1
|
Qiu J, Zhao R, Ma C, Wang Q, Li B, Qi Y, Pan Z, Zhao S, Wang S, Gao Z, Guo X, Qiu W, Tang W, Guo X, Deng L, Xue H, Li G. O-GlcNAcylation stabilized WTAP promotes GBM malignant progression in an N6-methyladenosine-dependent manner. Neuro Oncol 2025; 27:900-915. [PMID: 39671515 DOI: 10.1093/neuonc/noae268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Indexed: 12/15/2024] Open
Abstract
BACKGROUND Interactions between mesenchymal glioblastoma stem cells (MES GSCs) and myeloid-derived macrophages (MDMs) shape the tumor-immunosuppressive microenvironment (TIME), promoting the progression of glioblastoma (GBM). N6-methyladenosine (m6A) plays important roles in the tumor progression. However, the mechanism of m6A in shaping the TIME of GBM remains elusive. METHODS Single-cell RNA sequencing and bulk RNA-seq datasets were employed to identify the critical role of WTAP in interactions between MES GBM and MDMs. The biological function of WTAP was confirmed both in vitro and in vivo. Mechanistically, mass spectrum, RNA immunoprecipitation (RIP), and co-immunoprecipitation assays were conducted. RESULTS Here, we identified that m6A methyltransferase Wilms' tumor 1-associated protein (WTAP), whose protein stability could be synergistically enhanced via OGT-mediated O-GlcNAcylation and USP7-mediated de-ubiquitination, promoted LOXL2 m6A modification to enhance its mRNA stabilization in an IGF2BP2-dependent manner, upregulating secretion of LOXL2 protein (sLOXL2). sLOXL2 then interacted with integrin α5β1 on GSCs to activate FAK-ERK signaling, inducing mesenchymal transition of GSCs in an autocrine manner. Meanwhile, sLOXL2 also activated the integrin α5β1-FAK-ERK axis in MDMs, which promoted M2-like MDM phenotypes in a paracrine pathway, thereby contributing to T-cell exhaustion to induce GBM immune escape. In translational medicine, combinations of the OGT inhibitor by targeting WTAP expression and the LOXL2 antagonist by disrupting MES GSC and MDM interactions showed favorable outcomes to the anti-PD1 immunotherapy. CONCLUSIONS WTAP plays critical roles in mesenchymal transition of GSCs and formation of TIME, highlighting the therapeutic potential of targeting WTAP and its downstream effectors to enhance the efficacy of immunotherapy.
Collapse
Affiliation(s)
- Jiawei Qiu
- Shandong Key Laboratory of Brain Health and Functional Remodeling, Jinan, Shandong, China
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
| | - Rongrong Zhao
- Shandong Key Laboratory of Brain Health and Functional Remodeling, Jinan, Shandong, China
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
| | - Caizhi Ma
- Shandong Key Laboratory of Brain Health and Functional Remodeling, Jinan, Shandong, China
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
| | - Qingtong Wang
- Shandong Key Laboratory of Brain Health and Functional Remodeling, Jinan, Shandong, China
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
| | - Boyan Li
- Shandong Key Laboratory of Brain Health and Functional Remodeling, Jinan, Shandong, China
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
| | - Yanhua Qi
- Shandong Key Laboratory of Brain Health and Functional Remodeling, Jinan, Shandong, China
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
| | - Ziwen Pan
- Shandong Key Laboratory of Brain Health and Functional Remodeling, Jinan, Shandong, China
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
| | - Shulin Zhao
- Shandong Key Laboratory of Brain Health and Functional Remodeling, Jinan, Shandong, China
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
| | - Shaobo Wang
- Shandong Key Laboratory of Brain Health and Functional Remodeling, Jinan, Shandong, China
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
| | - Zijie Gao
- Shandong Key Laboratory of Brain Health and Functional Remodeling, Jinan, Shandong, China
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
| | - Xiaofan Guo
- Department of Neurology, Loma Linda University Health, Loma Linda, California, USA (Xiaofan Guo)
- Shandong Key Laboratory of Brain Health and Functional Remodeling, Jinan, Shandong, China
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
| | - Wei Qiu
- Shandong Key Laboratory of Brain Health and Functional Remodeling, Jinan, Shandong, China
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
| | - Weijie Tang
- Shandong Key Laboratory of Brain Health and Functional Remodeling, Jinan, Shandong, China
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
| | - Xing Guo
- Shandong Key Laboratory of Brain Health and Functional Remodeling, Jinan, Shandong, China
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
| | - Lin Deng
- Shandong Key Laboratory of Brain Health and Functional Remodeling, Jinan, Shandong, China
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
| | - Hao Xue
- Shandong Key Laboratory of Brain Health and Functional Remodeling, Jinan, Shandong, China
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
| | - Gang Li
- Shandong Key Laboratory of Brain Health and Functional Remodeling, Jinan, Shandong, China
- Department of Neurosurgery, Qilu Hospital of Shandong University, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, Shandong, China
| |
Collapse
|
2
|
Bejarano L, Lourenco J, Kauzlaric A, Lamprou E, Costa CF, Galland S, Maas RR, Guerrero Aruffo P, Fournier N, Brouland JP, Hottinger AF, Daniel RT, Hegi ME, Joyce JA. Single-cell atlas of endothelial and mural cells across primary and metastatic brain tumors. Immunity 2025; 58:1015-1032.e6. [PMID: 40107274 DOI: 10.1016/j.immuni.2025.02.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Revised: 11/06/2024] [Accepted: 02/19/2025] [Indexed: 03/22/2025]
Abstract
Central nervous system (CNS) malignancies include primary tumors, such as gliomas, and brain metastases (BrMs) originating from diverse extracranial cancers. The blood-brain barrier (BBB) is a key structural component of both primary and metastatic brain cancers. Here, we comprehensively analyzed the two major BBB cell types, endothelial and mural cells, across non-tumor brain tissue, isocitrate dehydrogenase (IDH) mutant (IDH mut) low-grade gliomas, IDH wild-type (IDH WT) high-grade glioblastomas (GBMs), and BrMs from various primary tumors. Bulk and single-cell RNA sequencing, integrated with spatial analyses, revealed that GBMs, but not low-grade gliomas, exhibit significant alterations in the tumor vasculature, including the emergence of diverse pathological vascular cell subtypes. However, these alterations are less pronounced in GBMs than in BrMs. Notably, the BrM vasculature shows higher permeability and more extensive interactions with distinct immune cell populations. This vascular atlas presents a resource toward understanding of tumor-specific vascular features in the brain, providing a foundation for developing vascular- and immune-targeting therapies.
Collapse
Affiliation(s)
- Leire Bejarano
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Agora Cancer Research Centre, Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
| | - Joao Lourenco
- Agora Cancer Research Centre, Lausanne, Switzerland; Translational Data Science Facility, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Annamaria Kauzlaric
- Agora Cancer Research Centre, Lausanne, Switzerland; Translational Data Science Facility, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Eleni Lamprou
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Agora Cancer Research Centre, Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Catia F Costa
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Agora Cancer Research Centre, Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Sabine Galland
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Agora Cancer Research Centre, Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Roeltje R Maas
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Agora Cancer Research Centre, Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Paola Guerrero Aruffo
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Agora Cancer Research Centre, Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Nadine Fournier
- Agora Cancer Research Centre, Lausanne, Switzerland; Translational Data Science Facility, Swiss Institute of Bioinformatics, Lausanne, Switzerland
| | - Jean-Philippe Brouland
- Department of Pathology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Andreas F Hottinger
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Roy T Daniel
- Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; Department of Neurosurgery, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Monika E Hegi
- Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; Department of Neurosurgery, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland; Neuroscience Research Center, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Johanna A Joyce
- Department of Oncology, University of Lausanne, Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland; Agora Cancer Research Centre, Lausanne, Switzerland; Lundin Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland.
| |
Collapse
|
3
|
Smolag KI, Olszowka J, Rosberg R, Johansson E, Marinko E, Leandersson K, O’Connell DJ, Governa V, Tuysuz EC, Belting M, Pietras A, Martin M, Blom AM. Complement Factor H Is an ICOS Ligand Modulating Tregs in the Glioma Microenvironment. Cancer Immunol Res 2025; 13:122-138. [PMID: 39378431 PMCID: PMC11712038 DOI: 10.1158/2326-6066.cir-23-1092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/30/2024] [Accepted: 10/08/2024] [Indexed: 10/10/2024]
Abstract
The survival rate of patients with glioma has not significantly increased in recent years despite aggressive treatment and advances in immunotherapy. The limited response to treatments is partially attributed to the immunosuppressive tumor microenvironment, in which regulatory T cells (Treg) play a pivotal role in immunologic tolerance. In this study, we investigated the impact of complement factor H (FH) on Tregs within the glioma microenvironment and found that FH is an ICOS ligand. The binding of FH to this immune checkpoint molecule promoted the survival and function of Tregs and induced the secretion of TGFβ and IL10 while suppressing T-cell proliferation. We further demonstrated that cancer cells in human and mouse gliomas directly produce FH. Database investigations revealed that upregulation of FH expression was associated with the presence of Tregs and correlated with worse prognosis for patients with glioma. We confirmed the effect of FH on glioma development in a mouse model, in which FH knockdown was associated with a decrease in the number of ICOS+ Tregs and demonstrated a tendency of prolonged survival (P = 0.064). Because the accumulation of Tregs represents a promising prognostic and therapeutic target, evaluating FH expression should be considered when assessing the effectiveness of and resistance to immunotherapies against glioma.
Collapse
Affiliation(s)
- Karolina I. Smolag
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Jakub Olszowka
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Rebecca Rosberg
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Elinn Johansson
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Elisabet Marinko
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Karin Leandersson
- Cancer Immunology, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - David J. O’Connell
- School of Biomolecular and Biomedical Science, Conway Institute, University College Dublin, Dublin, Ireland
| | - Valeria Governa
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Emre Can Tuysuz
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Mattias Belting
- Division of Oncology, Department of Clinical Sciences, Lund University, Lund, Sweden
| | - Alexander Pietras
- Division of Translational Cancer Research, Department of Laboratory Medicine, Lund University, Lund, Sweden
| | - Myriam Martin
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| | - Anna M. Blom
- Section of Medical Protein Chemistry, Department of Translational Medicine, Lund University, Malmö, Sweden
| |
Collapse
|
4
|
Xie XP, Ganbold M, Li J, Lien M, Chipman ME, Wang T, Jayewickreme CD, Pedraza AM, Bale T, Tabar V, Brennan C, Sun D, Sharma R, Parada LF. Glioblastoma functional heterogeneity and enrichment of cancer stem cells with tumor recurrence. Neuron 2024; 112:4017-4032.e6. [PMID: 39510072 DOI: 10.1016/j.neuron.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 08/31/2024] [Accepted: 10/10/2024] [Indexed: 11/15/2024]
Abstract
Glioblastoma (GBM) is an incurable disease with high intratumoral heterogeneity. Bioinformatic studies have examined transcriptional heterogeneity with differing conclusions. Here, we characterize GBM heterogeneity and highlight critical phenotypic and hierarchical roles for quiescent cancer stem cells (qCSCs). Unsupervised single-cell transcriptomic analysis of patient-derived xenografts (PDXs) delineates six GBM transcriptional states with unique tumor exclusive gene signatures, five of which display congruence with central nervous system (CNS) cell lineages. We employ a surrogate tumor evolution assay by serial xenograft transplantation to demonstrate faithful preservation of somatic mutations, transcriptome, and qCSCs. PDX chemotherapy results in CSC resistance and expansion, also seen in recurrent patient GBM. In aggregate, these novel GBM transcriptional signatures exclusively identify tumor cells and define the hierarchical landscape as stable biologically discernible cell types that allow capture of their evolution upon recurrence, emphasizing the importance of CSCs and demonstrating general relevance to all GBM.
Collapse
Affiliation(s)
- Xuanhua P Xie
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE 68198, USA; Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE 68198, USA.
| | - Mungunsarnai Ganbold
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Jing Li
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Michelle Lien
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Mollie E Chipman
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tao Wang
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Chenura D Jayewickreme
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Alicia M Pedraza
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Tejus Bale
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Pathology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Viviane Tabar
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Cameron Brennan
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Daochun Sun
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Roshan Sharma
- Computational and Systems Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Luis F Parada
- Brain Tumor Center, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Cancer Biology & Genetics Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Neurosurgery, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Department of Neurology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
5
|
Ross JL, Puigdelloses-Vallcorba M, Piñero G, Soni N, Thomason W, DeSisto J, Angione A, Tsankova NM, Castro MG, Schniederjan M, Wadhwani NR, Raju GP, Morgenstern P, Becher OJ, Green AL, Tsankov AM, Hambardzumyan D. Microglia and monocyte-derived macrophages drive progression of pediatric high-grade gliomas and are transcriptionally shaped by histone mutations. Immunity 2024; 57:2669-2687.e6. [PMID: 39395421 PMCID: PMC11578068 DOI: 10.1016/j.immuni.2024.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 06/04/2024] [Accepted: 09/11/2024] [Indexed: 10/14/2024]
Abstract
Pediatric high-grade gliomas (pHGGs), including hemispheric pHGGs and diffuse midline gliomas (DMGs), harbor mutually exclusive tumor location-specific histone mutations. Using immunocompetent de novo mouse models of pHGGs, we demonstrated that myeloid cells were the predominant infiltrating non-neoplastic cell population. Single-cell RNA sequencing (scRNA-seq), flow cytometry, and immunohistochemistry illustrated the presence of heterogeneous myeloid cell populations shaped by histone mutations and tumor location. Disease-associated myeloid (DAM) cell phenotypes demonstrating immune permissive characteristics were identified in murine and human pHGG samples. H3.3K27M DMGs, the most aggressive DMG, demonstrated enrichment of DAMs. Genetic ablation of chemokines Ccl8 and Ccl12 resulted in a reduction of DAMs and an increase in lymphocyte infiltration, leading to increased survival of tumor-bearing mice. Pharmacologic inhibition of chemokine receptors CCR1 and CCR5 resulted in extended survival and decreased myeloid cell infiltration. This work establishes the tumor-promoting role of myeloid cells in DMG and the potential therapeutic opportunities for targeting them.
Collapse
Affiliation(s)
- James L Ross
- Department of Microbiology and Immunology, Emory Vaccine Center, Emory University School of Medicine, Atlanta, GA, USA
| | - Montserrat Puigdelloses-Vallcorba
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Neurosurgery, Mount Sinai Icahn School of Medicine, New York, NY, USA
| | - Gonzalo Piñero
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Neurosurgery, Mount Sinai Icahn School of Medicine, New York, NY, USA
| | - Nishant Soni
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Wes Thomason
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Neurosurgery, Mount Sinai Icahn School of Medicine, New York, NY, USA
| | - John DeSisto
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Cell Biology, Stem Cells and Development Graduate Program, Aurora, CO, USA; Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, CO, USA
| | - Angelo Angione
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Neurosurgery, Mount Sinai Icahn School of Medicine, New York, NY, USA
| | - Nadejda M Tsankova
- Department of Pathology and Molecular and Cell-Based Medicine, Mount Sinai Icahn School of Medicine, New York, NY 10029, USA
| | - Maria G Castro
- Departments of Neurosurgery and Cell & Developmental Biology, The University of Michigan School of Medicine, Ann Arbor, MI, USA
| | - Matthew Schniederjan
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA, USA
| | - Nitin R Wadhwani
- Department of Pathology and Laboratory Medicine, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - G Praveen Raju
- Department of Neurology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Peter Morgenstern
- Department of Neurosurgery, Mount Sinai Icahn School of Medicine, New York, NY, USA
| | - Oren J Becher
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Pediatrics, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Adam L Green
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, University of Colorado Anschutz Medical Campus, Aurora, CO, USA; Cell Biology, Stem Cells and Development Graduate Program, Aurora, CO, USA; Center for Cancer and Blood Disorders, Children's Hospital Colorado, Aurora, CO, USA
| | - Alexander M Tsankov
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Dolores Hambardzumyan
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Neurosurgery, Mount Sinai Icahn School of Medicine, New York, NY, USA.
| |
Collapse
|
6
|
Alnahhas I. Molecular Testing in Gliomas: What is Necessary in Routine Clinical Practice? Curr Oncol Rep 2024; 26:1277-1282. [PMID: 39361075 PMCID: PMC11579106 DOI: 10.1007/s11912-024-01602-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2024] [Indexed: 11/21/2024]
Abstract
PURPOSE OF REVIEW A number of molecular characteristics are essential for accurate diagnosis and prognostication in glioma. RECENT FINDINGS The 2021 WHO classification of brain tumors and recent Food and Drug Administration (FDA) pathology agnostic drug approvals highlight the importance of molecular testing in the management of glioma. For diffuse gliomas, it is important to identify IDH mutations, given the favorable clinical behavior and potential for using FDA approved IDH inhibitors in the near future. MGMT promoter methylation testing is the most established molecular marker for response to temozolomide in IDH wild-type glioblastoma and in turn impacts overall survival. Moreover, identification of certain mutations and molecular markers, such as BRAF V600E, hypermutation or elevated tumor-mutational burden and NTRK fusions allow for the use of FDA approved agents that are tumor-agnostic. Finally, molecular testing opens options for clinical trials that are essential for diseases with limited treatment options like gliomas.
Collapse
Affiliation(s)
- Iyad Alnahhas
- Department of Neurology and Neurosurgery, Thomas Jefferson University, 901 Walnut St, Room 310G, Philadelphia, PA, 19107, USA.
| |
Collapse
|
7
|
Schmid S, Russell ZR, Yamashita AS, West ME, Parrish AG, Walker J, Rudoy D, Yan JZ, Quist DC, Gessesse BN, Alvinez N, Hill KD, Anderson LW, Cimino PJ, Kumasaka DK, Parchment RE, Holland EC, Szulzewsky F. ERK signaling promotes resistance to TRK kinase inhibition in NTRK fusion-driven glioma mouse models. Cell Rep 2024; 43:114829. [PMID: 39365700 PMCID: PMC11572037 DOI: 10.1016/j.celrep.2024.114829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/21/2024] [Accepted: 09/19/2024] [Indexed: 10/06/2024] Open
Abstract
Pediatric-type high-grade gliomas frequently harbor gene fusions involving receptor tyrosine kinase genes, including neurotrophic tyrosine kinase receptor (NTRK) fusions. Clinically, these tumors show high initial response rates to tyrosine kinase inhibition but ultimately recur due to the accumulation of additional resistance-conferring mutations. Here, we develop a series of genetically engineered mouse models of treatment-naive and -experienced NTRK1/2/3 fusion-driven gliomas. All tested NTRK fusions are oncogenic in vivo. The NTRK variant, N-terminal fusion partners, and resistance-associated point mutations all influence tumor histology and aggressiveness. Additional tumor suppressor losses greatly enhance tumor aggressiveness. Treatment with TRK kinase inhibitors significantly extends the survival of NTRK fusion-driven glioma mice, but fails to fully eradicate tumors, leading to recurrence upon treatment discontinuation. Finally, we show that ERK activation promotes resistance to TRK kinase inhibition and identify MEK inhibition as a potential combination therapy. These models will be invaluable tools to study therapy resistance of NTRK fusion tumors.
Collapse
MESH Headings
- Animals
- Glioma/genetics
- Glioma/pathology
- Glioma/drug therapy
- Protein Kinase Inhibitors/pharmacology
- Protein Kinase Inhibitors/therapeutic use
- Mice
- Disease Models, Animal
- MAP Kinase Signaling System/drug effects
- MAP Kinase Signaling System/genetics
- Receptor, trkA/metabolism
- Receptor, trkA/genetics
- Receptor, trkA/antagonists & inhibitors
- Humans
- Drug Resistance, Neoplasm/genetics
- Oncogene Proteins, Fusion/metabolism
- Oncogene Proteins, Fusion/genetics
- Receptor, trkC/genetics
- Receptor, trkC/metabolism
- Receptor, trkC/antagonists & inhibitors
- Receptor, trkB/metabolism
- Receptor, trkB/genetics
Collapse
Affiliation(s)
- Sebastian Schmid
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Zachary R Russell
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Alex Shimura Yamashita
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA
| | - Madeline E West
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Abigail G Parrish
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Julia Walker
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Dmytro Rudoy
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - James Z Yan
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - David C Quist
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | | | - Neriah Alvinez
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Kimberly D Hill
- Pharmacokinetics Laboratory, Developmental Therapeutics Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Larry W Anderson
- Pharmacokinetics Laboratory, Developmental Therapeutics Program, Frederick National Laboratory for Cancer Research, Frederick, MD 21701, USA
| | - Patrick J Cimino
- Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892, USA
| | - Debra K Kumasaka
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Ralph E Parchment
- Clinical Pharmacodynamic Biomarkers Program, Applied/Developmental Research Directorate, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc., Frederick, MD 21701, USA
| | - Eric C Holland
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Seattle Translational Tumor Research Center, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA
| | - Frank Szulzewsky
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Huntsman Cancer Institute, University of Utah, Salt Lake City, UT 84112, USA; Department of Neurosurgery, Clinical Neurosciences Center, University of Utah, Salt Lake City, UT 84112, USA.
| |
Collapse
|
8
|
Nair NU, Schäffer AA, Gertz EM, Cheng K, Zerbib J, Sahu AD, Leor G, Shulman ED, Aldape KD, Ben-David U, Ruppin E. Chromosome 7 Gain Compensates for Chromosome 10 Loss in Glioma. Cancer Res 2024; 84:3464-3477. [PMID: 39078448 PMCID: PMC11479827 DOI: 10.1158/0008-5472.can-24-1366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 07/31/2024]
Abstract
The co-occurrence of chromosome 10 loss and chromosome 7 gain in gliomas is the most frequent loss-gain co-aneuploidy pair in human cancers. This phenomenon has been investigated since the late 1980s without resolution. Expanding beyond previous gene-centric studies, we investigated the co-occurrence in a genome-wide manner, taking an evolutionary perspective. Mining of large-scale tumor aneuploidy data confirmed the previous finding of a small-scale longitudinal study that the most likely order is chromosome 10 loss, followed by chromosome 7 gain. Extensive analysis of genomic and transcriptomic data from both patients and cell lines revealed that this co-occurrence can be explained by functional rescue interactions that are highly enriched on chromosome 7, which could potentially compensate for any detrimental consequences arising from the loss of chromosome 10. Transcriptomic data from various normal, noncancerous human brain tissues were analyzed to assess which tissues may be most predisposed to tolerate compensation of chromosome 10 loss by chromosome 7 gain. The analysis indicated that the preexisting transcriptomic states in the cortex and frontal cortex, where gliomas arise, are more favorable than other brain regions for compensation by rescuer genes that are active on chromosome 7. Collectively, these findings suggest that the phenomenon of chromosome 10 loss and chromosome 7 gain in gliomas is orchestrated by a complex interaction of many genes residing within these two chromosomes and provide a plausible reason why this co-occurrence happens preferentially in cancers originating in certain regions of the brain. Significance: Increased expression of multiple rescuer genes on the gained chromosome 7 could compensate for the downregulation of several vulnerable genes on the lost chromosome 10, resolving the long-standing mystery of this frequent co-occurrence in gliomas.
Collapse
Affiliation(s)
- Nishanth Ulhas Nair
- Computational Precision Oncology Section, Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Alejandro A. Schäffer
- Computational Precision Oncology Section, Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - E. Michael Gertz
- Computational Precision Oncology Section, Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kuoyuan Cheng
- Computational Precision Oncology Section, Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- MSD, Beijing, China
| | - Johanna Zerbib
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Avinash Das Sahu
- The University of New Mexico, Comprehensive Cancer Center, Albuquerque, NM, USA
| | - Gil Leor
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Eldad D. Shulman
- Computational Precision Oncology Section, Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Kenneth D. Aldape
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Uri Ben-David
- Department of Human Molecular Genetics and Biochemistry, Faculty of Medicine, Tel Aviv University, Tel Aviv-Yafo, Israel
| | - Eytan Ruppin
- Computational Precision Oncology Section, Cancer Data Science Laboratory, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
- Lead contact
| |
Collapse
|
9
|
Kloosterman DJ, Erbani J, Boon M, Farber M, Handgraaf SM, Ando-Kuri M, Sánchez-López E, Fontein B, Mertz M, Nieuwland M, Liu NQ, Forn-Cuni G, van der Wel NN, Grootemaat AE, Reinalda L, van Kasteren SI, de Wit E, Ruffell B, Snaar-Jagalska E, Petrecca K, Brandsma D, Kros A, Giera M, Akkari L. Macrophage-mediated myelin recycling fuels brain cancer malignancy. Cell 2024; 187:5336-5356.e30. [PMID: 39137777 PMCID: PMC11429458 DOI: 10.1016/j.cell.2024.07.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Revised: 04/26/2024] [Accepted: 07/18/2024] [Indexed: 08/15/2024]
Abstract
Tumors growing in metabolically challenged environments, such as glioblastoma in the brain, are particularly reliant on crosstalk with their tumor microenvironment (TME) to satisfy their high energetic needs. To study the intricacies of this metabolic interplay, we interrogated the heterogeneity of the glioblastoma TME using single-cell and multi-omics analyses and identified metabolically rewired tumor-associated macrophage (TAM) subpopulations with pro-tumorigenic properties. These TAM subsets, termed lipid-laden macrophages (LLMs) to reflect their cholesterol accumulation, are epigenetically rewired, display immunosuppressive features, and are enriched in the aggressive mesenchymal glioblastoma subtype. Engulfment of cholesterol-rich myelin debris endows subsets of TAMs to acquire an LLM phenotype. Subsequently, LLMs directly transfer myelin-derived lipids to cancer cells in an LXR/Abca1-dependent manner, thereby fueling the heightened metabolic demands of mesenchymal glioblastoma. Our work provides an in-depth understanding of the immune-metabolic interplay during glioblastoma progression, thereby laying a framework to unveil targetable metabolic vulnerabilities in glioblastoma.
Collapse
Affiliation(s)
- Daan J Kloosterman
- Division of Tumour Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Johanna Erbani
- Division of Tumour Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Menno Boon
- Division of Tumour Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Martina Farber
- Division of Tumour Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Shanna M Handgraaf
- Division of Tumour Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Masami Ando-Kuri
- Division of Tumour Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Elena Sánchez-López
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Bauke Fontein
- Division of Tumour Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Marjolijn Mertz
- Bioimaging Facility, Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Marja Nieuwland
- Genomics Core Facility, Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Ning Qing Liu
- Department of Hematology, Erasmus Medical Center Cancer Institute, Rotterdam, the Netherlands
| | - Gabriel Forn-Cuni
- Institute of Biology Leiden, Leiden University, Leiden, the Netherlands
| | - Nicole N van der Wel
- Electron Microscopy Centre Amsterdam, Medical Biology, Amsterdam University Medical Centre, Amsterdam, the Netherlands
| | - Anita E Grootemaat
- Electron Microscopy Centre Amsterdam, Medical Biology, Amsterdam University Medical Centre, Amsterdam, the Netherlands
| | - Luuk Reinalda
- The Institute of Chemical Immunology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Sander I van Kasteren
- The Institute of Chemical Immunology, Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Elzo de Wit
- Division of Gene Regulation, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands
| | - Brian Ruffell
- Department of Immunology, Department of Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL, USA
| | | | - Kevin Petrecca
- Montreal Neurological Institute-Hospital, McGill University Health Centre and Department of Neurology and Neurosurgery, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Dieta Brandsma
- Department of Neuro-Oncology, Netherlands Cancer Institute-Antoni van Leeuwenhoek, 1066CX Amsterdam, the Netherlands
| | - Alexander Kros
- Leiden Institute of Chemistry, Leiden University, Leiden, the Netherlands
| | - Martin Giera
- Center for Proteomics and Metabolomics, Leiden University Medical Center, Leiden, the Netherlands
| | - Leila Akkari
- Division of Tumour Biology and Immunology, Oncode Institute, The Netherlands Cancer Institute, 1066CX Amsterdam, the Netherlands.
| |
Collapse
|
10
|
Nuechterlein N, Cimino S, Shelbourn A, Ha V, Arora S, Rajan S, Shapiro LG, Holland EC, Aldape K, McGranahan T, Gilbert MR, Cimino PJ. HOXD12 defines an age-related aggressive subtype of oligodendroglioma. Acta Neuropathol 2024; 148:41. [PMID: 39259414 PMCID: PMC11390787 DOI: 10.1007/s00401-024-02802-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 07/10/2024] [Accepted: 09/08/2024] [Indexed: 09/13/2024]
Abstract
Oligodendroglioma, IDH-mutant and 1p/19q-codeleted has highly variable outcomes that are strongly influenced by patient age. The distribution of oligodendroglioma age is non-Gaussian and reportedly bimodal, which motivated our investigation of age-associated molecular alterations that may drive poorer outcomes. We found that elevated HOXD12 expression was associated with both older patient age and shorter survival in the TCGA (FDR < 0.01, FDR = 1e-5) and the CGGA (p = 0.03, p < 1e-3). HOXD12 gene body hypermethylation was associated with older age, higher WHO grade, and shorter survival in the TCGA (p < 1e-6, p < 0.001, p < 1e-3) and with older age and higher WHO grade in Capper et al. (p < 0.002, p = 0.014). In the TCGA, HOXD12 gene body hypermethylation and elevated expression were independently prognostic of NOTCH1 and PIK3CA mutations, loss of 15q, MYC activation, and standard histopathological features. Single-nucleus RNA and ATAC sequencing data showed that HOXD12 activity was elevated in neoplastic tissue, particularly within cycling and OPC-like cells, and was associated with a stem-like phenotype. A pan-HOX DNA methylation analysis revealed an age and survival-associated HOX-high signature that was tightly associated with HOXD12 gene body methylation. Overall, HOXD12 expression and gene body hypermethylation were associated with an older, atypically aggressive subtype of oligodendroglioma.
Collapse
Affiliation(s)
- Nicholas Nuechterlein
- Neuropathology Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Building 10/3D17, Bethesda, MD, 20892, USA
| | - Sadie Cimino
- School of Interdisciplinary Arts and Sciences, University of Washington, Bothell, WA, USA
| | - Allison Shelbourn
- Neuropathology Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Building 10/3D17, Bethesda, MD, 20892, USA
| | - Vinny Ha
- Neuropathology Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Building 10/3D17, Bethesda, MD, 20892, USA
| | - Sonali Arora
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Sharika Rajan
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Linda G Shapiro
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, WA, USA
| | - Eric C Holland
- Division of Human Biology, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Kenneth Aldape
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Tresa McGranahan
- Division of Hematology and Oncology, Scripps Cancer Center, La Jolla, CA, USA
| | - Mark R Gilbert
- Neuro-Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, USA
| | - Patrick J Cimino
- Neuropathology Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, 10 Center Drive, Building 10/3D17, Bethesda, MD, 20892, USA.
| |
Collapse
|
11
|
Watson SS, Zomer A, Fournier N, Lourenco J, Quadroni M, Chryplewicz A, Nassiri S, Aubel P, Avanthay S, Croci D, Abels E, Broekman MLD, Hanahan D, Huse JT, Daniel RT, Hegi ME, Homicsko K, Cossu G, Hottinger AF, Joyce JA. Fibrotic response to anti-CSF-1R therapy potentiates glioblastoma recurrence. Cancer Cell 2024; 42:1507-1527.e11. [PMID: 39255775 DOI: 10.1016/j.ccell.2024.08.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 06/06/2024] [Accepted: 08/12/2024] [Indexed: 09/12/2024]
Abstract
Glioblastoma recurrence is currently inevitable despite extensive standard-of-care treatment. In preclinical studies, an alternative strategy of targeting tumor-associated macrophages and microglia through CSF-1R inhibition was previously found to regress established tumors and significantly increase overall survival. However, recurrences developed in ∼50% of mice in long-term studies, which were consistently associated with fibrotic scars. This fibrotic response is observed following multiple anti-glioma therapies in different preclinical models herein and in patient recurrence samples. Multi-omics analyses of the post-treatment tumor microenvironment identified fibrotic areas as pro-tumor survival niches that encapsulated surviving glioma cells, promoted dormancy, and inhibited immune surveillance. The fibrotic treatment response was mediated by perivascular-derived fibroblast-like cells via activation by transforming growth factor β (TGF-β) signaling and neuroinflammation. Concordantly, combinatorial inhibition of these pathways inhibited treatment-associated fibrosis, and significantly improved survival in preclinical trials of anti-colony-stimulating factor-1 receptor (CSF-1R) therapy.
Collapse
Affiliation(s)
- Spencer S Watson
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland; Agora Cancer Research Center Lausanne, 1011 Lausanne, Switzerland; Agora Cancer Centre, University Hospital Lausanne, 1011 Lausanne, Switzerland; Lundin Brain Tumour Centre, University Hospital Lausanne, 1011 Lausanne, Switzerland
| | - Anoek Zomer
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland; Agora Cancer Research Center Lausanne, 1011 Lausanne, Switzerland; Agora Cancer Centre, University Hospital Lausanne, 1011 Lausanne, Switzerland
| | - Nadine Fournier
- Agora Cancer Centre, University Hospital Lausanne, 1011 Lausanne, Switzerland; Translational Data Science Facility, SIB Swiss Institute of Bioinformatics, Agora Cancer Research Center Lausanne, 1011 Lausanne, Switzerland
| | - Joao Lourenco
- Agora Cancer Centre, University Hospital Lausanne, 1011 Lausanne, Switzerland; Translational Data Science Facility, SIB Swiss Institute of Bioinformatics, Agora Cancer Research Center Lausanne, 1011 Lausanne, Switzerland
| | - Manfredo Quadroni
- Proteomics Core Facility, University of Lausanne, 1011 Lausanne, Switzerland
| | - Agnieszka Chryplewicz
- Agora Cancer Centre, University Hospital Lausanne, 1011 Lausanne, Switzerland; Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland
| | - Sina Nassiri
- Agora Cancer Centre, University Hospital Lausanne, 1011 Lausanne, Switzerland; Translational Data Science Facility, SIB Swiss Institute of Bioinformatics, Agora Cancer Research Center Lausanne, 1011 Lausanne, Switzerland
| | - Pauline Aubel
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland; Agora Cancer Research Center Lausanne, 1011 Lausanne, Switzerland; Agora Cancer Centre, University Hospital Lausanne, 1011 Lausanne, Switzerland; Lundin Brain Tumour Centre, University Hospital Lausanne, 1011 Lausanne, Switzerland
| | - Simona Avanthay
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland; Agora Cancer Research Center Lausanne, 1011 Lausanne, Switzerland; Agora Cancer Centre, University Hospital Lausanne, 1011 Lausanne, Switzerland
| | - Davide Croci
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland; Agora Cancer Research Center Lausanne, 1011 Lausanne, Switzerland; Agora Cancer Centre, University Hospital Lausanne, 1011 Lausanne, Switzerland
| | - Erik Abels
- Department of Neurosurgery, Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands; Department of Neurosurgery, Haaglanden Medical Center, 2597 The Hague, the Netherlands
| | - Marike L D Broekman
- Department of Neurosurgery, Department of Cell and Chemical Biology, Leiden University Medical Center, 2300 RC Leiden, the Netherlands; Department of Neurosurgery, Haaglanden Medical Center, 2597 The Hague, the Netherlands
| | - Douglas Hanahan
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland; Agora Cancer Research Center Lausanne, 1011 Lausanne, Switzerland; Agora Cancer Centre, University Hospital Lausanne, 1011 Lausanne, Switzerland; Swiss Institute for Experimental Cancer Research (ISREC), School of Life Sciences, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland; Swiss Cancer Center Leman (SCCL), Lausanne, Geneva, Switzerland
| | - Jason T Huse
- Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Roy T Daniel
- Lundin Brain Tumour Centre, University Hospital Lausanne, 1011 Lausanne, Switzerland; Department of Neurosurgery, University Hospital of Lausanne, 1011 Lausanne, Switzerland
| | - Monika E Hegi
- Lundin Brain Tumour Centre, University Hospital Lausanne, 1011 Lausanne, Switzerland; Department of Clinical Neurosciences, University Hospital Lausanne, 1011 Lausanne, Switzerland
| | - Krisztian Homicsko
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland; Agora Cancer Research Center Lausanne, 1011 Lausanne, Switzerland; Agora Cancer Centre, University Hospital Lausanne, 1011 Lausanne, Switzerland; Department of Oncology, University Hospital of Lausanne, 1011 Lausanne, Switzerland
| | - Giulia Cossu
- Lundin Brain Tumour Centre, University Hospital Lausanne, 1011 Lausanne, Switzerland; Department of Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA; Department of Translational Molecular Pathology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andreas F Hottinger
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland; Agora Cancer Research Center Lausanne, 1011 Lausanne, Switzerland; Agora Cancer Centre, University Hospital Lausanne, 1011 Lausanne, Switzerland; Lundin Brain Tumour Centre, University Hospital Lausanne, 1011 Lausanne, Switzerland; Department of Oncology, University Hospital of Lausanne, 1011 Lausanne, Switzerland
| | - Johanna A Joyce
- Department of Oncology, University of Lausanne, 1011 Lausanne, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, 1011 Lausanne, Switzerland; Agora Cancer Research Center Lausanne, 1011 Lausanne, Switzerland; Agora Cancer Centre, University Hospital Lausanne, 1011 Lausanne, Switzerland; Lundin Brain Tumour Centre, University Hospital Lausanne, 1011 Lausanne, Switzerland; Swiss Cancer Center Leman (SCCL), Lausanne, Geneva, Switzerland.
| |
Collapse
|
12
|
Sarkar S, Patranabis S. Immunomodulatory signalling networks in glioblastoma multiforme: a comprehensive review of therapeutic approaches. Hum Cell 2024; 37:1355-1377. [PMID: 39085713 DOI: 10.1007/s13577-024-01112-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
Glioblastoma multiforme is a very aggressive type of cancer with high mortality and poor prognosis worldwide. Advanced treatment options with an understanding of the molecules and signalling mechanisms involved in this type of cancer have the potential to increase targeted therapy and decrease off-target effects, resistance, and recurrence. Glioblastoma multiforme (GBM) presents a complex tumour microenvironment with numerous cellular components and an extracellular matrix comprising multiple components. A deeper understanding of these components and corresponding signalling pathways can increase the success of immune checkpoint inhibitors in the treatment of GBM. The discovery of specific molecular changes and biomarkers has led to the investigation of tailored treatments for individual patients. Combination therapies targeting multiple pathways or utilizing different modalities are emerging as a promising strategy albeit with challenges in drug delivery to the brain. The review presents a comprehensive update of the various immunomodulatory signalling networks in GBM and highlights the corresponding therapeutic approaches by targeting them.
Collapse
|
13
|
Read RD, Tapp ZM, Rajappa P, Hambardzumyan D. Glioblastoma microenvironment-from biology to therapy. Genes Dev 2024; 38:360-379. [PMID: 38811170 PMCID: PMC11216181 DOI: 10.1101/gad.351427.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
Glioblastoma (GBM) is the most aggressive primary brain cancer. These tumors exhibit high intertumoral and intratumoral heterogeneity in neoplastic and nonneoplastic compartments, low lymphocyte infiltration, and high abundance of myeloid subsets that together create a highly protumorigenic immunosuppressive microenvironment. Moreover, heterogeneous GBM cells infiltrate adjacent brain tissue, remodeling the neural microenvironment to foster tumor electrochemical coupling with neurons and metabolic coupling with nonneoplastic astrocytes, thereby driving growth. Here, we review heterogeneity in the GBM microenvironment and its role in low-to-high-grade glioma transition, concluding with a discussion of the challenges of therapeutically targeting the tumor microenvironment and outlining future research opportunities.
Collapse
Affiliation(s)
- Renee D Read
- Department of Pharmacology and Chemical Biology, Emory University School of Medicine, Atlanta, Georgia 30322, USA;
- Department of Hematology and Medical Oncology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
- Winship Cancer Institute, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | - Zoe M Tapp
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio 43205, USA
| | - Prajwal Rajappa
- The Steve and Cindy Rasmussen Institute for Genomic Medicine, Nationwide Children's Hospital, Columbus, Ohio 43205, USA;
- Department of Pediatrics, The Ohio State University Wexner Medical Center, Columbus, Ohio 43215, USA
- Department of Neurological Surgery, The Ohio State University Wexner Medical Center, Columbus, Ohio 43215, USA
| | - Dolores Hambardzumyan
- Department of Oncological Sciences, The Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA;
- Department of Neurosurgery, Icahn School of Medicine at Mount Sinai, New York, New York 10029, USA
| |
Collapse
|
14
|
Park JH, Hothi P, de Lomana ALG, Pan M, Calder R, Turkarslan S, Wu WJ, Lee H, Patel AP, Cobbs C, Huang S, Baliga NS. Gene regulatory network topology governs resistance and treatment escape in glioma stem-like cells. SCIENCE ADVANCES 2024; 10:eadj7706. [PMID: 38848360 PMCID: PMC11160475 DOI: 10.1126/sciadv.adj7706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 05/03/2024] [Indexed: 06/09/2024]
Abstract
Poor prognosis and drug resistance in glioblastoma (GBM) can result from cellular heterogeneity and treatment-induced shifts in phenotypic states of tumor cells, including dedifferentiation into glioma stem-like cells (GSCs). This rare tumorigenic cell subpopulation resists temozolomide, undergoes proneural-to-mesenchymal transition (PMT) to evade therapy, and drives recurrence. Through inference of transcriptional regulatory networks (TRNs) of patient-derived GSCs (PD-GSCs) at single-cell resolution, we demonstrate how the topology of transcription factor interaction networks drives distinct trajectories of cell-state transitions in PD-GSCs resistant or susceptible to cytotoxic drug treatment. By experimentally testing predictions based on TRN simulations, we show that drug treatment drives surviving PD-GSCs along a trajectory of intermediate states, exposing vulnerability to potentiated killing by siRNA or a second drug targeting treatment-induced transcriptional programs governing nongenetic cell plasticity. Our findings demonstrate an approach to uncover TRN topology and use it to rationally predict combinatorial treatments that disrupt acquired resistance in GBM.
Collapse
Affiliation(s)
| | - Parvinder Hothi
- Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA, USA
| | | | - Min Pan
- Institute for Systems Biology, Seattle, WA, USA
| | | | | | - Wei-Ju Wu
- Institute for Systems Biology, Seattle, WA, USA
| | - Hwahyung Lee
- Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA, USA
| | - Anoop P. Patel
- Department of Neurosurgery, Preston Robert Tisch Brain Tumor Center, Duke University, Durham, NC, USA
- Center for Advanced Genomic Technologies, Duke University, Durham, NC, USA
| | - Charles Cobbs
- Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA, USA
| | - Sui Huang
- Institute for Systems Biology, Seattle, WA, USA
| | - Nitin S. Baliga
- Institute for Systems Biology, Seattle, WA, USA
- Departments of Microbiology, Biology, and Molecular Engineering Sciences, University of Washington, Seattle, WA, USA
| |
Collapse
|
15
|
Feng Z, Chen G, Huang Y, Zhang K, Wu G, Xing W, Wu Y, Zhou Y, Sun C. TAK-242 inhibits glioblastoma invasion, migration, and proneural-mesenchymal transition by inhibiting TLR4 signaling. Exp Cell Res 2024; 439:114091. [PMID: 38740168 DOI: 10.1016/j.yexcr.2024.114091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/02/2024] [Accepted: 05/11/2024] [Indexed: 05/16/2024]
Abstract
Resatorvid (TAK-242), a small-molecule inhibitor of Toll-like receptor 4 (TLR4), has the ability to cross the blood-brain barrier (BBB). In this study, we explored the role of TAK-242 on glioblastoma (GBM) invasion, migration, and proneural-mesenchymal transition (PMT). RNA sequencing (RNA-Seq) data and full clinical information of glioma patients were downloaded from the Chinese Glioma Genome Atlas (CGGA) and the Cancer Genome Atlas (TCGA) cohorts and then analyzed using R language; patients were grouped based on proneural (PN) and mesenchymal (MES) subtypes. Bioinformatics analysis was used to detect the difference in survival and TLR4-pathway expression between these groups. Cell viability assay, wound-healing test, and transwell assay, as well as an intracranial xenotransplantation mice model, were used to assess the functional role of TAK-242 in GBM in vitro and in vivo. RNA-Seq, Western blot, and immunofluorescence were employed to investigate the possible mechanism. TLR4 expression in GBM was significantly higher than in normal brain tissue and upregulated the expression of MES marker genes. Moreover, TAK-242 inhibited GBM progression in vitro and in vivo via linking with PMT, which could be a novel treatment strategy for inhibiting GBM recurrence.
Collapse
Affiliation(s)
- Zibin Feng
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Jiangsu, Suzhou 215006, China; Department of Neurosurgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, Shaanxi Province, China
| | - Guangliang Chen
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Jiangsu, Suzhou 215006, China
| | - Yunfan Huang
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Jiangsu, Suzhou 215006, China
| | - Kai Zhang
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Jiangsu, Suzhou 215006, China
| | - Guanzhang Wu
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Jiangsu, Suzhou 215006, China
| | - Weixin Xing
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Jiangsu, Suzhou 215006, China
| | - Yue Wu
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Jiangsu, Suzhou 215006, China
| | - Youxin Zhou
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Jiangsu, Suzhou 215006, China.
| | - Chunming Sun
- Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Jiangsu, Suzhou 215006, China.
| |
Collapse
|
16
|
Douglas C, Lomeli N, Vu T, Pham J, Bota DA. WITHDRAWN: LonP1 Drives Proneural Mesenchymal Transition in IDH1-R132H Diffuse Glioma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.04.13.536817. [PMID: 37131765 PMCID: PMC10153221 DOI: 10.1101/2023.04.13.536817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
The authors have withdrawn their manuscript owing to massive revision and data validation. Therefore, the authors do not wish this work to be cited as reference for the project. If you have any questions, please contact the corresponding author.
Collapse
|
17
|
Xu C, Hou P, Li X, Xiao M, Zhang Z, Li Z, Xu J, Liu G, Tan Y, Fang C. Comprehensive understanding of glioblastoma molecular phenotypes: classification, characteristics, and transition. Cancer Biol Med 2024; 21:j.issn.2095-3941.2023.0510. [PMID: 38712813 PMCID: PMC11131044 DOI: 10.20892/j.issn.2095-3941.2023.0510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 03/28/2024] [Indexed: 05/08/2024] Open
Abstract
Among central nervous system-associated malignancies, glioblastoma (GBM) is the most common and has the highest mortality rate. The high heterogeneity of GBM cell types and the complex tumor microenvironment frequently lead to tumor recurrence and sudden relapse in patients treated with temozolomide. In precision medicine, research on GBM treatment is increasingly focusing on molecular subtyping to precisely characterize the cellular and molecular heterogeneity, as well as the refractory nature of GBM toward therapy. Deep understanding of the different molecular expression patterns of GBM subtypes is critical. Researchers have recently proposed tetra fractional or tripartite methods for detecting GBM molecular subtypes. The various molecular subtypes of GBM show significant differences in gene expression patterns and biological behaviors. These subtypes also exhibit high plasticity in their regulatory pathways, oncogene expression, tumor microenvironment alterations, and differential responses to standard therapy. Herein, we summarize the current molecular typing scheme of GBM and the major molecular/genetic characteristics of each subtype. Furthermore, we review the mesenchymal transition mechanisms of GBM under various regulators.
Collapse
Affiliation(s)
- Can Xu
- School of Clinical Medicine, Hebei University, Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding 07100, China
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding 071000, China
| | - Pengyu Hou
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding 071000, China
- School of Basic Medical Sciences, Hebei University, Baoding 07100, China
| | - Xiang Li
- School of Basic Medical Sciences, Hebei University, Baoding 07100, China
| | - Menglin Xiao
- School of Clinical Medicine, Hebei University, Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding 07100, China
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding 071000, China
| | - Ziqi Zhang
- School of Clinical Medicine, Hebei University, Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding 07100, China
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding 071000, China
| | - Ziru Li
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding 071000, China
- School of Basic Medical Sciences, Hebei University, Baoding 07100, China
| | - Jianglong Xu
- School of Clinical Medicine, Hebei University, Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding 07100, China
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding 071000, China
| | - Guoming Liu
- School of Clinical Medicine, Hebei University, Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding 07100, China
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding 071000, China
| | - Yanli Tan
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding 071000, China
- School of Basic Medical Sciences, Hebei University, Baoding 07100, China
- Department of Pathology, Affiliated Hospital of Hebei University, Baoding 07100, China
| | - Chuan Fang
- School of Clinical Medicine, Hebei University, Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding 07100, China
- Hebei Key Laboratory of Precise Diagnosis and Treatment of Glioma, Baoding 071000, China
| |
Collapse
|
18
|
Sloan AR, Silver DJ, Kint S, Gallo M, Lathia JD. Cancer stem cell hypothesis 2.0 in glioblastoma: Where are we now and where are we going? Neuro Oncol 2024; 26:785-795. [PMID: 38394444 PMCID: PMC11066900 DOI: 10.1093/neuonc/noae011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2024] Open
Abstract
Over the past 2 decades, the cancer stem cell (CSC) hypothesis has provided insight into many malignant tumors, including glioblastoma (GBM). Cancer stem cells have been identified in patient-derived tumors and in some mouse models, allowing for a deeper understanding of cellular and molecular mechanisms underlying GBM growth and therapeutic resistance. The CSC hypothesis has been the cornerstone of cellular heterogeneity, providing a conceptual and technical framework to explain this longstanding phenotype in GBM. This hypothesis has evolved to fit recent insights into how cellular plasticity drives tumor growth to suggest that CSCs do not represent a distinct population but rather a cellular state with substantial plasticity that can be achieved by non-CSCs under specific conditions. This has further been reinforced by advances in genomics, including single-cell approaches, that have used the CSC hypothesis to identify multiple putative CSC states with unique properties, including specific developmental and metabolic programs. In this review, we provide a historical perspective on the CSC hypothesis and its recent evolution, with a focus on key functional phenotypes, and provide an update on the definition for its use in future genomic studies.
Collapse
Affiliation(s)
- Anthony R Sloan
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Cleveland, Ohio, USA
| | - Daniel J Silver
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Cleveland, Ohio, USA
| | - Sam Kint
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Marco Gallo
- Department of Biochemistry & Molecular Biology, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
- Department of Pediatrics, Section of Hematology and Oncology, Baylor College of Medicine, Houston, Texas, USA
- Texas Children’s Cancer Center, Texas Children’s Hospital, Houston, Texas, USA
| | - Justin D Lathia
- Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Cleveland, Ohio, USA
- Rose Ella Burkhardt Brain Tumor and Neuro-Oncology Center, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
19
|
Nuechterlein N, Shelbourn A, Szulzewsky F, Arora S, Casad M, Pattwell S, Merino-Galan L, Sulman E, Arowa S, Alvinez N, Jung M, Brown D, Tang K, Jackson S, Stoica S, Chittaboina P, Banasavadi-Siddegowda YK, Wirsching HG, Stella N, Shapiro L, Paddison P, Patel AP, Gilbert MR, Abdullaev Z, Aldape K, Pratt D, Holland EC, Cimino PJ. Haploinsufficiency of phosphodiesterase 10A activates PI3K/AKT signaling independent of PTEN to induce an aggressive glioma phenotype. Genes Dev 2024; 38:273-288. [PMID: 38589034 PMCID: PMC11065166 DOI: 10.1101/gad.351350.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 03/27/2024] [Indexed: 04/10/2024]
Abstract
Glioblastoma is universally fatal and characterized by frequent chromosomal copy number alterations harboring oncogenes and tumor suppressors. In this study, we analyzed exome-wide human glioblastoma copy number data and found that cytoband 6q27 is an independent poor prognostic marker in multiple data sets. We then combined CRISPR-Cas9 data, human spatial transcriptomic data, and human and mouse RNA sequencing data to nominate PDE10A as a potential haploinsufficient tumor suppressor in the 6q27 region. Mouse glioblastoma modeling using the RCAS/tv-a system confirmed that Pde10a suppression induced an aggressive glioma phenotype in vivo and resistance to temozolomide and radiation therapy in vitro. Cell culture analysis showed that decreased Pde10a expression led to increased PI3K/AKT signaling in a Pten-independent manner, a response blocked by selective PI3K inhibitors. Single-nucleus RNA sequencing from our mouse gliomas in vivo, in combination with cell culture validation, further showed that Pde10a suppression was associated with a proneural-to-mesenchymal transition that exhibited increased cell adhesion and decreased cell migration. Our results indicate that glioblastoma patients harboring PDE10A loss have worse outcomes and potentially increased sensitivity to PI3K inhibition.
Collapse
Affiliation(s)
- Nicholas Nuechterlein
- Neuropathology Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20814, USA
| | - Allison Shelbourn
- Neuropathology Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20814, USA
| | - Frank Szulzewsky
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
| | - Sonali Arora
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
| | - Michelle Casad
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, Washington 98195, USA
| | - Siobhan Pattwell
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington 98145, USA
| | - Leyre Merino-Galan
- Ben Towne Center for Childhood Cancer Research, Seattle Children's Research Institute, Seattle, Washington 98145, USA
| | - Erik Sulman
- Department of Radiation Oncology, New York University Grossman School of Medicine, New York, New York 11220, USA
| | - Sumaita Arowa
- Neuropathology Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20814, USA
| | - Neriah Alvinez
- Neuropathology Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20814, USA
| | - Miyeon Jung
- Neurosurgical Oncology Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20814, USA
| | - Desmond Brown
- Neurosurgical Oncology Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20814, USA
| | - Kayen Tang
- Developmental Therapeutics and Pharmacology Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20814, USA
| | - Sadhana Jackson
- Developmental Therapeutics and Pharmacology Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20814, USA
| | - Stefan Stoica
- Neurosurgery Unit for Pituitary and Inheritable Diseases, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20814, USA
| | - Prashant Chittaboina
- Neurosurgery Unit for Pituitary and Inheritable Diseases, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20814, USA
| | - Yeshavanth K Banasavadi-Siddegowda
- Molecular and Therapeutics Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20814, USA
| | - Hans-Georg Wirsching
- Department of Neurology, University Hospital, University of Zurich, Zurich 8091, Switzerland
| | - Nephi Stella
- Department of Pharmacology, University of Washington, Seattle, Washington 98195, USA
| | - Linda Shapiro
- Paul G. Allen School of Computer Science and Engineering, University of Washington, Seattle, Washington 98195, USA
| | - Patrick Paddison
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
| | - Anoop P Patel
- Department of Neurosurgery, Preston Robert Tisch Brain Tumor Center, Duke University, Durham, North Carolina 27710, USA
| | - Mark R Gilbert
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20814, USA
| | - Zied Abdullaev
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20814, USA
| | - Kenneth Aldape
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20814, USA
| | - Drew Pratt
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, Maryland 20814, USA
| | - Eric C Holland
- Human Biology Division, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
| | - Patrick J Cimino
- Neuropathology Unit, Surgical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland 20814, USA;
| |
Collapse
|
20
|
Watson SS, Duc B, Kang Z, de Tonnac A, Eling N, Font L, Whitmarsh T, Massara M, Bodenmiller B, Hausser J, Joyce JA. Microenvironmental reorganization in brain tumors following radiotherapy and recurrence revealed by hyperplexed immunofluorescence imaging. Nat Commun 2024; 15:3226. [PMID: 38622132 PMCID: PMC11018859 DOI: 10.1038/s41467-024-47185-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 03/22/2024] [Indexed: 04/17/2024] Open
Abstract
The tumor microenvironment plays a crucial role in determining response to treatment. This involves a series of interconnected changes in the cellular landscape, spatial organization, and extracellular matrix composition. However, assessing these alterations simultaneously is challenging from a spatial perspective, due to the limitations of current high-dimensional imaging techniques and the extent of intratumoral heterogeneity over large lesion areas. In this study, we introduce a spatial proteomic workflow termed Hyperplexed Immunofluorescence Imaging (HIFI) that overcomes these limitations. HIFI allows for the simultaneous analysis of > 45 markers in fragile tissue sections at high magnification, using a cost-effective high-throughput workflow. We integrate HIFI with machine learning feature detection, graph-based network analysis, and cluster-based neighborhood analysis to analyze the microenvironment response to radiation therapy in a preclinical model of glioblastoma, and compare this response to a mouse model of breast-to-brain metastasis. Here we show that glioblastomas undergo extensive spatial reorganization of immune cell populations and structural architecture in response to treatment, while brain metastases show no comparable reorganization. Our integrated spatial analyses reveal highly divergent responses to radiation therapy between brain tumor models, despite equivalent radiotherapy benefit.
Collapse
Affiliation(s)
- Spencer S Watson
- Department of Oncology, University of Lausanne, Lausanne, Switzerland.
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.
- Agora Cancer Research Center, Lausanne, 1011, Switzerland.
- L. Lundin and Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, 1011, Switzerland.
| | - Benoit Duc
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, 1011, Switzerland
- L. Lundin and Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, 1011, Switzerland
| | - Ziqi Kang
- Department of Cellular and Molecular Biology, Karolinska Institutet and SciLifeLab, Stockholm, Sweden
| | - Axel de Tonnac
- Department of Cellular and Molecular Biology, Karolinska Institutet and SciLifeLab, Stockholm, Sweden
| | - Nils Eling
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Laure Font
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
- École Polytechnique Fédérale Lausanne, Lausanne, Switzerland
| | - Tristan Whitmarsh
- Machine Intelligence Laboratory, Department of Engineering, University of Cambridge, Cambridge, UK
| | - Matteo Massara
- Department of Oncology, University of Lausanne, Lausanne, Switzerland
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland
- Agora Cancer Research Center, Lausanne, 1011, Switzerland
- L. Lundin and Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, 1011, Switzerland
| | - Bernd Bodenmiller
- Department of Quantitative Biomedicine, University of Zurich, Zurich, Switzerland
- Institute for Molecular Health Sciences, ETH Zurich, Zurich, Switzerland
| | - Jean Hausser
- Department of Cellular and Molecular Biology, Karolinska Institutet and SciLifeLab, Stockholm, Sweden
| | - Johanna A Joyce
- Department of Oncology, University of Lausanne, Lausanne, Switzerland.
- Ludwig Institute for Cancer Research, University of Lausanne, Lausanne, Switzerland.
- Agora Cancer Research Center, Lausanne, 1011, Switzerland.
- L. Lundin and Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne, 1011, Switzerland.
- Cancer Research UK, Cancer Grand Challenges iMAXT Consortium, University of Cambridge, Cambridge, UK.
| |
Collapse
|
21
|
Tuysuz EC, Mourati E, Rosberg R, Moskal A, Gialeli C, Johansson E, Governa V, Belting M, Pietras A, Blom AM. Tumor suppressor role of the complement inhibitor CSMD1 and its role in TNF-induced neuroinflammation in gliomas. J Exp Clin Cancer Res 2024; 43:98. [PMID: 38561856 PMCID: PMC10986120 DOI: 10.1186/s13046-024-03019-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Accepted: 03/20/2024] [Indexed: 04/04/2024] Open
Abstract
BACKGROUND The complement inhibitor CSMD1 acts as a tumor suppressor in various types of solid cancers. Despite its high level of expression in the brain, its function in gliomas, malignant brain tumors originating from glial cells, has not been investigated. METHODS Three cohorts of glioma patients comprising 1500 patients were analyzed in our study along with their clinical data. H4, U-118 and U-87 cell lines were used to investigate the tumor suppressor function of CSMD1 in gliomas. PDGFB-induced brain tumor model was utilized for the validation of in vitro data. RESULTS The downregulation of CSMD1 expression correlated with reduced overall and disease-free survival, elevated tumor grade, wild-type IDH genotype, and intact 1p/19q status. Moreover, enhanced activity was noted in the neuroinflammation pathway. Importantly, ectopic expression of CSMD1 in glioma cell lines led to decreased aggressiveness in vitro. Mechanically, CSMD1 obstructed the TNF-induced NF-kB and STAT3 signaling pathways, effectively suppressing the secretion of IL-6 and IL-8. There was also reduced survival in PDGFB-induced brain tumors in mice when Csmd1 was downregulated. CONCLUSIONS Our study has identified CSMD1 as a tumor suppressor in gliomas and elucidated its role in TNF-induced neuroinflammation, contributing to a deeper understanding of glioma pathogenesis.
Collapse
Affiliation(s)
- Emre Can Tuysuz
- Department of Translational Medicine, Division of Medical Protein Chemistry, Lund University, Malmö, Sweden
| | - Eleni Mourati
- Department of Translational Medicine, Division of Medical Protein Chemistry, Lund University, Malmö, Sweden
| | - Rebecca Rosberg
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University, Lund, Sweden
| | - Aleksandra Moskal
- Department of Translational Medicine, Division of Medical Protein Chemistry, Lund University, Malmö, Sweden
| | - Chrysostomi Gialeli
- Department of Translational Medicine, Division of Medical Protein Chemistry, Lund University, Malmö, Sweden
- Department of Clinical Sciences, Cardiovascular Research Translational Studies, Lund University, Malmö, Sweden
| | - Elinn Johansson
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University, Lund, Sweden
| | - Valeria Governa
- Department of Clinical Sciences, Division of Oncology and Pathology, Lund University, Lund, Sweden
| | - Mattias Belting
- Department of Clinical Sciences, Division of Oncology and Pathology, Lund University, Lund, Sweden
| | - Alexander Pietras
- Department of Laboratory Medicine, Division of Translational Cancer Research, Lund University, Lund, Sweden
| | - Anna M Blom
- Department of Translational Medicine, Division of Medical Protein Chemistry, Lund University, Malmö, Sweden.
| |
Collapse
|
22
|
Fares J, Wan Y, Mair R, Price SJ. Molecular diversity in isocitrate dehydrogenase-wild-type glioblastoma. Brain Commun 2024; 6:fcae108. [PMID: 38646145 PMCID: PMC11032202 DOI: 10.1093/braincomms/fcae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 01/15/2024] [Accepted: 03/26/2024] [Indexed: 04/23/2024] Open
Abstract
In the dynamic landscape of glioblastoma, the 2021 World Health Organization Classification of Central Nervous System tumours endeavoured to establish biological homogeneity, yet isocitrate dehydrogenase-wild-type (IDH-wt) glioblastoma persists as a tapestry of clinical and molecular diversity. Intertumoural heterogeneity in IDH-wt glioblastoma presents a formidable challenge in treatment strategies. Recent strides in genetics and molecular biology have enhanced diagnostic precision, revealing distinct subtypes and invasive patterns that influence survival in patients with IDH-wt glioblastoma. Genetic and molecular biomarkers, such as the overexpression of neurofibromin 1, phosphatase and tensin homolog and/or cyclin-dependent kinase inhibitor 2A, along with specific immune cell abundance and neurotransmitters, correlate with favourable outcomes. Conversely, increased expression of epidermal growth factor receptor tyrosine kinase, platelet-derived growth factor receptor alpha and/or vascular endothelial growth factor receptor, coupled with the prevalence of glioma stem cells, tumour-associated myeloid cells, regulatory T cells and exhausted effector cells, signifies an unfavourable prognosis. The methylation status of O6-methylguanine-DNA methyltransferase and the influence of microenvironmental factors and neurotransmitters further shape treatment responses. Understanding intertumoural heterogeneity is complemented by insights into intratumoural dynamics and cellular interactions within the tumour microenvironment. Glioma stem cells and immune cell composition significantly impact progression and outcomes, emphasizing the need for personalized therapies targeting pro-tumoural signalling pathways and resistance mechanisms. A successful glioblastoma management demands biomarker identification, combination therapies and a nuanced approach considering intratumoural variability. These advancements herald a transformative era in glioblastoma comprehension and treatment.
Collapse
Affiliation(s)
- Jawad Fares
- Academic Neurosurgery Division, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
- Cambridge Brain Tumour Imaging Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Yizhou Wan
- Academic Neurosurgery Division, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
- Cambridge Brain Tumour Imaging Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Richard Mair
- Academic Neurosurgery Division, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| | - Stephen J Price
- Academic Neurosurgery Division, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
- Cambridge Brain Tumour Imaging Laboratory, Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0QQ, UK
| |
Collapse
|
23
|
Tripathy DK, Panda LP, Biswal S, Barhwal K. Insights into the glioblastoma tumor microenvironment: current and emerging therapeutic approaches. Front Pharmacol 2024; 15:1355242. [PMID: 38523646 PMCID: PMC10957596 DOI: 10.3389/fphar.2024.1355242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 02/07/2024] [Indexed: 03/26/2024] Open
Abstract
Glioblastoma (GB) is an intrusive and recurrent primary brain tumor with low survivability. The heterogeneity of the tumor microenvironment plays a crucial role in the stemness and proliferation of GB. The tumor microenvironment induces tumor heterogeneity of cancer cells by facilitating clonal evolution and promoting multidrug resistance, leading to cancer cell progression and metastasis. It also plays an important role in angiogenesis to nourish the hypoxic tumor environment. There is a strong interaction of neoplastic cells with their surrounding microenvironment that comprise several immune and non-immune cellular components. The tumor microenvironment is a complex network of immune components like microglia, macrophages, T cells, B cells, natural killer (NK) cells, dendritic cells and myeloid-derived suppressor cells, and non-immune components such as extracellular matrix, endothelial cells, astrocytes and neurons. The prognosis of GB is thus challenging, making it a difficult target for therapeutic interventions. The current therapeutic approaches target these regulators of tumor micro-environment through both generalized and personalized approaches. The review provides a summary of important milestones in GB research, factors regulating tumor microenvironment and promoting angiogenesis and potential therapeutic agents widely used for the treatment of GB patients.
Collapse
Affiliation(s)
- Dev Kumar Tripathy
- Department of Physiology, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, India
| | - Lakshmi Priya Panda
- Department of Physiology, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, India
| | - Suryanarayan Biswal
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bathinda, India
| | - Kalpana Barhwal
- Department of Physiology, All India Institute of Medical Sciences (AIIMS), Bhubaneswar, India
| |
Collapse
|
24
|
Nikolova E, Laleva L, Milev M, Spiriev T, Stoyanov S, Ferdinandov D, Mitev V, Todorova A. miRNAs and related genetic biomarkers according to the WHO glioma classification: From diagnosis to future therapeutic targets. Noncoding RNA Res 2024; 9:141-152. [PMID: 38035044 PMCID: PMC10686814 DOI: 10.1016/j.ncrna.2023.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/04/2023] [Accepted: 10/06/2023] [Indexed: 12/02/2023] Open
Abstract
In the 2021 WHO classification of Tumors of the Central Nervous System, additional molecular characteristics have been included, defining the following adult-type diffuse glioma entities: Astrocytoma IDH-mutant, Oligodendroglioma IDH-mutant and 1p/19q-codeleted, and Glioblastoma IDH-wildtype. Despite advances in genetic analysis, precision oncology, and targeted therapy, malignant adult-type diffuse gliomas remain "hard-to-treat tumors", indicating an urgent need for better diagnostic and therapeutic strategies. In the last decades, miRNA analysis has been a hotspot for researching and developing diagnostic, prognostic, and predictive biomarkers for various disorders, including brain cancer. Scientific interest has recently been directed towards therapeutic applications of miRNAs, with encouraging results. Databases such as NCBI, PubMed, and Medline were searched for a selection of articles reporting the relationship between deregulated miRNAs and genetic aberrations used in the latest WHO CNS classification. The current review discussed the recommended molecular biomarkers and genetic aberrations based on the 2021 WHO classification in adult-type diffuse gliomas, along with associated deregulated miRNAs. Additionally, the study highlights miRNA-based treatment advancements in adults with gliomas.
Collapse
Affiliation(s)
- Emiliya Nikolova
- Department of Medical Chemistry and Biochemistry, Medical University – Sofia, Sofia, 1431, Bulgaria
- Independent Medico-Diagnostic Laboratory Genome Center Bulgaria, Sofia, 1612, Bulgaria
| | - Lili Laleva
- Department of Neurosurgery, Acibadem City Clinic Tokuda University Hospital, Sofia, 1407, Bulgaria
| | - Milko Milev
- Department of Neurosurgery, Acibadem City Clinic Tokuda University Hospital, Sofia, 1407, Bulgaria
| | - Toma Spiriev
- Department of Neurosurgery, Acibadem City Clinic Tokuda University Hospital, Sofia, 1407, Bulgaria
| | - Stoycho Stoyanov
- Department of Neurosurgery, Acibadem City Clinic Tokuda University Hospital, Sofia, 1407, Bulgaria
| | - Dilyan Ferdinandov
- Department of Neurosurgery, Medical University – Sofia, Sofia, 1431, Bulgaria
| | - Vanyo Mitev
- Department of Medical Chemistry and Biochemistry, Medical University – Sofia, Sofia, 1431, Bulgaria
| | - Albena Todorova
- Department of Medical Chemistry and Biochemistry, Medical University – Sofia, Sofia, 1431, Bulgaria
- Independent Medico-Diagnostic Laboratory Genome Center Bulgaria, Sofia, 1612, Bulgaria
| |
Collapse
|
25
|
Fu Z, Chen Z, Ye J, Ji J, Ni W, Lin W, Lin H, Lu L, Zhu G, Xie Q, Yan F, Chen G, Liu F. Identifying PLAUR as a Pivotal Gene of Tumor Microenvironment and Regulating Mesenchymal Phenotype of Glioblastoma. Cancers (Basel) 2024; 16:840. [PMID: 38398231 PMCID: PMC10887327 DOI: 10.3390/cancers16040840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/04/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
The mesenchymal (MES) phenotype of glioblastoma (GBM) is the most aggressive and therapy-resistant subtype of GBM. The MES phenotype transition during tumor progression results from both tumor-intrinsic genetic alterations and tumor-extrinsic microenvironmental factors. In this study, we sought to identify genes that can modulate the MES phenotype via both mechanisms. By integrating weighted gene co-expression network analysis (WGCNA) and the differential expression analysis of hypoxia-immunosuppression-related genes, we identified the plasminogen activator, urokinase receptor (PLAUR) as the hub gene. Functional enrichment analysis and GSVA analysis demonstrated that PLAUR was associated with the MES phenotype of glioma and the hypoxia-immunosuppression-related microenvironmental components. Single-cell sequencing analysis revealed that PLAUR mediated the ligand-receptor interaction between tumor-associated macrophages (TAMs) and glioma cells. Functional experiments in vitro with cell lines or primary glioma cells and xenograft models using BALB/c nude mice confirmed the role of PLAUR in promoting the MES phenotype of GBM. Our findings indicate that PLAUR regulates both glioma cells and tumor cell-extrinsic factors that favor the MES phenotype and suggest that PLAUR might be a potential target for GBM therapy.
Collapse
Affiliation(s)
- Zaixiang Fu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China; (Z.F.); (Z.C.); (J.Y.); (J.J.); (W.N.); (W.L.); (H.L.); (L.L.); (Q.X.); (F.Y.)
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310000, China
| | - Zihang Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China; (Z.F.); (Z.C.); (J.Y.); (J.J.); (W.N.); (W.L.); (H.L.); (L.L.); (Q.X.); (F.Y.)
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310000, China
| | - Jingya Ye
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China; (Z.F.); (Z.C.); (J.Y.); (J.J.); (W.N.); (W.L.); (H.L.); (L.L.); (Q.X.); (F.Y.)
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310000, China
| | - Jianxiong Ji
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China; (Z.F.); (Z.C.); (J.Y.); (J.J.); (W.N.); (W.L.); (H.L.); (L.L.); (Q.X.); (F.Y.)
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310000, China
| | - Weifang Ni
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China; (Z.F.); (Z.C.); (J.Y.); (J.J.); (W.N.); (W.L.); (H.L.); (L.L.); (Q.X.); (F.Y.)
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310000, China
| | - Weibo Lin
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China; (Z.F.); (Z.C.); (J.Y.); (J.J.); (W.N.); (W.L.); (H.L.); (L.L.); (Q.X.); (F.Y.)
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310000, China
| | - Haopu Lin
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China; (Z.F.); (Z.C.); (J.Y.); (J.J.); (W.N.); (W.L.); (H.L.); (L.L.); (Q.X.); (F.Y.)
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310000, China
| | - Liquan Lu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China; (Z.F.); (Z.C.); (J.Y.); (J.J.); (W.N.); (W.L.); (H.L.); (L.L.); (Q.X.); (F.Y.)
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310000, China
| | - Ganggui Zhu
- Department of Lung Transplantation, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310052, China;
| | - Qin Xie
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China; (Z.F.); (Z.C.); (J.Y.); (J.J.); (W.N.); (W.L.); (H.L.); (L.L.); (Q.X.); (F.Y.)
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310000, China
| | - Feng Yan
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China; (Z.F.); (Z.C.); (J.Y.); (J.J.); (W.N.); (W.L.); (H.L.); (L.L.); (Q.X.); (F.Y.)
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310000, China
| | - Gao Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China; (Z.F.); (Z.C.); (J.Y.); (J.J.); (W.N.); (W.L.); (H.L.); (L.L.); (Q.X.); (F.Y.)
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310000, China
| | - Fuyi Liu
- Department of Neurosurgery, The Second Affiliated Hospital of Zhejiang University School of Medicine, Hangzhou 310000, China; (Z.F.); (Z.C.); (J.Y.); (J.J.); (W.N.); (W.L.); (H.L.); (L.L.); (Q.X.); (F.Y.)
- Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou 310000, China
| |
Collapse
|
26
|
Liguori GL. Challenges and Promise for Glioblastoma Treatment through Extracellular Vesicle Inquiry. Cells 2024; 13:336. [PMID: 38391949 PMCID: PMC10886570 DOI: 10.3390/cells13040336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 01/31/2024] [Accepted: 02/08/2024] [Indexed: 02/24/2024] Open
Abstract
Glioblastoma (GB) is a rare but extremely aggressive brain tumor that significantly impacts patient outcomes, affecting both duration and quality of life. The protocol established by Stupp and colleagues in 2005, based on radiotherapy and chemotherapy with Temozolomide, following maximum safe surgical resection remains the gold standard for GB treatment; however, it is evident nowadays that the extreme intratumoral and intertumoral heterogeneity, as well as the invasiveness and tendency to recur, of GB are not compatible with a routine and unfortunately ineffective treatment. This review article summarizes the main challenges in the search for new valuable therapies for GB and focuses on the impact that extracellular vesicle (EV) research and exploitation may have in the field. EVs are natural particles delimited by a lipidic bilayer and filled with functional cellular content that are released and uptaken by cells as key means of cell communication. Furthermore, EVs are stable in body fluids and well tolerated by the immune system, and are able to cross physiological, interspecies, and interkingdom barriers and to target specific cells, releasing inherent or externally loaded functionally active molecules. Therefore, EVs have the potential to be ideal allies in the fight against GB and to improve the prognosis for GB patients. The present work describes the main preclinical results obtained so far on the use of EVs for GB treatment, focusing on both the EV sources and molecular cargo used in the various functional studies, primarily in vivo. Finally, a SWOT analysis is performed, highlighting the main advantages and pitfalls of developing EV-based GB therapeutic strategies. The analysis also suggests the main directions to explore to realize the possibility of exploiting EVs for the treatment of GB.
Collapse
Affiliation(s)
- Giovanna L Liguori
- Institute of Genetics and Biophysics (IGB) "Adriano Buzzati-Traverso", National Research Council (CNR) of Italy, 80131 Naples, Italy
| |
Collapse
|
27
|
Park JH, Hothi P, Lopez Garcia de Lomana A, Pan M, Calder R, Turkarslan S, Wu WJ, Lee H, Patel AP, Cobbs C, Huang S, Baliga NS. Gene regulatory network topology governs resistance and treatment escape in glioma stem-like cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.02.578510. [PMID: 38370784 PMCID: PMC10871280 DOI: 10.1101/2024.02.02.578510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Poor prognosis and drug resistance in glioblastoma (GBM) can result from cellular heterogeneity and treatment-induced shifts in phenotypic states of tumor cells, including dedifferentiation into glioma stem-like cells (GSCs). This rare tumorigenic cell subpopulation resists temozolomide, undergoes proneural-to-mesenchymal transition (PMT) to evade therapy, and drives recurrence. Through inference of transcriptional regulatory networks (TRNs) of patient-derived GSCs (PD-GSCs) at single-cell resolution, we demonstrate how the topology of transcription factor interaction networks drives distinct trajectories of cell state transitions in PD-GSCs resistant or susceptible to cytotoxic drug treatment. By experimentally testing predictions based on TRN simulations, we show that drug treatment drives surviving PD-GSCs along a trajectory of intermediate states, exposing vulnerability to potentiated killing by siRNA or a second drug targeting treatment-induced transcriptional programs governing non-genetic cell plasticity. Our findings demonstrate an approach to uncover TRN topology and use it to rationally predict combinatorial treatments that disrupts acquired resistance in GBM.
Collapse
Affiliation(s)
| | - Parvinder Hothi
- Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA
| | | | - Min Pan
- Institute for Systems Biology, Seattle, WA
| | | | | | - Wei-Ju Wu
- Institute for Systems Biology, Seattle, WA
| | - Hwahyung Lee
- Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA
| | - Anoop P Patel
- Department of Neurosurgery, Preston Robert Tisch Brain Tumor Center, Duke University, Durham, NC
- Center for Advanced Genomic Technologies, Duke University, Durham, NC
| | - Charles Cobbs
- Ivy Center for Advanced Brain Tumor Treatment, Swedish Neuroscience Institute, Seattle, WA
| | - Sui Huang
- Institute for Systems Biology, Seattle, WA
| | - Nitin S Baliga
- Institute for Systems Biology, Seattle, WA
- Departments of Microbiology, Biology, and Molecular Engineering Sciences, University of Washington, Seattle, WA
| |
Collapse
|
28
|
Nair NU, Schäffer AA, Gertz EM, Cheng K, Zerbib J, Sahu AD, Leor G, Shulman ED, Aldape KD, Ben-David U, Ruppin E. Chromosome 7 to the rescue: overcoming chromosome 10 loss in gliomas. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.01.17.576103. [PMID: 38313282 PMCID: PMC10836086 DOI: 10.1101/2024.01.17.576103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
The co-occurrence of chromosome 10 loss and chromosome 7 gain in gliomas is the most frequent loss-gain co-aneuploidy pair in human cancers, a phenomenon that has been investigated without resolution since the late 1980s. Expanding beyond previous gene-centric studies, we investigate the co-occurrence in a genome-wide manner taking an evolutionary perspective. First, by mining large tumor aneuploidy data, we predict that the more likely order is 10 loss followed by 7 gain. Second, by analyzing extensive genomic and transcriptomic data from both patients and cell lines, we find that this co-occurrence can be explained by functional rescue interactions that are highly enriched on 7, which can possibly compensate for any detrimental consequences arising from the loss of 10. Finally, by analyzing transcriptomic data from normal, non-cancerous, human brain tissues, we provide a plausible reason why this co-occurrence happens preferentially in cancers originating in certain regions of the brain.
Collapse
|
29
|
Simpson JE, Muir MT, Lee M, Naughton C, Gilbert N, Pollard SM, Gammoh N. Autophagy supports PDGFRA-dependent brain tumor development by enhancing oncogenic signaling. Dev Cell 2024; 59:228-243.e7. [PMID: 38113891 DOI: 10.1016/j.devcel.2023.11.023] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 07/29/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023]
Abstract
Autophagy is a conserved cellular degradation process. While autophagy-related proteins were shown to influence the signaling and trafficking of some receptor tyrosine kinases, the relevance of this during cancer development is unclear. Here, we identify a role for autophagy in regulating platelet-derived growth factor receptor alpha (PDGFRA) signaling and levels. We find that PDGFRA can be targeted for autophagic degradation through the activity of the autophagy cargo receptor p62. As a result, short-term autophagy inhibition leads to elevated levels of PDGFRA but an unexpected defect in PDGFA-mediated signaling due to perturbed receptor trafficking. Defective PDGFRA signaling led to its reduced levels during prolonged autophagy inhibition, suggesting a mechanism of adaptation. Importantly, PDGFA-driven gliomagenesis in mice was disrupted when autophagy was inhibited in a manner dependent on Pten status, thus highlighting a genotype-specific role for autophagy during tumorigenesis. In summary, our data provide a mechanism by which cells require autophagy to drive tumor formation.
Collapse
Affiliation(s)
- Joanne E Simpson
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Morwenna T Muir
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Martin Lee
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, UK
| | - Catherine Naughton
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XU, UK
| | - Nick Gilbert
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XU, UK
| | - Steven M Pollard
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, UK; Centre for Regenerative Medicine, Institute for Regeneration and Repair, University of Edinburgh, 5 Little France Drive, Edinburgh EH16 4UU, UK
| | - Noor Gammoh
- Cancer Research UK Scotland Centre, Institute of Genetics and Cancer, University of Edinburgh, Crewe Road South, Edinburgh EH4 2XR, UK.
| |
Collapse
|
30
|
Miller CR, Hjelmeland AB. Breaking the feed forward inflammatory cytokine loop in the tumor microenvironment of PDGFB-driven glioblastomas. J Clin Invest 2023; 133:e175127. [PMID: 37966120 PMCID: PMC10645375 DOI: 10.1172/jci175127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2023] Open
Abstract
Glioblastoma (GBM) tumor-associated macrophages (TAMs) provide a major immune cell population contributing to growth and immunosuppression via the production of proinflammatory factors, including IL-1. In this issue of the JCI, Chen, Giotti, and colleagues investigated loss of ll1b in the immune tumor microenvironment (TME) in GBM models driven by PDGFB expression and Nf1 knockdown. Survival was only improved in PDGFB-driven GBM models, suggesting that tumor cell genotype influenced the immune TME. IL-1β in the TME increased PDGFB-driven GBM growth by increasing tumor-derived NF-κB, expression of monocyte chemoattractants, and increased infiltration of bone marrow-derived myeloid cells (BMDMs). In contrast, no requirement for IL-1β was evident in Nf1-silenced tumors due to high basal levels of NF-κB and monocyte chemoattractants and increased infiltration of BMDM and TAMs. Notably, treatment of mice bearing PDGFB-driven GBM with anti-IL-1β or an IL1R1 antagonist extended survival. These findings suggest that effective clinical immunotherapy may require differential targeting strategies.
Collapse
Affiliation(s)
- C. Ryan Miller
- Department of Pathology, Division of Neuropathology and O’Neal Comprehensive Cancer Center, and
| | - Anita B. Hjelmeland
- Department of Cell, Developmental, and Integrative Biology and O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, Alabama, USA
| |
Collapse
|
31
|
Maas RR, Soukup K, Fournier N, Massara M, Galland S, Kornete M, Wischnewski V, Lourenco J, Croci D, Álvarez-Prado ÁF, Marie DN, Lilja J, Marcone R, Calvo GF, Santalla Mendez R, Aubel P, Bejarano L, Wirapati P, Ballesteros I, Hidalgo A, Hottinger AF, Brouland JP, Daniel RT, Hegi ME, Joyce JA. The local microenvironment drives activation of neutrophils in human brain tumors. Cell 2023; 186:4546-4566.e27. [PMID: 37769657 DOI: 10.1016/j.cell.2023.08.043] [Citation(s) in RCA: 67] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 07/11/2023] [Accepted: 08/31/2023] [Indexed: 10/03/2023]
Abstract
Neutrophils are abundant immune cells in the circulation and frequently infiltrate tumors in substantial numbers. However, their precise functions in different cancer types remain incompletely understood, including in the brain microenvironment. We therefore investigated neutrophils in tumor tissue of glioma and brain metastasis patients, with matched peripheral blood, and herein describe the first in-depth analysis of neutrophil phenotypes and functions in these tissues. Orthogonal profiling strategies in humans and mice revealed that brain tumor-associated neutrophils (TANs) differ significantly from blood neutrophils and have a prolonged lifespan and immune-suppressive and pro-angiogenic capacity. TANs exhibit a distinct inflammatory signature, driven by a combination of soluble inflammatory mediators including tumor necrosis factor alpha (TNF-ɑ) and Ceruloplasmin, which is more pronounced in TANs from brain metastasis versus glioma. Myeloid cells, including tumor-associated macrophages, emerge at the core of this network of pro-inflammatory mediators, supporting the concept of a critical myeloid niche regulating overall immune suppression in human brain tumors.
Collapse
Affiliation(s)
- Roeltje R Maas
- Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne 1011, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne 1011, Switzerland; L. Lundin and Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne 1011, Switzerland; Neuroscience Research Center, Centre Hospitalier Universitaire Vaudois, Lausanne 1011, Switzerland; Department of Neurosurgery, Centre Hospitalier Universitaire Vaudois, Lausanne 1011, Switzerland
| | - Klara Soukup
- Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne 1011, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne 1011, Switzerland
| | - Nadine Fournier
- Agora Cancer Research Centre Lausanne, Lausanne 1011, Switzerland; Translational Data Science Group, Swiss Institute of Bioinformatics, Lausanne 1011, Switzerland; Bioinformatics Core Facility, Swiss Institute of Bioinformatics, Lausanne 1011, Switzerland
| | - Matteo Massara
- Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne 1011, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne 1011, Switzerland; L. Lundin and Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne 1011, Switzerland
| | - Sabine Galland
- Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne 1011, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne 1011, Switzerland; L. Lundin and Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne 1011, Switzerland; Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne 1011, Switzerland
| | - Mara Kornete
- Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne 1011, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne 1011, Switzerland
| | - Vladimir Wischnewski
- Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne 1011, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne 1011, Switzerland; L. Lundin and Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne 1011, Switzerland
| | - Joao Lourenco
- Agora Cancer Research Centre Lausanne, Lausanne 1011, Switzerland; Translational Data Science Group, Swiss Institute of Bioinformatics, Lausanne 1011, Switzerland
| | - Davide Croci
- Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne 1011, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne 1011, Switzerland
| | - Ángel F Álvarez-Prado
- Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne 1011, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne 1011, Switzerland; L. Lundin and Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne 1011, Switzerland
| | - Damien N Marie
- Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne 1011, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne 1011, Switzerland
| | - Johanna Lilja
- Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne 1011, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne 1011, Switzerland
| | - Rachel Marcone
- Agora Cancer Research Centre Lausanne, Lausanne 1011, Switzerland; Translational Data Science Group, Swiss Institute of Bioinformatics, Lausanne 1011, Switzerland
| | - Gabriel F Calvo
- Department of Mathematics & MOLAB-Mathematical Oncology Laboratory, University of Castilla-La Mancha, Ciudad Real 13071, Spain
| | - Rui Santalla Mendez
- Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne 1011, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne 1011, Switzerland; L. Lundin and Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne 1011, Switzerland
| | - Pauline Aubel
- Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne 1011, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne 1011, Switzerland; L. Lundin and Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne 1011, Switzerland
| | - Leire Bejarano
- Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne 1011, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne 1011, Switzerland; L. Lundin and Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne 1011, Switzerland
| | - Pratyaksha Wirapati
- Agora Cancer Research Centre Lausanne, Lausanne 1011, Switzerland; Bioinformatics Core Facility, Swiss Institute of Bioinformatics, Lausanne 1011, Switzerland
| | - Iván Ballesteros
- Program of Cardiovascular Regeneration, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain
| | - Andrés Hidalgo
- Program of Cardiovascular Regeneration, Centro Nacional de Investigaciones Cardiovasculares Carlos III, Madrid 28029, Spain; Vascular Biology and Therapeutics Program and Department of Immunobiology, Yale University School of Medicine, New Haven, CT 06519, USA
| | - Andreas F Hottinger
- Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne 1011, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne 1011, Switzerland; Department of Oncology, Centre Hospitalier Universitaire Vaudois, Lausanne 1011, Switzerland
| | - Jean-Philippe Brouland
- Department of Pathology, Centre Hospitalier Universitaire Vaudois, University of Lausanne, Lausanne 1011, Switzerland
| | - Roy T Daniel
- L. Lundin and Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne 1011, Switzerland; Department of Neurosurgery, Centre Hospitalier Universitaire Vaudois, Lausanne 1011, Switzerland
| | - Monika E Hegi
- L. Lundin and Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne 1011, Switzerland; Neuroscience Research Center, Centre Hospitalier Universitaire Vaudois, Lausanne 1011, Switzerland; Department of Neurosurgery, Centre Hospitalier Universitaire Vaudois, Lausanne 1011, Switzerland
| | - Johanna A Joyce
- Department of Oncology, University of Lausanne, Lausanne 1011, Switzerland; Ludwig Institute for Cancer Research, University of Lausanne, Lausanne 1011, Switzerland; Agora Cancer Research Centre Lausanne, Lausanne 1011, Switzerland; L. Lundin and Family Brain Tumor Research Center, Departments of Oncology and Clinical Neurosciences, Centre Hospitalier Universitaire Vaudois, Lausanne 1011, Switzerland.
| |
Collapse
|
32
|
Omairi HK, Grisdale CJ, Meode M, Bohm AK, Black S, Adam NJ, Chapman CP, Maroilley T, Kelly JJ, Tarailo-Graovac M, Jones SJM, Blough MD, Cairncross JG. Mitogen-induced defective mitosis transforms neural progenitor cells. Neuro Oncol 2023; 25:1763-1774. [PMID: 37186014 PMCID: PMC10547526 DOI: 10.1093/neuonc/noad082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND Chromosome instability (CIN) with recurrent copy number alterations is a feature of many solid tumors, including glioblastoma (GBM), yet the genes that regulate cell division are rarely mutated in cancers. Here, we show that the brain-abundant mitogen, platelet-derived growth factor-A (PDGFA) fails to induce the expression of kinetochore and spindle assembly checkpoint genes leading to defective mitosis in neural progenitor cells (NPCs). METHODS Using a recently reported in vitro model of the initiation of high-grade gliomas from murine NPCs, we investigated the immediate effects of PDGFA exposure on the nuclear and mitotic phenotypes and patterns of gene and protein expression in NPCs, a putative GBM cell of origin. RESULTS NPCs divided abnormally in defined media containing PDGFA with P53-dependent effects. In wild-type cells, defective mitosis was associated with P53 activation and cell death, but in some null cells, defective mitosis was tolerated. Surviving cells had unstable genomes and proliferated in the presence of PDGFA accumulating random and clonal chromosomal rearrangements. The outcome of this process was a population of tumorigenic NPCs with recurrent gains and losses of chromosomal regions that were syntenic to those recurrently gained and lost in human GBM. By stimulating proliferation without setting the stage for successful mitosis, PDGFA-transformed NPCs lacking P53 function. CONCLUSIONS Our work describes a mechanism of transformation of NPCs by a brain-associated mitogen, raising the possibility that the unique genomic architecture of GBM is an adaptation to defective mitosis that ensures the survival of affected cells.
Collapse
Affiliation(s)
- Hiba K Omairi
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Cameron J Grisdale
- Canada’s Michael Smith Genome Sciences Centre and BC Cancer, University of British Columbia, Vancouver, British Columbia, Canada
| | - Mathieu Meode
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Alexandra K Bohm
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Sophie Black
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
- Departments of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Nancy J Adam
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| | - Cassidy P Chapman
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
- Departments of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Tatiana Maroilley
- Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
| | - John J Kelly
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
- Departments of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - Maja Tarailo-Graovac
- Biochemistry and Molecular Biology, University of Calgary, Calgary, Alberta, Canada
- Medical Genetics, University of Calgary, Calgary, Alberta, Canada
| | - Steven J M Jones
- Canada’s Michael Smith Genome Sciences Centre and BC Cancer, University of British Columbia, Vancouver, British Columbia, Canada
| | - Michael D Blough
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
- Departments of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| | - John Gregory Cairncross
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
- Departments of Clinical Neurosciences, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
33
|
Sun MA, Yang R, Liu H, Wang W, Song X, Hu B, Reynolds N, Roso K, Chen LH, Greer PK, Keir ST, McLendon RE, Cheng SY, Bigner DD, Ashley DM, Pirozzi CJ, He Y. Repurposing Clemastine to Target Glioblastoma Cell Stemness. Cancers (Basel) 2023; 15:4619. [PMID: 37760589 PMCID: PMC10526458 DOI: 10.3390/cancers15184619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 09/08/2023] [Accepted: 09/13/2023] [Indexed: 09/29/2023] Open
Abstract
Brain tumor-initiating cells (BTICs) and tumor cell plasticity promote glioblastoma (GBM) progression. Here, we demonstrate that clemastine, an over-the-counter drug for treating hay fever and allergy symptoms, effectively attenuated the stemness and suppressed the propagation of primary BTIC cultures bearing PDGFRA amplification. These effects on BTICs were accompanied by altered gene expression profiling indicative of their more differentiated states, resonating with the activity of clemastine in promoting the differentiation of normal oligodendrocyte progenitor cells (OPCs) into mature oligodendrocytes. Functional assays for pharmacological targets of clemastine revealed that the Emopamil Binding Protein (EBP), an enzyme in the cholesterol biosynthesis pathway, is essential for BTIC propagation and a target that mediates the suppressive effects of clemastine. Finally, we showed that a neural stem cell-derived mouse glioma model displaying predominantly proneural features was similarly susceptible to clemastine treatment. Collectively, these results identify pathways essential for maintaining the stemness and progenitor features of GBMs, uncover BTIC dependency on EBP, and suggest that non-oncology, low-toxicity drugs with OPC differentiation-promoting activity can be repurposed to target GBM stemness and aid in their treatment.
Collapse
Affiliation(s)
- Michael A. Sun
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA; (M.A.S.); (R.Y.); (H.L.); (W.W.); (N.R.); (K.R.); (L.H.C.); (P.K.G.); (S.T.K.); (R.E.M.); (D.D.B.); (D.M.A.)
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
- Pathology Graduate Program, Duke University Medical Center, Durham, NC 27710, USA
| | - Rui Yang
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA; (M.A.S.); (R.Y.); (H.L.); (W.W.); (N.R.); (K.R.); (L.H.C.); (P.K.G.); (S.T.K.); (R.E.M.); (D.D.B.); (D.M.A.)
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Heng Liu
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA; (M.A.S.); (R.Y.); (H.L.); (W.W.); (N.R.); (K.R.); (L.H.C.); (P.K.G.); (S.T.K.); (R.E.M.); (D.D.B.); (D.M.A.)
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
- Pathology Graduate Program, Duke University Medical Center, Durham, NC 27710, USA
| | - Wenzhe Wang
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA; (M.A.S.); (R.Y.); (H.L.); (W.W.); (N.R.); (K.R.); (L.H.C.); (P.K.G.); (S.T.K.); (R.E.M.); (D.D.B.); (D.M.A.)
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Xiao Song
- The Ken & Ruth Davee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; (X.S.); (B.H.); (S.-Y.C.)
| | - Bo Hu
- The Ken & Ruth Davee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; (X.S.); (B.H.); (S.-Y.C.)
| | - Nathan Reynolds
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA; (M.A.S.); (R.Y.); (H.L.); (W.W.); (N.R.); (K.R.); (L.H.C.); (P.K.G.); (S.T.K.); (R.E.M.); (D.D.B.); (D.M.A.)
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Kristen Roso
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA; (M.A.S.); (R.Y.); (H.L.); (W.W.); (N.R.); (K.R.); (L.H.C.); (P.K.G.); (S.T.K.); (R.E.M.); (D.D.B.); (D.M.A.)
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Lee H. Chen
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA; (M.A.S.); (R.Y.); (H.L.); (W.W.); (N.R.); (K.R.); (L.H.C.); (P.K.G.); (S.T.K.); (R.E.M.); (D.D.B.); (D.M.A.)
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Paula K. Greer
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA; (M.A.S.); (R.Y.); (H.L.); (W.W.); (N.R.); (K.R.); (L.H.C.); (P.K.G.); (S.T.K.); (R.E.M.); (D.D.B.); (D.M.A.)
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Stephen T. Keir
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA; (M.A.S.); (R.Y.); (H.L.); (W.W.); (N.R.); (K.R.); (L.H.C.); (P.K.G.); (S.T.K.); (R.E.M.); (D.D.B.); (D.M.A.)
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Roger E. McLendon
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA; (M.A.S.); (R.Y.); (H.L.); (W.W.); (N.R.); (K.R.); (L.H.C.); (P.K.G.); (S.T.K.); (R.E.M.); (D.D.B.); (D.M.A.)
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Shi-Yuan Cheng
- The Ken & Ruth Davee Department of Neurology, Lou and Jean Malnati Brain Tumor Institute, The Robert H. Lurie Comprehensive Cancer Center, Simpson Querrey Institute for Epigenetics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA; (X.S.); (B.H.); (S.-Y.C.)
| | - Darell D. Bigner
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA; (M.A.S.); (R.Y.); (H.L.); (W.W.); (N.R.); (K.R.); (L.H.C.); (P.K.G.); (S.T.K.); (R.E.M.); (D.D.B.); (D.M.A.)
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA
| | - David M. Ashley
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA; (M.A.S.); (R.Y.); (H.L.); (W.W.); (N.R.); (K.R.); (L.H.C.); (P.K.G.); (S.T.K.); (R.E.M.); (D.D.B.); (D.M.A.)
- Department of Neurosurgery, Duke University Medical Center, Durham, NC 27710, USA
| | - Christopher J. Pirozzi
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA; (M.A.S.); (R.Y.); (H.L.); (W.W.); (N.R.); (K.R.); (L.H.C.); (P.K.G.); (S.T.K.); (R.E.M.); (D.D.B.); (D.M.A.)
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| | - Yiping He
- The Preston Robert Tisch Brain Tumor Center, Duke University Medical Center, Durham, NC 27710, USA; (M.A.S.); (R.Y.); (H.L.); (W.W.); (N.R.); (K.R.); (L.H.C.); (P.K.G.); (S.T.K.); (R.E.M.); (D.D.B.); (D.M.A.)
- Department of Pathology, Duke University Medical Center, Durham, NC 27710, USA
| |
Collapse
|
34
|
Liu G, Bu C, Guo G, Zhang Z, Sheng Z, Deng K, Wu S, Xu S, Bu Y, Gao Y, Wang M, Liu G, Kong L, Li T, Li M, Bu X. Molecular and clonal evolution in vivo reveal a common pathway of distant relapse gliomas. iScience 2023; 26:107528. [PMID: 37649695 PMCID: PMC10462858 DOI: 10.1016/j.isci.2023.107528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 06/18/2023] [Accepted: 07/28/2023] [Indexed: 09/01/2023] Open
Abstract
The evolutionary trajectories of genomic alterations underlying distant recurrence in glioma remain largely unknown. To elucidate glioma evolution, we analyzed the evolutionary trajectories of matched pairs of primary tumors and relapse tumors or tumor in situ fluid (TISF) based on deep whole-genome sequencing data (ctDNA). We found that MMR gene mutations occurred in the late stage in IDH-mutant glioma during gene evolution, which activates multiple signaling pathways and significantly increases distant recurrence potential. The proneural subtype characterized by PDGFRA amplification was likely prone to hypermutation and distant recurrence following treatment. The classical and mesenchymal subtypes tended to progress locally through subclonal reconstruction, trunk genes transformation, and convergence evolution. EGFR and NOTCH signaling pathways and CDNK2A mutation play an important role in promoting tumor local progression. Glioma subtypes displayed distinct preferred evolutionary patterns. ClinicalTrials.gov, NCT05512325.
Collapse
Affiliation(s)
- Guanzheng Liu
- Department of Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou 450003, China
- Juha International Central Laboratory of Neurosurgery, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Chaojie Bu
- Department of Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou 450003, China
- Juha International Central Laboratory of Neurosurgery, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Guangzhong Guo
- Department of Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou 450003, China
- Juha International Central Laboratory of Neurosurgery, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Zhiyue Zhang
- Department of Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou 450003, China
- Juha International Central Laboratory of Neurosurgery, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Zhiyuan Sheng
- Department of Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou 450003, China
- Juha International Central Laboratory of Neurosurgery, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Kaiyuan Deng
- Department of Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou 450003, China
- Juha International Central Laboratory of Neurosurgery, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Shuang Wu
- Department of Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou 450003, China
- Juha International Central Laboratory of Neurosurgery, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Sensen Xu
- Department of Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou 450003, China
- Juha International Central Laboratory of Neurosurgery, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Yage Bu
- Department of Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou 450003, China
- Juha International Central Laboratory of Neurosurgery, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Yushuai Gao
- Department of Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou 450003, China
- Juha International Central Laboratory of Neurosurgery, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Meiyun Wang
- Department of Radiology, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Gang Liu
- Department of Center for Clinical Single Cell Biomedicine, Clinical Research Center, Department of Oncology, Henan Provincial People’s Hospital, Zhengzhou University People’s Hospital, Zhengzhou 450003, China
| | - Lingfei Kong
- Department of Pathology, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Tianxiao Li
- Department of Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou 450003, China
- Juha International Central Laboratory of Neurosurgery, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Ming Li
- Department of Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou 450003, China
- Juha International Central Laboratory of Neurosurgery, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| | - Xingyao Bu
- Department of Neurosurgery, Zhengzhou University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou 450003, China
- Juha International Central Laboratory of Neurosurgery, Henan Provincial People’s Hospital, Zhengzhou 450003, China
| |
Collapse
|
35
|
Qin JJ, Xue F, Shen ZL, Chen XZ. Low-coverage and cost-effective whole-genome sequencing assay for glioma risk stratification. J Cancer Res Clin Oncol 2023; 149:8359-8367. [PMID: 37079053 DOI: 10.1007/s00432-023-04716-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 03/18/2023] [Indexed: 04/21/2023]
Abstract
PURPOSE To investigate chromosomal instability (CIN) as a biomarker for glioma risk stratifications, with cost-effective, low-coverage whole-genome sequencing assay (WGS). METHODS Thirty-five formalin-fixed paraffin-embedded glioma samples were collected from Huashan Hospital. DNA was sent for WGS by Illumina X10 at low (median) genome coverage of 1.86x (range: 1.03-3.17×), followed by copy number analyses, using a customized bioinformatics workflow-Ultrasensitive Copy number Aberration Detector. RESULTS Among the 35 glioma patients, 12 were grade IV, 10 grade III, 11 grade II, and 2 Grade I cases, with high chromosomal instability (CIN +) in 24 (68.6%) of the glioma patients. The other 11 (31.4%) had lower chromosomal instability (CIN-). CIN significantly correlates with overall survival (P = 0.00029). Patients with CIN + /7p11.2 + (12 grade IV and 3 grade III) had the worst survival ratio (hazard ratio:16.2, 95% CI:6.3-41.6) with a median overall survival of 24 months. Ten (66.7%) patients died during the first two follow-up years. In the CIN + patients without 7p11.2 + (6 grade III, 3 grade II), 3 (33.3%) patients died during follow-up, and the estimated overall survival was around 65 months. No deaths were reported in the 11 CIN- patients (2 grade I, 8 grade II, 1 grade III) during the 80-month follow-up period. In this study, chromosomal instability served as a prognosis factor for gliomas independent of tumor grades. CONCLUSION It is feasible to use cost-effective, low-coverage WGS for risk stratification of glioma. Elevated chromosomal instability is associated with poor prognosis.
Collapse
Affiliation(s)
- Jia-Jun Qin
- Department of Neurosurgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No.301 of Yanchang Road, Jingan District, Shanghai, 200072, China
- Department of Neurosurgery, Chongming Branch of Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, 202157, China
| | - Fei Xue
- Department of Neurosurgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No.301 of Yanchang Road, Jingan District, Shanghai, 200072, China
| | - Zhao-Li Shen
- Department of Neurosurgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No.301 of Yanchang Road, Jingan District, Shanghai, 200072, China.
| | - Xian-Zhen Chen
- Department of Neurosurgery, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, No.301 of Yanchang Road, Jingan District, Shanghai, 200072, China.
| |
Collapse
|
36
|
She L, Mao X, Su L, Liu Z. Prognostic evaluation of patients with glioblastoma using a new score prediction model. EUROPEAN JOURNAL OF SURGICAL ONCOLOGY 2023; 49:106902. [PMID: 37076410 DOI: 10.1016/j.ejso.2023.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/28/2023] [Accepted: 04/01/2023] [Indexed: 04/21/2023]
Abstract
Despite the wide reportage of prognostic factors for glioblastoma (GBM), it is difficult to determine how these factors interact to affect patients' survival. To determine the combination of prognostic factors, we retrospectively analyzed the clinic data of 248 IDH wild-type GBM patients and built a novel prediction model. The survival variables of patients were identified via univariate and multivariate analyses. In addition, the score prediction models were constructed by combining classification and regression tree (CART) analysis with Cox regression analysis. Finally, the prediction model was internally validated using the bootstrap method. Patients were followed for a median of 34.4 (interquartile range, 26.1-46.0) months. Multivariate analysis identified gross total resection (GTR) (HR 0.50, 95% CI: 0.38-0.67), unopened ventricles (HR 0.75 [0.57-0.99]), and MGMT methylation (HR 0.56 [0.41-0.76]) as favorable independent prognostic factors for PFS. GTR (HR 0.67 [0.49-0.92]), unopened ventricles (HR 0.60 [0.44-0.82]), and MGMT methylation (HR 0.54 [0.38-0.76]) were favorable independent prognostic factors for OS. In the process of building the model, we incorporated GTR, ventricular opening, MGMT methylation status, and age. The model had six and five terminal nodules in PFS and OS respectively. We grouped terminal nodes with similar hazard ratios together to form three sub-groups with different PFS and OS (P < 0.001). After the internal verification of bootstrap method, the model had a good fitting and calibration. GTR, unopened ventricles, and MGMT methylation were independently associated with more satisfactory survival. The novel score prediction model which we construct can provide a prognostic reference for GBM.
Collapse
Affiliation(s)
- Lei She
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha, 410008, China; Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, 410078, China; Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Xiaoyuan Mao
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha, 410008, China; Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, 410078, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China
| | - Lin Su
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, 410008, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| | - Zhaoqian Liu
- Department of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Xiangya Hospital, Central South University, Changsha, 410008, China; Institute of Clinical Pharmacology, Engineering Research Center for Applied Technology of Pharmacogenomics of Ministry of Education, Central South University, Changsha, 410078, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, 410008, China.
| |
Collapse
|
37
|
Liu Y, Wu Z, Fu Z, Han Y, Wang J, Zhang Y, Liang B, Tao Y, Zhang Y, Shen C, Xu Y, Yin S, Chen B, Liu Y, Pan H, Liang Z, Wu K. A predictive model of immune infiltration and prognosis of head and neck squamous cell carcinoma based on cell adhesion-related genes: including molecular biological validation. Front Immunol 2023; 14:1190678. [PMID: 37691922 PMCID: PMC10484396 DOI: 10.3389/fimmu.2023.1190678] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023] Open
Abstract
Background Focal adhesion serves as a bridge between tumour cells and the extracellular matrix (ECM) and has multiple roles in tumour invasion, migration, and therapeutic resistance. However, studies on focal adhesion-related genes (FARGs) in head and neck squamous cell carcinoma (HNSCC) are limited. Methods Data on HNSCC samples were obtained from The Cancer Genome Atlas and GSE41613 datasets, and 199 FARGs were obtained from the Molecular Signatures database. The integrated datasets' dimensions were reduced by the use of cluster analysis, which was also used to classify patients with HNSCC into subclusters. A FARG signature model was developed and utilized to calculate each patient's risk score using least extreme shrinkage and selection operator regression analysis. The risk score was done to quantify the subgroups of all patients. We evaluated the model's value for prognostic prediction, immune infiltration status, and therapeutic response in HNSCC. Preliminary molecular and biological experiments were performed to verify these results. Results Two different HNSCC molecular subtypes were identified according to FARGs, and patients with C2 had a shorter overall survival (OS) than those with C1. We constructed an FARG signature comprising nine genes. We constructed a FARG signature consisting of nine genes. Patients with higher risk scores calculated from the FARG signature had a lower OS, and the FARG signature was considered an independent prognostic factor for HNSCC in univariate and multivariate analyses. FARGs are associated with immune cell invasion, gene mutation status, and chemosensitivity. Finally, we observed an abnormal overexpression of MAPK9 in HNSCC tissues, and MAPK9 knockdown greatly impeded the proliferation, migration, and invasion of HNSCC cells. Conclusion The FARG signature can provide reliable prognostic prediction for patients with HNSCC. Apart from that, the genes in this model were related to immune invasion, gene mutation status, and chemosensitivity, which may provide new ideas for targeted therapies for HNSCC.
Collapse
Affiliation(s)
- Yuchen Liu
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Medical University, Hefei, Anhui, China
| | - Zhechen Wu
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Medical University, Hefei, Anhui, China
| | - Ziyue Fu
- Anhui Medical University, Hefei, Anhui, China
| | - Yanxun Han
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Medical University, Hefei, Anhui, China
| | | | - Yanqiang Zhang
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Medical University, Hefei, Anhui, China
| | - Bingyu Liang
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Medical University, Hefei, Anhui, China
| | - Ye Tao
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Medical University, Hefei, Anhui, China
| | - Yuchen Zhang
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Medical University, Hefei, Anhui, China
| | | | - Yidan Xu
- Anhui Medical University, Hefei, Anhui, China
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Siyue Yin
- Anhui Medical University, Hefei, Anhui, China
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Bangjie Chen
- Anhui Medical University, Hefei, Anhui, China
- Department of Oncology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
| | - Yehai Liu
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Medical University, Hefei, Anhui, China
| | - Haifeng Pan
- Anhui Medical University, Hefei, Anhui, China
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Zhang Liang
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Medical University, Hefei, Anhui, China
| | - Kaile Wu
- Department of Otolaryngology, Head and Neck Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China
- Anhui Medical University, Hefei, Anhui, China
| |
Collapse
|
38
|
Ceresa D, Alessandrini F, Lucchini S, Marubbi D, Piaggio F, Mena Vera JM, Ceccherini I, Reverberi D, Appolloni I, Malatesta P. Early clonal extinction in glioblastoma progression revealed by genetic barcoding. Cancer Cell 2023; 41:1466-1479.e9. [PMID: 37541243 DOI: 10.1016/j.ccell.2023.07.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 05/23/2023] [Accepted: 07/07/2023] [Indexed: 08/06/2023]
Abstract
Glioblastoma progression in its early stages remains poorly understood. Here, we transfer PDGFB and genetic barcodes in mouse brain to initiate gliomagenesis and enable direct tracing of glioblastoma evolution from its earliest possible stage. Unexpectedly, we observe a high incidence of clonal extinction events and progressive divergence in clonal sizes, even after the acquisition of malignant phenotype. Computational modeling suggests these dynamics result from clonal-based cell-cell competition. Through bulk and single-cell transcriptome analyses, coupled with lineage tracing, we reveal that Myc transcriptional targets have the strongest correlation with clonal size imbalances. Moreover, we show that the downregulation of Myc expression is sufficient to drive competitive dynamics in intracranially transplanted gliomas. Our findings provide insights into glioblastoma evolution that are inaccessible using conventional retrospective approaches, highlighting the potential of combining clonal tracing and transcriptomic analyses in this field.
Collapse
Affiliation(s)
- Davide Ceresa
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy
| | - Francesco Alessandrini
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy
| | - Sara Lucchini
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy
| | - Daniela Marubbi
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy
| | | | - Jorge Miguel Mena Vera
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy
| | - Isabella Ceccherini
- Laboratory of Genetics and Genomics of Rare Diseases, IRCCS Istituto Giannina Gaslini, 16147 Genova, Italy
| | | | - Irene Appolloni
- Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy
| | - Paolo Malatesta
- IRCCS Ospedale Policlinico San Martino, 16132 Genova, Italy; Department of Experimental Medicine (DIMES), University of Genova, 16132 Genova, Italy.
| |
Collapse
|
39
|
Brandt B, Németh M, Berta G, Szünstein M, Heffer M, Rauch TA, Pap M. A Promising Way to Overcome Temozolomide Resistance through Inhibition of Protein Neddylation in Glioblastoma Cell Lines. Int J Mol Sci 2023; 24:ijms24097929. [PMID: 37175636 PMCID: PMC10178391 DOI: 10.3390/ijms24097929] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/21/2023] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
There is no effective therapy for the lately increased incidence of glioblastoma multiforme (GBM)-the most common primary brain tumor characterized by a high degree of invasiveness and genetic heterogeneity. Currently, DNA alkylating agent temozolomide (TMZ) is the standard chemotherapy. Nevertheless, TMZ resistance is a major problem in the treatment of GBM due to numerous molecular mechanisms related to DNA damage repair, epigenetic alterations, cellular drug efflux, apoptosis-autophagy, and overactive protein neddylation. Low molecular weight inhibitors of NEDD8-activating enzyme (NAE), such as MLN4924, attenuate protein neddylation and present a promising low-toxicity anticancer agent. The aim of our study was to find an effective combination treatment with TMZ and MLN4924 in our TMZ-resistant GBM cell lines and study the effect of these combination treatments on different protein expressions such as O6-methylguanine methyltransferase (MGMT) and p53. The combination treatment successfully decreased cell viability and sensitized TMZ-resistant cells to TMZ, foreshadowing a new treatment strategy for GBM.
Collapse
Affiliation(s)
- Barbara Brandt
- Department of Medical Biology and Central Electron Microscopic Laboratory, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Marica Németh
- Department of Medical Biology and Central Electron Microscopic Laboratory, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Gergely Berta
- Department of Medical Biology and Central Electron Microscopic Laboratory, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Máté Szünstein
- Department of Ecology, Faculty of Sciences, University of Pécs, 7624 Pécs, Hungary
| | - Marija Heffer
- Department of Medical Biology and Genetics, Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Tibor A Rauch
- Department of Biochemistry and Medical Chemistry, Medical School, University of Pécs, 7624 Pécs, Hungary
| | - Marianna Pap
- Department of Medical Biology and Central Electron Microscopic Laboratory, Medical School, University of Pécs, 7624 Pécs, Hungary
| |
Collapse
|
40
|
Walentynowicz KA, Engelhardt D, Cristea S, Yadav S, Onubogu U, Salatino R, Maerken M, Vincentelli C, Jhaveri A, Geisberg J, McDonald TO, Michor F, Janiszewska M. Single-cell heterogeneity of EGFR and CDK4 co-amplification is linked to immune infiltration in glioblastoma. Cell Rep 2023; 42:112235. [PMID: 36920905 PMCID: PMC10114292 DOI: 10.1016/j.celrep.2023.112235] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Revised: 12/20/2022] [Accepted: 02/23/2023] [Indexed: 03/15/2023] Open
Abstract
Glioblastoma (GBM) is the most aggressive brain tumor, with a median survival of ∼15 months. Targeted approaches have not been successful in this tumor type due to the large extent of intratumor heterogeneity. Mosaic amplification of oncogenes suggests that multiple genetically distinct clones are present in each tumor. To uncover the relationships between genetically diverse subpopulations of GBM cells and their native tumor microenvironment, we employ highly multiplexed spatial protein profiling coupled with single-cell spatial mapping of fluorescence in situ hybridization (FISH) for EGFR, CDK4, and PDGFRA. Single-cell FISH analysis of a total of 35,843 single nuclei reveals that tumors in which amplifications of EGFR and CDK4 more frequently co-occur in the same cell exhibit higher infiltration of CD163+ immunosuppressive macrophages. Our results suggest that high-throughput assessment of genomic alterations at the single-cell level could provide a measure for predicting the immune state of GBM.
Collapse
Affiliation(s)
- Kacper A Walentynowicz
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technologies, Jupiter, FL, USA; Department of Molecular Medicine, Scripps Research, Jupiter, FL, USA
| | - Dalit Engelhardt
- Center for Cancer Evolution, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Simona Cristea
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; Department of Medical Oncology, Harvard Medical School, Boston, MA, USA
| | - Shreya Yadav
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technologies, Jupiter, FL, USA; Department of Molecular Medicine, Scripps Research, Jupiter, FL, USA
| | - Ugoma Onubogu
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technologies, Jupiter, FL, USA; Department of Molecular Medicine, Scripps Research, Jupiter, FL, USA; The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA, USA
| | - Roberto Salatino
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technologies, Jupiter, FL, USA; Department of Molecular Medicine, Scripps Research, Jupiter, FL, USA; The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA, USA
| | - Melanie Maerken
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technologies, Jupiter, FL, USA; Department of Molecular Medicine, Scripps Research, Jupiter, FL, USA
| | | | - Aashna Jhaveri
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Jacob Geisberg
- Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Thomas O McDonald
- Center for Cancer Evolution, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA
| | - Franziska Michor
- Center for Cancer Evolution, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Data Science, Dana-Farber Cancer Institute, Boston, MA, USA; Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, MA, USA; Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA, USA; The Broad Institute of MIT and Harvard, Cambridge, MA, USA; The Ludwig Center at Harvard, Boston, MA, USA.
| | - Michalina Janiszewska
- Department of Molecular Medicine, The Herbert Wertheim UF Scripps Institute for Biomedical Innovation and Technologies, Jupiter, FL, USA; Department of Molecular Medicine, Scripps Research, Jupiter, FL, USA; The Skaggs Graduate School of Chemical and Biological Sciences, The Scripps Research Institute, La Jolla, CA, USA.
| |
Collapse
|
41
|
Kumar M, Meode M, Blough M, Cairncross G, Bose P. PDGF gene expression and p53 alterations contribute to the biology of diffuse astrocytic gliomas. NPJ Genom Med 2023; 8:6. [PMID: 36841881 PMCID: PMC9968280 DOI: 10.1038/s41525-023-00351-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Accepted: 02/14/2023] [Indexed: 02/27/2023] Open
Abstract
Diffuse, histologically lower grade astrocytomas of adults (LGAs) are classified based on the mutational status of the isocitrate dehydrogenase (IDH) genes. While wild-type (WT) LGAs often evolve quickly to glioblastoma (GBM), mutant tumors typically follow an indolent course. To find possible effectors of these different behaviors, we compared their respective transcriptomes. Unlike mutant LGAs, platelet-derived growth factor (PDGF) signaling was significantly enriched in WT tumors, and PDGFA was the top overexpressed gene in the pathway. Moreover, methylation of the PDGFA and PDGFD promoters emerged as a possible mechanism for their low expression in mutant tumors. Copy number gain of chromosome 7 co-occurred with high expression of PDGFA in WT cases, and high expression of PDGFA was associated with aneuploidy, extracellular matrix (ECM)-related immunosuppressive features and poor prognosis. We also noted that high PDGFA expression in WT cases occurred irrespective of tumor grade and that multiple mechanisms of p53 pathway inactivation accompanied progression to GBM in PDGFA-overexpressing tumors. Conversely, TP53 point mutations were an early and constant feature of mutant LGAs. Our results suggest that members of the PDGF gene family, in concert with different p53 pathway alterations, underlie LGA behaviors.
Collapse
Affiliation(s)
- Mehul Kumar
- grid.22072.350000 0004 1936 7697Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB Canada ,grid.22072.350000 0004 1936 7697Charbonneau Cancer Institute, University of Calgary, Calgary, AB Canada
| | - Mathieu Meode
- grid.22072.350000 0004 1936 7697Charbonneau Cancer Institute, University of Calgary, Calgary, AB Canada ,grid.22072.350000 0004 1936 7697Department of Clinical Neurosciences, University of Calgary, Calgary, AB Canada
| | - Michael Blough
- grid.22072.350000 0004 1936 7697Charbonneau Cancer Institute, University of Calgary, Calgary, AB Canada ,grid.22072.350000 0004 1936 7697Department of Clinical Neurosciences, University of Calgary, Calgary, AB Canada
| | - Gregory Cairncross
- grid.22072.350000 0004 1936 7697Charbonneau Cancer Institute, University of Calgary, Calgary, AB Canada ,grid.22072.350000 0004 1936 7697Department of Clinical Neurosciences, University of Calgary, Calgary, AB Canada ,grid.22072.350000 0004 1936 7697Hotchkiss Brain Institute, University of Calgary, Calgary, AB Canada ,grid.22072.350000 0004 1936 7697Department of Oncology, University of Calgary, Calgary, AB Canada
| | - Pinaki Bose
- Department of Biochemistry and Molecular Biology, University of Calgary, Calgary, AB, Canada. .,Charbonneau Cancer Institute, University of Calgary, Calgary, AB, Canada. .,Department of Oncology, University of Calgary, Calgary, AB, Canada.
| |
Collapse
|
42
|
Anderson FL, Biggs KE, Rankin BE, Havrda MC. NLRP3 inflammasome in neurodegenerative disease. Transl Res 2023; 252:21-33. [PMID: 35952982 PMCID: PMC10614656 DOI: 10.1016/j.trsl.2022.08.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 01/14/2023]
Abstract
Neurodegenerative diseases are characterized by a dysregulated neuro-glial microenvironment, culminating in functional deficits resulting from neuronal cell death. Inflammation is a hallmark of the neurodegenerative microenvironment and despite a critical role in tissue homeostasis, increasing evidence suggests that chronic inflammatory insult can contribute to progressive neuronal loss. Inflammation has been studied in the context of neurodegenerative disorders for decades but few anti-inflammatory treatments have advanced to clinical use. This is likely due to the related challenges of predicting and mitigating off-target effects impacting the normal immune response while detecting inflammatory signatures that are specific to the progression of neurological disorders. Inflammasomes are pro-inflammatory cytosolic pattern recognition receptors functioning in the innate immune system. Compelling pre-clinical data has prompted an intense interest in the role of the NLR family pyrin domain containing 3 (NLRP3) inflammasome in neurodegenerative disease. NLRP3 is typically inactive but can respond to sterile triggers commonly associated with neurodegenerative disorders including protein misfolding and aggregation, mitochondrial and oxidative stress, and exposure to disease-associated environmental toxicants. Clear evidence of enhanced NLRP3 inflammasome activity in common neurodegenerative diseases has coincided with rapid advancement of novel small molecule therapeutics making the NLRP3 inflammasome an attractive target for near-term interventional studies. In this review, we highlight evidence from model systems and patients indicating inflammasome activity in neurodegenerative disease associated with the NLRP3 inflammasome's ability to recognize pathologic forms of amyloid-β, tau, and α-synuclein. We discuss inflammasome-driven pyroptotic processes highlighting the potential utility of evaluating extracellular inflammasome-related proteins in the context of biomarker discovery. We complete the report by pointing out gaps in our understanding of intracellular modifiers of inflammasome activity and mechanisms regulating the resolution of inflammasome activation. The literature review and perspectives provide a conceptual platform for continued analysis of inflammation in neurodegenerative diseases through the study of inflammasomes and pyroptosis, mechanisms of inflammation and cell death now recognized to function in multiple highly prevalent neurological disorders.
Collapse
Affiliation(s)
- Faith L Anderson
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire
| | - Karl E Biggs
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire
| | - Brynn E Rankin
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire
| | - Matthew C Havrda
- Department of Molecular and Systems Biology, Geisel School of Medicine at Dartmouth College, Hanover, New Hampshire.
| |
Collapse
|
43
|
Leu S, Hutter G, Boulay JL. Proteome-based insights for IDH-mutant glioma classification. Cell Rep Med 2023; 4:100909. [PMID: 36652918 PMCID: PMC9873937 DOI: 10.1016/j.xcrm.2022.100909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
In this issue, Bader et al.1 characterize the proteomes of diffuse glioma brain tumors by liquid chromatography mass spectrometry and classify isocitrate dehydrogenase (IDH)-mutant gliomas into two subtypes, which differ in oncogenic pathways and aerobic/anaerobic energy metabolism.
Collapse
Affiliation(s)
- Severina Leu
- Department of Neurosurgery and Laboratory of Brain Tumor Immunotherapy and Biology, Department of BioMedicine, University Hospital Basel and University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Gregor Hutter
- Department of Neurosurgery and Laboratory of Brain Tumor Immunotherapy and Biology, Department of BioMedicine, University Hospital Basel and University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland
| | - Jean-Louis Boulay
- Department of Neurosurgery and Laboratory of Brain Tumor Immunotherapy and Biology, Department of BioMedicine, University Hospital Basel and University of Basel, Hebelstrasse 20, 4031 Basel, Switzerland.
| |
Collapse
|
44
|
Huang B, Zhang J, Zong W, Chen S, Zong Z, Zeng X, Zhang H. Myeloidcells in the immunosuppressive microenvironment in glioblastoma: The characteristics and therapeutic strategies. Front Immunol 2023; 14:994698. [PMID: 36923402 PMCID: PMC10008967 DOI: 10.3389/fimmu.2023.994698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 01/31/2023] [Indexed: 03/03/2023] Open
Abstract
Glioblastoma (GBM) is the most common and lethal malignant tumor of the central nervous system in adults. Conventional therapies, including surgery, radiotherapy, and chemotherapy, have limited success in ameliorating patient survival. The immunosuppressive tumor microenvironment, which is infiltrated by a variety of myeloid cells, has been considered a crucial obstacle to current treatment. Recently, immunotherapy, which has achieved great success in hematological malignancies and some solid cancers, has garnered extensive attention for the treatment of GBM. In this review, we will present evidence on the features and functions of different populations of myeloid cells, and on current clinical advances in immunotherapies for glioblastoma.
Collapse
Affiliation(s)
- Boyuan Huang
- Department of Neurosurgery, Capital Medical University Electric Power Teaching Hospital/State Grid Beijing Electric Power Hospital, Beijing, China
| | - Jin Zhang
- Department of Neurosurgery, The First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Wenjing Zong
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, China
| | - Sisi Chen
- Department of neurosurgery, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, China
| | - Zhitao Zong
- Department of neurosurgery, Jiujiang Hospital of Traditional Chinese Medicine, Jiujiang, China
| | - Xiaojun Zeng
- Department of Neurosurgery, Shenzhen Key Laboratory of Neurosurgery, Shenzhen Second People's Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, China
| | - Hongbo Zhang
- Department of Neurosurgery, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
45
|
Wu L, Wu W, Zhang J, Zhao Z, Li L, Zhu M, Wu M, Wu F, Zhou F, Du Y, Chai RC, Zhang W, Qiu X, Liu Q, Wang Z, Li J, Li K, Chen A, Jiang Y, Xiao X, Zou H, Srivastava R, Zhang T, Cai Y, Liang Y, Huang B, Zhang R, Lin F, Hu L, Wang X, Qian X, Lv S, Hu B, Zheng S, Hu Z, Shen H, You Y, Verhaak RG, Jiang T, Wang Q. Natural Coevolution of Tumor and Immunoenvironment in Glioblastoma. Cancer Discov 2022; 12:2820-2837. [PMID: 36122307 PMCID: PMC9716251 DOI: 10.1158/2159-8290.cd-22-0196] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 08/05/2022] [Accepted: 09/15/2022] [Indexed: 01/12/2023]
Abstract
Isocitrate dehydrogenase (IDH) wild-type glioblastoma (GBM) has a dismal prognosis. A better understanding of tumor evolution holds the key to developing more effective treatment. Here we study GBM's natural evolutionary trajectory by using rare multifocal samples. We sequenced 61,062 single cells from eight multifocal IDH wild-type primary GBMs and defined a natural evolution signature (NES) of the tumor. We show that the NES significantly associates with the activation of transcription factors that regulate brain development, including MYBL2 and FOSL2. Hypoxia is involved in inducing NES transition potentially via activation of the HIF1A-FOSL2 axis. High-NES tumor cells could recruit and polarize bone marrow-derived macrophages through activation of the FOSL2-ANXA1-FPR1/3 axis. These polarized macrophages can efficiently suppress T-cell activity and accelerate NES transition in tumor cells. Moreover, the polarized macrophages could upregulate CCL2 to induce tumor cell migration. SIGNIFICANCE GBM progression could be induced by hypoxia via the HIF1A-FOSL2 axis. Tumor-derived ANXA1 is associated with recruitment and polarization of bone marrow-derived macrophages to suppress the immunoenvironment. The polarized macrophages promote tumor cell NES transition and migration. This article is highlighted in the In This Issue feature, p. 2711.
Collapse
Affiliation(s)
- Lingxiang Wu
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China.,Department of Bioinformatics, Nanjing Medical University, Nanjing, China.,Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Wei Wu
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China.,Department of Bioinformatics, Nanjing Medical University, Nanjing, China.,Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Junxia Zhang
- Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Zheng Zhao
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Liangyu Li
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China.,Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Mengyan Zhu
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China.,Department of Bioinformatics, Nanjing Medical University, Nanjing, China.,Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Min Wu
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China.,Department of Bioinformatics, Nanjing Medical University, Nanjing, China.,Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Fan Wu
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Fengqi Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuxin Du
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China
| | - Rui-Chao Chai
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China
| | - Wei Zhang
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Xiaoguang Qiu
- Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Quanzhong Liu
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China.,Department of Bioinformatics, Nanjing Medical University, Nanjing, China.,Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Ziyu Wang
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China.,Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Jie Li
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China.,Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Kening Li
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China.,Department of Bioinformatics, Nanjing Medical University, Nanjing, China.,Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Apeng Chen
- State Key Laboratory of Veterinary Etiological Biology, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, China.,Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,John G. Rangos Sr. Research Center, University of Pittsburgh Medical Center (UPMC) Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Yinan Jiang
- John G. Rangos Sr. Research Center, University of Pittsburgh Medical Center (UPMC) Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Pediatric Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Xiangwei Xiao
- John G. Rangos Sr. Research Center, University of Pittsburgh Medical Center (UPMC) Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania.,Department of Pediatric Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Han Zou
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,John G. Rangos Sr. Research Center, University of Pittsburgh Medical Center (UPMC) Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Rashmi Srivastava
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,John G. Rangos Sr. Research Center, University of Pittsburgh Medical Center (UPMC) Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Tingting Zhang
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China.,Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yun Cai
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China.,Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Yuan Liang
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China.,Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Bin Huang
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China.,Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Ruohan Zhang
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China
| | - Fan Lin
- Department of Cell Biology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China.,Institute for Brain Tumors and Key Laboratory of Rare Metabolic Diseases, Nanjing Medical University, Nanjing, China
| | - Lang Hu
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Xiuxing Wang
- School of Basic Medical Sciences, Nanjing Medical University, Nanjing, China
| | - Xu Qian
- Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Sali Lv
- Department of Bioinformatics, Nanjing Medical University, Nanjing, China.,Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Baoli Hu
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania.,John G. Rangos Sr. Research Center, University of Pittsburgh Medical Center (UPMC) Children's Hospital of Pittsburgh, Pittsburgh, Pennsylvania
| | - Siyuan Zheng
- Greehey Children's Cancer Research Institute, UT Health San Antonio, San Antonio, Texas.,Department of Population Health Sciences, UT Health San Antonio, San Antonio, Texas
| | - Zhibin Hu
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China.,Department of Epidemiology and Biostatistics, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Hongbing Shen
- Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Medicine, Nanjing Medical University, Nanjing, China.,Department of Epidemiology and Biostatistics, International Joint Research Center on Environment and Human Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, China
| | - Yongping You
- Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Corresponding Authors: Qianghu Wang, Nanjing Medical University, 211166 Nanjing, China. Phone: 8602-5868-69330; E-mail: ; Tao Jiang, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China. Phone: 8601-0599-75624; E-mail: ; Roel G.W. Verhaak, The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032. Phone: 860-837-2140; E-mail: ; and Yongping You, Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, 210029 Nanjing, China. Phone: 8602-5681-36679; E-mail:
| | - Roel G.W. Verhaak
- The Jackson Laboratory for Genomic Medicine, Farmington, Connecticut.,Corresponding Authors: Qianghu Wang, Nanjing Medical University, 211166 Nanjing, China. Phone: 8602-5868-69330; E-mail: ; Tao Jiang, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China. Phone: 8601-0599-75624; E-mail: ; Roel G.W. Verhaak, The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032. Phone: 860-837-2140; E-mail: ; and Yongping You, Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, 210029 Nanjing, China. Phone: 8602-5681-36679; E-mail:
| | - Tao Jiang
- Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Beijing Tiantan Hospital, Capital Medical University, Beijing, China.,Corresponding Authors: Qianghu Wang, Nanjing Medical University, 211166 Nanjing, China. Phone: 8602-5868-69330; E-mail: ; Tao Jiang, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China. Phone: 8601-0599-75624; E-mail: ; Roel G.W. Verhaak, The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032. Phone: 860-837-2140; E-mail: ; and Yongping You, Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, 210029 Nanjing, China. Phone: 8602-5681-36679; E-mail:
| | - Qianghu Wang
- The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Cancer Hospital, Jiangsu Institute of Cancer Research, Nanjing, China.,Department of Bioinformatics, Nanjing Medical University, Nanjing, China.,Institute for Brain Tumors, Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.,Corresponding Authors: Qianghu Wang, Nanjing Medical University, 211166 Nanjing, China. Phone: 8602-5868-69330; E-mail: ; Tao Jiang, Beijing Neurosurgical Institute, Beijing Tiantan Hospital, Capital Medical University, 100070 Beijing, China. Phone: 8601-0599-75624; E-mail: ; Roel G.W. Verhaak, The Jackson Laboratory for Genomic Medicine, Farmington, CT 06032. Phone: 860-837-2140; E-mail: ; and Yongping You, Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, 210029 Nanjing, China. Phone: 8602-5681-36679; E-mail:
| |
Collapse
|
46
|
Miki S, Koga T, Mckinney AM, Parisian AD, Tadokoro T, Vadla R, Marsala M, Hevner RF, Costello JF, Furnari F. TERT promoter C228T mutation in neural progenitors confers growth advantage following telomere shortening in vivo. Neuro Oncol 2022; 24:2063-2075. [PMID: 35325218 PMCID: PMC9713509 DOI: 10.1093/neuonc/noac080] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Heterozygous TERT (telomerase reverse transcriptase) promoter mutations (TPMs) facilitate TERT expression and are the most frequent mutation in glioblastoma (GBM). A recent analysis revealed this mutation is one of the earliest events in gliomagenesis. However, no appropriate human models have been engineered to study the role of this mutation in the initiation of these tumors. METHOD We established GBM models by introducing the heterozygous TPM in human induced pluripotent stem cells (hiPSCs) using a two-step targeting approach in the context of GBM genetic alterations, CDKN2A/B and PTEN deletion, and EGFRvIII overexpression. The impact of the mutation was evaluated through the in vivo passage and in vitro experiment and analysis. RESULTS Orthotopic injection of neuronal precursor cells (NPCs) derived from hiPSCs with the TPM into immunodeficient mice did not enhance tumorigenesis compared to TERT promoter wild type NPCs at initial in vivo passage presumably due to relatively long telomeres. However, the mutation recruited GA-Binding Protein and engendered low-level TERT expression resulting in enhanced tumorigenesis and maintenance of short telomeres upon secondary passage as observed in human GBM. These results provide the first insights regarding increased tumorigenesis upon introducing a TPM compared to isogenic controls without TPMs. CONCLUSION Our novel GBM models presented the growth advantage of heterozygous TPMs for the first time in the context of GBM driver mutations relative to isogenic controls, thereby allowing for the identification and validation of TERT promoter-specific vulnerabilities in a genetically accurate background.
Collapse
Affiliation(s)
- Shunichiro Miki
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Tomoyuki Koga
- Department of Neurosurgery, University of Minnesota, Minneapolis, Minnesota, USA
| | - Andrew M Mckinney
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Alison D Parisian
- Department of Medicine, University of California San Diego, La Jolla, California, USA
- Biomedical Sciences Graduate Program, University of California, San Diego, La Jolla, California, USA
| | - Takahiro Tadokoro
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California San Diego, La Jolla, California, USA
| | - Raghavendra Vadla
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Martin Marsala
- Neuroregeneration Laboratory, Department of Anesthesiology, University of California San Diego, La Jolla, California, USA
| | - Robert F Hevner
- Department of Pathology, University of California San Diego, La Jolla, California, USA
| | - Joseph F Costello
- Department of Neurological Surgery, University of California, San Francisco, San Francisco, California, USA
| | - Frank Furnari
- Department of Medicine, University of California San Diego, La Jolla, California, USA
- Laboratory of Tumor Biology, Ludwig Cancer Research, San Diego Branch, La Jolla, California, USA
| |
Collapse
|
47
|
von Knebel Doeberitz N, Paech D, Sturm D, Pusch S, Turcan S, Saunthararajah Y. Changing paradigms in oncology: Toward noncytotoxic treatments for advanced gliomas. Int J Cancer 2022; 151:1431-1446. [PMID: 35603902 PMCID: PMC9474618 DOI: 10.1002/ijc.34131] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 05/12/2022] [Accepted: 05/13/2022] [Indexed: 11/25/2022]
Abstract
Glial-lineage malignancies (gliomas) recurrently mutate and/or delete the master regulators of apoptosis p53 and/or p16/CDKN2A, undermining apoptosis-intending (cytotoxic) treatments. By contrast to disrupted p53/p16, glioma cells are live-wired with the master transcription factor circuits that specify and drive glial lineage fates: these transcription factors activate early-glial and replication programs as expected, but fail in their other usual function of forcing onward glial lineage-maturation-late-glial genes have constitutively "closed" chromatin requiring chromatin-remodeling for activation-glioma-genesis disrupts several epigenetic components needed to perform this work, and simultaneously amplifies repressing epigenetic machinery instead. Pharmacologic inhibition of repressing epigenetic enzymes thus allows activation of late-glial genes and terminates glioma self-replication (self-replication = replication without lineage-maturation), independent of p53/p16/apoptosis. Lineage-specifying master transcription factors therefore contrast with p53/p16 in being enriched in self-replicating glioma cells, reveal a cause-effect relationship between aberrant epigenetic repression of late-lineage programs and malignant self-replication, and point to specific epigenetic targets for noncytotoxic glioma-therapy.
Collapse
Affiliation(s)
| | - Daniel Paech
- Division of RadiologyGerman Cancer Research Center (DKFZ)HeidelbergGermany
- Department of NeuroradiologyBonn University HospitalBonnGermany
| | - Dominik Sturm
- Hopp Children's Cancer Center (KiTZ) HeidelbergHeidelbergGermany
- Division of Pediatric Glioma Research, German Cancer Research Center (DKFZ) and German Cancer Consortium (DKTK)HeidelbergGermany
- Department of Pediatric Oncology, Hematology & ImmunologyHeidelberg University HospitalHeidelbergGermany
| | - Stefan Pusch
- Department of NeuropathologyInstitute of Pathology, Ruprecht‐Karls‐University HeidelbergHeidelbergGermany
- German Cancer Consortium (DKTK), Clinical Cooperation Unit (CCU) Neuropathology, German Cancer Research Center (DKFZ)HeidelbergGermany
| | - Sevin Turcan
- Department of NeurologyHeidelberg University HospitalHeidelbergGermany
| | - Yogen Saunthararajah
- Department of Translational Hematology and Oncology ResearchTaussig Cancer Institute, Cleveland ClinicClevelandOhioUSA
| |
Collapse
|
48
|
Fan F, Mo H, Zhang H, Dai Z, Wang Z, Qu C, Liu F, Zhang L, Luo P, Zhang J, Liu Z, Cheng Q, Ding F. HOXA5: A crucial transcriptional factor in cancer and a potential therapeutic target. Biomed Pharmacother 2022; 155:113800. [PMID: 36271576 DOI: 10.1016/j.biopha.2022.113800] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 09/29/2022] [Accepted: 10/02/2022] [Indexed: 11/20/2022] Open
Abstract
HOX genes occupy a significant role in embryogenesis, hematopoiesis, and oncogenesis. HOXA5, a member of the A cluster of HOX genes, is essential for establishing the skeleton and normal organogenesis. As previously reported, aberrant HOXA5 expression contributes to anomalies and dysfunction of various organs, as well as affecting proliferation, differentiation, invasion, apoptosis, and other biological processes of tumor cells. Different cancers showed both downregulated and upregulated HOXA5 expression. The most common strategy for controlling HOXA5 downregulated expression may be CpG island hypermethylation. Additionally, current research demonstrated the regulatory network of HOXA5 and its connection with cancer stem cell progression and the immune microenvironment. Epigenetic modulators and upstream regulators, such as DNMTi and retinoic acid, may be beneficial for anti-tumor effects targeting HOXA5. Here, we summarize current knowledge about the HOXA5 gene, its role in various cancers, and its potential therapeutic value.
Collapse
Affiliation(s)
- Fan Fan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China; Center for Medical Genetics & Hunan Provincial Key Laboratory of Medical Genetics, School of Life Sciences, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, China
| | - Haoyang Mo
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Hao Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Ziyu Dai
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zeyu Wang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Chunrun Qu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China
| | - Fangkun Liu
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, China
| | - Liyang Zhang
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Hunan, China; Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, China.
| | - Fengqin Ding
- Department of Clinical Laboratory, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan, China.
| |
Collapse
|
49
|
Pattwell SS, Arora S, Nuechterlein N, Zager M, Loeb KR, Cimino PJ, Holland NC, Reche-Ley N, Bolouri H, Almiron Bonnin DA, Szulzewsky F, Phadnis VV, Ozawa T, Wagner MJ, Haffner MC, Cao J, Shendure J, Holland EC. Oncogenic role of a developmentally regulated NTRK2 splice variant. SCIENCE ADVANCES 2022; 8:eabo6789. [PMID: 36206341 PMCID: PMC9544329 DOI: 10.1126/sciadv.abo6789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 08/23/2022] [Indexed: 06/16/2023]
Abstract
Temporally regulated alternative splicing choices are vital for proper development, yet the wrong splice choice may be detrimental. Here, we highlight a previously unidentified role for the neurotrophin receptor splice variant TrkB.T1 in neurodevelopment, embryogenesis, transformation, and oncogenesis across multiple tumor types in humans and mice. TrkB.T1 is the predominant NTRK2 isoform across embryonic organogenesis, and forced overexpression of this embryonic pattern causes multiple solid and nonsolid tumors in mice in the context of tumor suppressor loss. TrkB.T1 also emerges as the predominant NTRK isoform expressed in a wide range of adult and pediatric tumors, including those harboring tropomyosin receptor kinase fusions. Affinity purification-mass spectrometry proteomic analysis reveals distinct interactors with known developmental and oncogenic signaling pathways such as Wnt, transforming growth factor-β, Sonic Hedgehog, and Ras. From alterations in splicing factors to changes in gene expression, the discovery of isoform specific oncogenes with embryonic ancestry has the potential to shape the way we think about developmental systems and oncology.
Collapse
Affiliation(s)
- Siobhan S. Pattwell
- Human Biology Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Mailstop C3-168, Seattle, WA 98109, USA
- Ben Towne Center for Childhood Cancer Research, Seattle Children’s Research Institute, Seattle, WA 98101, USA
- Division of Pediatrics, Department Hematology/Oncology, University of Washington School of Medicine, Seattle, WA 98105, USA
| | - Sonali Arora
- Human Biology Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Mailstop C3-168, Seattle, WA 98109, USA
| | - Nicholas Nuechterlein
- Paul G. Allen School of Computer Science & Engineering, University of Washington, Seattle, WA 98195, USA
| | - Michael Zager
- Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA
- Center for Data Visualization, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA
| | - Keith R. Loeb
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, 325 9th Avenue, Box 359791, Seattle, WA 98104, USA
| | - Patrick J. Cimino
- Human Biology Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Mailstop C3-168, Seattle, WA 98109, USA
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, 325 9th Avenue, Box 359791, Seattle, WA 98104, USA
| | - Nikolas C. Holland
- Center for Neural Science, New York University, 4 Washington Place, #809, New York, NY 10003, USA
- Department of Psychiatry, Weill Cornell Medical College, 1300 York Ave, New York, NY 10065, USA
| | | | - Hamid Bolouri
- Human Biology Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Mailstop C3-168, Seattle, WA 98109, USA
- Benaroya Research Institute, 1201 Ninth Avenue, Seattle, WA 98101, USA
| | - Damian A. Almiron Bonnin
- Human Biology Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Mailstop C3-168, Seattle, WA 98109, USA
| | - Frank Szulzewsky
- Human Biology Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Mailstop C3-168, Seattle, WA 98109, USA
| | | | - Tatsuya Ozawa
- Division of Brain Tumor Translational Research, National Cancer Center Research Institute, 5-1-1 Tsukiji, Chuo-ku, Tokyo 104-0045, Japan
| | - Michael J. Wagner
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
- Division of Medical Oncology, University of Washington, 825 Eastlake Ave E., Seattle, WA 98109, USA
| | - Michael C. Haffner
- Human Biology Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Mailstop C3-168, Seattle, WA 98109, USA
- Clinical Research Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, 325 9th Avenue, Box 359791, Seattle, WA 98104, USA
| | - Junyue Cao
- Rockefeller University, 1230 York Ave, New York, NY 10065, USA
| | - Jay Shendure
- Brotman Baty Institute for Precision Medicine, Seattle, WA 98195, USA
- Department of Genome Sciences, University of Washington, Seattle, WA 98195, USA
- Allen Discovery Center for Cell Lineage Tracing, Seattle, WA 98195, USA
- Howard Hughes Medical Institute, Seattle, WA 98195, USA
| | - Eric C. Holland
- Human Biology Division, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Mailstop C3-168, Seattle, WA 98109, USA
- Seattle Tumor Translational Research Center, Fred Hutchinson Cancer Research Center, 1100 Fairview Avenue North, Seattle, WA 98109, USA
| |
Collapse
|
50
|
Larionova TD, Bastola S, Aksinina TE, Anufrieva KS, Wang J, Shender VO, Andreev DE, Kovalenko TF, Arapidi GP, Shnaider PV, Kazakova AN, Latyshev YA, Tatarskiy VV, Shtil AA, Moreau P, Giraud F, Li C, Wang Y, Rubtsova MP, Dontsova OA, Condro M, Ellingson BM, Shakhparonov MI, Kornblum HI, Nakano I, Pavlyukov MS. Alternative RNA splicing modulates ribosomal composition and determines the spatial phenotype of glioblastoma cells. Nat Cell Biol 2022; 24:1541-1557. [PMID: 36192632 PMCID: PMC10026424 DOI: 10.1038/s41556-022-00994-w] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Accepted: 08/15/2022] [Indexed: 02/08/2023]
Abstract
Glioblastoma (GBM) is characterized by exceptionally high intratumoral heterogeneity. However, the molecular mechanisms underlying the origin of different GBM cell populations remain unclear. Here, we found that the compositions of ribosomes of GBM cells in the tumour core and edge differ due to alternative RNA splicing. The acidic pH in the core switches before messenger RNA splicing of the ribosomal gene RPL22L1 towards the RPL22L1b isoform. This allows cells to survive acidosis, increases stemness and correlates with worse patient outcome. Mechanistically, RPL22L1b promotes RNA splicing by interacting with lncMALAT1 in the nucleus and inducing its degradation. Contrarily, in the tumour edge region, RPL22L1a interacts with ribosomes in the cytoplasm and upregulates the translation of multiple messenger RNAs including TP53. We found that the RPL22L1 isoform switch is regulated by SRSF4 and identified a compound that inhibits this process and decreases tumour growth. These findings demonstrate how distinct GBM cell populations arise during tumour growth. Targeting this mechanism may decrease GBM heterogeneity and facilitate therapy.
Collapse
Affiliation(s)
- Tatyana D Larionova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
| | - Soniya Bastola
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Tatiana E Aksinina
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
| | - Ksenia S Anufrieva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russian Federation
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical and Biological Agency, Moscow, Russian Federation
| | - Jia Wang
- Department of Neurosurgery, Centre of Brain Science, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Victoria O Shender
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russian Federation
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical and Biological Agency, Moscow, Russian Federation
| | - Dmitriy E Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Tatiana F Kovalenko
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
| | - Georgij P Arapidi
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russian Federation
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical and Biological Agency, Moscow, Russian Federation
| | - Polina V Shnaider
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical Biological Agency, Moscow, Russian Federation
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical and Biological Agency, Moscow, Russian Federation
| | - Anastasia N Kazakova
- Federal Research and Clinical Center of Physical-Chemical Medicine, Federal Medical and Biological Agency, Moscow, Russian Federation
| | - Yaroslav A Latyshev
- N.N. Burdenko National Medical Research Center of Neurosurgery, Ministry of Health of the Russian Federation, Moscow, Russian Federation
| | - Victor V Tatarskiy
- Institute of Gene Biology, Russian Academy of Sciences, Moscow, Russian Federation
| | - Alexander A Shtil
- Blokhin National Medical Research Center of Oncology, Moscow, Russian Federation
| | - Pascale Moreau
- Institute of Chemistry of Clermont-Ferrand, CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Francis Giraud
- Institute of Chemistry of Clermont-Ferrand, CNRS, Université Clermont Auvergne, Clermont-Ferrand, France
| | - Chaoxi Li
- Department of Neurosurgery, School of Medicine and O'Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Yichan Wang
- Department of Neurosurgery, Centre of Brain Science, First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Maria P Rubtsova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
| | - Olga A Dontsova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, Russian Federation
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Moscow, Russian Federation
| | - Michael Condro
- Department of Bioengineering, University of California Los Angeles, Los Angeles, CA, USA
| | - Benjamin M Ellingson
- Brain Tumor Imaging Laboratory, Center for Computer Vision and Imaging Biomarkers, University of California Los Angeles, Los Angeles, CA, USA
- Department of Radiological Sciences, University of California Los Angeles, Los Angeles, CA, USA
- Department of Psychiatry, University of California Los Angeles, Los Angeles, CA, USA
- Department of Neurosurgery, University of California Los Angeles, Los Angeles, CA, USA
| | | | - Harley I Kornblum
- Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA, USA
| | - Ichiro Nakano
- Department of Neurosurgery, Medical Institute of Hokuto, Hokkaido, Japan.
| | - Marat S Pavlyukov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Moscow, Russian Federation.
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, Barcelona, Spain.
| |
Collapse
|