1
|
La Manna S, Panzetta V, Di Natale C, Cipollone I, Monti M, Netti PA, Terán A, Sánchez-Peláez AE, Herrero S, Merlino A, Marasco D. Comparative Analysis of the Inhibitory Mechanism of Aβ 1-42 Aggregation by Diruthenium Complexes. Inorg Chem 2024; 63:10001-10010. [PMID: 38742626 DOI: 10.1021/acs.inorgchem.4c01218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
There is a growing interest in the search for metal-based therapeutics for protein misfolding disorders such as Alzheimer's disease (AD). A novel and largely unexplored class of metallodrugs is constituted by paddlewheel diruthenium complexes, which exhibit unusual water solubility and stability and unique coordination modes to proteins. Here, we investigate the ability of the complexes [Ru2Cl(DPhF)(O2CCH3)3]·H2O (1), [Ru2Cl(DPhF)2(O2CCH3)2]·H2O (2), and K2[Ru2(DPhF)(CO3)3]·3H2O (3) (DPhF- = N,N'-diphenylformamidinate) to interfere with the amyloid aggregation of the Aβ1-42 peptide. These compounds differ in charge and steric hindrance due to the coordination of a different number of bulky ligands. The mechanisms of action of the three complexes were studied by employing a plethora of physicochemical and biophysical techniques as well as cellular assays. All these studies converge on different mechanisms of inhibition of amyloid fibrillation: complexes 1 and 2 show a clear inhibitory effect due to an exchange ligand process in the Ru2 unit aided by aromatic interactions. Complex 3 shows no inhibition of aggregation, probably due to its negative charge in solution. This study demonstrates that slight variations in the ligands surrounding the bimetallic core can modulate the amyloid aggregation inhibition and supports the use of paddlewheel diruthenium complexes as promising therapeutics for Alzheimer's disease.
Collapse
Affiliation(s)
- Sara La Manna
- Department of Pharmacy, University of Naples "Federico II", Naples 80131, Italy
| | - Valeria Panzetta
- Department of Chemical, Materials, and Industrial Production Engineering (DICMaPI), University of Naples Federico II, Naples 80125, Italy
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Istituto Italiano di Tecnologia, Naples 80125, Italy
| | - Concetta Di Natale
- Department of Chemical, Materials, and Industrial Production Engineering (DICMaPI), University of Naples Federico II, Naples 80125, Italy
| | - Irene Cipollone
- Department of Chemical Sciences, University of Naples "Federico II", Naples 80126, Italy
- CEINGE Biotecnologie Avanzate "Franco Salvatore" S.c.a r.l., Naples 80131, Italy
| | - Maria Monti
- Department of Chemical Sciences, University of Naples "Federico II", Naples 80126, Italy
- CEINGE Biotecnologie Avanzate "Franco Salvatore" S.c.a r.l., Naples 80131, Italy
| | - Paolo A Netti
- Department of Chemical, Materials, and Industrial Production Engineering (DICMaPI), University of Naples Federico II, Naples 80125, Italy
- Interdisciplinary Research Centre on Biomaterials (CRIB), University of Naples Federico II, Istituto Italiano di Tecnologia, Naples 80125, Italy
| | - Aarón Terán
- MatMoPol Research Group, Department of Inorganic Chemistry, Faculty of Chemical Science, Complutense University of Madrid, Avenida Complutense s/n, Madrid 28040, Spain
- MUSICHEM Research Group, Department of Physics "E. Pancini", University of Naples Federico II, Complesso Universitario di Monte Sant'Angelo, Via Cinthia, 21, Naples 80126, Italy
| | - Ana E Sánchez-Peláez
- MatMoPol Research Group, Department of Inorganic Chemistry, Faculty of Chemical Science, Complutense University of Madrid, Avenida Complutense s/n, Madrid 28040, Spain
| | - Santiago Herrero
- MatMoPol Research Group, Department of Inorganic Chemistry, Faculty of Chemical Science, Complutense University of Madrid, Avenida Complutense s/n, Madrid 28040, Spain
| | - Antonello Merlino
- Department of Chemical Sciences, University of Naples "Federico II", Naples 80126, Italy
| | - Daniela Marasco
- Department of Pharmacy, University of Naples "Federico II", Naples 80131, Italy
| |
Collapse
|
2
|
Masroor A, Zaidi N, Nabi F, Malik S, Zehra S, Arjmand F, Naseem N, Khan RH. Biophysical insight into anti-amyloidogenic nature of novel ionic Co(II)(phen)(H 2O) 4] +[glycinate] - chemotherapeutic drug candidate against human lysozyme aggregation. Biophys Chem 2024; 308:107214. [PMID: 38428228 DOI: 10.1016/j.bpc.2024.107214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/10/2024] [Accepted: 02/25/2024] [Indexed: 03/03/2024]
Abstract
In the recent past, there has been an ever-increasing interest in the search for metal-based therapeutic drug candidates for protein misfolding disorders (PMDs) particularly neurodegenerative disorders such as Alzheimer's, Parkinson's, Prion's diseases, and amyotrophic lateral sclerosis. Also, different amyloidogenic variants of human lysozyme (HL) are involved in hereditary systemic amyloidosis. Metallo-therapeutic agents are extensively studied as antitumor agents, however, they are relatively unexplored for the treatment of non-neuropathic amyloidoses. In this work, inhibition potential of a novel ionic cobalt(II) therapeutic agent (CoTA) of the formulation [Co(phen)(H2O)4]+[glycinate]- is evaluated against HL fibrillation. Various biophysical techniques viz., dye-binding assays, dynamic light scattering (DLS), differential scanning calorimetry (DSC), electron microscopy, and molecular docking experiments validate the proposed mechanism of inhibition of HL fibrillation by CoTA. The experimental corroborative results of these studies reveal that CoTA can suppress and slow down HL fibrillation at physiological temperature and pH. DLS and 1-anilino-8-naphthalenesulfonate (ANS) assay show that reduced fibrillation in the presence of CoTA is marked by a significant decrease in the size and hydrophobicity of the aggregates. Fluorescence quenching and molecular docking results demonstrate that CoTA binds moderately to the aggregation-prone region of HL (Kb = 6.6 × 104 M-1), thereby, inhibiting HL fibrillation. In addition, far-UV CD and DSC show that binding of CoTA to HL does not cause any change in the stability of HL. More importantly, CoTA attenuates membrane damaging effects of HL aggregates against RBCs. This study identifies inorganic metal complexes as a therapeutic intervention for systemic amyloidosis.
Collapse
Affiliation(s)
- Aiman Masroor
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, U.P 202002, India
| | - Nida Zaidi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, U.P 202002, India
| | - Faisal Nabi
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, U.P 202002, India
| | - Sadia Malik
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, U.P 202002, India
| | - Siffeen Zehra
- Department of Chemistry, Aligarh Muslim University, Aligarh, U.P 202002, India
| | - Farukh Arjmand
- Department of Chemistry, Aligarh Muslim University, Aligarh, U.P 202002, India
| | - Nida Naseem
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, U.P 202002, India
| | - Rizwan Hasan Khan
- Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh, U.P 202002, India.
| |
Collapse
|
3
|
La Manna S, Di Natale C, Panzetta V, Leone M, Mercurio FA, Cipollone I, Monti M, Netti PA, Ferraro G, Terán A, Sánchez-Peláez AE, Herrero S, Merlino A, Marasco D. A Diruthenium Metallodrug as a Potent Inhibitor of Amyloid-β Aggregation: Synergism of Mechanisms of Action. Inorg Chem 2024; 63:564-575. [PMID: 38117944 PMCID: PMC10777406 DOI: 10.1021/acs.inorgchem.3c03441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/29/2023] [Accepted: 11/29/2023] [Indexed: 12/22/2023]
Abstract
The physical and chemical properties of paddlewheel diruthenium compounds are highly dependent on the nature of the ligands surrounding the bimetallic core. Herein, we compare the ability of two diruthenium compounds, [Ru2Cl(D-p-FPhF)(O2CCH3)3]·H2O (1) (D-p-FPhF- = N,N'-bis(4-fluorophenyl)formamidinate) and K3[Ru2(O2CO)4]·3H2O (2), to act as inhibitors of amyloid aggregation of the Aβ1-42 peptide and its peculiar fragments, Aβ1-16 and Aβ21-40. A wide range of biophysical techniques has been used to determine the inhibition capacity against aggregation and the possible mechanism of action of these compounds (Thioflavin T fluorescence and autofluorescence assays, UV-vis absorption spectroscopy, circular dichroism, nuclear magnetic resonance, mass spectrometry, and electron scanning microscopy). Data show that the most effective inhibitory effect is shown for compound 1. This compound inhibits fiber formation and completely abolishes the cytotoxicity of Aβ1-42. The antiaggregatory capacity of this complex can be explained by a binding mechanism of the dimetallic units to the peptide chain along with π-π interactions between the formamidinate ligand and the aromatic side chains. The results suggest the potential use of paddlewheel diruthenium complexes as neurodrugs and confirm the importance of the steric and charge effects on the properties of diruthenium compounds.
Collapse
Affiliation(s)
- Sara La Manna
- Department
of Pharmacy, University of Naples “Federico
II”, 80131 Naples, Italy
| | - Concetta Di Natale
- Department
of Chemical, Materials, and Industrial Production Engineering (DICMaPI), University of Naples Federico II, 80125 Naples, Italy
| | - Valeria Panzetta
- Department
of Chemical, Materials, and Industrial Production Engineering (DICMaPI), University of Naples Federico II, 80125 Naples, Italy
- Interdisciplinary
Research Centre on Biomaterials (CRIB), University of Naples Federico II, Istituto Italiano di Tecnologia, 80125 Naples, Italy
| | - Marilisa Leone
- Institute
of Biostructures and Bioimaging - CNR, 80145 Naples, Italy
| | | | - Irene Cipollone
- Department
of Chemical Sciences, University of Naples
“Federico II”, 80126 Naples, Italy
- CEINGE
Biotecnologie
Avanzate “Franco Salvatore” S.c.a r.l., 80131 Naples, Italy
| | - Maria Monti
- Department
of Chemical Sciences, University of Naples
“Federico II”, 80126 Naples, Italy
- CEINGE
Biotecnologie
Avanzate “Franco Salvatore” S.c.a r.l., 80131 Naples, Italy
| | - Paolo A. Netti
- Department
of Chemical, Materials, and Industrial Production Engineering (DICMaPI), University of Naples Federico II, 80125 Naples, Italy
- Interdisciplinary
Research Centre on Biomaterials (CRIB), University of Naples Federico II, Istituto Italiano di Tecnologia, 80125 Naples, Italy
| | - Giarita Ferraro
- Department
of Chemical Sciences, University of Naples
“Federico II”, 80126 Naples, Italy
| | - Aarón Terán
- MatMoPol
Research Group, Department of Inorganic Chemistry, Faculty of Chemical
Science, Complutense University of Madrid, Avenida Complutense s/n, 28040 Madrid, Spain
| | - Ana E. Sánchez-Peláez
- MatMoPol
Research Group, Department of Inorganic Chemistry, Faculty of Chemical
Science, Complutense University of Madrid, Avenida Complutense s/n, 28040 Madrid, Spain
| | - Santiago Herrero
- MatMoPol
Research Group, Department of Inorganic Chemistry, Faculty of Chemical
Science, Complutense University of Madrid, Avenida Complutense s/n, 28040 Madrid, Spain
| | - Antonello Merlino
- Department
of Chemical Sciences, University of Naples
“Federico II”, 80126 Naples, Italy
| | - Daniela Marasco
- Department
of Pharmacy, University of Naples “Federico
II”, 80131 Naples, Italy
- Institute
of Biostructures and Bioimaging - CNR, 80145 Naples, Italy
| |
Collapse
|
4
|
Choi M, Ryu J, Vu HD, Kim D, Youn YJ, Park MH, Huynh PT, Hwang GB, Youn SW, Jeong YH. Transferrin-Conjugated Melittin-Loaded L-Arginine-Coated Iron Oxide Nanoparticles for Mitigating Beta-Amyloid Pathology of the 5XFAD Mouse Brain. Int J Mol Sci 2023; 24:14954. [PMID: 37834402 PMCID: PMC10573775 DOI: 10.3390/ijms241914954] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Alzheimer's disease (AD) is one of the most prevalent neurodegenerative diseases and a major contributor to dementia. Although the cause of this condition has been identified long ago as aberrant aggregations of amyloid and tau proteins, effective therapies for it remain elusive. The complexities of drug development for AD treatment are often compounded by the impermeable blood-brain barrier and low-yield brain delivery. In addition, the use of high drug concentrations to overcome this challenge may entail side effects. To address these challenges and enhance the precision of delivery into brain regions affected by amyloid aggregation, we proposed a transferrin-conjugated nanoparticle-based drug delivery system. The transferrin-conjugated melittin-loaded L-arginine-coated iron oxide nanoparticles (Tf-MeLioNs) developed in this study successfully mitigated melittin-induced cytotoxicity and hemolysis in the cell culture system. In the 5XFAD mouse brain, Tf-MeLioNs remarkably reduced amyloid plaque accumulation, particularly in the hippocampus. This study suggested Tf-LioNs as a potential drug delivery platform and Tf-MeLioNs as a candidate for therapeutic drug targeting of amyloid plaques in AD. These findings provide a foundation for further exploration and advancement in AD therapeutics.
Collapse
Affiliation(s)
- Moonseok Choi
- Department of Neurodegenerative Diseases Research Group, Korea Brain Research Institute, 61, Cheomdan ro, Dong gu, Daegu 41062, Republic of Korea; (M.C.); (D.K.); (Y.-J.Y.); (G.-B.H.)
| | - Junghwa Ryu
- Department of Radiology, School of Medicine, Daegu Catholic University, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Republic of Korea; (J.R.); (H.D.V.); (M.H.P.); (P.T.H.)
| | - Huy Duc Vu
- Department of Radiology, School of Medicine, Daegu Catholic University, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Republic of Korea; (J.R.); (H.D.V.); (M.H.P.); (P.T.H.)
| | - Dongsoo Kim
- Department of Neurodegenerative Diseases Research Group, Korea Brain Research Institute, 61, Cheomdan ro, Dong gu, Daegu 41062, Republic of Korea; (M.C.); (D.K.); (Y.-J.Y.); (G.-B.H.)
| | - Young-Jin Youn
- Department of Neurodegenerative Diseases Research Group, Korea Brain Research Institute, 61, Cheomdan ro, Dong gu, Daegu 41062, Republic of Korea; (M.C.); (D.K.); (Y.-J.Y.); (G.-B.H.)
| | - Min Hui Park
- Department of Radiology, School of Medicine, Daegu Catholic University, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Republic of Korea; (J.R.); (H.D.V.); (M.H.P.); (P.T.H.)
| | - Phuong Tu Huynh
- Department of Radiology, School of Medicine, Daegu Catholic University, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Republic of Korea; (J.R.); (H.D.V.); (M.H.P.); (P.T.H.)
| | - Gyu-Bin Hwang
- Department of Neurodegenerative Diseases Research Group, Korea Brain Research Institute, 61, Cheomdan ro, Dong gu, Daegu 41062, Republic of Korea; (M.C.); (D.K.); (Y.-J.Y.); (G.-B.H.)
| | - Sung Won Youn
- Department of Radiology, School of Medicine, Daegu Catholic University, 33, Duryugongwon-ro 17-gil, Nam-gu, Daegu 42472, Republic of Korea; (J.R.); (H.D.V.); (M.H.P.); (P.T.H.)
| | - Yun Ha Jeong
- Department of Neurodegenerative Diseases Research Group, Korea Brain Research Institute, 61, Cheomdan ro, Dong gu, Daegu 41062, Republic of Korea; (M.C.); (D.K.); (Y.-J.Y.); (G.-B.H.)
| |
Collapse
|
5
|
Sofińska K, Batys P, Cernescu A, Ghosh D, Skirlińska-Nosek K, Barbasz J, Seweryn S, Wilkosz N, Riek R, Szymoński M, Lipiec E. Nanoscale insights into the local structural rearrangements of amyloid-β induced by bexarotene. NANOSCALE 2023; 15:14606-14614. [PMID: 37614107 DOI: 10.1039/d3nr01608k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
A better understanding of the abnormal protein aggregation and the effect of anti-aggregation agents on the fibrillation pathways and the secondary structure of aggregates can determine strategies for the early treatment of dementia. Herein, we present a combination of experimental and theoretical studies providing new insights into the influence of the anti-aggregation drug bexarotene on the secondary structure of individual amyloid-β aggregates and its primary aggregation. The molecular rearrangements and the spatial distribution of β-sheets within individual aggregates were monitored at the nanoscale with infrared nanospectroscopy. We observed that bexarotene limits the parallel β-sheets formation, known to be highly abundant in fibrils at later phases of the amyloid-β aggregation composed of in-register cross-β structure. Moreover, we applied molecular dynamics to provide molecular-level insights into the investigated system. Both theoretical and experimental results revealed that bexarotene slows down the protein aggregation process via steric effects, largely prohibiting the antiparallel to parallel β-sheet rearrangement. We also found that bexarotene interacts not only via the single hydrogen bond formation with the peptide backbone but also with the amino acid side residue via a hydrophobic effect. The studied model of the drug-amyloid-β interaction contributes to a better understanding of the inhibition mechanism of the amyloid-β aggregation by the small molecule drugs. However, our nanoscale findings need to meet in vivo research requiring different analytical approaches.
Collapse
Affiliation(s)
- Kamila Sofińska
- Jagiellonian University, Faculty of Physics, Astronomy and Applied Computer Science, M. Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348 Krakow, Poland.
| | - Piotr Batys
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | | | - Dhiman Ghosh
- ETH Zürich, Laboratory of Physical Chemistry, 8093 Zürich, Switzerland
| | - Katarzyna Skirlińska-Nosek
- Jagiellonian University, Faculty of Physics, Astronomy and Applied Computer Science, M. Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348 Krakow, Poland.
- Jagiellonian University, Doctoral School of Exact and Natural Sciences, Krakow, Poland
| | - Jakub Barbasz
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, 30-239 Krakow, Poland
| | - Sara Seweryn
- Jagiellonian University, Faculty of Physics, Astronomy and Applied Computer Science, M. Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348 Krakow, Poland.
- Jagiellonian University, Doctoral School of Exact and Natural Sciences, Krakow, Poland
| | - Natalia Wilkosz
- Jagiellonian University, Faculty of Physics, Astronomy and Applied Computer Science, M. Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348 Krakow, Poland.
- AGH University of Science and Technology, Faculty of Physics and Applied Computer Science, Reymonta 19, 30-059 Krakow, Poland
| | - Roland Riek
- ETH Zürich, Laboratory of Physical Chemistry, 8093 Zürich, Switzerland
| | - Marek Szymoński
- Jagiellonian University, Faculty of Physics, Astronomy and Applied Computer Science, M. Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348 Krakow, Poland.
| | - Ewelina Lipiec
- Jagiellonian University, Faculty of Physics, Astronomy and Applied Computer Science, M. Smoluchowski Institute of Physics, Łojasiewicza 11, 30-348 Krakow, Poland.
| |
Collapse
|
6
|
García-García A, Rojas S, Rodríguez-Diéguez A. Therapy and diagnosis of Alzheimer's disease: from discrete metal complexes to metal-organic frameworks. J Mater Chem B 2023; 11:7024-7040. [PMID: 37435638 DOI: 10.1039/d3tb00427a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder affecting 44 million people worldwide. Although many issues (pathogenesis, genetics, clinical features, and pathological aspects) are still unknown, this disease is characterized by noticeable hallmarks such as the formation of β-amyloid plaques, hyperphosphorylation of tau proteins, the overproduction of reactive oxygen species, and the reduction of acetylcholine levels. There is still no cure for AD and the current treatments are aimed at regulating the cholinesterase levels, attenuating symptoms temporarily rather than preventing the AD progression. In this context, coordination compounds are regarded as a promissing tool in AD treatment and/or diagnosis. Coordination compounds (discrete or polymeric) possess several features that make them an interesting option for developing new drugs for AD (good biocompatibility, porosity, synergetic effects of ligand-metal, fluorescence, particle size, homogeneity, monodispersity, etc.). This review discusses the recent progress in the development of novel discrete metal complexes and metal-organic frameworks (MOFs) for the treatment, diagnosis and theragnosis of AD. These advanced therapies for AD treatment are organized according to the target: Aβ peptides, hyperphosphorylated tau proteins, synaptic dysfunction, and mitochondrial failure with subsequent oxidative stress.
Collapse
Affiliation(s)
- Amalia García-García
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, Av. Fuentenueva S/N, 18071 Granada, Spain.
- Centro de Química del Instituto de Ciencias, Benemérita Universidad Autónoma de Puebla, 18 sur & Av. San Claudio, Col. San Manuel, 72570 Puebla, Mexico
| | - Sara Rojas
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, Av. Fuentenueva S/N, 18071 Granada, Spain.
| | - Antonio Rodríguez-Diéguez
- Department of Inorganic Chemistry, Faculty of Science, University of Granada, Av. Fuentenueva S/N, 18071 Granada, Spain.
| |
Collapse
|
7
|
Kola A, Lamponi S, Currò F, Valensin D. A Comparative Study between Lycorine and Galantamine Abilities to Interact with AMYLOID β and Reduce In Vitro Neurotoxicity. Int J Mol Sci 2023; 24:2500. [PMID: 36768823 PMCID: PMC9916559 DOI: 10.3390/ijms24032500] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 01/22/2023] [Accepted: 01/23/2023] [Indexed: 01/31/2023] Open
Abstract
Galantamine is a natural alkaloid extracted from the Amaryllidaceae plants and is used as the active ingredient of a drug approved for the treatment of the early stages of Alzheimer's disease. It mainly acts as an acetylcholinesterase (AChE) inhibitor, increasing concentrations of the acetylcholine neurotransmitter. Recent cellular studies have also shown the ability of galantamine to protect SH-SY5Y cell lines against amyloid-β (Aβ)-induced toxicity. Such investigations have supported and validated further in-depth studies for understanding the chemical and molecular features associated with galantamine-protective abilities. In addition to galantamine, other natural alkaloids are known to possess AChE inhibitory activity; among them lycorine has been extensively investigated for its antibacterial, anti-inflammatory and antitumoral activities as well. Despite its interesting biological properties, lycorine's neuroprotective functions against Aβ-induced damages have not been explored so far. In this research study, the ability of galantamine and lycorine to suppress Aβ-induced in vitro neuronal toxicity was evaluated by investigating the chemical interactions of the two alkaloids with Aβ peptide. A multi-technique spectroscopic analysis and cellular cytotoxicity assays were applied to obtain new insights on these molecular associations. The comparison between the behaviors exhibited by the two alkaloids indicates that both compounds possess analogue abilities to interact with the amyloidogenic peptide and protect cells.
Collapse
Affiliation(s)
- Arian Kola
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Stefania Lamponi
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Francesco Currò
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
| | - Daniela Valensin
- Department of Biotechnology, Chemistry and Pharmacy, University of Siena, Via Aldo Moro 2, 53100 Siena, Italy
- CIRMMP, Via Luigi Sacconi 6, 50019 Firenze, Italy
| |
Collapse
|
8
|
Kwak J, Woo J, Park S, Lim MH. Rational design of photoactivatable metal complexes to target and modulate amyloid-β peptides. J Inorg Biochem 2023; 238:112053. [PMID: 36347209 DOI: 10.1016/j.jinorgbio.2022.112053] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 09/25/2022] [Accepted: 10/25/2022] [Indexed: 11/08/2022]
Abstract
The accumulation of amyloid-β (Aβ) aggregates is found in the brains of Alzheimer's disease patients. Thus, numerous efforts have been made to develop chemical reagents capable of targeting Aβ peptides and controlling their aggregation. In particular, tunable coordination and photophysical properties of transition metal complexes, with variable oxidation and spin states on the metal centers, can be utilized to probe Aβ aggregates and alter their aggregation profiles. In this review, we illustrate some rational strategies for designing photoactivatable metal complexes as chemical sensors for Aβ peptides or modulators against their aggregation pathways, with some examples.
Collapse
Affiliation(s)
- Jimin Kwak
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Junhyeok Woo
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Seongmin Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST), Daejeon 34141, Republic of Korea.
| |
Collapse
|
9
|
Isibor H, Ajayi AM, Ben-Azu B, Omeiza NA, Ademola AP, Umukoro S. D-ribose-L-cysteine reduces oxidative stress and inflammatory cytokines to mitigate liver damage, and memory decline induced by copper sulfate in mice. J Trace Elem Med Biol 2022; 73:127001. [PMID: 35617721 DOI: 10.1016/j.jtemb.2022.127001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 11/22/2022]
Abstract
BACKGROUND Current evidences have implicated copper in amyloid aggregation that trigger the downstream oxidative stress-mediated neuroinflammation that characterized memory deterioration in patients with Alzheimer's disease (AD). Thus, this study was designed to evaluate the effect of D-Ribose-L-Cysteine (DRLC), a potent antioxidant agent, on copper sulfate (CuSO4)-induced memory deterioration and the biochemical mechanisms underpinning its action in mice. METHODS Male Swiss mice were randomly distributed into 5 groups (n = 10/group). Mice in group 1 were given distilled water (control), group 2 CuSO4 (100 mg/kg) while groups 3-5 were pretreated with CuSO4 (100 mg/kg) 30 min before administration of DRLC (10, 25 and 50 mg/kg). Treatments were given through oral gavage, daily for 28 days. Memory function was evaluated on day 28 using Y-maze test. The isolated liver and brain tissues were then processed for oxidative stress biomarkers, and proinflammatory cytokines [tumor necrosis factor- α (TNF-α) and interleukin-6)] assays. Brian acetylcholinesterase (AChE) and liver enzymes [aspartate aminotransferase (AST) and alanine aminotransferase (ALT) activities were also determined. RESULTS DRLC reversed memory impairment and dysregulated levels of malondialdehyde, glutathione, nitrite and glutathione S-transferase in the liver and brain tissues of mice pretreated with CuSO4. The increased proinflammatory cytokines concentrations in the liver and brain tissues of mice pretreated with CuSO4 were reduced by DRLC. The elevated brain AChE and liver enzymes activities induced by CuSO4 were also reduced by DRLC. CONCLUSION Taken together, these findings suggest that DRLC attenuates CuSO4-induced memory dysfunctions in mice through enhancement of antioxidative pathway, inhibition of pro-inflammatory cytokines and augmentation of liver function.
Collapse
Affiliation(s)
- Happy Isibor
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Abayomi Mayowa Ajayi
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Benneth Ben-Azu
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria; Department of Pharmacology, Faculty of Basic Medical Sciences, College of Health Sciences, Delta University, Abraka, Nigeria
| | - Noah Adavize Omeiza
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Adeleke Paul Ademola
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria
| | - Solomon Umukoro
- Neuropharmacology Unit, Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Oyo State, Nigeria.
| |
Collapse
|
10
|
Guin PS, Roy S. Recently Reported Ru-Metal Organic Coordination Complexes and Their Application (A Review). RUSS J GEN CHEM+ 2022. [DOI: 10.1134/s1070363222080242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
11
|
Karcz D, Starzak K, Ciszkowicz E, Lecka-Szlachta K, Kamiński D, Creaven B, Jenkins H, Radomski P, Miłoś A, Ślusarczyk L, Matwijczuk A. Novel Coumarin-Thiadiazole Hybrids and Their Cu(II) and Zn(II) Complexes as Potential Antimicrobial Agents and Acetylcholinesterase Inhibitors. Int J Mol Sci 2021; 22:ijms22189709. [PMID: 34575894 PMCID: PMC8471537 DOI: 10.3390/ijms22189709] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 09/03/2021] [Accepted: 09/06/2021] [Indexed: 11/16/2022] Open
Abstract
A series of coumarin-thiadiazole hybrids and their corresponding Cu(II) and Zn(II) complexes were synthesized and characterized with the use of spectroscopic techniques. The results obtained indicate that all the coumarin-thiadiazole hybrids act as bidentate chelators of Cu(II) and Zn(II) ions. The complexes isolated differ in their ligand:metal ratio depending on the central metal. In most cases, the Zn(II) complexes are characteristic of a 1:1 ligand:metal ratio, while in the Cu(II) complexes the ligand:metal ratio is 2:1. All compounds were tested as potential antibacterial agents against Gram-positive (Staphylococcus aureus, Staphylococcus epidermidis) and Gram-negative (Escherichia coli, Pseudomonas aeruginosa) bacterial strains demonstrating activities notably lower than commercially available antibiotics. The more promising results were obtained from the assessment of antineurodegenerative potency as all compounds showed moderate acetylcholinesterase (AChE) inhibition activity.
Collapse
Affiliation(s)
- Dariusz Karcz
- Department of Chemical Technology and Environmental Analytics (C1), Faculty of Chemical Engineering and Technology, Cracow University of Technology, 31-155 Kraków, Poland; (K.S.); (P.R.)
- Correspondence: ; Tel.: +48-(12)-628-2177
| | - Karolina Starzak
- Department of Chemical Technology and Environmental Analytics (C1), Faculty of Chemical Engineering and Technology, Cracow University of Technology, 31-155 Kraków, Poland; (K.S.); (P.R.)
| | - Ewa Ciszkowicz
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, 35-959 Rzeszów, Poland; (E.C.); (K.L.-S.)
| | - Katarzyna Lecka-Szlachta
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Rzeszow University of Technology, 35-959 Rzeszów, Poland; (E.C.); (K.L.-S.)
| | - Daniel Kamiński
- Department of General and Coordination Chemistry and Crystallography, Institute of Chemical Sciences, Maria Curie-Sklodowska University in Lublin, 20-031 Lublin, Poland;
| | - Bernadette Creaven
- School of Chemical and Pharmaceutical Sciences, Technological University Dublin, Central Quad, D07 ADY7 Grangegorman, Ireland;
| | - Hollie Jenkins
- Department of Applied Science, Technological University Dublin, D24 FKT9 Tallaght, Ireland;
| | - Piotr Radomski
- Department of Chemical Technology and Environmental Analytics (C1), Faculty of Chemical Engineering and Technology, Cracow University of Technology, 31-155 Kraków, Poland; (K.S.); (P.R.)
| | - Anna Miłoś
- Department of Biotechnology and Bioinformatics, Faculty of Chemistry, Doctoral School of Engineering and Technical Sciences at the Rzeszow University of Technology, 35-959 Rzeszow, Poland;
| | - Lidia Ślusarczyk
- Department of Biophysics, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (L.Ś.); (A.M.)
| | - Arkadiusz Matwijczuk
- Department of Biophysics, University of Life Sciences in Lublin, 20-950 Lublin, Poland; (L.Ś.); (A.M.)
| |
Collapse
|
12
|
Gomathi K, Haribabu J, Saranya S, Gayathri D, Jeyalakshmi K, Sendilvelan S, Echeverria C, Karvembu R. Effective inhibition of insulin amyloid fibril aggregation by nickel(II) complexes containing heterocyclic thiosemicarbazones. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2021; 50:1069-1081. [PMID: 34455461 DOI: 10.1007/s00249-021-01566-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Revised: 06/07/2021] [Accepted: 07/20/2021] [Indexed: 12/19/2022]
Abstract
The sensitivity of protein molecular structures makes them susceptible to aggregation in conditions unfavorable for the maintenance of their native folds. The aggregation of proteins leads to many disorders, but the inhibition of amyloid fibril formation using metal-containing small molecules is gaining popularity. Herein we report the effect of nickel(II) complexes (N1, N2, N3, and N4) bearing thiosemicarbazones on the inhibition of amyloid fibril formation by insulin. The interactions of the complexes with amyloid fibrils were investigated using various biophysical techniques, including light scattering, intrinsic fluorescence assay, thioflavin T (ThT) assay, and Fourier transform-infrared spectroscopy. The results revealed that the phenyl-substituted N3 was an efficient inhibitor of amyloid fibril formation and maintained the insulin in its native structure despite conditions promoting fibrillation. Nickel(II) complexes containing indole based thiosemicarbazones were efficient in inhibiting the amyloid fibril formation and maintaining the insulin in its native structure in unfavorable conditions.
Collapse
Affiliation(s)
- Kannayiram Gomathi
- Department of Mechanical Engineering, Dr. MGR Educational and Research Institute, Maduravoyal, Chennai, 600095, India.
| | - Jebiti Haribabu
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, 620015, India.,Facultad de Medicina, Universidad de Atacama, Copayapu 485, 1531772, Copiapo, Chile
| | - Sivaraj Saranya
- Department of Mechanical Engineering, Dr. MGR Educational and Research Institute, Maduravoyal, Chennai, 600095, India.,Multi Organ Transplant Program, University Health Network, Toronto, Canada
| | - Dasararaju Gayathri
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai, 600025, India
| | - Kumaramangalam Jeyalakshmi
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, 620015, India.,Department of Chemistry, M. Kumarasamy College of Engineering, Karur, 639113, India
| | - Subramanian Sendilvelan
- Department of Mechanical Engineering, Dr. MGR Educational and Research Institute, Maduravoyal, Chennai, 600095, India
| | - Cesar Echeverria
- Facultad de Medicina, Universidad de Atacama, Copayapu 485, 1531772, Copiapo, Chile
| | - Ramasamy Karvembu
- Department of Chemistry, National Institute of Technology, Tiruchirappalli, 620015, India.
| |
Collapse
|
13
|
Babu E, Bhuvaneswari J, Rajakumar K, Sathish V, Thanasekaran P. Non-conventional photoactive transition metal complexes that mediated sensing and inhibition of amyloidogenic aggregates. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2020.213612] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
14
|
Structural Features of 1,3,4-Thiadiazole-Derived Ligands and Their Zn(II) and Cu(II) Complexes Which Demonstrate Synergistic Antibacterial Effects with Kanamycin. Int J Mol Sci 2020; 21:ijms21165735. [PMID: 32785125 PMCID: PMC7461131 DOI: 10.3390/ijms21165735] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/03/2020] [Accepted: 08/07/2020] [Indexed: 12/15/2022] Open
Abstract
Classical synthetic protocols were applied for the isolation of three novel 1,3,4-thiadiazole derivatives which were then complexed with the biologically important Cu(II) and Zn(II) ions. All free ligands and their corresponding complexes were characterized using a number of spectroscopic techniques including Ultraviolet-visible (UV–vis), Fluorescence, Infrared (FT-IR), tandem liquid chromatography-mass (LC-MS), X-ray diffraction (XRD), and Nuclear Magnetic Resonance (NMR) spectroscopy (1H, 13C, HSQC, HMBC). The results obtained are consistent with the formation of dihydrate complexes, in which the chelation of the metal ion occurs via one of the thiadiazole nitrogen atoms and the deprotonated hydroxyl group of the neighboring resorcynyl moiety. The Zn(II) complexes utilize a 1:1 ligand–metal ratio, while in the Cu(II) complexes the ligand–metal ratio is 2:1. Although the antibacterial testing identified moderate activity of the compounds against the tested bacterial strains and additionally modest antioxidant activity, a strong synergistic antibacterial effect against Staphylococcus aureus, using concomitant treatment of thiadiazole derivatives with the commercial antibiotic kanamycin, was observed. The most active thiadiazole derivative demonstrated a minimal inhibitory concentration (MIC) of 500 μg/mL while it was 125 μg/mL in the presence of kanamycin. Moreover, in the presence of few thiadiazole derivatives the MIC value of kanamycin decreased from 0.39 μg/mL to 0.5 μg/mL. The antioxidant activity (IC50) of the most active thiadiazole derivative was determined as 0.13 mM which was nearly three-fold lower compared to that of TROLOX (0.5 mM).
Collapse
|
15
|
Novel Perspective on Alzheimer's Disease Treatment: Rosmarinic Acid Molecular Interplay with Copper(II) and Amyloid β. Life (Basel) 2020; 10:life10070118. [PMID: 32698429 PMCID: PMC7400086 DOI: 10.3390/life10070118] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Revised: 07/15/2020] [Accepted: 07/17/2020] [Indexed: 12/11/2022] Open
Abstract
Alzheimer's disease is a severe disorder that affects millions of people worldwide. It is a very debilitating disease with no cure at the moment. The necessity of finding an effective treatment is very demanding, and the entire scientific community is putting in a lot of effort to address this issue. The major hallmark of Alzheimer's disease is the presence of toxic aggregated species in the brain, impaired metal homeostasis, and high levels of oxidative stress. Rosmarinic acid is a well-known potent antioxidant molecule, the efficacy of which has been proved both in vitro and in vivo. In this study, we investigated the possible role played by rosmarinic acid as a mediator of the copper(II)-induced neurotoxicity. Several spectroscopic techniques and biological assays were applied to characterize the metal complexes and to evaluate the cytotoxicity and the mutagenicity of rosmarinic acid and its Cu(II) complex. Our data indicate that rosmarinic acid is able to interfere with the interaction between amyloid β and Cu(II) by forming an original ternary association.
Collapse
|
16
|
Huffman SE, Yawson GK, Fisher SS, Bothwell PJ, Platt DC, Jones MA, Hamaker CG, Webb MI. Ruthenium(iii) complexes containing thiazole-based ligands that modulate amyloid-β aggregation. Metallomics 2020; 12:491-503. [PMID: 32239079 DOI: 10.1039/d0mt00054j] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Alzheimer's Disease (AD) is a devastating neurodegenerative disorder where one of the commonly observed pathological hallmarks is extracellular deposits of the peptide amyloid-β (Aβ). These deposits contain a high concentration of metals and initially presented a promising target for therapy; however it has become increasingly evident that the soluble form of the peptide is neurotoxic, not the amyloidogenic species. Metal-based therapeutics are uniquely suited to target soluble Aβ and have shown considerable promise to prevent the aggregation and induced cytotoxicity of the peptide in vitro. Herein, we have prepared a small series of derivatives of two promising Ru(iii) complexes NAMI-A (imidazolium [trans-RuCl4(1H-imidazole)(dimethyl sulfoxide-S)]) and PMRU20 (2-aminothiazolium [trans-RuCl4(2-aminothiazole)2]), to determine structure-activity relationships (SAR) for Ru(iii) therapeutics for AD. Using the three complementary methods of Thioflavin T fluorescence, dynamic light scattering (DLS), and transmission electron microscopy (TEM), it was determined that the symmetry around the metal center did not significantly impact the activity of the complexes, but rather the attached thiazole ligand(s) mitigated Aβ aggregation. Across both families of Ru(iii) complexes the determined SAR for the functional groups on the thiazole ligands to modulate Aβ aggregation were NH2 > CH3 > H. These results highlight the importance of secondary interactions between the metallotherapeutic and the Aβ peptide where hydrogen-bonding has the greatest impact on modulating Aβ aggregation.
Collapse
Affiliation(s)
- Samantha E Huffman
- Department of Chemistry, Illinois State University, Normal, IL, 61790-4160, USA.
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Turner M, Mutter ST, Kennedy-Britten OD, Platts JA. Replica exchange molecular dynamics simulation of the coordination of Pt(ii)-Phenanthroline to amyloid-β. RSC Adv 2019; 9:35089-35097. [PMID: 35530686 PMCID: PMC9074135 DOI: 10.1039/c9ra04637b] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2019] [Accepted: 10/24/2019] [Indexed: 12/30/2022] Open
Abstract
We report replica exchange molecular dynamics (REMD) simulations of the complex formed between amyloid-β peptides and platinum bound to a phenanthroline ligand, Pt(phen). After construction of an AMBER-style forcefield for the Pt complex, REMD simulation employing temperatures between 270 and 615 K was used to provide thorough sampling of the conformational freedom available to the peptide. We find that the full length peptide Aβ42, in particular, frequently adopts a compact conformation with a large proportion of α- and 3,10-helix content, with smaller amounts of β-strand in the C-terminal region of the peptide. Helical structures are more prevalent than in the metal-free peptide, while turn and strand conformations are markedly less common. Non-covalent interactions, including salt-bridges, hydrogen bonds, and π-stacking between aromatic residues and the phenanthroline ligand, are common, and markedly different from those seen in the amyloid-β peptides alone.
Collapse
Affiliation(s)
- Matthew Turner
- School of Chemistry, Cardiff University Park Place, Cardiff CF10 3AT UK +44(0)-2920-874950
| | - Shaun T Mutter
- School of Chemistry, Cardiff University Park Place, Cardiff CF10 3AT UK +44(0)-2920-874950
| | | | - James A Platts
- School of Chemistry, Cardiff University Park Place, Cardiff CF10 3AT UK +44(0)-2920-874950
| |
Collapse
|
18
|
Yang GJ, Liu H, Ma DL, Leung CH. Rebalancing metal dyshomeostasis for Alzheimer's disease therapy. J Biol Inorg Chem 2019; 24:1159-1170. [PMID: 31486954 DOI: 10.1007/s00775-019-01712-y] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/29/2019] [Indexed: 12/26/2022]
Abstract
Alzheimer's disease (AD) is a type of neurodegenerative malady that is associated with the accumulation of amyloid plaques. Metal ions are critical for the development and upkeep of brain activity, but metal dyshomeostasis can contribute to the development of neurodegenerative diseases, including AD. This review highlights the association between metal dyshomeostasis and AD pathology, the feasibility of rebalancing metal homeostasis as a therapeutic strategy for AD, and a survey of current drugs that action via rebalancing metal homeostasis. Finally, we discuss the challenges that should be overcome by researchers in the future to enable the practical use of metal homeostasis rebalancing agents for clinical application.
Collapse
Affiliation(s)
- Guan-Jun Yang
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, 999078, Macau SAR, China
| | - Hao Liu
- Department of Chemistry, Hong Kong Baptist University, Kowloon, 999077, Hong Kong SAR, China
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon, 999077, Hong Kong SAR, China.
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, 999078, Macau SAR, China.
| |
Collapse
|
19
|
Ayala S, Genevaux P, Hureau C, Faller P. (Bio)chemical Strategies To Modulate Amyloid-β Self-Assembly. ACS Chem Neurosci 2019; 10:3366-3374. [PMID: 31265239 DOI: 10.1021/acschemneuro.9b00239] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Amyloid plaques are one of the two hallmarks of Alzheimer's disease (AD). They consist mainly of fibrils made of self-assembled amyloid-β (Aβ) peptides. Aβ is produced in healthy brains from proteolytic cleavage of the amyloid precursor protein. Aβ aggregates, in particular smaller, soluble aggregates, are toxic to cells. Hence, modulating the self-assembly of Aβ became a very active field of research, with the aim to reduce the amount of the toxic aggregates of Aβ or to block their toxic action. A great variety of molecules, chemical and biological, are able to modify the aggregation of Aβ. Here we give an overview of the different mechanistic ways to modulate Aβ aggregation and on which step in the self-assembly molecules can interfere. We discuss the aggregation modulators according to different important parameters, including the type of interaction (weak interaction, coordination or covalent bonds), the importance of kinetics and thermodynamics, the size of the modulating molecules, and binding specificity.
Collapse
Affiliation(s)
- Sara Ayala
- LCC, CNRS & University of Toulouse (UPS, INPT), 205 route de Narbonne, 31077 Toulouse, France
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Pierre Genevaux
- Laboratoire de Microbiologie et de Génétique Moléculaires, Centre de Biologie Intégrative (CBI), Université de Toulouse, CNRS, UPS, Toulouse, France
| | - Christelle Hureau
- LCC, CNRS & University of Toulouse (UPS, INPT), 205 route de Narbonne, 31077 Toulouse, France
| | - Peter Faller
- LCC, CNRS & University of Toulouse (UPS, INPT), 205 route de Narbonne, 31077 Toulouse, France
- Institut de Chimie, UMR 7177, CNRS-Université de Strasbourg, 4 rue Blaise Pascal, 67000 Strasbourg, France
| |
Collapse
|
20
|
Furkan M, Siddiqi MK, Zakariya SM, Khan FI, Hassan MI, Khan RH. An In Vitro elucidation of the antiaggregatory potential of Diosminover thermally induced unfolding of hen egg white lysozyme; A preventive quest for lysozyme amyloidosis. Int J Biol Macromol 2019; 129:1015-1023. [DOI: 10.1016/j.ijbiomac.2019.02.107] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2018] [Revised: 02/18/2019] [Accepted: 02/18/2019] [Indexed: 01/24/2023]
|
21
|
Suh JM, Kim G, Kang J, Lim MH. Strategies Employing Transition Metal Complexes To Modulate Amyloid-β Aggregation. Inorg Chem 2018; 58:8-17. [PMID: 30556393 DOI: 10.1021/acs.inorgchem.8b02813] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Aggregation of amyloid-β (Aβ) peptides is implicated in the development of Alzheimer's disease (AD), the most common type of dementia. Thus, numerous efforts to identify chemical tactics to control the aggregation pathways of Aβ peptides have been made. Among them, transition metal complexes as a class of chemical modulators against Aβ aggregation have been designed and utilized. Transition metal complexes are able to carry out a variety of chemistry with Aβ peptides (e.g., coordination chemistry and oxidative and proteolytic reactions for peptide modifications) based on their tunable characteristics, including the oxidation state of and coordination geometry around the metal center. This Viewpoint illustrates three strategies employing transition metal complexes toward modulation of Aβ aggregation pathways (i.e., oxidation and hydrolysis of Aβ as well as coordination to Aβ), along with some examples of such transition metal complexes. In addition, proposed mechanisms for three reactivities of transition metal complexes with Aβ peptides are discussed. Our greater understanding of how transition metal complexes have been engineered and used for alteration of Aβ aggregation could provide insight into the new discovery of chemical reagents against Aβ peptides found in AD.
Collapse
Affiliation(s)
- Jong-Min Suh
- Department of Chemistry , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea
| | - Gunhee Kim
- Department of Chemistry , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea
| | - Juhye Kang
- Department of Chemistry , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea.,Department of Chemistry , Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919 , Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry , Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141 , Republic of Korea
| |
Collapse
|
22
|
Schöne S, Radoske T, März J, Stumpf T, Ikeda-Ohno A. Synthesis and Characterization of Heterometallic Iron–Uranium Complexes with a Bidentate N-Donor Ligand (2,2′-Bipyridine or 1,10-Phenanthroline). Inorg Chem 2018; 57:13318-13329. [DOI: 10.1021/acs.inorgchem.8b01868] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sebastian Schöne
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Thomas Radoske
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Juliane März
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Thorsten Stumpf
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstrasse 400, 01328 Dresden, Germany
| | - Atsushi Ikeda-Ohno
- Helmholtz-Zentrum Dresden-Rossendorf, Institute of Resource Ecology, Bautzner Landstrasse 400, 01328 Dresden, Germany
| |
Collapse
|
23
|
Wang X, Wang X, Guo Z. Metal-involved theranostics: An emerging strategy for fighting Alzheimer’s disease. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.03.010] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
24
|
Amyloid β-targeted metal complexes for potential applications in Alzheimer's disease. Future Med Chem 2018; 10:679-701. [DOI: 10.4155/fmc-2017-0248] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Alzheimer's disease (AD) is currently an incurable neurodegenerative disorder that affects millions of people around the world. The aggregation of amyloid-β peptides (Aβ), one of the primary pathological hallmarks of AD, plays a key role in the AD pathogenesis. In this regard, Aβ aggregates have been considered as both biomarkers and drug targets for the diagnosis and therapy of AD. Various Aβ-targeted metal complexes have exhibited promising potential as anti-AD agents due to their fascinating physicochemical properties over the past two decades. This review classifies the complexes into three groups based on their potential applications in AD including therapy, diagnosis and theranosis. The recent representative examples are highlighted in terms of design rationale, working mechanism and potential applications.
Collapse
|
25
|
Nusrat S, Zaman M, Masroor A, Siddqi MK, Zaidi N, Neelofar K, Abdelhameed AS, Khan RH. Deciphering the enhanced inhibitory, disaggregating and cytoprotective potential of promethazine towards amyloid fibrillation. Int J Biol Macromol 2018; 106:851-863. [DOI: 10.1016/j.ijbiomac.2017.08.081] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/12/2017] [Accepted: 08/13/2017] [Indexed: 11/26/2022]
|
26
|
Turner M, Deeth RJ, Platts JA. Prediction of ligand effects in platinum-amyloid-β coordination. J Inorg Biochem 2017; 173:44-51. [PMID: 28494276 DOI: 10.1016/j.jinorgbio.2017.05.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2017] [Revised: 04/26/2017] [Accepted: 05/01/2017] [Indexed: 12/16/2022]
Abstract
Ligand field molecular mechanics (LFMM) and semi-empirical Parametric Model 7 (PM7) methods are applied to a series of six PtII-Ligand systems binding to the N-terminal domain of the amyloid-β (Aβ) peptide. Molecular dynamics using a combined LFMM/Assisted Model Building with Energy Refinement (AMBER) approach is used to explore the conformational freedom of the peptide fragment, and identifies favourable platinum binding modes and peptide conformations for each ligand investigated. Platinum coordination is found to depend on the nature of the ligand, providing evidence that binding mode may be controlled by suitable ligand design. Boltzmann populations at 310K indicate that each Pt-Aβ complex has a small number of thermodynamically accessible states. Ramachandran maps are constructed for the sampled Pt-Aβ conformations and secondary structural analysis of the obtained complex structures is performed and contrasted with the free peptide; coordination of these platinum complexes disrupts existing secondary structure in the Aβ peptide and promotes formation of ligand-specific turn-type secondary structure.
Collapse
Affiliation(s)
- Matthew Turner
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, United Kingdom
| | - Robert J Deeth
- Department of Chemistry, University of Warwick, Gibbet Hill, Coventry CV4 7AL, United Kingdom
| | - James A Platts
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, United Kingdom.
| |
Collapse
|
27
|
Banik D, Kundu S, Banerjee P, Dutta R, Sarkar N. Investigation of Fibril Forming Mechanisms of l-Phenylalanine and l-Tyrosine: Microscopic Insight toward Phenylketonuria and Tyrosinemia Type II. J Phys Chem B 2017; 121:1533-1543. [DOI: 10.1021/acs.jpcb.6b12220] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Debasis Banik
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Sangita Kundu
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Pavel Banerjee
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Rupam Dutta
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| | - Nilmoni Sarkar
- Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, WB, India
| |
Collapse
|
28
|
Liao Q, Owen MC, Olubiyi OO, Barz B, Strodel B. Conformational Transitions of the Amyloid-β Peptide Upon Copper(II) Binding and pH Changes. Isr J Chem 2017. [DOI: 10.1002/ijch.201600108] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Qinghua Liao
- Institute of Complex Systems: Structural Biochemistry (ICS-6); Forschungszentrum Jülich GmbH; 52425 Jülich Germany
| | - Michael C. Owen
- Institute of Complex Systems: Structural Biochemistry (ICS-6); Forschungszentrum Jülich GmbH; 52425 Jülich Germany
| | - Olujide O. Olubiyi
- Department of Pharmacology and Therapeutics; College of Medicine and Health Sciences; Afe Babalola University; Nigeria
| | - Bogdan Barz
- Institute of Complex Systems: Structural Biochemistry (ICS-6); Forschungszentrum Jülich GmbH; 52425 Jülich Germany
- Institute of Theoretical and Computational Chemistry; Heinrich Heine University Düsseldorf; 40225 Düsseldorf Germany
| | - Birgit Strodel
- Institute of Complex Systems: Structural Biochemistry (ICS-6); Forschungszentrum Jülich GmbH; 52425 Jülich Germany
- Institute of Theoretical and Computational Chemistry; Heinrich Heine University Düsseldorf; 40225 Düsseldorf Germany
| |
Collapse
|
29
|
Derrick JS, Lee J, Lee SJC, Kim Y, Nam E, Tak H, Kang J, Lee M, Kim SH, Park K, Cho J, Lim MH. Mechanistic Insights into Tunable Metal-Mediated Hydrolysis of Amyloid-β Peptides. J Am Chem Soc 2017; 139:2234-2244. [PMID: 28098992 DOI: 10.1021/jacs.6b09681] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
An amyloidogenic peptide, amyloid-β (Aβ), has been implicated as a contributor to the neurotoxicity of Alzheimer's disease (AD) that continues to present a major socioeconomic burden for our society. Recently, the use of metal complexes capable of cleaving peptides has arisen as an efficient tactic for amyloid management; unfortunately, little has been reported to pursue this strategy. Herein, we report a novel approach to validate the hydrolytic cleavage of divalent metal complexes toward two major isoforms of Aβ (Aβ40 and Aβ42) and tune their proteolytic activity based on the choice of metal centers (M = Co, Ni, Cu, and Zn) which could be correlated to their anti-amyloidogenic properties. Such metal-dependent tunability was facilitated employing a tetra-N-methylated cyclam (TMC) ligand that imparts unique geometric and stereochemical control, which has not been available in previous systems. Co(II)(TMC) was identified to noticeably cleave Aβ peptides and control their aggregation, reporting the first Co(II) complex for such reactivities to the best of our knowledge. Through detailed mechanistic investigations by biochemical, spectroscopic, mass spectrometric, and computational studies, the critical importance of the coordination environment and acidity of the aqua-bound complexes in promoting amide hydrolysis was verified. The biological applicability of Co(II)(TMC) was also illustrated via its potential blood-brain barrier permeability, relatively low cytotoxicity, regulatory capability against toxicity induced by both Aβ40 and Aβ42 in living cells, proteolytic activity with Aβ peptides under biologically relevant conditions, and inertness toward cleavage of structured proteins. Overall, our approaches and findings on reactivities of divalent metal complexes toward Aβ, along with the mechanistic insights, demonstrate the feasibility of utilizing such metal complexes for amyloid control.
Collapse
Affiliation(s)
- Jeffrey S Derrick
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919, Republic of Korea
| | - Jiwan Lee
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141, Republic of Korea
| | - Shin Jung C Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919, Republic of Korea
| | - Yujeong Kim
- Western Seoul Center, Korea Basic Science Institute (KBSI) , Seoul 03759, Republic of Korea.,Department of Chemistry and Nano Science, Ewha Womans University , Seoul 03760, Republic of Korea
| | - Eunju Nam
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919, Republic of Korea
| | - Hyeonwoo Tak
- Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST) , Daegu 42988, Republic of Korea
| | - Juhye Kang
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919, Republic of Korea
| | - Misun Lee
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919, Republic of Korea
| | - Sun Hee Kim
- Western Seoul Center, Korea Basic Science Institute (KBSI) , Seoul 03759, Republic of Korea.,Department of Chemistry and Nano Science, Ewha Womans University , Seoul 03760, Republic of Korea
| | - Kiyoung Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology (KAIST) , Daejeon 34141, Republic of Korea
| | - Jaeheung Cho
- Department of Emerging Materials Science, Daegu Gyeongbuk Institute of Science and Technology (DGIST) , Daegu 42988, Republic of Korea
| | - Mi Hee Lim
- Department of Chemistry, Ulsan National Institute of Science and Technology (UNIST) , Ulsan 44919, Republic of Korea
| |
Collapse
|
30
|
Koseoglu E, Koseoglu R, Kendirci M, Saraymen R, Saraymen B. Trace metal concentrations in hair and nails from Alzheimer's disease patients: Relations with clinical severity. J Trace Elem Med Biol 2017; 39:124-128. [PMID: 27908403 DOI: 10.1016/j.jtemb.2016.09.002] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Revised: 08/10/2016] [Accepted: 09/04/2016] [Indexed: 10/21/2022]
Abstract
BACKGROUND AND OBJECTIVES Metals, especially transition metals, seem to be important in the pathogenesis of Alzheimer disease. This study aims to determine the relationship of trace metal elements to the pathogenesis and/or course of Alzheimer Disease in terms of clinical severity. METHODS The hair and nail trace metal levels of 62 Alzheimer Disease patients at different clinical stages (21 mild, 20 moderate, 21 severe) and 60 healthy control subjects were measured by using inductively coupled plasma-mass spectrometry. The statistical comparisons were performed with regards to the study groups, clinical stages, disease duration and age. RESULTS The patient and control groups were significantly different from each other in regards to Mn, Fe, Cu, Cd, Hg (p<0.001), Zn (p<0.01) in nail concentrations and, Na, Al, Pb, Co (p<0.001), Fe, Mn (p=0.001), Hg, Cu, Cd, K in hair concentrations (p<0.01). No difference was detected in the levels of Mg and Ca. Nail Na level showed differences among different clinical stages of the disease (p<0.01). In comparing the mild degree Alzheimer patients to the control group; significant differences were detected in nail Mn, Fe, Cu, Co (p<0.001), Hg, Zn (p<0.01) and, hair Pb, Al (p<0.001), Na, K levels (p<0.01). CONCLUSIONS Our results have shown that transition and posttransition metals are especially important metals for the disease process. The relation of nail Na level with clinical stages of AD is an interesting new finding, making someone to think that alkali metals may be important in the progression of the disease.
Collapse
Affiliation(s)
- Emel Koseoglu
- Erciyes University, Facultyof Medicine, Department of Neurology, Kayseri, Turkey.
| | - Rahmi Koseoglu
- Erciyes University, Faculty of Science, Department of Physics, Kayseri, Turkey.
| | - Murat Kendirci
- Nevsehir State Hospital, Department of Neurology, Nevsehir, Turkey.
| | - Recep Saraymen
- Erciyes University, Faculty of Medicine, Department of Biochemistry, Kayseri, Turkey.
| | - Burak Saraymen
- Erciyes University, Health Institute, Primary Health Center Doctor, Kayseri, Turkey.
| |
Collapse
|
31
|
Solomatina AI, Chelushkin PS, Krupenya DV, Podkorytov IS, Artamonova TO, Sizov VV, Melnikov AS, Gurzhiy VV, Koshel EI, Shcheslavskiy VI, Tunik SP. Coordination to Imidazole Ring Switches on Phosphorescence of Platinum Cyclometalated Complexes: The Route to Selective Labeling of Peptides and Proteins via Histidine Residues. Bioconjug Chem 2016; 28:426-437. [DOI: 10.1021/acs.bioconjchem.6b00598] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Affiliation(s)
- Anastasia I. Solomatina
- Saint Petersburg State University, Institute of
Chemistry, Universitetskii
prospect. 26, 198504 Saint Petersburg, Russia
| | - Pavel S. Chelushkin
- Saint Petersburg State University, Institute of
Chemistry, Universitetskii
prospect. 26, 198504 Saint Petersburg, Russia
- Institute
of Macromolecular Compounds, Russian Academy of Sciences, Bolshoi
prospect, Vasilievskii Island, 31, 199004 Saint Petersburg, Russia
| | - Dmitrii V. Krupenya
- Saint Petersburg State University, Institute of
Chemistry, Universitetskii
prospect. 26, 198504 Saint Petersburg, Russia
| | - Ivan S. Podkorytov
- Saint Petersburg State University, Biomolecular
NMR Laboratory, Botanicheskaya
Str., 17, 198504 Saint Petersburg, Russia
| | - Tatiana O. Artamonova
- Research
Center of Nanobiotechnologies, Peter the Great Saint Petersburg Polytechnic University, Polytechnicheskaya, 29, 195251 Saint Petersburg, Russia
| | - Vladimir V. Sizov
- Saint Petersburg State University, Institute of
Chemistry, Universitetskii
prospect. 26, 198504 Saint Petersburg, Russia
| | - Alexei S. Melnikov
- Saint Petersburg State University, Department
of Physics, Ulianovskaya
Str., 3, 198504 Saint Petersburg, Russia
- Research
Center of Nanobiotechnologies, Peter the Great Saint Petersburg Polytechnic University, Polytechnicheskaya, 29, 195251 Saint Petersburg, Russia
| | - Vladislav V. Gurzhiy
- Saint Petersburg State University, Institute of Earth Sciences and Biology Department, University embankment. 7/9, 199034 Saint Petersburg, Russia
| | - Elena I. Koshel
- Saint Petersburg State University, Institute of Earth Sciences and Biology Department, University embankment. 7/9, 199034 Saint Petersburg, Russia
| | | | - Sergey P. Tunik
- Saint Petersburg State University, Institute of
Chemistry, Universitetskii
prospect. 26, 198504 Saint Petersburg, Russia
| |
Collapse
|
32
|
Silva DES, Cali MP, Pazin WM, Carlos-Lima E, Salles Trevisan MT, Venâncio T, Arcisio-Miranda M, Ito AS, Carlos RM. Luminescent Ru(II) Phenanthroline Complexes as a Probe for Real-Time Imaging of Aβ Self-Aggregation and Therapeutic Applications in Alzheimer’s Disease. J Med Chem 2016; 59:9215-9227. [DOI: 10.1021/acs.jmedchem.6b01130] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Debora E. S. Silva
- Departamento
de Química, Universidade Federal de São Carlos, São
Carlos, São Paulo 13565-905, Brazil
| | - Mariana P. Cali
- Departamento
de Química, Universidade Federal de São Carlos, São
Carlos, São Paulo 13565-905, Brazil
| | - Wallance M. Pazin
- Departamento de
Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, USP, Ribeirão Preto, São Paulo 14040-901, Brazil
| | - Estevão Carlos-Lima
- Departamento
de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo 04023-062, Brazil
| | - Maria Teresa Salles Trevisan
- Departamento
de Química Orgânica e Inorgânica, Universidade Federal do Ceará, Ceará Fortaleza, 60451-970, Brazil
| | - Tiago Venâncio
- Departamento
de Química, Universidade Federal de São Carlos, São
Carlos, São Paulo 13565-905, Brazil
| | - Manoel Arcisio-Miranda
- Departamento
de Biofísica, Escola Paulista de Medicina, Universidade Federal de São Paulo, São Paulo, São Paulo 04023-062, Brazil
| | - Amando S. Ito
- Departamento de
Física, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, USP, Ribeirão Preto, São Paulo 14040-901, Brazil
| | - Rose M. Carlos
- Departamento
de Química, Universidade Federal de São Carlos, São
Carlos, São Paulo 13565-905, Brazil
| |
Collapse
|
33
|
Vyas NA, Ramteke SN, Kumbhar AS, Kulkarni PP, Jani V, Sonawane UB, Joshi RR, Joshi B, Erxleben A. Ruthenium(II) polypyridyl complexes with hydrophobic ancillary ligand as Aβ aggregation inhibitors. Eur J Med Chem 2016; 121:793-802. [PMID: 27406812 DOI: 10.1016/j.ejmech.2016.06.038] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2015] [Revised: 06/15/2016] [Accepted: 06/20/2016] [Indexed: 11/28/2022]
Abstract
The synthesis, spectral and electrochemical characterization of the complexes of the type [Ru(NN)2(txbg)](2+) where NN is 2,2'-bipyridine (bpy) (1), 1,10-phenanthroline (phen) (2), dipyrido [3,2-d:2',3f] quinoxaline (dpq) (3), and dipyrido[3,2-a:2',3'-c]phenazine (dppz) (4) which incorporate the tetra-xylene bipyridine glycoluril (txbg) as the ancillary ligand are described in detail. Crystal structures of ligand txbg and complex 2 were solved by single crystal X-ray diffraction. Thioflavin T (ThT) fluorescence and Transmission Electron Microscopy (TEM) results indicated that at micromolar concentration all complexes exhibit significant potential of Aβ aggregation inhibition, while the ligand txbg displayed weak activity towards Aβ aggregation. Complex 1 showed relatively low inhibition (70%) while complexes 2-4 inhibited nearly 100% Aβ aggregation after 240 h of incubation. The similar potential of complexes 2-4 and absence of any trend in their activity with the planarity of polypyridyl ligands suggests there is no marked effect of planarity of coligands on their inhibitory potential. Further studies on acetylcholinesterase (AChE) inhibition indicated very weak activity of these complexes against AChE. Detailed interactions of Aβ with both ligand and complex 2 have been studied by molecular modeling. Complex 2 showed interactions involving all three polypyridyl ligands with hydrophobic region of Aβ. Furthermore, the toxicity of these complexes towards human neuroblastoma cells was evaluated by MTT assay and except complex 4, the complexes displayed very low toxicity.
Collapse
Affiliation(s)
- Nilima A Vyas
- Department of Chemistry, Savitribai Phule Pune University, Pune, 411007, India
| | | | - Avinash S Kumbhar
- Department of Chemistry, Savitribai Phule Pune University, Pune, 411007, India.
| | | | - Vinod Jani
- Bioinformatics Group, Centre for Development of Advanced Computing (C-DAC), Savitribai Phule Pune University, Pune, 411007, India
| | - Uddhavesh B Sonawane
- Bioinformatics Group, Centre for Development of Advanced Computing (C-DAC), Savitribai Phule Pune University, Pune, 411007, India
| | - Rajendra R Joshi
- Bioinformatics Group, Centre for Development of Advanced Computing (C-DAC), Savitribai Phule Pune University, Pune, 411007, India
| | - Bimba Joshi
- Bioprospecting, Agharkar Research Institute, Pune, 411004, India
| | - Andrea Erxleben
- School of Chemistry, National University of Ireland, Galway, Ireland
| |
Collapse
|
34
|
Vitamin k3 inhibits protein aggregation: Implication in the treatment of amyloid diseases. Sci Rep 2016; 6:26759. [PMID: 27230476 PMCID: PMC4882616 DOI: 10.1038/srep26759] [Citation(s) in RCA: 147] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 04/29/2016] [Indexed: 12/22/2022] Open
Abstract
Protein misfolding and aggregation have been associated with several human diseases such as Alzheimer’s, Parkinson’s and familial amyloid polyneuropathy etc. In this study, anti-fibrillation activity of vitamin k3 and its effect on the kinetics of amyloid formation of hen egg white lysozyme (HEWL) and Aβ-42 peptide were investigated. Here, in combination with Thioflavin T (ThT) fluorescence assay, circular dichroism (CD), transmission electron microscopy and cell cytotoxicity assay, we demonstrated that vitamin k3 significantly inhibits fibril formation as well as the inhibitory effect is dose dependent manner. Our experimental studies inferred that vitamin k3 exert its neuro protective effect against amyloid induced cytotoxicity through concerted pathway, modifying the aggregation formation towards formation of nontoxic aggregates. Molecular docking demonstrated that vitamin k3 mediated inhibition of HEWL and Aβ-42 fibrillogenesis may be initiated by interacting with proteolytic resistant and aggregation prone regions respectively. This work would provide an insight into the mechanism of protein aggregation inhibition by vitamin k3; pave the way for discovery of other small molecules that may exert similar effect against amyloid formation and its associated neurodegenerative diseases.
Collapse
|
35
|
Lowe JA, Stacey OJ, Horton PN, Coles SJ, Pope SJ. Alkyl chain functionalised, cyclometalated platinum(II) complexes: Syntheses, luminescence properties and X-ray crystal structure. J Organomet Chem 2016. [DOI: 10.1016/j.jorganchem.2016.01.015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
36
|
Turner M, Platts JA, Deeth RJ. Modeling of Platinum-Aryl Interaction with Amyloid-β Peptide. J Chem Theory Comput 2016; 12:1385-92. [PMID: 26756469 DOI: 10.1021/acs.jctc.5b01045] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Ligand field molecular mechanics (LFMM), density functional theory (DFT), and semiempirical PM7 methods are used to study the binding of two Pt(II)-L systems to an N-terminal fragment of the amyloid-β peptide, where L = 2,2-bipyridyl or 1,10-phenanthroline. Molecular dynamics simulations are used to explore the conformational freedom of the peptide using LFMM combined with AMBER molecular mechanics parameters. We establish a modeling protocol, allowing for identification and analysis of favorable platinum-binding modes and peptide conformations. Preferred binding modes are identified for each ligand investigated; metal coordination occurs via Nε in His residues for both ligands--His6ε-His13ε and His6ε-His14ε for the bipyridyl and phenanthroline ligands, respectively. The observed change in binding mode for the different ligands suggests that the binding mode of these platinum-based structures can be controlled by the choice of ligand. In the bipy systems, Boltzmann population at 310 K is dominated by a single conformer, while in the phenanthroline case, three conformations make significant contributions to the ensemble. The relative stability of these conformations is due to the inherent stability of binding platinum via Nε in addition to subtle H-bonding effects.
Collapse
Affiliation(s)
- Matthew Turner
- School of Chemistry, Cardiff University , Park Place, Cardiff CF10 3AT, U.K
| | - James A Platts
- School of Chemistry, Cardiff University , Park Place, Cardiff CF10 3AT, U.K
| | - Robert J Deeth
- Department of Chemistry, University of Warwick , Gibbet Hill, Coventry CV4 7AL, U.K
| |
Collapse
|
37
|
Ma DL, Wang M, Mao Z, Yang C, Ng CT, Leung CH. Rhodium complexes as therapeutic agents. Dalton Trans 2016; 45:2762-2771. [DOI: 10.1039/c5dt04338g] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/30/2023]
Abstract
This perspective highlights recent examples of rhodium complexes that show diverse biological activities against various targets, including enzymes and protein–protein interactions.
Collapse
Affiliation(s)
- Dik-Lung Ma
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon Tong
- China
| | - Modi Wang
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon Tong
- China
| | - Zhifeng Mao
- Department of Chemistry
- Hong Kong Baptist University
- Kowloon Tong
- China
| | - Chao Yang
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Macao
- China
| | - Chan-Tat Ng
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Macao
- China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine
- Institute of Chinese Medical Sciences
- University of Macau
- Macao
- China
| |
Collapse
|
38
|
Muthuraj B, Layek S, Balaji SN, Trivedi V, Iyer PK. Multiple function fluorescein probe performs metal chelation, disaggregation, and modulation of aggregated Aβ and Aβ-Cu complex. ACS Chem Neurosci 2015; 6:1880-91. [PMID: 26332658 DOI: 10.1021/acschemneuro.5b00205] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
An exceptional probe comprising indole-3-carboxaldehyde fluorescein hydrazone (FI) performs multiple tasks, namely, disaggregating amyloid β (Aβ) aggregates in different biomarker environments such as cerebrospinal fluid (CSF), Aβ1-40 fibrils, β-amyloid lysozyme aggregates (LA), and U87 MG human astrocyte cells. Additionally, the probe FI binds with Cu(2+) ions selectively, disrupts the Aβ aggregates that vary from few nanometers to micrometers, and prevents their reaggregation, thereby performing disaggregation and modulation of amyloid-β in the presence as well as absence of Cu(2+) ion. The excellent selectivity of probe FI for Cu(2+) was effectively utilized to modulate the assembly of metal-induced Aβ aggregates by metal chelation with the "turn-on" fluorescence via spirolactam ring opening of FI as well as the metal-free Aβ fibrils by noncovalent interactions. These results confirm that FI has exceptional ability to perform multifaceted tasks such as metal chelation in intracellular conditions using Aβ lysozyme aggregates in cellular environments by the disruption of β-sheet rich Aβ fibrils into disaggregated forms. Subsequently, it was confirmed that FI had the ability to cross the blood-brain barrier and it also modulated the metal induced Aβ fibrils in cellular environments by "turn-on" fluorescence, which are the most vital properties of a probe or a therapeutic agent. Furthermore, the morphology changes were examined by atomic force microscopy (AFM), polarizable optical microscopy (POM), fluorescence microscopy, and dynamic light scattering (DLS) studies. These results provide very valuable clues on the Aβ (CSF Aβ fibrils, Aβ1-40 fibrils, β-amyloid lysozyme aggregates) disaggregation behavior via in vitro studies, which constitute the first insights into intracellular disaggregation of Aβ by "turn-on" method thereby influencing amyloidogenesis.
Collapse
Affiliation(s)
- B. Muthuraj
- Department of Chemistry, and ‡Department of Biosciences
and Bioengineering, Indian Institute of Technology Guwahati-781039, Assam, India
| | - Sourav Layek
- Department of Chemistry, and ‡Department of Biosciences
and Bioengineering, Indian Institute of Technology Guwahati-781039, Assam, India
| | - S. N. Balaji
- Department of Chemistry, and ‡Department of Biosciences
and Bioengineering, Indian Institute of Technology Guwahati-781039, Assam, India
| | - Vishal Trivedi
- Department of Chemistry, and ‡Department of Biosciences
and Bioengineering, Indian Institute of Technology Guwahati-781039, Assam, India
| | - Parameswar Krishnan Iyer
- Department of Chemistry, and ‡Department of Biosciences
and Bioengineering, Indian Institute of Technology Guwahati-781039, Assam, India
| |
Collapse
|
39
|
Lu L, Zhong HJ, Wang M, Ho SL, Li HW, Leung CH, Ma DL. Inhibition of Beta-Amyloid Fibrillation by Luminescent Iridium(III) Complex Probes. Sci Rep 2015; 5:14619. [PMID: 26419607 PMCID: PMC4588514 DOI: 10.1038/srep14619] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2015] [Accepted: 05/01/2015] [Indexed: 11/20/2022] Open
Abstract
We report herein the application of kinetically inert luminescent iridium(III) complexes as dual inhibitors and probes of beta-amyloid fibrillogenesis. These iridium(III) complexes inhibited Aβ1–40 peptide aggregation in vitro, and protected against Aβ-induced cytotoxicity in neuronal cells. Furthermore, the complexes differentiated between the aggregated and unaggregated forms of Aβ1–40 peptide on the basis of their emission response.
Collapse
Affiliation(s)
- Lihua Lu
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Hai-Jing Zhong
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Modi Wang
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - See-Lok Ho
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Hung-Wing Li
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Chung-Hang Leung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macao, China
| | - Dik-Lung Ma
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| |
Collapse
|
40
|
Abstract
Platinum-based anticancer drugs are the mainstay of chemotherapy regimens in clinic. Nevertheless, the efficacy of platinum drugs is badly affected by serious systemic toxicities and drug resistance, and the pharmacokinetics of most platinum drugs is largely unknown. In recent years, a keen interest in functionalizing platinum complexes with bioactive molecules, targeting groups, photosensitizers, fluorophores, or nanomaterials has been sparked among chemical and biomedical researchers. The motivation for functionalization comes from some of the following demands: to improve the tumor selectivity or minimize the systemic toxicity of the drugs, to enhance the cellular accumulation of the drugs, to overcome the tumor resistance to the drugs, to visualize the drug molecules in vitro or in vivo, to achieve a synergistic anticancer effect between different therapeutic modalities, or to add extra functionality to the drugs. In this Account, we present different strategies being used for functionalizing platinum complexes, including conjugation with bisphosphonates, peptides, receptor-specific ligands, polymers, nanoparticles, magnetic resonance imaging contrast agents, metal chelators, or photosensitizers. Among them, bisphosphonates, peptides, and receptor-specific ligands are used for actively targeted drug delivery, polymers and nanoparticles are for passively targeted drug delivery, magnetic resonance imaging contrast agents are for theranostic purposes, metal chelators are for the treatment or prevention of Alzheimer's disease (AD), and photosensitizers are for photodynamic therapy of cancers. The rationales behind these designs are explained and justified at the molecular or cellular level, associating with the requirements for diagnosis, therapy, and visualization of biological processes. To illustrate the wide range of opportunities and challenges that are emerging in this realm, representative examples of targeted drug delivery systems, anticancer conjugates, anticancer theranostic agents, and anti-AD compounds relevant to functionalized platinum complexes are provided. All the examples exhibit new potential of platinum complexes for future applications in biomedical areas. The emphases of this Account are placed on the functionalization for targeted drug delivery and theranostic agents. In the end, a general assessment of various strategies has been made according to their major shortcomings and defects. The original information in this Account comes entirely from literature appearing since 2010.
Collapse
Affiliation(s)
- Xiaoyong Wang
- State
Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences,
State Key Laboratory of Analytical Chemistry for Life Science, Nanjing University, Nanjing 210023, P. R. China
- Collaborative
Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing 210093, P. R. China
| | - Xiaohui Wang
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
- College
of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, P. R. China
| | - Zijian Guo
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Nanjing University, Nanjing 210093, P. R. China
- Collaborative
Innovation Center of Chemistry for Life Sciences, Nanjing University, Nanjing 210093, P. R. China
| |
Collapse
|
41
|
Stacey OJ, Platts JA, Coles SJ, Horton PN, Pope SJA. Phosphorescent, Cyclometalated Cinchophen-Derived Platinum Complexes: Syntheses, Structures, and Electronic Properties. Inorg Chem 2015; 54:6528-36. [DOI: 10.1021/acs.inorgchem.5b00817] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Oliver J. Stacey
- School
of Chemistry, Main Building, Cardiff University, Cardiff CF10 3AT, Cymru/Wales, United Kingdom
| | - James A. Platts
- School
of Chemistry, Main Building, Cardiff University, Cardiff CF10 3AT, Cymru/Wales, United Kingdom
| | - Simon J. Coles
- National
Crystallographic Service, Chemistry, Faculty of Natural and Environmental
Sciences, University of Southampton, Highfield, Southampton, SO17 1 BJ, United Kingdom
| | - Peter N. Horton
- National
Crystallographic Service, Chemistry, Faculty of Natural and Environmental
Sciences, University of Southampton, Highfield, Southampton, SO17 1 BJ, United Kingdom
| | - Simon J. A. Pope
- School
of Chemistry, Main Building, Cardiff University, Cardiff CF10 3AT, Cymru/Wales, United Kingdom
| |
Collapse
|
42
|
Derrick JS, Lim MH. Tools of the Trade: Investigations into Design Strategies of Small Molecules to Target Components in Alzheimer's Disease. Chembiochem 2015; 16:887-98. [DOI: 10.1002/cbic.201402718] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Indexed: 12/21/2022]
|
43
|
Kong MY, Chen QY, Yao L, Wang YB. Spectroscopic study on the interaction of Aβ42 with di(picolyl)amine derivatives and the toxicity to SH-S5Y5 cells. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2015; 138:225-228. [PMID: 25498817 DOI: 10.1016/j.saa.2014.11.062] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2014] [Revised: 10/21/2014] [Accepted: 11/20/2014] [Indexed: 06/04/2023]
Abstract
In order to confirm the neurotoxicity of bifunctional chelators containing hydrophobic groups and metal chelating moiety, the interaction of di(picolyl)amine (dpa) derivatives toward Aβ42 peptide was investigated. Fluorescence titration reveals that a hydrophobic chelator (such as BODIPY) shows high binding affinity to amyloid Aβ42. Circular dichroism (CD) spectra confirm that the hydrophobic bifunctional chelator can decrease α-helix fraction and increase the β-sheet fraction of amyloid Aβ42. In particular, experimental results indicate that a bifunctional chelator can assemble with Cu(II)-Aβ42 forming chelator-Cu(II)-Aβ42 nanospheres, which are toxic to SH-S5Y5 cells. The hydrophobic interaction between the chelator and the amyloid peptide (Aβ42) has great contribution to the formation of neurotoxic chelator-Cu(II)-Aβ42 nanospheres. This work gives a general guide to the development of low cytotoxic inhibitors of Aβ42 aggregation.
Collapse
Affiliation(s)
- Meng-Yun Kong
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Qiu-Yun Chen
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China.
| | - Ling Yao
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Yin-Bing Wang
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| |
Collapse
|
44
|
Martins AF, Dias DM, Morfin JF, Lacerda S, Laurents DV, Tóth É, Geraldes CFGC. Interaction of PiB-Derivative Metal Complexes with Beta-Amyloid Peptides: Selective Recognition of the Aggregated Forms. Chemistry 2015; 21:5413-22. [DOI: 10.1002/chem.201406152] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2014] [Indexed: 01/03/2023]
|
45
|
Rowinska-Zyrek M, Salerno M, Kozlowski H. Neurodegenerative diseases – Understanding their molecular bases and progress in the development of potential treatments. Coord Chem Rev 2015. [DOI: 10.1016/j.ccr.2014.03.026] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
46
|
Yellol GS, Yellol JG, Kenche VB, Liu XM, Barnham KJ, Donaire A, Janiak C, Ruiz J. Synthesis of 2-Pyridyl-benzimidazole Iridium(III), Ruthenium(II), and Platinum(II) Complexes. Study of the Activity as Inhibitors of Amyloid-β Aggregation and Neurotoxicity Evaluation. Inorg Chem 2014; 54:470-5. [DOI: 10.1021/ic502119b] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Affiliation(s)
- Gorakh S. Yellol
- Departamento de Química Inorgánica and
Regional Campus of International Excellence (Campus Mare Nostrum), Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, E-30071 Murcia, Spain
| | - Jyoti G. Yellol
- Departamento de Química Inorgánica and
Regional Campus of International Excellence (Campus Mare Nostrum), Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, E-30071 Murcia, Spain
| | - Vijaya B. Kenche
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville 3016, Australia
| | - Xiang Ming Liu
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville 3016, Australia
| | - Kevin J. Barnham
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville 3016, Australia
| | - Antonio Donaire
- Departamento de Química Inorgánica and
Regional Campus of International Excellence (Campus Mare Nostrum), Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, E-30071 Murcia, Spain
| | - Christoph Janiak
- Institut für Anorganische Chemie und Strukturchemie, Universität Düsseldorf, D-40204 Düsseldorf, Germany
| | - José Ruiz
- Departamento de Química Inorgánica and
Regional Campus of International Excellence (Campus Mare Nostrum), Universidad de Murcia and Instituto Murciano de Investigación Biosanitaria IMIB-Arrixaca, E-30071 Murcia, Spain
| |
Collapse
|
47
|
Jones MR, Mu C, Wang MCP, Webb MI, Walsby CJ, Storr T. Modulation of the Aβ peptide aggregation pathway by KP1019 limits Aβ-associated neurotoxicity. Metallomics 2014; 7:129-35. [PMID: 25387614 DOI: 10.1039/c4mt00252k] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that is increasing worldwide due to increased life expectancy. AD is characterized by two pathological hallmarks in the brain: amyloid-β (Aβ) plaque deposits and neurofibrillary tangles. A focus of AD research has concentrated on either inhibiting Aβ peptide aggregation that leads to plaque formation or breaking down pre-formed Aβ peptide aggregates. An alternative approach is to modulate the Aβ aggregation profile by facilitating the formation of Aβ species that are off-pathway and non-toxic. Herein, we report the re-purposing of the widely studied Ru(iii) anti-cancer complex KP1019, towards regulating the aggregation profile of the Aβ peptide. Using electron paramagnetic resonance (EPR) spectroscopy, we conclude that KP1019 binds to histidine residues, located at the N-terminus of the peptide, in a rapid and robust fashion. Native gels and transmission electron microscopy (TEM) analyses have provided insight into the species and structures that are generated by KP1019-Aβ interactions. Finally, incubation in an in vitro human neuronal cell model has demonstrated that the formation of KP1019-Aβ species rescues cell viability from Aβ-associated neurotoxicity. Modulation of the Aβ aggregation pathway via covalent interactions with small molecules is thus a promising AD therapeutic strategy.
Collapse
Affiliation(s)
- Michael R Jones
- Department of Chemistry, Simon Fraser University, Burnaby, BC V5A1S6, Canada.
| | | | | | | | | | | |
Collapse
|
48
|
Faller P, Hureau C, La Penna G. Metal ions and intrinsically disordered proteins and peptides: from Cu/Zn amyloid-β to general principles. Acc Chem Res 2014; 47:2252-9. [PMID: 24871565 DOI: 10.1021/ar400293h] [Citation(s) in RCA: 203] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The interaction of d-block metal ions (Cu, Zn, Fe, etc.) with intrinsically disordered proteins (IDPs) has gained interest, partly due to their proposed roles in several diseases, mainly neurodegenerative. A prominent member of IDPs is the peptide amyloid-β (Aβ) that aggregates into metal-enriched amyloid plaques, a hallmark of Alzheimer's disease, in which Cu and Zn are bound to Aβ. IDPs are a class of proteins and peptides that lack a unique 3D structure when the protein is isolated. This disordered structure impacts their interaction with metal ions compared with structured metalloproteins. Metalloproteins either have a preorganized metal binding site or fold upon metal binding, resulting in defined 3D structure with a well-defined metal site. In contrast, for Aβ and likely most of the other IDPs, the affinity for Cu(I/II) and Zn(II) is weaker and the interaction is flexible with different coordination sites present. Coordination of Cu(I/II) with Aβ is very dynamic including fast Cu-exchange reactions (milliseconds or less) that are intrapeptidic between different sites as well as interpeptidic. This highly dynamic metal-IDP interaction has a strong impact on reactivity and potential biological role: (i) Due to the low affinity compared with classical metalloproteins, IDPs likely bind metals only at special places or under special conditions. For Aβ, this is likely in the neurons that expel Zn or Cu into the synapse and upon metal dysregulation occurring in Alzheimer's disease. (ii) Amino acid substitutions (mutations) on noncoordinating residues can change drastically the coordination sphere. (iii) Considering the Cu/Zn-Aβ aberrant interaction, therapeutic strategies can be based on removal of Cu/Zn or precluding their binding to the peptide. The latter is very difficult due to the multitude of metal-binding sites, but the fast koff facilitates removal. (iv) The high flexibility of the Cu-Aβ complex results in different conformations with different redox activity. Only some conformations are able to produce reactive oxygen species. (v) Other, more specific catalysis (like enzymes) is very unlikely for Cu/Zn-Aβ. (vi) The Cu/Zn exchange reactions with Aβ are faster than the aggregation process and can hence have a strong impact on this process. In conclusion, the coordination chemistry is fundamentally different for most of IDPs compared with the classical, structured metalloproteins or with (bio)-inorganic complexes. The dynamics is a key parameter to understand this interaction and its potential biological impact.
Collapse
Affiliation(s)
- Peter Faller
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099, Toulouse F-31077 Cedex 4, France
- Université de Toulouse, UPS, INPT, Toulouse F-31077 Cedex 4, France
| | - Christelle Hureau
- CNRS, LCC (Laboratoire de Chimie de Coordination), 205 route de Narbonne, BP 44099, Toulouse F-31077 Cedex 4, France
- Université de Toulouse, UPS, INPT, Toulouse F-31077 Cedex 4, France
| | - Giovanni La Penna
- CNR - National Research Council of Italy, ICCOM
- Institute for chemistry of organo-metallic compounds, via Madonna del Piano 10, I-50019 Sesto Fiorentino, Firenze, Italy
| |
Collapse
|
49
|
Bergamini P, Ferretti V, Formaglio P, Marchi A, Marvelli L, Sforza F. Synthesis, characterization and antiproliferative activity of three platinum(II) complexes of l-carnitine. The first structural determination of a platinum complex containing carnitine. Polyhedron 2014. [DOI: 10.1016/j.poly.2014.04.023] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
50
|
Heffern MC, Velasco PT, Matosziuk LM, Coomes JL, Karras C, Ratner MA, Klein WB, Eckermann AL, Meade TJ. Modulation of amyloid-β aggregation by histidine-coordinating Cobalt(III) Schiff base complexes. Chembiochem 2014; 15:1584-9. [PMID: 24961930 PMCID: PMC4166533 DOI: 10.1002/cbic.201402201] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2014] [Indexed: 01/14/2023]
Abstract
Oligomers of the Aβ42 peptide are significant neurotoxins linked to Alzheimer's disease (AD). Histidine (His) residues present at the N terminus of Aβ42 are believed to influence toxicity by either serving as metal-ion binding sites (which promote oligomerization and oxidative damage) or facilitating synaptic binding. Transition metal complexes that bind to these residues and modulate Aβ toxicity have emerged as therapeutic candidates. Cobalt(III) Schiff base complexes (Co-sb) were evaluated for their ability to interact with Aβ peptides. HPLC-MS, NMR, fluorescence, and DFT studies demonstrated that Co-sb complexes could interact with the His residues in a truncated Aβ16 peptide representing the Aβ42 N terminus. Coordination of Co-sb complexes altered the structure of Aβ42 peptides and promoted the formation of large soluble oligomers. Interestingly, this structural perturbation of Aβ correlated to reduced synaptic binding to hippocampal neurons. These results demonstrate the promise of Co-sb complexes in anti-AD therapeutic approaches.
Collapse
Affiliation(s)
- Marie C. Heffern
- Departments of Chemistry, Molecular Biosciences, Neurobiology, Biomedical Engineering, and Radiology, Northwestern University, Evanston, IL 60208-3113, USA
| | - Pauline T. Velasco
- Department of Neurobiology, Northwestern University, Evanston, IL 60208-3113, USA
| | - Lauren M. Matosziuk
- Departments of Chemistry, Molecular Biosciences, Neurobiology, Biomedical Engineering, and Radiology, Northwestern University, Evanston, IL 60208-3113, USA
| | - Joseph L. Coomes
- Departments of Chemistry, Molecular Biosciences, Neurobiology, Biomedical Engineering, and Radiology, Northwestern University, Evanston, IL 60208-3113, USA
| | - Constantine Karras
- Departments of Chemistry, Molecular Biosciences, Neurobiology, Biomedical Engineering, and Radiology, Northwestern University, Evanston, IL 60208-3113, USA
| | - Mark A. Ratner
- Department of Chemistry, Northwestern University, Evanston, IL 60208-3113, USA
| | - William B. Klein
- Department of Neurobiology, Northwestern University, Evanston, IL 60208-3113, USA
| | - Amanda L. Eckermann
- Departments of Chemistry, Molecular Biosciences, Neurobiology, Biomedical Engineering, and Radiology, Northwestern University, Evanston, IL 60208-3113, USA
| | - Thomas J. Meade
- Departments of Chemistry, Molecular Biosciences, Neurobiology, Biomedical Engineering, and Radiology, Northwestern University, Evanston, IL 60208-3113, USA
| |
Collapse
|