1
|
Sun Y, Li Y, Zhang A, Hu T, Li M. Prognostic model identification of ribosome biogenesis-related genes in pancreatic cancer based on multiple machine learning analyses. Discov Oncol 2025; 16:905. [PMID: 40411705 PMCID: PMC12103412 DOI: 10.1007/s12672-025-02733-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Accepted: 05/16/2025] [Indexed: 05/26/2025] Open
Abstract
BACKGROUND Pancreatic cancer is a highly aggressive cancer characterized by low survival rate. Enhanced ribosome biogenesis may be associated with tumor drug resistance and malignant phenotypes, representing a potential therapeutic target in pancreatic cancer. Therefore, exploring the molecular mechanisms of ribosome biogenesis in pancreatic cancer may uncover new biomarkers and potential therapeutic targets, facilitating the development of personalized treatment strategies. METHODS Ribosome biogenesis-related gene signatures were acquired from TCGA and Gene Cards databases. Prognostic gene sets were screened using machine learning algorithms to construct a risk model, which was externally validated via GEO database. Single-cell RNA sequencing analysis (GSE155698 dataset) was performed to assess gene expression patterns and module scores. RESULTS Sixty ribosome biogenesis-related prognostic genes were identified in pancreatic cancer. Cox regression and machine learning algorithms selected nine pivotal biomarkers (ECT2; CKB; HMGA2; TPX2; ERBB3; SLC2A1; KRT13; PRSS3; CRABP2) with high diagnostic and prognostic specificity for PAAD. The machine learning-derived risk score correlated strongly with tumor proliferation pathways and immunosuppression, suggesting dual roles in tumor promotion and immunosuppressive microenvironment remodeling. Single-cell analysis highlighted predominant expression of CKB, SLC2A1, ERBB3, CRABP2, and PRSS3 in pancreatic ductal epithelial cells. CONCLUSIONS Our results shed light on the potential connections between ribosome biogenesis-related molecular characteristics and clinical features, the tumor microenvironment, and clinical drug responses. The research underscores the critical role of ribosome biogenesis in the progression and treatment resistance of pancreatic cancer, offering valuable new perspectives for prognostic evaluation and therapeutic response prediction in pancreatic cancer.
Collapse
Affiliation(s)
- Yuan Sun
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Yan Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Anlan Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Tao Hu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Ming Li
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China.
| |
Collapse
|
2
|
Li HX, He YM, Fei J, Guo M, Zeng C, Yan PJ, Xu Y, Qin G, Teng FY. The G-quadruplex ligand CX-5461: an innovative candidate for disease treatment. J Transl Med 2025; 23:457. [PMID: 40251554 PMCID: PMC12007140 DOI: 10.1186/s12967-025-06473-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2025] [Accepted: 04/08/2025] [Indexed: 04/20/2025] Open
Abstract
The ribosomal DNA (rDNA) plays a vital role in regulating protein synthesis by ribosome biogenesis, essential for maintaining cellular growth, metabolism, and more. Cancer cells show a high dependence on ribosome biogenesis and exhibit elevated rDNA transcriptional activity. CX-5461, also known as Pidnarulex, is a First-in-Class anticancer drug that has received 'Fast Track Designation' approval from the FDA. Initially reported to inhibit Pol I-driven rDNA transcription, CX-5461 was recently identified as a G-quadruplex structure (G4) stabilizer and is currently completed or undergoing multiple Phase I clinical trials in patients with breast and ovarian cancers harboring BRCA1/2, PALB2, or other DNA repair deficiencies. Additionally, preclinical studies have confirmed that CX-5461 demonstrates promising therapeutic effects against multifarious non-cancer diseases, including viral infections, and autoimmune diseases. This review summarizes the mechanisms of CX-5461, including its transcriptional inhibition of rDNA, binding to G4, and toxicity towards topoisomerase, along with its research status and therapeutic effects across various diseases. Lastly, this review highlights the targeted therapy strategy of CX-5461 based on nanomedicine delivery, particularly the drug delivery utilizing the nucleic acid aptamer AS1411, which contains a G4 motif to specifically target the highly expressed nucleolin on the surface of tumor cell membranes; It also anticipates the strategy of coupling CX-5461 with peptide nucleic acids and locked nucleic acids to achieve dual targeting, thereby realizing individualized G4-targeting by CX-5461. This review aims to provide a general overview of the progress of CX-5461 in recent years and suggest potential strategies for disease treatment involving ribosomal RNA synthesis, G4, and topoisomerase.
Collapse
Affiliation(s)
- Hong-Xia Li
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, Luzhou, 646000, Sichuan, China
| | - Yi-Meng He
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Jing Fei
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Man Guo
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Nephropathy, and Sichuan Clinical Research Center for Diabetes and Metabolic Disease, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Chen Zeng
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Pi-Jun Yan
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Nephropathy, and Sichuan Clinical Research Center for Diabetes and Metabolic Disease, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Yong Xu
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, Luzhou, 646000, Sichuan, China
- Sichuan Clinical Research Center for Nephropathy, and Sichuan Clinical Research Center for Diabetes and Metabolic Disease, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Gang Qin
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| | - Fang-Yuan Teng
- Department of Otolaryngology-Head and Neck Surgery, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Department of Endocrinology and Metabolism, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, and Metabolic Vascular Diseases Key Laboratory of Sichuan-Chongqing Cooperation, Luzhou, 646000, Sichuan, China.
- Sichuan Clinical Research Center for Nephropathy, and Sichuan Clinical Research Center for Diabetes and Metabolic Disease, the Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China.
| |
Collapse
|
3
|
Metge BJ, Williams L, Swain CA, Hinshaw DC, Elhamamsy AR, Chen D, Samant RS, Shevde LA. Ribosomal RNA Biosynthesis Functionally Programs Tumor-Associated Macrophages to Support Breast Cancer Progression. Cancer Res 2025; 85:1459-1478. [PMID: 39903832 PMCID: PMC11999771 DOI: 10.1158/0008-5472.can-24-0707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 10/06/2024] [Accepted: 01/29/2025] [Indexed: 02/06/2025]
Abstract
Macrophages are important cellular components of the innate immune system, serving as the first line of immune defense. They are also among the first immune cells to be reprogrammed by the evolving tumor milieu into tumor-supportive macrophages that facilitate tumor progression and promote therapeutic evasion. In this study, we uncovered that macrophages from preneoplastic breast lesions were enriched for ribosome biosynthesis genes, indicating that this is an early event that is maintained in the tumor tissue. Furthermore, following treatment with irradiation or chemotherapy, breast tumors featured an abundance of tumor-supporting macrophages that displayed an enrichment of signatures of rRNA expression and ribosome biosynthesis. Consistently, rRNA synthesis was increased in tumor-supportive macrophages. In preclinical models of mammary cancer, a low dose of the RNA biogenesis inhibitor BMH-21 converted protumor macrophages to tumor-suppressive macrophages and supported an inflammatory tumor microenvironment. Inhibition of rRNA transcription stimulated a nucleolar stress response that activated the p53 and NF-κB pathways, which orchestrated impaired ribosome biogenesis checkpoint signaling that induced an inflammatory program in macrophages. Finally, inhibiting ribosome biogenesis augmented the effectiveness of neoadjuvant therapy. Together, these findings provide evidence that ribosome biogenesis is a targetable dependency to reprogram the tumor immune microenvironment. Significance: Increased ribosome biogenesis is an integral attribute of protumor macrophages that occurs early during breast tumorigenesis and represents a therapeutically actionable process to reactivate the tumor-suppressive functions of macrophages.
Collapse
Affiliation(s)
- Brandon J. Metge
- Department of Pathology, The University of Alabama at Birmingham
| | - Li’an Williams
- Department of Pathology, The University of Alabama at Birmingham
- UAB Medical Scientist Training Program
| | - Courtney A. Swain
- Department of Pathology, The University of Alabama at Birmingham
- UAB Medical Scientist Training Program
| | | | - Amr R. Elhamamsy
- Department of Pathology, The University of Alabama at Birmingham
| | - Dongquan Chen
- Department of Medicine, The University of Alabama at Birmingham
- O’Neal Comprehensive Cancer Center, The University of Alabama at Birmingham
| | - Rajeev S. Samant
- Department of Pathology, The University of Alabama at Birmingham
- O’Neal Comprehensive Cancer Center, The University of Alabama at Birmingham
- Birmingham VA Medical Center, Birmingham, AL, USA
| | - Lalita A. Shevde
- Department of Pathology, The University of Alabama at Birmingham
- O’Neal Comprehensive Cancer Center, The University of Alabama at Birmingham
| |
Collapse
|
4
|
Howard GC, Tansey WP. Ribosome-directed cancer therapies: the tip of the iceberg? Trends Pharmacol Sci 2025; 46:303-310. [PMID: 40044536 PMCID: PMC11972149 DOI: 10.1016/j.tips.2025.02.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/03/2025] [Accepted: 02/10/2025] [Indexed: 03/09/2025]
Abstract
Ribosomes and ribosome biogenesis (RiBi) are universally corrupted in cancer, fueling the high rates of translation that sustain malignancy and creating opportunities for discriminating therapeutic intervention. Despite longstanding recognition of the promise of ribosome-directed cancer therapies, only a handful of such agents have been used in the clinic, and with limited success, and the true potential of this approach is unknown. In the past few years, however, understanding of cancer ribosome specialization and the intricacies of RiBi have advanced dramatically, opening opportunities that could not be imagined when existing agents were discovered. Here, we discuss the rationale for targeting ribosomes to treat cancer, review the limitations of current agents, and highlight an important set of recent discoveries we propose could be exploited to discover molecularly-targeted ribosome-directed cancer therapeutics.
Collapse
Affiliation(s)
- Gregory C Howard
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - William P Tansey
- Department of Cell and Developmental Biology, Vanderbilt University School of Medicine, Nashville, TN 37232, USA; Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, TN 37232, USA.
| |
Collapse
|
5
|
Jouines C, Lo Monaco P, Gaucherot A, Monnet MA, Iacono ID, Simioni V, Monchiet D, Diaz JJ, Combaret V, Marcel V, Catez F. Ribosome biogenesis is a therapeutic vulnerability in paediatric neuroblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.26.645392. [PMID: 40196487 PMCID: PMC11974838 DOI: 10.1101/2025.03.26.645392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Background Neuroblastoma is a heterogeneous malignant paediatric tumor with prognosis depending on patient age and disease stage. Current treatment strategies rely on four key diagnostic criteria: age, histological stage, MYCN gene status, and genomic profile. It has been reported that MYC oncogenic activity depends on ribosome biogenesis, whose hyperactivation in cancer cells supports their high proliferative capacity, and thus represent a potential therapeutic target. Methods we utilized the well-established IMR-32 cell line along with a panel of patient-derived neuroblastoma cell lines with varying MYCN status, which we previously established. Additionally, we generated an IMR-32 cell line expressing an shRNA targeting the ribosome biogenesis factor fibrillarin (FBL). Cell growth, apoptosis markers, and cell cycle regulators were analyzed. Expression of ribosome biogenesis factors was assessed using publicly available datasets and RT-qPCR data from an in-house neuroblastoma cohort. Results We explored whether ribosome biogenesis represents a vulnerability in neuroblastoma. Our findings demonstrate that inhibition of RNA polymerase I using CX-5461 and BMH-21 suppressed cell proliferation at nanomolar concentrations and induced ribosomal stress, leading to activation of apoptosis and the p21 pathway. Furthermore, we identified FBL as a marker of poor prognosis in neuroblastoma. Consistently, FBL knockdown reduced neuroblastoma cell proliferation, supporting its potential as a therapeutic target. Conclusion Our study reinforces the therapeutic potential of ribosome biogenesis inhibition in neuroblastoma and expands the list of potential targets to include rRNA maturation factors. These findings highlight the promise of targeting ribosome biogenesis as a novel approach for neuroblastoma treatment.
Collapse
|
6
|
Voukeng I, Chen J, Lafontaine DLJ. The natural alkaloid nitidine chloride targets RNA polymerase I to inhibit ribosome biogenesis and repress cancer cell growth. Cell Death Discov 2025; 11:116. [PMID: 40121213 PMCID: PMC11929923 DOI: 10.1038/s41420-025-02396-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 02/17/2025] [Accepted: 03/12/2025] [Indexed: 03/25/2025] Open
Abstract
Nature is an abundant and largely untapped source of potent bioactive molecules. Ribosome biogenesis modulators have proven effective in suppressing cancer cell growth and are currently being evaluated in clinical trials for anticancer therapies. In this study, we characterized the alkaloid nitidine chloride (NC), produced by the endemic Cameroonian plant Fagara (and other plants). We demonstrate that NC kills cancer cells regardless of their p53 status and inhibits tumor growth in vitro. Furthermore, NC profoundly suppresses global protein synthesis. Treatment of human cells with NC causes severe nucleolar disruption and inhibits pre-rRNA synthesis by destabilizing key factors required for recruitment of RNA polymerase I to ribosomal DNA promoters. In vitro, NC intercalates into DNA and inhibits topoisomerases I and II. Consistently, NC treatment activates a DNA damage response. We propose that the torsional stress on rDNA caused by topoisomerase inhibition leads to loss of RNA polymerase I function and to shutdown of ribosome biogenesis. Although NC has long been suspected of possessing anticancer properties, here we provide a molecular explanation for its mechanism of action. In budding yeast cells, interestingly, NC inhibits cell growth, impairs ribosome biogenesis, and disrupts nucleolar structure. This suggests that its mode of action is at least partially evolutionarily conserved.
Collapse
Affiliation(s)
- Igor Voukeng
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université Libre de Bruxelles (ULB), Biopark Campus, Gosselies, Belgium
| | - Jing Chen
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université Libre de Bruxelles (ULB), Biopark Campus, Gosselies, Belgium
| | - Denis L J Lafontaine
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université Libre de Bruxelles (ULB), Biopark Campus, Gosselies, Belgium.
| |
Collapse
|
7
|
Cho CJ, Nguyen T, Rougeau AK, Huang YZ, To S, Lin X, Thalalla Gamage S, Meier JL, Mills JC. Inhibition of Ribosome Biogenesis In Vivo Causes p53-Dependent Death and p53-Independent Dysfunction. Cell Mol Gastroenterol Hepatol 2025; 19:101496. [PMID: 40081569 DOI: 10.1016/j.jcmgh.2025.101496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2025] [Revised: 02/25/2025] [Accepted: 02/28/2025] [Indexed: 03/16/2025]
Abstract
BACKGROUND & AIMS Although it is well-known that ribosomes are critical for cell function, and their synthesis (known as ribosome biogenesis [RiBi]) is energy-intensive, surprisingly little is known about RiBi in vivo in adult tissue. METHODS Using a mouse model with conditional deletion of Nat10, an essential gene for RiBi and subsequent translation of mRNA, we investigated the effects of RiBi blockade in vivo, with a focus on pancreatic acinar cells during homeostasis and tumorigenesis. RESULTS We observed an unexpected latency of several weeks between Nat10 deletion and onset of structural and functional abnormalities and p53-dependent acinar cell death. Although deletion of Trp53 rescued acinar cells from apoptotic cell death, Nat10Δ/Δ; Trp53Δ/Δ acinar cells remained morphologically and functionally abnormal. Deletion of Nat10 in acinar cells blocked Kras-oncogene-driven pancreatic ductal adenocarcinoma, regardless of Trp53 mutation status. CONCLUSIONS Together, our results provide initial insights into how differentiated cells respond to defects in RiBi and translation in vivo in various physiological contexts.
Collapse
Affiliation(s)
- Charles J Cho
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas.
| | - Thanh Nguyen
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Amala K Rougeau
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Yang-Zhe Huang
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Sarah To
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas
| | - Xiaobo Lin
- Division of Gastroenterology, Department of Medicine, Washington University School of Medicine, St. Louis, Missouri
| | - Supuni Thalalla Gamage
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Jordan L Meier
- Chemical Biology Laboratory, National Cancer Institute, National Institutes of Health, Frederick, Maryland
| | - Jason C Mills
- Section of Gastroenterology and Hepatology, Department of Medicine, Baylor College of Medicine, Houston, Texas; Department of Pathology & Immunology, Baylor College of Medicine, Houston, Texas; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas.
| |
Collapse
|
8
|
Ogawa A, Izumikawa K, Tate S, Isoyama S, Mori M, Fujiwara K, Watanabe S, Ohga T, Jo U, Taniyama D, Kitajima S, Tanaka S, Onji H, Kageyama SI, Yamamoto G, Saito H, Morita TY, Okada M, Natsumeda M, Nagahama M, Kobayashi J, Ohashi A, Sasanuma H, Higashiyama S, Dan S, Pommier Y, Murai J. SLFN11-mediated ribosome biogenesis impairment induces TP53-independent apoptosis. Mol Cell 2025; 85:894-912.e10. [PMID: 39909041 PMCID: PMC11890970 DOI: 10.1016/j.molcel.2025.01.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 12/11/2024] [Accepted: 01/10/2025] [Indexed: 02/07/2025]
Abstract
Impairment of ribosome biogenesis (RiBi) triggered by inhibition of ribosomal RNA (rRNA) synthesis and processing leads to various biological effects. We report that Schlafen 11 (SLFN11) induces TP53-independent apoptosis through RiBi impairment. Upon replication stress, SLFN11 inhibits rRNA synthesis with RNA polymerase I accumulation and increased chromatin accessibility in the ribosomal DNA (rDNA) genes. SLFN11-dependent RiBi impairment preferentially depletes short-lived proteins, particularly MCL1, leading to apoptosis in response to replication stress. SLFN11's Walker B motif (E669), DNA-binding site (K652), dephosphorylation site for single-strand DNA binding (S753), and RNase sites (E209/E214) are all required for the SLFN11-mediated RiBi impairment. Comparable effects were obtained with direct RNA polymerase I inhibitors and other RiBi inhibitory conditions regardless of SLFN11. These findings were extended across 34 diverse human cancer cell lines. Thus, we demonstrate that RiBi impairment is a robust inactivator of MCL1 and an additional proapoptotic mechanism by which SLFN11 sensitizes cancer cells to chemotherapeutic agents.
Collapse
Affiliation(s)
- Akane Ogawa
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
| | - Keiichi Izumikawa
- Laboratory of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Tokyo 204-8588, Japan
| | - Sota Tate
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Toon, Ehime 791-0295, Japan; Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | - Sho Isoyama
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Masaru Mori
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
| | - Kohei Fujiwara
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | - Soyoka Watanabe
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
| | - Takayuki Ohga
- Laboratory of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Tokyo 204-8588, Japan
| | - Ukhyun Jo
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20814, USA
| | - Daiki Taniyama
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20814, USA
| | - Shojiro Kitajima
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
| | - Soichiro Tanaka
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan
| | - Hiroshi Onji
- Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan
| | - Shun-Ichiro Kageyama
- Division of Radiation Oncology and Particle Therapy, National Cancer Center Hospital East, Chiba 277-8577, Japan
| | - Gaku Yamamoto
- Division of Collaborative Research and Development, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Chiba 277-8577, Japan
| | - Hitoshi Saito
- Division of Collaborative Research and Development, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Chiba 277-8577, Japan
| | - Tomoko Yamamori Morita
- Division of Collaborative Research and Development, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Chiba 277-8577, Japan
| | - Masayasu Okada
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata 951-8585, Japan; Department of Brain Tumor Biology, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Manabu Natsumeda
- Department of Neurosurgery, Brain Research Institute, Niigata University, Niigata 951-8585, Japan; Advanced Treatment of Neurological Diseases Branch, Brain Research Institute, Niigata University, Niigata 951-8585, Japan
| | - Masami Nagahama
- Laboratory of Molecular and Cellular Biochemistry, Meiji Pharmaceutical University, Tokyo 204-8588, Japan
| | - Junya Kobayashi
- Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan; Department of Radiological Sciences, School of Health Sciences at Narita, International University of Health and Welfare, Narita, Tokyo 286-0048, Japan
| | - Akihiro Ohashi
- Division of Collaborative Research and Development, Exploratory Oncology Research & Clinical Trial Center, National Cancer Center, Chiba 277-8577, Japan
| | - Hiroyuki Sasanuma
- Department of Genome Medicine, Tokyo Metropolitan Institute of Medical Science, Tokyo 156-0057, Japan
| | - Shigeki Higashiyama
- Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Toon, Ehime 791-0295, Japan; Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan; Department of Oncogenesis and Tumor Regulation, Osaka International Cancer Institute, Osaka 103-0027, Japan
| | - Shingo Dan
- Division of Molecular Pharmacology, Cancer Chemotherapy Center, Japanese Foundation for Cancer Research, Tokyo 135-8550, Japan
| | - Yves Pommier
- Developmental Therapeutics Branch and Laboratory of Molecular Pharmacology, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD 20814, USA.
| | - Junko Murai
- Institute for Advanced Biosciences, Keio University, Tsuruoka, Yamagata 997-0017, Japan; Division of Cell Growth and Tumor Regulation, Proteo-Science Center, Toon, Ehime 791-0295, Japan; Department of Biochemistry and Molecular Genetics, Ehime University Graduate School of Medicine, Toon, Ehime 791-0295, Japan; Radiation Biology Center, Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan.
| |
Collapse
|
9
|
brown TJ, Pichurin J, Parrado CR, Kabeche L, Baserga SJ. A role for the kinetochore protein, NUF2, in ribosome biogenesis. Mol Biol Cell 2025; 36:ar16. [PMID: 39705402 PMCID: PMC11809303 DOI: 10.1091/mbc.e24-08-0337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 11/18/2024] [Accepted: 12/10/2024] [Indexed: 12/22/2024] Open
Abstract
Ribosome biogenesis (RB) is an intricate and evolutionarily conserved process that takes place mainly in the nucleolus and is required for eukaryotic cells to maintain homeostasis, grow in size, and divide. Our laboratory has identified the NUF2 protein, part of the mitotic kinetochore, in a genome-wide siRNA screen for proteins required for making ribosomes in MCF10A human breast epithelial cells. After rigorous validation and using several biochemical and cell-based assays, we find a role for NUF2 in pre-rRNA transcription, the primary and rate-limiting step of RB. siRNA depletion of other components of the NUF2 kinetochore sub-complex, NDC80, SPC24, and SPC25, also reduce pre-rRNA transcription. Interestingly, essential protein components for pre-rRNA transcription, including the largest subunit of RNA polymerase I, POLR1A, are reduced upon siRNA depletion of NUF2 and its protein partners. Their reduced levels are a likely mechanism for the decrease in pre-rRNA transcription. siRNA depletion of NUF2 and NDC80 also cause increased TP53 and CDKN1A (p21) mRNA levels, which can be restored by codepletion of RPL5, indicating activation of the nucleolar stress pathway (NSP). These results reveal a new connection between proteins with a known role in mitosis to the function of the nucleolus in RB during interphase.
Collapse
Affiliation(s)
- ty j. brown
- Department of Genetics, Yale University and the Yale School of Medicine, New Haven, 06520 CT
| | - Jennifer Pichurin
- Department of Molecular Biophysics and Biochemistry, Yale University and the Yale School of Medicine, New Haven, 06520 CT
| | - Carlos Ramirez Parrado
- Department of Molecular Biophysics and Biochemistry, Yale University and the Yale School of Medicine, New Haven, 06520 CT
| | - Lilian Kabeche
- Department of Molecular Biophysics and Biochemistry, Yale University and the Yale School of Medicine, New Haven, 06520 CT
- Yale Cancer Biology Institute, Yale University and the Yale School of Medicine, West Haven, 06516 CT
| | - Susan J. Baserga
- Department of Genetics, Yale University and the Yale School of Medicine, New Haven, 06520 CT
- Department of Molecular Biophysics and Biochemistry, Yale University and the Yale School of Medicine, New Haven, 06520 CT
- Department of Therapeutic Radiology, Yale University and the Yale School of Medicine, New Haven, 06520 CT
| |
Collapse
|
10
|
Wei Y, Liu F, Zhu X, Liu X, Li H, Hou L, Ma X, Li F, Liu H. Artesunate disrupts ribosome RNA biogenesis and inhibits ovarian cancer growth by targeting FANCA. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 136:156333. [PMID: 39731835 DOI: 10.1016/j.phymed.2024.156333] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 11/22/2024] [Accepted: 12/16/2024] [Indexed: 12/30/2024]
Abstract
BACKGROUND The dysregulation of ribosome biogenesis has been extensively identified in various cancers, making it emerge as a hallmark of malignant cells. This highlights the potential of targeting ribosome biogenesis as an effective approach for treating cancer patients. Although chemotherapy drugs including doxorubicin and cisplatin often target ribosome biogenesis to induce DNA damage or inhibit tumor cell proliferation, they are associated with significant side effects. PURPOSE This study aims to reveal the novel role of artesunate (ART), a well-known antimalarial drug, in suppressing ribosome RNA biogenesis in ovarian cancer. METHODS In this study, the inhibitory effects of ART on ovarian cancer were studied both in vitro and in vivo. The effects of ART on ribosome RNA biogenesis were detected by 5-ethynyl uridine staining, RT-qPCR, and western blotting. Drug affinity responsive target stability, mass spectrometry, molecular docking and western blotting were combined to identify ART molecular targets. RESULTS Ovarian cancer cells treated with ART exhibited significant reduction in nascent rRNA synthesis, accompanied by a remarkable down-regulation of pre-rRNA and mature rRNA expression. The inhibitory effect of ART on ribosome biogenesis subsequently impaired cell proliferation, cell migration and invasion, and induced apoptosis. In eukaryotes, ribosome RNA synthesis primarily occurs in the nucleus, involving processes such as rDNA transcription, pre-rRNA splicing and the assembly of ribosome precursors with ribosomal proteins, other closely-related proteins and small nucleolar RNAs. We observed that ART inhibited the nuclear translocation of FANCA through binding to FANCA protein, consequently leading to the inhibition of ribosome RNA synthesis. Moreover, knockdown of FANCA in ovarian tumor cells resulted in reduced rRNA transcription, suppressed cell proliferation and migration, and induced apoptosis which might be mediated through the inhibition of mTOR/RPS6 activity. In vivo studies using xenograft tumors in nude mice demonstrated that ART repressed the growth of established ovarian cancer tumors. Additionally, ART treatment significantly altered FANCA protein level in these tumors, especially suppressed its nuclear localization. CONCLUSION These findings establish ART as a potent inhibitor of ribosome biogenesis, presenting a promising therapeutic avenue for ovarian tumors with high FANCA expression or for cancer patients exhibiting abnormal activation of the mTOR-RPS6 pathway.
Collapse
Affiliation(s)
- Yuyan Wei
- Jinan Central Hospital, Shandong First Medical University, Jinan 250013, Shandong, China
| | - Fengying Liu
- Jinan Central Hospital, Shandong First Medical University, Jinan 250013, Shandong, China
| | - Xialin Zhu
- Jinan Central Hospital, Shandong First Medical University, Jinan 250013, Shandong, China
| | - Xiaoting Liu
- Jinan Central Hospital, Shandong First Medical University, Jinan 250013, Shandong, China
| | - Hongxing Li
- State Key Laboratory of Biobased Material and Green Papermaking, School of Bioengineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
| | - Liujing Hou
- Jinan Central Hospital, Shandong First Medical University, Jinan 250013, Shandong, China
| | - Xiaoli Ma
- Jinan Central Hospital, Shandong First Medical University, Jinan 250013, Shandong, China
| | - Fei Li
- Department of Pathology, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China
| | - Hongyan Liu
- Jinan Central Hospital, Shandong First Medical University, Jinan 250013, Shandong, China.
| |
Collapse
|
11
|
Zhang X, Liu C, Cao Y, Liu L, Sun F, Hou L. RRS1 knockdown inhibits the proliferation of neuroblastoma cell via PI3K/Akt/NF-κB pathway. Pediatr Res 2025; 97:202-212. [PMID: 35523884 DOI: 10.1038/s41390-022-02073-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 02/12/2022] [Accepted: 02/27/2022] [Indexed: 11/08/2022]
Abstract
BACKGROUND RRS1 plays an important role in regulating ribosome biogenesis. Recently, RRS1 has emerged as an oncoprotein involved in tumorigenicity of some cancers. However its role in neuroblastoma remains unknown. METHODS RRS1 expression was detected in pediatric neuroblastoma patients' tissues and cell lines. The effects of RRS1 knockdown on proliferation, apoptosis, and cell cycle were evaluated in neuroblastoma cell lines. RRS1-related survival pathway was analyzed by co-immunoprecipitation (Co-IP), mass spectrometry, reverse transcription-quantitative real-time PCR (RT-qPCR), and western blot. Protein-protein interaction (PPI) network was constructed using Cytoscape software and the STRING databases. RESULTS Increased RRS1 level was found in neuroblastoma cases (35.6%) and cell lines. High RRS1 expression levels were associated with poor prognosis. RRS1 knockdown inhibited cell proliferation, induced apoptosis, and caused cell cycle arrest in SK-N-AS and SH-SY5Y cells. Co-IP and mass spectrometry analysis showed that RRS1 affects PI3K/Akt and nuclear factor κB (NF-κB) pathways. RT-qPCR and western blot results revealed that RRS1 knockdown inhibited the PI3K/Akt/NF-κB pathway through dephosphorylation of key proteins. In PPI network, AKT, PI3K, and P65 connected RRS1 with differentially expressed proteins more closely. CONCLUSIONS This study suggests RRS1 knockdown may inhibit neuroblastoma cell proliferation by the PI3K/Akt/NF-κB pathway. Therefore, RRS1 may be a potential target for neuroblastoma treatment. IMPACT RRS1 is involved in the progression of neuroblastoma. Knockdown of RRS1 contributes to inhibit the survival of neuroblastoma cells. RRS1 is associated with the PI3K/Akt/NF-κB signaling pathway in neuroblastoma cells. RRS1 may be a promising target for neuroblastoma therapy.
Collapse
Affiliation(s)
- Xia Zhang
- Department of Biochemistry and Molecular Biology, Basic Medical College, Qingdao University, Qingdao, Shandong Province, China
- Qingdao Blood Center, Qingdao, Shandong Province, China
| | - Cun Liu
- Department of Laboratory, The Affiliated Qingdao Third People's Hospital of Qingdao University, Qingdao, Shandong Province, China
| | - Yi Cao
- Department of Biochemistry and Molecular Biology, Basic Medical College, Qingdao University, Qingdao, Shandong Province, China
| | - Li Liu
- Qingdao Blood Center, Qingdao, Shandong Province, China
| | - Fusheng Sun
- Department of Pharmacy, Qingdao Municipal Hospital, Qingdao, Shandong Province, China.
| | - Lin Hou
- Department of Biochemistry and Molecular Biology, Basic Medical College, Qingdao University, Qingdao, Shandong Province, China.
| |
Collapse
|
12
|
Filipek K, Penzo M. Ribosomal rodeo: wrangling translational machinery in gynecologic tumors. Cancer Metastasis Rev 2024; 44:13. [PMID: 39621173 PMCID: PMC11611960 DOI: 10.1007/s10555-024-10234-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 11/21/2024] [Indexed: 12/06/2024]
Abstract
Gynecologic cancers are a significant cause of morbidity and mortality among women worldwide. Despite advancements in diagnosis and treatment, the molecular mechanisms underlying the development and progression of these cancers remain poorly understood. Recent studies have implicated translational machinery (ribosomal proteins (RPs) and translation factors (TFs)) as potential drivers of oncogenic processes in various cancer types, including gynecologic cancers. RPs are essential components of the ribosome, which is responsible for protein synthesis. In this review paper, we aim to explore the role of translational machinery in gynecologic cancers. Specifically, we will investigate the potential mechanisms by which these components contribute to the oncogenic processes in these cancers and evaluate the feasibility of targeting RPs as a potential therapeutic strategy. By doing so, we hope to provide a broader view of the molecular pathogenesis of gynecologic cancers and highlight their potential as novel therapeutic targets for the management of these challenging diseases.
Collapse
Affiliation(s)
- Kamil Filipek
- Department of Medical and Surgical Sciences, and Center for Applied Biomedical Research, Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Marianna Penzo
- Department of Medical and Surgical Sciences, and Center for Applied Biomedical Research, Alma Mater Studiorum University of Bologna, Bologna, Italy.
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy.
| |
Collapse
|
13
|
Liu M, Zhang H, Li Y, Huang D, Zuo H, Yang J, Chen Z. Loss of MMP9 disturbs cranial suture fusion via suppressing cell proliferation, chondrogenesis and osteogenesis in mice. Matrix Biol 2024; 134:93-106. [PMID: 39374863 DOI: 10.1016/j.matbio.2024.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 10/04/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Cranial sutures function as growth centers for calvarial bones. Abnormal suture closure will cause permanent cranium deformities. MMP9 is a member of the gelatinases that degrades components of the extracellular matrix. MMP9 has been reported to regulate bone development and remodeling. However, the function of MMP9 in cranial suture development is still unknown. Here, we identified that the expression of Mmp9 was specifically elevated during fusion of posterior frontal (PF) suture compared with other patent sutures in mice. Interestingly, inhibition of MMP9 ex vivo or knockout of Mmp9 in mice (Mmp9-/-) disturbed the fusion of PF suture. Histological analysis showed that knockout of Mmp9 resulted in wider distance between osteogenic fronts, suppressed cell condensation and endocranial bone formation in PF suture. Proliferation, chondrogenesis and osteogenesis of suture cells were decreased in Mmp9-/- mice, leading to the PF suture defects. Moreover, transcriptome analysis of PF suture revealed upregulated ribosome biogenesis and downregulated IGF signaling associated with abnormal closure of PF suture in Mmp9-/- mice. Inhibition of the ribosome biogenesis partially rescued PF suture defects caused by Mmp9 knockout. Altogether, these results indicate that MMP9 is critical for the fusion of cranial sutures, thus suggesting MMP9 as a potential therapeutic target for cranial suture diseases.
Collapse
Affiliation(s)
- Ming Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Hanshu Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Yuanyuan Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Delan Huang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Huanyan Zuo
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China
| | - Jingwen Yang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Pediatric Dentistry, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| | - Zhi Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School and Hospital of Stomatology, Wuhan University, Wuhan 430079, China; Department of Cariology and Endodontics, School & Hospital of Stomatology, Wuhan University, Wuhan 430079, China.
| |
Collapse
|
14
|
Gan Y, Hao Q, Han T, Tong J, Yan Q, Zhong H, Gao B, Li Y, Xuan Z, Li P, Yao L, Xu Y, Jiang YZ, Shao ZM, Deng J, Chen J, Zhou X. Targeting BRIX1 via Engineered Exosomes Induces Nucleolar Stress to Suppress Cancer Progression. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2407370. [PMID: 39475053 DOI: 10.1002/advs.202407370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/16/2024] [Indexed: 12/19/2024]
Abstract
Elevated ribosome biogenesis correlates with the rapid growth and progression of cancer. Targeted blockade of ribosome biogenesis induces nucleolar stress, which preferentially leads to the elimination of malignant cells. In this study, it is reported that the nucleolar protein BRIX1 is a critical regulator for the homeostasis between ribosome biogenesis and p53 activation. BRIX1 facilitated the processing of pre-rRNA by supporting the formation of the PeBoW complex. In addition, BRIX1 prevented p53 activation in response to nucleolar stress by impairing the interactions between MDM2 and the ribosomal proteins, RPL5, and RPL11, thereby triggering the resistance of cancer cells to chemotherapy. Conversely, depletion of BRIX1 induced nucleolar stress, which in turn activated p53 through RPL5 and RPL11, consequently inhibiting the growth of tumors. Moreover, engineered exosomes are developed, which are surface-decorated with iRGD, a tumor-homing peptide, and loaded with siRNAs specific to BRIX1, for the treatment of cancer. iRGD-Exo-siBRIX1 significantly suppressed the growth of colorectal cancer and enhanced the efficacy of 5-FU chemotherapy in vivo. Overall, the study uncovers that BRIX1 functions as an oncoprotein to promote rRNA synthesis and dampen p53 activity, and also implies that targeted inhibition of BRIX1 via engineered exosomes can be a potent approach for cancer therapy.
Collapse
Affiliation(s)
- Yu Gan
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
| | - Qian Hao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
| | - Tao Han
- Institutes of Health Central Plains, Xinxiang Key laboratory for Molecular Oncology, Xinxiang Medical University, Xinxiang, Henan, 453003, P. R. China
| | - Jing Tong
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
| | - Qingya Yan
- Institutes of Health Central Plains, Xinxiang Key laboratory for Molecular Oncology, Xinxiang Medical University, Xinxiang, Henan, 453003, P. R. China
| | - Hongguang Zhong
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi, 330006, P. R. China
| | - Bo Gao
- Umibio Co. Ltd., Shanghai, 201210, P. R. China
| | - Yanan Li
- Umibio Co. Ltd., Shanghai, 201210, P. R. China
| | | | - Pengfei Li
- Laboratory of Animal Center, Medical Experiment Center, Shaanxi University of Chinese Medicine, Xianyang, 712046, P. R. China
| | - Litong Yao
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, P. R. China
| | - Yingying Xu
- Department of Breast Surgery, The First Hospital of China Medical University, Shenyang, Liaoning, 110001, P. R. China
| | - Yi-Zhou Jiang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, P. R. China
| | - Zhi-Ming Shao
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, P. R. China
| | - Jun Deng
- Department of Oncology, The First Affiliated Hospital, Jiangxi Medical College, Nanchang University, Nanchang, Jiangxi, 330006, P. R. China
- Jiangxi Key Laboratory for Individual Cancer Therapy, Nanchang, Jiangxi, 330006, P. R. China
| | - Jiaxiang Chen
- Department of Physiology, School of Basic Medical Sciences, Jiangxi Medical College, Nanchang University, Nanchang, 330006, P. R. China
| | - Xiang Zhou
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, P. R. China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, P. R. China
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, P. R. China
- Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, P. R. China
| |
Collapse
|
15
|
Tang X, Li K, Wang Y, Rocchi S, Shen S, Cerezo M. Metabolism and mRNA translation: a nexus of cancer plasticity. Trends Cell Biol 2024:S0962-8924(24)00225-3. [PMID: 39603916 DOI: 10.1016/j.tcb.2024.10.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/24/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024]
Abstract
Tumors often face energy deprivation due to mutations, hypoxia, and nutritional deficiencies within the harsh tumor microenvironment (TME), and as an effect of anticancer treatments. This metabolic stress triggers adaptive reprogramming of mRNA translation, which in turn adjusts metabolic plasticity and associated signaling pathways to ensure tumor cell survival. Emerging evidence is beginning to reveal the complex interplay between metabolism and mRNA translation, shedding light on the mechanisms that synchronize ribosome assembly and reconfigure translation programs under metabolic stress. This review explores recent advances in our understanding of the coordination between metabolism and mRNA translation, offering insights that could inform therapeutic strategies targeting both cancer metabolism and translation, with the aim of disrupting cancer cell plasticity and survival.
Collapse
Affiliation(s)
- Xinpu Tang
- Institute of Thoracic Oncology and Department of Thoracic Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Kaixiu Li
- Institute of Thoracic Oncology and Department of Thoracic Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Yuqing Wang
- Institute of Thoracic Oncology and Department of Thoracic Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China
| | - Stéphane Rocchi
- INSERM, U1065, Equipe 12, Centre Méditerranéen de Médecine Moléculaire (C3M), Bâtiment ARCHIMED, 151 route de saint Antoine de Ginestière, 06204, Nice cedex 3, France; Université Côte d'Azur, Nice, France
| | - Shensi Shen
- Institute of Thoracic Oncology and Department of Thoracic Surgery, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, China.
| | - Michael Cerezo
- INSERM, U1065, Equipe 12, Centre Méditerranéen de Médecine Moléculaire (C3M), Bâtiment ARCHIMED, 151 route de saint Antoine de Ginestière, 06204, Nice cedex 3, France; Université Côte d'Azur, Nice, France.
| |
Collapse
|
16
|
Kim YS, Kimball SR, Piskounova E, Begley TJ, Hempel N. Stress response regulation of mRNA translation: Implications for antioxidant enzyme expression in cancer. Proc Natl Acad Sci U S A 2024; 121:e2317846121. [PMID: 39495917 PMCID: PMC11572934 DOI: 10.1073/pnas.2317846121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024] Open
Abstract
From tumorigenesis to advanced metastatic stages, tumor cells encounter stress, ranging from limited nutrient and oxygen supply within the tumor microenvironment to extrinsic and intrinsic oxidative stress. Thus, tumor cells seize regulatory pathways to rapidly adapt to distinct physiologic conditions to promote cellular survival, including manipulation of mRNA translation. While it is now well established that metastatic tumor cells must up-regulate their antioxidant capacity to effectively spread and that regulation of antioxidant enzymes is imperative to disease progression, relatively few studies have assessed how translation and the hijacking of RNA systems contribute to antioxidant responses of tumors. Here, we review the major stress signaling pathways involved in translational regulation and discuss how these are affected by oxidative stress to promote prosurvival changes that manipulate antioxidant enzyme expression. We describe how tumors elicit these adaptive responses and detail how stress-induced translation can be regulated by kinases, RNA-binding proteins, RNA species, and RNA modification systems. We also highlight opportunities for further studies focused on the role of mRNA translation and RNA systems in the regulation of antioxidant enzyme expression, which may be of particular importance in the context of metastatic progression and therapeutic resistance.
Collapse
Affiliation(s)
- Yeon Soo Kim
- Department of Pharmacology, College of Medicine, Pennsylvania State University, Hershey, PA17033
| | - Scot R. Kimball
- Department of Cellular and Molecular Physiology, College of Medicine, Pennsylvania State University, Hershey, PA17033
| | - Elena Piskounova
- Department of Dermatology, Meyer Cancer Center, Weill Cornell Medicine, New York, NY10021
| | - Thomas J. Begley
- The RNA Institute and Department of Biological Sciences, University at Albany, Albany, NY12222
| | - Nadine Hempel
- Department of Medicine, Division of Hematology/Oncology, University of Pittsburgh School of Medicine, Pittsburgh, PA15213
| |
Collapse
|
17
|
Guerrieri AN, Hattinger CM, Marchesini F, Melloni M, Serra M, Ibrahim T, Penzo M. The Interplay Between the MYC Oncogene and Ribosomal Proteins in Osteosarcoma Onset and Progression: Potential Mechanisms and Indication of Candidate Therapeutic Targets. Int J Mol Sci 2024; 25:12031. [PMID: 39596100 PMCID: PMC11593864 DOI: 10.3390/ijms252212031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/05/2024] [Accepted: 11/06/2024] [Indexed: 11/28/2024] Open
Abstract
High-grade osteosarcoma (OS) is the most common primary bone tumor mainly affecting children and young adults. First-line treatment consists of neo-adjuvant chemotherapy with doxorubicin, cisplatin, and methotrexate and surgery. The mean long-term survival rate for localized disease at diagnosis is 65-70%, dropping down to 20% when metastases are present at diagnosis. Therefore, curing OS is a clinical challenge, particularly for patients that do not respond to standard treatments. MYC has frequently been reported to be involved in the pathogenesis of OS and its high expression may be associated with drug resistance and patients' worse prognosis. Moreover, MYC is a master regulator of ribosomal proteins (RPs) synthesis and ribosome biogenesis (RiBi), which is often up-regulated in human tumors. In recent years, RPs have been recognized not only for their traditional role in ribosome assembly but also for their extra-ribosomal functions, many of which are linked to the onset and progression of cancer. In this review we focus on the role and possible interplay of MYC and RPs expression in association with drug resistance and worse prognosis in OS and discuss therapeutic options that target de-regulated MYC, RiBi, or RPs, which are already clinically available or under evaluation in clinical trials.
Collapse
Affiliation(s)
- Ania Naila Guerrieri
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (A.N.G.); (M.S.); (T.I.)
| | - Claudia Maria Hattinger
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (A.N.G.); (M.S.); (T.I.)
| | - Federica Marchesini
- Center for Applied Biomedical Research (CRBA), Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (F.M.); (M.M.)
| | - Martina Melloni
- Center for Applied Biomedical Research (CRBA), Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (F.M.); (M.M.)
| | - Massimo Serra
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (A.N.G.); (M.S.); (T.I.)
| | - Toni Ibrahim
- Osteoncology, Bone and Soft Tissue Sarcomas and Innovative Therapies, IRCCS Istituto Ortopedico Rizzoli, Via di Barbiano 1/10, 40136 Bologna, Italy; (A.N.G.); (M.S.); (T.I.)
| | - Marianna Penzo
- Center for Applied Biomedical Research (CRBA), Department of Medical and Surgical Sciences (DIMEC), Alma Mater Studiorum University of Bologna, 40138 Bologna, Italy; (F.M.); (M.M.)
- IRCCS Azienda Ospedaliero-Universitaria di Bologna, 40138 Bologna, Italy
| |
Collapse
|
18
|
Wu Z, Xie L, Yuan P, Chu Y, Peng H. WDR68 stimulates cellular proliferation via activating ribosome biogenesis in 293T cells. Neoplasia 2024; 56:101033. [PMID: 39067242 PMCID: PMC11372390 DOI: 10.1016/j.neo.2024.101033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 07/17/2024] [Accepted: 07/17/2024] [Indexed: 07/30/2024]
Abstract
WDR68, a conserved WD40 repeat-containing protein, interacts with E1A and is involved in the E1A-induced cell proliferation and oncogenic transformation, but the intrinsic molecular mechanisms of this process remain to be elucidated. Here, we demonstrate that WDR68 promotes the proliferation of 293T cells by interacting with a series of ribosome biogenesis-regulating proteins. Gene Set Enrichment Analysis (GSEA) of RNA-seq data also revealed that the ribosome biogenesis-associated gene signatures could be the most significantly enriched in the WDR68 expression groups. In accordance, 293T cells are more sensitive to the ribosome biogenesis inhibitors than 293 cells. Taken together, our results indicated that WDR68 could promote cell proliferation through the activation of ribosome biogenesis in the 293T cell context. This provides new insights into the understanding of the function of WDR68 and the molecular characterisation of 293T tool cells.
Collapse
Affiliation(s)
- Zhaoxia Wu
- Digestive Endoscopy Center, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China; Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| | - Lanfeng Xie
- Department of Infectious Disease, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Ping Yuan
- Hongqiao International Institute of Medicine, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Yimin Chu
- Digestive Endoscopy Center, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China
| | - Haixia Peng
- Digestive Endoscopy Center, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, PR China.
| |
Collapse
|
19
|
Cho CJ, Nguyen T, Rougeau AK, Huang YZ, To S, Lin X, Gamage ST, Meier JL, Mills JC. Inhibition of Ribosome Biogenesis in vivo Causes p53-Dependent Death and p53-Independent Dysfunction. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.614959. [PMID: 39386693 PMCID: PMC11463434 DOI: 10.1101/2024.09.25.614959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Ribosomes are critical for cell function; their synthesis (known as ribosome biogenesis; "RiBi") is complex and energy-intensive. Surprisingly little is known about RiBi in differentiated cells in vivo in adult tissue. Here, we generated mice with conditional deletion of Nat10 , an essential gene for RiBi and translation, to investigate effects of RiBi blockade in vivo. We focused on RiBi in a long-lived, ribosome-rich cell population, pancreatic acinar cells, during homeostasis and tumorigenesis. We observed a surprising latency of several weeks between Nat10 deletion and onset of structural and functional abnormalities and p53-dependent acinar cell death, which was associated with translocation of ribosomal proteins RPL5 and RPL11 into acinar cell nucleoplasm. Indeed, deletion of Trp53 could rescue acinar cells from apoptotic cell death; however, Nat10 Δ / Δ ; Trp53 Δ / Δ acinar cells remained morphologically and functionally abnormal. Moreover, the deletion of Trp53 did not rescue the lethality of inducible, globally deleted Nat10 in adult mice nor did it rescue embryonic lethality of global Nat10 deletion, emphasizing p53-independent consequences of RiBi inhibition. Deletion of Nat10 in acinar cells blocked Kras -oncogene-driven pancreatic intraepithelial neoplasia and subsequent pancreatic ductal adenocarcinoma, regardless of Trp53 mutation status. Together, our results provide initial insights into how cells respond to defects in RiBi and translation in vivo .
Collapse
|
20
|
Kundu I, Varshney S, Karnati S, Naidu S. The multifaceted roles of circular RNAs in cancer hallmarks: From mechanisms to clinical implications. MOLECULAR THERAPY. NUCLEIC ACIDS 2024; 35:102286. [PMID: 39188305 PMCID: PMC11345389 DOI: 10.1016/j.omtn.2024.102286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
Circular RNAs (circRNAs) represent a distinct class of covalently closed RNA species lacking conventional 5' to 3' polarity. Derived predominantly from pre-mRNA transcripts of protein-coding genes, circRNAs arise through back-splicing events of exon-exon or exon-intron junctions. They exhibit tissue- and cell-specific expression patterns and play crucial roles in regulating fundamental cellular processes such as cell cycle dynamics, proliferation, apoptosis, and differentiation. CircRNAs modulate gene expression through a plethora of mechanisms at epigenetic, transcriptional, and post-transcriptional levels, and some can even undergo translation into functional proteins. Recently, aberrant expression of circRNAs has emerged as a significant molecular aberration within the intricate regulatory networks governing hallmarks of cancer. The tumor-specific expression patterns and remarkable stability of circRNAs have profound implications for cancer diagnosis, prognosis, and therapy. This review comprehensively explores the multifaceted roles of circRNAs across cancer hallmarks in various tumor types, underscoring their growing significance in cancer diagnosis and therapeutic interventions. It also details strategies for leveraging circRNA-based therapies and discusses the challenges in using circRNAs for cancer management, emphasizing the need for further research to overcome these obstacles.
Collapse
Affiliation(s)
- Indira Kundu
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Shivani Varshney
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| | - Srikanth Karnati
- Institute of Anatomy and Cell Biology, University of Würzburg, 97070 Würzburg, Germany
- Comprehensive Heart Failure Center, University Hospital Würzburg, Würzburg, Germany
| | - Srivatsava Naidu
- Department of Biomedical Engineering, Indian Institute of Technology Ropar, Rupnagar, Punjab, India
| |
Collapse
|
21
|
Fuller KB, Jacobs RQ, Carter ZI, Cuny ZG, Schneider DA, Lucius AL. Global kinetic mechanism describing single nucleotide incorporation for RNA polymerase I reveals fast UMP incorporation. Biophys Chem 2024; 312:107281. [PMID: 38889653 PMCID: PMC11260521 DOI: 10.1016/j.bpc.2024.107281] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/22/2024] [Accepted: 06/06/2024] [Indexed: 06/20/2024]
Abstract
RNA polymerase I (Pol I) is responsible for synthesizing ribosomal RNA, which is the rate limiting step in ribosome biogenesis. We have reported wide variability in the magnitude of the rate constants defining the rate limiting step in sequential nucleotide additions catalyzed by Pol I. in this study we sought to determine if base identity impacts the rate limiting step of nucleotide addition catalyzed by Pol I. To this end, we report a transient state kinetic interrogation of AMP, CMP, GMP, and UMP incorporations catalyzed by Pol I. We found that Pol I uses one kinetic mechanism to incorporate all nucleotides. However, we found that UMP incorporation is faster than AMP, CMP, and GMP additions. Further, we found that endonucleolytic removal of a dimer from the 3' end was fastest when the 3' terminal base is a UMP. It has been previously shown that both downstream and upstream template sequence identity impacts the kinetics of nucleotide addition. The results reported here show that the incoming base identity also impacts the magnitude of the observed rate limiting step.
Collapse
Affiliation(s)
- Kaila B Fuller
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Ruth Q Jacobs
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, AL 35294, USA
| | | | - Zachary G Cuny
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - David A Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, AL 35294, USA.
| | - Aaron L Lucius
- Department of Chemistry, University of Alabama at Birmingham, Birmingham, AL 35294, USA.
| |
Collapse
|
22
|
Cameron DP, Sornkom J, Alsahafi S, Drygin D, Poortinga G, McArthur GA, Hein N, Hannan R, Panov KI. CX-5461 Preferentially Induces Top2α-Dependent DNA Breaks at Ribosomal DNA Loci. Biomedicines 2024; 12:1514. [PMID: 39062087 PMCID: PMC11275095 DOI: 10.3390/biomedicines12071514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/21/2024] [Accepted: 06/22/2024] [Indexed: 07/28/2024] Open
Abstract
While genotoxic chemotherapeutic agents are among the most effective tools to combat cancer, they are often associated with severe adverse effects caused by indiscriminate DNA damage in non-tumor tissue as well as increased risk of secondary carcinogenesis. This study builds on our previous work demonstrating that the RNA Polymerase I (Pol I) transcription inhibitor CX-5461 elicits a non-canonical DNA damage response and our discovery of a critical role for Topoisomerase 2α (Top2α) in the initiation of Pol I-dependent transcription. Here, we identify Top2α as a mediator of CX-5461 response in the murine Eµ-Myc B lymphoma model whereby sensitivity to CX-5461 is dependent on cellular Top2α expression/activity. Most strikingly, and in contrast to canonical Top2α poisons, we found that the Top2α-dependent DNA damage induced by CX-5461 is preferentially localized at the ribosomal DNA (rDNA) promoter region, thereby highlighting CX-5461 as a loci-specific DNA damaging agent. This mechanism underpins the efficacy of CX-5461 against certain types of cancer and can be used to develop effective non-genotoxic anticancer drugs.
Collapse
Affiliation(s)
- Donald P. Cameron
- ACRF Department of Cancer Biology and Therapeutics, Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, The College of Health and Medicine, The Australian National University, Canberra, ACT 2601, Australia; (D.P.C.); (N.H.)
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (J.S.); (G.P.)
| | - Jirawas Sornkom
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (J.S.); (G.P.)
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3000, Australia;
| | - Sameerh Alsahafi
- School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5DL, UK;
| | - Denis Drygin
- Pimera Therapeutics, 7875 Highland Village Place, Suite 412, San Diego, CA 92129, USA;
| | - Gretchen Poortinga
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (J.S.); (G.P.)
| | - Grant A. McArthur
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC 3000, Australia;
| | - Nadine Hein
- ACRF Department of Cancer Biology and Therapeutics, Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, The College of Health and Medicine, The Australian National University, Canberra, ACT 2601, Australia; (D.P.C.); (N.H.)
| | - Ross Hannan
- ACRF Department of Cancer Biology and Therapeutics, Division of Genome Sciences and Cancer, The John Curtin School of Medical Research, The College of Health and Medicine, The Australian National University, Canberra, ACT 2601, Australia; (D.P.C.); (N.H.)
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, VIC 3000, Australia; (J.S.); (G.P.)
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, VIC 3053, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, VIC 3800, Australia
- School of Biomedical Sciences, University of Queensland, St Lucia, QLD 4072, Australia
| | - Konstantin I. Panov
- School of Biological Sciences, Queen’s University Belfast, Belfast BT9 5DL, UK;
- Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT9 7AE, UK
| |
Collapse
|
23
|
Zorbas C, Soenmez A, Léger J, De Vleeschouwer C, Lafontaine DL. Detecting material state changes in the nucleolus by label-free digital holographic microscopy. EMBO Rep 2024; 25:2786-2811. [PMID: 38654122 PMCID: PMC11169520 DOI: 10.1038/s44319-024-00134-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 03/04/2024] [Accepted: 03/20/2024] [Indexed: 04/25/2024] Open
Abstract
Ribosome biogenesis is initiated in the nucleolus, a multiphase biomolecular condensate formed by liquid-liquid phase separation. The nucleolus is a powerful disease biomarker and stress biosensor whose morphology reflects function. Here we have used digital holographic microscopy (DHM), a label-free quantitative phase contrast microscopy technique, to detect nucleoli in adherent and suspension human cells. We trained convolutional neural networks to detect and quantify nucleoli automatically on DHM images. Holograms containing cell optical thickness information allowed us to define a novel index which we used to distinguish nucleoli whose material state had been modulated optogenetically by blue-light-induced protein aggregation. Nucleoli whose function had been impacted by drug treatment or depletion of ribosomal proteins could also be distinguished. We explored the potential of the technology to detect other natural and pathological condensates, such as those formed upon overexpression of a mutant form of huntingtin, ataxin-3, or TDP-43, and also other cell assemblies (lipid droplets). We conclude that DHM is a powerful tool for quantitatively characterizing nucleoli and other cell assemblies, including their material state, without any staining.
Collapse
Affiliation(s)
- Christiane Zorbas
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université libre de Bruxelles (ULB), Biopark campus, B-6041, Gosselies, Belgium
| | - Aynur Soenmez
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université libre de Bruxelles (ULB), Biopark campus, B-6041, Gosselies, Belgium
| | - Jean Léger
- ICTEAM-ELEN, Fonds de la Recherche Scientifique (F.R.S./FNRS), UCLouvain, B-1348, Louvain-la-Neuve, Belgium
| | - Christophe De Vleeschouwer
- ICTEAM-ELEN, Fonds de la Recherche Scientifique (F.R.S./FNRS), UCLouvain, B-1348, Louvain-la-Neuve, Belgium
| | - Denis Lj Lafontaine
- RNA Molecular Biology, Fonds de la Recherche Scientifique (F.R.S./FNRS), Université libre de Bruxelles (ULB), Biopark campus, B-6041, Gosselies, Belgium.
| |
Collapse
|
24
|
Yang L, Zhang Z, Jiang P, Kong D, Yu Z, Shi D, Han Y, Chen E, Zheng W, Sun J, Zhao Y, Luo Y, Shi J, Yao H, Huang H, Qian P. Phase separation-competent FBL promotes early pre-rRNA processing and translation in acute myeloid leukaemia. Nat Cell Biol 2024; 26:946-961. [PMID: 38745030 DOI: 10.1038/s41556-024-01420-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/04/2024] [Indexed: 05/16/2024]
Abstract
RNA-binding proteins (RBPs) are pivotal in acute myeloid leukaemia (AML), a lethal disease. Although specific phase separation-competent RBPs are recognized in AML, the effect of their condensate formation on AML leukaemogenesis, and the therapeutic potential of inhibition of phase separation are underexplored. In our in vivo CRISPR RBP screen, fibrillarin (FBL) emerges as a crucial nucleolar protein that regulates AML cell survival, primarily through its phase separation domains rather than methyltransferase or acetylation domains. These phase separation domains, with specific features, coordinately drive nucleoli formation and early processing of pre-rRNA (including efflux, cleavage and methylation), eventually enhancing the translation of oncogenes such as MYC. Targeting the phase separation capability of FBL with CGX-635 leads to elimination of AML cells, suggesting an additional mechanism of action for CGX-635 that complements its established therapeutic effects. We highlight the potential of PS modulation of critical proteins as a possible therapeutic strategy for AML.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/pathology
- Leukemia, Myeloid, Acute/metabolism
- RNA Precursors/metabolism
- RNA Precursors/genetics
- Chromosomal Proteins, Non-Histone/metabolism
- Chromosomal Proteins, Non-Histone/genetics
- RNA Processing, Post-Transcriptional
- Animals
- Cell Line, Tumor
- Protein Biosynthesis
- Cell Nucleolus/metabolism
- Cell Nucleolus/genetics
- Mice
- RNA-Binding Proteins/metabolism
- RNA-Binding Proteins/genetics
- Gene Expression Regulation, Leukemic
- Phase Separation
Collapse
Affiliation(s)
- Lin Yang
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Zhejiang University & Zhejiang Provincial Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Zhaoru Zhang
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Provincial Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Penglei Jiang
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Provincial Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Delin Kong
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Provincial Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Zebin Yu
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Danrong Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Yingli Han
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Provincial Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, China
| | - Ertuo Chen
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Weiyan Zheng
- Institute of Hematology, Zhejiang University & Zhejiang Provincial Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, China
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jie Sun
- Institute of Hematology, Zhejiang University & Zhejiang Provincial Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, China
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yanmin Zhao
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Provincial Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, China
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yi Luo
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Provincial Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, China
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jimin Shi
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China
- Institute of Hematology, Zhejiang University & Zhejiang Provincial Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, China
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Hangping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - He Huang
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China.
- Institute of Hematology, Zhejiang University & Zhejiang Provincial Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, China.
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| | - Pengxu Qian
- Bone Marrow Transplantation Center of the First Affiliated Hospital, and Center for Stem Cell and Regenerative Medicine, Zhejiang University School of Medicine, Hangzhou, China.
- Liangzhu Laboratory, Zhejiang University, Hangzhou, China.
- State Key Laboratory of Experimental Hematology, Institute of Hematology, Zhejiang University & Zhejiang Provincial Engineering Research Center for Stem Cell and Immunity Therapy, Hangzhou, China.
| |
Collapse
|
25
|
Hwang SP, Denicourt C. The impact of ribosome biogenesis in cancer: from proliferation to metastasis. NAR Cancer 2024; 6:zcae017. [PMID: 38633862 PMCID: PMC11023387 DOI: 10.1093/narcan/zcae017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/23/2024] [Accepted: 03/26/2024] [Indexed: 04/19/2024] Open
Abstract
The dysregulation of ribosome biogenesis is a hallmark of cancer, facilitating the adaptation to altered translational demands essential for various aspects of tumor progression. This review explores the intricate interplay between ribosome biogenesis and cancer development, highlighting dynamic regulation orchestrated by key oncogenic signaling pathways. Recent studies reveal the multifaceted roles of ribosomes, extending beyond protein factories to include regulatory functions in mRNA translation. Dysregulated ribosome biogenesis not only hampers precise control of global protein production and proliferation but also influences processes such as the maintenance of stem cell-like properties and epithelial-mesenchymal transition, contributing to cancer progression. Interference with ribosome biogenesis, notably through RNA Pol I inhibition, elicits a stress response marked by nucleolar integrity loss, and subsequent G1-cell cycle arrest or cell death. These findings suggest that cancer cells may rely on heightened RNA Pol I transcription, rendering ribosomal RNA synthesis a potential therapeutic vulnerability. The review further explores targeting ribosome biogenesis vulnerabilities as a promising strategy to disrupt global ribosome production, presenting therapeutic opportunities for cancer treatment.
Collapse
Affiliation(s)
- Sseu-Pei Hwang
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| | - Catherine Denicourt
- Department of Integrative Biology and Pharmacology, McGovern Medical School, The University of Texas Health Science Center, Houston, TX 77030, USA
- The University of Texas MD Anderson Cancer Center UTHealth Houston Graduate School of Biomedical Sciences, Houston, TX 77030, USA
| |
Collapse
|
26
|
Espinoza JA, Kanellis DC, Saproo S, Leal K, Martinez J, Bartek J, Lindström M. Chromatin damage generated by DNA intercalators leads to degradation of RNA Polymerase II. Nucleic Acids Res 2024; 52:4151-4166. [PMID: 38340348 PMCID: PMC11077059 DOI: 10.1093/nar/gkae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
In cancer therapy, DNA intercalators are mainly known for their capacity to kill cells by inducing DNA damage. Recently, several DNA intercalators have attracted much interest given their ability to inhibit RNA Polymerase I transcription (BMH-21), evict histones (Aclarubicin) or induce chromatin trapping of FACT (Curaxin CBL0137). Interestingly, these DNA intercalators lack the capacity to induce DNA damage while still retaining cytotoxic effects and stabilize p53. Herein, we report that these DNA intercalators impact chromatin biology by interfering with the chromatin stability of RNA polymerases I, II and III. These three compounds have the capacity to induce degradation of RNA polymerase II and they simultaneously enable the trapping of Topoisomerases TOP2A and TOP2B on the chromatin. In addition, BMH-21 also acts as a catalytic inhibitor of Topoisomerase II, resembling Aclarubicin. Moreover, BMH-21 induces chromatin trapping of the histone chaperone FACT and propels accumulation of Z-DNA and histone eviction, similarly to Aclarubicin and CBL0137. These DNA intercalators have a cumulative impact on general transcription machinery by inducing accumulation of topological defects and impacting nuclear chromatin. Therefore, their cytotoxic capabilities may be the result of compounding deleterious effects on chromatin homeostasis.
Collapse
Affiliation(s)
- Jaime A Espinoza
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
| | - Dimitris C Kanellis
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
| | - Sheetanshu Saproo
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
| | - Karla Leal
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
| | - Johana Fernandez Martinez
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
| | - Jiri Bartek
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
- Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark
| | - Mikael S Lindström
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
| |
Collapse
|
27
|
Jin C, Zhao L, Zhao G, Liu Y, Ma W, Ma S, Yao L, Liu Y, Wu Q, Yuan H, Yang K, Ohgi K, Rich JN, Rosenfeld MG. Gene Amplification of Mediator Subunit 30 Redirects the MYC Transcriptional Program and Oncogenesis. RESEARCH SQUARE 2024:rs.3.rs-4326418. [PMID: 38766212 PMCID: PMC11100879 DOI: 10.21203/rs.3.rs-4326418/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/22/2024]
Abstract
Understanding the molecular mechanisms underlying tumorigenesis is crucial for developing effective cancer therapies. Here, we investigate the co-amplification of MED30 and MYC across diverse cancer types and its impact on oncogenic transcriptional programs. Transcriptional profiling of MYC and MED30 single or both overexpression/amplification revealed the over amount of MED30 lead MYC to a new transcriptional program that associate with poor prognosis. Mechanistically, MED30 overexpression/amplification recruits other Mediator components and binding of MYC to a small subset of novel genomic regulatory sites, changing the epigenetic marks and inducing the formation of new enhancers, which drive the expression of target genes crucial for cancer progression. In vivo studies in pancreatic ductal adenocarcinoma (PDAC) further validate the oncogenic potential of MED30, as its overexpression promotes tumor growth and can be attenuated by knockdown of MYC. Using another cancer type as an example, MED30 knockdown reduces tumor growth particularly in MYC high-expressed glioblastoma (GBM) cell lines. Overall, our study elucidates the critical role of MED30 overexpression in orchestrating oncogenic transcriptional programs and highlights its potential as a therapeutic target for MYC-amplified cancer.
Collapse
Affiliation(s)
| | | | | | | | - Wubin Ma
- University of California, San Diego
| | | | | | - Yuan Liu
- University of California, San Diego
| | | | | | | | | | | | | |
Collapse
|
28
|
Yang Y, Li Y, Sears RC, Sun XX, Dai MS. SUMOylation regulation of ribosome biogenesis: Emerging roles for USP36. FRONTIERS IN RNA RESEARCH 2024; 2:1389104. [PMID: 38764604 PMCID: PMC11101209 DOI: 10.3389/frnar.2024.1389104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2024]
Abstract
Ribosome biogenesis is essential for cell growth, proliferation, and animal development. Its deregulation leads to various human disorders such as ribosomopathies and cancer. Thus, tight regulation of ribosome biogenesis is crucial for normal cell homeostasis. Emerging evidence suggests that posttranslational modifications such as ubiquitination and SUMOylation play a crucial role in regulating ribosome biogenesis. Our recent studies reveal that USP36, a nucleolar deubiquitinating enzyme (DUB), acts also as a SUMO ligase to regulate nucleolar protein group SUMOylation, thereby being essential for ribosome biogenesis. Here, we provide an overview of the current understanding of the SUMOylation regulation of ribosome biogenesis and discuss the role of USP36 in nucleolar SUMOylation.
Collapse
Affiliation(s)
- Yunhan Yang
- Department of Molecular & Medical Genetics, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Yanping Li
- Department of Molecular & Medical Genetics, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Rosalie C. Sears
- Department of Molecular & Medical Genetics, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Xiao-Xin Sun
- Department of Molecular & Medical Genetics, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| | - Mu-Shui Dai
- Department of Molecular & Medical Genetics, Oregon Health & Science University, 3181 SW Sam Jackson Park Road, Portland, OR 97239, USA
| |
Collapse
|
29
|
Maclachlan KH, Gitareja K, Kang J, Cuddihy A, Cao Y, Hein N, Cullinane C, Ang CS, Brajanovski N, Pearson RB, Khot A, Sanij E, Hannan RD, Poortinga G, Harrison SJ. Targeting the ribosome to treat multiple myeloma. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200771. [PMID: 38596309 PMCID: PMC10905045 DOI: 10.1016/j.omton.2024.200771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 04/11/2024]
Abstract
The high rates of protein synthesis and processing render multiple myeloma (MM) cells vulnerable to perturbations in protein homeostasis. The induction of proteotoxic stress by targeting protein degradation with proteasome inhibitors (PIs) has revolutionized the treatment of MM. However, resistance to PIs is inevitable and represents an ongoing clinical challenge. Our first-in-human study of the selective inhibitor of RNA polymerase I transcription of ribosomal RNA genes, CX-5461, has demonstrated a potential signal for anti-tumor activity in three of six heavily pre-treated MM patients. Here, we show that CX-5461 has potent anti-myeloma activity in PI-resistant MM preclinical models in vitro and in vivo. In addition to inhibiting ribosome biogenesis, CX-5461 causes topoisomerase II trapping and replication-dependent DNA damage, leading to G2/M cell-cycle arrest and apoptotic cell death. Combining CX-5461 with PI does not further enhance the anti-myeloma activity of CX-5461 in vivo. In contrast, CX-5461 shows synergistic interaction with the histone deacetylase inhibitor panobinostat in both the Vk∗MYC and the 5T33-KaLwRij mouse models of MM by targeting ribosome biogenesis and protein synthesis through distinct mechanisms. Our findings thus provide strong evidence to facilitate the clinical development of targeting the ribosome to treat relapsed and refractory MM.
Collapse
Affiliation(s)
- Kylee H. Maclachlan
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
- Clinical Hematology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Kezia Gitareja
- St Vincent’s Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medicine- St Vincent’s Hospital, University of Melbourne, Melbourne, VIC, Australia
| | - Jian Kang
- St Vincent’s Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medicine- St Vincent’s Hospital, University of Melbourne, Melbourne, VIC, Australia
| | - Andrew Cuddihy
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Yuxi Cao
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
- Clinical Hematology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Nadine Hein
- The ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
| | - Carleen Cullinane
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Ching-Seng Ang
- The Bio21 Institute of Molecular Science and Biotechnology Institute, University of Melbourne, Melbourne, VIC, Australia
| | - Natalie Brajanovski
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Richard B. Pearson
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Amit Khot
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
- Clinical Hematology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| | - Elaine Sanij
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
- St Vincent’s Institute of Medical Research, Melbourne, VIC, Australia
- Department of Medicine- St Vincent’s Hospital, University of Melbourne, Melbourne, VIC, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Ross D. Hannan
- The ACRF Department of Cancer Biology and Therapeutics, The John Curtin School of Medical Research, Australian National University, Canberra, ACT, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Melbourne, VIC, Australia
| | - Gretchen Poortinga
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
| | - Simon J. Harrison
- Cancer Research Division, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Melbourne, VIC, Australia
- Clinical Hematology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
| |
Collapse
|
30
|
Zheng C, Yao H, Lu L, Li H, Zhou L, He X, Xu X, Xia H, Ding S, Yang Y, Wang X, Wu M, Xue L, Chen S, Peng X, Cheng Z, Wang Y, He G, Fu S, Keller ET, Liu S, Jiang YZ, Deng X. Dysregulated Ribosome Biogenesis Is a Targetable Vulnerability in Triple-Negative Breast Cancer: MRPS27 as a Key Mediator of the Stemness-inhibitory Effect of Lovastatin. Int J Biol Sci 2024; 20:2130-2148. [PMID: 38617541 PMCID: PMC11008279 DOI: 10.7150/ijbs.94058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 03/16/2024] [Indexed: 04/16/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer with limited effective therapeutic options readily available. We have previously demonstrated that lovastatin, an FDA-approved lipid-lowering drug, selectively inhibits the stemness properties of TNBC. However, the intracellular targets of lovastatin in TNBC remain largely unknown. Here, we unexpectedly uncovered ribosome biogenesis as the predominant pathway targeted by lovastatin in TNBC. Lovastatin induced the translocation of ribosome biogenesis-related proteins including nucleophosmin (NPM), nucleolar and coiled-body phosphoprotein 1 (NOLC1), and the ribosomal protein RPL3. Lovastatin also suppressed the transcript levels of rRNAs and increased the nuclear protein level and transcriptional activity of p53, a master mediator of nucleolar stress. A prognostic model generated from 10 ribosome biogenesis-related genes showed outstanding performance in predicting the survival of TNBC patients. Mitochondrial ribosomal protein S27 (MRPS27), the top-ranked risky model gene, was highly expressed and correlated with tumor stage and lymph node involvement in TNBC. Mechanistically, MRPS27 knockdown inhibited the stemness properties and the malignant phenotypes of TNBC. Overexpression of MRPS27 attenuated the stemness-inhibitory effect of lovastatin in TNBC cells. Our findings reveal that dysregulated ribosome biogenesis is a targetable vulnerability and targeting MRPS27 could be a novel therapeutic strategy for TNBC patients.
Collapse
Affiliation(s)
- Chanjuan Zheng
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| | - Hui Yao
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| | - Lu Lu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| | - Hongqi Li
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Lei Zhou
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Xueyan He
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Xi Xu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| | - Hongzhuo Xia
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| | - Siyu Ding
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| | - Yiyuan Yang
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| | - Xinyu Wang
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| | - Muyao Wu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| | - Lian Xue
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| | - Sisi Chen
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| | - Xiaojun Peng
- Jingjie PTM BioLab Co. Ltd., Hangzhou Economic and Technological Development Area, Hangzhou, China
| | - Zhongyi Cheng
- Jingjie PTM BioLab Co. Ltd., Hangzhou Economic and Technological Development Area, Hangzhou, China
| | - Yian Wang
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| | - Guangchun He
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| | - Shujun Fu
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| | - Evan T. Keller
- Department of Urology and Biointerfaces Institute, University of Michigan, Ann Arbor, Michigan, USA
| | - Suling Liu
- Fudan University Shanghai Cancer Center & Institutes of Biomedical Sciences, State Key Laboratory of Genetic Engineering, Fudan University, Shanghai, China
| | - Yi-zhou Jiang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Precision Cancer Medicine Center, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, China
| | - Xiyun Deng
- Key Laboratory of Model Animals and Stem Cell Biology in Hunan Province, Department of Pathophysiology, Hunan Normal University School of Medicine, Changsha, Hunan, China
- Key Laboratory of Translational Cancer Stem Cell Research, Hunan Normal University, Changsha, Hunan, China
| |
Collapse
|
31
|
Behrens K, Brajanovski N, Xu Z, Viney EM, DiRago L, Hediyeh-Zadeh S, Davis MJ, Pearson RB, Sanij E, Alexander WS, Ng AP. ERG and c-MYC regulate a critical gene network in BCR::ABL1-driven B cell acute lymphoblastic leukemia. SCIENCE ADVANCES 2024; 10:eadj8803. [PMID: 38457494 PMCID: PMC10923517 DOI: 10.1126/sciadv.adj8803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 01/31/2024] [Indexed: 03/10/2024]
Abstract
Philadelphia chromosome-positive B cell acute lymphoblastic leukemia (B-ALL), characterized by the BCR::ABL1 fusion gene, remains a poor prognosis cancer needing new therapeutic approaches. Transcriptomic profiling identified up-regulation of oncogenic transcription factors ERG and c-MYC in BCR::ABL1 B-ALL with ERG and c-MYC required for BCR::ABL1 B-ALL in murine and human models. Profiling of ERG- and c-MYC-dependent gene expression and analysis of ChIP-seq data established ERG and c-MYC coordinate a regulatory network in BCR::ABL1 B-ALL that controls expression of genes involved in several biological processes. Prominent was control of ribosome biogenesis, including expression of RNA polymerase I (POL I) subunits, the importance of which was validated by inhibition of BCR::ABL1 cells by POL I inhibitors, including CX-5461, that prevents promoter recruitment and transcription initiation by POL I. Our results reveal an essential ERG- and c-MYC-dependent transcriptional network involved in regulation of metabolic and ribosome biogenesis pathways in BCR::ABL1 B-ALL, from which previously unidentified vulnerabilities and therapeutic targets may emerge.
Collapse
Affiliation(s)
- Kira Behrens
- Blood Cells and Blood Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Natalie Brajanovski
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Australia
| | - Zhen Xu
- Blood Cells and Blood Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Elizabeth M. Viney
- Blood Cells and Blood Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Ladina DiRago
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Soroor Hediyeh-Zadeh
- Department of Medical Biology, University of Melbourne, Parkville, Australia
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| | - Melissa J. Davis
- Department of Medical Biology, University of Melbourne, Parkville, Australia
- Bioinformatics Division, Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Clinical Pathology, University of Melbourne, Parkville, Australia
- The Diamantina Institute, The University of Queensland, Woolloongabba, Australia
- The South Australian Immunogenomics Cancer Institute, The University of Adelaide, Adelaide, Australia
| | - Richard B. Pearson
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Australia
| | - Elaine Sanij
- Division of Cancer Research, Peter MacCallum Cancer Centre, Melbourne, Australia
- Sir Peter MacCallum Department of Oncology, University of Melbourne, Parkville, Australia
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Australia
- Department of Biochemistry and Molecular Biology, University of Melbourne, Parkville, Australia
- St. Vincent’s Institute of Medical Research, Fitzroy, Australia
- Department of Medicine, St. Vincent’s Hospital, University of Melbourne, Parkville, Australia
| | - Warren S. Alexander
- Blood Cells and Blood Cancer Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Ashley P. Ng
- Department of Medical Biology, University of Melbourne, Parkville, Australia
- Immunology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, Australia
| |
Collapse
|
32
|
Dai C, Cui X, Wang J, Dong B, Gao H, Cheng M, Jiang F. CX‑5461 potentiates imatinib‑induced apoptosis in K562 cells by stimulating KIF1B expression. Exp Ther Med 2024; 27:107. [PMID: 38356673 PMCID: PMC10865453 DOI: 10.3892/etm.2024.12395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/29/2023] [Indexed: 02/16/2024] Open
Abstract
The selective RNA polymerase I inhibitor CX-5461 has been shown to be effective in treating some types of leukemic disorders. Emerging evidence suggests that combined treatments with CX-5461 and other chemotherapeutic agents may achieve enhanced effectiveness as compared with monotherapies. Currently, pharmacodynamic properties of the combination of CX-5461 with tyrosine kinase inhibitors remain to be explored. The present study tested whether CX-5461 could potentiate the effect of imatinib in the human chronic myeloid leukemia cell line K562, which is p53-deficient. It was demonstrated that CX-5461 at 100 nM, which was non-cytotoxic in K562 cells, potentiated the pro-apoptotic effect of imatinib. Mechanistically, the present study identified that the upregulated expression of kinesin family member 1B (KIF1B) gene might be involved in mediating the pro-apoptotic effect of imatinib/CX-5461 combination. Under the present experimental settings, however, neither CX-5461 nor imatinib alone exhibited a significant effect on KIF1B expression. Moreover, using other leukemic cell lines, it was demonstrated that regulation of KIF1B expression by imatinib/CX-5461 was not a ubiquitous phenomenon in leukemic cells and should be studied in a cell type-specific manner. In conclusion, the results suggested that the synergistic interaction between CX-5461 and imatinib may be of potential clinical value for the treatment of tyrosine kinase inhibitor-resistant chronic myeloid leukemia.
Collapse
Affiliation(s)
- Chaochao Dai
- Shandong Key Laboratory of Cardiovascular Proteomics and Department of Geriatric Medicine, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Xiaopei Cui
- Shandong Key Laboratory of Cardiovascular Proteomics and Department of Geriatric Medicine, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Jie Wang
- Shandong Key Laboratory of Cardiovascular Proteomics and Department of Geriatric Medicine, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Bo Dong
- Department of Cardiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, P.R. China
| | - Haiqing Gao
- Shandong Key Laboratory of Cardiovascular Proteomics and Department of Geriatric Medicine, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Mei Cheng
- Shandong Key Laboratory of Cardiovascular Proteomics and Department of Geriatric Medicine, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| | - Fan Jiang
- Shandong Key Laboratory of Cardiovascular Proteomics and Department of Geriatric Medicine, Qilu Hospital, Shandong University, Jinan, Shandong 250012, P.R. China
| |
Collapse
|
33
|
Xue M, Dong L, Zhang H, Li Y, Qiu K, Zhao Z, Gao M, Han L, Chan AKN, Li W, Leung K, Wang K, Pokharel SP, Qing Y, Liu W, Wang X, Ren L, Bi H, Yang L, Shen C, Chen Z, Melstrom L, Li H, Timchenko N, Deng X, Huang W, Rosen ST, Tian J, Xu L, Diao J, Chen CW, Chen J, Shen B, Chen H, Su R. METTL16 promotes liver cancer stem cell self-renewal via controlling ribosome biogenesis and mRNA translation. J Hematol Oncol 2024; 17:7. [PMID: 38302992 PMCID: PMC10835888 DOI: 10.1186/s13045-024-01526-9] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Accepted: 01/20/2024] [Indexed: 02/03/2024] Open
Abstract
BACKGROUND While liver cancer stem cells (CSCs) play a crucial role in hepatocellular carcinoma (HCC) initiation, progression, recurrence, and treatment resistance, the mechanism underlying liver CSC self-renewal remains elusive. We aim to characterize the role of Methyltransferase 16 (METTL16), a recently identified RNA N6-methyladenosine (m6A) methyltransferase, in HCC development/maintenance, CSC stemness, as well as normal hepatogenesis. METHODS Liver-specific Mettl16 conditional KO (cKO) mice were generated to assess its role in HCC pathogenesis and normal hepatogenesis. Hydrodynamic tail-vein injection (HDTVi)-induced de novo hepatocarcinogenesis and xenograft models were utilized to determine the role of METTL16 in HCC initiation and progression. A limiting dilution assay was utilized to evaluate CSC frequency. Functionally essential targets were revealed via integrative analysis of multi-omics data, including RNA-seq, RNA immunoprecipitation (RIP)-seq, and ribosome profiling. RESULTS METTL16 is highly expressed in liver CSCs and its depletion dramatically decreased CSC frequency in vitro and in vivo. Mettl16 KO significantly attenuated HCC initiation and progression, yet only slightly influenced normal hepatogenesis. Mechanistic studies, including high-throughput sequencing, unveiled METTL16 as a key regulator of ribosomal RNA (rRNA) maturation and mRNA translation and identified eukaryotic translation initiation factor 3 subunit a (eIF3a) transcript as a bona-fide target of METTL16 in HCC. In addition, the functionally essential regions of METTL16 were revealed by CRISPR gene tiling scan, which will pave the way for the development of potential inhibitor(s). CONCLUSIONS Our findings highlight the crucial oncogenic role of METTL16 in promoting HCC pathogenesis and enhancing liver CSC self-renewal through augmenting mRNA translation efficiency.
Collapse
Affiliation(s)
- Meilin Xue
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lei Dong
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX, 7539, USA
| | - Honghai Zhang
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Yangchan Li
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
- Department of Radiation Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Kangqiang Qiu
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Zhicong Zhao
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200127, China
| | - Min Gao
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Li Han
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
- School of Pharmacy, China Medical University, Shenyang, 110001, Liaoning, China
| | - Anthony K N Chan
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Wei Li
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Keith Leung
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Kitty Wang
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Sheela Pangeni Pokharel
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Ying Qing
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Wei Liu
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Xueer Wang
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Lili Ren
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Hongjie Bi
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Lu Yang
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Chao Shen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Zhenhua Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Laleh Melstrom
- Division of Surgical Oncology, Department of Surgery, Beckman Research Institute of City of Hope Comprehensive Cancer Center, Duarte, CA, 91010, USA
| | - Hongzhi Li
- Department of Molecular Medicine, City of Hope National Medical Center, Duarte, CA, 91016, USA
| | - Nikolai Timchenko
- Division of General and Thoracic Surgery, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, 45229, USA
| | - Xiaolan Deng
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
| | - Wendong Huang
- Department of Diabetes Complications and Metabolism, Diabetes and Metabolism Research Institute, Beckman Research Institute of City of Hope, Duarte, CA, 91010, USA
- Graduate School of Biological Science, City of Hope, Duarte, CA, 91010, USA
| | - Steven T Rosen
- City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA, 91010, USA
| | - Jingyan Tian
- State Key Laboratory of Medical Genomics, Clinical Trial Center, Shanghai Institute of Endocrine and Metabolic Diseases, Department of Endocrinology and Metabolism, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lin Xu
- Quantitative Biomedical Research Center, Peter O'Donnell Jr. School of Public Health, UT Southwestern Medical Center, Dallas, TX, 7539, USA
| | - Jiajie Diao
- Department of Cancer Biology, University of Cincinnati College of Medicine, Cincinnati, OH, 45267, USA
| | - Chun-Wei Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
- City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA, 91010, USA
| | - Jianjun Chen
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA
- City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA, 91010, USA
- Gehr Family Center for Leukemia Research, City of Hope, Duarte, CA, 91010, USA
| | - Baiyong Shen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Hao Chen
- Department of General Surgery, Pancreatic Disease Center, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Rui Su
- Department of Systems Biology, Beckman Research Institute of City of Hope, Monrovia, CA, 91016, USA.
- City of Hope Comprehensive Cancer Center, City of Hope, Duarte, CA, 91010, USA.
| |
Collapse
|
34
|
Zang Y, Ran X, Yuan J, Wu H, Wang Y, Li H, Teng H, Sun Z. Genomic hallmarks and therapeutic targets of ribosome biogenesis in cancer. Brief Bioinform 2024; 25:bbae023. [PMID: 38343327 PMCID: PMC10859687 DOI: 10.1093/bib/bbae023] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 01/11/2024] [Accepted: 01/15/2024] [Indexed: 02/15/2024] Open
Abstract
Hyperactive ribosome biogenesis (RiboSis) fuels unrestricted cell proliferation, whereas genomic hallmarks and therapeutic targets of RiboSis in cancers remain elusive, and efficient approaches to quantify RiboSis activity are still limited. Here, we have established an in silico approach to conveniently score RiboSis activity based on individual transcriptome data. By employing this novel approach and RNA-seq data of 14 645 samples from TCGA/GTEx dataset and 917 294 single-cell expression profiles across 13 cancer types, we observed the elevated activity of RiboSis in malignant cells of various human cancers, and high risk of severe outcomes in patients with high RiboSis activity. Our mining of pan-cancer multi-omics data characterized numerous molecular alterations of RiboSis, and unveiled the predominant somatic alteration in RiboSis genes was copy number variation. A total of 128 RiboSis genes, including EXOSC4, BOP1, RPLP0P6 and UTP23, were identified as potential therapeutic targets. Interestingly, we observed that the activity of RiboSis was associated with TP53 mutations, and hyperactive RiboSis was associated with poor outcomes in lung cancer patients without TP53 mutations, highlighting the importance of considering TP53 mutations during therapy by impairing RiboSis. Moreover, we predicted 23 compounds, including methotrexate and CX-5461, associated with the expression signature of RiboSis genes. The current study generates a comprehensive blueprint of molecular alterations in RiboSis genes across cancers, which provides a valuable resource for RiboSis-based anti-tumor therapy.
Collapse
Affiliation(s)
- Yue Zang
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences and Institute of Genomic Medicine, Wenzhou Medical University, China
| | - Xia Ran
- Liangzhu Laboratory, Zhejiang University Medical Center, China
| | - Jie Yuan
- BGI Education Center, University of Chinese Academy of Sciences, China
| | - Hao Wu
- Institute of Genomic Medicine, Wenzhou Medical University, China
| | - Youya Wang
- Institute of Genomic Medicine, Wenzhou Medical University, China
| | - He Li
- Institute of Genomic Medicine, Wenzhou Medical University, China
| | - Huajing Teng
- Department of Radiation Oncology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education) at Peking University Cancer Hospital and Institute, Beijing 100142, China
| | - Zhongsheng Sun
- HIM-BGI Omics Center, Hangzhou Institute of Medicine (HIM), Chinese Academy of Sciences, Institute of Genomic Medicine, Wenzhou Medical University, and Beijing Institutes of Life Science, Chinese Academy of Sciences, Hangzhou, China
| |
Collapse
|
35
|
Mu S, Tian Q, Shen L. NOP16 promotes hepatocellular carcinoma progression and triggers EMT through the Keap1-Nrf2 signaling pathway. Technol Health Care 2024; 32:2463-2483. [PMID: 38251077 PMCID: PMC11322705 DOI: 10.3233/thc-231256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 11/29/2023] [Indexed: 01/23/2024]
Abstract
BACKGROUND Nucleolar protein 16 (NOP16) is present in the protein complex of the nucleolus. The NOP16 promoter contains a c-Myc binding site, and the transcriptional regulation by c-Myc directly regulates NOP16 expression levels. OBJECTIVE Dysregulation of NOP 16 is currently reported in only a small number of cancers. In this study, the expression profile of NOP 16 in hepatocellular carcinoma (LIHC) and its clinical significance were analyzed. METHODS NOP16 expression in hepatocellular carcinoma (LIHC) and its relationship with the clinical characters of LIHC were examined using the Cancer Genome Atlas (TCGA), the Gene Expression comprehensive database (GEO), Kaplan-Meier survival analysis, univariate Cox analysis, multivariate Cox analysis, ROC curve analysis of KEGG enrichment, GSEA enrichment, in vitro experiments (e.g., siRNA interference of NOP16 expression in hepatoma cells, Keap1-Nrf2 pathway, cell cycle, cell apoptosis and Transwell assays), and LIHC single-cell sequencing (scRNA). RESULTS Pan-cancer analysis revealed that NOP16 was highly expressed in 20 cancer types, including LIHC, and high NOP16 expression was an independent adverse prognostic factor in LIHC patients. The expression levels of NOP16 mRNA and protein were significantly increased in tumour tissues of LIHC patients compared to normal tissues. The functions of co-expressed genes were primarily enriched in the cell cycle and reactive oxygen species metabolism. The experimental results showed that knockdown of NOP16 activated the Keap/Nrf2 signalling pathway and inhibited the invasion, migration, and EMT progression of LIHC cells. LIHC scRNA-seq data showed that NOP16 was primarily expressed in T lymphocytes. CONCLUSIONS NOP16 promoted cancer development in LIHC and caused an imbalance in Keap/Nrf2 signalling, which subsequently caused the aberrant expression of genes typical for EMT, cell cycle progression and apoptosis. NOP16 is a potential prognostic marker and therapeutic target for hepatocellular carcinoma progression.
Collapse
Affiliation(s)
- Shangdong Mu
- Department of Oncology, Health Science Center, 3201 Hospital of Xi’an Jiaotong University, Hanzhong, Shaanxi, China
| | - Qiusi Tian
- Department of Neurosurgery, Health Science Center, 3201 Hospital of Xi’an Jiaotong University, Hanzhong, Shaanxi, China
| | - Liangyu Shen
- Department of Anesthesia, Operation Center, Sichuan Provincial People’s Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| |
Collapse
|
36
|
Koh GCC, Boushaki S, Zhao SJ, Pregnall AM, Sadiyah F, Badja C, Memari Y, Georgakopoulos-Soares I, Nik-Zainal S. The chemotherapeutic drug CX-5461 is a potent mutagen in cultured human cells. Nat Genet 2024; 56:23-26. [PMID: 38036782 PMCID: PMC10786719 DOI: 10.1038/s41588-023-01602-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023]
Abstract
The chemotherapeutic agent CX-5461, or pidnarulex, has been fast-tracked by the United States Food and Drug Administration for early-stage clinical studies of BRCA1-, BRCA2- and PALB2-mutated cancers. It is under investigation in phase I and II trials. Here, we find that, although CX-5461 exhibits synthetic lethality in BRCA1-/BRCA2-deficient cells, it also causes extensive, nonselective, collateral mutagenesis in all three cell lines tested, to magnitudes that exceed known environmental carcinogens.
Collapse
Affiliation(s)
- Gene Ching Chiek Koh
- Department of Oncology, Early Cancer Institute, University of Cambridge, Cambridge, UK
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Soraya Boushaki
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Salome Jingchen Zhao
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Andrew Marcel Pregnall
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Firas Sadiyah
- Department of Oncology, Early Cancer Institute, University of Cambridge, Cambridge, UK
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Cherif Badja
- Department of Oncology, Early Cancer Institute, University of Cambridge, Cambridge, UK
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Yasin Memari
- Department of Oncology, Early Cancer Institute, University of Cambridge, Cambridge, UK
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, UK
| | - Ilias Georgakopoulos-Soares
- Department of Biochemistry and Molecular Biology, Institute for Personalized Medicine, The Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Serena Nik-Zainal
- Department of Oncology, Early Cancer Institute, University of Cambridge, Cambridge, UK.
- Academic Department of Medical Genetics, School of Clinical Medicine, University of Cambridge, Cambridge, UK.
| |
Collapse
|
37
|
Ali N, Wolf C, Kanchan S, Veerabhadraiah SR, Bond L, Turner MW, Jorcyk CL, Hampikian G. 9S1R nullomer peptide induces mitochondrial pathology, metabolic suppression, and enhanced immune cell infiltration, in triple-negative breast cancer mouse model. Biomed Pharmacother 2024; 170:115997. [PMID: 38118350 PMCID: PMC10872342 DOI: 10.1016/j.biopha.2023.115997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/04/2023] [Accepted: 12/06/2023] [Indexed: 12/22/2023] Open
Abstract
Nullomers are the shortest strings of absent amino acid (aa) sequences in a species or group of species. Primes are those nullomers that have not been detected in the genome of any species. 9S1R is a 5-aa peptide prime sequence attached to 5-arginine aa, used to treat triple negative breast cancer (TNBC) in an in vivo mouse model. This unique peptide, administered with a trehalose carrier (9S1R-NulloPT), offers enhanced solubility and exhibits distinct anti-cancer effects against TNBC. In our study, we investigated the effect of 9S1R-NulloPT on tumor growth, metabolism, metastatic burden, tumor immune-microenvironment (TME), and transcriptome of aggressive mouse TNBC tumors. Notably, treated mice had smaller tumors in the initial phase of the treatment, as compared to untreated control, and diminished in vivo and ex vivo bioluminescence at later-stages - indicative of metabolically quiescent, dying tumors. The treatment also caused changes in TME with increased infiltration of immune cells and altered tumor transcriptome, with 365 upregulated genes and 710 downregulated genes. Consistent with in vitro data, downregulated genes were enriched in cellular metabolic processes (179), specifically mitochondrial TCA cycle/oxidative phosphorylation (44), and translation machinery/ribosome biogenesis (45). The upregulated genes were associated with the developmental (13), ECM organization (12) and focal adhesion pathways (7). In conclusion, our study demonstrates that 9S1R-NulloPT effectively reduced tumor growth during its initial phase, altering the TME and tumor transcriptome. The treatment induced mitochondrial pathology which led to a metabolic deceleration in tumors, aligning with in vitro observations.
Collapse
Affiliation(s)
- Nilufar Ali
- Department of Biological Sciences, Boise State University, Boise, ID, USA.
| | - Cody Wolf
- Department of Biological Sciences, Boise State University, Boise, ID, USA; Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID, USA
| | - Swarna Kanchan
- Department of Biological Sciences, Boise State University, Boise, ID, USA; Department of Biomedical Sciences, Jaon C. Edwards School of Medicine, Marshall University, Huntington, WV, USA
| | - Shivakumar R Veerabhadraiah
- Department of Orthopaedics, University of Utah, Salt Lake City, UT, USA; Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID, USA
| | - Laura Bond
- Center of Biomedical Research Excellence in Matrix Biology, Boise State University, Boise, ID, USA
| | - Matthew W Turner
- Biomolecular Research Center, Boise State University, Boise, ID, USA; Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID, USA
| | - Cheryl L Jorcyk
- Department of Biological Sciences, Boise State University, Boise, ID, USA; Biomolecular Research Center, Boise State University, Boise, ID, USA; Biomolecular Sciences Graduate Programs, Boise State University, Boise, ID, USA
| | - Greg Hampikian
- Department of Biological Sciences, Boise State University, Boise, ID, USA.
| |
Collapse
|
38
|
Priyadarshini N, Venkatarama Puppala N, Jayaprakash JP, Khandelia P, Sharma V, Mohannath G. Downregulation of ribosomal RNA (rRNA) genes in human head and neck squamous cell carcinoma (HNSCC) cells correlates with rDNA promoter hypermethylation. Gene 2023; 888:147793. [PMID: 37696422 DOI: 10.1016/j.gene.2023.147793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 08/31/2023] [Accepted: 09/08/2023] [Indexed: 09/13/2023]
Abstract
Eukaryotes carry hundreds of ribosomal RNA (rRNA) genes as tandem arrays, which generate rRNA for protein synthesis. Humans carry ∼ 400 rRNA gene copies and their expression is epigenetically regulated. Dysregulation of rRNA synthesis and ribosome biogenesis are characteristic features of cancers. Targeting aberrant rRNA expression for cancer therapy is being explored. Head and neck squamous cell carcinoma (HNSCC) is among the most prevalent cancers globally. Using quantitative PCR and bisulfite sequencing, we show that rRNA genes are downregulated and their promoters are hypermethylated in HNSCC cell lines. These findings may have relevance for prognosis and diagnosis of HNSCC.
Collapse
Affiliation(s)
- Neha Priyadarshini
- Department of Biological Sciences, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, Telangana, India.
| | - Navinchandra Venkatarama Puppala
- Department of Biological Sciences, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, Telangana, India.
| | - Jayasree Peroth Jayaprakash
- Department of Biological Sciences, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, Telangana, India.
| | - Piyush Khandelia
- Department of Biological Sciences, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, Telangana, India.
| | - Vivek Sharma
- Department of Biological Sciences, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, Telangana, India.
| | - Gireesha Mohannath
- Department of Biological Sciences, Birla Institute of Technology & Science-Pilani, Hyderabad Campus, Hyderabad, Telangana, India.
| |
Collapse
|
39
|
Paraqindes H, Mourksi NEH, Ballesta S, Hedjam J, Bourdelais F, Fenouil T, Picart T, Catez F, Combe T, Ferrari A, Kielbassa J, Thomas E, Tonon L, Viari A, Attignon V, Carrere M, Perrossier J, Giraud S, Vanbelle C, Gabut M, Bergeron D, Scott MS, Castro Vega L, Magne N, Huillard E, Sanson M, Meyronet D, Diaz JJ, Ducray F, Marcel V, Durand S. Isocitrate dehydrogenase wt and IDHmut adult-type diffuse gliomas display distinct alterations in ribosome biogenesis and 2'O-methylation of ribosomal RNA. Neuro Oncol 2023; 25:2191-2206. [PMID: 37531290 PMCID: PMC10708943 DOI: 10.1093/neuonc/noad140] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Indexed: 08/04/2023] Open
Abstract
BACKGROUND High-grade adult-type diffuse gliomas (HGGs) constitute a heterogeneous group of aggressive tumors that are mostly incurable. Recent advances highlighting the contribution of ribosomes to cancer development have offered new clinical perspectives. Here, we uncovered that isocitrate dehydrogenase (IDH)wt and IDHmut HGGs display distinct alterations of ribosome biology, in terms of rRNA epitranscriptomics and ribosome biogenesis, which could constitute novel hallmarks that can be exploited for the management of these pathologies. METHODS We analyzed (1) the ribosomal RNA 2'O-ribose methylation (rRNA 2'Ome) using RiboMethSeq and in-house developed bioinformatics tools (https://github.com/RibosomeCRCL/ribomethseq-nfandrRMSAnalyzer) on 3 independent cohorts compiling 71 HGGs (IDHwt n = 30, IDHmut n = 41) and 9 non-neoplastic samples, (2) the expression of ribosome biogenesis factors using medium throughput RT-qPCR as a readout of ribosome biogenesis, and (3) the sensitivity of 5 HGG cell lines to RNA Pol I inhibitors (CX5461, BMH-21). RESULTS Unsupervised analysis demonstrated that HGGs could be distinguished based on their rRNA 2'Ome epitranscriptomic profile, with IDHwt glioblastomas displaying the most significant alterations of rRNA 2'Ome at specific sites. In contrast, IDHmut HGGs are largely characterized by an overexpression of ribosome biogenesis factors compared to non-neoplastic tissues or IDHwt glioblastomas. Finally, IDHmut HGG-derived spheroids display higher cytotoxicity to CX5461 than IDHwt glioblastoma, while all HGG spheroids display a similar cytotoxicity to BMH-21. CONCLUSIONS In HGGs, IDH mutational status is associated with specific alterations of the ribosome biology and with distinct sensitivities to RNA Pol I inhibitors.
Collapse
Affiliation(s)
- Hermes Paraqindes
- LabEx Dev2CAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon, Centre Léon Bérard, CEDEX 08, Lyon, France
- Synergie Lyon Cancer, Gilles Thomas Bioinformatics Platform, Centre Léon Bérard, CEDEX 08, Lyon, France
| | - Nour-El-Houda Mourksi
- LabEx Dev2CAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon, Centre Léon Bérard, CEDEX 08, Lyon, France
| | - Samantha Ballesta
- LabEx Dev2CAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon, Centre Léon Bérard, CEDEX 08, Lyon, France
- Plateforme 3D-ONCO, Université de Lyon, Université Claude Bernard Lyon 1, Inserm U1052, CNRS UMR5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France
| | - Jordan Hedjam
- LabEx Dev2CAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon, Centre Léon Bérard, CEDEX 08, Lyon, France
| | - Fleur Bourdelais
- LabEx Dev2CAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon, Centre Léon Bérard, CEDEX 08, Lyon, France
| | - Tanguy Fenouil
- LabEx Dev2CAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon, Centre Léon Bérard, CEDEX 08, Lyon, France
- Hospices Civils de Lyon, Laboratoire de biologie médicale et d’anatomie pathologique, Lyon, France
| | - Thiébaud Picart
- LabEx Dev2CAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon, Centre Léon Bérard, CEDEX 08, Lyon, France
- Hospices Civils de Lyon, Laboratoire de biologie médicale et d’anatomie pathologique, Lyon, France
| | - Frédéric Catez
- LabEx Dev2CAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon, Centre Léon Bérard, CEDEX 08, Lyon, France
| | - Théo Combe
- LabEx Dev2CAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon, Centre Léon Bérard, CEDEX 08, Lyon, France
- Synergie Lyon Cancer, Gilles Thomas Bioinformatics Platform, Centre Léon Bérard, CEDEX 08, Lyon, France
| | - Anthony Ferrari
- LabEx Dev2CAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon, Centre Léon Bérard, CEDEX 08, Lyon, France
- Synergie Lyon Cancer, Gilles Thomas Bioinformatics Platform, Centre Léon Bérard, CEDEX 08, Lyon, France
| | - Janice Kielbassa
- Synergie Lyon Cancer, Gilles Thomas Bioinformatics Platform, Centre Léon Bérard, CEDEX 08, Lyon, France
| | - Emilie Thomas
- LabEx Dev2CAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon, Centre Léon Bérard, CEDEX 08, Lyon, France
- Synergie Lyon Cancer, Gilles Thomas Bioinformatics Platform, Centre Léon Bérard, CEDEX 08, Lyon, France
| | - Laurie Tonon
- LabEx Dev2CAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon, Centre Léon Bérard, CEDEX 08, Lyon, France
- Synergie Lyon Cancer, Gilles Thomas Bioinformatics Platform, Centre Léon Bérard, CEDEX 08, Lyon, France
| | - Alain Viari
- LabEx Dev2CAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon, Centre Léon Bérard, CEDEX 08, Lyon, France
- Synergie Lyon Cancer, Gilles Thomas Bioinformatics Platform, Centre Léon Bérard, CEDEX 08, Lyon, France
- INRIA Grenoble Rhône-Alpes, Montbonnot-Saint-Martin, France
| | - Valéry Attignon
- LabEx Dev2CAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon, Centre Léon Bérard, CEDEX 08, Lyon, France
- Cancer Genomics Platform, Centre de Recherche en Cancérologie de Lyon, CEDEX 08, Lyon, France
| | - Marjorie Carrere
- Cancer Genomics Platform, Centre de Recherche en Cancérologie de Lyon, CEDEX 08, Lyon, France
| | - Jessie Perrossier
- Cancer Genomics Platform, Centre de Recherche en Cancérologie de Lyon, CEDEX 08, Lyon, France
| | - Stéphane Giraud
- Plateforme 3D-ONCO, Université de Lyon, Université Claude Bernard Lyon 1, Inserm U1052, CNRS UMR5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France
| | - Christophe Vanbelle
- Plateforme d’Imagerie Cellulaire, Université de Lyon, Université Claude Bernard Lyon 1, Inserm U1052, CNRS UMR5286, Centre Léon Bérard, Centre de Recherche en Cancérologie de Lyon (CRCL), Lyon, France
| | - Mathieu Gabut
- LabEx Dev2CAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon, Centre Léon Bérard, CEDEX 08, Lyon, France
| | - Danny Bergeron
- Département de biochimie et génomique fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Michelle S Scott
- Département de biochimie et génomique fonctionnelle, Faculté de médecine et des sciences de la santé, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Luis Castro Vega
- Sorbonne Université, Inserm, CNRS, UMRS1127, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière – Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
| | - Nathalie Magne
- Sorbonne Université, Inserm, CNRS, UMRS1127, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière – Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
| | - Emmanuelle Huillard
- Sorbonne Université, Inserm, CNRS, UMRS1127, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière – Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
| | - Marc Sanson
- Sorbonne Université, Inserm, CNRS, UMRS1127, Institut du Cerveau, ICM, AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière – Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
| | - David Meyronet
- LabEx Dev2CAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon, Centre Léon Bérard, CEDEX 08, Lyon, France
- Hospices Civils de Lyon, Laboratoire de biologie médicale et d’anatomie pathologique, Lyon, France
| | - Jean-Jacques Diaz
- LabEx Dev2CAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon, Centre Léon Bérard, CEDEX 08, Lyon, France
| | - François Ducray
- LabEx Dev2CAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon, Centre Léon Bérard, CEDEX 08, Lyon, France
- Hospices Civils de Lyon, Service de neuro-oncologie, Hôpital Pierre Wertheimer, Lyon, France
| | - Virginie Marcel
- LabEx Dev2CAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon, Centre Léon Bérard, CEDEX 08, Lyon, France
| | - Sébastien Durand
- LabEx Dev2CAN, Institut Convergence Plascan, Centre de Recherche en Cancérologie de Lyon, Inserm U1052, CNRS UMR5286, Université de Lyon, Université Claude Bernard Lyon, Centre Léon Bérard, CEDEX 08, Lyon, France
| |
Collapse
|
40
|
Harrop S, Nguyen PC, Byrne D, Wilson C, Ryland GL, Nguyen T, Anderson MA, Khaw SL, Martin M, Tiong IS, Sanij E, Blombery P. Persistence of UBTF tandem duplications in remission in acute myeloid leukaemia. EJHAEM 2023; 4:1105-1109. [PMID: 38024622 PMCID: PMC10660390 DOI: 10.1002/jha2.808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/25/2023] [Accepted: 09/27/2023] [Indexed: 12/01/2023]
Abstract
UBTF tandem duplications are recurrent in adult and paediatric acute myeloid leukaemia and have been reported to be associated with a poor prognosis. Co-mutations in WT1 and FLT3 are common while morphological dysplasia is frequent. The role of UBTF-TDs in leukemogenesis is yet to be elucidated; however they have been proposed as early initiating events, making them attractive for assessment of MRD and a potential therapeutic target. We present two cases where the UBTF-TD was observed in remission and discuss the implications of these findings in the clinicobiological understanding of this emerging entity.
Collapse
Affiliation(s)
- Sean Harrop
- Peter MacCallum Cancer Centre Melbourne Victoria Australia
| | | | - David Byrne
- Peter MacCallum Cancer Centre Melbourne Victoria Australia
| | | | - Georgina L Ryland
- Peter MacCallum Cancer Centre Melbourne Victoria Australia
- Sir Peter MacCallum Department of Oncology University of Melbourne Parkville Victoria Australia
| | - Tamia Nguyen
- Peter MacCallum Cancer Centre Melbourne Victoria Australia
| | | | - Seong Lin Khaw
- Royal Children's Hospital Melbourne Victoria Australia
- Murdoch Children's Research Institute Melbourne Victoria Australia
| | | | - Ing Soo Tiong
- Peter MacCallum Cancer Centre Melbourne Victoria Australia
| | - Elaine Sanij
- Peter MacCallum Cancer Centre Melbourne Victoria Australia
- St Vincent's Institute of Medical Research Fitzroy Victoria Australia
- Department of Medicine St Vincent's Hospital University of Melbourne Melbourne Victoria Australia
- Sir Peter MacCallum Department of Oncology University of Melbourne Parkville Victoria Australia
- Department of Biochemistry and Molecular Biology Monash University Clayton Victoria Australia
| | - Piers Blombery
- Peter MacCallum Cancer Centre Melbourne Victoria Australia
- Sir Peter MacCallum Department of Oncology University of Melbourne Parkville Victoria Australia
| |
Collapse
|
41
|
Lu Y, Wang S, Jiao Y. The Effects of Deregulated Ribosomal Biogenesis in Cancer. Biomolecules 2023; 13:1593. [PMID: 38002277 PMCID: PMC10669593 DOI: 10.3390/biom13111593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/04/2023] [Accepted: 10/22/2023] [Indexed: 11/26/2023] Open
Abstract
Ribosomes are macromolecular ribonucleoprotein complexes assembled from RNA and proteins. Functional ribosomes arise from the nucleolus, require ribosomal RNA processing and the coordinated assembly of ribosomal proteins (RPs), and are frequently hyperactivated to support the requirement for protein synthesis during the self-biosynthetic and metabolic activities of cancer cells. Studies have provided relevant information on targeted anticancer molecules involved in ribosome biogenesis (RiBi), as increased RiBi is characteristic of many types of cancer. The association between unlimited cell proliferation and alterations in specific steps of RiBi has been highlighted as a possible critical driver of tumorigenesis and metastasis. Thus, alterations in numerous regulators and actors involved in RiBi, particularly in cancer, significantly affect the rate and quality of protein synthesis and, ultimately, the transcriptome to generate the associated proteome. Alterations in RiBi in cancer cells activate nucleolar stress response-related pathways that play important roles in cancer-targeted interventions and immunotherapies. In this review, we focus on the association between alterations in RiBi and cancer. Emphasis is placed on RiBi deregulation and its secondary consequences, including changes in protein synthesis, loss of RPs, adaptive transcription and translation, nucleolar stress regulation, metabolic changes, and the impaired ribosome biogenesis checkpoint.
Collapse
Affiliation(s)
| | - Shizhuo Wang
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110055, China;
| | - Yisheng Jiao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang 110055, China;
| |
Collapse
|
42
|
Yang ZY, Yan XC, Zhang JYL, Liang L, Gao CC, Zhang PR, Liu Y, Sun JX, Ruan B, Duan JL, Wang RN, Feng XX, Che B, Xiao T, Han H. Repression of rRNA gene transcription by endothelial SPEN deficiency normalizes tumor vasculature via nucleolar stress. J Clin Invest 2023; 133:e159860. [PMID: 37607001 PMCID: PMC10575731 DOI: 10.1172/jci159860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Accepted: 08/17/2023] [Indexed: 08/23/2023] Open
Abstract
Human cancers induce a chaotic, dysfunctional vasculature that promotes tumor growth and blunts most current therapies; however, the mechanisms underlying the induction of a dysfunctional vasculature have been unclear. Here, we show that split end (SPEN), a transcription repressor, coordinates rRNA synthesis in endothelial cells (ECs) and is required for physiological and tumor angiogenesis. SPEN deficiency attenuated EC proliferation and blunted retinal angiogenesis, which was attributed to p53 activation. Furthermore, SPEN knockdown activated p53 by upregulating noncoding promoter RNA (pRNA), which represses rRNA transcription and triggers p53-mediated nucleolar stress. In human cancer biopsies, a low endothelial SPEN level correlated with extended overall survival. In mice, endothelial SPEN deficiency compromised rRNA expression and repressed tumor growth and metastasis by normalizing tumor vessels, and this was abrogated by p53 haploinsufficiency. rRNA gene transcription is driven by RNA polymerase I (RNPI). We found that CX-5461, an RNPI inhibitor, recapitulated the effect of Spen ablation on tumor vessel normalization and combining CX-5461 with cisplatin substantially improved the efficacy of treating tumors in mice. Together, these results demonstrate that SPEN is required for angiogenesis by repressing pRNA to enable rRNA gene transcription and ribosomal biogenesis and that RNPI represents a target for tumor vessel normalization therapy of cancer.
Collapse
|
43
|
Li XL, Xie Y, Chen YL, Zhang ZM, Tao YF, Li G, Wu D, Wang HR, Zhuo R, Pan JJ, Yu JJ, Jia SQ, Zhang Z, Feng CX, Wang JW, Fang F, Qian GH, Lu J, Hu SY, Li ZH, Pan J. The RNA polymerase II subunit B (RPB2) functions as a growth regulator in human glioblastoma. Biochem Biophys Res Commun 2023; 674:170-182. [PMID: 37423037 DOI: 10.1016/j.bbrc.2023.06.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/11/2023]
Abstract
Glioblastoma multiforme (GBM) is the most common and aggressive brain tumor with a poor prognosis. The growth of GBM cells depends on the core transcriptional apparatus, thus rendering RNA polymerase (RNA pol) complex as a candidate therapeutic target. The RNA pol II subunit B (POLR2B) gene encodes the second largest subunit of the RNA pol II (RPB2); however, its genomic status and function in GBM remain unclear. Certain GBM data sets in cBioPortal were used for investigating the genomic status and expression of POLR2B in GBM. The function of RPB2 was analyzed following knockdown of POLR2B expression by shRNA in GBM cells. The cell counting kit-8 assay and PI staining were used for cell proliferation and cell cycle analysis. A xenograft mouse model was established to analyze the function of RPB2 in vivo. RNA sequencing was performed to analyze the RPB2-regulated genes. GO and GSEA analyses were applied to investigate the RPB2-regulated gene function and associated pathways. In the present study, the genomic alteration and overexpression of the POLR2B gene was described in glioblastoma. The data indicated that knockdown of POLR2B expression suppressed tumor cell growth of glioblastoma in vitro and in vivo. The analysis further demonstrated the identification of the RPB2-regulated gene sets and highlighted the DNA damage-inducible transcript 4 gene as the downstream target of the POLR2B gene. The present study provides evidence indicating that RPB2 functions as a growth regulator in glioblastoma and could be used as a potential therapeutic target for the treatment of this disease.
Collapse
Affiliation(s)
- Xiao-Lu Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Soochow, Jiangsu Province, 215003, China.
| | - Yi Xie
- Institute of Pediatric Research, Children's Hospital of Soochow University, Soochow, Jiangsu Province, 215003, China.
| | - Yan-Ling Chen
- Institute of Pediatric Research, Children's Hospital of Soochow University, Soochow, Jiangsu Province, 215003, China; School of Basic Medicine and Biological Sciences, Soochow University, Soochow, Jiangsu Province, 215003, China.
| | - Zi-Mu Zhang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Soochow, Jiangsu Province, 215003, China.
| | - Yan-Fang Tao
- Department of Hematology, Children's Hospital of Soochow University, Soochow, Jiangsu Province, 215003, China.
| | - Gen Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Soochow, Jiangsu Province, 215003, China.
| | - Di Wu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Soochow, Jiangsu Province, 215003, China.
| | - Hai-Rong Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Soochow, Jiangsu Province, 215003, China.
| | - Ran Zhuo
- Institute of Pediatric Research, Children's Hospital of Soochow University, Soochow, Jiangsu Province, 215003, China.
| | - Jing-Jing Pan
- Institute of Pediatric Research, Children's Hospital of Soochow University, Soochow, Jiangsu Province, 215003, China.
| | - Juan-Juan Yu
- Institute of Pediatric Research, Children's Hospital of Soochow University, Soochow, Jiangsu Province, 215003, China.
| | - Si-Qi Jia
- Institute of Pediatric Research, Children's Hospital of Soochow University, Soochow, Jiangsu Province, 215003, China; School of Basic Medicine and Biological Sciences, Soochow University, Soochow, Jiangsu Province, 215003, China.
| | - Zheng Zhang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Soochow, Jiangsu Province, 215003, China.
| | - Chen-Xi Feng
- Institute of Pediatric Research, Children's Hospital of Soochow University, Soochow, Jiangsu Province, 215003, China.
| | - Jian-Wei Wang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Soochow, Jiangsu Province, 215003, China.
| | - Fang Fang
- Institute of Pediatric Research, Children's Hospital of Soochow University, Soochow, Jiangsu Province, 215003, China.
| | - Guang-Hui Qian
- Institute of Pediatric Research, Children's Hospital of Soochow University, Soochow, Jiangsu Province, 215003, China.
| | - Jun Lu
- Department of Hematology, Children's Hospital of Soochow University, Soochow, Jiangsu Province, 215003, China.
| | - Shao-Yan Hu
- Department of Hematology, Children's Hospital of Soochow University, Soochow, Jiangsu Province, 215003, China.
| | - Zhi-Heng Li
- Institute of Pediatric Research, Children's Hospital of Soochow University, Soochow, Jiangsu Province, 215003, China; Department of Hematology, Children's Hospital of Soochow University, Soochow, Jiangsu Province, 215003, China.
| | - Jian Pan
- Institute of Pediatric Research, Children's Hospital of Soochow University, Soochow, Jiangsu Province, 215003, China.
| |
Collapse
|
44
|
McNamar R, Freeman E, Baylor KN, Fakhouri AM, Huang S, Knutson BA, Rothblum LI. PAF49: An RNA Polymerase I subunit essential for rDNA transcription and stabilization of PAF53. J Biol Chem 2023; 299:104951. [PMID: 37356716 PMCID: PMC10365956 DOI: 10.1016/j.jbc.2023.104951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 05/30/2023] [Accepted: 06/09/2023] [Indexed: 06/27/2023] Open
Abstract
The application of genetic and biochemical techniques in yeast has informed our knowledge of transcription in mammalian cells. Such systems have allowed investigators to determine whether a gene was essential and to determine its function in rDNA transcription. However, there are significant differences in the nature of the transcription factors essential for transcription by Pol I in yeast and mammalian cells, and yeast RNA polymerase I contains 14 subunits while mammalian polymerase contains 13 subunits. We previously reported the adaptation of the auxin-dependent degron that enabled a combination of a "genetics-like" approach and biochemistry to study mammalian rDNA transcription. Using this system, we studied the mammalian orthologue of yeast RPA34.5, PAF49, and found that it is essential for rDNA transcription and cell division. The auxin-induced degradation of PAF49 induced nucleolar stress and the accumulation of P53. Interestingly, the auxin-induced degradation of AID-tagged PAF49 led to the degradation of its binding partner, PAF53, but not vice versa. A similar pattern of co-dependent expression was also found when we studied the non-essential, yeast orthologues. An analysis of the domains of PAF49 that are essential for rDNA transcription demonstrated a requirement for both the dimerization domain and an "arm" of PAF49 that interacts with PolR1B. Further, we demonstrate this interaction can be disrupted to inhibit Pol I transcription in normal and cancer cells which leads to the arrest of normal cells and cancer cell death. In summary, we have shown that both PAF53 and PAF49 are necessary for rDNA transcription and cell growth.
Collapse
Affiliation(s)
- Rachel McNamar
- Department of Cell Biology, University of Oklahoma College of Medicine, Oklahoma City, Oklahoma, USA
| | - Emma Freeman
- Department of Cell and Development Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Kairo N Baylor
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Aula M Fakhouri
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Sui Huang
- Department of Cell and Development Biology, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Bruce A Knutson
- Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, New York, USA
| | - Lawrence I Rothblum
- Department of Cell Biology, University of Oklahoma College of Medicine, Oklahoma City, Oklahoma, USA.
| |
Collapse
|
45
|
Naiyer S, Dwivedi L, Singh N, Phulera S, Mohan V, Kamran M. Role of Transcription Factor BEND3 and Its Potential Effect on Cancer Progression. Cancers (Basel) 2023; 15:3685. [PMID: 37509346 PMCID: PMC10377563 DOI: 10.3390/cancers15143685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/08/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
BEND3 is a transcription factor that plays a critical role in the regulation of gene expression in mammals. While there is limited research on the role of BEND3 as a tumor suppressor or an oncogene and its potential role in cancer therapy is still emerging, several studies suggest that it may be involved in both the processes. Its interaction and regulation with multiple other factors via p21 have already been reported to play a significant role in cancer development, which serves as an indication of its potential role in oncogenesis. Its interaction with chromatin modifiers such as NuRD and NoRC and its role in the recruitment of polycomb repressive complex 2 (PRC2) are some of the additional events indicative of its potential role in cancer development. Moreover, a few recent studies indicate BEND3 as a potential target for cancer therapy. Since the specific mechanisms by which BEND3 may contribute to cancer progression are not yet fully elucidated, in this review, we have discussed the possible pathways BEND3 may take to serve as an oncogenic driver or suppressor.
Collapse
Affiliation(s)
- Sarah Naiyer
- Department of Biomedical Science, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Lalita Dwivedi
- Faculty of Science, Department of Biotechnology, Invertis University, Bareilly 243122, UP, India
| | - Nishant Singh
- Cell and Gene Therapy Division Absorption System, Exton, PA 19341, USA
| | - Swastik Phulera
- Initium Therapeutics, 22 Strathmore Rd., STE 453, Natick, MA 01760, USA
| | - Vijay Mohan
- Department of Biosciences, School of Basic and Applied Sciences, Galgotias University, Greater Noida 203201, UP, India
| | - Mohammad Kamran
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY 10065, USA
| |
Collapse
|
46
|
Xu J, Zhong A, Zhang S, Chen M, Zhang L, Hang X, Zheng J, Wu B, Deng X, Pan X, Wang Z, Qi L, Shi K, Li S, Wang Y, Wang M, Chen X, Zhang Q, Liu P, Gale RP, Chen C, Liu Y, Niu T. KMT2D Deficiency Promotes Myeloid Leukemias which Is Vulnerable to Ribosome Biogenesis Inhibition. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206098. [PMID: 37142882 PMCID: PMC10323629 DOI: 10.1002/advs.202206098] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 03/17/2023] [Indexed: 05/06/2023]
Abstract
KMT2C and KMT2D are the most frequently mutated epigenetic genes in human cancers. While KMT2C is identified as a tumor suppressor in acute myeloid leukemia (AML), the role of KMT2D remains unclear in this disease, though its loss promotes B cell lymphoma and various solid cancers. Here, it is reported that KMT2D is downregulated or mutated in AML and its deficiency, through shRNA knockdown or CRISPR/Cas9 editing, accelerates leukemogenesis in mice. Hematopoietic stem and progenitor cells and AML cells with Kmt2d loss have significantly enhanced ribosome biogenesis and consistently, enlarged nucleolus, increased rRNA and protein synthesis rates. Mechanistically, it is found that KMT2D deficiency leads to the activation of the mTOR pathway in both mouse and human AML cells. Kmt2d directly regulates the expression of Ddit4, a negative regulator of the mTOR pathway. Consistent with the abnormal ribosome biogenesis, it is shown that CX-5461, an inhibitor of RNA polymerase I, significantly restrains the growth of AML with Kmt2d loss in vivo and extends the survival of leukemic mice. These studies validate KMT2D as a de facto tumor suppressor in AML and reveal an unprecedented vulnerability to ribosome biogenesis inhibition.
Collapse
Grants
- 82130007 National Natural Science Foundation of China
- 2022M722272 China Postdoctoral Science Foundation
- 2018RZ0140 Sichuan Science and Technology Program
- 2022SCUH0037 "From 0 to 1" Innovation Project of Sichuan University
- 19HXFH030 Incubation Program for Clinical Trials, West China Hospital, Sichuan University
- ZYJC21007 1.3.5 Project for Disciplines of Excellence, West China Hospital, Sichuan University
- ZYJC21009 1.3.5 Project for Disciplines of Excellence, West China Hospital, Sichuan University
- ZYGD22012 1.3.5 Project for Disciplines of Excellence, West China Hospital, Sichuan University
- National Institute of Health Research Biomedical Research Centre
- 2023HXBH019 Post-Doctor Research Project, West China Hospital, Sichuan University
- 2023SCU12073 Post-Doctor Research Project of Sichuan University
- National Natural Science Foundation of China
- China Postdoctoral Science Foundation
Collapse
Affiliation(s)
- Jing Xu
- Department of HematologyInstitute of HematologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Ailing Zhong
- Department of HematologyInstitute of HematologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Shan Zhang
- Department of HematologyInstitute of HematologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Mei Chen
- Department of HematologyInstitute of HematologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Lanxin Zhang
- Department of HematologyInstitute of HematologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Xiaohang Hang
- Department of HematologyInstitute of HematologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Jianan Zheng
- Department of HematologyInstitute of HematologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Baohong Wu
- Department of HematologyInstitute of HematologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Xintong Deng
- Department of HematologyInstitute of HematologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Xiangyu Pan
- Department of HematologyInstitute of HematologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Zhongwang Wang
- Department of HematologyInstitute of HematologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Lu Qi
- Department of HematologyInstitute of HematologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Kaidou Shi
- Department of HematologyInstitute of HematologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Shujun Li
- Department of HematologyInstitute of HematologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Yiyun Wang
- Department of HematologyInstitute of HematologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Manli Wang
- Department of HematologyInstitute of HematologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Xuelan Chen
- Department of HematologyInstitute of HematologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Qi Zhang
- Department of HematologyInstitute of HematologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Pengpeng Liu
- Department of HematologyInstitute of HematologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Robert Peter Gale
- Centre for HematologyImperial College of ScienceTechnology and MedicineLondonSW7 2BXUK
- Department of Hematologic OncologySun Yat‐sen Cancer CenterGuangzhou510060China
| | - Chong Chen
- Department of HematologyInstitute of HematologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Yu Liu
- Department of HematologyInstitute of HematologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| | - Ting Niu
- Department of HematologyInstitute of HematologyState Key Laboratory of Biotherapy and Cancer CenterWest China HospitalSichuan UniversityChengdu610041China
| |
Collapse
|
47
|
Ali N, Wolf C, Kanchan S, Veerabhadraiah SR, Bond L, Turner MW, Jorcyk CL, Hampikian G. Nullomer peptide increases immune cell infiltration and reduces tumor metabolism in triple negative breast cancer mouse model. RESEARCH SQUARE 2023:rs.3.rs-3097552. [PMID: 37461536 PMCID: PMC10350184 DOI: 10.21203/rs.3.rs-3097552/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Background Nullomers are the shortest strings of absent amino acid (aa) sequences in a species or group of species. Primes are those nullomers that have not been detected in the genome of any species. 9S1R is a 5-aa peptide derived from a prime sequence that is tagged with 5 arginine aa, used to treat triple negative breast cancer (TNBC) in an in vivo TNBC mouse model. 9S1R is administered in trehalose (9S1R-NulloPT), which enhances solubility and exhibits some independent effects against tumor growth and is thus an important component in the drug preparation. Method We examined the effect of 9S1R-NulloPT on tumor growth, metabolism, metastatic burden, necrosis, tumor immune microenvironment, and the transcriptome of aggressive mouse TNBC tumors. Results The peptide-treated mice had smaller tumors in the initial phase of the treatment, as compared to the untreated control, and reduced in vivo bioluminescence at later stages, which is indicative of metabolically inactive tumors. A decrease in ex vivo bioluminescence was also observed in the excised tumors of treated mice, but not in the secondary metastasis in the lungs. The treatment also caused changes in tumor immune microenvironment with increased infiltration of immune cells and margin inflammation. The treatment upregulated 365 genes and downregulated 710 genes in tumors compared to the untreated group. Consistent with in vitro findings in breast cancer cell lines, downregulated genes in the treated TNBC tumors include Cellular Metabolic Process Related genes (179), specifically mitochondrial genes associated with TCA cycle/oxidative phosphorylation (44), and translation machinery/ribosome biogenesis genes (45). Among upregulated genes, the Developmental Pathway (13), ECM Organization (12) and Focal Adhesion Related Pathways (7) were noteworthy. We also present data from a pilot study using a bilateral BC mouse model, which supports our findings. Conclusion In conclusion, although 9S1R-NulloPT was moderate at reducing the tumor volume, it altered the tumor immune microenvironment as well as the tumor transcriptome, rendering tumors metabolically less active by downregulating the mitochondrial function and ribosome biogenesis. This corroborates previously published in vitro findings.
Collapse
|
48
|
Scull CE, Twa G, Zhang Y, Yang NJ, Hunter RN, Augelli-Szafran CE, Schneider DA. Small Molecule RBI2 Disrupts Ribosome Biogenesis through Pre-rRNA Depletion. Cancers (Basel) 2023; 15:3303. [PMID: 37444413 PMCID: PMC10340317 DOI: 10.3390/cancers15133303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/13/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Cancer cells are especially sensitive to perturbations in ribosome biogenesis as they rely on finely tuned protein homeostasis to facilitate their rapid growth and proliferation. While ribosome synthesis and cancer have a well-established relationship, ribosome biogenesis has only recently drawn interest as a cancer therapeutic target. In this study, we exploited the relationship between ribosome biogenesis and cancer cell proliferation by using a potent ribosome biogenesis inhibitor, RBI2 (Ribosome Biogenesis Inhibitor 2), to perturb cancer cell growth and viability. We demonstrate herein that RBI2 significantly decreases cell viability in malignant melanoma cells and breast cancer cell lines. Treatment with RBI2 dramatically and rapidly decreased ribosomal RNA (rRNA) synthesis, without affecting the occupancy of RNA polymerase I (Pol I) on the ribosomal DNA template. Next-generation RNA sequencing (RNA-seq) revealed that RBI2 and previously described ribosome biogenesis inhibitor CX-5461 induce distinct changes in the transcriptome. An investigation of the content of the pre-rRNAs through RT-qPCR revealed an increase in the polyadenylation of cellular rRNA after treatment with RBI2, constituting a known pathway by which rRNA degradation occurs. Northern blotting revealed that RBI2 does not appear to impair or alter rRNA processing. Collectively, these data suggest that RBI2 inhibits rRNA synthesis differently from other previously described ribosome biogenesis inhibitors, potentially acting through a novel pathway that upregulates the turnover of premature rRNAs.
Collapse
Affiliation(s)
- Catherine E. Scull
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Guy Twa
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Yinfeng Zhang
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | - Naiheng J. Yang
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| | | | | | - David A. Schneider
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, AL 35294, USA
| |
Collapse
|
49
|
Azman MS, Alard EL, Dodel M, Capraro F, Faraway R, Dermit M, Fan W, Chakraborty A, Ule J, Mardakheh FK. An ERK1/2-driven RNA-binding switch in nucleolin drives ribosome biogenesis and pancreatic tumorigenesis downstream of RAS oncogene. EMBO J 2023; 42:e110902. [PMID: 37039106 PMCID: PMC10233377 DOI: 10.15252/embj.2022110902] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 02/14/2023] [Accepted: 03/12/2023] [Indexed: 04/12/2023] Open
Abstract
Oncogenic RAS signaling reprograms gene expression through both transcriptional and post-transcriptional mechanisms. While transcriptional regulation downstream of RAS is relatively well characterized, how RAS post-transcriptionally modulates gene expression to promote malignancy remains largely unclear. Using quantitative RNA interactome capture analysis, we here reveal that oncogenic RAS signaling reshapes the RNA-bound proteomic landscape of pancreatic cancer cells, with a network of nuclear proteins centered around nucleolin displaying enhanced RNA-binding activity. We show that nucleolin is phosphorylated downstream of RAS, which increases its binding to pre-ribosomal RNA (rRNA), boosts rRNA production, and promotes ribosome biogenesis. This nucleolin-dependent enhancement of ribosome biogenesis is crucial for RAS-induced pancreatic cancer cell proliferation and can be targeted therapeutically to inhibit tumor growth. Our results reveal that oncogenic RAS signaling drives ribosome biogenesis by regulating the RNA-binding activity of nucleolin and highlight a crucial role for this mechanism in RAS-mediated tumorigenesis.
Collapse
Affiliation(s)
- Muhammad S Azman
- Centre for Cancer Cell and Molecular Biology, Barts Cancer InstituteQueen Mary University of LondonLondonUK
| | - Emilie L Alard
- Centre for Cancer Cell and Molecular Biology, Barts Cancer InstituteQueen Mary University of LondonLondonUK
| | - Martin Dodel
- Centre for Cancer Cell and Molecular Biology, Barts Cancer InstituteQueen Mary University of LondonLondonUK
| | - Federica Capraro
- Centre for Cancer Cell and Molecular Biology, Barts Cancer InstituteQueen Mary University of LondonLondonUK
- Randall Centre for Cell and Molecular BiophysicsKing's College LondonLondonUK
| | - Rupert Faraway
- The Francis Crick InstituteLondonUK
- Dementia Research InstituteKing's College LondonLondonUK
| | - Maria Dermit
- Centre for Cancer Cell and Molecular Biology, Barts Cancer InstituteQueen Mary University of LondonLondonUK
| | - Wanling Fan
- Centre for Cancer Cell and Molecular Biology, Barts Cancer InstituteQueen Mary University of LondonLondonUK
| | - Alina Chakraborty
- Centre for Cancer Cell and Molecular Biology, Barts Cancer InstituteQueen Mary University of LondonLondonUK
| | - Jernej Ule
- The Francis Crick InstituteLondonUK
- Dementia Research InstituteKing's College LondonLondonUK
| | - Faraz K Mardakheh
- Centre for Cancer Cell and Molecular Biology, Barts Cancer InstituteQueen Mary University of LondonLondonUK
| |
Collapse
|
50
|
Gan Y, Deng J, Hao Q, Huang Y, Han T, Xu JG, Zhao M, Yao L, Xu Y, Xiong J, Lu H, Wang C, Chen J, Zhou X. UTP11 deficiency suppresses cancer development via nucleolar stress and ferroptosis. Redox Biol 2023; 62:102705. [PMID: 37087976 PMCID: PMC10149416 DOI: 10.1016/j.redox.2023.102705] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 04/17/2023] [Indexed: 04/25/2023] Open
Abstract
The eukaryotic ribosome is essential for cancer cell survival. Perturbation of ribosome biogenesis induces nucleolar stress or ribosomal stress, which restrains cancer growth, as rapidly proliferating cancer cells need more active ribosome biogenesis. In this study, we found that UTP11 plays an important role in the biosynthesis of 18S ribosomal RNAs (rRNA) by binding to the pre-rRNA processing factor, MPP10. UTP11 is overexpressed in human cancers and associated with poor prognoses. Interestingly, depletion of UTP11 inhibits cancer cell growth in vitro and in vivo through p53-depedednt and -independent mechanisms, whereas UTP11 overexpression promotes cancer cell growth and progression. On the one hand, the ablation of UTP11 impedes 18S rRNA biosynthesis to trigger nucleolar stress, thereby preventing MDM2-mediated p53 ubiquitination and degradation through ribosomal proteins, RPL5 and RPL11. On the other hand, UTP11 deficiency represses the expression of SLC7A11 by promoting the decay of NRF2 mRNA, resulting in reduced levels of glutathione (GSH) and enhanced ferroptosis. Altogether, our study uncovers a critical role for UTP11 in maintaining cancer cell survival and growth, as depleting UTP11 leads to p53-dependent cancer cell growth arrest and p53-independent ferroptosis.
Collapse
Affiliation(s)
- Yu Gan
- Department of Physiology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, China; Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
| | - Jun Deng
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Qian Hao
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yingdan Huang
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Tao Han
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, 453003, China
| | - Jin-Guo Xu
- Institutes of Health Central Plains, Xinxiang Medical University, Xinxiang, 453003, China
| | - Min Zhao
- School of Science, Technology and Engineering, University of the Sunshine Coast, Maroochydore DC, Queensland, 4558, Australia
| | - Litong Yao
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Yingying Xu
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, 110001, China
| | - Jianping Xiong
- Department of Oncology, The First Affiliated Hospital of Nanchang University, Nanchang, 330006, China
| | - Hua Lu
- Department of Biochemistry & Molecular Biology and Tulane Cancer Center, Tulane University School of Medicine, New Orleans, LA, 70112, USA
| | - Chunmeng Wang
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
| | - Jiaxiang Chen
- Department of Physiology, School of Basic Medical Sciences, Nanchang University, Nanchang, 330006, China.
| | - Xiang Zhou
- Fudan University Shanghai Cancer Center and Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Key Laboratory of Breast Cancer in Shanghai, Fudan University Shanghai Cancer Center, Fudan University, Shanghai, 200032, China; Shanghai Key Laboratory of Medical Epigenetics, International Co-laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China.
| |
Collapse
|