1
|
Catevas N, Tsipis A. Axial Ligand Effects on the Mechanism of Ru-CO Bond Photodissociation and Photophysical Properties of Ru(II)-Salen PhotoCORMs/Theranostics: A Density Functional Theory Study. Molecules 2025; 30:1147. [PMID: 40076369 PMCID: PMC11901629 DOI: 10.3390/molecules30051147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 02/23/2025] [Accepted: 02/26/2025] [Indexed: 03/14/2025] Open
Abstract
Density functional theory (DFT) calculations were employed to study a series of complexes of general formula [Ru(salen)(X)(CO)]0/-1 (X = Cl-, F-, SCN-, DMSO, Phosphabenzene, Phosphole, TPH, CN-, N3-, NO3-, CNH-, NHC, P(OH)3, PF3, PH3). The effect of ligands X on the Ru-CO bond was quantified by the trans-philicity, Δσ13C NMR parameter. The potential of Δσ13C to be used as a probe of the CO photodissociation by Ru(II) transition metal complexes is established upon comparing it with other trans-effect parameters. An excellent linear correlation is found between the energy barrier for the Ru-CO photodissociation and the Δσ13C parameter, paving the way for studying photoCORMs with the 13C NMR method. The strongest trans-effect on the Ru-CO bond in the [Ru(salen)(X)(CO)]0/-1 complexes are found when X = CNH-, NHC, and P(OH)3, while the weakest for X = Cl-, NO3- and DMSO trans-axial ligands. The Ru-CO bonding properties were scrutinized using Natural Bond Orbital (NBO), Natural Energy Decomposition Analysis (NEDA) and Natural Orbital of Chemical Valence (NOCV) methods. The nature of the Ru-CO bond is composite, i.e., electrostatic, covalent and charge transfer. Both donation and backdonation between CO ligand and Ru metal centre equally stabilize the Ru(II) complexes. Ru-CO photodissociation proceeds via a 3MC triplet excited state, exhibiting a conical intersection with the T13MLCT excited state. Calculations show that these complexes show bands within visible while they are expected to be red emitters. Therefore, the [Ru(salen)(X)(CO)]0/-1 complexes under study could potentially be used for dual action, photoCORMs and theranostics compounds.
Collapse
Affiliation(s)
| | - Athanassios Tsipis
- Laboratory of Inorganic Chemistry, Department of Chemistry, University of Ioannina, 45110 Ioannina, Greece;
| |
Collapse
|
2
|
Khaled RM, Abo-Elfadl MT, Radacki K, Abo Zeid MAM, Shehab OR, Abdel-Kader NS, Mostafa GAE, Ali EA, Al Neyadi SS, Mansour AM. Visible-light-induced CO-releasing properties and cytotoxicity of a Ru(II) carbonyl complex containing 2-(pyridin-2-yl)-quinoxaline. Dalton Trans 2025; 54:2529-2539. [PMID: 39751836 DOI: 10.1039/d4dt03082f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
Abstract
The photo-induced CO-releasing properties of the dark-stable complex [RuCl2(CO)2L] (L = 2-(pyridin-2-yl)quinoxaline) were investigated under 468 nm light exposure in the presence and absence of biomolecules such as histidine, calf thymus DNA and hen egg white lysozyme. The CO release kinetics were consistent regardless of the presence of these biomolecules, suggesting that they did not influence the CO release mechanism. The quinoxaline ligand demonstrated exceptional cytotoxicity against human acute monocytic leukemia cells (THP-1), with evidence of potential DNA damage ascertained by comet assay, while it remained non-toxic to normal kidney epithelial cells derived from African green monkey (Vero) cell lines. In contrast, upon light activation, the Ru(II) complex showed no toxicity against THP-1 cells but was detrimental to Vero cells. In human colorectal carcinoma (HCT-116) cells, the ligand and the Ru(II) complex produced ROS under light and dark conditions. However, HCT-116 cells retained their ability to consume oxygen and produce ATP following CO treatment, suggesting that the ROS levels were insufficient to cause significant cellular damage. Morphological features of apoptosis, including apoptotic bodies, chromatin condensation, cell shrinkage, and membrane leakage, were observed in the presence of both the ligand and its complex, irrespective of light exposure.
Collapse
Affiliation(s)
- Rabaa M Khaled
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt
| | - Mahmoud T Abo-Elfadl
- Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Dokki, Giza 12622, Egypt
- Biochemistry Department, Biotechnology Research Institute, National Research Centre, Dokki, Giza 12622, Egypt
| | - Krzysztof Radacki
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Mona A M Abo Zeid
- Cancer Biology and Genetics Laboratory, Centre of Excellence for Advanced Sciences, National Research Centre, Dokki, Giza 12622, Egypt
- Genetics and Cytology Department, Genetic Engineering and Biotechnology Research Institute, National Research Centre, Giza, Egypt
| | - Ola R Shehab
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt
| | - Nora S Abdel-Kader
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt
| | - Gamal A E Mostafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Essam A Ali
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Shaikha S Al Neyadi
- Department of Chemistry, United Arab Emirates University, Al-Ain, United Arab Emirates.
| | - Ahmed M Mansour
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt
- Department of Chemistry, United Arab Emirates University, Al-Ain, United Arab Emirates.
| |
Collapse
|
3
|
Kumar Yadav A, Singh V, Acharjee S, Saha S, Kushwaha R, Dutta A, Koch B, Banerjee S. Sonodynamic Cancer Therapy by Mn(I)-tricarbonyl Complexes via Ultrasound-triggered CO Release and ROS Generation. Chemistry 2025; 31:e202403454. [PMID: 39503625 DOI: 10.1002/chem.202403454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2024] [Revised: 10/29/2024] [Accepted: 11/06/2024] [Indexed: 11/08/2024]
Abstract
A novel ferrocene conjugated Mn(I)-tricarbonyl complex viz [Mn(Fc-tpy)(CO)3Br] (Mn2) where, Fc-tpy=4'-ferrocenyl-2,2':6',2''-terpyridine was synthesized and fully characterized along with its non-ferrocene analog [Mn(Ph-tpy)(CO)3Br] Ph-tpy=4'-phenyl-2,2':6',2''-terpyridine (Mn1) for ultrasound (US) activated anticancer applications. The X-ray structure of Mn2 confirmed its distorted octahedral geometry. Mn1 and Mn2, for the first time, showed US-triggered release of CO and ROS generation (1O2 and ⋅OH) in an aqueous solution from any Mn(I)-tricarbonyl complexes, indicating its potential for synergetic CO gas therapy and sonodynamic therapy. The above-mentioned in-solution chemistry was successfully translated into in vitro cellular models. These complexes showed unprecedented US-triggered toxicity against T-cell lymphoma and human breast cancer cells (IC50 for Mn2<1 μM) while were minimally toxic without US or against normal spleen and human embryonic kidney cells. Mn2 was ca. 12 fold more anticancer active than Mn1, indicating that the ferrocene conjugation augmented the US sensitivity. The apoptotic sonotoxicity of Mn2 was due to US-promoted mitochondrial depolarization via ROS generation and CO release. The apoptosis was triggered by caspase 3 activation. This is the first report of Mn(I)-tricarbonyl-based sonosensitizers for cancer SDT. Overall, this study, for the first time, establishes the effectiveness of 3d metal carbonyls in SDT.
Collapse
Affiliation(s)
- Ashish Kumar Yadav
- Department of Chemistry, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh, 221005, India
| | - Virendra Singh
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Sagar Acharjee
- Department of Chemistry, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh, 221005, India
| | - Sukanta Saha
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra, 400076, India
| | - Rajesh Kushwaha
- Department of Chemistry, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh, 221005, India
| | - Arnab Dutta
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai, Maharashtra, 400076, India
| | - Biplob Koch
- Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Samya Banerjee
- Department of Chemistry, Indian Institute of Technology (BHU) Varanasi, Uttar Pradesh, 221005, India
| |
Collapse
|
4
|
Zhang C, Huang S, Ding K, Wu H, Li M, Li T, Shen Z, Tai S, Li W. Tumor-Targeted CO Nanodelivery System Design and Therapy for Hepatocellular Carcinoma. Mol Pharm 2024; 21:5015-5027. [PMID: 39302817 DOI: 10.1021/acs.molpharmaceut.4c00437] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
In recent years, carbon monoxide (CO) has garnered increased attention as a novel green therapy for hepatocellular carcinoma (HCC) treatment. However, the CO donor is still limited in clinical application due to its lack of targeted ability and unstable release rate. Here, self-assembled amphiphilic nanomicelles glucose-polyethylene glycol (PEG)-lipoic acid (LA)-Fe2(CO)6 (Glu-Fe2(CO)6) are first designed as a CO donor and synthesized via a chemical method, combining glucose with Fe2(CO)6 through PEG-LA. Some advantages of this tumor-targeted Glu-Fe2(CO)6 delivery system include (I) good water-solubility, (II) the glutathione responsive CO slow release, (III) the active tumor-targeted ability of glucose as targeted ligands, and (IV) outstanding efficacy of antitumor and safety of CO therapy of HCC both in vitro and in vivo. These findings suggest that Glu-Fe2(CO)6 nanomicelles hold promise for enhancing antitumor therapeutic capabilities, presenting a novel tumor-targeted delivery strategy in gas therapy for HCC treatment.
Collapse
Affiliation(s)
- Congyi Zhang
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
- Department of Nutrition and Food Hygiene, School of Public Health, Harbin Medical University, Harbin 150081, China
| | - Shizhuan Huang
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Kunhao Ding
- Department of Pharmaceutics, Harbin Medical University-Daqing Campus, 1 Xinyang Road, Daqing 163319, China
| | - Haotian Wu
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Minghui Li
- Department of Pharmaceutics, Harbin Medical University-Daqing Campus, 1 Xinyang Road, Daqing 163319, China
| | - Tianwei Li
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Zibo Shen
- Department of Biomedical and Life Science, Institute of Life Sciences & Medicine, King's College London, London SE1 1UL, U.K
| | - Sheng Tai
- Department of Hepatic Surgery, Second Affiliated Hospital of Harbin Medical University, Harbin 150081, China
| | - Wenhua Li
- Department of Pharmaceutics, Harbin Medical University-Daqing Campus, 1 Xinyang Road, Daqing 163319, China
| |
Collapse
|
5
|
Liang RR, Yang Y, Han Z, Bakhmutov VI, Rushlow J, Fu Y, Wang KY, Zhou HC. Zirconium-Based Metal-Organic Frameworks with Free Hydroxy Groups for Enhanced Perfluorooctanoic Acid Uptake in Water. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2407194. [PMID: 38896032 DOI: 10.1002/adma.202407194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/10/2024] [Indexed: 06/21/2024]
Abstract
Perfluorooctanoic acid (PFOA) is a highly recalcitrant organic pollutant, and its bioaccumulation severely endangers human health. While various methods are developed for PFOA removal, the targeted design of adsorbents with high efficiency and reusability remains largely unexplored. Here the rational design and synthesis of two novel zirconium-based metal‒organic frameworks (MOFs) bearing free ortho-hydroxy sites, namely noninterpenetrated PCN-1001 and twofold interpenetrated PCN-1002, are presented. Single crystal analysis of the pure ligand reveals that intramolecular hydrogen bonding plays a pivotal role in directing the formation of MOFs with free hydroxy groups. Furthermore, the transformation from PCN-1001 to PCN-1002 is realized. Compared to PCN-1001, PCN-1002 displays higher chemical stability due to interpenetration, thereby demonstrating an exceptional PFOA adsorption capacity of up to 632 mg g-1 (1.53 mmol g-1), which is comparable to the reported record values. Moreover, PCN-1002 shows rapid kinetics, high selectivity, and long-life cycles in PFOA removal tests. Solid-state nuclear magnetic resonance results and density functional theory calculations reveal that multiple hydrogen bonds between the free ortho-hydroxy sites and PFOA, along with Lewis acid-base interaction, work collaboratively to enhance PFOA adsorption.
Collapse
Affiliation(s)
- Rong-Ran Liang
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Yihao Yang
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Zongsu Han
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | | | - Joshua Rushlow
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Yubin Fu
- Center for Advancing Electronics Dresden (cfaed) & Faculty of Chemistry and Food Chemistry, Technische Universität Dresden, Mommsenstrasse 4, 01062, Dresden, Germany
- Max Planck Institute of Microstructure Physics, Weinberg 2, 06120, Halle, Germany
| | - Kun-Yu Wang
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, TX, 77843, USA
| |
Collapse
|
6
|
Palominos F, Mella P, Guajardo K, Günther G, Vega A, Pizarro N. Photoinduced behaviour of N,N-bidentate manganese(I) and rhenium(I) tricarbonyl complexes for singlet oxygen generation and CO release. Photochem Photobiol Sci 2024; 23:119-132. [PMID: 38082202 DOI: 10.1007/s43630-023-00507-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/07/2023] [Indexed: 02/02/2024]
Abstract
The combined action of singlet oxygen (1O2) and photoinduced carbon monoxide (CO) released by tricarbonyl metal complexes is a promising synergic treatment against multi-resistant bacterial infections. In this work, we explore the use of a polydentate ligand (bpm = 2,2-bipyrimidine) that offers the opportunity to accommodate two metal centers exhibiting both singlet oxygen generation and carbon monoxide releasing properties in a single molecule. A series of monometallic ([(bpm)M(CO)3Br]; M = Mn, Re) and homo or hetero bimetallic ([Br(CO)3M(bpm)M'(CO)3Br]; M = Mn, Re) compounds were synthesized in moderate to good yields by modulating the metal precursor or the stoichiometry, also the syn:anti isomers ratio for the bimetallic complexes was dependent on the experimental conditions used. DFT modelling shows the anti-isomer is more stable than the syn-isomer by less than 8 kJ mol-1, which is consistent with those experimentally observed in terms of majority product and the effect of experimental conditions over the anti-syn ratio. The HOMO-LUMO gap is lower for the mono and bimetallic rhenium(I) compounds compared to the values for the manganese(I) analogues, while the heterometallic complex shows intermediate values for the anti-isomer. The photophysical characterization shows typical absorption and emission bands with MLCT character. In addition, CO-release and 1O2 generation quantum yields were evaluated for the monometallic Mnbpm and Rebpm homologues and compared with values obtained for the homo- and hetero-bimetallic complexes. Interestingly the replacement of a Mn(CO)3Br moiety in MnbpmMn by a Re(CO)3Br one makes the heterometallic MnbpmRe molecule a molecular oxygen sensitizer and partially retaining its carbon monoxide releasing ability.
Collapse
Affiliation(s)
- Franco Palominos
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Viña del Mar, Chile
- Programa de Doctorado en Fisicoquímica Molecular, Universidad Andrés Bello, Santiago, Chile
| | - Pablo Mella
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Viña del Mar, Chile
| | - Kevin Guajardo
- Facultad de Ciencias de la Vida, Carrera de Ingeniería en Biotecnología, Universidad Andres Bello, Viña del Mar, Chile
| | - Germán Günther
- Departamento de Química Orgánica y Fisicoquímica, Facultad de Ciencias Químicas y Farmacéuticas, Universidad de Chile, Santiago, Chile
| | - Andrés Vega
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Viña del Mar, Chile
- Centro para el Desarrollo de la Nanociencia y la Nanotecnología, CEDENNA, Santiago, Chile
| | - Nancy Pizarro
- Departamento de Ciencias Químicas, Facultad de Ciencias Exactas, Universidad Andres Bello, Viña del Mar, Chile.
| |
Collapse
|
7
|
Hu M, Zhou H, Wang Z, Du Y, Wang Y, Eerdun C, Zhu B. Synthesis, structure, CO releasing, and biological activities of new 1-D chain Mn(I)/Mn(II) visible light activated CO-releasing molecules (CORMs). J COORD CHEM 2023. [DOI: 10.1080/00958972.2023.2165070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Mixia Hu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Hohhot, China
| | - Haofei Zhou
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Hohhot, China
| | - Zhexu Wang
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Hohhot, China
| | - Yanqing Du
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Yuewu Wang
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Chaolu Eerdun
- College of Pharmacy, Inner Mongolia Medical University, Hohhot, China
| | - Baohua Zhu
- College of Chemistry and Chemical Engineering, Inner Mongolia University, Hohhot, China
- Inner Mongolia Key Laboratory of Fine Organic Synthesis, Hohhot, China
| |
Collapse
|
8
|
Photoactivatable properties of water-soluble fac-Mn(CO)3 bearing N∧O bidentate pyridine ligands. Polyhedron 2022. [DOI: 10.1016/j.poly.2022.116048] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
9
|
Wang M, Murata K, Koike Y, Jonusauskas G, Furet A, Bassani DM, Saito D, Kato M, Shimoda Y, Miyata K, Onda K, Ishii K. A Red‐Light‐Driven CO‐Releasing Complex: Photoreactivities and Excited‐State Dynamics of Highly Distorted Tricarbonyl Rhenium Phthalocyanines. Chemistry 2022; 28:e202200716. [DOI: 10.1002/chem.202200716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Indexed: 11/11/2022]
Affiliation(s)
- Mengfei Wang
- Institute of Industrial Science The University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 153-8505 Japan
| | - Kei Murata
- Institute of Industrial Science The University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 153-8505 Japan
| | - Yosuke Koike
- Institute of Industrial Science The University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 153-8505 Japan
| | | | - Amaury Furet
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255 F-33400 Talence France
| | - Dario M. Bassani
- Univ. Bordeaux, CNRS, Bordeaux INP, ISM, UMR 5255 F-33400 Talence France
| | - Daisuke Saito
- Department of Chemistry Faculty of Science Hokkaido University North-10 West-8, Kita-ku Sapporo Hokkaido 060-0810 Japan
- Department of Applied Chemistry for Environment School of Biological and Environmental Sciences Kwansei Gakuin University 2-1 Gakuen Sanda-shi Hyogo 669-1337 Japan
| | - Masako Kato
- Department of Chemistry Faculty of Science Hokkaido University North-10 West-8, Kita-ku Sapporo Hokkaido 060-0810 Japan
- Department of Applied Chemistry for Environment School of Biological and Environmental Sciences Kwansei Gakuin University 2-1 Gakuen Sanda-shi Hyogo 669-1337 Japan
| | - Yuushi Shimoda
- Department of Chemistry Faculty of Science Kyushu University 7-4-4 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Kiyoshi Miyata
- Department of Chemistry Faculty of Science Kyushu University 7-4-4 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Ken Onda
- Department of Chemistry Faculty of Science Kyushu University 7-4-4 Motooka, Nishi-ku Fukuoka 819-0395 Japan
| | - Kazuyuki Ishii
- Institute of Industrial Science The University of Tokyo 4-6-1 Komaba, Meguro-ku Tokyo 153-8505 Japan
| |
Collapse
|
10
|
Ossinger S, Prescimone A, Häussinger D, Wenger OS. Manganese(I) Complex with Monodentate Arylisocyanide Ligands Shows Photodissociation Instead of Luminescence. Inorg Chem 2022; 61:10533-10547. [PMID: 35768069 PMCID: PMC9377510 DOI: 10.1021/acs.inorgchem.2c01438] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Recently reported manganese(I) complexes with chelating arylisocyanide ligands exhibit luminescent metal-to-ligand charge-transfer (MLCT) excited states, similar to ruthenium(II) polypyridine complexes with the same d6 valence electron configuration used for many different applications in photophysics and photochemistry. However, chelating arylisocyanide ligands require substantial synthetic effort, and therefore it seemed attractive to explore the possibility of using more readily accessible monodentate arylisocyanides instead. Here, we synthesized the new Mn(I) complex [Mn(CNdippPhOMe2)6]PF6 with the known ligand CNdippPhOMe2 = 4-(3,5-dimethoxyphenyl)-2,6-diisopropylphenylisocyanide. This complex was investigated by NMR spectroscopy, single-crystal structure analysis, high-resolution electrospray ionization mass spectrometry (HR-ESI-MS) measurements, IR spectroscopy supported by density functional theory (DFT) calculations, cyclic voltammetry, and time-resolved as well as steady-state UV-vis absorption spectroscopy. The key finding is that the new Mn(I) complex is nonluminescent and instead undergoes arylisocyanide ligand loss during continuous visible laser irradiation into ligand-centered and charge-transfer absorption bands, presumably owed to the population of dissociative d-d excited states. Thus, it seems that chelating bi- or tridentate binding motifs are essential for obtaining emissive MLCT excited states in manganese(I) arylisocyanides. Our work contributes to understanding the basic properties of photoactive first-row transition metal complexes and could help advance the search for alternatives to precious metal-based luminophores, photocatalysts, and sensors.
Collapse
Affiliation(s)
- Sascha Ossinger
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Alessandro Prescimone
- Department
of Chemistry, University of Basel, Mattenstrasse 24a, 4058 Basel, Switzerland
| | - Daniel Häussinger
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| | - Oliver S. Wenger
- Department
of Chemistry, University of Basel, St. Johanns-Ring 19, 4056 Basel, Switzerland
| |
Collapse
|
11
|
Lee SX, Tan CH, Mah WL, Wong RCS, Manan NSA, Cheow YL, Sim KS, Tan KW. Group 6 photo-activable carbon monoxide-releasing molecules (PhotoCORMs) with 1’10-phenanthroline based ligand as potential anti-proliferative and anti-microbial agents. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120931] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|
12
|
Hau Gan C, Wai Tan K, Lee Ooi M, Wee Kent Liew J, Ling Ng Y, Ling Lau Y, Zhuang Ng Y, Hee Ng C, Hoe Tan C, C. S. Wong R. Synthesis, anticancer and antimalarial activities of organosulfur and organoselenium derivatives of cyclopentadienyliron dicarbonyl as photoCORMs. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120872] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
13
|
Gourdon L, Cariou K, Gasser G. Phototherapeutic anticancer strategies with first-row transition metal complexes: a critical review. Chem Soc Rev 2022; 51:1167-1195. [PMID: 35048929 DOI: 10.1039/d1cs00609f] [Citation(s) in RCA: 83] [Impact Index Per Article: 27.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Photodynamic therapy (PDT) and photoactivated chemotherapy (PACT) are therapeutic techniques based on a photosensitizer (PS) and light. These techniques allow the spatial and temporal control of the activation of drugs with light. Transition metal complexes are attractive compounds as photoactivatable prodrugs since their excited states can be appropriately designed by subtle modifications of the ligands, the metal centre, or the oxidation state. However, most metal-based PSs contain heavy metals such as Ru, Os, Ir, Pt or Au, which are expensive and non-earth-abundant, contrary to first-row transition metals. In this context, the exploration of the photochemical properties of complexes based on first-row transition metals appears to be extremely promising. This did encourage several groups to develop promising PSs based on these metals. This review presents up-to-date state-of-the-art information on first-row-transition metal complexes, from titanium to zinc in regard to their application as PSs for phototherapeutic applications.
Collapse
Affiliation(s)
- Lisa Gourdon
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France.
| | - Kevin Cariou
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France.
| | - Gilles Gasser
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences, Laboratory for Inorganic Chemical Biology, 75005 Paris, France.
| |
Collapse
|
14
|
Rajagopal A, Biddulph J, Tabrizi L, Fitzgerald-Hughes D, Pryce MT. Photoactive organometallic compounds as antimicrobial agents. ADVANCES IN INORGANIC CHEMISTRY 2022. [DOI: 10.1016/bs.adioch.2022.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Gessner N, Bäck AK, Knorr J, Nagel C, Marquetand P, Schatzschneider U, González L, Nuernberger P. Ultrafast photochemistry of a molybdenum carbonyl-nitrosyl complex with a triazacyclononane coligand. Phys Chem Chem Phys 2021; 23:24187-24199. [PMID: 34679150 DOI: 10.1039/d1cp03514b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Transition metal complexes capable of releasing small molecules such as carbon monoxide and nitric oxide upon photoactivation are versatile tools in various fields of chemistry and biology. In this work, we report on the ultrafast photochemistry of [Mo(CO)2(NO)(iPr3tacn)]PF6 (iPr3tacn = 1,4,7-triisopropyl-1,4,7-triazacyclononane), which was characterized under continuous illumination and with femtosecond UV-pump/UV-probe and UV-pump/MIR-probe spectroscopy, as well as with stationary calculations. The experimental and theoretical results demonstrate that while the photodissociation of one of the two CO ligands upon UV excitation can be inferred both on an ultrafast timescale as well as under exposure times of several minutes, no evidence of NO release is observed under the same conditions. The binding mode of the diatomic ligands is impacted by the electronic excitation, and transient intermediates are observed on a timescale of tens of picoseconds before CO is released from the coordination sphere. Furthermore, based on calculated potential energy scans, we suggest that photolysis of NO could be possible after a subsequent excitation of an electronically excited state with a second laser pulse, or by accessing low-lying excited states that otherwise cannot be directly excited by light.
Collapse
Affiliation(s)
- Niklas Gessner
- a Physikalische Chemie II, Ruhr-Universität Bochum, Universitätsstraße 150, D-44801 Bochum, Germany; Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| | - Anna K Bäck
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, A-1090 Wien, Austria
| | - Johannes Knorr
- Physikalische Chemie II, Ruhr-Universität Bochum, Universitätsstraße 150, D-44801 Bochum, Germany; Erlangen Graduate School in Advanced Optical Technologies (SAOT), Friedrich-Alexander University Erlangen-Nürnberg (FAU), Paul-Gordan-Straße 6, 91052 Erlangen, Germany
| | - Christoph Nagel
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Philipp Marquetand
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, A-1090 Wien, Austria
| | - Ulrich Schatzschneider
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Leticia González
- Institute of Theoretical Chemistry, Faculty of Chemistry, University of Vienna, Währinger Str. 17, A-1090 Wien, Austria
| | - Patrick Nuernberger
- a Physikalische Chemie II, Ruhr-Universität Bochum, Universitätsstraße 150, D-44801 Bochum, Germany; Institut für Physikalische und Theoretische Chemie, Universität Regensburg, Universitätsstraße 31, D-93053 Regensburg, Germany.
| |
Collapse
|
16
|
Ibrahim NM, Khaled RM, Ragheb MA, Radacki K, Farag AM, Mansour AM. Light-activated cytotoxicity of dicarbonyl Ru(II) complexes with a benzimidazole coligand towards breast cancer. Dalton Trans 2021; 50:15389-15399. [PMID: 34647551 DOI: 10.1039/d1dt02296b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Reaction between [RuCl2(CO)2]n and 1H-benzimidazol-2-ylmethyl-(N-phenyl)amine ligands (LR) functionalized with various electron-donating and electron-withdrawing substituents on the phenyl ring (R = H, 4-CH3, 4-Cl, 4-COOCH3, and 3-COOCH3) afforded the dark-stable photoactivatable carbon monoxide prodrugs of the general formula [RuCl2(CO)2LR]. Release of the CO molecules from the Ru(II) compounds was examined by monitoring the electronic and IR spectra upon illumination at 365 nm. A noticeable decrease in the intensities of the two characteristic ν(CO) modes for Ru(CO)II2 species, and the growth of two new bands for the mono-carbonyl species and free CO, were the main features of the photolysis profiles. The cytotoxicity of the complexes towards breast cancer (MCF-7) cells was assessed with and without illumination at 365 nm. All the complexes except that with a 4-COOCH3 group (IC50 = 45.08 ± 3.5 μM) are nontoxic under dark conditions. Upon illumination, all the compounds acquired cytotoxicity in the following order: H > 4-COOCH3 > 4-CH3 > 4-Cl > 3-COOCH3. Investigation of the cytotoxicity of the CO-depleted fragments showed that the light-induced cytotoxicity can be attributed to the liberated CO and CO-depleted metal fragments, including the liberated benzimidazole ligands.
Collapse
Affiliation(s)
- Nourhan M Ibrahim
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt.
| | - Rabaa M Khaled
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt.
| | - Mohamed A Ragheb
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt.
| | - Krzysztof Radacki
- Institut für Anorganische Chemie, Julius-Maximilians-Universität Würzburg, Am Hubland, D-97074 Würzburg, Germany
| | - Ahmad M Farag
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt.
| | - Ahmed M Mansour
- Department of Chemistry, Faculty of Science, Cairo University, Gamma Street, Giza, Cairo 12613, Egypt.
| |
Collapse
|
17
|
Schindler K, Zobi F. Photochemistry of Rhenium(i) Diimine Tricarbonyl Complexes in Biological Applications. Chimia (Aarau) 2021; 75:837-844. [PMID: 34728010 DOI: 10.2533/chimia.2021.837] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Luminescent rhenium complexes continue to be the focus of growing scientific interest for catalytic, diagnostic and therapeutic applications, with emphasis on the development of their photophysical and photochemical properties. In this short review, we explore such properties with a focus on the biological applications of the molecules. We discuss the importance of the ligand choice to the contribution and their involvement towards the most significant electronic transitions of the metal species and what strategies are used to exploit the potential of the molecules in medicinal applications. We begin by detailing the photophysics of the molecules; we then describe the three most common photoreactions of rhenium complexes as photosensitizers in H₂ production, photocatalysts in CO₂ reduction and photochemical ligand substitution. In the last part, we describe their applications as luminescent cellular probes and how photochemical ligand substitution is utilized in the development of photoactive carbon monoxide-releasing molecules as anticancer and antimicrobial agents.
Collapse
Affiliation(s)
- Kevin Schindler
- Department of Chemistry, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland
| | - Fabio Zobi
- Department of Chemistry, University of Fribourg, Chemin du Musée 10, CH-1700 Fribourg, Switzerland;,
| |
Collapse
|
18
|
Acosta A, Antipán J, Fernández M, Prado G, Sandoval-Altamirano C, Günther G, Gutiérrez-Urrutia I, Poblete-Castro I, Vega A, Pizarro N. Photochemistry of P,N-bidentate rhenium(i) tricarbonyl complexes: reactive species generation and potential application for antibacterial photodynamic therapy. RSC Adv 2021; 11:31959-31966. [PMID: 35495525 PMCID: PMC9041655 DOI: 10.1039/d1ra06416a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 09/14/2021] [Indexed: 12/22/2022] Open
Abstract
In this work, we describe the photoisomerization of facial rhenium(i) tricarbonyl complexes bearing P,N-bidentate pyridyl/phosphine ligands with different chelating rings and anions: RePNBr, RePNTfO, and RePNNBr, which are triggered under irradiation at 365 nm in solutions. The apparent photodegradation rate constants (k app) depend on the coordinating ability of the solvent, being lowest in acetonitrile. The k app value increases as the temperature rises, suggesting a reactive IL excited state thermally populated from the MLCT excited state involved. Using the Eyring equation, positive activation enthalpies (ΔH ≠) accompanied by high negative values for the activation entropy (ΔS ≠) were obtained. These results suggest whatever the P,N-ligand or anion, the reaction proceeds through a strongly solvated or a compact transition state, which is compatible with an associative mechanism for the photoisomerization. A 100-fold decrease in the log10 CFU value is observed for E. coli and S. aureus in irradiated solutions of the compounds, which follows the same tendency as their singlet oxygen generation quantum yield: RePNBr > RePNTfO > RePNNBr, while no antibacterial activity is observed in the darkness. This result indicates that the generation of singlet oxygen plays a key role in the antibacterial capacity of these complexes.
Collapse
Affiliation(s)
- Alison Acosta
- Universidad Técnica Federico Santa María, Centro de Biotecnología Avenida España 1680 Valparaíso Chile
| | - Javier Antipán
- Universidad Andres Bello, Facultad de Ciencias Exactas, Departamento de Ciencias Químicas Viña del Mar Chile
| | - Mariano Fernández
- Universidad Andres Bello, Facultad de Ciencias Exactas, Departamento de Ciencias Químicas Viña del Mar Chile
| | - Gaspar Prado
- Universidad Andres Bello, Facultad de Ciencias Exactas, Departamento de Ciencias Químicas Viña del Mar Chile
| | - Catalina Sandoval-Altamirano
- Universidad de Santiago de Chile (USACH), Facultad de Química y Biología, Departamento de Ciencias del Ambiente Chile
| | - Germán Günther
- Universidad de Chile, Facultad de Ciencias Químicas y Farmacéuticas, Departamento de Química Orgánica y Fisicoquímica Santiago Chile
| | - Izabook Gutiérrez-Urrutia
- Universidad Andrés Bello, Facultad de Ciencias de la Vida, Center for Bioinformatics and Integrative Biology (CBIB), Biosystems Engineering Laboratory Santiago Chile
| | - Ignacio Poblete-Castro
- Universidad Andrés Bello, Facultad de Ciencias de la Vida, Center for Bioinformatics and Integrative Biology (CBIB), Biosystems Engineering Laboratory Santiago Chile
| | - Andrés Vega
- Universidad Andres Bello, Facultad de Ciencias Exactas, Departamento de Ciencias Químicas Viña del Mar Chile
| | - Nancy Pizarro
- Universidad Andres Bello, Facultad de Ciencias Exactas, Departamento de Ciencias Químicas Viña del Mar Chile
| |
Collapse
|
19
|
Lee SX, Tan CH, Mah WL, Wong RCS, Cheow YL, Sim KS, Tan KW. Synthesis of group 6 (chromium, molybdenum, and tungsten) photoCORMs as potential antimicrobial and anticancer agents. Inorganica Chim Acta 2021. [DOI: 10.1016/j.ica.2021.120491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
|
20
|
Pickens RN, Judd GL, White JK. Photo-uncaging a Ru(II) intercalator via photodecomposition of a bridged Mn(I) photoCORM. Chem Commun (Camb) 2021; 57:7713-7716. [PMID: 34259683 DOI: 10.1039/d1cc02371c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A Ru(ii) intercalating complex capped with a Mn(i) photoCORM allows for a new mode of DNA intercalator delivery. The steric bulk of the Mn(i) photoCORM inhibits intercalation in the dark, and visible light irradiation (470 nm) dissociates the photoCORM, allowing for DNA intercalation of the Ru(ii) complex.
Collapse
Affiliation(s)
- Rachael N Pickens
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA.
| | - Grace L Judd
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA.
| | - Jessica K White
- Department of Chemistry and Biochemistry, Ohio University, Athens, OH 45701, USA.
| |
Collapse
|
21
|
|
22
|
Jia J, Morimoto T, Yamaguchi Y, Tanimoto H, Kakiuchi K. Photodissociation of the Product from a Transition-Metal Center Allows the Catalytic Cycle to Proceed: The Rhodium(I)-Catalyzed [2+2+1] Carbonylative Cycloaddition of Diynes. Org Lett 2021; 23:4893-4897. [PMID: 34105976 DOI: 10.1021/acs.orglett.1c01631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We describe the effective rhodium(I)-catalyzed [2+2+1] carbonylative cycloaddition of diynes, yielding cyclopentadienes (CPDs), under photoirradiation. The catalysis involves the promotion of the photodissociation of the product CPD, with the simultaneous production of an essential vacant coordination site on the rhodium for an unreacted substrate. The combined use of cationic [Rh(cod)2]BF4 as a catalyst and photoirradiation was also found to give various CPDs in high yields (≤96%).
Collapse
Affiliation(s)
- JingWen Jia
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), Ikoma, Nara 630-0192, Japan
| | - Tsumoru Morimoto
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), Ikoma, Nara 630-0192, Japan
| | - Yoshiko Yamaguchi
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), Ikoma, Nara 630-0192, Japan
| | - Hiroki Tanimoto
- Academic Assembly, Faculty of Pharmaceutical Sciences, University of Toyama, 2630 Sugitani, Toyama 930-0194, Japan
| | - Kiyomi Kakiuchi
- Division of Materials Science, Nara Institute of Science and Technology (NAIST), Ikoma, Nara 630-0192, Japan
| |
Collapse
|
23
|
|
24
|
Zhao J, Hu Y, Lin SW, Resch-Genger U, Zhang R, Wen J, Kong X, Qin A, Ou J. Enhanced luminescence intensity of near-infrared-sensitized upconversion nanoparticles via Ca 2+ doping for a nitric oxide release platform. J Mater Chem B 2021; 8:6481-6489. [PMID: 32608451 DOI: 10.1039/d0tb00088d] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Light-induced NO release based on exogenous NO donors has attracted substantial attention in clinical applications; the induction light source usually converts near-infrared light to blue or ultraviolet light. However, the low efficiency of near-infrared light-assisted chemical light energy conversion remains a challenge, especially for NaYF4:Yb3+/Tm3+ photoconverting near-infrared light to ultraviolet (UV) and blue light. In this paper, a luminescence-enhanced strategy is reported by doping Ca2+ into NaYF4:Yb3+/Tm3+ and coating it with NaGdF4 through a two-step solvothermal method. Then, UCNPs modified with methyl-β-cyclodextrin (M-β-CD) are loaded on a ruthenium nitrosyl complex [(3)Ru(NO)(Cl)] as nitric oxide release-molecules (NORMs). X-ray diffraction (XRD) and energy-dispersive X-ray spectroscopy (EDS) data demonstrated that Ca2+ was successfully doped into NaYF4:Yb3+/Tm3+ nanoparticles as the core, and a pure hexagonal phase, NaYF4, was obtained from the doping of Ca2+. TEM revealed that the crystallinity was significantly improved after Ca2+ doping, and the core-shell structure was successfully synthesized, with NaGdF4 directionally grown on the NaYF4:Ca/Yb/Tm core. Fluorescence tests showed that, especially in the ultraviolet and blue light excitation wavelength regions, the UC emission intensity of the Ca-doped NaYF4:Yb3+/Tm3+@NaGdF4 core-shell UCNPs increased by 302.95 times vs. NaYF4:Yb3+/Tm3+ UCNPs. Finally, the release of NO was tested by the Griess method. Under 980 nm irradiation, the cell viability distinctly decreased with increasing UCNPs@M-β-CD-NORMs concentration. This study shows that NORM release of NO is triggered by enhanced up-converted UV and blue light, which can be used for the development of UV photo-sensitive drugs.
Collapse
Affiliation(s)
- Jing Zhao
- Materials Science and Engineering College, Guilin University of Technology, Key Laboratory of New Processing Technology for Nonferrous Materials, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guangxi Collaborative Innovation Center for Exploration of Hidden Nonferrous Metal Deposits and Development of New Materials, Guilin University of Technology, 541004 Guilin, China.
| | - Yanbing Hu
- Materials Science and Engineering College, Guilin University of Technology, Key Laboratory of New Processing Technology for Nonferrous Materials, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guangxi Collaborative Innovation Center for Exploration of Hidden Nonferrous Metal Deposits and Development of New Materials, Guilin University of Technology, 541004 Guilin, China.
| | - Shao Wei Lin
- Materials Science and Engineering College, Guilin University of Technology, Key Laboratory of New Processing Technology for Nonferrous Materials, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guangxi Collaborative Innovation Center for Exploration of Hidden Nonferrous Metal Deposits and Development of New Materials, Guilin University of Technology, 541004 Guilin, China.
| | - U Resch-Genger
- Federal Institute for Materials Research and Testing (BAM), 12489 Berlin, Germany
| | - Rui Zhang
- Materials Science and Engineering College, Guilin University of Technology, Key Laboratory of New Processing Technology for Nonferrous Materials, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guangxi Collaborative Innovation Center for Exploration of Hidden Nonferrous Metal Deposits and Development of New Materials, Guilin University of Technology, 541004 Guilin, China.
| | - Jian Wen
- Experimental Center of Medical Sciences, Guilin Medical University, 541002 Guilin, China
| | - Xiangfei Kong
- Materials Science and Engineering College, Guilin University of Technology, Key Laboratory of New Processing Technology for Nonferrous Materials, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guangxi Collaborative Innovation Center for Exploration of Hidden Nonferrous Metal Deposits and Development of New Materials, Guilin University of Technology, 541004 Guilin, China.
| | - Aimiao Qin
- Materials Science and Engineering College, Guilin University of Technology, Key Laboratory of New Processing Technology for Nonferrous Materials, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guangxi Collaborative Innovation Center for Exploration of Hidden Nonferrous Metal Deposits and Development of New Materials, Guilin University of Technology, 541004 Guilin, China.
| | - Jun Ou
- Materials Science and Engineering College, Guilin University of Technology, Key Laboratory of New Processing Technology for Nonferrous Materials, Ministry of Education, Guangxi Key Laboratory of Optical and Electronic Materials and Devices, Guangxi Collaborative Innovation Center for Exploration of Hidden Nonferrous Metal Deposits and Development of New Materials, Guilin University of Technology, 541004 Guilin, China.
| |
Collapse
|
25
|
Zhou Y, Chen Y, He C. Solid-phase synthesis of peptide Mn(i)-carbonyl bioconjugates and their CO release upon visible light activation. Dalton Trans 2021; 50:4231-4236. [PMID: 33687425 DOI: 10.1039/d1dt00395j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
A one-pot synthetic route has been developed for the assembly of peptide Mn(i)-carbonyl bioconjugates. It allows the installation of a variety of chelating agents at the late stage, and after just one purification step the TAT-MnCO complexes can be obtained. The resulting bioconjugates showed different and tunable CO releasing kinetics upon visible light activation.
Collapse
Affiliation(s)
- Yi Zhou
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou 510640, China.
| | | | | |
Collapse
|
26
|
Beltrán TF, Zaragoza G, Delaude L. Synthesis and characterization of cationic manganese–carbonyl complexes bearing imidazol(in)ium-2-dithiocarboxylate ligands. Polyhedron 2021. [DOI: 10.1016/j.poly.2021.115055] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
27
|
Woods JJ, Wilson JJ. A Dinuclear Persulfide-Bridged Ruthenium Compound is a Hypoxia-Selective Hydrogen Sulfide (H 2 S) Donor. Angew Chem Int Ed Engl 2021; 60:1588-1592. [PMID: 33022823 PMCID: PMC7855780 DOI: 10.1002/anie.202012620] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Indexed: 12/18/2022]
Abstract
Hydrogen sulfide (H2 S) is a gaseous molecule that has received attention for its role in biological processes and therapeutic potential in diseases, such as ischemic reperfusion injury. Despite its clinical relevance, delivery of H2 S to biological systems is hampered by its toxicity at high concentrations. Herein, we report the first metal-based H2 S donor that delivers this gas selectively to hypoxic cells. We further show that H2 S release from this compound protects H9c2 rat cardiomyoblasts from an in vitro model of ischemic reperfusion injury. These results validate the utility of redox-activated metal complexes as hypoxia-selective H2 S-releasing agents for use as tools to study the role of this gaseous molecule in complex biological systems.
Collapse
Affiliation(s)
- Joshua J Woods
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
- Robert F. Smith School for Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY, 14853, USA
| | - Justin J Wilson
- Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY, 14853, USA
| |
Collapse
|
28
|
Woods JJ, Wilson JJ. A Dinuclear Persulfide‐Bridged Ruthenium Compound is a Hypoxia‐Selective Hydrogen Sulfide (H
2
S) Donor. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202012620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Joshua J. Woods
- Department of Chemistry and Chemical Biology Cornell University Ithaca NY 14853 USA
- Robert F. Smith School for Chemical and Biomolecular Engineering Cornell University Ithaca NY 14853 USA
| | - Justin J. Wilson
- Department of Chemistry and Chemical Biology Cornell University Ithaca NY 14853 USA
| |
Collapse
|
29
|
Weinstain R, Slanina T, Kand D, Klán P. Visible-to-NIR-Light Activated Release: From Small Molecules to Nanomaterials. Chem Rev 2020; 120:13135-13272. [PMID: 33125209 PMCID: PMC7833475 DOI: 10.1021/acs.chemrev.0c00663] [Citation(s) in RCA: 324] [Impact Index Per Article: 64.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Indexed: 02/08/2023]
Abstract
Photoactivatable (alternatively, photoremovable, photoreleasable, or photocleavable) protecting groups (PPGs), also known as caged or photocaged compounds, are used to enable non-invasive spatiotemporal photochemical control over the release of species of interest. Recent years have seen the development of PPGs activatable by biologically and chemically benign visible and near-infrared (NIR) light. These long-wavelength-absorbing moieties expand the applicability of this powerful method and its accessibility to non-specialist users. This review comprehensively covers organic and transition metal-containing photoactivatable compounds (complexes) that absorb in the visible- and NIR-range to release various leaving groups and gasotransmitters (carbon monoxide, nitric oxide, and hydrogen sulfide). The text also covers visible- and NIR-light-induced photosensitized release using molecular sensitizers, quantum dots, and upconversion and second-harmonic nanoparticles, as well as release via photodynamic (photooxygenation by singlet oxygen) and photothermal effects. Release from photoactivatable polymers, micelles, vesicles, and photoswitches, along with the related emerging field of photopharmacology, is discussed at the end of the review.
Collapse
Affiliation(s)
- Roy Weinstain
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Tomáš Slanina
- Institute
of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo nám. 2, 166 10 Prague, Czech Republic
| | - Dnyaneshwar Kand
- School
of Plant Sciences and Food Security, Faculty of Life Sciences, Tel-Aviv University, Tel-Aviv 6997801, Israel
| | - Petr Klán
- Department
of Chemistry and RECETOX, Faculty of Science, Masaryk University, Kamenice 5, 625 00 Brno, Czech Republic
| |
Collapse
|
30
|
Masuda Y, Yagami Y, Nakazawa K, Hirotsu M. Iron Carbonyl Complexes Containing N,C,S-Tridentate Ligands with Quinoline, Vinyl, and Benzenethiolate Units. Organometallics 2020. [DOI: 10.1021/acs.organomet.0c00621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Yuta Masuda
- Department of Chemistry, Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293, Japan
| | - Yuki Yagami
- Department of Chemistry, Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293, Japan
| | - Kotomi Nakazawa
- Department of Chemistry, Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293, Japan
| | - Masakazu Hirotsu
- Department of Chemistry, Faculty of Science, Kanagawa University, 2946 Tsuchiya, Hiratsuka, Kanagawa 259-1293, Japan
| |
Collapse
|
31
|
Spectroscopic and antimicrobial activity of photoactivatable tricarbonyl Mn(I) terpyridine compounds. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119806] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
32
|
Pordel S, Schrage BR, Ziegler CJ, White JK. Impact of steric bulk on photoinduced ligand exchange reactions in Mn(I) photoCORMs. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2020.119845] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
33
|
Weiss VC, Farias G, Amorim AL, Xavier FR, Camargo TP, Bregalda MB, Haukka M, Nordlander E, de Souza B, Peralta RA. Luminescent PhotoCORMs: Enabling/Disabling CO Delivery upon Blue Light Irradiation. Inorg Chem 2020; 59:13078-13090. [PMID: 32902965 DOI: 10.1021/acs.inorgchem.0c00638] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The new luminescent carbonyl compounds [Mn(Oxa-H)(CO)3Br] (1) and [Mn(Oxa-NMe2)(CO)3Br] (2) were synthesized and fully characterized. Complexes 1 and 2 showed CO release under blue light (λ453). Spectroscopic techniques and TD-DFT and SOC-TD-DFT calculations indicated that 1 and 2 release the Oxa-H and Oxa-NMe2 coligands in addition to the carbonyl ligands, increasing the luminescence during photoinduction.
Collapse
Affiliation(s)
- Vitor C Weiss
- Departamento de Química, LABINC, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Santa Catarina 88040-900, Brazil.,Instituto Federal de Educação, Ciência e Tecnologia de Santa Catarina - IFSC, Campus Florianópolis, Santa Catarina 88020-300, Brazil
| | - Giliandro Farias
- Departamento de Química, LABINC, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Santa Catarina 88040-900, Brazil
| | - André L Amorim
- Departamento de Química, LABINC, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Santa Catarina 88040-900, Brazil
| | - Fernando R Xavier
- Universidade do Estado de Santa Catarina (UDESC), Campus Joinville, 89219-710 Joinville, SC, Brazil
| | - Tiago P Camargo
- Departamento Acadêmico de Química e Biologia, Universidade Tecnológica Federal do Paraná (UTFPR), Campus Curitiba, Curitiba 81290-000, Brazil
| | - Mayana B Bregalda
- Departamento Acadêmico de Química e Biologia, Universidade Tecnológica Federal do Paraná (UTFPR), Campus Curitiba, Curitiba 81290-000, Brazil
| | - Matti Haukka
- Department of Chemistry, University of Jyväskylä, P.O. Box 35, FI-400 14 Jyväskylä, Finland
| | - Ebbe Nordlander
- Chemical Physics, Department of Chemistry, Lund University, P.O. Box 124, SE- 22100 Lund, Sweden
| | - Bernardo de Souza
- Departamento de Química, LABINC, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Santa Catarina 88040-900, Brazil
| | - Rosely A Peralta
- Departamento de Química, LABINC, Universidade Federal de Santa Catarina (UFSC), Florianópolis, Santa Catarina 88040-900, Brazil
| |
Collapse
|
34
|
Levin N, Marcolongo JP, Cadranel A, Slep LD. Time-Resolved Exploration of a photoCORM {Ru(bpy)} Model Compound. Inorg Chem 2020; 59:12075-12085. [DOI: 10.1021/acs.inorgchem.0c01025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Natalia Levin
- Facultad de Ciencias Exactas y Naturales, Departamento de Quı́mica Inorgánica, Analı́tica y Quı́mica Fı́sica, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
- Instituto de Quı́mica-Fı́sica de Materiales, Medio Ambiente y Energı́a, CONICET, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
- Max Planck Institute for Chemical Energy Conversion, Stiftstr. 34−36, 45470 Mülheim an der Ruhr, Germany
| | - Juan Pablo Marcolongo
- Facultad de Ciencias Exactas y Naturales, Departamento de Quı́mica Inorgánica, Analı́tica y Quı́mica Fı́sica, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
- Instituto de Quı́mica-Fı́sica de Materiales, Medio Ambiente y Energı́a, CONICET, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| | - Alejandro Cadranel
- Facultad de Ciencias Exactas y Naturales, Departamento de Quı́mica Inorgánica, Analı́tica y Quı́mica Fı́sica, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
- Instituto de Quı́mica-Fı́sica de Materiales, Medio Ambiente y Energı́a, CONICET, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
- Department of Chemistry and Pharmacy & Interdisciplinary Center for Molecular Materials, Friedrich-Alexander-Universität Erlangen-Nürnberg, Egerlandstrasse 3, 91058 Erlangen, Germany
| | - Leonardo Daniel Slep
- Facultad de Ciencias Exactas y Naturales, Departamento de Quı́mica Inorgánica, Analı́tica y Quı́mica Fı́sica, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
- Instituto de Quı́mica-Fı́sica de Materiales, Medio Ambiente y Energı́a, CONICET, Universidad de Buenos Aires, Pabellón 2, Ciudad Universitaria, C1428EHA Buenos Aires, Argentina
| |
Collapse
|
35
|
Water-soluble UV/visible light activated Mn-CO-releasing molecules: Synthesis, structure, CO releasing and biological activities evaluation. INORG CHEM COMMUN 2020. [DOI: 10.1016/j.inoche.2020.108093] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
36
|
Geri S, Krunclova T, Janouskova O, Panek J, Hruby M, Hernández‐Valdés D, Probst B, Alberto RA, Mamat C, Kubeil M, Stephan H. Light-Activated Carbon Monoxide Prodrugs Based on Bipyridyl Dicarbonyl Ruthenium(II) Complexes. Chemistry 2020; 26:10992-11006. [PMID: 32700815 PMCID: PMC7496190 DOI: 10.1002/chem.202002139] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Indexed: 12/13/2022]
Abstract
Two photoactivatable dicarbonyl ruthenium(II) complexes based on an amide-functionalised bipyridine scaffold (4-position) equipped with an alkyne functionality or a green-fluorescent BODIPY (boron-dipyrromethene) dye have been prepared and used to investigate their light-induced decarbonylation. UV/Vis, FTIR and 13 C NMR spectroscopies as well as gas chromatography and multivariate curve resolution alternating least-squares analysis (MCR-ALS) were used to elucidate the mechanism of the decarbonylation process. Release of the first CO molecule occurs very quickly, while release of the second CO molecule proceeds more slowly. In vitro studies using two cell lines A431 (human squamous carcinoma) and HEK293 (human embryonic kidney cells) have been carried out in order to characterise the anti-proliferative and anti-apoptotic activities. The BODIPY-labelled compound allows for monitoring the cellular uptake, showing fast internalisation kinetics and accumulation at the endoplasmic reticulum and mitochondria.
Collapse
Affiliation(s)
- Stepan Geri
- Institute of Radiopharmaceutical Cancer ResearchHelmholtz-Zentrum Dresden-RossendorfBautzner Landstrasse 40001328DresdenGermany
| | - Tereza Krunclova
- Department of Biological ModelsInstitute of Macromolecular ChemistryHeyrovsky Square 216206PragueCzech Republic
| | - Olga Janouskova
- Department of Biological ModelsInstitute of Macromolecular ChemistryHeyrovsky Square 216206PragueCzech Republic
| | - Jiri Panek
- Supramolecular Polymer SystemsInstitute of Macromolecular ChemistryHeyrovsky Square 216206PragueCzech Republic
| | - Martin Hruby
- Supramolecular Polymer SystemsInstitute of Macromolecular ChemistryHeyrovsky Square 216206PragueCzech Republic
| | | | - Benjamin Probst
- Department of ChemistryUniversity of ZurichWinterthurerstr. 1908057ZurichSwitzerland
| | - Roger A. Alberto
- Department of ChemistryUniversity of ZurichWinterthurerstr. 1908057ZurichSwitzerland
| | - Constantin Mamat
- Institute of Radiopharmaceutical Cancer ResearchHelmholtz-Zentrum Dresden-RossendorfBautzner Landstrasse 40001328DresdenGermany
| | - Manja Kubeil
- Institute of Radiopharmaceutical Cancer ResearchHelmholtz-Zentrum Dresden-RossendorfBautzner Landstrasse 40001328DresdenGermany
| | - Holger Stephan
- Institute of Radiopharmaceutical Cancer ResearchHelmholtz-Zentrum Dresden-RossendorfBautzner Landstrasse 40001328DresdenGermany
| |
Collapse
|
37
|
Cercola R, Fischer KC, Sherman SL, Garand E, Wong NGK, Hammerback LA, Lynam JM, Fairlamb IJS, Dessent CEH. Direct Measurement of the Visible to UV Photodissociation Processes for the PhotoCORM TryptoCORM. Chemistry 2020; 26:10297-10306. [PMID: 32275091 PMCID: PMC7496620 DOI: 10.1002/chem.202001077] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2020] [Revised: 04/08/2020] [Indexed: 11/22/2022]
Abstract
PhotoCORMs are light-triggered compounds that release CO for medical applications. Here, we apply laser spectroscopy in the gas phase to TryptoCORM, a known photoCORM that has been shown to destroy Escherichia coli upon visible-light activation. Our experiments allow us to map TryptoCORM's photochemistry across a wide wavelength range by using novel laser-interfaced mass spectrometry (LIMS). LIMS provides the intrinsic absorption spectrum of the photoCORM along with the production spectra of all of its ionic photoproducts for the first time. Importantly, the photoproduct spectra directly reveal the optimum wavelengths for maximizing CO ejection, and the extent to which CO ejection is compromised at redder wavelengths. A series of comparative studies were performed on TryptoCORM-CH3 CN which exists in dynamic equilibrium with TryptoCORM in solution. Our measurements allow us to conclude that the presence of the labile CH3 CN facilitates CO release over a wider wavelength range. This work demonstrates the potential of LIMS as a new methodology for assessing active agent release (e.g. CO, NO, H2 S) from light-activated prodrugs.
Collapse
Affiliation(s)
- Rosaria Cercola
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | | | - Summer L. Sherman
- Department of ChemistryUniversity of Wisconsin-MadisonMadisonWI53706USA
| | - Etienne Garand
- Department of ChemistryUniversity of Wisconsin-MadisonMadisonWI53706USA
| | | | | | - Jason M. Lynam
- Department of ChemistryUniversity of YorkHeslingtonYorkYO10 5DDUK
| | | | | |
Collapse
|
38
|
Kasiński A, Zielińska-Pisklak M, Oledzka E, Sobczak M. Smart Hydrogels - Synthetic Stimuli-Responsive Antitumor Drug Release Systems. Int J Nanomedicine 2020; 15:4541-4572. [PMID: 32617004 PMCID: PMC7326401 DOI: 10.2147/ijn.s248987] [Citation(s) in RCA: 94] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 03/28/2020] [Indexed: 12/19/2022] Open
Abstract
Among modern drug formulations, stimuli-responsive hydrogels also called "smart hydrogels" deserve a special attention. The basic feature of this system is the ability to change their mechanical properties, swelling ability, hydrophilicity, bioactive molecules permeability, etc., influenced by various stimuli, such as temperature, pH, electromagnetic radiation, magnetic field and biological factors. Therefore, stimuli-responsive matrices can be potentially used in tissue engineering, cell cultures and technology of innovative drug delivery systems (DDSs), releasing the active substances under the control of internal or external stimuli. Moreover, smart hydrogels can be used as injectable DDSs, due to gel-sol transition connected with in situ cross-linking process. Innovative smart hydrogel DDSs can be utilized as matrices for targeted therapy, which enhances the effectiveness of tumor chemotherapy and subsequently limits systemic toxicity. External stimulus sensitivity allows remote control over the drug release profile and gel formation. On the other hand, internal factors provide drg accumulation in tumor tissue and reduce the concentration of active drug form in healthy tissue. In this report, we summarise the basic knowledge and chemical strategies for the synthetic smart hydrogel DDSs applied in antitumor therapy.
Collapse
Affiliation(s)
- Adam Kasiński
- Department of Biomaterials Chemistry, Chair of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Warsaw02-097, Poland
| | - Monika Zielińska-Pisklak
- Department of Biomaterials Chemistry, Chair of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Warsaw02-097, Poland
| | - Ewa Oledzka
- Department of Biomaterials Chemistry, Chair of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Warsaw02-097, Poland
| | - Marcin Sobczak
- Department of Biomaterials Chemistry, Chair of Analytical Chemistry and Biomaterials, Faculty of Pharmacy, Medical University of Warsaw, Warsaw02-097, Poland
| |
Collapse
|
39
|
Meng J, Jin Z, Zhao P, Zhao B, Fan M, He Q. A multistage assembly/disassembly strategy for tumor-targeted CO delivery. SCIENCE ADVANCES 2020; 6:eaba1362. [PMID: 32440551 PMCID: PMC7228751 DOI: 10.1126/sciadv.aba1362] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/18/2020] [Indexed: 05/23/2023]
Abstract
CO gas molecule not only could selectively kill cancer cells but also exhibits limited anticancer efficacy because of the lack of active tumor-targeted accumulation capability. In this work, a multistage assembly/disassembly strategy is developed to construct a new intelligent nanomedicine by encapsulating a mitochondria-targeted and intramitochondrial microenvironment-responsive prodrug (FeCO-TPP) within mesoporous silica nanoparticle that is further coated with hyaluronic acid by step-by-step electrostatic assembly, realizing tumor tissue-cell-mitochondria-targeted multistage delivery and controlled release of CO in a step-by-step disassembly way. Multistage targeted delivery and controlled release of CO involve (i) the passive tumor tissue-targeted nanomedicine delivery, (ii) the active tumor cell-targeted nanomedicine delivery, (iii) the acid-responsive prodrug release, (iv) the mitochondria-targeted prodrug delivery, and (v) the ROS-responsive CO release. The developed nanomedicine has effectively augmented the efficacy and safety of CO therapy of cancer both in vitro and in vivo. The proposed multistage assembly/disassembly strategy opens a new window for targeted CO therapy.
Collapse
|
40
|
Stout MJ, Stefan A, Skelton BW, Sobolev AN, Massi M, Hochkoeppler A, Stagni S, Simpson PV. Synthesis and Photochemical Properties of Manganese(I) Tricarbonyl Diimine Complexes Bound to Tetrazolato Ligands. Eur J Inorg Chem 2020. [DOI: 10.1002/ejic.201900987] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Affiliation(s)
- Matthew J. Stout
- Curtin Institute for Functional Molecules and Interfaces School of Molecular and Life Sciences Curtin University Kent Street, Bentley 6102 Perth Australia
| | - Alessandra Stefan
- CSGI, Department of Chemistry School of Molecular and Life Sciences University of Florence 50019 Sesto Fiorentino (FI) Italy
- Department of Pharmacy and Biotechnology School of Molecular and Life Sciences University of Bologna Viale Risorgimento 4 40136 Bologna Italy
| | - Brian W. Skelton
- School of Molecular Sciences and CMCA School of Molecular and Life Sciences The University of Western Australia 35 Stirling Highway 6009 Perth Western Australia
| | - Alexandre N. Sobolev
- School of Molecular Sciences and CMCA School of Molecular and Life Sciences The University of Western Australia 35 Stirling Highway 6009 Perth Western Australia
| | - Massimiliano Massi
- Curtin Institute for Functional Molecules and Interfaces School of Molecular and Life Sciences Curtin University Kent Street, Bentley 6102 Perth Australia
| | - Alejandro Hochkoeppler
- CSGI, Department of Chemistry School of Molecular and Life Sciences University of Florence 50019 Sesto Fiorentino (FI) Italy
- Department of Pharmacy and Biotechnology School of Molecular and Life Sciences University of Bologna Viale Risorgimento 4 40136 Bologna Italy
| | - Stefano Stagni
- Department of Industrial Chemistry “Toso Montanari” School of Molecular and Life Sciences University of Bologna Viale Risorgimento 4 40136 Bologna Italy
| | - Peter V. Simpson
- Curtin Institute for Functional Molecules and Interfaces School of Molecular and Life Sciences Curtin University Kent Street, Bentley 6102 Perth Australia
| |
Collapse
|
41
|
Wright MA, Wooldridge T, O’Connell MA, Wright JA. Ferracyclic carbonyl complexes as anti-inflammatory agents. Chem Commun (Camb) 2020; 56:4300-4303. [DOI: 10.1039/d0cc01449d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Reaction of Fe(CO)4Br2 with 2-aminopyridine and 2-aminonapthalene yields ferracyclic iron(ii) complexes bearing two CO ligands. These release CO in the light, but suppress inflammation only in the dark.
Collapse
Affiliation(s)
- Mark A. Wright
- Energy Materials Laboratory
- School of Chemistry
- University of East Anglia
- Norwich Research Park
- Norwich
| | - Tyler Wooldridge
- School of Pharmacy
- University of East Anglia
- Norwich Research Park
- Norwich
- UK
| | - Maria A. O’Connell
- School of Pharmacy
- University of East Anglia
- Norwich Research Park
- Norwich
- UK
| | - Joseph A. Wright
- Energy Materials Laboratory
- School of Chemistry
- University of East Anglia
- Norwich Research Park
- Norwich
| |
Collapse
|
42
|
Pordel S, White JK. Impact of Mn(I) photoCORM ligand set on photochemical intermediate formation during visible light-activated CO release. Inorganica Chim Acta 2020. [DOI: 10.1016/j.ica.2019.119206] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
43
|
Suchland B, Malassa A, Görls H, Krieck S, Westerhausen M. Iron(I)‐Based Carbonyl Complexes with Bridging Thiolate Ligands as Light‐Triggered CO Releasing Molecules (photoCORMs). Z Anorg Allg Chem 2019. [DOI: 10.1002/zaac.201900162] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Affiliation(s)
- Benedikt Suchland
- Chair of Inorganic Chemistry 1 Friedrich Schiller University Jena Humboldtstraße 8 07743 Jena Germany
| | - Astrid Malassa
- Chair of Inorganic Chemistry 1 Friedrich Schiller University Jena Humboldtstraße 8 07743 Jena Germany
| | - Helmar Görls
- Chair of Inorganic Chemistry 1 Friedrich Schiller University Jena Humboldtstraße 8 07743 Jena Germany
| | - Sven Krieck
- Chair of Inorganic Chemistry 1 Friedrich Schiller University Jena Humboldtstraße 8 07743 Jena Germany
| | - Matthias Westerhausen
- Chair of Inorganic Chemistry 1 Friedrich Schiller University Jena Humboldtstraße 8 07743 Jena Germany
| |
Collapse
|
44
|
Kawahara B, Gao L, Cohn W, Whitelegge JP, Sen S, Janzen C, Mascharak PK. Diminished viability of human ovarian cancer cells by antigen-specific delivery of carbon monoxide with a family of photoactivatable antibody-photoCORM conjugates. Chem Sci 2019; 11:467-473. [PMID: 32190266 PMCID: PMC7067254 DOI: 10.1039/c9sc03166a] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 11/18/2019] [Indexed: 12/12/2022] Open
Abstract
Antibodies conjugated to a photoactive transition metal carbonyl complex afford antigen-directed delivery of cytotoxic carbon monoxide to ovarian cancer cells.
Carbon monoxide (CO)-releasing antibody conjugates were synthesized utilizing a photoactivatable CO-releasing molecule (photoCORM) and mouse monoclonal antibodies linked by a biotin-streptavidin system. Different monoclonal antibodies raised against different surface-expressed antigens that are implicated in ovarian cancer afforded a family of antibody-photoCORM conjugates (Ab-photoCORMs). In an immunosorbent/cell viability assay, Ab-photoCORMs accumulated onto ovarian cancer cells expressing the target antigens, delivering cytotoxic doses of CO in vitro. The results described here provide the first example of an “immunoCORM”, a proof-of-the-concept antibody-drug conjugate that delivers a gaseous molecule as a warhead to ovarian cancer.
Collapse
Affiliation(s)
- Brian Kawahara
- Department of Chemistry and Biochemistry , University of California , Santa Cruz , CA 95064 , USA .
| | - Lucy Gao
- Pasarow Mass Spectrometry Laboratory , Jane and Terry Semel Institute for Neuroscience and Human Behavior , University of California at Los Angeles , Los Angeles , CA 90095 , USA
| | - Whitaker Cohn
- Pasarow Mass Spectrometry Laboratory , Jane and Terry Semel Institute for Neuroscience and Human Behavior , University of California at Los Angeles , Los Angeles , CA 90095 , USA
| | - Julian P Whitelegge
- Pasarow Mass Spectrometry Laboratory , Jane and Terry Semel Institute for Neuroscience and Human Behavior , University of California at Los Angeles , Los Angeles , CA 90095 , USA
| | - Suvajit Sen
- Department of Obstetrics and Gynecology , David Geffen School of Medicine , University of California at Los Angeles , Los Angeles , CA 90095 , USA
| | - Carla Janzen
- Department of Obstetrics and Gynecology , David Geffen School of Medicine , University of California at Los Angeles , Los Angeles , CA 90095 , USA
| | - Pradip K Mascharak
- Department of Chemistry and Biochemistry , University of California , Santa Cruz , CA 95064 , USA .
| |
Collapse
|
45
|
Mn(I)-based photoCORMs for trackable, visible light-induced CO release and photocytotoxicity to cancer cells. Polyhedron 2019. [DOI: 10.1016/j.poly.2019.04.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
|
46
|
Pinto MN, Chakraborty I, Jimenez J, Murphy K, Wenger J, Mascharak PK. Therapeutic Potential of Two Visible Light Responsive Luminescent photoCORMs: Enhanced Cellular Internalization Driven by Lipophilicity. Inorg Chem 2019; 58:14522-14531. [DOI: 10.1021/acs.inorgchem.9b02121] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Miguel N. Pinto
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - Indranil Chakraborty
- Department of Chemistry and Biochemistry, Florida International University, 11200 SW Eighth Street, Miami, Florida 33199, United States
| | - Jorge Jimenez
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - Katelyn Murphy
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - John Wenger
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| | - Pradip K. Mascharak
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, 1156 High Street, Santa Cruz, California 95064, United States
| |
Collapse
|
47
|
Jiang Q, Xia Y, Barrett J, Mikhailovsky A, Wu G, Wang D, Shi P, Ford PC. Near-Infrared and Visible Photoactivation to Uncage Carbon Monoxide from an Aqueous-Soluble PhotoCORM. Inorg Chem 2019; 58:11066-11075. [DOI: 10.1021/acs.inorgchem.9b01581] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Affiliation(s)
- Qin Jiang
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
- School of Chemistry and Chemical Engineering, Jiangsu Ocean University, Lianyungang" 222005, Jiangsu, People’s Republic China
| | - Yingzi Xia
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Jacob Barrett
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Alexander Mikhailovsky
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Guang Wu
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| | - Daqi Wang
- School of Chemistry and Chemical Engineering, Liaocheng University, Liaocheng 252000, Shandong, People’s Republic China
| | - Pengfei Shi
- School of Chemistry and Chemical Engineering, Jiangsu Ocean University, Lianyungang" 222005, Jiangsu, People’s Republic China
| | - Peter C. Ford
- Department of Chemistry and Biochemistry, University of California, Santa Barbara, Santa Barbara, California 93106, United States
| |
Collapse
|
48
|
Divya D, Nagarajaprakash R, Vidhyapriya P, Sakthivel N, Manimaran B. Single-Pot Self-Assembly of Heteroleptic Mn(I)-Based Aminoquinonato-Bridged Ester/Amide-Functionalized Dinuclear Metallastirrups: Potential Anticancer and Visible-Light-Triggered CORMs. ACS OMEGA 2019; 4:12790-12802. [PMID: 31460403 PMCID: PMC6682026 DOI: 10.1021/acsomega.9b01438] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2019] [Accepted: 07/12/2019] [Indexed: 05/23/2023]
Abstract
Multicomponent self-assembly of Mn2(CO)10, a bis-chelating aminoquinonato (ON∩ON) bridge (L), and an ester/amide-functionalized flexible neutral ditopic linker (L') has resulted into the formation of M2LL'-type manganese(I)-based dinuclear metallastirrups of general formula [{(CO)3Mn(μ-η4-L)Mn(CO)3}(μ-L')] (1-10). Compounds 1-10 were accomplished via orthogonal bonding of the aminoquinone ligand (2,5-bis(n-butylamino)-1,4-benzoquinone/2,5-bis(phenethylamino)-1,4-benzoquinone) and ditopic pyridyl ligand to manganese carbonyl. The resultant metallastirrups were characterized using elemental analyses and IR, UV-vis, 1H NMR, and electrospray ionization-mass spectroscopic techniques. The molecular structure of 6 was confirmed by single-crystal X-ray diffraction methods. Furthermore, molecular recognition capabilities of 1, 5, 7, and 9 were evaluated with aromatic compounds containing hydroxy/amine functionalities. Anticancer activities of compounds 1-3, 5-7, 9, and 10 were investigated against three cancer cell lines, that is, lung (A549), colon (HCT-15), and cervical (HeLa) as well as on normal cells (HEK 293). Compound 9 showed a broad-spectrum inhibition toward these cancer cells upon exposure to visible light. The myoglobin assay was performed using UV-vis absorption spectroscopy to investigate the visible-light-triggered CO release from 5 and 9 that could be related to their ability to effectively inhibit cancer cells. In addition, morphological studies confirmed the induction of autophagy due to the treatment of cancer cells using compound 9.
Collapse
Affiliation(s)
- Dhanaraj Divya
- Department
of Chemistry and Department of Biotechnology, Pondicherry
University, Puducherry 605014, India
| | - Ramamurthy Nagarajaprakash
- Chemical
Sciences Research Group, Division of Research & Development, Lovely Professional University, Phagwara 144411, Punjab, India
| | - Pitchavel Vidhyapriya
- Department
of Chemistry and Department of Biotechnology, Pondicherry
University, Puducherry 605014, India
| | - Natarajan Sakthivel
- Department
of Chemistry and Department of Biotechnology, Pondicherry
University, Puducherry 605014, India
| | - Bala. Manimaran
- Department
of Chemistry and Department of Biotechnology, Pondicherry
University, Puducherry 605014, India
| |
Collapse
|
49
|
Computational Assessment of MLCT versus MC Stabilities in First‐to‐Third‐Row d
6
Pseudo‐Octahedral Transition Metal Complexes. J Comput Chem 2019; 40:2377-2390. [DOI: 10.1002/jcc.26014] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Revised: 06/11/2019] [Accepted: 06/11/2019] [Indexed: 11/07/2022]
|
50
|
Kubeil M, Joshi T, Wood BR, Stephan H. Synthesis, Structural Characterization and Photodecarbonylation Study of a Dicarbonyl Ruthenium(II)-Bisquinoline Complex. ChemistryOpen 2019; 8:637-642. [PMID: 31139553 PMCID: PMC6530819 DOI: 10.1002/open.201900111] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 05/03/2019] [Indexed: 02/01/2023] Open
Abstract
A photoactivatable ruthenium(II) carbonyl complex mer,cis-[Ru(II)Cl(BisQ)(CO)2]PF6 2 was prepared using a tridentate bisquinoline ligand (BisQ=(2,6-diquinolin-2-yl)pyridin). Compound 2 was thoroughly characterized by standard analytical methods and single crystal X-ray diffraction. The crystal structure of the complex cation reveals a distorted octahedral geometry. The decarbonylation upon exposure to 350 and 420 nm light was monitored by UV/VIS absorbance and Fourier transform infrared spectroscopies in acetonitrile and 1 % (v/v) DMSO in water, respectively. The kinetic of the photodecarbonylation has been elucidated by multivariate curve resolution alternating least-squares analysis. The stepwise decarbonylation follows a serial mechanism. The first decarbonylation occurs very quickly whereas the second decarbonylation step proceeds more slowly. Moreover, the second rate constant is lower in 1 % (v/v) DMSO in water than in acetonitrile. In comparison to 350 nm irradiation, exposure to 420 nm light in acetonitrile results in a lower second rate constant.
Collapse
Affiliation(s)
- Manja Kubeil
- Institute of Radiopharmaceutical Cancer Research Helmholtz – Zentrum Dresden – RossendorfBautzner Landstrasse 40001328DresdenGermany
| | - Tanmaya Joshi
- Institute of Radiopharmaceutical Cancer Research Helmholtz – Zentrum Dresden – RossendorfBautzner Landstrasse 40001328DresdenGermany
| | - Bayden R. Wood
- School of Chemistry and Centre for BiospectroscopyMonash UniversityClayton, Victoria3800Australia
| | - Holger Stephan
- Institute of Radiopharmaceutical Cancer Research Helmholtz – Zentrum Dresden – RossendorfBautzner Landstrasse 40001328DresdenGermany
| |
Collapse
|