on-demand biodegradability, high encapsulation efficiency, easy surface modification and moderate synthetic conditions. Consequently, these systems have been extensively utilized as carriers of biomacromolecules for biomedical applications. This review summarizes the recent applications of nMOFs and coordination cages for protein, CRISPR-Cas9, DNA and RNA delivery. We also highlight the progress and challenges of coordination-based platforms as a promising approach towards clinical biomacromolecule delivery and discuss integral future research directions and applications.
Collapse
Affiliation(s)
- Lukman O Alimi
- Smart Hybrid Materials Laboratory (SHMs), Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Mram Z Alyami
- Smart Hybrid Materials Laboratory (SHMs), Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Santanu Chand
- Smart Hybrid Materials Laboratory (SHMs), Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Walaa Baslyman
- Smart Hybrid Materials Laboratory (SHMs), Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Niveen M Khashab
- Smart Hybrid Materials Laboratory (SHMs), Advanced Membranes and Porous Materials Center, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| |
Collapse
|