1
|
Zamora-Zaragoza J, Klap K, Sánchez-Pérez J, Vielle-Calzada JP, Willemsen V, Scheres B. Developmental cues are encoded by the combinatorial phosphorylation of Arabidopsis RETINOBLASTOMA-RELATED protein RBR1. EMBO J 2024:10.1038/s44318-024-00282-3. [PMID: 39468281 DOI: 10.1038/s44318-024-00282-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 08/29/2024] [Accepted: 09/27/2024] [Indexed: 10/30/2024] Open
Abstract
RETINOBLASTOMA-RELATED (RBR) proteins orchestrate cell division, differentiation, and survival in response to environmental and developmental cues through protein-protein interactions that are governed by multisite phosphorylation. Here we explore, using a large collection of transgenic RBR phosphovariants to complement protein function in Arabidopsis thaliana, whether differences in the number and position of RBR phosphorylation events cause a diversification of the protein's function. While the number of point mutations influence phenotypic strength, phosphosites contribute differentially to distinct phenotypes. RBR pocket domain mutations associate primarily with cell proliferation, while mutations in the C-region are linked to stem cell maintenance. Both phospho-mimetic and a phospho-defective variants promote cell death, suggesting that distinct mechanisms can lead to similar cell fates. We observed combinatorial effects between phosphorylated T406 and phosphosites in different protein domains, suggesting that specific, additive, and combinatorial phosphorylation events fine-tune RBR function. Suppression of dominant phospho-defective RBR phenotypes with a mutation that inhibits RBR interacting with LXCXE motifs, and an exhaustive protein-protein interaction assay, not only revealed the importance of DREAM complex members in phosphorylation-regulated RBR function but also pointed to phosphorylation-independent RBR roles in environmental responses. Thus, combinatorial phosphorylation defined and separated developmental, but not environmental, functions of RBR.
Collapse
Affiliation(s)
- Jorge Zamora-Zaragoza
- Laboratory of Cell and Developmental Biology, Department of Plant Sciences, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
- Rijk Zwaan Breeding B.V., Department of Biotechnology, Eerste Kruisweg 9, 4793 RS, Fijnaart, The Netherlands
| | - Katinka Klap
- Laboratory of Cell and Developmental Biology, Department of Plant Sciences, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Jaheli Sánchez-Pérez
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, Guanajuato, Mexico
| | - Jean-Philippe Vielle-Calzada
- Laboratorio Nacional de Genómica para la Biodiversidad, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, 36824, Irapuato, Guanajuato, Mexico
| | - Viola Willemsen
- Laboratory of Cell and Developmental Biology, Department of Plant Sciences, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands
| | - Ben Scheres
- Laboratory of Cell and Developmental Biology, Department of Plant Sciences, Wageningen University and Research, 6708 PB, Wageningen, The Netherlands.
- Rijk Zwaan Breeding B.V., Department of Biotechnology, Eerste Kruisweg 9, 4793 RS, Fijnaart, The Netherlands.
| |
Collapse
|
2
|
Ma M, Zhu Y, Xiao C, Li R, Cao X, Kang R, Wang X, Li E. Novel insights into RB1 in prostate cancer lineage plasticity and drug resistance. TUMORI JOURNAL 2024; 110:252-263. [PMID: 38316605 DOI: 10.1177/03008916231225576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2024]
Abstract
Prostate cancer is the second most common malignancy among men in the world, posing a serious threat to men's health and lives. RB1 is the first human tumor suppressor gene to be described, and it is closely associated with the development, progression, and suppression of a variety of tumors. It was found that the loss of RB1 is an early event in prostate cancer development and is closely related to prostate cancer development, progression and treatment resistance. This paper reviews the current status of research on the relationship between RB1 and prostate cancer from three aspects: RB1 and prostate cell lineage plasticity; biological behavior; and therapeutic resistance. Providing a novel perspective for developing new therapeutic strategies for RB1-loss prostate cancer.
Collapse
Affiliation(s)
- Min Ma
- Institute of Translational Medicine, School of Basic Medical, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Yazhi Zhu
- Institute of Translational Medicine, School of Basic Medical, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Changkai Xiao
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Ruidong Li
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xingyu Cao
- Institute of Translational Medicine, School of Basic Medical, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| | - Ran Kang
- Department of Urology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Xiaolan Wang
- Department of Reproductive Medicine, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, China
| | - Ermao Li
- Institute of Translational Medicine, School of Basic Medical, Hengyang Medical School, University of South China, Hengyang, Hunan, China
| |
Collapse
|
3
|
Zigová M, Miškufová V, Budovská M, Michalková R, Mojžiš J. Exploring the Antiproliferative and Modulatory Effects of 1-Methoxyisobrassinin on Ovarian Cancer Cells: Insights into Cell Cycle Regulation, Apoptosis, Autophagy, and Its Interactions with NAC. Molecules 2024; 29:1773. [PMID: 38675591 PMCID: PMC11052400 DOI: 10.3390/molecules29081773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/22/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Ovarian cancer, a highly lethal malignancy among reproductive organ cancers, poses a significant challenge with its high mortality rate, particularly in advanced-stage cases resistant to platinum-based chemotherapy. This study explores the potential therapeutic efficacy of 1-methoxyisobrassinin (MB-591), a derivative of indole phytoalexins found in Cruciferae family plants, on both cisplatin-sensitive (A2780) and cisplatin-resistant ovarian cancer cells (A2780 cis). The findings reveal that MB-591 exhibits an antiproliferative effect on both cell lines, with significantly increased potency against cisplatin-sensitive cells. The substance induces alterations in the distribution of the cell cycle, particularly in the S and G2/M phases, accompanied by changes in key regulatory proteins. Moreover, MB-591 triggers apoptosis in both cell lines, involving caspase-9 cleavage, PARP cleavage induction, and DNA damage, accompanied by the generation of reactive oxygen species (ROS) and mitochondrial dysfunction. Notably, the substance selectively induces autophagy in cisplatin-resistant cells, suggesting potential targeted therapeutic applications. The study further explores the interplay between MB-591 and antioxidant N-acetylcysteine (NAC), in modulating cellular processes. NAC demonstrates a protective effect against MB-591-induced cytotoxicity, affecting cell cycle distribution and apoptosis-related proteins. Additionally, NAC exhibits inhibitory effects on autophagy initiation in cisplatin-resistant cells, suggesting its potential role in overcoming resistance mechanisms.
Collapse
Affiliation(s)
- Martina Zigová
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (M.Z.); (V.M.)
| | - Viktória Miškufová
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (M.Z.); (V.M.)
| | - Marianna Budovská
- Department of Organic Chemistry, Institute of Chemistry, Faculty of Science, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia;
| | - Radka Michalková
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (M.Z.); (V.M.)
| | - Ján Mojžiš
- Department of Pharmacology, Faculty of Medicine, Pavol Jozef Šafárik University, 040 01 Košice, Slovakia; (M.Z.); (V.M.)
| |
Collapse
|
4
|
Sanidas I, Lawrence MS, Dyson NJ. Patterns in the tapestry of chromatin-bound RB. Trends Cell Biol 2024; 34:288-298. [PMID: 37648594 PMCID: PMC10899529 DOI: 10.1016/j.tcb.2023.07.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 07/27/2023] [Accepted: 07/28/2023] [Indexed: 09/01/2023]
Abstract
The retinoblastoma protein (RB)-mediated regulation of E2F is a component of a highly conserved cell cycle machine. However, RB's tumor suppressor activity, like RB's requirement in animal development, is tissue-specific, context-specific, and sometimes appears uncoupled from cell proliferation. Detailed new information about RB's genomic distribution provides a new perspective on the complexity of RB function, suggesting that some of its functional specificity results from context-specific RB association with chromatin. Here we summarize recent evidence showing that RB targets different types of chromatin regulatory elements at different cell cycle stages. RB controls traditional RB/E2F targets prior to S-phase, but, when cells proliferate, RB redistributes to cell type-specific chromatin loci. We discuss the broad implications of the new data for RB research.
Collapse
Affiliation(s)
- Ioannis Sanidas
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149, 13th Street, Charlestown, MA 02129, USA
| | - Michael S Lawrence
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149, 13th Street, Charlestown, MA 02129, USA; Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Nicholas J Dyson
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149, 13th Street, Charlestown, MA 02129, USA.
| |
Collapse
|
5
|
Workenhe ST, Inkol JM, Westerveld MJ, Verburg SG, Worfolk SM, Walsh SR, Kallio KL. Determinants for Antitumor and Protumor Effects of Programmed Cell Death. Cancer Immunol Res 2024; 12:7-16. [PMID: 37902605 PMCID: PMC10762341 DOI: 10.1158/2326-6066.cir-23-0321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Revised: 06/30/2023] [Accepted: 09/14/2023] [Indexed: 10/31/2023]
Abstract
Cytotoxic anticancer therapies activate programmed cell death in the context of underlying stress and inflammatory signaling to elicit the emission of danger signals, cytokines, and chemokines. In a concerted manner, these immunomodulatory secretomes stimulate antigen presentation and T cell-mediated anticancer immune responses. In some instances, cell death-associated secretomes attract immunosuppressive cells to promote tumor progression. As it stands, cancer cell death-induced changes in the tumor microenvironment that contribute to antitumor or protumor effects remain largely unknown. This is complicated to examine because cell death is often subverted by tumors to circumvent natural, and therapy-induced, immunosurveillance. Here, we provide insights into important but understudied aspects of assessing the contribution of cell death to tumor elimination or cancer progression, including the role of tumor-associated genetics, epigenetics, and oncogenic factors in subverting immunogenic cell death. This perspective will also provide insights on how future studies may address the complex antitumor and protumor immunologic effects of cell death, while accounting for variations in tumor genetics and underlying microenvironment.
Collapse
Affiliation(s)
- Samuel T. Workenhe
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Jordon M. Inkol
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Michael J. Westerveld
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Shayla G. Verburg
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Sarah M. Worfolk
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Scott R. Walsh
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Kaslyn L.F. Kallio
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
6
|
Abballe L, Alfano V, Antonacci C, Cefalo MG, Cacchione A, Del Baldo G, Pezzullo M, Po A, Moretti M, Mastronuzzi A, De Smaele E, Ferretti E, Locatelli F, Miele E. β-arrestin1-E2F1-ac axis regulates physiological apoptosis and cell cycle exit in cellular models of early postnatal cerebellum. Front Cell Dev Biol 2023; 11:990711. [PMID: 36923256 PMCID: PMC10010392 DOI: 10.3389/fcell.2023.990711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2022] [Accepted: 02/17/2023] [Indexed: 03/01/2023] Open
Abstract
Development of the cerebellum is characterized by rapid proliferation of cerebellar granule cell precursors (GCPs) induced by paracrine stimulation of Sonic hedgehog (Shh) signaling from Purkinje cells, in the external granular layer (EGL). Then, granule cell precursors differentiate and migrate into the inner granular layer (IGL) of the cerebellum to form a terminally differentiated cell compartment. Aberrant activation of Sonic hedgehog signaling leads to granule cell precursors hyperproliferation and the onset of Sonic hedgehog medulloblastoma (MB), the most common embryonal brain tumor. β-arrestin1 (ARRB1) protein plays an important role downstream of Smoothened, a component of the Sonic hedgehog pathway. In the medulloblastoma context, β-arrestin1 is involved in a regulatory axis in association with the acetyltransferase P300, leading to the acetylated form of the transcription factor E2F1 (E2F1-ac) and redirecting its activity toward pro-apoptotic gene targets. This axis in the granule cell precursors physiological context has not been investigated yet. In this study, we demonstrate that β-arrestin1 has antiproliferative and pro-apoptotic functions in cerebellar development. β-arrestin1 silencing increases proliferation of Sonic hedgehog treated-cerebellar precursor cells while decreases the transcription of E2F1-ac pro-apoptotic targets genes, thus impairing apoptosis. Indeed, chromatin immunoprecipitation experiments show a direct interaction between β-arrestin1 and the promoter regions of the pro-apoptotic E2F1 target gene and P27, indicating the double role of β-arrestin1 in controlling apoptosis and cell cycle exit in a physiological context. Our data elucidate the role of β-arrestin1 in the early postnatal stages of cerebellar development, in those cell compartments that give rise to medulloblastoma. This series of experiments suggests that the physiological function of β-arrestin1 in neuronal progenitors is to directly control, cooperating with E2F1 acetylated form, transcription of pro-apoptotic genes.
Collapse
Affiliation(s)
- Luana Abballe
- Department of Pediatric Hematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Vincenzo Alfano
- Cancer Research Center of Lyon (CRCL), UMR Inserm U1052/CNRS 5286, Lyon, France
| | - Celeste Antonacci
- Department of Pediatric Hematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Maria Giuseppina Cefalo
- Department of Pediatric Hematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Antonella Cacchione
- Department of Pediatric Hematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Giada Del Baldo
- Department of Pediatric Hematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Marco Pezzullo
- Pathology Unit, Core Research Laboratories, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Agnese Po
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Marta Moretti
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Angela Mastronuzzi
- Department of Pediatric Hematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| | - Enrico De Smaele
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | | | - Franco Locatelli
- Department of Pediatric Hematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy.,Department of Gynecology/Obstetrics and Paediatrics, Sapienza University, Rome, Italy
| | - Evelina Miele
- Department of Pediatric Hematology/Oncology and Cellular and Gene Therapy, Bambino Gesù Children's Hospital, Istituto di Ricovero e Cura a Carattere Scientifico, Rome, Italy
| |
Collapse
|
7
|
Hashemi L, Ormsbee ME, Patel PJ, Nielson JA, Ahlander J, Padash Barmchi M. A Drosophila model of HPV16-induced cancer reveals conserved disease mechanism. PLoS One 2022; 17:e0278058. [PMID: 36508448 PMCID: PMC9744332 DOI: 10.1371/journal.pone.0278058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 11/09/2022] [Indexed: 12/14/2022] Open
Abstract
High-risk human papillomaviruses (HR-HPVs) cause almost all cervical cancers and a significant number of vaginal, vulvar, penile, anal, and oropharyngeal cancers. HPV16 and 18 are the most prevalent types among HR-HPVs and together cause more than 70% of all cervical cancers. Low vaccination rate and lack of molecularly-targeted therapeutics for primary therapy have led to a slow reduction in cervical cancer incidence and high mortality rate. Hence, creating new models of HPV-induced cancer that can facilitate understanding of the disease mechanism and identification of key cellular targets of HPV oncogenes are important for development of new interventions. Here in this study, we used the tissue-specific expression technique, Gal4-UAS, to establish the first Drosophila model of HPV16-induced cancer. Using this technique, we expressed HPV16 oncogenes E5, E6, E7 and the human E3 ligase (hUBE3A) specifically in the epithelia of Drosophila eye, which allows simple phenotype scoring without affecting the viability of the organism. We found that, as in human cells, hUBE3A is essential for cellular abnormalities caused by HPV16 oncogenes in flies. Several proteins targeted for degradation by HPV16 oncoproteins in human cells were also reduced in the Drosophila epithelial cells. Cell polarity and adhesion were compromised, resulting in impaired epithelial integrity. Cells did not differentiate to the specific cell types of ommatidia, but instead were transformed into neuron-like cells. These cells extended axon-like structures to connect to each other and exhibited malignant behavior, migrating away to distant sites. Our findings suggest that given the high conservation of genes and signaling pathways between humans and flies, the Drosophila model of HPV16- induced cancer could serve as an excellent model for understanding the disease mechanism and discovery of novel molecularly-targeted therapeutics.
Collapse
Affiliation(s)
- Lydia Hashemi
- Department of Biology, University of Oklahoma, Norman, OK, United States of America
| | - McKenzi E. Ormsbee
- Department of Biology, University of Oklahoma, Norman, OK, United States of America
| | - Prashant J. Patel
- Department of Biology, University of Oklahoma, Norman, OK, United States of America
| | - Jacquelyn A. Nielson
- Stead Family Department of Pediatrics, University of Iowa, Iowa City, IA, United States of America
| | - Joseph Ahlander
- Department of Natural Sciences, Northeastern State University, Broken Arrow, OK, United States of America
| | - Mojgan Padash Barmchi
- Department of Biology, University of Oklahoma, Norman, OK, United States of America
- * E-mail:
| |
Collapse
|
8
|
Pieroni S, Castelli M, Piobbico D, Ferracchiato S, Scopetti D, Di-Iacovo N, Della-Fazia MA, Servillo G. The Four Homeostasis Knights: In Balance upon Post-Translational Modifications. Int J Mol Sci 2022; 23:ijms232214480. [PMID: 36430960 PMCID: PMC9696182 DOI: 10.3390/ijms232214480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/14/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
A cancer outcome is a multifactorial event that comes from both exogenous injuries and an endogenous predisposing background. The healthy state is guaranteed by the fine-tuning of genes controlling cell proliferation, differentiation, and development, whose alteration induces cellular behavioral changes finally leading to cancer. The function of proteins in cells and tissues is controlled at both the transcriptional and translational level, and the mechanism allowing them to carry out their functions is not only a matter of level. A major challenge to the cell is to guarantee that proteins are made, folded, assembled and delivered to function properly, like and even more than other proteins when referring to oncogenes and onco-suppressors products. Over genetic, epigenetic, transcriptional, and translational control, protein synthesis depends on additional steps of regulation. Post-translational modifications are reversible and dynamic processes that allow the cell to rapidly modulate protein amounts and function. Among them, ubiquitination and ubiquitin-like modifications modulate the stability and control the activity of most of the proteins that manage cell cycle, immune responses, apoptosis, and senescence. The crosstalk between ubiquitination and ubiquitin-like modifications and post-translational modifications is a keystone to quickly update the activation state of many proteins responsible for the orchestration of cell metabolism. In this light, the correct activity of post-translational machinery is essential to prevent the development of cancer. Here we summarize the main post-translational modifications engaged in controlling the activity of the principal oncogenes and tumor suppressors genes involved in the development of most human cancers.
Collapse
|
9
|
Sanidas I, Lee H, Rumde PH, Boulay G, Morris R, Golczer G, Stanzione M, Hajizadeh S, Zhong J, Ryan MB, Corcoran RB, Drapkin BJ, Rivera MN, Dyson NJ, Lawrence MS. Chromatin-bound RB targets promoters, enhancers, and CTCF-bound loci and is redistributed by cell-cycle progression. Mol Cell 2022; 82:3333-3349.e9. [PMID: 35981542 PMCID: PMC9481721 DOI: 10.1016/j.molcel.2022.07.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 05/19/2022] [Accepted: 07/20/2022] [Indexed: 02/06/2023]
Abstract
The interaction of RB with chromatin is key to understanding its molecular functions. Here, for first time, we identify the full spectrum of chromatin-bound RB. Rather than exclusively binding promoters, as is often described, RB targets three fundamentally different types of loci (promoters, enhancers, and insulators), which are largely distinguishable by the mutually exclusive presence of E2F1, c-Jun, and CTCF. While E2F/DP facilitates RB association with promoters, AP-1 recruits RB to enhancers. Although phosphorylation in CDK sites is often portrayed as releasing RB from chromatin, we show that the cell cycle redistributes RB so that it enriches at promoters in G1 and at non-promoter sites in cycling cells. RB-bound promoters include the classic E2F-targets and are similar between lineages, but RB-bound enhancers associate with different categories of genes and vary between cell types. Thus, RB has a well-preserved role controlling E2F in G1, and it targets cell-type-specific enhancers and CTCF sites when cells enter S-phase.
Collapse
Affiliation(s)
- Ioannis Sanidas
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA
| | - Hanjun Lee
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA; Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA; Department of Biology, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA
| | - Purva H Rumde
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA
| | - Gaylor Boulay
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA; Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Robert Morris
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA
| | - Gabriel Golczer
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA
| | - Marcelo Stanzione
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA
| | - Soroush Hajizadeh
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA
| | - Jun Zhong
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA
| | - Meagan B Ryan
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA
| | - Ryan B Corcoran
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA
| | - Benjamin J Drapkin
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA; UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390, USA
| | - Miguel N Rivera
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA; Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA
| | - Nicholas J Dyson
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA.
| | - Michael S Lawrence
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA; Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142, USA.
| |
Collapse
|
10
|
Stress Relief Techniques: p38 MAPK Determines the Balance of Cell Cycle and Apoptosis Pathways. Biomolecules 2021; 11:biom11101444. [PMID: 34680077 PMCID: PMC8533283 DOI: 10.3390/biom11101444] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/23/2021] [Accepted: 09/30/2021] [Indexed: 12/18/2022] Open
Abstract
Protein signaling networks are formed from diverse and inter-connected cell signaling pathways converging into webs of function and regulation. These signaling pathways both receive and conduct molecular messages, often by a series of post-translation modifications such as phosphorylation or through protein-protein interactions via intrinsic motifs. The mitogen activated protein kinases (MAPKs) are components of kinase cascades that transmit signals through phosphorylation. There are several MAPK subfamilies, and one subfamily is the stress-activated protein kinases, which in mammals is the p38 family. The p38 enzymes mediate a variety of cellular outcomes including DNA repair, cell survival/cell fate decisions, and cell cycle arrest. The cell cycle is itself a signaling system that precisely controls DNA replication, chromosome segregation, and cellular division. Another indispensable cell function influenced by the p38 stress response is programmed cell death (apoptosis). As the regulators of cell survival, the BCL2 family of proteins and their dynamics are exquisitely sensitive to cell stress. The BCL2 family forms a protein-protein interaction network divided into anti-apoptotic and pro-apoptotic members, and the balance of binding between these two sides determines cell survival. Here, we discuss the intersections among the p38 MAPK, cell cycle, and apoptosis signaling pathways.
Collapse
|
11
|
Martínez-Sánchez M, Hernandez-Monge J, Rangel M, Olivares-Illana V. Retinoblastoma: from discovery to clinical management. FEBS J 2021; 289:4371-4382. [PMID: 34042282 DOI: 10.1111/febs.16035] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 05/13/2021] [Accepted: 05/24/2021] [Indexed: 01/02/2023]
Abstract
The retinoblastoma gene (RB1) was the first tumour suppressor cloned; the role of its protein product (RB) as the principal driver of the G1 checkpoint in cell cycle control has been extensively studied. However, many other RB functions are continuously reported. Its role in senescence, DNA repair and apoptosis, among others, is indications of the significance of RB in a vast network of cellular interactions, explaining why RB loss or its malfunction is one of the leading causes of a large number of paediatric and adult cancers. RB was first reported in retinoblastoma, a common intraocular malignancy in the paediatric population worldwide. Currently, its diagnosis is clinical, and in nondeveloped countries, where the incidence is higher, it is performed in advanced stages of the disease, compromising the integrity of the eye and the patient's life. Even though new treatments are being continuously developed, enucleation is still a major choice due to the late disease stage diagnosis and treatments costs. Research into biomarkers is our best option to improve the chances of good results in the treatment and hopes of patients' good quality of life. Here, we recapitulated the history of the disease and the first treatments to put the advances in its clinical management into perspective. We also review the different functions of the protein and the progress in the search for biomarkers. It is clear that there is still a long way to go, but we should offer these children and their families a better way to deal with the disease with the community's effort.
Collapse
Affiliation(s)
- Mayra Martínez-Sánchez
- Laboratorio de Interacciones Biomoleculares y Cancer, Instituto de Física, Universidad Autónoma de San Luis Potosí, Mexico
| | - Jesús Hernandez-Monge
- Catedra CONACyT - Laboratorio de Biomarcadores Moleculares, Instituto de Física, Universidad Autónoma de San Luis Potosí, Mexico
| | - Martha Rangel
- Departamento de Oftalmología. Hospital Central "Ignacio Morones Prieto", San Luis Potosí, Mexico
| | - Vanesa Olivares-Illana
- Laboratorio de Interacciones Biomoleculares y Cancer, Instituto de Física, Universidad Autónoma de San Luis Potosí, Mexico
| |
Collapse
|
12
|
Zając A, Król SK, Rutkowski P, Czarnecka AM. Biological Heterogeneity of Chondrosarcoma: From (Epi) Genetics through Stemness and Deregulated Signaling to Immunophenotype. Cancers (Basel) 2021; 13:1317. [PMID: 33804155 PMCID: PMC8001927 DOI: 10.3390/cancers13061317] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 03/05/2021] [Indexed: 12/11/2022] Open
Abstract
Chondrosarcoma (ChS) is a primary malignant bone tumor. Due to its heterogeneity in clinical outcomes and resistance to chemo- and radiotherapies, there is a need to develop new potential therapies and molecular targets of drugs. Many genes and pathways are involved in in ChS progression. The most frequently mutated genes are isocitrate dehydrogenase ½ (IDH1/2), collagen type II alpha 1 chain (COL2A1), and TP53. Besides the point mutations in ChS, chromosomal aberrations, such as 12q13 (MDM2) amplification, the loss of 9p21 (CDKN21/p16/INK4A and INK4A-p14ARF), and several gene fusions, commonly occurring in sarcomas, have been found. ChS involves the hypermethylation of histone H3 and the decreased methylation of some transcription factors. In ChS progression, changes in the phosphatidylinositol 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K-AKT-mTOR) and hedgehog pathways are known to play a role in tumor growth and chondrocyte proliferation. Due to recent discoveries regarding the potential of immunotherapy in many cancers, in this review we summarize the current state of knowledge concerning cellular markers of ChS and tumor-associated immune cells. This review compares the latest discoveries in ChS biology from gene alterations to specific cellular markers, including advanced molecular pathways and tumor microenvironment, which can help in discovering new potential checkpoints in inhibitory therapy.
Collapse
Affiliation(s)
- Agnieszka Zając
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (A.Z.); (P.R.)
| | - Sylwia K. Król
- Department of Molecular and Translational Oncology, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland;
| | - Piotr Rutkowski
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (A.Z.); (P.R.)
| | - Anna M. Czarnecka
- Department of Soft Tissue/Bone Sarcoma and Melanoma, Maria Sklodowska-Curie National Research Institute of Oncology, 02-781 Warsaw, Poland; (A.Z.); (P.R.)
- Department of Experimental Pharmacology, Mossakowski Medical Research Centre, Polish Academy of Sciences, 02-176 Warsaw, Poland
| |
Collapse
|
13
|
Wanner E, Thoppil H, Riabowol K. Senescence and Apoptosis: Architects of Mammalian Development. Front Cell Dev Biol 2021; 8:620089. [PMID: 33537310 PMCID: PMC7848110 DOI: 10.3389/fcell.2020.620089] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 12/30/2020] [Indexed: 12/11/2022] Open
Abstract
Mammalian development involves an exquisite choreography of cell division, differentiation, locomotion, programmed cell death, and senescence that directs the transformation of a single cell zygote to a mature organism containing on the order of 40 trillion cells in humans. How a single totipotent zygote undergoes the rapid stages of embryonic development to form over 200 different cell types is complex in the extreme and remains the focus of active research. Processes such as programmed cell death or apoptosis has long been known to occur during development to help sculpt organs and tissue systems. Other processes such as cellular senescence, long thought to only occur in pathologic states such as aging and tumorigenesis have been recently reported to play a vital role in development. In this review, we focus on apoptosis and senescence; the former as an integral mechanism that plays a critical role not only in mature organisms, but that is also essential in shaping mammalian development. The latter as a well-defined feature of aging for which some reports indicate a function in development. We will dissect the dual roles of major gene families, pathways such as Hox, Rb, p53, and epigenetic regulators such as the ING proteins in both early and the late stages and how they play antagonistic roles by increasing fitness and decreasing mortality early in life but contribute to deleterious effects and pathologies later in life.
Collapse
Affiliation(s)
- Emma Wanner
- Department of Biology, Faculty of Science, University of Calgary, Calgary, AB, Canada
| | - Harikrishnan Thoppil
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| | - Karl Riabowol
- Department of Biochemistry and Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada.,Department of Oncology, Cumming School of Medicine, University of Calgary, Calgary, AB, Canada
| |
Collapse
|
14
|
Miele E, Po A, Mastronuzzi A, Carai A, Besharat ZM, Pediconi N, Abballe L, Catanzaro G, Sabato C, De Smaele E, Canettieri G, Di Marcotullio L, Vacca A, Mai A, Levrero M, Pfister SM, Kool M, Giangaspero F, Locatelli F, Ferretti E. Downregulation of miR-326 and its host gene β-arrestin1 induces pro-survival activity of E2F1 and promotes medulloblastoma growth. Mol Oncol 2020; 15:523-542. [PMID: 32920979 PMCID: PMC7858128 DOI: 10.1002/1878-0261.12800] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 08/17/2020] [Accepted: 09/07/2020] [Indexed: 01/01/2023] Open
Abstract
Persistent mortality rates of medulloblastoma (MB) and severe side effects of the current therapies require the definition of the molecular mechanisms that contribute to tumor progression. Using cultured MB cancer stem cells and xenograft tumors generated in mice, we show that low expression of miR-326 and its host gene β-arrestin1 (ARRB1) promotes tumor growth enhancing the E2F1 pro-survival function. Our models revealed that miR-326 and ARRB1 are controlled by a bivalent domain, since the H3K27me3 repressive mark is found at their regulatory region together with the activation-associated H3K4me3 mark. High levels of EZH2, a feature of MB, are responsible for the presence of H3K27me3. Ectopic expression of miR-326 and ARRB1 provides hints into how their low levels regulate E2F1 activity. MiR-326 targets E2F1 mRNA, thereby reducing its protein levels; ARRB1, triggering E2F1 acetylation, reverses its function into pro-apoptotic activity. Similar to miR-326 and ARRB1 overexpression, we also show that EZH2 inhibition restores miR-326/ARRB1 expression, limiting E2F1 pro-proliferative activity. Our results reveal a new regulatory molecular axis critical for MB progression.
Collapse
Affiliation(s)
- Evelina Miele
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Agnese Po
- Department of Molecular Medicine, Sapienza University, Rome, Italy
| | - Angela Mastronuzzi
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Andrea Carai
- Neurosurgery Unit, Department of Neurological and Psychiatric Sciences, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | | | - Natalia Pediconi
- Center for Life NanoScience@Sapienza, Istituto Italiano di Tecnologia, Rome, Italy
| | - Luana Abballe
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | | | - Claudia Sabato
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Enrico De Smaele
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | | | | | - Alessandra Vacca
- Department of Experimental Medicine, Sapienza University, Rome, Italy
| | - Antonello Mai
- Department of Chemistry and Technologies of Drugs, Sapienza University of Rome, Italy
| | - Massimo Levrero
- Cancer Research Center of Lyon (CRCL), UMR Inserm 1052 CNRS 5286 Mixte CLB, Université de Lyon 1 (UCBL1), France.,Department of Internal Medicine and Medical Specialties, Sapienza University, Rome, Italy
| | - Stefan M Pfister
- Division of Pediatric Neurooncology, German Cancer Research Center DKFZ, Heidelberg, Germany.,Department of Pediatric Oncology, Hematology and Immunology, University Hospital, Heidelberg, Germany.,Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
| | - Marcel Kool
- Division of Pediatric Neurooncology, German Cancer Research Center DKFZ, Heidelberg, Germany.,Hopp Children's Cancer Center Heidelberg (KiTZ), Heidelberg, Germany
| | - Felice Giangaspero
- Department of Radiological, Oncological and Pathological Science, Sapienza University, Rome, Italy.,IRCCS Neuromed, Pozzilli, Italy
| | - Franco Locatelli
- Department of Pediatric Hematology and Oncology, Cell and Gene Therapy, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy.,Department of Maternal Infantile and Urological Sciences, Sapienza University, Rome, Italy
| | | |
Collapse
|
15
|
Retinoblastoma Tumor Suppressor Protein Roles in Epigenetic Regulation. Cancers (Basel) 2020; 12:cancers12102807. [PMID: 33003565 PMCID: PMC7600434 DOI: 10.3390/cancers12102807] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/19/2020] [Accepted: 09/27/2020] [Indexed: 12/14/2022] Open
Abstract
Simple Summary Loss of function of the retinoblastoma gene (RB1) is the rate-limiting step in the initiation of both the hereditary and sporadic forms of retinoblastoma tumor. Furthermore, loss of function of the retinoblastoma tumor suppressor protein (pRB) is frequently found in most human cancers. In retinoblastoma, tumor progression is driven by epigenetic changes following pRB loss. This review focuses on the diverse functions of pRB in epigenetic regulation. Abstract Mutations that result in the loss of function of pRB were first identified in retinoblastoma and since then have been associated with the propagation of various forms of cancer. pRB is best known for its key role as a transcriptional regulator during cell cycle exit. Beyond the ability of pRB to regulate transcription of cell cycle progression genes, pRB can remodel chromatin to exert several of its other biological roles. In this review, we discuss the diverse functions of pRB in epigenetic regulation including nucleosome mobilization, histone modifications, DNA methylation and non-coding RNAs.
Collapse
|
16
|
Manickavinayaham S, Velez-Cruz R, Biswas AK, Chen J, Guo R, Johnson DG. The E2F1 transcription factor and RB tumor suppressor moonlight as DNA repair factors. Cell Cycle 2020; 19:2260-2269. [PMID: 32787501 PMCID: PMC7513849 DOI: 10.1080/15384101.2020.1801190] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/19/2020] [Accepted: 07/06/2020] [Indexed: 02/08/2023] Open
Abstract
The E2F1 transcription factor and RB tumor suppressor are best known for their roles in regulating the expression of genes important for cell cycle progression but, they also have transcription-independent functions that facilitate DNA repair at sites of damage. Depending on the type of DNA damage, E2F1 can recruit either the GCN5 or p300/CBP histone acetyltransferases to deposit different histone acetylation marks in flanking chromatin. At DNA double-strand breaks, E2F1 also recruits RB and the BRG1 ATPase to remodel chromatin and promote loading of the MRE11-RAD50-NBS1 complex. Knock-in mouse models demonstrate important roles for E2F1 post-translational modifications in regulating DNA repair and physiological responses to DNA damage. This review highlights how E2F1 moonlights in DNA repair, thus revealing E2F1 as a versatile protein that recruits many of the same chromatin-modifying enzymes to sites of DNA damage to promote repair that it recruits to gene promoters to regulate transcription.
Collapse
Affiliation(s)
- Swarnalatha Manickavinayaham
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
| | - Renier Velez-Cruz
- Department of Biochemistry and Molecular Genetics, College of Graduate Studies, Midwestern University, Downers Grove, IL, USA
| | - Anup K. Biswas
- Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY, USA
| | - Jie Chen
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
| | - Ruifeng Guo
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Rochester, MN, USA
| | - David G. Johnson
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville, TX, USA
| |
Collapse
|
17
|
Chen L, Liu S, Tao Y. Regulating tumor suppressor genes: post-translational modifications. Signal Transduct Target Ther 2020; 5:90. [PMID: 32532965 PMCID: PMC7293209 DOI: 10.1038/s41392-020-0196-9] [Citation(s) in RCA: 201] [Impact Index Per Article: 50.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2019] [Revised: 05/19/2020] [Accepted: 05/24/2020] [Indexed: 01/10/2023] Open
Abstract
Tumor suppressor genes cooperate with each other in tumors. Three important tumor suppressor proteins, retinoblastoma (Rb), p53, phosphatase, and tensin homolog deleted on chromosome ten (PTEN) are functionally associated and they regulated by post-translational modification (PTMs) as well. PTMs include phosphorylation, SUMOylation, acetylation, and other novel modifications becoming growing appreciated. Because most of PTMs are reversible, normal cells use them as a switch to control the state of cells being the resting or proliferating, and PTMs also involve in cell survival and cell cycle, which may lead to abnormal proliferation and tumorigenesis. Although a lot of studies focus on the importance of each kind of PTM, further discoveries shows that tumor suppressor genes (TSGs) form a complex "network" by the interaction of modification. Recently, there are several promising strategies for TSGs for they change more frequently than carcinogenic genes in cancers. We here review the necessity, characteristics, and mechanisms of each kind of post-translational modification on Rb, p53, PTEN, and its influence on the precise and selective function. We also discuss the current antitumoral therapies of Rb, p53 and PTEN as predictive, prognostic, and therapeutic target in cancer.
Collapse
Affiliation(s)
- Ling Chen
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, 410008, Changsha, Hunan, China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, School of Basic Medicine, Central South University, 410078, Changsha, Hunan, China.
- NHC Key Laboratory of Carcinogenesis (Central South University), Cancer Research Institute, Central South University, 410078, Changsha, Hunan, China.
- Hunan Key Laboratory of Early Diagnosis and Precision Therapy, Department of Thoracic Surgery, Second Xiangya Hospital, Central South University, 410011, Changsha, China.
| |
Collapse
|
18
|
Pan JH, Kim H, Tang J, Beane KE, Park JW, Kong S, Kong BC, Kim YJ, Shin EC, Kim JH, Zhao J, Lee JH, Kim JK. Acute alcohol consumption-induced let-7a inhibition exacerbates hepatic apoptosis by regulating Rb1 in mice. Alcohol 2020; 85:13-20. [PMID: 31734308 DOI: 10.1016/j.alcohol.2019.10.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Revised: 09/16/2019] [Accepted: 10/31/2019] [Indexed: 10/25/2022]
Abstract
Alcohol consumption is a critical risk factor for hepatic pathogenesis, including alcoholic liver diseases (ALD), but implications of alcohol-induced dysregulation of microRNA (miRNA) in ALD pathogenesis are not completely understood. In the present study, C57BL/6J male mice were treated with saline (CON; oral gavage; n = 8) or alcohol (EtOH; 3 g/kg body weight; oral gavage; n = 8) for 7 days. A total of 599 miRNAs and 158 key mRNAs related to fatty liver and hepatotoxicity pathways were assessed in mice liver tissues. The mRNA expression datasets were then utilized to predict interactions with miRNAs that were changed by alcohol consumption. Predicted miRNA-mRNA interactions were validated using in vitro miRNA transfection experiments. The results showed that let-7a was significantly decreased in the EtOH group and Rb1 mRNA was predicted as a target gene. This was further supported by an inverse correlation of RB1 and let-7a expression in mice liver tissue. Additionally, key protein expressions involved in RB1-apoptosis axis [i.e., p73, cleaved CASP-3 (cCASP-3), and cCASP-7] showed a trend of increase in the EtOH mice; this was also confirmed by capase-3 enzyme activity and terminal deoxynucleotidyl transferase-mediated dUTP nick-end labeling assay in livers of mice that had consumed alcohol. In line with our in vivo observations, alcohol treatment suppressed the let-7a expression and subsequently upregulated p73, cCASP-3, and cCASP-7 protein expressions in mice hepatocytes. Additional proteins in the apoptosis regulatory pathway (i.e., MDM2-p53 axis) were significantly changed in response to let-7a suppression in the cells. Taken together, the current study provides mechanistic evidence that alcohol consumption-induced let-7a suppression results in the upregulation of RB1, thereby promoting hepatic apoptosis through induction of pro-apoptotic proteins (e.g., p73), and by, at least in part, preventing MDM2-mediated p53 degradation.
Collapse
|
19
|
Kohlmeyer JL, Kaemmer CA, Pulliam C, Maharjan CK, Samayoa AM, Major HJ, Cornick KE, Knepper-Adrian V, Khanna R, Sieren JC, Leidinger MR, Meyerholz DK, Zamba KD, Weimer JM, Dodd RD, Darbro BW, Tanas MR, Quelle DE. RABL6A Is an Essential Driver of MPNSTs that Negatively Regulates the RB1 Pathway and Sensitizes Tumor Cells to CDK4/6 Inhibitors. Clin Cancer Res 2020; 26:2997-3011. [PMID: 32086342 DOI: 10.1158/1078-0432.ccr-19-2706] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 12/20/2019] [Accepted: 02/18/2020] [Indexed: 12/11/2022]
Abstract
PURPOSE Malignant peripheral nerve sheath tumors (MPNST) are deadly sarcomas that lack effective therapies. In most MPNSTs, the retinoblastoma (RB1) tumor suppressor is disabled by hyperactivation of cyclin-dependent kinases (CDK), commonly through loss of CDK-inhibitory proteins such as p27(Kip1). RABL6A is an inhibitor of RB1 whose role in MPNSTs is unknown. To gain insight into MPNST development and establish new treatment options, we investigated RABL6A-RB1 signaling and CDK inhibitor-based therapy in MPNSTs. EXPERIMENTAL DESIGN We examined patient-matched MPNSTs and precursor lesions by RNA sequencing (RNA-Seq) and IHC. Molecular and biological effects of silencing RABL6A and/or p27 in MPNST lines and normal human Schwann cells were determined. Tumor-suppressive effects of CDK inhibitors were measured in MPNST cells and orthotopic tumors. RESULTS RABL6A was dramatically upregulated in human MPNSTs compared with precursor lesions, which correlated inversely with p27 levels. Silencing RABL6A caused MPNST cell death and G1 arrest that coincided with p27 upregulation, CDK downregulation, and RB1 activation. The growth-suppressive effects of RABL6A loss, and its regulation of RB1, were largely rescued by p27 depletion. Importantly, reactivation of RB1 using a CDK4/6 inhibitor (palbociclib) killed MPNST cells in vitro in an RABL6A-dependent manner and suppressed MPNST growth in vivo. Low-dose combination of drugs targeting multiple RB1 kinases (CDK4/6, CDK2) had enhanced antitumorigenic activity associated with potential MPNST cell redifferentiation. CONCLUSIONS RABL6A is a new driver of MPNST pathogenesis that acts in part through p27-RB1 inactivation. Our results suggest RB1 targeted therapy with multiple pathway drugs may effectively treat MPNSTs.
Collapse
Affiliation(s)
- Jordan L Kohlmeyer
- Molecular Medicine Graduate Program, University of Iowa, Iowa City, Iowa.,The Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa
| | - Courtney A Kaemmer
- The Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa
| | - Casey Pulliam
- Human Toxicology Graduate Program, University of Iowa, Iowa City, Iowa
| | - Chandra K Maharjan
- The Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa
| | | | - Heather J Major
- Department of Pediatrics, University of Iowa, Iowa City, Iowa
| | | | | | - Rajesh Khanna
- Department of Pharmacology, University of Arizona, Tucson, Arizona
| | | | | | | | - K D Zamba
- Department of Biostatistics, University of Iowa, Iowa City, Iowa
| | - Jill M Weimer
- Pediatrics and Rare Diseases Group, Sanford Research, Sioux Falls, South Dakota
| | - Rebecca D Dodd
- Molecular Medicine Graduate Program, University of Iowa, Iowa City, Iowa.,Department of Internal Medicine, University of Iowa, Iowa City, Iowa
| | | | - Munir R Tanas
- Department of Pathology, University of Iowa, Iowa City, Iowa
| | - Dawn E Quelle
- Molecular Medicine Graduate Program, University of Iowa, Iowa City, Iowa. .,The Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, Iowa.,Department of Pathology, University of Iowa, Iowa City, Iowa
| |
Collapse
|
20
|
Anti-proliferative bioactivity against HT-29 colon cancer cells of a withanolides-rich extract from golden berry (Physalis peruviana L.) calyx investigated by Foodomics. J Funct Foods 2019. [DOI: 10.1016/j.jff.2019.103567] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
21
|
Gill JF, Delezie J, Santos G, McGuirk S, Schnyder S, Frank S, Rausch M, St‐Pierre J, Handschin C. Peroxisome proliferator-activated receptor γ coactivator 1α regulates mitochondrial calcium homeostasis, sarcoplasmic reticulum stress, and cell death to mitigate skeletal muscle aging. Aging Cell 2019; 18:e12993. [PMID: 31290266 PMCID: PMC6718523 DOI: 10.1111/acel.12993] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 04/26/2019] [Accepted: 05/27/2019] [Indexed: 11/28/2022] Open
Abstract
Age-related impairment of muscle function severely affects the health of an increasing elderly population. While causality and the underlying mechanisms remain poorly understood, exercise is an efficient intervention to blunt these aging effects. We thus investigated the role of the peroxisome proliferator-activated receptor γ coactivator 1α (PGC-1α), a potent regulator of mitochondrial function and exercise adaptation, in skeletal muscle during aging. We demonstrate that PGC-1α overexpression improves mitochondrial dynamics and calcium buffering in an estrogen-related receptor α-dependent manner. Moreover, we show that sarcoplasmic reticulum stress is attenuated by PGC-1α. As a result, PGC-1α prevents tubular aggregate formation and cell death pathway activation in old muscle. Similarly, the pro-apoptotic effects of ceramide and thapsigargin were blunted by PGC-1α in muscle cells. Accordingly, mice with muscle-specific gain-of-function and loss-of-function of PGC-1α exhibit a delayed and premature aging phenotype, respectively. Together, our data reveal a key protective effect of PGC-1α on muscle function and overall health span in aging.
Collapse
Affiliation(s)
- Jonathan F. Gill
- Biozentrum, Division of Pharmacology/Neurobiology University of Basel Basel Switzerland
| | - Julien Delezie
- Biozentrum, Division of Pharmacology/Neurobiology University of Basel Basel Switzerland
| | - Gesa Santos
- Biozentrum, Division of Pharmacology/Neurobiology University of Basel Basel Switzerland
| | - Shawn McGuirk
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Centre McGill University Montreal Quebec Canada
| | - Svenia Schnyder
- Biozentrum, Division of Pharmacology/Neurobiology University of Basel Basel Switzerland
| | - Stephan Frank
- Division of Neuropathology, Institute of Pathology, University Hospital Basel University of Basel Basel Switzerland
| | - Martin Rausch
- Biotherapeutic and Analytical Technologies Novartis Institutes for BioMedical Research (NIBR) Basel Switzerland
| | - Julie St‐Pierre
- Department of Biochemistry, Rosalind and Morris Goodman Cancer Centre McGill University Montreal Quebec Canada
| | - Christoph Handschin
- Biozentrum, Division of Pharmacology/Neurobiology University of Basel Basel Switzerland
| |
Collapse
|
22
|
Indovina P, Pentimalli F, Conti D, Giordano A. Translating RB1 predictive value in clinical cancer therapy: Are we there yet? Biochem Pharmacol 2019; 166:323-334. [PMID: 31176618 DOI: 10.1016/j.bcp.2019.06.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 06/03/2019] [Indexed: 12/16/2022]
Abstract
The retinoblastoma RB1 gene has been identified in the 80s as the first tumor suppressor. RB1 loss of function, as well alterations in its pathway, occur in most human cancers and often have prognostic value. RB1 has a key role in restraining cell cycle entry and, along with its family members, regulates a myriad of cellular processes and affects cell response to a variety of stimuli, ultimately determining cell fate. Consistently, RB1 status is a crucial determinant of the cell response to antitumoral therapies, impacting on the outcome of both traditional and modern anti-cancer strategies, including precision medicine approaches, such as kinase inhibitors, and immunotherapy. Despite many efforts however, the predictive value of RB1 status in the clinical practice is still underused, mainly owing to the complexity of RB1 function, to differences depending on the cellular context and on the therapeutic strategies, and, not-lastly, to technical issues. Here, we provide an overview of studies analyzing the role of RB1 in response to conventional cytotoxic and cytostatic therapeutic agents in different cancer types, including hormone dependent ones. We also review RB1 predictive value in the response to the last generation CDK4/6 inhibitors, other kinase inhibitors, and immunotherapy and discuss new emerging non-canonical roles of RB1 that could impact on the response to antitumoral treatments.
Collapse
Affiliation(s)
- Paola Indovina
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA
| | - Francesca Pentimalli
- Cell Biology and Biotherapy Unit, Istituto Nazionale Tumori, IRCCS, Fondazione G. Pascale, Napoli 80131, Italy
| | - Daniele Conti
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; Department of Medical Biotechnologies, University of Siena, Siena 53100, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA 19122, USA; Department of Medical Biotechnologies, University of Siena, Siena 53100, Italy.
| |
Collapse
|
23
|
Sanidas I, Morris R, Fella KA, Rumde PH, Boukhali M, Tai EC, Ting DT, Lawrence MS, Haas W, Dyson NJ. A Code of Mono-phosphorylation Modulates the Function of RB. Mol Cell 2019; 73:985-1000.e6. [PMID: 30711375 DOI: 10.1016/j.molcel.2019.01.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 11/26/2018] [Accepted: 01/02/2019] [Indexed: 12/21/2022]
Abstract
Hyper-phosphorylation of RB controls its interaction with E2F and inhibits its tumor suppressor properties. However, during G1 active RB can be mono-phosphorylated on any one of 14 CDK phosphorylation sites. Here, we used quantitative proteomics to profile protein complexes formed by each mono-phosphorylated RB isoform (mP-RB) and identified the associated transcriptional outputs. The results show that the 14 sites of mono-phosphorylation co-ordinate RB's interactions and confer functional specificity. All 14 mP-RBs interact with E2F/DP proteins, but they provide different shades of E2F regulation. RB mono-phosphorylation at S811, for example, alters RB transcriptional activity by promoting its association with NuRD complexes. The greatest functional differences between mP-RBs are evident beyond the cell cycle machinery. RB mono-phosphorylation at S811 or T826 stimulates the expression of oxidative phosphorylation genes, increasing cellular oxygen consumption. These results indicate that RB activation signals are integrated in a phosphorylation code that determines the diversity of RB activity.
Collapse
Affiliation(s)
- Ioannis Sanidas
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA
| | - Robert Morris
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA
| | - Katerina A Fella
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA
| | - Purva H Rumde
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA
| | - Myriam Boukhali
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA
| | - Eric C Tai
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA
| | - David T Ting
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA
| | - Michael S Lawrence
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA; Broad Institute of Harvard and MIT, 415 Main Street, Cambridge, MA 02142, USA
| | - Wilhelm Haas
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA
| | - Nicholas J Dyson
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Building 149 13th Street, Charlestown, MA 02129, USA.
| |
Collapse
|
24
|
The RASSF6 Tumor Suppressor Protein Regulates Apoptosis and Cell Cycle Progression via Retinoblastoma Protein. Mol Cell Biol 2018; 38:MCB.00046-18. [PMID: 29891515 DOI: 10.1128/mcb.00046-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2018] [Accepted: 06/07/2018] [Indexed: 02/06/2023] Open
Abstract
RASSF6 is a member of the tumor suppressor Ras association domain family (RASSF) proteins. RASSF6 is frequently suppressed in human cancers, and its low expression level is associated with poor prognosis. RASSF6 regulates cell cycle arrest and apoptosis and plays a tumor suppressor role. Mechanistically, RASSF6 blocks MDM2-mediated p53 degradation and enhances p53 expression. However, RASSF6 also induces cell cycle arrest and apoptosis in a p53-negative background, which implies that the tumor suppressor function of RASSF6 does not depend solely on p53. In this study, we revealed that RASSF6 mediates cell cycle arrest and apoptosis via pRb. RASSF6 enhances the interaction between pRb and protein phosphatase. RASSF6 also enhances P16INK4A and P14ARF expression by suppressing BMI1. In this way, RASSF6 increases unphosphorylated pRb and augments the interaction between pRb and E2F1. Moreover, RASSF6 induces TP73 target genes via pRb and E2F1 in a p53-negative background. Finally, we confirmed that RASSF6 depletion induces polyploid cells in p53-negative HCT116 cells. In conclusion, RASSF6 behaves as a tumor suppressor in cancers with loss of function of p53, and pRb is implicated in this function of RASSF6.
Collapse
|
25
|
Abstract
The canonical model of RB-mediated tumour suppression developed over the past 30 years is based on the regulation of E2F transcription factors to restrict cell cycle progression. Several additional functions have been proposed for RB, on the basis of which a non-canonical RB pathway can be described. Mechanistically, the non-canonical RB pathway promotes histone modification and regulates chromosome structure in a manner distinct from cell cycle regulation. These functions have implications for chemotherapy response and resistance to targeted anticancer agents. This Opinion offers a framework to guide future studies of RB in basic and clinical research.
Collapse
Affiliation(s)
- Frederick A Dick
- London Regional Cancer Program, Children's Health Research Institute, Western University, London, Ontario, Canada.
- London Regional Cancer Program, Department of Biochemistry, Western University, London, Ontario, Canada.
| | - David W Goodrich
- Department of Pharmacology and Therapeutics, Roswell Park Cancer Institute, Buffalo, NY, USA
| | - Julien Sage
- Departments of Pediatrics and Genetics, Stanford University, Stanford, CA, USA
| | - Nicholas J Dyson
- Massachusetts General Hospital Cancer Center, Laboratory of Molecular Oncology, Harvard Medical School, Charlestown, MA, USA
| |
Collapse
|
26
|
Miller RE, Uwamahoro N, Park JH. PPM1B depletion in U2OS cells supresses cell growth through RB1-E2F1 pathway and stimulates bleomycin-induced cell death. Biochem Biophys Res Commun 2018; 500:391-397. [DOI: 10.1016/j.bbrc.2018.04.084] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 04/11/2018] [Indexed: 12/28/2022]
|
27
|
Delou JMA, Biasoli D, Borges HL. The Complex Link between Apoptosis and Autophagy: a Promising New Role for RB. AN ACAD BRAS CIENC 2018; 88:2257-2275. [PMID: 27991962 DOI: 10.1590/0001-3765201620160127] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 06/27/2016] [Indexed: 12/14/2022] Open
Abstract
Physiological processes, as autophagy, proliferation and apoptosis are affected during carcinogenesis. Restoring cellular sensitivity to apoptotic stimuli, such as the antineoplastic cocktails, has been explored as a strategy to eliminate cancer cells. Autophagy, a physiological process of recycling organelles and macromolecules can be deviated from homeostasis to support cancer cells survival, proliferation, escape from apoptosis, and therapy resistance. The relationship between autophagy and apoptosis is complex and many stimuli can induce both processes. Most chemotherapeutic agents induce autophagy and it is not clear whether and how this chemotherapy-induced autophagy might contribute to resistance to apoptosis. Here, we review current strategies to sensitize cancer cells by interfering with autophagy. Moreover, we discuss a new link between autophagy and apoptosis: the tumor suppressor retinoblastoma protein (RB). Inactivation of RB is one of the earliest and more frequent hallmarks of cancer transformation, known to control cell cycle progression and apoptosis. Therefore, understanding RB functions in controlling cell fate is essential for an effective translation of RB status in cancer samples to the clinical outcome.
Collapse
Affiliation(s)
- João M A Delou
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Ilha do Fundão, 21949-590 Rio de Janeiro, RJ, Brazil
| | - Deborah Biasoli
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Ilha do Fundão, 21949-590 Rio de Janeiro, RJ, Brazil
| | - Helena L Borges
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Av. Carlos Chagas Filho, 373, Ilha do Fundão, 21949-590 Rio de Janeiro, RJ, Brazil
| |
Collapse
|
28
|
A selective cyclin-dependent kinase 4, 6 dual inhibitor, Ribociclib (LEE011) inhibits cell proliferation and induces apoptosis in aggressive thyroid cancer. Cancer Lett 2018; 417:131-140. [PMID: 29306020 DOI: 10.1016/j.canlet.2017.12.037] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 12/16/2017] [Accepted: 12/21/2017] [Indexed: 12/23/2022]
Abstract
The RB-E2F1 pathway is an important mechanism of cell-cycle control, and deregulation of this pathway is one of the key factors contributing to tumorigenesis. Cyclin-dependent kinases (CDKs) and Cyclin D have been known to increase in aggressive thyroid cancer. However, there has been no study to investigate effects of a selective CDK 4/6 inhibitor, Ribociclib (LEE011), in thyroid cancer. Performing Western blotting, we found that RB phosphorylation and the expression of Cyclin D are significantly higher in papillary thyroid cancer (PTC) cell lines as well as anaplastic thyroid cancer (ATC) cell lines, compared with normal thyroid cell line and follicular thyroid cancer cell line. LEE011 dose-dependently inhibited RB phosphorylation and also decreased the expressions of its target genes such as FOXM1, Cyclin A1, and Myc in ATC. Furthermore, LEE011 induced cell cycle arrest in G0-G1 phase and cell apoptosis, and inhibited cell proliferation in ATC. Consistently, oral administration of LEE011 to ATC xenograft models strongly inhibited tumor growth with decreased expressions of pRB, pAKT and Ki-67, and also significantly increased tumor cell apoptosis. Taken together, our data support the rationale for clinical development of the CDK4/6 inhibitor as a therapy for patients with aggressive thyroid cancer.
Collapse
|
29
|
Vélez-Cruz R, Johnson DG. The Retinoblastoma (RB) Tumor Suppressor: Pushing Back against Genome Instability on Multiple Fronts. Int J Mol Sci 2017; 18:ijms18081776. [PMID: 28812991 PMCID: PMC5578165 DOI: 10.3390/ijms18081776] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Revised: 08/13/2017] [Accepted: 08/13/2017] [Indexed: 12/13/2022] Open
Abstract
The retinoblastoma (RB) tumor suppressor is known as a master regulator of the cell cycle. RB is mutated or functionally inactivated in the majority of human cancers. This transcriptional regulator exerts its function in cell cycle control through its interaction with the E2F family of transcription factors and with chromatin remodelers and modifiers that contribute to the repression of genes important for cell cycle progression. Over the years, studies have shown that RB participates in multiple processes in addition to cell cycle control. Indeed, RB is known to interact with over 200 different proteins and likely exists in multiple complexes. RB, in some cases, acts through its interaction with E2F1, other members of the pocket protein family (p107 and p130), and/or chromatin remodelers and modifiers. RB is a tumor suppressor with important chromatin regulatory functions that affect genomic stability. These functions include the role of RB in DNA repair, telomere maintenance, chromosome condensation and cohesion, and silencing of repetitive regions. In this review we will discuss recent advances in RB biology related to RB, partner proteins, and their non-transcriptional functions fighting back against genomic instability.
Collapse
Affiliation(s)
- Renier Vélez-Cruz
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, 1808 Park Road 1C, P.O. Box 389, Smithville, TX 78957, USA.
- Department of Biochemistry, Midwestern University, Chicago College of Osteopathic Medicine, 555 31st Street, Downers Grove, IL 60515, USA.
| | - David G Johnson
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, 1808 Park Road 1C, P.O. Box 389, Smithville, TX 78957, USA.
| |
Collapse
|
30
|
Soletti RC, Biasoli D, Rodrigues NALV, Delou JMA, Maciel R, Chagas VLA, Martins RAP, Rehen SK, Borges HL. Inhibition of pRB Pathway Differentially Modulates Apoptosis in Esophageal Cancer Cells. Transl Oncol 2017; 10:726-733. [PMID: 28734226 PMCID: PMC5521024 DOI: 10.1016/j.tranon.2017.06.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 06/21/2017] [Accepted: 06/21/2017] [Indexed: 01/06/2023] Open
Abstract
Esophageal cancer is the sixth most common cause of cancer-related death worldwide. Current chemotherapy regimens include a combination of 5-fluorouracil (5-FU) and cisplatin, but more efficient therapy strategies are needed to increase 5-year survival. Alterations in the signaling pathway of the tumor suppressor gene Rb-1, which encodes a phosphoprotein (pRB) that negatively regulates the G1/S transition of the cell cycle, are present in 70% of all tumors, but its role in esophageal cancer is still unclear. Most of these are alterations leading to up-regulation of the activity of cyclin-dependent kinases (CDKs) to phosphorylate pRB, which suggests that keeping the wild type pRB phosphorylated might be advantageous. Besides proliferation, pRB also regulates apoptosis induced by tumor necrosis factor-alpha (TNF-α) and DNA-damage. We investigated the status of phosphorylation of pRB along esophageal tumorigenesis stages, as well as whether hyperphosphorylation of pRB could suppress apoptosis induced by cisplatin, 5-FU, or TNF-α in esophageal cancer cells. pRB phosphorylation increased progressively from normal esophageal tissue to metaplasia and adenocarcinoma, suggesting that pRB phosphorylation increases along esophageal tumor stages. When RB-1 was knocked down or CDK inhibitors reduced the levels of phosphorylated pRB, opposite apoptotic effects were observed, depending on the combination of drugs tested: whereas TNF-α- and cisplatin-induced apoptosis increased, 5-FU-induced apoptosis decreased. Taken together, these data suggest that pRB plays a role in esophageal adenocarcinoma and that, depending on the type of anti-cancer treatment, combining CDK inhibitors and chemotherapy has the potential to increase the sensitivity of esophageal cancer cells to cell death.
Collapse
Affiliation(s)
- Rossana C Soletti
- Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil, 21949-590; Pharmacy Unit, State University of West Zone, Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Deborah Biasoli
- Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil, 21949-590.
| | - Nathassya A L V Rodrigues
- Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil, 21949-590.
| | - João M A Delou
- Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil, 21949-590.
| | - Renata Maciel
- D'Or Institute for Research and Education (IDOR), Rio de Janeiro, RJ, Brazil.
| | - Vera L A Chagas
- Pathology Department, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil.
| | - Rodrigo A P Martins
- Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil, 21949-590.
| | - Stevens K Rehen
- Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil, 21949-590; D'Or Institute for Research and Education (IDOR), Rio de Janeiro, RJ, Brazil.
| | - Helena L Borges
- Biomedical Sciences Institute, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil, 21949-590.
| |
Collapse
|
31
|
Ishak CA, Coschi CH, Roes MV, Dick FA. Disruption of CDK-resistant chromatin association by pRB causes DNA damage, mitotic errors, and reduces Condensin II recruitment. Cell Cycle 2017; 16:1430-1439. [PMID: 28723239 DOI: 10.1080/15384101.2017.1338984] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Organization of chromatin structure is indispensible to the maintenance of genome integrity. The retinoblastoma tumor suppressor protein (pRB) mediates both transcriptional repression and chromatin organization, but the independent contributions of these functions have been difficult to study. Here, we utilize a synthetic Rb1 mutant allele (F832A) that maintains pRB association at cell cycle gene promoters, but disrupts a cyclin-dependent kinase (CDK)-resistant interaction with E2F1 to reduce occupancy of pRB on intergenic chromatin. Reduced pRB chromatin association increases spontaneous γH2AX deposition and aneuploidy. Our data indicates that the CDK-resistant pRB-E2F1 scaffold recruits Condensin II to major satellite repeats to stabilize chromatin structure in interphase and mitosis through mechanisms that are distinct from silencing of repetitive sequence expression.
Collapse
Affiliation(s)
- Charles A Ishak
- a London Regional Cancer Program , London , Ontario , Canada.,b Department of Biochemistry , Western University , London , Ontario , Canada
| | - Courtney H Coschi
- a London Regional Cancer Program , London , Ontario , Canada.,b Department of Biochemistry , Western University , London , Ontario , Canada
| | - Michael V Roes
- a London Regional Cancer Program , London , Ontario , Canada.,b Department of Biochemistry , Western University , London , Ontario , Canada
| | - Frederick A Dick
- a London Regional Cancer Program , London , Ontario , Canada.,b Department of Biochemistry , Western University , London , Ontario , Canada.,c Children's Health Research Institute , London , Ontario , Canada
| |
Collapse
|
32
|
Vélez-Cruz R, Manickavinayaham S, Biswas AK, Clary RW, Premkumar T, Cole F, Johnson DG. RB localizes to DNA double-strand breaks and promotes DNA end resection and homologous recombination through the recruitment of BRG1. Genes Dev 2017; 30:2500-2512. [PMID: 27940962 PMCID: PMC5159665 DOI: 10.1101/gad.288282.116] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 11/03/2016] [Indexed: 11/24/2022]
Abstract
The retinoblastoma (RB) tumor suppressor is recognized as a master regulator that controls entry into the S phase of the cell cycle. Its loss leads to uncontrolled cell proliferation and is a hallmark of cancer. RB works by binding to members of the E2F family of transcription factors and recruiting chromatin modifiers to the promoters of E2F target genes. Here we show that RB also localizes to DNA double-strand breaks (DSBs) dependent on E2F1 and ATM kinase activity and promotes DSB repair through homologous recombination (HR), and its loss results in genome instability. RB is necessary for the recruitment of the BRG1 ATPase to DSBs, which stimulates DNA end resection and HR. A knock-in mutation of the ATM phosphorylation site on E2F1 (S29A) prevents the interaction between E2F1 and TopBP1 and recruitment of RB, E2F1, and BRG1 to DSBs. This knock-in mutation also impairs DNA repair, increases genomic instability, and renders mice hypersensitive to IR. Importantly, depletion of RB in osteosarcoma and breast cancer cell lines results in sensitivity to DNA-damaging drugs, which is further exacerbated by poly-ADP ribose polymerase (PARP) inhibitors. We uncovered a novel, nontranscriptional function for RB in HR, which could contribute to genome instability associated with RB loss.
Collapse
Affiliation(s)
- Renier Vélez-Cruz
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville Texas 78957, USA
| | - Swarnalatha Manickavinayaham
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville Texas 78957, USA
| | - Anup K Biswas
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville Texas 78957, USA
| | - Regina Weaks Clary
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville Texas 78957, USA.,The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77225, USA
| | - Tolkappiyan Premkumar
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville Texas 78957, USA.,The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77225, USA
| | - Francesca Cole
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville Texas 78957, USA.,The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77225, USA
| | - David G Johnson
- Department of Epigenetics and Molecular Carcinogenesis, The University of Texas MD Anderson Cancer Center, Smithville Texas 78957, USA.,The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, Texas 77225, USA
| |
Collapse
|
33
|
Xie Y, Si J, Wang Y, Li H, Di C, Yan J, Ye Y, Zhang Y, Zhang H. E2F is involved in radioresistance of carbon ion induced apoptosis via Bax/caspase 3 signal pathway in human hepatoma cell. J Cell Physiol 2017; 233:1312-1320. [DOI: 10.1002/jcp.26005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/11/2017] [Indexed: 01/05/2023]
Affiliation(s)
- Yi Xie
- Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina
- CAS Key Laboratory of Heavy Ion Radiation Biology and MedicineInstitute of Modern PhysicsLanzhouGansuChina
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in MedicineGansu ProvinceLanzhouChina
| | - Jing Si
- Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina
- CAS Key Laboratory of Heavy Ion Radiation Biology and MedicineInstitute of Modern PhysicsLanzhouGansuChina
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in MedicineGansu ProvinceLanzhouChina
| | - Yu‐Pei Wang
- Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina
- CAS Key Laboratory of Heavy Ion Radiation Biology and MedicineInstitute of Modern PhysicsLanzhouGansuChina
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in MedicineGansu ProvinceLanzhouChina
- Graduate School of University of Chinese Academy of SciencesBeijingChina
| | - Hong‐Yan Li
- Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina
- CAS Key Laboratory of Heavy Ion Radiation Biology and MedicineInstitute of Modern PhysicsLanzhouGansuChina
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in MedicineGansu ProvinceLanzhouChina
- Graduate School of University of Chinese Academy of SciencesBeijingChina
| | - Cui‐Xia Di
- Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina
- CAS Key Laboratory of Heavy Ion Radiation Biology and MedicineInstitute of Modern PhysicsLanzhouGansuChina
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in MedicineGansu ProvinceLanzhouChina
| | - Jun‐Fang Yan
- Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina
- CAS Key Laboratory of Heavy Ion Radiation Biology and MedicineInstitute of Modern PhysicsLanzhouGansuChina
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in MedicineGansu ProvinceLanzhouChina
- Graduate School of University of Chinese Academy of SciencesBeijingChina
| | | | | | - Hong Zhang
- Institute of Modern PhysicsChinese Academy of SciencesLanzhouChina
- CAS Key Laboratory of Heavy Ion Radiation Biology and MedicineInstitute of Modern PhysicsLanzhouGansuChina
- Key Laboratory of Basic Research on Heavy Ion Radiation Application in MedicineGansu ProvinceLanzhouChina
- Gansu Wuwei Tumor HospitalWuweiChina
| |
Collapse
|
34
|
Abstract
In this review, Dyson summarizes some recent developments in pRB research and focuses on progress toward answers for the three fundamental questions that sit at the heart of the pRB literature: What does pRB do? How does the inactivation of RB change the cell? How can our knowledge of RB function be exploited to provide better treatment for cancer patients? The retinoblastoma susceptibility gene (RB1) was the first tumor suppressor gene to be molecularly defined. RB1 mutations occur in almost all familial and sporadic forms of retinoblastoma, and this gene is mutated at variable frequencies in a variety of other human cancers. Because of its early discovery, the recessive nature of RB1 mutations, and its frequency of inactivation, RB1 is often described as a prototype for the class of tumor suppressor genes. Its gene product (pRB) regulates transcription and is a negative regulator of cell proliferation. Although these general features are well established, a precise description of pRB's mechanism of action has remained elusive. Indeed, in many regards, pRB remains an enigma. This review summarizes some recent developments in pRB research and focuses on progress toward answers for the three fundamental questions that sit at the heart of the pRB literature: What does pRB do? How does the inactivation of RB change the cell? How can our knowledge of RB function be exploited to provide better treatment for cancer patients?
Collapse
|
35
|
Horvath BM, Kourova H, Nagy S, Nemeth E, Magyar Z, Papdi C, Ahmad Z, Sanchez-Perez GF, Perilli S, Blilou I, Pettkó-Szandtner A, Darula Z, Meszaros T, Binarova P, Bogre L, Scheres B. Arabidopsis RETINOBLASTOMA RELATED directly regulates DNA damage responses through functions beyond cell cycle control. EMBO J 2017; 36:1261-1278. [PMID: 28320736 PMCID: PMC5412863 DOI: 10.15252/embj.201694561] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 02/20/2017] [Accepted: 02/23/2017] [Indexed: 12/26/2022] Open
Abstract
The rapidly proliferating cells in plant meristems must be protected from genome damage. Here, we show that the regulatory role of the Arabidopsis RETINOBLASTOMA RELATED (RBR) in cell proliferation can be separated from a novel function in safeguarding genome integrity. Upon DNA damage, RBR and its binding partner E2FA are recruited to heterochromatic γH2AX-labelled DNA damage foci in an ATM- and ATR-dependent manner. These γH2AX-labelled DNA lesions are more dispersedly occupied by the conserved repair protein, AtBRCA1, which can also co-localise with RBR foci. RBR and AtBRCA1 physically interact in vitro and in planta Genetic interaction between the RBR-silenced amiRBR and Atbrca1 mutants suggests that RBR and AtBRCA1 may function together in maintaining genome integrity. Together with E2FA, RBR is directly involved in the transcriptional DNA damage response as well as in the cell death pathway that is independent of SOG1, the plant functional analogue of p53. Thus, plant homologs and analogues of major mammalian tumour suppressor proteins form a regulatory network that coordinates cell proliferation with cell and genome integrity.
Collapse
Affiliation(s)
- Beatrix M Horvath
- School of Biological Sciences, Centre for Systems and Synthetic Biology, Royal Holloway, University of London, Egham, UK
- Department of Molecular Genetics, Utrecht University, Utrecht, The Netherlands
| | - Hana Kourova
- Institute of Microbiology CAS, v.v.i., Laboratory of Cell Reproduction, Prague 4, Czech Republic
| | - Szilvia Nagy
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
| | - Edit Nemeth
- School of Biological Sciences, Centre for Systems and Synthetic Biology, Royal Holloway, University of London, Egham, UK
| | - Zoltan Magyar
- Institute of Plant Biology, Biological Research Centre, Szeged, Hungary
| | - Csaba Papdi
- School of Biological Sciences, Centre for Systems and Synthetic Biology, Royal Holloway, University of London, Egham, UK
| | - Zaki Ahmad
- School of Biological Sciences, Centre for Systems and Synthetic Biology, Royal Holloway, University of London, Egham, UK
| | - Gabino F Sanchez-Perez
- Department of Plant Sciences, Wageningen University Research Centre, Wageningen, The Netherlands
| | - Serena Perilli
- Department of Plant Sciences, Wageningen University Research Centre, Wageningen, The Netherlands
| | - Ikram Blilou
- Department of Plant Sciences, Wageningen University Research Centre, Wageningen, The Netherlands
| | | | - Zsuzsanna Darula
- Laboratory of Proteomic Research, Biological Research Centre, Szeged, Hungary
| | - Tamas Meszaros
- Department of Medical Chemistry, Molecular Biology and Pathobiochemistry, Semmelweis University, Budapest, Hungary
- Technical Analytical Research Group of HAS, Budapest, Hungary
| | - Pavla Binarova
- Institute of Microbiology CAS, v.v.i., Laboratory of Cell Reproduction, Prague 4, Czech Republic
| | - Laszlo Bogre
- School of Biological Sciences, Centre for Systems and Synthetic Biology, Royal Holloway, University of London, Egham, UK
| | - Ben Scheres
- Department of Molecular Genetics, Utrecht University, Utrecht, The Netherlands
- Department of Plant Sciences, Wageningen University Research Centre, Wageningen, The Netherlands
| |
Collapse
|
36
|
Biedermann S, Harashima H, Chen P, Heese M, Bouyer D, Sofroni K, Schnittger A. The retinoblastoma homolog RBR1 mediates localization of the repair protein RAD51 to DNA lesions in Arabidopsis. EMBO J 2017; 36:1279-1297. [PMID: 28320735 PMCID: PMC5412766 DOI: 10.15252/embj.201694571] [Citation(s) in RCA: 61] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Revised: 02/17/2017] [Accepted: 02/20/2017] [Indexed: 11/13/2022] Open
Abstract
The retinoblastoma protein (Rb), which typically functions as a transcriptional repressor of E2F‐regulated genes, represents a major control hub of the cell cycle. Here, we show that loss of the Arabidopsis Rb homolog RETINOBLASTOMA‐RELATED 1 (RBR1) leads to cell death, especially upon exposure to genotoxic drugs such as the environmental toxin aluminum. While cell death can be suppressed by reduced cell‐proliferation rates, rbr1 mutant cells exhibit elevated levels of DNA lesions, indicating a direct role of RBR1 in the DNA‐damage response (DDR). Consistent with its role as a transcriptional repressor, we find that RBR1 directly binds to and represses key DDR genes such as RADIATION SENSITIVE 51 (RAD51), leaving it unclear why rbr1 mutants are hypersensitive to DNA damage. However, we find that RBR1 is also required for RAD51 localization to DNA lesions. We further show that RBR1 is itself targeted to DNA break sites in a CDKB1 activity‐dependent manner and partially co‐localizes with RAD51 at damage sites. Taken together, these results implicate RBR1 in the assembly of DNA‐bound repair complexes, in addition to its canonical function as a transcriptional regulator.
Collapse
Affiliation(s)
- Sascha Biedermann
- Department of Molecular Mechanisms of Phenotypic Plasticity, Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France.,Department of Developmental Biology, Biozentrum Klein Flottbek University of Hamburg, Hamburg, Germany
| | | | - Poyu Chen
- Department of Developmental Biology, Biozentrum Klein Flottbek University of Hamburg, Hamburg, Germany
| | - Maren Heese
- Department of Developmental Biology, Biozentrum Klein Flottbek University of Hamburg, Hamburg, Germany
| | - Daniel Bouyer
- Institut de Biologie de l'Ecole Normale Supérieure, CNRS UMR 8197-INSERM U 1024, Paris, France
| | - Kostika Sofroni
- Department of Developmental Biology, Biozentrum Klein Flottbek University of Hamburg, Hamburg, Germany
| | - Arp Schnittger
- Department of Molecular Mechanisms of Phenotypic Plasticity, Institut de Biologie Moléculaire des Plantes du Centre National de la Recherche Scientifique, Université de Strasbourg, Strasbourg, France .,Department of Developmental Biology, Biozentrum Klein Flottbek University of Hamburg, Hamburg, Germany
| |
Collapse
|
37
|
Clavier A, Rincheval-Arnold A, Baillet A, Mignotte B, Guénal I. Two different specific JNK activators are required to trigger apoptosis or compensatory proliferation in response to Rbf1 in Drosophila. Cell Cycle 2016; 15:283-94. [PMID: 26825229 DOI: 10.1080/15384101.2015.1100776] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
The Jun Kinase (JNK) signaling pathway responds to diverse stimuli by appropriate and specific cellular responses such as apoptosis, differentiation or proliferation. The mechanisms that mediate this specificity remain largely unknown. The core of this signaling pathway, composed of a JNK protein and a JNK kinase (JNKK), can be activated by various putative JNKK kinases (JNKKK) which are themselves downstream of different adaptor proteins. A proposed hypothesis is that the JNK pathway specific response lies in the combination of a JNKKK and an adaptor protein upstream of the JNKK. We previously showed that the Drosophila homolog of pRb (Rbf1) and a mutant form of Rbf1 (Rbf1(D253A)) have JNK-dependent pro-apoptotic properties. Rbf1(D253A) is also able to induce a JNK-dependent abnormal proliferation. Here, we show that Rbf1-induced apoptosis triggers proliferation which depends on the JNK pathway activation. Taking advantage of these phenotypes, we investigated the JNK signaling involved in either Rbf1-induced apoptosis or in proliferation in response to Rbf1-induced apoptosis. We demonstrated that 2 different JNK pathways involving different adaptor proteins and kinases are involved in Rbf1-apoptosis (i.e. Rac1-dTak1-dMekk1-JNK pathway) and in proliferation in response to Rbf1-induced apoptosis (i.e., dTRAF1-Slipper-JNK pathway). Using a transient induction of rbf1, we show that Rbf1-induced apoptosis activates a compensatory proliferation mechanism which also depends on Slipper and dTRAF1. Thus, these 2 proteins seem to be key players of compensatory proliferation in Drosophila.
Collapse
Affiliation(s)
- Amandine Clavier
- a Université de Versailles Saint-Quentin-en-Yvelines, Laboratoire de Génétique et Biologie Cellulaire , EA4589 , Montigny-le-Bretonneux ; France.,b Ecole Pratique des Hautes Etudes, Laboratoire de Génétique Moléculaire et Physiologique , Montigny-le-Bretonneux , France
| | - Aurore Rincheval-Arnold
- a Université de Versailles Saint-Quentin-en-Yvelines, Laboratoire de Génétique et Biologie Cellulaire , EA4589 , Montigny-le-Bretonneux ; France
| | - Adrienne Baillet
- a Université de Versailles Saint-Quentin-en-Yvelines, Laboratoire de Génétique et Biologie Cellulaire , EA4589 , Montigny-le-Bretonneux ; France.,b Ecole Pratique des Hautes Etudes, Laboratoire de Génétique Moléculaire et Physiologique , Montigny-le-Bretonneux , France
| | - Bernard Mignotte
- a Université de Versailles Saint-Quentin-en-Yvelines, Laboratoire de Génétique et Biologie Cellulaire , EA4589 , Montigny-le-Bretonneux ; France.,b Ecole Pratique des Hautes Etudes, Laboratoire de Génétique Moléculaire et Physiologique , Montigny-le-Bretonneux , France
| | - Isabelle Guénal
- a Université de Versailles Saint-Quentin-en-Yvelines, Laboratoire de Génétique et Biologie Cellulaire , EA4589 , Montigny-le-Bretonneux ; France
| |
Collapse
|
38
|
Indovina P, Pentimalli F, Casini N, Vocca I, Giordano A. RB1 dual role in proliferation and apoptosis: cell fate control and implications for cancer therapy. Oncotarget 2016; 6:17873-90. [PMID: 26160835 PMCID: PMC4627222 DOI: 10.18632/oncotarget.4286] [Citation(s) in RCA: 105] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 06/06/2015] [Indexed: 01/14/2023] Open
Abstract
Inactivation of the retinoblastoma (RB1) tumor suppressor is one of the most frequent and early recognized molecular hallmarks of cancer. RB1, although mainly studied for its role in the regulation of cell cycle, emerged as a key regulator of many biological processes. Among these, RB1 has been implicated in the regulation of apoptosis, the alteration of which underlies both cancer development and resistance to therapy. RB1 role in apoptosis, however, is still controversial because, depending on the context, the apoptotic cues, and its own status, RB1 can act either by inhibiting or promoting apoptosis. Moreover, the mechanisms whereby RB1 controls both proliferation and apoptosis in a coordinated manner are only now beginning to be unraveled. Here, by reviewing the main studies assessing the effect of RB1 status and modulation on these processes, we provide an overview of the possible underlying molecular mechanisms whereby RB1, and its family members, dictate cell fate in various contexts. We also describe the current antitumoral strategies aimed at the use of RB1 as predictive, prognostic and therapeutic target in cancer. A thorough understanding of RB1 function in controlling cell fate determination is crucial for a successful translation of RB1 status assessment in the clinical setting.
Collapse
Affiliation(s)
- Paola Indovina
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA.,Department of Medicine, Surgery and Neuroscience, University of Siena and Istituto Toscano Tumori (ITT), Siena, Italy
| | - Francesca Pentimalli
- Oncology Research Center of Mercogliano (CROM), Istituto Nazionale Tumori "Fodazione G. Pascale" - IRCCS, Naples, Italy
| | - Nadia Casini
- Department of Medicine, Surgery and Neuroscience, University of Siena and Istituto Toscano Tumori (ITT), Siena, Italy
| | - Immacolata Vocca
- Oncology Research Center of Mercogliano (CROM), Istituto Nazionale Tumori "Fodazione G. Pascale" - IRCCS, Naples, Italy
| | - Antonio Giordano
- Sbarro Institute for Cancer Research and Molecular Medicine, Center for Biotechnology, College of Science and Technology, Temple University, Philadelphia, PA, USA.,Department of Medicine, Surgery and Neuroscience, University of Siena and Istituto Toscano Tumori (ITT), Siena, Italy
| |
Collapse
|
39
|
Ma W, Yu J, Qi X, Liang L, Zhang Y, Ding Y, Lin X, Li G, Ding Y. Radiation-induced microRNA-622 causes radioresistance in colorectal cancer cells by down-regulating Rb. Oncotarget 2016; 6:15984-94. [PMID: 25961730 PMCID: PMC4599251 DOI: 10.18632/oncotarget.3762] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2015] [Accepted: 04/06/2015] [Indexed: 02/06/2023] Open
Abstract
The standard treatment for patients with locally advanced rectal cancer is preoperative 5-fluorouracil-based chemoradiotherapy followed by total mesorectal excision. However, tumor response to standard dose radiation varies. In this study, we found that miR-622 was increased significantly in ionizing radiation-treated colorectal cancer (CRC) cells compared to the cells cultured with irradiated medium, and persisted stably in surviving cells treated with continuous low-dose radiation. Overexpression of miR-622 induced the radioresistance in vitro. In addition, miR-622 inhibited Rb expression by directly targeting RB1-3′UTR. Overexpression of Rb reversed miR-622-induced radioresistance in vitro. In response to ionizing radiation, the Rb-E2F1-P/CAF complex activated proapoptotic genes. Importantly, miR-622 was highly expressed in tumors of rectal cancer patients with non-regression after standard dose radiotherapy. In conclusion, miR-622 overexpressing cells are induced or selected by radiotherapy, causing in turn radioresistance and poor response to further therapy. MiR-622 is a potential biomarker of responders for radiotherapy and a potential therapeutic target.
Collapse
Affiliation(s)
- Wenhui Ma
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiang Yu
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China.,Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaolong Qi
- Department of Radiation Oncology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, USA.,Department of Gastroenterology, Tongji Hospital, Tongji University School of Medicine, Shanghai, China
| | - Li Liang
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yan Zhang
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yi Ding
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Xiaoshan Lin
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Guoxin Li
- Department of General Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Yanqing Ding
- Department of Pathology, Nanfang Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
40
|
Gong C, Liu H, Song R, Zhong T, Lou M, Wang T, Qi H, Shen J, Zhu L, Shao J. ATR–CHK1–E2F3 signaling transactivates human ribonucleotide reductase small subunit M2 for DNA repair induced by the chemical carcinogen MNNG. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1859:612-26. [DOI: 10.1016/j.bbagrm.2016.02.012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2015] [Revised: 01/18/2016] [Accepted: 02/18/2016] [Indexed: 11/26/2022]
|
41
|
Peiris TH, Ramirez D, Barghouth PG, Ofoha U, Davidian D, Weckerle F, Oviedo NJ. Regional signals in the planarian body guide stem cell fate in the presence of genomic instability. Development 2016; 143:1697-709. [PMID: 27013241 DOI: 10.1242/dev.131318] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2015] [Accepted: 03/10/2016] [Indexed: 12/28/2022]
Abstract
Cellular fate decisions are influenced by their topographical location in the adult body. For instance, tissue repair and neoplastic growth are greater in anterior than in posterior regions of adult animals. However, the molecular underpinnings of these regional differences are unknown. We identified a regional switch in the adult planarian body upon systemic disruption of homologous recombination with RNA-interference of Rad51 Rad51 knockdown increases DNA double-strand breaks (DSBs) throughout the body, but stem cells react differently depending on their location along the anteroposterior axis. In the presence of extensive DSBs, cells in the anterior part of the body resist death, whereas cells in the posterior region undergo apoptosis. Furthermore, we found that proliferation of cells with DNA damage is induced in the presence of brain tissue and that the retinoblastoma pathway enables overproliferation of cells with DSBs while attending to the demands of tissue growth and repair. Our results implicate both autonomous and non-autonomous mechanisms as key mediators of regional cell behavior and cellular transformation in the adult body.
Collapse
Affiliation(s)
- T Harshani Peiris
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA
| | - Daniel Ramirez
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA
| | - Paul G Barghouth
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA
| | - Udokanma Ofoha
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA
| | - Devon Davidian
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA
| | - Frank Weckerle
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA
| | - Néstor J Oviedo
- Department of Molecular and Cell Biology, School of Natural Sciences, University of California, Merced, CA 95343, USA Quantitative and Systems Biology Graduate Program, University of California, Merced, CA 95343, USA Health Sciences Research Institute, University of California, Merced, CA 95343, USA
| |
Collapse
|
42
|
Abstract
OBJECTIVES Pancreatic ductal adenocarcinoma remains as a chemoresistant disease with the poorest prognosis. Gemcitabine has been the standard treatment during the last decade. Erlotinib, a tyrosine kinase inhibitor, in combination with gemcitabine produces a small increase in survival. However, these results remain insufficient. The aim of this study was to investigate the molecular interplay in vitro between them regarding their effects over cytotoxicity, proliferation, apoptosis, and invasion. METHODS Using the human pancreatic cancer cell lines Panc-1 and BxPC-3 in vitro, the effects of gemcitabine and erlotinib therapy on growth, proliferation, and invasion were tested by cytotoxicity, cell cycle, and Annexin V-Fluorescein Isothiocyanate analysis, reverse transcription polymerase chain reaction, protein expression, and Chip assays. RESULTS Therapy decreased cell proliferation causing G0/G1 phase cell cycle arrest with induction of apoptosis in the Panc-1 cell line. This blockade was associated with increased p27 expression. Besides, treatments enhanced the nuclear factor-κB (NF-κB) pathway and the binding of NF-κB to the promoters of genes related to the proliferation and the evasion of apoptosis. CONCLUSIONS Our data suggest that, although gemcitabine and erlotinib exert antiproliferative effects over pancreatic cancer cell lines, the gemcitabine-induced activation of NF-κB expression and its DNA-binding activities are important drawbacks of this treatment against pancreatic cancer.
Collapse
|
43
|
Elenbaas JS, Mouawad R, Henry RW, Arnosti DN, Payankaulam S. Role of Drosophila retinoblastoma protein instability element in cell growth and proliferation. Cell Cycle 2015; 14:589-97. [PMID: 25496208 DOI: 10.4161/15384101.2014.991182] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
The RB tumor suppressor, a regulator of the cell cycle, apoptosis, senescence, and differentiation, is frequently mutated in human cancers. We recently described an evolutionarily conserved C-terminal "instability element" (IE) of the Drosophila Rbf1 retinoblastoma protein that regulates its turnover. Misexpression of wild-type or non-phosphorylatable forms of the Rbf1 protein leads to repression of cell cycle genes. In contrast, overexpression of a defective form of Rbf1 lacking the IE (ΔIE), a stabilized but transcriptionally less active form of the protein, induced ectopic S phase in cell culture. To determine how mutations in the Rbf1 IE may induce dominant effects in a developmental context, we assessed the impact of in vivo expression of mutant Rbf1 proteins on wing development. ΔIE expression resulted in overgrowth of larval wing imaginal discs and larger adult wings containing larger cells. In contrast, a point mutation in a conserved lysine of the IE (K774A) generated severely disrupted, reduced wings. These contrasting effects appear to correlate with control of apoptosis; expression of the pro-apoptotic reaper gene and DNA fragmentation measured by acridine orange stain increased in flies expressing the K774A isoform and was suppressed by expression of Rbf1ΔIE. Intriguingly, cancer associated mutations affecting RB homologs p130 and p107 may similarly induce dominant phenotypes.
Collapse
Key Words
- Apaf-1, Apoptotic protease activating factor 1
- Ark, Apaf-1 related killer
- CDK, Cyclin-dependent kinase
- COP9, Constitutive photomorphogenic 9
- Dpp, Decapentaplegic
- Drosophila
- E2F, E2 promoter binding factor
- Hid, Head involution defective
- IE, Instability element
- PCNA, Proliferating cell nuclear antigen
- Polα, DNA polymerase α
- Rb, Retinoblastoma
- Wnt, Wingless
- apoptosis
- cell size
- retinoblastoma
- transcriptional regulation
- tumor suppressor
- wing size
Collapse
Affiliation(s)
- Jared S Elenbaas
- a Department of Biochemistry and Molecular Biology ; Michigan State University ; East Lansing , MI USA
| | | | | | | | | |
Collapse
|
44
|
EZH2 promotes progression of small cell lung cancer by suppressing the TGF-β-Smad-ASCL1 pathway. Cell Discov 2015; 1:15026. [PMID: 27462425 PMCID: PMC4860843 DOI: 10.1038/celldisc.2015.26] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2015] [Accepted: 08/03/2015] [Indexed: 12/17/2022] Open
Abstract
Transforming growth factor-β (TGF-β) induces apoptosis in many types of cancer cells and acts as a tumor suppressor. We performed a functional analysis of TGF-β signaling to identify a molecular mechanism that regulated survival in small cell lung cancer cells. Here, we found low expression of TGF-β type II receptor (TβRII) in most small cell lung cancer cells and tissues compared to normal lung epithelial cells and normal lung tissues, respectively. When wild-type TβRII was overexpressed in small cell lung cancer cells, TGF-β suppressed cell growth in vitro and tumor formation in vivo through induction of apoptosis. Components of polycomb repressive complex 2, including enhancer of zeste 2 (EZH2), were highly expressed in small cell lung cancer cells; this led to epigenetic silencing of TβRII expression and suppression of TGF-β-mediated apoptosis. Achaete-scute family bHLH transcription factor 1 (ASCL1; also known as ASH1), a Smad-dependent target of TGF-β, was found to induce survival in small cell lung cancer cells. Thus, EZH2 promoted small cell lung cancer progression by suppressing the TGF-β-Smad-ASCL1 pathway.
Collapse
|
45
|
Cecchini MJ, Ishak CA, Passos DT, Warner A, Palma DA, Howlett CJ, Driman DK, Dick FA. Loss of the retinoblastoma tumor suppressor correlates with improved outcome in patients with lung adenocarcinoma treated with surgery and chemotherapy. Hum Pathol 2015; 46:1922-34. [PMID: 26475095 DOI: 10.1016/j.humpath.2015.08.010] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2015] [Revised: 08/07/2015] [Accepted: 08/19/2015] [Indexed: 12/19/2022]
Abstract
The retinoblastoma tumor suppressor pathway is frequently inactivated in human cancer, enabling unrestrained proliferation. Most cancers, however, maintain expression of a wild-type (WT) retinoblastoma tumor suppressor protein (pRB). It is generally in a hyperphosphorylated state (ppRB) because of mutations in upstream regulators such as p16 and cyclin D. Hyperphosphorylated ppRB is considered inactive, although data are emerging that suggest it can retain some function. To test the clinical relevance of pRB status, we obtained archival tissue sections from 91 cases of lung adenocarcinoma resected between 2003 and 2008. All cases received platinum doublet chemotherapy, and the median survival was 5.9 years. All cases were assessed for pRB and ppRB using immunohistochemistry and quantified based on intensity of signal and proportion of positive cells. pRB expression was lost in 15% of lung adenocarcinoma cases. In tumors that did not express pRB, the survival rate was significantly improved (hazard ratio, 0.21; 95% confidence interval, 0.06-0.69; P = .01) in comparison to tumors that express pRB. pRB status was found to be an independent predictor of overall survival on multivariate analysis (hazard ratio, 0.22; 95% confidence interval, 0.07-0.73; P = .01) along with increased stage and age. pRB status did not alter baseline levels of apoptotic or proliferative markers in these tumors, but the DNA damage response protein 53BP1 was higher in cancers with high levels of pRB. In summary, loss of pRB expression is associated with improved survival in patients treated with surgical resection and chemotherapy. This may be useful in classifying patients at greatest benefit for aggressive treatment regimes.
Collapse
Affiliation(s)
- Matthew J Cecchini
- London Regional Cancer Program, London, ON N6A 5W9, Canada; Department of Biochemistry Western University, London, ON N6A 5C1, Canada; Department of Pathology and Laboratory Medicine, London, ON N6A 5C1, Canada
| | - Charles A Ishak
- London Regional Cancer Program, London, ON N6A 5W9, Canada; Department of Biochemistry Western University, London, ON N6A 5C1, Canada
| | - Daniel T Passos
- London Regional Cancer Program, London, ON N6A 5W9, Canada; Department of Biochemistry Western University, London, ON N6A 5C1, Canada; Children's Health Research Institute London Health Sciences Centre London, ON N6C 2V5, Canada
| | - Andrew Warner
- Department of Radiation Oncology London, ON N6A 5W9, Canada
| | - David A Palma
- Department of Radiation Oncology London, ON N6A 5W9, Canada
| | | | - David K Driman
- Department of Pathology and Laboratory Medicine, London, ON N6A 5C1, Canada
| | - Frederick A Dick
- London Regional Cancer Program, London, ON N6A 5W9, Canada; Department of Biochemistry Western University, London, ON N6A 5C1, Canada; Children's Health Research Institute London Health Sciences Centre London, ON N6C 2V5, Canada.
| |
Collapse
|
46
|
Nicolay BN, Danielian PS, Kottakis F, Lapek JD, Sanidas I, Miles WO, Dehnad M, Tschöp K, Gierut JJ, Manning AL, Morris R, Haigis K, Bardeesy N, Lees JA, Haas W, Dyson NJ. Proteomic analysis of pRb loss highlights a signature of decreased mitochondrial oxidative phosphorylation. Genes Dev 2015; 29:1875-89. [PMID: 26314710 PMCID: PMC4573859 DOI: 10.1101/gad.264127.115] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 08/13/2015] [Indexed: 12/22/2022]
Abstract
Nicolay et al. ablated Rb in adult mice and conducted a quantitative analysis of RNA and proteomic changes in the colon and lungs. The proteomic changes in common between RbKO tissues showed a striking decrease in proteins with mitochondrial functions, highlighting the importance of pRb for mitochondrial function. The retinoblastoma tumor suppressor (pRb) protein associates with chromatin and regulates gene expression. Numerous studies have identified Rb-dependent RNA signatures, but the proteomic effects of Rb loss are largely unexplored. We acutely ablated Rb in adult mice and conducted a quantitative analysis of RNA and proteomic changes in the colon and lungs, where RbKO was sufficient or insufficient to induce ectopic proliferation, respectively. As expected, RbKO caused similar increases in classic pRb/E2F-regulated transcripts in both tissues, but, unexpectedly, their protein products increased only in the colon, consistent with its increased proliferative index. Thus, these protein changes induced by Rb loss are coupled with proliferation but uncoupled from transcription. The proteomic changes in common between RbKO tissues showed a striking decrease in proteins with mitochondrial functions. Accordingly, RB1 inactivation in human cells decreased both mitochondrial mass and oxidative phosphorylation (OXPHOS) function. RBKO cells showed decreased mitochondrial respiratory capacity and the accumulation of hypopolarized mitochondria. Additionally, RB/Rb loss altered mitochondrial pyruvate oxidation from 13C-glucose through the TCA cycle in mouse tissues and cultured cells. Consequently, RBKO cells have an enhanced sensitivity to mitochondrial stress conditions. In summary, proteomic analyses provide a new perspective on Rb/RB1 mutation, highlighting the importance of pRb for mitochondrial function and suggesting vulnerabilities for treatment.
Collapse
Affiliation(s)
- Brandon N Nicolay
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Paul S Danielian
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Filippos Kottakis
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - John D Lapek
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Ioannis Sanidas
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Wayne O Miles
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Mantre Dehnad
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA; University Medical Center Utrecht, Utrecht 3584CX, Netherlands
| | - Katrin Tschöp
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Jessica J Gierut
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Amity L Manning
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Robert Morris
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Kevin Haigis
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Nabeel Bardeesy
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Jacqueline A Lees
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Wilhelm Haas
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Nicholas J Dyson
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| |
Collapse
|
47
|
Lv H, Liu R, Fu J, Yang Q, Shi J, Chen P, Ji M, Shi B, Hou P. Epithelial cell-derived periostin functions as a tumor suppressor in gastric cancer through stabilizing p53 and E-cadherin proteins via the Rb/E2F1/p14ARF/Mdm2 signaling pathway. Cell Cycle 2015; 13:2962-74. [PMID: 25486483 DOI: 10.4161/15384101.2014.947203] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Periostin is usually considered as an oncogene in diverse human cancers, including breast, prostate, colon, esophagus, and pancreas cancers, whereas it acts as a tumor suppressor in bladder cancer. In gastric cancer, it has been demonstrated that periglandular periostin expression is decreased whereas stromal periostin expression is significantly increased as compared with normal gastric tissues. Moreover, periostin produced by stromal myofibroblasts markedly promotes gastric cancer cell growth. These observations suggest that periostin derived from different types of cells may play distinct biological roles in gastric tumorigenesis. The aim of this study was to explore the biological functions and related molecular mechanisms of epithelial cell-derived periostin in gastric cancer. Our data showed that periglandular periostin was significantly down-regulated in gastric cancer tissues as compared with matched normal gastric mucosa. In addition, its expression in metastatic lymph nodes was significantly lower than that in their primary cancer tissues. Our data also demonstrated that periglandular periostin expression was negatively associated with tumor stage. More importantly, restoration of periostin expression in gastric cancer cells dramatically suppressed cell growth and invasiveness. Elucidation of the mechanisms involved revealed that periostin restoration enhanced Rb phosphorylation and sequentially activated the transcription of E2F1 target gene p14(ARF), leading to Mdm2 inactivation and the stabilization of p53 and E-cadherin proteins. Strikingly, these effects of periostin were abolished upon Rb deletion. Collectively, we have for the first time demonstrated that epithelial cell-derived periostin exerts tumor-suppressor activities in gastric cancer through stabilizing p53 and E-cadherin proteins via the Rb/E2F1/p14(ARF)/Mdm2 signaling pathway.
Collapse
Affiliation(s)
- Hongjun Lv
- a Department of Endocrinology ; The First Affiliated Hospital of Xi'an Jiaotong University School of Medicine ; Xi'an , The People's Republic of China
| | | | | | | | | | | | | | | | | |
Collapse
|
48
|
Clavier A, Ruby V, Rincheval-Arnold A, Mignotte B, Guénal I. The Drosophila retinoblastoma protein, Rbf1, induces a Debcl- and Drp1-dependent mitochondrial apoptosis. J Cell Sci 2015. [PMID: 26208635 DOI: 10.1242/jcs.169896] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023] Open
Abstract
In accordance with its tumor suppressor role, the retinoblastoma protein pRb can ensure pro-apoptotic functions. Rbf1, the Drosophila homolog of Rb, also displays a pro-apoptotic activity in proliferative cells. We have previously shown that the Rbf1 pro-apoptotic activity depends on its ability to decrease the level of anti-apoptotic proteins such as the Bcl-2 family protein Buffy. Buffy often acts in an opposite manner to Debcl, the other Drosophila Bcl-2-family protein. Both proteins can localize at the mitochondrion, but the way they control apoptosis still remains unclear. Here, we demonstrate that Debcl and the pro-fission gene Drp1 are necessary downstream of Buffy to trigger a mitochondrial fragmentation during Rbf1-induced apoptosis. Interestingly, Rbf1-induced apoptosis leads to a Debcl- and Drp1-dependent reactive oxygen species production, which in turn activates the Jun Kinase pathway to trigger cell death. Moreover, we show that Debcl and Drp1 can interact and that Buffy inhibits this interaction. Notably, Debcl modulates Drp1 mitochondrial localization during apoptosis. These results provide a mechanism by which Drosophila Bcl-2 family proteins can control apoptosis, and shed light on a link between Rbf1 and mitochondrial dynamics in vivo.
Collapse
Affiliation(s)
- Amandine Clavier
- Université de Versailles Saint-Quentin-en-Yvelines, Laboratoire de Génétique et Biologie Cellulaire, EA4589, 2 avenue de la Source de la Bièvre, Montigny-le-Bretonneux 78180, France Ecole Pratique des Hautes Etudes, Laboratoire de Génétique et Biologie Cellulaire, 2 avenue de la Source de la Bièvre, Montigny-le-Bretonneux 78180, France
| | - Vincent Ruby
- Université de Versailles Saint-Quentin-en-Yvelines, Laboratoire de Génétique et Biologie Cellulaire, EA4589, 2 avenue de la Source de la Bièvre, Montigny-le-Bretonneux 78180, France
| | - Aurore Rincheval-Arnold
- Université de Versailles Saint-Quentin-en-Yvelines, Laboratoire de Génétique et Biologie Cellulaire, EA4589, 2 avenue de la Source de la Bièvre, Montigny-le-Bretonneux 78180, France
| | - Bernard Mignotte
- Université de Versailles Saint-Quentin-en-Yvelines, Laboratoire de Génétique et Biologie Cellulaire, EA4589, 2 avenue de la Source de la Bièvre, Montigny-le-Bretonneux 78180, France Ecole Pratique des Hautes Etudes, Laboratoire de Génétique et Biologie Cellulaire, 2 avenue de la Source de la Bièvre, Montigny-le-Bretonneux 78180, France
| | - Isabelle Guénal
- Université de Versailles Saint-Quentin-en-Yvelines, Laboratoire de Génétique et Biologie Cellulaire, EA4589, 2 avenue de la Source de la Bièvre, Montigny-le-Bretonneux 78180, France
| |
Collapse
|
49
|
Julian LM, Blais A. Transcriptional control of stem cell fate by E2Fs and pocket proteins. Front Genet 2015; 6:161. [PMID: 25972892 PMCID: PMC4412126 DOI: 10.3389/fgene.2015.00161] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2014] [Accepted: 04/08/2015] [Indexed: 01/04/2023] Open
Abstract
E2F transcription factors and their regulatory partners, the pocket proteins (PPs), have emerged as essential regulators of stem cell fate control in a number of lineages. In mammals, this role extends from both pluripotent stem cells to those encompassing all embryonic germ layers, as well as extra-embryonic lineages. E2F/PP-mediated regulation of stem cell decisions is highly evolutionarily conserved, and is likely a pivotal biological mechanism underlying stem cell homeostasis. This has immense implications for organismal development, tissue maintenance, and regeneration. In this article, we discuss the roles of E2F factors and PPs in stem cell populations, focusing on mammalian systems. We discuss emerging findings that position the E2F and PP families as widespread and dynamic epigenetic regulators of cell fate decisions. Additionally, we focus on the ever expanding landscape of E2F/PP target genes, and explore the possibility that E2Fs are not simply regulators of general ‘multi-purpose’ cell fate genes but can execute tissue- and cell type-specific gene regulatory programs.
Collapse
Affiliation(s)
- Lisa M Julian
- Sprott Centre for Stem Cell Research, Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON Canada
| | - Alexandre Blais
- Ottawa Institute of Systems Biology, Ottawa, ON Canada ; Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Ottawa, ON Canada
| |
Collapse
|
50
|
Sengupta S, Lingnurkar R, Carey TS, Pomaville M, Kar P, Feig M, Wilson CA, Knott JG, Arnosti DN, Henry RW. The Evolutionarily Conserved C-terminal Domains in the Mammalian Retinoblastoma Tumor Suppressor Family Serve as Dual Regulators of Protein Stability and Transcriptional Potency. J Biol Chem 2015; 290:14462-75. [PMID: 25903125 DOI: 10.1074/jbc.m114.599993] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2014] [Indexed: 11/06/2022] Open
Abstract
The retinoblastoma (RB) tumor suppressor and related family of proteins play critical roles in development through their regulation of genes involved in cell fate. Multiple regulatory pathways impact RB function, including the ubiquitin-proteasome system with deregulated RB destruction frequently associated with pathogenesis. With the current study we explored the mechanisms connecting proteasome-mediated turnover of the RB family to the regulation of repressor activity. We find that steady state levels of all RB family members, RB, p107, and p130, were diminished during embryonic stem cell differentiation concomitant with their target gene acquisition. Proteasome-dependent turnover of the RB family is mediated by distinct and autonomously acting instability elements (IE) located in their C-terminal regulatory domains in a process that is sensitive to cyclin-dependent kinase (CDK4) perturbation. The IE regions include motifs that contribute to E2F-DP transcription factor interaction, and consistently, p107 and p130 repressor potency was reduced by IE deletion. The juxtaposition of degron sequences and E2F interaction motifs appears to be a conserved feature across the RB family, suggesting the potential for repressor ubiquitination and specific target gene regulation. These findings establish a mechanistic link between regulation of RB family repressor potency and the ubiquitin-proteasome system.
Collapse
Key Words
- retinoblastoma, RB, p107, p130, E2F-DP, cyclin, CDK, protein stability, proteasome, degron, transcriptional repression.
Collapse
Affiliation(s)
- Satyaki Sengupta
- From the Department of Biochemistry and Molecular Biology, Graduate Program in Physiology, and
| | - Raj Lingnurkar
- From the Department of Biochemistry and Molecular Biology
| | | | | | - Parimal Kar
- From the Department of Biochemistry and Molecular Biology
| | - Michael Feig
- From the Department of Biochemistry and Molecular Biology
| | - Catherine A Wilson
- Department of Animal Science, Michigan State University, East Lansing, Michigan 48824
| | - Jason G Knott
- From the Department of Biochemistry and Molecular Biology, Department of Animal Science, Michigan State University, East Lansing, Michigan 48824
| | | | | |
Collapse
|