1
|
Sharma S, Rajaraman G. Diiron(IV)-Oxo Species and Water Oxidation: How Crucial is Electronic Cooperativity? Chemistry 2025; 31:e202404684. [PMID: 39967402 DOI: 10.1002/chem.202404684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2024] [Indexed: 02/20/2025]
Abstract
Water splitting, crucial for generating oxygen and hydrogen, remains a central challenge in chemistry due to its importance in developing sustainable energy sources and addressing environmental concerns. Consequently, numerous complexes have been developed to split water and release oxygen and hydrogen, albeit typically requiring external sources such as thermal, photo, or electrochemical methods. In this context, the discovery of a (μ-oxo)bis(μ-carboxamido) diiron(IV) complex, [FeIV₂O(L)₂]2+ (L=N,N-bis-(3',5'-dimethyl-4'-methoxypyridyl-2'-methyl)-N'-acetyl-1,2-diaminoethane), which activates both C-H and O-H bonds without external stimuli, has attracted significant attention. Notably, this complex generates hydroxyl radicals (⋅OH) without O₂ evolution and displays termolecular kinetics, presenting a rare and intriguing mechanistic puzzle. In this work, we explore the catalytic mechanism of water oxidation by this diiron(IV) complex using DFT methods. Our computational findings validate experimental observations regarding the necessity of a second water molecule in the reaction, revealing a bifurcated electron-proton transfer (BEPT) pathway driven by termolecular reactivity. Moreover, we highlight the crucial role of excess water molecules in stabilising the reaction intermediates, particularly via interaction with the -OMe groups to form a water cluster model. The inclusion of explicit water molecules was found to reduce the activation barrier to 23.5 kJ/mol from the reactant and 62.7 kJ/mol from the reactant complex, whereas, with only one water molecule present, the barrier was 344.3 kJ/mol, highlighting the critical role of the adventitious water molecule at the active site. Our study underscores the importance of metal-metal cooperativity, ligand design, spin-state modulation, and second-sphere effects in shaping the catalytic behaviour. These insights provide a detailed understanding of the electronic structure and reactivity, offering valuable guidelines for future catalyst design in water oxidation and beyond.
Collapse
Affiliation(s)
- Sunita Sharma
- Department of Chemistry, Indian Institute of Technology Bombay, IIT Bombay, Powai, 400076, Mumbai, Maharashtra, India
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, IIT Bombay, Powai, 400076, Mumbai, Maharashtra, India
| |
Collapse
|
2
|
Charisiadis A, Nikolaou V, Nikoloudakis E, Ladomenou K, Charalambidis G, Coutsolelos AG. Metalloporphyrins in bio-inspired photocatalytic conversions. Chem Commun (Camb) 2025; 61:4630-4646. [PMID: 40009006 DOI: 10.1039/d4cc06655c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Numerous natural systems contain porphyrin derivatives that facilitate important catalytic processes; thus, developing biomimetic photocatalytic systems based on synthetic metalloporphyrins constitutes a rapidly advancing and fascinating research field. Additionally, porphyrins are widely investigated in a plethora of applications due to their highly versatile structure, presenting advantageous photoredox, photophysical and photochemical properties. Consequently, such metallated tetrapyrrolic macrocycles play a prominent role as photosensitizers and catalysts in developing artificial photosynthetic systems that can store and distribute energy through fuel forming reactions. This review highlights the advances in the field of metalloporphyrin-based biomimetic photocatalysis, particularly targeting water splitting, including both hydrogen and oxygen evolution reactions, carbon dioxide reduction and alcohol oxidation. For each photocatalytic system different approaches are discussed, concerning either structural modifications of the porphyrin derivatives or the phase in which the process takes place, i.e. homogenous or heterogenous. The most important findings for each porphyrin-based photocatalytic reaction are presented and accompanied by the analysis of mechanistic aspects when possible. Finally, the perspectives and limitations are discussed, providing future guidelines for the development of highly efficient metalloporphyrin-based biomimetic systems towards energy and environmental applications.
Collapse
Affiliation(s)
- Asterios Charisiadis
- Instituto de Ciencia de Materiales de Madrid, Consejo Superior De Investigaciones Científicas, Sor Juana Inés de la Cruz, 3, Madrid, Spain
| | - Vasilis Nikolaou
- Chimie Et Interdisciplinarité, Synthèse, Analyse, Modélisation (CEISAM), CNRS UMR 6230, Nantes, France
| | - Emmanouil Nikoloudakis
- Laboratory of Bioinorganic Chemistry, Department of Chemistry, University of Crete, Heraklion, Crete, Greece.
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology - Hellas (FORTH), Heraklion, Greece
| | - Kalliopi Ladomenou
- Hephaestus Laboratory, School of Chemistry, Faculty of Sciences, Democritus University of Thrace, GR-65404 Kavala, Greece.
| | - Georgios Charalambidis
- Theoretical and Physical Chemistry Institute, National Hellenic Research Foundation, Athens, Greece.
| | - Athanassios G Coutsolelos
- Laboratory of Bioinorganic Chemistry, Department of Chemistry, University of Crete, Heraklion, Crete, Greece.
- Institute of Electronic Structure and Laser (IESL), Foundation for Research and Technology - Hellas (FORTH), Heraklion, Greece
| |
Collapse
|
3
|
Zeng Y, He D, Sun J, Zhang A, Luo H, Pan X. Non-radical oxidation driven by iron-based materials without energy assistance in wastewater treatment. WATER RESEARCH 2024; 264:122255. [PMID: 39153313 DOI: 10.1016/j.watres.2024.122255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Revised: 07/22/2024] [Accepted: 08/11/2024] [Indexed: 08/19/2024]
Abstract
Chemical oxidation is extensively utilized to mitigate the impact of organic pollutants in wastewater. The non-radical oxidation driven by iron-based materials is noted for its environmental friendliness and resistance to wastewater matrix, and it is a promising approach for practical wastewater treatment. However, the complexity of heterogeneous systems and the diversity of evolutionary pathways make the mechanisms of non-radical oxidation driven by iron-based materials elusive. This work provides a systematic review of various non-radical oxidation systems driven by iron-based materials, including singlet oxygen (1O2), reactive iron species (RFeS), and interfacial electron transfer. The unique mechanisms by which iron-based materials activate different oxidants (ozone, hydrogen peroxide, persulfate, periodate, and peracetic acid) to produce non-radical oxidation are described. The roles of active sites and the unique structures of iron-based materials in facilitating non-radical oxidation are discussed. Commonly employed identification methods in wastewater treatment are compared, such as quenching, chemical probes, spectroscopy, mass spectrometry, and electrochemical testing. According to the process of iron-based materials driving non-radical oxidation to remove organic pollutants, the driving factors at different stages are summarized. Finally, challenges and countermeasures are proposed in terms of mechanism exploration, detection methods and practical applications of non-radical oxidation driven by iron-based materials. This work provides valuable insights for understanding and developing non-radical oxidation systems.
Collapse
Affiliation(s)
- Yifeng Zeng
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Dongqin He
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Jianqiang Sun
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Anping Zhang
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China
| | - Hongwei Luo
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China; Shaoxing Research Institute, Zhejiang University of Technology, Shaoxing 312085, China.
| | - Xiangliang Pan
- College of Environment, Zhejiang University of Technology, Hangzhou 310014, China.
| |
Collapse
|
4
|
Wang YW, Liu XN, Zheng J, Su J, Li QJ, Cai XR, Wang Q, Liang XY. DMAP-promoted oxidative functionalization of α-amino ketones via oxygen delivery from water/alcohols. Chem Commun (Camb) 2024; 60:7359-7362. [PMID: 38919041 DOI: 10.1039/d4cc02348j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
This paper shows a novel oxidative functionalization of α-amino ketones to yield the corresponding α-ketoamides and α-acylimidates. The reaction proceeds via oxygen delivery from water/alcohols in conjunction with an electron acceptor and 4-dimethylaminopyridine (DMAP). Mechanistic study indicates that DMAP exhibits a dual function of nucleophilic catalysis and proton abstraction.
Collapse
Affiliation(s)
- Ying-Wei Wang
- College of Chemical Engineering, Sichuan University of Science & Engineering Zigong, Sichuan 643000, China.
| | - Xiao-Nan Liu
- College of Chemical Engineering, Sichuan University of Science & Engineering Zigong, Sichuan 643000, China.
| | - Jia Zheng
- Wuliangye Yibing CO., Ltd, Yibing, Sichuan 644000, China
| | - Jian Su
- Wuliangye Yibing CO., Ltd, Yibing, Sichuan 644000, China
| | - Qi-Jun Li
- Wuliangye Yibing CO., Ltd, Yibing, Sichuan 644000, China
| | - Xian-Rong Cai
- College of Chemical Engineering, Sichuan University of Science & Engineering Zigong, Sichuan 643000, China.
| | - Qiang Wang
- Wuliangye Yibing CO., Ltd, Yibing, Sichuan 644000, China
| | - Xing-Yong Liang
- College of Chemical Engineering, Sichuan University of Science & Engineering Zigong, Sichuan 643000, China.
| |
Collapse
|
5
|
De Tovar J, Leblay R, Wang Y, Wojcik L, Thibon-Pourret A, Réglier M, Simaan AJ, Le Poul N, Belle C. Copper-oxygen adducts: new trends in characterization and properties towards C-H activation. Chem Sci 2024; 15:10308-10349. [PMID: 38994420 PMCID: PMC11234856 DOI: 10.1039/d4sc01762e] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 05/11/2024] [Indexed: 07/13/2024] Open
Abstract
This review summarizes the latest discoveries in the field of C-H activation by copper monoxygenases and more particularly by their bioinspired systems. This work first describes the recent background on copper-containing enzymes along with additional interpretations about the nature of the active copper-oxygen intermediates. It then focuses on relevant examples of bioinorganic synthetic copper-oxygen intermediates according to their nuclearity (mono to polynuclear). This includes a detailed description of the spectroscopic features of these adducts as well as their reactivity towards the oxidation of recalcitrant Csp3 -H bonds. The last part is devoted to the significant expansion of heterogeneous catalytic systems based on copper-oxygen cores (i.e. within zeolite frameworks).
Collapse
Affiliation(s)
- Jonathan De Tovar
- Université Grenoble-Alpes, CNRS, Département de Chimie Moléculaire Grenoble France
| | - Rébecca Leblay
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Institut des Sciences Moléculaires de Marseille Marseille France
| | - Yongxing Wang
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Institut des Sciences Moléculaires de Marseille Marseille France
| | - Laurianne Wojcik
- Université de Brest, Laboratoire de Chimie, Electrochimie Moléculaires et Chimie Analytique Brest France
| | | | - Marius Réglier
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Institut des Sciences Moléculaires de Marseille Marseille France
| | - A Jalila Simaan
- Aix Marseille Univ, CNRS, Centrale Marseille, iSm2, Institut des Sciences Moléculaires de Marseille Marseille France
| | - Nicolas Le Poul
- Université de Brest, Laboratoire de Chimie, Electrochimie Moléculaires et Chimie Analytique Brest France
| | - Catherine Belle
- Université Grenoble-Alpes, CNRS, Département de Chimie Moléculaire Grenoble France
| |
Collapse
|
6
|
Guo J, Gao B, Li Q, Wang S, Shang Y, Duan X, Xu X. Size-Dependent Catalysis in Fenton-like Chemistry: From Nanoparticles to Single Atoms. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2403965. [PMID: 38655917 DOI: 10.1002/adma.202403965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/20/2024] [Indexed: 04/26/2024]
Abstract
State-of-the-art Fenton-like reactions are crucial in advanced oxidation processes (AOPs) for water purification. This review explores the latest advancements in heterogeneous metal-based catalysts within AOPs, covering nanoparticles (NPs), single-atom catalysts (SACs), and ultra-small atom clusters. A distinct connection between the physical properties of these catalysts, such as size, degree of unsaturation, electronic structure, and oxidation state, and their impacts on catalytic behavior and efficacy in Fenton-like reactions. In-depth comparative analysis of metal NPs and SACs is conducted focusing on how particle size variations and metal-support interactions affect oxidation species and pathways. The review highlights the cutting-edge characterization techniques and theoretical calculations, indispensable for deciphering the complex electronic and structural characteristics of active sites in downsized metal particles. Additionally, the review underscores innovative strategies for immobilizing these catalysts onto membrane surfaces, offering a solution to the inherent challenges of powdered catalysts. Recent advances in pilot-scale or engineering applications of Fenton-like-based devices are also summarized for the first time. The paper concludes by charting new research directions, emphasizing advanced catalyst design, precise identification of reactive oxygen species, and in-depth mechanistic studies. These efforts aim to enhance the application potential of nanotechnology-based AOPs in real-world wastewater treatment.
Collapse
Affiliation(s)
- Jirui Guo
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Baoyu Gao
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Qian Li
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| | - Shaobin Wang
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Yanan Shang
- College of Safety and Environmental Engineering, Shandong University of Science and Technology, Qingdao, 266590, P. R. China
| | - Xiaoguang Duan
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Xing Xu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan, 250100, P. R. China
| |
Collapse
|
7
|
Malik DD, Ryu W, Kim Y, Singh G, Kim JH, Sankaralingam M, Lee YM, Seo MS, Sundararajan M, Ocampo D, Roemelt M, Park K, Kim SH, Baik MH, Shearer J, Ray K, Fukuzumi S, Nam W. Identification, Characterization, and Electronic Structures of Interconvertible Cobalt-Oxygen TAML Intermediates. J Am Chem Soc 2024; 146:13817-13835. [PMID: 38716885 PMCID: PMC11216523 DOI: 10.1021/jacs.3c14346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
The reaction of Li[(TAML)CoIII]·3H2O (TAML = tetraamido macrocyclic tetraanionic ligand) with iodosylbenzene at 253 K in acetone in the presence of redox-innocent metal ions (Sc(OTf)3 and Y(OTf)3) or triflic acid affords a blue species 1, which is converted reversibly to a green species 2 upon cooling to 193 K. The electronic structures of 1 and 2 have been determined by combining advanced spectroscopic techniques (X-band electron paramagnetic resonance (EPR), electron nuclear double resonance (ENDOR), X-ray absorption spectroscopy/extended X-ray absorption fine structure (XAS/EXAFS), and magnetic circular dichroism (MCD)) with ab initio theoretical studies. Complex 1 is best represented as an S = 1/2 [(Sol)(TAML•+)CoIII---OH(LA)]- species (LA = Lewis/Brønsted acid and Sol = solvent), where an S = 1 Co(III) center is antiferromagnetically coupled to S = 1/2 TAML•+, which represents a one-electron oxidized TAML ligand. In contrast, complex 2, also with an S = 1/2 ground state, is found to be multiconfigurational with contributions of both the resonance forms [(H-TAML)CoIV═O(LA)]- and [(H-TAML•+)CoIII═O(LA)]-; H-TAML and H-TAML•+ represent the protonated forms of TAML and TAML•+ ligands, respectively. Thus, the interconversion of 1 and 2 is associated with a LA-associated tautomerization event, whereby H+ shifts from the terminal -OH group to TAML•+ with the concomitant formation of a terminal cobalt-oxo species possessing both singlet (SCo = 0) Co(III) and doublet (SCo = 1/2) Co(IV) characters. The reactivities of 1 and 2 at different temperatures have been investigated in oxygen atom transfer (OAT) and hydrogen atom transfer (HAT) reactions to compare the activation enthalpies and entropies of 1 and 2.
Collapse
Affiliation(s)
- Deesha D Malik
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wooyeol Ryu
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Yujeong Kim
- Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Korea
| | - Gurjot Singh
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Jun-Hyeong Kim
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science, Daejeon 34141, Korea
| | | | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Mi Sook Seo
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Mahesh Sundararajan
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science, Daejeon 34141, Korea
- Theoretical Chemistry Section, Chemistry Division, Bhabha Atomic Research Centre, Mumbai 400 085, India
| | - Daniel Ocampo
- Department of Chemistry, Trinity University, San Antonio, Texas 78212-7200, United States
| | - Michael Roemelt
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Kiyoung Park
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
| | - Sun Hee Kim
- Western Seoul Center, Korea Basic Science Institute, Seoul 03759, Korea
- Department of Chemistry, Chung-Ang University, Seoul 06974, Korea
| | - Mu-Hyun Baik
- Department of Chemistry, Korea Advanced Institute of Science and Technology, Daejeon 34141, Korea
- Center for Catalytic Hydrocarbon Functionalizations, Institute for Basic Science, Daejeon 34141, Korea
| | - Jason Shearer
- Department of Chemistry, Trinity University, San Antonio, Texas 78212-7200, United States
| | - Kallol Ray
- Department of Chemistry, Humboldt-Universität zu Berlin, Brook-Taylor-Straße 2, 12489 Berlin, Germany
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
8
|
Kumar R, Maji A, Biswas B, Draksharapu A. Amphoteric reactivity of a putative Cu(II)- mCPBA intermediate. Dalton Trans 2024; 53:5401-5406. [PMID: 38426906 DOI: 10.1039/d3dt03747a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
In copper-based enzymes, Cu-hydroperoxo/alkylperoxo species are proposed as key intermediates for their biological activity. A vast amount of literature is available on the functional and structural mimics of enzymatic systems with heme and non-heme ligand frameworks to stabilize high valent metal intermediates, mostly at low temperatures. Herein, we report a reaction between [CuI(NCCH3)4]+ and meta-chloroperoxybenzoic acid (mCPBA) in CH3CN that produces a putative CuII(mCPBA) species (1). 1 was characterized by UV/Vis, resonance Raman, and EPR spectroscopies. 1 can catalyze both electrophilic and nucleophilic reactions, demonstrating its amphoteric behavior. Additionally, 1 can also conduct electron transfer reactions with a weak reducing agent such as diacetyl ferrocene, making it one of the reactive copper-based intermediates. One of the most important aspects of the current work is the easy synthesis of a CuII(mCPBA) adduct with no complicated ligands for stabilization. Over time, 1 decays to form a CuII paddle wheel complex (2) and is found to be unreactive towards substrate oxidation.
Collapse
Affiliation(s)
- Rakesh Kumar
- Southern Laboratories - 208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| | - Anweshika Maji
- Southern Laboratories - 208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| | - Bhargab Biswas
- Southern Laboratories - 208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| | - Apparao Draksharapu
- Southern Laboratories - 208A, Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur-208016, India.
| |
Collapse
|
9
|
Wang R, Pan Y, Feng S, Liang C, Xie J, Lau TC, Liu Y. Structure and reactivity of a seven-coordinate ruthenium acylperoxo complex. Chem Commun (Camb) 2024; 60:312-315. [PMID: 38063010 DOI: 10.1039/d3cc04751b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
The use of metal-acylperoxo complexes as oxidants has been little explored. Herein we report the synthesis and characterization of the first seven-coordinate Ru-acylperoxo complex, [RuIV(bdpm)(pic)2(mCPBA)]+ (H2bdpm = [2,2'-bipyridine]-6,6'-diylbis(diphenylmethanol); pic = 4-picoline; HmCPBA = m-chloroperbenzoic acid). This complex is a highly reactive oxidant for C-H bond activation and O-atom transfer reactions.
Collapse
Affiliation(s)
- Rui Wang
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China.
- Science Island Branch, Graduate School of USTC, Hefei 230026, P. R. China
| | - Yunling Pan
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China.
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Sushan Feng
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China.
- Institutes of Physical Science and Information Technology, Anhui University, Hefei 230601, P. R. China
| | - Chenyi Liang
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China.
- Science Island Branch, Graduate School of USTC, Hefei 230026, P. R. China
| | - Jianhui Xie
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Tai-Chu Lau
- Department of Chemistry, City University of Hong Kong, Kowloon Tong, Hong Kong, P. R. China
| | - Yingying Liu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China.
| |
Collapse
|
10
|
Pan Y, Zhou M, Wang R, Song D, Yiu SM, Xie J, Lau KC, Lau TC, Liu Y. Structure and Reactivity of a Seven-Coordinate Ruthenium Iodosylbenzene Complex. Inorg Chem 2023; 62:7772-7778. [PMID: 37146252 DOI: 10.1021/acs.inorgchem.3c00417] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
Seven-coordinate (CN7) ruthenium-oxo species have attracted much attention as highly reactive intermediates in both organic and water oxidation. Apart from metal-oxo, other metal-oxidant adducts, such as metal-iodosylarenes, have also recently emerged as active oxidants. We reported herein the first example of a CN7 Ru-iodosylbenzene complex, [RuIV(bdpm)(pic)2(O)I(Cl)Ph]+ (H2bdpm = [2,2'-bipyridine]-6,6'-diylbis(diphenylmethanol); pic = 4-picoline). The X-ray crystal structure of this complex shows that it adopts a distorted pentagonal bipyramidal geometry with Ru-O(I) and O-I distances of 2.0451(39) and 1.9946(40) Å, respectively. This complex is highly reactive, and it readily undergoes O-atom transfer (OAT) and C-H bond activation reactions with various organic substrates. This work should provide insights for the development of new highly reactive oxidizing agents based on CN7 geometry.
Collapse
Affiliation(s)
- Yunling Pan
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Miaomiao Zhou
- Department of Chemistry, City University of Hong Kong, Kowloon Tong 999077, Hong Kong, P. R. China
| | - Rui Wang
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
| | - Dan Song
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Shek-Man Yiu
- Department of Chemistry, City University of Hong Kong, Kowloon Tong 999077, Hong Kong, P. R. China
| | - Jianhui Xie
- Anhui Province Key Laboratory of Advanced Catalytic Materials and Reaction Engineering, School of Chemistry and Chemical Engineering, Hefei University of Technology, Hefei 230009, P. R. China
| | - Kai-Chung Lau
- Department of Chemistry, City University of Hong Kong, Kowloon Tong 999077, Hong Kong, P. R. China
| | - Tai-Chu Lau
- Department of Chemistry, City University of Hong Kong, Kowloon Tong 999077, Hong Kong, P. R. China
- Research Center for Eco-environmental Engineering, Dongguan University of Technology, Dongguan 523808, P. R. China
| | - Yingying Liu
- Institute of Intelligent Machines, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, P. R. China
| |
Collapse
|
11
|
Kulesa KM, Padilha DS, Thapa B, Mazumder S, Losovyj Y, Schlegel HB, Scarpellini M, Verani CN. A bioinspired cobalt catalyst based on a tripodal imidazole/pyridine platform capable of water reduction and oxidation. J Inorg Biochem 2023; 242:112162. [PMID: 36841008 DOI: 10.1016/j.jinorgbio.2023.112162] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 02/04/2023] [Accepted: 02/13/2023] [Indexed: 02/17/2023]
Abstract
The prototypical drug carrier [CoII(L1)Cl]PF6 (1), where L1 is a tripodal amine bound to pyridine and methyl-imidazoles, had its electrocatalytic water splitting activity studied under different pH conditions. This species contains a high-spin 3d7 CoII metal center, and is capable of generating both H2 from water reduction and O2 from water oxidation. Turnover numbers reach 390 after 3 h for water reduction. Initial water oxidation activity is molecular, with TONs of 71 at pH 7 and 103 at pH 11.5. The results reveal that species 1 can undergo several redox transformations, including reduction to the 3d8 CoI species that precedes a LS3d6 hydride for water reduction, as well as nominal CoIVO and CoIII-OOH species required for water oxidation. Post-catalytic analyses confirm the molecular nature of reduction and support initial molecular activity for oxidation.
Collapse
Affiliation(s)
- Krista M Kulesa
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA
| | - Diego S Padilha
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-611, Brazil
| | - Bishnu Thapa
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA
| | - Shivnath Mazumder
- Department of Chemistry, Indian Institute of Technology Jammu, Jammu 181221, India
| | - Yaroslav Losovyj
- Department of Chemistry, Indiana University, Bloomington, 800 E. Kirkwood Avenue, Bloomington, IN 47405, USA
| | - H Bernhard Schlegel
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA.
| | - Marciela Scarpellini
- Instituto de Química, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ 21941-611, Brazil.
| | - Cláudio N Verani
- Department of Chemistry, Wayne State University, 5101 Cass Avenue, Detroit, MI 48202, USA.
| |
Collapse
|
12
|
Ansari M, Rajaraman G. Comparative oxidative ability of mononuclear and dinuclear high-valent iron-oxo species towards the activation of methane: does the axial/bridge atom modulate the reactivity? Dalton Trans 2023; 52:308-325. [PMID: 36504243 DOI: 10.1039/d2dt02559k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Over the years, mononuclear FeIVO species have been extensively studied, but the presence of dinuclear FeIVO species in soluble methane monooxygenase (sMMO) has inspired the development of biomimic models that could activate inert substrates such as methane. There are some successful attempts; particularly the [(Por)(m-CBA) FeIV(μ-N)FeIV(O)(Por˙+)]- species has been reported to activate methane and yield decent catalytic turnover numbers and therefore regarded as the closest to the sMMO enzyme functional model, as no mononuclear FeIVO analogues could achieve this feat. In this work, we have studied a series of mono and dinuclear models using DFT and ab initio DLPNO-CCSD(T) calculations to probe the importance of nuclearity in enhancing the reactivity. We have probed the catalytic activities of four complexes: [(HO)FeIV(O)(Por)]- (1), [(HO)FeIV(O)(Por˙+)] (2), μ-oxo dinuclear iron species [(Por)(m-CBA)FeIV(μ-O)FeIV(O) (Por˙+)]- (3) and N-bridged dinuclear iron species [(Por)(m-CBA)FeIV(μ-N)FeIV(O)(Por˙+)]- (4) towards the activation of methane. Additionally, calculations were performed on the mononuclear models [(X)FeIV(O)(Por˙+)]n {X = N 4a (n = -2), NH 4b (n = -1) and NH24c (n = 0)} to understand the role of nuclearity in the reactivity. DFT calculations performed on species 1-4 suggest an interesting variation among them, with species 1-3 possessing an intermediate spin (S = 1) as a ground state and species 4 possessing a high-spin (S = 2) as a ground state. Furthermore, the two FeIV centres in species 3 and 4 are antiferromagnetically coupled, yielding a singlet state with a distinct difference in their electronic structure. On the other hand, species 2 exhibits a ferromagnetic coupling between the FeIV and the Por˙+ moiety. Our calculations suggest that the higher barriers for the C-H bond activation of methane and the rebound step for species 1 and 3 are very high in energy, rendering them unreactive towards methane, while species 2 and 4 have lower barriers, suggesting their reactivity towards methane. Studies on the system reveal that model 4a has multiple FeN bonds facilitating greater reactivity, whereas the other two models have longer Fe-N bonds and less radical character with steeper barriers. Strong electronic cooperativity is found to be facilitated by the bridging nitride atom, and this cooperativity is suppressed by substituents such as oxygen, rendering them inactive. Thus, our study unravels that apart from enhancing the nuclearity, bridging atoms that facilitate strong cooperation between the metals are required to activate very inert substrates such as methane, and our results are broadly in agreement with earlier experimental findings.
Collapse
Affiliation(s)
- Mursaleem Ansari
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| | - Gopalan Rajaraman
- Department of Chemistry, Indian Institute of Technology Bombay, Mumbai 400076, India.
| |
Collapse
|
13
|
Nicholas KM, Lander C, Shao Y. Computational Evaluation of Potential Molecular Catalysts for Nitrous Oxide Decomposition. Inorg Chem 2022; 61:14591-14605. [PMID: 36067530 DOI: 10.1021/acs.inorgchem.2c01598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Nitrous oxide (N2O) is a potent greenhouse gas (GHG) with limited use as a mild anesthetic and underdeveloped reactivity. Nitrous oxide splitting (decomposition) is critical to its mitigation as a GHG. Although heterogeneous catalysts for N2O decomposition have been developed, highly efficient, long-lived solid catalysts are still needed, and the details of the catalytic pathways are not well understood. Reported herein is a computational evaluation of three potential molecular (homogeneous) catalysts for N2O splitting, which could aid in the development of more active and robust catalysts and provide deeper mechanistic insights: one Cu(I)-based, [(CF3O)4Al]Cu (A-1), and two Ru(III)-based, Cl(POR)Ru (B-1) and (NTA)Ru (C-1) (POR = porphyrin, NTA = nitrilotriacetate). The structures and energetic viability of potential intermediates and key transition states are evaluated according to a two-stage reaction pathway: (A) deoxygenation (DO), during which a metal-N2O complex undergoes N-O bond cleavage to produce N2 and a metal-oxo species and (B) (di)oxygen evolution (OER), in which the metal-oxo species dimerizes to a dimetal-peroxo complex, followed by conversion to a metal-dioxygen species from which dioxygen dissociates. For the (F-L)Cu(I) activator (A-1), deoxygenation of N2O is facilitated by an O-bound (F-L)Cu-O-N2 or better by a bimetallic N,O-bonded, (F-L)Cu-NNO-Cu(F-L) complex; the resulting copper-oxyl (F-L)Cu-O is converted exergonically to (F-L)Cu-(η2,η2-O2)-Cu(F-L), which leads to dioxygen species (F-L)Cu(η2-O2), that favorably dissociates O2. Key features of the DO/OER process for (POR)ClRu (B-1) include endergonic N2O coordination, facile N2 evolution from LR'u-N2O-RuL to Cl(POR)RuO, moderate barrier coupling of Cl(POR)RuO to peroxo Cl(POR)Ru(O2)Ru(POR)Cl, and eventual O2 dissociation from Cl(POR)Ru(η1-O2), which is nearly thermoneutral. N2O decomposition promoted by (NTA)Ru(III) (C-1) can proceed with exergonic N2O coordination, facile N2 dissociation from (NTA)Ru-ON2 or (NTA)Ru-N2O-Ru(NTA) to form (NTA)Ru-O; dimerization of the (NTA)Ru-oxo species is facile to produce (NTA)Ru-O-O-Ru(NTA), and subsequent OE from the peroxo species is moderately endergonic. Considering the overall energetics, (F-L)Cu and Cl(POR)Ru derivatives are deemed the best candidates for promoting facile N2O decomposition.
Collapse
Affiliation(s)
- Kenneth M Nicholas
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Chance Lander
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| | - Yihan Shao
- Department of Chemistry and Biochemistry, Stephenson Life Sciences Research Center, University of Oklahoma, Norman, Oklahoma 73019, United States
| |
Collapse
|
14
|
Recent progress in oxidation chemistry of high-valent ruthenium-oxo and osmium-oxo complexes and related species. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214536] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
15
|
Malik DD, Lee Y, Nam W. Identification of a cobalt(
IV
)–oxo intermediate as an active oxidant in catalytic oxidation reactions. B KOREAN CHEM SOC 2022. [DOI: 10.1002/bkcs.12584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Deesha D. Malik
- Department of Chemistry and Nano Science Ewha Womans University Seoul South Korea
| | - Yong‐Min Lee
- Department of Chemistry and Nano Science Ewha Womans University Seoul South Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science Ewha Womans University Seoul South Korea
| |
Collapse
|
16
|
Duan C, Nandy A, Adamji H, Roman-Leshkov Y, Kulik HJ. Machine Learning Models Predict Calculation Outcomes with the Transferability Necessary for Computational Catalysis. J Chem Theory Comput 2022; 18:4282-4292. [PMID: 35737587 DOI: 10.1021/acs.jctc.2c00331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Virtual high-throughput screening (VHTS) and machine learning (ML) have greatly accelerated the design of single-site transition-metal catalysts. VHTS of catalysts, however, is often accompanied with a high calculation failure rate and wasted computational resources due to the difficulty of simultaneously converging all mechanistically relevant reactive intermediates to expected geometries and electronic states. We demonstrate a dynamic classifier approach, i.e., a convolutional neural network that monitors geometry optimizations on the fly, and exploit its good performance and transferability in identifying geometry optimization failures for catalyst design. We show that the dynamic classifier performs well on all reactive intermediates in the representative catalytic cycle of the radical rebound mechanism for the conversion of methane to methanol despite being trained on only one reactive intermediate. The dynamic classifier also generalizes to chemically distinct intermediates and metal centers absent from the training data without loss of accuracy or model confidence. We rationalize this superior model transferability as arising from the use of electronic structure and geometric information generated on-the-fly from density functional theory calculations and the convolutional layer in the dynamic classifier. When used in combination with uncertainty quantification, the dynamic classifier saves more than half of the computational resources that would have been wasted on unsuccessful calculations for all reactive intermediates being considered.
Collapse
Affiliation(s)
- Chenru Duan
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Aditya Nandy
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.,Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Husain Adamji
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Yuriy Roman-Leshkov
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Heather J Kulik
- Department of Chemical Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
17
|
Heterogenization of Molecular Water Oxidation Catalysts in Electrodes for (Photo)Electrochemical Water Oxidation. WATER 2022. [DOI: 10.3390/w14030371] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Water oxidation is still one of the most important challenges to develop efficient artificial photosynthetic devices. In recent decades, the development and study of molecular complexes for water oxidation have allowed insight into the principles governing catalytic activity and the mechanism as well as establish ligand design guidelines to improve performance. However, their durability and long-term stability compromise the performance of molecular-based artificial photosynthetic devices. In this context, heterogenization of molecular water oxidation catalysts on electrode surfaces has emerged as a promising approach for efficient long-lasting water oxidation for artificial photosynthetic devices. This review covers the state of the art of strategies for the heterogenization of molecular water oxidation catalysts onto electrodes for (photo)electrochemical water oxidation. An overview and description of the main binding strategies are provided explaining the advantages of each strategy and their scope. Moreover, selected examples are discussed together with the the differences in activity and stability between the homogeneous and the heterogenized system when reported. Finally, the common design principles for efficient (photo)electrocatalytic performance summarized.
Collapse
|
18
|
Nesterova OV, Vassilyeva OY, Skelton BW, Bieńko A, Pombeiro AJL, Nesterov DS. A novel o-vanillin Fe(III) complex catalytically active in C-H oxidation: exploring the magnetic exchange interactions and spectroscopic properties with different DFT functionals. Dalton Trans 2021; 50:14782-14796. [PMID: 34595485 DOI: 10.1039/d1dt02366g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The novel complex [FeIIICl(L)2(H2O)] (1) was synthesized by interaction of iron(III) chloride with ethanol solution of o-vanillin (HL) and characterized by IR, UV/Vis spectroscopy, thermogravimetry and single crystal X-ray diffraction analysis. The molecules of 1 in the solid state are joined into supramolecular dimeric units, where a set of strong hydrogen bonds predefines the structure of the dimer according to the "key-lock" principle. From the Hirshfield surface analysis the contribution of π⋯π stacking to the overall stabilization of the dimer was found to be negligible. Broken symmetry DFT calculations suggested the presence of long-range antiferromagnetic interactions (J = -0.12 cm-1 for H = -JS1S2 formalism) occurring through the Fe-O⋯O-Fe pathway, as evidenced by the studies of the model dimers where the water molecules were substituted by acetonitrile and acetone ones. The benchmark studies using a set of literature examples and various DFT functionals revealed the hybrid-GGA B3LYP as the best one for prediction of FeIII⋯FeIII antiferromagnetic exchange couplings of small magnitude. Magnetic susceptibility measurements confirmed antiferromagnetic coupling between the metal atoms in 1 with a coupling constant of -0.35 cm-1. Catalytic studies demonstrated that 1 acts as an efficient catalyst in the oxidation of cyclohexane with hydrogen peroxide in the presence of nitric acid promoter and under mild conditions (yield up to 37% based on the substrate), while tert-butylhydroperoxide (TBHP) and m-chloroperoxybenzoic acid (m-CPBA) as oxidants exhibit less efficiency. Combined UV/TDDFT studies evidence the structural rearrangement of 1 in acetonitrile with the formation of [FeIIICl(L)2(CH3CN)] species. The TDDFT benchmark using nine common DFT functionals and two model compounds (o-vanillin and [FeIII(H2O)6]3+ ion) support the hybrid meta-GGA M06-2X functional as the one most correctly predicting the excited state structure for the Fe(III) complexes, under the conditions studied.
Collapse
Affiliation(s)
- Oksana V Nesterova
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| | - Olga Yu Vassilyeva
- Department of Chemistry, Taras Shevchenko National University of Kyiv, 64/13 Volodymyrska str., Kyiv 01601, Ukraine.
| | - Brian W Skelton
- School of Molecular Sciences, M310, University of Western Australia, Perth, WA 6009, Australia
| | - Alina Bieńko
- Faculty of Chemistry, University of Wroclaw, F. Joliot-Curie 14, Wroclaw 50-383, Poland
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal. .,Peoples' Friendship University of Russia (RUDN University), Research Institute of Chemistry, 6 Miklukho-Maklaya st, Moscow 117198, Russia
| | - Dmytro S Nesterov
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal.
| |
Collapse
|
19
|
Li X, Cho K, Nam W. Electronic properties and reactivity patterns of
high‐valent metal‐oxo
species of Mn, Fe, Co, and Ni. B KOREAN CHEM SOC 2021. [DOI: 10.1002/bkcs.12389] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Xiao‐Xi Li
- Department of Chemistry and Nano Science Ewha Womans University Seoul Korea
| | - Kyung‐Bin Cho
- Department of Chemistry Jeonbuk National University Jeonju Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science Ewha Womans University Seoul Korea
| |
Collapse
|
20
|
Almalki ASA. Synthesis and Characterization of 3‐(Aryl azo)‐4‐hydroxy‐1,2‐naphthoquinone Ruthenium(III) Complexes as Catalysts for Benzyl Alcohol Oxidation. ChemistrySelect 2021. [DOI: 10.1002/slct.202102200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
21
|
Tomboc GM, Park Y, Lee K, Jin K. Directing transition metal-based oxygen-functionalization catalysis. Chem Sci 2021; 12:8967-8995. [PMID: 34276926 PMCID: PMC8261717 DOI: 10.1039/d1sc01272j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 06/07/2021] [Indexed: 11/21/2022] Open
Abstract
This review presents the recent progress of oxygen functionalization reactions based on non-electrochemical (conventional organic synthesis) and electrochemical methods. Although both methods have their advantages and limitations, the former approach has been used to synthesize a broader range of organic substances as the latter is limited by several factors, such as poor selectivity and high energy cost. However, because electrochemical methods can replace harmful terminal oxidizers with external voltage, organic electrosynthesis has emerged as greener and more eco-friendly compared to conventional organic synthesis. The progress of electrochemical methods toward oxygen functionalization is presented by an in-depth discussion of different types of electrically driven-chemical organic synthesis, with particular attention to recently developed electrochemical systems and catalyst designs. We hope to direct the attention of readers to the latest breakthroughs of traditional oxygen functionalization reactions and to the potential of electrochemistry for the transformation of organic substrates to useful end products.
Collapse
Affiliation(s)
- Gracita M Tomboc
- Department of Chemistry and Research Institute for Natural Sciences, Korea University Seoul 02841 Republic of Korea
| | - Yeji Park
- Department of Chemistry and Research Institute for Natural Sciences, Korea University Seoul 02841 Republic of Korea
| | - Kwangyeol Lee
- Department of Chemistry and Research Institute for Natural Sciences, Korea University Seoul 02841 Republic of Korea
| | - Kyoungsuk Jin
- Department of Chemistry and Research Institute for Natural Sciences, Korea University Seoul 02841 Republic of Korea
| |
Collapse
|
22
|
Jeon H, Oh H, Hong S. Synthesis, characterization and catalytic activity of a mononuclear nonheme copper(II)-iodosylbenzene adduct. J Inorg Biochem 2021; 223:111524. [PMID: 34218127 DOI: 10.1016/j.jinorgbio.2021.111524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/11/2021] [Accepted: 06/25/2021] [Indexed: 10/21/2022]
Abstract
Iodosylbenzene (PhIO) and its derivatives have attracted significant attention due to their various applications in organic synthesis and biomimetic studies. For example, PhIO has been extensively used for generating high-valent metal-oxo species that have been regarded as key intermediates in diverse oxidative reactions in biological system. However, recent studies have shown that metal-iodosylbenzene adduct, known as a precursor of metal-oxo species, plays an important role in transition metal-catalyzed oxidation reactions. During last few decades, extensive investigations have been conducted on the synthesis and reactivity studies of metal-iodosylbenzene adducts with early and middle transition metals including manganese, iron, cobalt. Nevertheless, metal-iodosylbenzene adducts with late transition metals such as nickel, copper and zinc, still remains elusive. Herein, we report a novel copper(II)-iodosylbenzene adduct bearing a linear ligand composed of two pyridine rings and an ethoxyethanol side-chain, [Cu(OIPh)(HN3O2)]2+ (1). The copper(II)-iodosylbenzene adduct was characterized by several spectroscopic methods including UV-vis spectroscopy, electrospray ionization mass spectrometer (ESI MS), and electron paramagnetic resonance (EPR) combined with theoretical calculations. Interestingly, 1 can carry out the catalytic sulfoxidation reaction. In sulfoxidation reaction with thioanisole under catalytic reaction condition, not only two-electron but also four-electron oxidized products such sulfoxide and sulfone were yielded, respectively. However, 1 was not an efficient oxidant towards CH bond activation and epoxidation reactions due to the steric hindrance created by the intramolecular H-bonding interaction between HN3O2 ligand and iodosylbenzene moiety.
Collapse
Affiliation(s)
- Hyeri Jeon
- Department of Chemistry, Sookmyung Women's University, 04310, Seoul, 03722, Republic of Korea
| | - Hana Oh
- Department of Chemistry, Sookmyung Women's University, 04310, Seoul, 03722, Republic of Korea
| | - Seungwoo Hong
- Department of Chemistry, Sookmyung Women's University, 04310, Seoul, 03722, Republic of Korea.
| |
Collapse
|
23
|
Tsang C, Lee LYS, Cheung K, Chan P, Wong W, Wong K. Unexpected Promotional Effects of Alkyl‐Tailed Ligands and Anions on the Electrochemical Generation of Ruthenium(IV)‐Oxo Complexes. ChemElectroChem 2021. [DOI: 10.1002/celc.202100364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Chui‐Shan Tsang
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University Hung Hom, Kowloon Hong Kong SAR China
| | - Lawrence Yoon Suk Lee
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University Hung Hom, Kowloon Hong Kong SAR China
| | - Kwong‐Chak Cheung
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University Hung Hom, Kowloon Hong Kong SAR China
| | - Pak‐Ho Chan
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University Hung Hom, Kowloon Hong Kong SAR China
| | - Wing‐Leung Wong
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University Hung Hom, Kowloon Hong Kong SAR China
| | - Kwok‐Yin Wong
- State Key Laboratory of Chemical Biology and Drug Discovery and Department of Applied Biology and Chemical Technology The Hong Kong Polytechnic University Hung Hom, Kowloon Hong Kong SAR China
| |
Collapse
|
24
|
Xia Y, Li N, Lu W, Wang W, Yao Y, Zhu Z, Xu T, Gu Y, Chen W. High-valent iron-oxo species on pyridine-containing MWCNTs generated in a solar-induced H 2O 2 activation system for the removal of antimicrobials. CHEMOSPHERE 2021; 273:129545. [PMID: 33497981 DOI: 10.1016/j.chemosphere.2021.129545] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 12/18/2020] [Accepted: 01/02/2021] [Indexed: 06/12/2023]
Abstract
The overuse of antimicrobials has resulted in serious damage to the ecosystem and human health. Therefore, the development of an efficient, stable, and reusable catalyst to eliminate antimicrobials under mild conditions is highly desired. Drawing inspiration from the metabolism of drugs by the enzymes in the human body, such as heme catalase, we developed a simulated enzyme catalyst, perchloride iron phthalocyanine (FePcCl16), immobilized on pyridine-modified multiwalled carbon nanotubes (FePcCl16-Py-MWCNTs). In the catalyst, FePcCl16 worked as the active site, and the axial fifth ligand, 4-aminopyridine, was introduced to cleave H2O2 heterolytically. Inspired by the reaction mechanism of heme catalase and H2O2, the catalytic system was designed based on FePcCl16-Py-MWCNTs for oxidizing 4-chloro-3,5-dimethylphenol (PCMX) by H2O2 activation. The results showed that the catalytic activity of the system was significantly increased under simulated solar light irradiation, which can promote electron transfer for heterolytic cleavage of H2O2. The enzyme-like catalyst achieved much higher catalytic activity than the Fenton reaction when the pH was close to neutral. It turned out that the main active species was high-valent iron-oxo (Fe(Ⅳ) = O) rather than hydroxyl radial (•OH) or superoxide radical (•O2-), different from most mechanisms. Ultraperformance liquid chromatography-high-definition mass spectrometry showed that the substrate was degraded to small molecule acids by Fe(Ⅳ) = O active species and further mineralization indicated by total organic carbon. The catalytic system exhibited highly efficient, stable, recyclable catalytic performance under mild conditions and did not cause secondary pollution to the environment. This study of a simulated enzyme catalytic system offers important insight into sewage treatment.
Collapse
Affiliation(s)
- Yun Xia
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Nan Li
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Wangyang Lu
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Wentao Wang
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yuyuan Yao
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zhexin Zhu
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Tiefeng Xu
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yan Gu
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Wenxing Chen
- National Engineering Lab for Textile Fiber Materials & Processing Technology (Zhejiang), Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
25
|
Guo M, Lee YM, Fukuzumi S, Nam W. Biomimetic metal-oxidant adducts as active oxidants in oxidation reactions. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213807] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
26
|
Singh P, Stewart-Jones E, Denler MC, Jackson TA. Mechanistic insight into oxygen atom transfer reactions by mononuclear manganese(IV)-oxo adducts. Dalton Trans 2021; 50:3577-3585. [PMID: 33616141 PMCID: PMC8075156 DOI: 10.1039/d0dt04436a] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
High-valent metal-oxo intermediates are well known to facilitate oxygen-atom transfer (OAT) reactions both in biological and synthetic systems. These reactions can occur by a single-step OAT mechanism or by a stepwise process initiated by rate-limiting electron transfer between the substrate and the metal-oxo unit. Several recent reports have demonstrated that changes in the metal reduction potential, caused by the addition of Brønsted or Lewis acids, cause a change in sulfoxidation mechanism of MnIV-oxo complexes from single-step OAT to the multistep process. In this work, we sought to determine if ca. 4000-fold rate variations observed for sulfoxidation reactions by a series of MnIV-oxo complexes supported by neutral, pentadentate ligands could arise from a change in sulfoxidation mechanism. We examined the basis for this rate variation by performing variable-temperature kinetic studies to determine activation parameters for the reactions of the MnIV-oxo complexes with thioanisole. These data reveal activation barriers predominantly controlled by activation enthalpy, with unexpectedly small contributions from the activation entropy. We also compared the reactivity of these MnIV-oxo complexes by a Hammett analysis using para-substituted thioanisole derivatives. Similar Hammett ρ values from this analysis suggest a common sulfoxidation mechanism for these complexes. Because the rates of oxidation of the para-substituted thioanisole derivatives by the MnIV-oxo adducts are much faster than that expected from the Marcus theory of outer-sphere electron-transfer, we conclude that these reactions proceed by a single-step OAT mechanism. Thus, large variations in sulfoxidation by this series of MnIV-oxo centers occur without a change in reaction mechanism.
Collapse
Affiliation(s)
- Priya Singh
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, KS 66045, USA.
| | - Eleanor Stewart-Jones
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, KS 66045, USA.
| | - Melissa C Denler
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, KS 66045, USA.
| | - Timothy A Jackson
- The University of Kansas, Department of Chemistry and Center for Environmentally Beneficial Catalysis, 1567 Irving Hill Road, Lawrence, KS 66045, USA.
| |
Collapse
|
27
|
Chen G, Fan T, Liu B, Xue M, Wei JJ, Kang SR, Tong HX, Yi XY. A Ru diphosphonato complex with a metal-metal bond for water oxidation. Dalton Trans 2021; 50:2018-2022. [PMID: 33554978 DOI: 10.1039/d0dt04150e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Unlike [Ru2(μ-O2CCH3)4], the structurally analogous water-soluble RuII,III2 diphosphonato complex K3[Ru2(hedp)2(H2O)2] (K3·1) is only involved in stoichiometric water oxidation with a maximum 67% O2 yield under CAN/HNO3 solution (pH 1.0) for 2.5 h. The water oxidation mechanism and intermediate products were ascertained by UV-vis, ESI-MS and DFT calculation.
Collapse
Affiliation(s)
- Guo Chen
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha, Hunan 410083, P. R. China.
| | - Ting Fan
- School of Chemistry and Chemical Engineering, South China University of Technology, Guangzhou, Guangdong 510641, P. R. China
| | - Bin Liu
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha, Hunan 410083, P. R. China.
| | - Meng Xue
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha, Hunan 410083, P. R. China.
| | - Jing-Jing Wei
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha, Hunan 410083, P. R. China.
| | - Shi-Rui Kang
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha, Hunan 410083, P. R. China.
| | - Hai-Xia Tong
- School of Chemistry and Food Engineering, Changsha University of Science and Technology, Changsha, Hunan 410114, P. R. China
| | - Xiao-Yi Yi
- College of Chemistry and Chemical Engineering, Hunan Provincial Key Laboratory of Chemical Power Sources, Hunan Provincial Key Laboratory of Efficient and Clean Utilization of Manganese Resources, Central South University, Changsha, Hunan 410083, P. R. China.
| |
Collapse
|
28
|
Kojima T. Study on Proton-Coupled Electron Transfer in Transition Metal Complexes. BULLETIN OF THE CHEMICAL SOCIETY OF JAPAN 2020. [DOI: 10.1246/bcsj.20200213] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Takahiko Kojima
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8571, Japan
| |
Collapse
|
29
|
High-valent ruthenium(IV)-oxo complex stabilized mesoporous carbon (graphitized)/nafion modified electrocatalyst for methanol oxidation reaction in neutral pH. J Electroanal Chem (Lausanne) 2020. [DOI: 10.1016/j.jelechem.2020.114457] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
30
|
Immobilization of Ir(OH)3 Nanoparticles in Mesospaces of Al-SiO2 Nanoparticles Assembly to Enhance Stability for Photocatalytic Water Oxidation. Catalysts 2020. [DOI: 10.3390/catal10091015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Iridium hydroxide (Ir(OH)3) nanoparticles exhibiting high catalytic activity for water oxidation were immobilized inside mesospaces of a silica-nanoparticles assembly (SiO2NPA) to suppress catalytic deactivation due to agglomeration. The Ir(OH)3 nanoparticles immobilized in SiO2NPA (Ir(OH)3/SiO2NPA) catalyzed water oxidation by visible light irradiation of a solution containing persulfate ion (S2O82−) and tris(2,2′-bipyridine)ruthenium(II) ion ([RuII(bpy)3]2+) as a sacrificial electron acceptor and a photosensitizer, respectively. The yield of oxygen (O2) based on the used amount of S2O82− was maintained over 80% for four repetitive runs using Ir(OH)3/SiO2NPA prepared by the co-accumulation method, although the yield decreased for the reaction system using Ir(OH)3/SiO2NPA prepared by the equilibrium adsorption method or Ir(OH)3 nanoparticles without SiO2NPA support under the same reaction conditions. Immobilization of Ir(OH)3 nanoparticles in Al3+-doped SiO2NPA (Al-SiO2NPA) results in further enhancement of the catalytic stability with the yield of more than 95% at the fourth run of the repetitive experiments.
Collapse
|
31
|
Nasrollahzadeh M, Shafiei N, Nezafat Z, Soheili Bidgoli NS, Soleimani F. Recent progresses in the application of cellulose, starch, alginate, gum, pectin, chitin and chitosan based (nano)catalysts in sustainable and selective oxidation reactions: A review. Carbohydr Polym 2020; 241:116353. [DOI: 10.1016/j.carbpol.2020.116353] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 04/07/2020] [Accepted: 04/19/2020] [Indexed: 10/24/2022]
|
32
|
Recent progresses in the application of lignin derived (nano)catalysts in oxidation reactions. MOLECULAR CATALYSIS 2020. [DOI: 10.1016/j.mcat.2020.110942] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
33
|
|
34
|
Lopez S, Mayes DM, Crouzy S, Cavazza C, Leprêtre C, Moreau Y, Burzlaff N, Marchi-Delapierre C, Ménage S. A Mechanistic Rationale Approach Revealed the Unexpected Chemoselectivity of an Artificial Ru-Dependent Oxidase: A Dual Experimental/Theoretical Approach. ACS Catal 2020. [DOI: 10.1021/acscatal.9b04904] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Sarah Lopez
- Univ. Grenoble-Alpes, CEA, CNRS, IRIG, CBM, F-38000 Grenoble, France
- Univ. Grenoble-Alpes, DCM-SeRCO, F-38000 Grenoble, France
| | | | - Serge Crouzy
- Univ. Grenoble-Alpes, CEA, CNRS, IRIG, CBM, F-38000 Grenoble, France
| | - Christine Cavazza
- Univ. Grenoble-Alpes, CEA, CNRS, IRIG, CBM, F-38000 Grenoble, France
| | - Chloé Leprêtre
- Univ. Grenoble-Alpes, CEA, CNRS, IRIG, CBM, F-38000 Grenoble, France
| | - Yohann Moreau
- Univ. Grenoble-Alpes, CEA, CNRS, IRIG, CBM, F-38000 Grenoble, France
| | - Nicolai Burzlaff
- Department of Chemistry and Pharmacy, Friedrich-Alexander-University of Erlangen-Nürnberg, Egerlandstraße 1, 91058 Erlangen, Germany
| | | | - Stéphane Ménage
- Univ. Grenoble-Alpes, CEA, CNRS, IRIG, CBM, F-38000 Grenoble, France
| |
Collapse
|
35
|
Dutta M, Bania KK, Pratihar S. A Remote 'Imidazole'-Based Ruthenium(II) Para-Cymene Pre-catalyst for the Selective Oxidation Reaction of Alkyl Arenes and Alcohols. Chem Asian J 2020; 15:926-932. [PMID: 32031753 DOI: 10.1002/asia.201901760] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/21/2020] [Indexed: 11/12/2022]
Abstract
Herein we disclosed the use of a remote 'imidazole'-based precatalyst [(para-cymene)RuII (L)Cl]+ , C-1 where L=2-(4-substituted-phenyl)-1H-imidazo[4,5-f][1,10] phenanthroline) for the selective oxidation of a variety of alkyl arenes/heteroarenes and alcohols to their corresponding aldehydes or ketones in presence of tert-butyl hydroperoxide (TBHP). The remote 'imidazole' moiety present in the complex facilitates the activation of oxidant and subsequent generation of active species via the release of para-cymene from C-1, which in-turn was less effective without the 'imidazole' moiety. The mechanistic features of C-1 promoted oxidation of alkyl arenes were also assessed from spectroscopic, kinetic, and few control experiments. The substrate scope for C-1 promoted oxidation reaction was assessed based on the selective oxidation of 27-different alkyl arenes/heteroarenes and 25 different alcohols to their corresponding aldehydes/ketones in moderate to good yields.
Collapse
Affiliation(s)
- Manali Dutta
- Department of Chemical Sciences, Tezpur University, Napaam, Assam, 784028, India
| | - Kusum K Bania
- Department of Chemical Sciences, Tezpur University, Napaam, Assam, 784028, India
| | - Sanjay Pratihar
- Department of Chemical Sciences, Tezpur University, Napaam, Assam, 784028, India.,Inorganic Materials and Catalysis Division, CSIR-Central Salt and Marine Chemical Research Institute, G. B. Marg, Bhavnagar, Gujarat, 364002, India
| |
Collapse
|
36
|
Alkane and alkene oxidation reactions catalyzed by nickel(II) complexes: Effect of ligand factors. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213085] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
37
|
Fukuzumi S, Lee YM, Nam W. Photocatalytic Oxygenation Reactions Using Water and Dioxygen. CHEMSUSCHEM 2019; 12:3931-3940. [PMID: 31250964 DOI: 10.1002/cssc.201901276] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 06/25/2019] [Indexed: 06/09/2023]
Abstract
Water (H2 O) is the most environmentally benign reductant and is oxidized to evolve dioxygen (O2 )-the greenest oxidant-in photosystem II. This Minireview focuses on photocatalytic oxygenation of substrates with H2 O as an oxygen source and O2 as an oxidant. Metal complexes can be oxidized by two molecules of one-electron oxidants with H2 O to produce high-valent metal-oxo complexes, which act as active oxidants for oxygenating organic substrates. When an appropriate oxidant is employed for the substrate oxidation, the reduced oxidant can be oxidized by dioxygen to regenerate the oxidant when water and dioxygen are used as an oxygen source and an oxidant, respectively. Photoinduced electron transfer from a substrate (S) to the excited state of complex [(L)MIII ]+ produces a substrate radical cation (S.+ ), accompanied by the regeneration of [(L)MII ]. S.+ then reacts with H2 O to produce an OH adduct radical that is oxidized by [(L)MIII ]+ to yield an oxygenated product (SO), in which the oxygen atom originates from H2 O, accompanied by regeneration of [(L)MII ]. Photocatalytic oxidation of H2 O by O2 to produce H2 O2 is combined with the catalytic oxygenation of substrates with H2 O2 to produce the oxygenated products, in which the oxygen atom originates from O2 at the beginning but later from water. This Minireview provides a promising strategy for oxygenation of substrates by using H2 O as an oxygen source and O2 as the greenest oxidant.
Collapse
Affiliation(s)
- Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea
- Graduate School of Science and Engineering, Meijo University, Nagoya, Aichi, 468-8502, Japan
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul, 03760, Korea
| |
Collapse
|
38
|
Das A, Nutting JE, Stahl SS. Electrochemical C-H oxygenation and alcohol dehydrogenation involving Fe-oxo species using water as the oxygen source. Chem Sci 2019; 10:7542-7548. [PMID: 31588305 PMCID: PMC6761876 DOI: 10.1039/c9sc02609f] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 06/25/2019] [Indexed: 11/30/2022] Open
Abstract
High-valent iron-oxo complexes are key intermediates in C-H functionalization reactions. Herein, we report the generation of a (TAML)Fe-oxo species (TAML = tetraamido macrocyclic ligand) via electrochemical proton-coupled oxidation of the corresponding (TAML)FeIII-OH2 complex. Cyclic voltammetry (CV) and spectroelectrochemical studies are used to elucidate the relevant (TAML)Fe redox processes and determine the predominant (TAML)Fe species present in solution during bulk electrolysis. Evidence for iron(iv) and iron(v) species is presented, and these species are used in the electrochemical oxygenation of benzylic C-H bonds and dehydrogenation of alcohols to ketones.
Collapse
Affiliation(s)
- Amit Das
- Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706 , USA .
| | - Jordan E Nutting
- Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706 , USA .
| | - Shannon S Stahl
- Department of Chemistry , University of Wisconsin-Madison , 1101 University Avenue , Madison , Wisconsin 53706 , USA .
| |
Collapse
|
39
|
Hong YH, Han JW, Jung J, Nakagawa T, Lee YM, Nam W, Fukuzumi S. Photocatalytic Oxygenation Reactions with a Cobalt Porphyrin Complex Using Water as an Oxygen Source and Dioxygen as an Oxidant. J Am Chem Soc 2019; 141:9155-9159. [DOI: 10.1021/jacs.9b02864] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Young Hyun Hong
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Ji Won Han
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Jieun Jung
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- Department of Chemistry, Graduate School of Science, Nagoya University, Chikusa, Nagoya 464-8602, Japan
| | - Tatsuo Nakagawa
- Unisoku Co., Ltd., SENTAN, Japan Science and Technology Agency (JST), Hirakata, Osaka 573-0131, Japan
| | - Yong-Min Lee
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- School of Chemistry and Chemical Engineering, Shaanxi Normal University, Xi’an 710119, China
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea
- Faculty of Science and Engineering, Meijo University, SENTAN, Japan Science and Technology Agency (JST), Nagoya, Aichi 468-8502, Japan
| |
Collapse
|
40
|
Hong YH, Jung J, Nakagawa T, Sharma N, Lee YM, Nam W, Fukuzumi S. Photodriven Oxidation of Water by Plastoquinone Analogs with a Nonheme Iron Catalyst. J Am Chem Soc 2019; 141:6748-6754. [PMID: 30943724 DOI: 10.1021/jacs.9b02517] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Photoirradiation of an acetonitrile solution containing p-benzoquinone derivatives (X-Q) as plastoquinone analogs, a nonheme iron(II) complex, [(N4Py)FeII]2+ (N4Py = N, N-bis(2-pyridylmethyl)- N-bis(2-pyridyl)methylamine), and H2O afforded the evolution of O2 and the formation of the corresponding hydroquinone derivatives (X-QH2) quantitatively. During the photodriven oxidation of water by X-Q, [(N4Py)FeII]2+ was oxidized by the excited state of X-Q to produce the iron(IV)-oxo complex ([(N4Py)FeIV(O)]2+) quantitatively. The concentration of [(N4Py)FeIV(O)]2+ remained virtually the same during the repeated cycles of photodriven oxidation of water by X-Q. [(N4Py)FeIV(O)]2+ was further oxidized by the excited state of X-Q to [(N4Py)FeV(O)]3+; this FeV-oxo species is proposed as an active oxidant that affects the water oxidation. The photocatalytic mechanism of the water oxidation by X-Q with [(N4Py)FeII]2+ was clarified by detecting intermediates using various spectroscopic techniques, such as transient absorption and electron paramagnetic resonance measurements. To the best of our knowledge, the present study reports the first example of a functional model of Photosystem II (PSII) using X-Q as plastoquinone analogs in the photocatalytic oxidation of water.
Collapse
Affiliation(s)
- Young Hyun Hong
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea
| | - Jieun Jung
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea.,Department of Chemistry, Graduate School of Science , Nagoya University , Chikusa, Nagoya 464-8602 , Japan
| | - Tatsuo Nakagawa
- Unisoku Co., Ltd, SENTAN, Japan Science and Technology Agency (JST) , Hirakata , Osaka 573-0131 , Japan
| | - Namita Sharma
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea.,State Key Laboratory for Oxo Synthesis and Selective Oxidation, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP) , Chinese Academy of Sciences , Lanzhou 730000 , China
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea.,Faculty of Science and Engineering , Meijo University, SENTAN, Japan Science and Technology Agency (JST) , Nagoya , Aichi 468-0073 , Japan
| |
Collapse
|
41
|
Heterometallic CoIIIZnII Schiff Base Catalyst for Mild Hydroxylation of C(sp3)–H Bonds of Unactivated Alkanes: Evidence for Dual Mechanism Controlled by the Promoter. Catalysts 2019. [DOI: 10.3390/catal9030209] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The novel Schiff base complex [CoIIIZnIIL3Cl2]·CH3OH (1) was synthesized by interaction of zinc powder, cobalt(II) chloride and methanol solution of the pre-formed HL in air (HL is the product of condensation of o-vanillin and methylamine) and characterized by IR, UV-Vis and NMR spectroscopy, ESI-MS and single crystal X-ray diffraction analysis. In the heterometallic core of 1 the two metal centers are bridged by deprotonated phenoxy groups of the L− ligands with the cobalt-zinc separation of 3.123 Å. Catalytic investigations demonstrated a pronounced activity of 1 towards mild alkane oxidation with m-chloroperbenzoic acid (m-CPBA) as an oxidant and cis-1,2-dimethylcyclohexane (cis-1,2-DMCH) as the model substrate. The influence of the nature of different promoting agents of various acidities (from HOTf to pyridine) on the catalytic process was studied in detail and a pronounced activity of 1 in the presence of nitric acid promoter was found, also showing a high retention of stereoconfiguration of the substrate (>99% for cis-1,2-DMCH). The best achieved yield of tertiary cis-alcohol based on the oxidant was 61%, with a turnover number (TON) of 198 for nitric acid as promoter. The 18O-incorporations into the alcohols when the reactions were performed under 18O2 atmosphere using acetic and nitric acid promoters, suggest that the cis-1,2-DMCH hydroxylation proceeds by two distinct pathways, a non-stereoselective and a stereoselective one (with and without involvement of a long-lived free carbon radical, respectively). The former dominates in the case of acetic acid promoter and the latter is realized in the case of HNO3 promoter.
Collapse
|
42
|
Fukuzumi S, Lee YM, Nam W. Kinetics and mechanisms of catalytic water oxidation. Dalton Trans 2019; 48:779-798. [PMID: 30560964 DOI: 10.1039/c8dt04341h] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The kinetics and mechanisms of thermal and photochemical oxidation of water with homogeneous and heterogeneous catalysts, including conversion from homogeneous to heterogeneous catalysts in the course of water oxidation, are discussed in this review article. Molecular and homogeneous catalysts have the advantage to clarify the catalytic mechanisms by detecting active intermediates in catalytic water oxidation. On the other hand, heterogeneous nanoparticle catalysts have advantages for practical applications due to high catalytic activity, robustness and easier separation of catalysts by filtration as compared with molecular homogeneous precursors. Ligand oxidation of homogeneous catalysts sometimes results in the dissociation of ligands to form nanoparticles, which act as much more efficient catalysts for water oxidation. Since it is quite difficult to identify active intermediates on the heterogeneous catalyst surface, the mechanism of water oxidation has hardly been clarified under heterogeneous catalytic conditions. This review focuses on the kinetics and mechanisms of catalytic water oxidation with homogeneous catalysts, which may be converted to heterogeneous nanoparticle catalysts depending on various reaction conditions.
Collapse
Affiliation(s)
- Shunichi Fukuzumi
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.
| | | | | |
Collapse
|
43
|
Natali M, Nastasi F, Puntoriero F, Sartorel A. Mechanistic Insights into Light‐Activated Catalysis for Water Oxidation. Eur J Inorg Chem 2019. [DOI: 10.1002/ejic.201801236] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Mirco Natali
- Department of Chemical and Pharmaceutical Sciences University of Ferrara Via L. Borsari 46 44121 Ferrara Italy
| | - Francesco Nastasi
- Department of Chemical Biological University of Messina Via Sperone 31 98166 Messina Italy
| | - Fausto Puntoriero
- Department of Chemical Biological University of Messina Via Sperone 31 98166 Messina Italy
| | - Andrea Sartorel
- Department of Chemical Sciences Biological University of Padova Via Marzolo 1 35131 Padova Italy
| |
Collapse
|
44
|
Sankaralingam M, Lee YM, Pineda-Galvan Y, Karmalkar DG, Seo MS, Jeon SH, Pushkar Y, Fukuzumi S, Nam W. Redox Reactivity of a Mononuclear Manganese-Oxo Complex Binding Calcium Ion and Other Redox-Inactive Metal Ions. J Am Chem Soc 2019; 141:1324-1336. [PMID: 30580510 DOI: 10.1021/jacs.8b11492] [Citation(s) in RCA: 66] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Mononuclear nonheme manganese(IV)-oxo complexes binding calcium ion and other redox-inactive metal ions, [(dpaq)MnIV(O)]+-M n+ (1-Mn+, M n+ = Ca2+, Mg2+, Zn2+, Lu3+, Y3+, Al3+, and Sc3+) (dpaq = 2-[bis(pyridin-2-ylmethyl)]amino- N-quinolin-8-yl-acetamidate), were synthesized by reacting a hydroxomanganese(III) complex, [(dpaq)MnIII(OH)]+, with iodosylbenzene (PhIO) in the presence of redox-inactive metal ions (M n+). The Mn(IV)-oxo complexes were characterized using various spectroscopic techniques. In reactivity studies, we observed contrasting effects of M n+ on the reactivity of 1-M n+ in redox reactions such as electron-transfer (ET), oxygen atom transfer (OAT), and hydrogen atom transfer (HAT) reactions. In the OAT and ET reactions, the reactivity order of 1-M n+, such as 1-Sc3+ ≈ 1-Al3+ > 1-Y3+ > 1-Lu3+ > 1-Zn2+ > 1-Mg2+ > 1-Ca2+, follows the Lewis acidity of M n+ bound to the Mn-O moiety; that is, the stronger the Lewis acidity of M n+, the higher the reactivity of 1-M n+ becomes. In sharp contrast, the reactivity of 1-M n+ in the HAT reaction was reversed, giving the reactivity order 1-Ca2+ > 1-Mg2+ > 1-Zn2+ > 1-Lu3+> 1-Y3+> 1-Al3+ ≈ 1-Sc3+; that is, the higher is Lewis acidity of M n+, the lower the reactivity of 1-M n+ in the HAT reaction. The latter result implies that the Lewis acidity of M n+ bound to the Mn-O moiety can modulate the basicity of the metal-oxo moiety, thus influencing the HAT reactivity of 1-M n+; cytochrome P450 utilizes the axial thiolate ligand to increase the basicity of the iron-oxo moiety, which enhances the reactivity of compound I in C-H bond activation reactions.
Collapse
Affiliation(s)
| | - Yong-Min Lee
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea
| | - Yuliana Pineda-Galvan
- Department of Physics and Astronomy , Purdue University , 525 Northwestern Avenue , West Lafayette , Indiana 47907 , United States
| | - Deepika G Karmalkar
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea
| | - Mi Sook Seo
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea
| | - So Hyun Jeon
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea
| | - Yulia Pushkar
- Department of Physics and Astronomy , Purdue University , 525 Northwestern Avenue , West Lafayette , Indiana 47907 , United States
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea.,Faculty of Science and Engineering, SENTAN, Japan Science and Technology Agency (JST) , Meijo University , Nagoya , Aichi 468-8502 , Japan
| | - Wonwoo Nam
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea.,State Key Laboratory for Oxo Synthesis and Selective Oxidation, Center for Excellence in Molecular Synthesis, Suzhou Research Institute of LICP, Lanzhou Institute of Chemical Physics (LICP) , Chinese Academy of Sciences , Lanzhou , 730000 , China
| |
Collapse
|
45
|
Harmalkar DS, Santosh G, Shetgaonkar SB, Sankaralingam M, Dhuri SN. A putative heme manganese(v)-oxo species in the C–H activation and epoxidation reactions in an aqueous buffer. NEW J CHEM 2019. [DOI: 10.1039/c9nj01381d] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Synthesis and reactivity studies of manganese(v)-oxo species in the C–H activation of alkyl hydrocarbons and epoxidation of cyclohexene in aqueous conditions are investigated.
Collapse
Affiliation(s)
| | - G. Santosh
- School of Chemical Sciences
- Goa University
- Panaji
- India
- Divison of Chemistry
| | | | | | | |
Collapse
|
46
|
Devi T, Lee YM, Nam W, Fukuzumi S. Aromatic hydroxylation of anthracene derivatives by a chromium( iii)-superoxo complex via proton-coupled electron transfer. Chem Commun (Camb) 2019; 55:8286-8289. [DOI: 10.1039/c9cc03245b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Aromatic hydroxylation of anthracene by a mononuclear nonheme Cr(iii)-superoxo complex proceeds via the rate-determining proton-coupled electron transfer, followed by fast further oxidation to anthraquinone.
Collapse
Affiliation(s)
- Tarali Devi
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Korea
| | - Yong-Min Lee
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science
- Ewha Womans University
- Seoul 03760
- Korea
- Faculty of Science and Engineering
| |
Collapse
|
47
|
Saracini C, Fukuzumi S, Lee YM, Nam W. Photoexcited state chemistry of metal-oxygen complexes. Dalton Trans 2018; 47:16019-16026. [PMID: 30324192 DOI: 10.1039/c8dt03604g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Recent advances on the excited state chemistry of metal-oxygen synthetic complexes based on earth-abundant metals such as copper, cobalt, and manganese are reviewed to show a much enhanced reactivity of the photoexcited states as compared with their relative ground states. Mononuclear copper(ii)-superoxide and dinuclear copper(ii)-peroxo complexes underwent copper-oxygen bond cleavage, dioxygen release, and copper(i)/dioxygen rebinding upon photoexcitation at low temperature. Photoirradiation of the cobalt-oxygen compound [(TAML)CoIV(O)]2- (6) (TAML = tetraamidomacrocyclic ligand) at 5 °C yielded a cobalt-oxygen excited state with 0.6(1) ns lifetime, showing a high reactivity in the bimolecular electron-transfer oxidations of m-xylene and anisole. An extremely long-lived excited state was generated upon photoexcitation of a manganese(iv)-oxo complex binding two Sc(OTf)3 molecules, which enabled the hydroxylation of benzene.
Collapse
Affiliation(s)
- Claudio Saracini
- Department of Chemistry and Nano Science, Ewha Womans University, Seoul 03760, Korea.
| | | | | | | |
Collapse
|
48
|
Meng W, Qin Y, Hou Q, He W, Li J, Xu F. Dinuclear cage-core [Co2]/[Ni2] oxo-clusters supported by Sb(III) tartrate scaffolds: Synthesis, structure and magnetic properties. Polyhedron 2018. [DOI: 10.1016/j.poly.2018.06.045] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
49
|
Saracini C, Malik DD, Sankaralingam M, Lee YM, Nam W, Fukuzumi S. Enhanced Electron-Transfer Reactivity of a Long-Lived Photoexcited State of a Cobalt-Oxygen Complex. Inorg Chem 2018; 57:10945-10952. [PMID: 30133298 DOI: 10.1021/acs.inorgchem.8b01571] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Photodynamics and electron-transfer reactivity of an excited state derived from an earth-abundant mononuclear cobalt-oxygen complex ground state, [(TAML)CoIV(O)]2- (1; H4TAML = 3,4,8,9-tetrahydro-3,3,6,6,9,9-hexamethyl-1 H-1,4,8,11-benzotetraazo-cyclotridecane-2,5,7,10-(6 H, 11 H)tetrone), prepared by electron-transfer oxidation of Li[(TAML)CoIII]·3(H2O) (2) in a 1:1 acetonitrile/acetone solvent mixture at 5 °C, were investigated using a combination of femtosecond and nanosecond laser absorption spectroscopy. Visible light photoexcitation of 1 (λexc = 393 nm) resulted in generation of the excited state S2* (lifetime: 1.4(4) ps), detected 2 ps after laser irradiation by femtosecond laser spectroscopy. The initially formed excited state S2* converted to a lower-lying excited state, S1* (λmax = 580 nm), with rate constant kc = 7(2) × 1011 s-1 (S2* → S1*). S1* exhibited a 0.6(1) ns lifetime and converted to the initial ground state 1 with rate constant kd = 1.7(3) × 109 s-1 (S1* → 1). The same excited state dynamics was observed when 1 was generated by electron-transfer oxidation of 2 using different one-electron oxidants such as Cu(OTf)2 (OTf- = triflate anion), [Fe(bpy)3]3+ (bpy = 2,2'-bipyridine), and tris(4-bromophenyl)ammoniumyl radical cation (TBPA•+). The electron-transfer reactivity of S1* was probed by nanosecond laser photoexcitation of 1 in the presence of a series of electron donors with different one-electron oxidation potentials ( Eox vs SCE): benzene (2.35 V), toluene (2.20 V), m-xylene (2.02 V), and anisole (1.67 V). The excited state S1* engaged in electron-transfer reactions with m-xylene and anisole to generate π-dimer radical cations of m-xylene and anisole, respectively, observed by nanosecond laser transient absorption spectroscopy, whereas no reactivity was observed toward benzene and toluene. Such differential electron-transfer reactivity depending on the Eox values of electron donors allowed the estimation of the one-electron reduction potential of S1* ( Ered*) as 2.1(1) V vs SCE, which is much higher than that of the ground state ( Ered = 0.86 V vs SCE).
Collapse
Affiliation(s)
- Claudio Saracini
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea
| | - Deesha D Malik
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea
| | | | - Yong-Min Lee
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea
| | - Wonwoo Nam
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea
| | - Shunichi Fukuzumi
- Department of Chemistry and Nano Science , Ewha Womans University , Seoul 03760 , Korea.,Faculty of Science and Engineering, Meijo University, SENTAN, Japan Science and Technology Agency (JST) , Nagoya , Aichi 468-8502 , Japan
| |
Collapse
|
50
|
|