1
|
Chen X, Sun X, Dai T, Wang H, Zhao Q, Yang C, Du X, Xing X, Cheng X, Qiu D. Novel Fe(II)-Based Supramolecular Film Prepared by Interfacial Self-Assembly of an Asymmetric Polypyridine Ligand and Its Electrochromic Performance. Molecules 2025; 30:1376. [PMID: 40142151 PMCID: PMC11944750 DOI: 10.3390/molecules30061376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2025] [Revised: 03/16/2025] [Accepted: 03/18/2025] [Indexed: 03/28/2025] Open
Abstract
An asymmetric two-arm polypyridine ligand 4'-{4-[4-(2,2'-dipyridyl)phenyl]}-2,2':6',2'-terpyridine (TPY-Ph-BPY) with double coordination units was synthesized using the one-step Suzuki reaction. The metallic supramolecular film was subsequently obtained by the Fe2+-induced self-assembly method at the CHCl3-H2O interface, which displayed a distinct flat and continuous morphology. The supramolecular film-coated ITO electrode demonstrated a reversible electrochemical redox behavior with pronounced color changes between purple and light green. Its solid-state electrochromic device had an optical contrast (ΔT%) of 26.2% at λmax = 573 nm with balanced coloring (tc = 2.4 s) and bleaching (tb = 2.6 s) times and a high current efficiency of 507.8 cm2/C. Moreover, good cycling stability with a long-term reversible color change was observed beyond 900 cycles. These results suggested the promising potential of the TPY-Ph-BPY-Fe(II) supramolecular film for electrochromic applications.
Collapse
Affiliation(s)
- Xiya Chen
- College of Chemistry, Zhengzhou University, No. 100 of Kexue Road, Zhengzhou 450001, China
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Xiaomeng Sun
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Tingting Dai
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Hongwei Wang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Qian Zhao
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Chunxia Yang
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Xianchao Du
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Xiaojing Xing
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Xinfeng Cheng
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| | - Dongfang Qiu
- College of Chemistry and Pharmaceutical Engineering, Nanyang Normal University, Nanyang 473061, China
| |
Collapse
|
2
|
Abd-El-Aziz A, Ahmed SA, Zhang X, Ma N, Abd-El-Aziz AS. Macromolecules incorporating transition metals in the treatment and detection of cancer and infectious diseases: Progress over the last decade. Coord Chem Rev 2024; 510:215732. [DOI: 10.1016/j.ccr.2024.215732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
3
|
Lin Y, Li L, Shi Z, Zhang L, Li K, Chen J, Wang H, Lee JM. Catalysis with Two-Dimensional Metal-Organic Frameworks: Synthesis, Characterization, and Modulation. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309841. [PMID: 38217292 DOI: 10.1002/smll.202309841] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Indexed: 01/15/2024]
Abstract
The demand for the exploration of highly active and durable electro/photocatalysts for renewable energy conversion has experienced a significant surge in recent years. Metal-organic frameworks (MOFs), by virtue of their high porosity, large surface area, and modifiable metal centers and ligands, have gained tremendous attention and demonstrated promising prospects in electro/photocatalytic energy conversion. However, the small pore sizes and limited active sites of 3D bulk MOFs hinder their wide applications. Developing 2D MOFs with tailored thickness and large aspect ratio has emerged as an effective approach to meet these challenges, offering a high density of exposed active sites, better mechanical stability, better assembly flexibility, and shorter charge and photoexcited state transfer distances compared to 3D bulk MOFs. In this review, synthesis methods for the most up-to-date 2D MOFs are first overviewed, highlighting their respective advantages and disadvantages. Subsequently, a systematic analysis is conducted on the identification and electronic structure modulation of catalytic active sites in 2D MOFs and their applications in renewable energy conversion, including electrocatalysis and photocatalysis (electro/photocatalysis). Lastly, the current challenges and future development of 2D MOFs toward highly efficient and practical electro/photocatalysis are proposed.
Collapse
Affiliation(s)
- Yanping Lin
- School of Physics & New Energy, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Lu Li
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Zhe Shi
- School of Physics & New Energy, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Lishang Zhang
- School of Physics & New Energy, Xuzhou University of Technology, Xuzhou, 221018, China
| | - Ke Li
- School of Chemistry, Centre for Research on Adaptive Nanostructures and Nanodevices (CRANN) & Advanced Materials and BioEngineering Research (AMBER), Trinity College Dublin, 2 Dublin, Ireland
| | - Jianmei Chen
- College of Electronic and Optical Engineering & College of Flexible Electronics (Future Technology), Nanjing University of Posts & Telecommunications, Nanjing, 210023, China
| | - Hao Wang
- Research Institute of Superconductor Electronics, School of Electronic Science and Engineering, Nanjing University, Nanjing, 210023, China
| | - Jong-Min Lee
- School of Chemistry Chemical Engineering and Biotechnology, Nanyang Technological University, Singapore, 637459, Singapore
| |
Collapse
|
4
|
Gupta R, Bhandari S, Kaya S, Katin KP, Mondal PC. Thickness-Dependent Charge Transport in Three Dimensional Ru(II)- Tris(phenanthroline)-Based Molecular Assemblies. NANO LETTERS 2023. [PMID: 38048073 DOI: 10.1021/acs.nanolett.3c03256] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/05/2023]
Abstract
We describe here the fabrication of large-area molecular junctions with a configuration of ITO/[Ru(Phen)3]/Al to understand temperature- and thickness-dependent charge transport phenomena. Thanks to the electrochemical technique, thin layers of electroactive ruthenium(II)-tris(phenanthroline) [Ru(Phen)3] with thicknesses of 4-16 nm are covalently grown on sputtering-deposited patterned ITO electrodes. The bias-induced molecular junctions exhibit symmetric current-voltage (j-V) curves, demonstrating highly efficient long-range charge transport and weak attenuation with increased molecular film thickness (β = 0.70 to 0.79 nm-1). Such a lower β value is attributed to the accessibility of Ru(Phen)3 molecular conduction channels to Fermi levels of both the electrodes and a strong electronic coupling at ITO-molecules interfaces. The thinner junctions (d = 3.9 nm) follow charge transport via resonant tunneling, while the thicker junctions (d = 10-16 nm) follow thermally activated (activation energy, Ea ∼ 43 meV) Poole-Frenkel charge conduction, showing a clear "molecular signature" in the nanometric junctions.
Collapse
Affiliation(s)
- Ritu Gupta
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Shapath Bhandari
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| | - Savas Kaya
- Department of Pharmacy, Faculty of Science, Cumhuriyet University, Sivas 58140, Turkey
| | - Konstantin P Katin
- Institute of Nanotechnologies in Electronics, Spintronics and Photonics, National Research Nuclear University "MEPhI", Moscow 115409, Russia
| | - Prakash Chandra Mondal
- Department of Chemistry, Indian Institute of Technology Kanpur, Kanpur, Uttar Pradesh 208016, India
| |
Collapse
|
5
|
Liu Q, Guo Z, Wang C, Guo S, Xu Z, Hu C, Liu Y, Wang Y, He J, Wong W. A Cobalt-Based Metal-Organic Framework Nanosheet as the Electrode for High-Performance Asymmetric Supercapacitor. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207545. [PMID: 37088776 PMCID: PMC10288240 DOI: 10.1002/advs.202207545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 03/27/2023] [Indexed: 05/03/2023]
Abstract
Inspired by the significant advantages of the bottom-up synthesis whose structures and functionalities can be customized by the selection of molecular components, a 2D metal-organic framework (MOF) nanosheet Co-BTB-LB has been synthesized by a liquid-liquid interface-assisted method. The as-prepared Co-BTB-LB is identified by scanning electron microscopy/energy dispersive spectroscopy (SEM/EDX) and X-ray photoelectron spectroscopy (XPS), and the sheet-like structure is verified by scanning electron microscopy (SEM), high-resolution transmission electron microscopy (HRTEM), and atomic force microscopy (AFM). Co-BTB-LB electrode exhibits an excellent capacity of 4969.3 F g-1 at 1 A g-1 and good cycling stability with 75% capacity retention after 1000 cycles. The asymmetric supercapacitor device with Co-BTB-LB as the positive electrode shows a maximum energy density of 150.2 Wh kg-1 at a power density of 1619.2 W kg-1 and good cycling stability with a capacitance retention of 97.1% after 10000 cycles. This represents a state-of-the-art performance reported for asymmetric supercapacitor device using electroactive bottom-up metal-complex nanosheet, which will clearly lead to a significant expansion of the applicability of this type of 2D nanomaterials.
Collapse
Affiliation(s)
- Qian Liu
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry and ApplicationSchool of Chemical and Environmental EngineeringAnhui Polytechnic UniversityWuhu241000P. R. China
| | - Zengqi Guo
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry and ApplicationSchool of Chemical and Environmental EngineeringAnhui Polytechnic UniversityWuhu241000P. R. China
| | - Cong Wang
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry and ApplicationSchool of Chemical and Environmental EngineeringAnhui Polytechnic UniversityWuhu241000P. R. China
| | - Su Guo
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry and ApplicationSchool of Chemical and Environmental EngineeringAnhui Polytechnic UniversityWuhu241000P. R. China
| | - Zhiwei Xu
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry and ApplicationSchool of Chemical and Environmental EngineeringAnhui Polytechnic UniversityWuhu241000P. R. China
| | - Chenguang Hu
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry and ApplicationSchool of Chemical and Environmental EngineeringAnhui Polytechnic UniversityWuhu241000P. R. China
| | - Yujing Liu
- Anhui Province Key Laboratory of Functional Coordinated Complexes for Materials Chemistry and ApplicationSchool of Chemical and Environmental EngineeringAnhui Polytechnic UniversityWuhu241000P. R. China
| | - Yalei Wang
- Department of Applied Biology and Chemical Technology and Research Institute for Smart EnergyThe Hong Kong Polytechnic UniversityHung Hom, KowloonHong KongP. R. China
| | - Jun He
- School of Chemical Engineering and Light IndustryGuangdong University of TechnologyGuangzhou510006P.R. China
| | - Wai‐Yeung Wong
- Department of Applied Biology and Chemical Technology and Research Institute for Smart EnergyThe Hong Kong Polytechnic UniversityHung Hom, KowloonHong KongP. R. China
| |
Collapse
|
6
|
Ranjan Jena S, Mandal T, Choudhury J. Metal-Terpyridine Assembled Functional Materials for Electrochromic, Catalytic and Environmental Applications. CHEM REC 2022; 22:e202200165. [PMID: 36002341 DOI: 10.1002/tcr.202200165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 08/02/2022] [Indexed: 12/14/2022]
Abstract
Molecular assembly induced by metal-terpyridine-based coordinative interactions has become an emergent research topic due to its ease of synthesis and diverse applications. This article highlights recent significant developments in the metal-terpyridine-based supramolecular architectures. At first, the design aspect of the molecular building blocks has been described, followed by elaboration on how the ligand backbone plays an important role for achieving different dimensionalities of the resulting assemblies which exhibit a wide range of potential applications. After that, we discussed different synthetic approaches for constructing these assemblies, and finally, we focused on their significant developments in three specific areas, viz., electrochromic materials, catalysis and a new application in wastewater treatment. In the field of electrochromic materials, these assemblies made important advancements in various aspects like sub-second switching time (<1 s), low switching voltage (<1 V), increased switching stability (>10000 cycles), tuning of multiple colors by using multimetallic systems, fabrication of charge storing electrochromic devices, utilizing and storing solar energy etc. Similarly, the catalysis field witnessed application of the metal-terpyridine assemblies in C-H monohalogenation, heterogeneous Suzuki-Miyaura coupling, photocatalysis, reduction of carbon dioxide, etc. Finally, the environmental application of these coordination assemblies includes capturing Cr(VI) from waste water efficiently with high capture capacity, good recyclability, wide pH independency etc.
Collapse
Affiliation(s)
- Satya Ranjan Jena
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, India
| | - Tanmoy Mandal
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, India
| | - Joyanta Choudhury
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal, 462066, India
| |
Collapse
|
7
|
Kocábová J, Vavrek F, Nováková Lachmanová Š, Šebera J, Valášek M, Hromadová M. Self-Assembled Monolayers of Molecular Conductors with Terpyridine-Metal Redox Switching Elements: A Combined AFM, STM and Electrochemical Study. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238320. [PMID: 36500413 PMCID: PMC9738775 DOI: 10.3390/molecules27238320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 12/02/2022]
Abstract
Self-assembled monolayers (SAMs) of terpyridine-based transition metal (ruthenium and osmium) complexes, anchored to gold substrate via tripodal anchoring groups, have been investigated as possible redox switching elements for molecular electronics. An electrochemical study was complemented by atomic force microscopy (AFM) and scanning tunneling microscopy (STM) methods. STM was used for determination of the SAM conductance values, and computation of the attenuation factor β from tunneling current-distance curves. We have shown that SAMs of Os-tripod molecules contain larger adlayer structures compared with SAMs of Ru-tripod molecules, which are characterized by a large number of almost evenly distributed small islands. Furthermore, upon cyclic voltammetric experimentation, Os-tripod films rearrange to form a smaller number of even larger islands, reminiscent of the Ostwald ripening process. Os-tripod SAMs displayed a higher surface concentration of molecules and lower conductance compared with Ru-tripod SAMs. The attenuation factor of Os-tripod films changed dramatically, upon electrochemical cycling, to a higher value. These observations are in accordance with previously reported electron transfer kinetics studies.
Collapse
Affiliation(s)
- Jana Kocábová
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| | - František Vavrek
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| | - Štěpánka Nováková Lachmanová
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| | - Jakub Šebera
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
| | - Michal Valášek
- Institute of Nanotechnology, Karlsruhe Institute of Technology, P.O. Box 3640, 76021 Karlsruhe, Germany
| | - Magdaléna Hromadová
- J. Heyrovský Institute of Physical Chemistry of the Czech Academy of Sciences, Dolejškova 3, 18223 Prague, Czech Republic
- Correspondence:
| |
Collapse
|
8
|
Maeda H, Takada K, Fukui N, Nagashima S, Nishihara H. Conductive coordination nanosheets: Sailing to electronics, energy storage, and catalysis. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214693] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Zhao J, Yuan J, Fang Z, Huang S, Chen Z, Qiu F, Lu C, Zhu J, Zhuang X. One-dimensional coordination polymers based on metal–nitrogen linkages. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214735] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
10
|
Abstract
![]()
With the rapid development of optoelectronic fields,
electrochromic
(EC) materials and devices have received remarkable attention and
have shown attractive potential for use in emerging wearable and portable
electronics, electronic papers/billboards, see-through displays, and
other new-generation displays, due to the advantages of low power
consumption, easy viewing, flexibility, stretchability, etc. Despite
continuous progress in related fields, determining how to make electrochromics
truly meet the requirements of mature displays (e.g., ideal overall
performance) has been a long-term problem. Therefore, the commercialization
of relevant high-quality products is still in its infancy. In this
review, we will focus on the progress in emerging EC materials and
devices for potential displays, including two mainstream EC display
prototypes (segmented displays and pixel displays) and their commercial
applications. Among these topics, the related materials/devices, EC
performance, construction approaches, and processing techniques are
comprehensively disscussed and reviewed. We also outline the current
barriers with possible solutions and discuss the future of this field.
Collapse
Affiliation(s)
- Chang Gu
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Ai-Bo Jia
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Yu-Mo Zhang
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| | - Sean Xiao-An Zhang
- State Key Lab of Supramolecular Structure and Materials, College of Chemistry, Jilin University, Changchun 130012, People's Republic of China
| |
Collapse
|
11
|
Dey S, Hazari AS, Mobin SM, Lahiri GK. Diruthenium and triruthenium compounds of the potential redox active non-chelated η 1-N,η 1-N-benzothiadiazole bridge. Dalton Trans 2022; 51:8657-8670. [PMID: 35583102 DOI: 10.1039/d2dt00533f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
In the present study, a series of non-chelated BTD (2,1,3-benzothiadiazole)-bridged diruthenium(II) ([{(CH3CN)(acac)2RuII}2(μ-BTD)] 1, [{CH3CN(acac)2RuII}(μ-BTD){RuII(acac)2(η1-N-BTD)}] 2, [{(η1-N-BTD)(acac)2RuII}2(μ-BTD)] 3), and triruthenium ([{(acac)2RuII}3(μ-BTD)2(η1-N-BTD)2] 4) complexes with varying ratios of η1-N and μ-bis-η1-N,η1-N modes of BTD were studied. Complexes 1-4 (S = 0) were obtained via the one-pot reaction of electron-rich Ru(acac)2(CH3CN)2 and electron-deficient BTD in refluxing acetone. The relatively low Ru(II)/Ru(III) potential of 1-4 (0.08-0.44 V versus SCE) further facilitated the isolation of the corresponding mixed valent RuIIRuIII (S = 1/2) and RuIIRuIIRuIII (S = 1/2)/RuIIRuIIIRuIII (S = 1) forms [1]ClO4-[3]ClO4 and [4]ClO4/[4](ClO4)2, respectively. The single-crystal X-ray structures of the representative mixed valent [1]ClO4 and [3]ClO4 established (i) Ru⋯Ru distances of 6.227 Å and 6.256 Å (molecule A)/6.184 Å (molecule B), respectively, (ii) a significant variation of the N-S distance of BTD in [3]ClO4 as a function of its binding mode μ versus η1 and (iii) similar Ru-N (μ-BTD) distances in each case corresponding to a valence delocalised situation. The mixed valent diruthenium (1+-3+) and triruthenium (4+/42+) complexes exhibited metal-based anisotropic electron paramagnetic resonance (EPR) and moderately intense low-energy intervalence charge-transfer (IVCT) transitions in the near-infrared region of 1730-1890 nm. Analysis of the IVCT band using the Hush treatment revealed a valence delocalised class III mixed valent state with the electronic coupling Vab of ≈2640-2890 cm-1, as also corroborated by the Kc values of 105-108, solvent independency of the IVCT band and uniform spin distribution between the metal ions in the singly occupied state(s). Furthermore, the involvement of the BTD (η1 and μ)-based orbitals in the reduction processes was evident by its free radical EPR feature.
Collapse
Affiliation(s)
- Sanchaita Dey
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Arijit Singha Hazari
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| | - Shaikh M Mobin
- Discipline of Chemistry, Indian Institute of Technology Indore, Simrol, Khandwa Road, Indore-453552, India
| | - Goutam Kumar Lahiri
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai-400076, India.
| |
Collapse
|
12
|
|
13
|
Remarkably flexible 2,2′:6′,2″-terpyridines and their group 8–10 transition metal complexes – Chemistry and applications. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
14
|
Tu K, He J, Chen S, Liu C, Cheng J, He E, Li Y, Zhang L, Zhang H, Cheng Z. An alternating conduction-insulation "molecular fence" model from fluorinated metallopolymers. Chem Commun (Camb) 2022; 58:5383-5386. [PMID: 35412535 DOI: 10.1039/d2cc00826b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Introducing fluoroalkyl chains into metallopolymers is a prerequisite to studying the self-organization effect of fluoroalkyl chains and their structure-property relationship. In this work, we present a fluorinated metallopolymer to build an alternating conduction-insulation "molecular fence" model synthesized by the coordination of Ru(II) and a bis-terpyridine-end-capped-phenyl (BTP) ligand modified with fluoroalkyl chains. Taking advantage of scanning tunneling microscopy (STM), a well-aligned periodic linear layered structure is observed clearly, which provides the most direct visualization of the self-organization effect of fluoroalkyl chains for the first time. In addition, combining ultraviolet-visible (UV-vis) absorption spectroscopy and theoretical calculations, we find that fluoroalkyl chains demonstrate a septation effect between two adjacent metallopolymer chains and further restrain the occurrence of interchain charge-transfer transition (ICCT) due to their closed packed structure. This "molecular fence" model can provide a novel route for electron conduction in molecular networks and guide potential applications in the materials science field.
Collapse
Affiliation(s)
- Kai Tu
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Jing He
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China.
| | - Shuaijie Chen
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Cheng Liu
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China.
| | - Jiannan Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Enjie He
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Youyong Li
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China.
| | - Lifen Zhang
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| | - Haiming Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, China.
| | - Zhenping Cheng
- State and Local Joint Engineering Laboratory for Novel Functional Polymeric Materials, Jiangsu Key Laboratory of Advanced Functional Polymer Design and Application, Suzhou Key Laboratory of Macromolecular Design and Precision Synthesis, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.
| |
Collapse
|
15
|
Toyoda R, Fukui N, Tjhe DHL, Selezneva E, Maeda H, Bourgès C, Tan CM, Takada K, Sun Y, Jacobs I, Kamiya K, Masunaga H, Mori T, Sasaki S, Sirringhaus H, Nishihara H. Heterometallic Benzenehexathiolato Coordination Nanosheets: Periodic Structure Improves Crystallinity and Electrical Conductivity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2106204. [PMID: 35040527 DOI: 10.1002/adma.202106204] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 12/21/2021] [Indexed: 06/14/2023]
Abstract
Coordination nanosheets are an emerging class of 2D, bottom-up materials having fully π-conjugated, planar, graphite-like structures with high electrical conductivities. Since their discovery, great effort has been devoted to expand the variety of coordination nanosheets; however, in most cases, their low crystallinity in thick films hampers practical device applications. In this study, mixtures of nickel and copper ions are employed to fabricate benzenehexathiolato (BHT)-based coordination nanosheet films, and serendipitously, it is found that this heterometallicity preferentially forms a structural phase with improved film crystallinity. Spectroscopic and scattering measurements provide evidence for a bilayer structure with in-plane periodic arrangement of copper and nickel ions with the NiCu2 BHT formula. Compared with homometallic films, heterometallic films exhibit more crystalline microstructures with larger and more oriented grains, achieving higher electrical conductivities reaching metallic behaviors. Low dependency of Seebeck coefficient on the mixing ratio of nickel and copper ions supports that the large variation in the conductivity data is not caused by change in the intrinsic properties of the films. The findings open new pathways to improve crystallinity and to tune functional properties of 2D coordination nanosheets.
Collapse
Affiliation(s)
- Ryojun Toyoda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
| | - Naoya Fukui
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Research Center for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Dionisius H L Tjhe
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Ekaterina Selezneva
- Research Center for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
- WPI International Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, 305-0044, Japan
| | - Hiroaki Maeda
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Research Center for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Cédric Bourgès
- WPI International Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, 305-0044, Japan
| | - Choon Meng Tan
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Research Center for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Kenji Takada
- Research Center for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| | - Yuanhui Sun
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Ian Jacobs
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Kazuhide Kamiya
- Research Center for Solar Energy Chemistry, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
- Graduate School of Engineering Science, Osaka University, 1-3 Machikaneyama, Toyonaka, Osaka, 560-8531, Japan
| | - Hiroyasu Masunaga
- Japan Synchrotron Radiation Research Institute (JASRI), 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Takao Mori
- WPI International Center for Materials Nanoarchitechtonics (WPI-MANA), National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, 305-0044, Japan
| | - Sono Sasaki
- Faculty of Fiber Science and Engineering, Kyoto Institute of Technology, 1 Matsugasaki Hashikami-cho, Sakyo-ku, Kyoto, 606-8585, Japan
- RIKEN SPring-8 Centre, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5148, Japan
| | - Henning Sirringhaus
- Cavendish Laboratory, University of Cambridge, JJ Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Hiroshi Nishihara
- Department of Chemistry, Graduate School of Science, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-0033, Japan
- Research Center for Science and Technology, Tokyo University of Science, 2641 Yamazaki, Noda, Chiba, 278-8510, Japan
| |
Collapse
|
16
|
Manfroni G, Prescimone A, Constable EC, Housecroft CE. Stars and stripes: hexatopic tris(3,2':6',3''-terpyridine) ligands that unexpectedly form one-dimensional coordination polymers. CrystEngComm 2022; 24:491-503. [PMID: 35177954 PMCID: PMC8764615 DOI: 10.1039/d1ce01531a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/06/2021] [Indexed: 01/12/2023]
Abstract
The hexatopic ligands 1,3,5-tris(4,2':6',4''-terpyridin-4'-yl)benzene (1), 1,3,5-tris(3,2':6',3''-terpyridin-4'-yl)benzene (2), 1,3,5-tris{4-(4,2':6',4''-terpyridin-4'-yl)phenyl}benzene (3), 1,3,5-tris{4-(3,2':6',3''-terpyridin-4'-yl)phenyl}benzene (4) and 1,3,5-trimethyl-2,4,6-tris{4-(3,2':6',3''-terpyridin-4'-yl)phenyl}benzene (5) have been prepared and characterized. The single crystal structure of 1·1.75DMF was determined; 1 exhibits a propeller-shaped geometry with each of the three 4,2':6',4''-tpy domains being crystallographically independent. Packing of molecules of 1 is dominated by face-to-face π-stacking interactions which is consistent with the low solubility of 1 in common organic solvents. Reaction of 5 with [Cu(hfacac)2]·H2O (Hhfacac = 1,1,1,5,5,5-hexafluoropentane-2,4-dione) under conditions of crystal growth by layering resulted in the formation of [Cu3(hfacac)6(5)] n ·2.8nC7H8·0.4nCHCl3. Single-crystal X-ray diffraction reveals an unusual 1D-coordination polymer consisting of a series of alternating single and double loops. Each of the three crystallographically independent Cu atoms is octahedrally sited with cis-arrangements two N-donors from two different ligands 1 and, therefore, cis-arrangements of coordinated [hfacac]- ligands; this observation is unusual among compounds in the Cambridge Structural Database containing {Cu(hfacac)2N2} coordination units in which the two N-donors are in a non-chelating ligand.
Collapse
Affiliation(s)
- Giacomo Manfroni
- Department of Chemistry, University of Basel Mattenstrasse 24a, BPR 1096 4058-Basel Switzerland
| | - Alessandro Prescimone
- Department of Chemistry, University of Basel Mattenstrasse 24a, BPR 1096 4058-Basel Switzerland
| | - Edwin C Constable
- Department of Chemistry, University of Basel Mattenstrasse 24a, BPR 1096 4058-Basel Switzerland
| | - Catherine E Housecroft
- Department of Chemistry, University of Basel Mattenstrasse 24a, BPR 1096 4058-Basel Switzerland
| |
Collapse
|
17
|
Weng GG, Huang XD, Hu R, Bao SS, Zou Q, Wen GH, Zhang YQ, Zheng LM. Homochiral Dysprosium Phosphonate Nanowires: Morphology Control and Magnetic Dynamics. Chem Asian J 2021; 16:2648-2658. [PMID: 34288530 DOI: 10.1002/asia.202100670] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 07/19/2021] [Indexed: 02/03/2023]
Abstract
Controllable synthesis of uniformly distributed nanowires of coordination polymers with inherent physical functions is highly desirable but challenging. In particular, the combination of chirality and magnetism into nanowires has potential applications in multifunctional materials and spintronic devices. Herein, we report four pairs of enantiopure coordination polymers with formulae S-, R-Dy(cyampH)3 ⋅ CH3 COOH ⋅ 2H2 O (S-1, R-1), S-, R-Dy(cyampH)3 ⋅ 3H2 O (S-2, R-2), S-, R-Dy(cyampH)2 (C2 H5 COO) ⋅ 3H2 O (S-3, R-3) and S-, R-Dy(cyampH)3 ⋅ 0.5C2 H5 COOH ⋅ 2H2 O (S-4, R-4) [cyampH2 =S-, R-(1-cyclohexylethyl)aminomethylphosphonic acids], which were obtained depending on the pH of the reaction mixtures and the specific carboxylic acid used as pH regulator. Interestingly, compounds 3 were obtained as superlong nanowires, showing 1D neutral chain structure which contains both phosphonate and propionate anion ligands. While compounds 1, 2 and 4 appeared as block-like crystals, superhelices and nanorods, respectively, and exhibited similar neutral chain structures containing only phosphonate ligand. Slow magnetization relaxation characteristic of single-molecule magnet (SMM) behavior was observed for compounds S-1 and S-3. Theoretical calculations were performed to rationalize the magneto-structural relationships.
Collapse
Affiliation(s)
- Guo-Guo Weng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Xin-Da Huang
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Rui Hu
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Song-Song Bao
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Qian Zou
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Ge-Hua Wen
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| | - Yi-Quan Zhang
- Jiangsu Key Laboratory for NSLSCS, School of Physical Science and Technology, Nanjing Normal University, Nanjing, 210023, P. R. China
| | - Li-Min Zheng
- State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210023, P. R. China
| |
Collapse
|
18
|
Wang Y, Chiang C, Chang C, Maeda H, Fukui N, Wang I, Wen C, Lu K, Huang S, Jian W, Chen C, Tsukagoshi K, Nishihara H. Two-Dimensional Bis(dithiolene)iron(II) Self-Powered UV Photodetectors with Ultrahigh Air Stability. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2100564. [PMID: 34306985 PMCID: PMC8292878 DOI: 10.1002/advs.202100564] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/04/2021] [Indexed: 05/26/2023]
Abstract
Organometallic two-dimensional (2D) nanosheets with tailorable components have recently fascinated the optoelectronic communities due to their solution-processable nature. However, the poor stability of organic molecules may hinder their practical application in photovoltaic devices. Instead of conventional organometallic 2D nanosheets with low weatherability, an air-stable π-conjugated 2D bis(dithiolene)iron(II) (FeBHT) coordination nanosheet (CONASH) is synthesized via bottom-up liquid/liquid interfacial polymerization using benzenehexathiol (BHT) and iron(II) ammonium sulfate [Fe(NH4)2(SO4)2] as precursors. The uncoordinated thiol groups in FeBHT are easily oxidized, but the Fe(NH4)2(SO4)2 dissociation rate is slow, which facilitates the protection of sulfur groups by iron(II) ions. The density functional theory calculates that the resultant FeBHT network gains the oxygen-repelling function for oxidation suppression. In air, the FeBHT CONASH exhibits self-powered photoresponses with short response times (<40 ms) and a spectral responsivity of 6.57 mA W-1, a specific detectivity of 3.13 × 1011 Jones and an external quantum efficiency of 2.23% under 365 nm illumination. Interestingly, the FeBHT self-powered photodetector reveals extremely high long-term air stability, maintaining over 94% of its initial photocurrent after aging for 60 days without encapsulation. These results open the prospect of using organometallic 2D materials in commercialized optoelectronic fields.
Collapse
Affiliation(s)
- Ying‐Chiao Wang
- International Center for Young Scientists (ICYS) and WPI International Center for Materials Nanoarchitectonics (WPI‐MANA)National Institute for Materials Science (NIMS)TsukubaIbaraki305‐0044Japan
| | - Chun‐Hao Chiang
- Department of Materials Science and EngineeringNational Taiwan UniversityTaipei10617Taiwan
| | - Chi‐Ming Chang
- Department of ElectrophysicsNational Chiao Tung UniversityHsinchu30010Taiwan
| | - Hiroaki Maeda
- Department of ChemistrySchool of ScienceThe University of TokyoTokyo113‐0033Japan
- Research Center for Science and TechnologyTokyo University of ScienceChiba278‐8510Japan
| | - Naoya Fukui
- Department of ChemistrySchool of ScienceThe University of TokyoTokyo113‐0033Japan
- Research Center for Science and TechnologyTokyo University of ScienceChiba278‐8510Japan
| | - I‐Ta Wang
- Department of Materials Science and EngineeringNational Taiwan UniversityTaipei10617Taiwan
| | - Cheng‐Yen Wen
- Department of Materials Science and EngineeringNational Taiwan UniversityTaipei10617Taiwan
| | - Kuan‐Cheng Lu
- Department of ElectrophysicsNational Chiao Tung UniversityHsinchu30010Taiwan
| | - Shao‐Ku Huang
- Department of Materials Science and EngineeringNational Taiwan UniversityTaipei10617Taiwan
| | - Wen‐Bin Jian
- Department of ElectrophysicsNational Chiao Tung UniversityHsinchu30010Taiwan
| | - Chun‐Wei Chen
- Department of Materials Science and EngineeringNational Taiwan UniversityTaipei10617Taiwan
- Center of Atomic Initiative for New Materials (AI‐MAT)National Taiwan UniversityTaipei10617Taiwan
| | - Kazuhito Tsukagoshi
- International Center for Young Scientists (ICYS) and WPI International Center for Materials Nanoarchitectonics (WPI‐MANA)National Institute for Materials Science (NIMS)TsukubaIbaraki305‐0044Japan
- Department of ElectrophysicsNational Chiao Tung UniversityHsinchu30010Taiwan
| | - Hiroshi Nishihara
- Department of ChemistrySchool of ScienceThe University of TokyoTokyo113‐0033Japan
- Research Center for Science and TechnologyTokyo University of ScienceChiba278‐8510Japan
| |
Collapse
|
19
|
Prusty S, Chan YT. Terpyridine-based Self-assembled Heteroleptic Coordination Complexes. CHEM LETT 2021. [DOI: 10.1246/cl.210048] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Affiliation(s)
- Soumyakanta Prusty
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Yi-Tsu Chan
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| |
Collapse
|
20
|
Jacquet M, Izzo M, Osella S, Kozdra S, Michałowski PP, Gołowicz D, Kazimierczuk K, Gorzkowski MT, Lewera A, Teodorczyk M, Trzaskowski B, Jurczakowski R, Gryko DT, Kargul J. Development of a universal conductive platform for anchoring photo- and electroactive proteins using organometallic terpyridine molecular wires. NANOSCALE 2021; 13:9773-9787. [PMID: 34027945 DOI: 10.1039/d0nr08870f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The construction of an efficient conductive interface between electrodes and electroactive proteins is a major challenge in the biosensor and bioelectrochemistry fields to achieve the desired nanodevice performance. Concomitantly, metallo-organic terpyridine wires have been extensively studied for their great ability to mediate electron transfer over a long-range distance. In this study, we report a novel stepwise bottom-up approach for assembling bioelectrodes based on a genetically modified model electroactive protein, cytochrome c553 (cyt c553) and an organometallic terpyridine (TPY) molecular wire self-assembled monolayer (SAM). Efficient anchoring of the TPY derivative (TPY-PO(OH)2) onto the ITO surface was achieved by optimising solvent composition. Uniform surface coverage with the electroactive protein was achieved by binding the cyt c553 molecules via the C-terminal His6-tag to the modified TPY macromolecules containing Earth abundant metallic redox centres. Photoelectrochemical characterisation demonstrates the crucial importance of the metal redox centre for the determination of the desired electron transfer properties between cyt and the ITO electrode. Even without the cyt protein, the ITO-TPY nanosystem reported here generates photocurrents whose densities are 2-fold higher that those reported earlier for ITO electrodes functionalised with the photoactive proteins such as photosystem I in the presence of an external mediator, and 30-fold higher than that of the pristine ITO. The universal chemical platform for anchoring and nanostructuring of (photo)electroactive proteins reported in this study provides a major advancement for the construction of efficient (bio)molecular systems requiring a high degree of precise supramolecular organisation as well as efficient charge transfer between (photo)redox-active molecular components and various types of electrode materials.
Collapse
Affiliation(s)
- Margot Jacquet
- Solar Fuels Laboratory, Centre of New Technologies, University of Warsaw, Banacha 2C, 02-097 Warsaw, Poland.
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Wang H, Shao JY, Duan R, Wang KZ, Zhong YW. Synthesis and electronic coupling studies of cyclometalated diruthenium complexes bridged by 3,3',5,5'-tetrakis(benzimidazol-2-yl)-biphenyl. Dalton Trans 2021; 50:4219-4230. [PMID: 33687405 DOI: 10.1039/d1dt00263e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Three cyclometalated diruthenium complexes bridged by 3,3',5,5'-tetrakis(benzimidazol-2-yl)biphenyl (H-tbibp) and capped with different terminal ligands have been synthesized and examined. In addition, two monoruthenium complexes with H-tbibp have been prepared for the purpose of comparison studies. The degree of Ru-Ru electronic coupling of these diruthenium complexes has been investigated by electrochemical and intervalence charge-transfer (IVCT) analyses. These results suggest that when the same or similar terminal ligands are used, the strength of H-tbibp in mediating the Ru-Ru coupling is enhanced with respect to that of the previously reported bridging ligand 3,3',5,5'-tetrakis(N-methylbenzimidazol-2-yl)biphenyl, but it is slightly inferior to that of the classical bridging ligand 3,3',5,5'-tetrakis(pyrid-2-yl)biphenyl. This trend is also supported by CNS analyses based on the hole-superexchange mechanism. In addition, DFT calculations have been performed to probe the spin density distributions of the singly-oxidized diruthenium complexes with H-tbibp and TDDFT calculations are used to reproduce the IVCT transitions.
Collapse
Affiliation(s)
- Hao Wang
- Beijing Key Laboratory of Energy Conversion and Storage Materials, College of Chemistry, Beijing Normal University, Beijing 100875, China.
| | | | | | | | | |
Collapse
|
22
|
Yin G, Kandapal S, Liu C, Wang H, Huang J, Jiang S, Ji T, Yan Y, Khalife S, Zhou R, Ye L, Xu B, Yang H, Nieh M, Li X. Metallo‐Helicoid with Double Rims: Polymerization Followed by Folding by Intramolecular Coordination. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202010696] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Guang‐Qiang Yin
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen Guangdong 518055 China
| | - Sneha Kandapal
- Single Molecule Study Laboratory College of Engineering and Nanoscale Science and Engineering Center University of Georgia Athens GA 30602 USA
| | - Chung‐Hao Liu
- Department of Chemical and Biomolecular Engineering University of Connecticut Storrs CT 06269 USA
| | - Heng Wang
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen Guangdong 518055 China
| | - Jianxiang Huang
- Institute of Quantitative Biology Zhejiang University Hangzhou Zhejiang 310027 China
| | - Shu‐Ting Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes Department of Chemistry East China Normal University Shanghai 200062 China
| | - Tan Ji
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes Department of Chemistry East China Normal University Shanghai 200062 China
| | - Yu Yan
- Department of Chemistry University of South Florida Tampa FL 33620 USA
| | - Sandra Khalife
- Department of Chemistry University of South Florida Tampa FL 33620 USA
| | - Ruhong Zhou
- Institute of Quantitative Biology Zhejiang University Hangzhou Zhejiang 310027 China
| | - Libin Ye
- Department of Cell Biology, Microbiology and Molecular Biology University of South Florida Tampa FL 33620 USA
| | - Bingqian Xu
- Single Molecule Study Laboratory College of Engineering and Nanoscale Science and Engineering Center University of Georgia Athens GA 30602 USA
| | - Hai‐Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes Department of Chemistry East China Normal University Shanghai 200062 China
| | - Mu‐Ping Nieh
- Department of Chemical and Biomolecular Engineering University of Connecticut Storrs CT 06269 USA
- Polymer Program Institute of Material Science University of Connecticut Storrs CT 06269 USA
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering Shenzhen University Shenzhen Guangdong 518055 China
| |
Collapse
|
23
|
Li HS, Zhang SM, Ye P, Sun T, Wang K, Zhang XQ, Li Y. Syntheses, crystal structures and photoluminescent properties of dinuclear and tetranuclear zinc complexes with 1,4-bis(2,2':6',2″-terpyridine-4'-yl)benzene. J COORD CHEM 2020. [DOI: 10.1080/00958972.2020.1861602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Heng-Shi Li
- Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, P. R. China
| | - Sheng-Mei Zhang
- Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, P. R. China
| | - Ping Ye
- Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, P. R. China
| | - Tao Sun
- Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, P. R. China
| | - Kai Wang
- Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, P. R. China
| | - Xiu-Qing Zhang
- Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, P. R. China
| | - Yan Li
- Key Laboratory of Electrochemical and Magneto-chemical Functional Materials, College of Chemistry and Bioengineering, Guilin University of Technology, Guilin, P. R. China
| |
Collapse
|
24
|
Synthesis and redox properties of cyclometallated iridium (III) complexes modified with arylamino groups. J Organomet Chem 2020. [DOI: 10.1016/j.jorganchem.2020.121580] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
25
|
Yin GQ, Kandapal S, Liu CH, Wang H, Huang J, Jiang ST, Ji T, Yan Y, Khalife S, Zhou R, Ye L, Xu B, Yang HB, Nieh MP, Li X. Metallo-Helicoid with Double Rims: Polymerization Followed by Folding by Intramolecular Coordination. Angew Chem Int Ed Engl 2020; 60:1281-1289. [PMID: 33009693 DOI: 10.1002/anie.202010696] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/14/2020] [Indexed: 11/08/2022]
Abstract
In this study, we established a feasible strategy to construct a new type of metallo-polymer with helicoidal structure through the combination of covalent polymerization and intramolecular coordination-driven self-assembly. In the design, a tetratopic monomer (M) was prepared with two terminal alkynes in the outer rim for polymerization, and two terpyridines (TPYs) in the inner rim for subsequent folding by selective intramolecular coordination. Then, the linear covalent polymer (P) was synthesized by polymerization of M via Glaser-Hay homocoupling reaction. Finally, intramolecular coordination interactions between TPYs and Zn(II) folded the backbone of P into a right- or left-handed metallo-helicoid (H) with double rims. Owing to multiple positive charges on the inner rim of helicoid, double-stranded DNA molecules (dsDNA) could interact with H through electrostatic interactions. Remarkably, dsDNA allowed exclusive formation of H with right handedness by means of chiral induction.
Collapse
Affiliation(s)
- Guang-Qiang Yin
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Sneha Kandapal
- Single Molecule Study Laboratory, College of Engineering and Nanoscale Science and Engineering Center, University of Georgia, Athens, GA, 30602, USA
| | - Chung-Hao Liu
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT, 06269, USA
| | - Heng Wang
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518055, China
| | - Jianxiang Huang
- Institute of Quantitative Biology, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Shu-Ting Jiang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, Shanghai, 200062, China
| | - Tan Ji
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, Shanghai, 200062, China
| | - Yu Yan
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Sandra Khalife
- Department of Chemistry, University of South Florida, Tampa, FL, 33620, USA
| | - Ruhong Zhou
- Institute of Quantitative Biology, Zhejiang University, Hangzhou, Zhejiang, 310027, China
| | - Libin Ye
- Department of Cell Biology, Microbiology and Molecular Biology, University of South Florida, Tampa, FL, 33620, USA
| | - Bingqian Xu
- Single Molecule Study Laboratory, College of Engineering and Nanoscale Science and Engineering Center, University of Georgia, Athens, GA, 30602, USA
| | - Hai-Bo Yang
- Shanghai Key Laboratory of Green Chemistry and Chemical Processes, Department of Chemistry, East China Normal University, Shanghai, 200062, China
| | - Mu-Ping Nieh
- Department of Chemical and Biomolecular Engineering, University of Connecticut, Storrs, CT, 06269, USA.,Polymer Program, Institute of Material Science, University of Connecticut, Storrs, CT, 06269, USA
| | - Xiaopeng Li
- College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, Guangdong, 518055, China
| |
Collapse
|
26
|
Wu H, Wang J, Jin W, Wu Z. Recent development of two-dimensional metal-organic framework derived electrocatalysts for hydrogen and oxygen electrocatalysis. NANOSCALE 2020; 12:18497-18522. [PMID: 32839807 DOI: 10.1039/d0nr04458j] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Developing efficient and low-cost electrocatalysts with unique nanostructures is of great significance for improved electrocatalytic reactions, including the hydrogen evolution reaction (HER), oxygen evolution reaction (OER), and oxygen reduction reaction (ORR). Two-dimensional (2D) metal-organic frameworks (MOFs) have attracted recent attention because of their unique dimension-related properties, such as ultrathin thickness, large specific surface area, and abundant accessible active sites that can act as good precursors for the derivation of a variety of nanocomposites as active materials in electrocatalysis and energy-related devices. In this review, we present recent developments in 2D MOF-derived nanomaterials for hydrogen and oxygen reactions in overall water-splitting and rechargeable Zn-air batteries. The advantages of various synthetic strategies are summarized and discussed in detail. Finally, we discuss the main challenges and future perspectives of the development of 2D MOF-derived electrocatalysts.
Collapse
Affiliation(s)
- Hengbo Wu
- School of Chemical and Material Engineering, Jiangnan University, Wuxi 214122, China.
| | | | | | | |
Collapse
|
27
|
Redox-active, luminescent coordination nanosheet capsules containing magnetite. Sci Rep 2020; 10:13818. [PMID: 32796883 PMCID: PMC7429495 DOI: 10.1038/s41598-020-70715-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2020] [Accepted: 07/13/2020] [Indexed: 11/09/2022] Open
Abstract
Two-dimensional coordination nanosheets (CONASHs) are grown at the spherical liquid–liquid interface of a dichloromethane droplet in water to form zero-dimensional nano- and micro-capsules using a simple dropping method, a syringe-pump method, and an emulsion method. Reaction of 1,3,5-tris[4-(4′-2,2′:6′,2″-terpyridyl)phenyl]benzene (1) with Fe(BF4)2 affords electrochromic Fe(tpy)2 CONASH capsules and that of ligand 1 with ZnSO4 does photoluminescent Zn2(μ-O2SO2)2(tpy)2 CONASH capsules. Fe(tpy)2 CONASH capsules containing magnetite particles were produced by the syringe-pump method by adding magnetite to the aqueous phase, with the assembly and dispersion of the magnetite-containing CONASH capsules being easily controlled with a magnet. This indicates that physicochemically functional CONASH capsules are suitable for incorporating other functional materials to develop hybrid systems.
Collapse
|
28
|
Rapidly sequence-controlled electrosynthesis of organometallic polymers. Nat Commun 2020; 11:2530. [PMID: 32439856 PMCID: PMC7242481 DOI: 10.1038/s41467-020-16255-z] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 04/17/2020] [Indexed: 11/29/2022] Open
Abstract
Single rich-stimuli-responsive organometallic polymers are considered to be the candidate for ultrahigh information storage and anti-counterfeiting security. However, their controllable synthesis has been an unsolved challenge. Here, we report the rapidly sequence-controlled electrosynthesis of organometallic polymers with exquisite insertion of multiple and distinct monomers. Electrosynthesis relies on the use of oxidative and reductive C–C couplings with the respective reaction time of 1 min. Single-monomer-precision propagation does not need protecting and deprotecting steps used in solid-phase synthesis, while enabling the uniform synthesis and sequence-defined possibilities monitored by both UV–vis spectra and cyclic voltammetry. Highly efficient electrosynthesis possessing potentially automated production can incorporate an amount of available metal and ligand species into a single organometallic polymer with complex architectures and functional versatility, which is proposed to have ultrahigh information storage and anti-counterfeiting security with low-cost coding and decoding processes at the single organometallic polymer level. The controllable synthesis of organometallic polymers that can be used in ultrahigh information storage and anti-counterfeiting security has been an unsolved challenge. Here, the authors show sequence-controlled electrosynthesis of organometallic polymers with exquisite insertion of multiple and distinct monomers.
Collapse
|
29
|
Wang J, Li N, Xu Y, Pang H. Two‐Dimensional MOF and COF Nanosheets: Synthesis and Applications in Electrochemistry. Chemistry 2020; 26:6402-6422. [DOI: 10.1002/chem.202000294] [Citation(s) in RCA: 101] [Impact Index Per Article: 20.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 03/04/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Ji Wang
- School of Chemistry and Chemical EngineeringYangzhou University Yangzhou 225009 Jiangsu P. R. China
| | - Nan Li
- School of Chemistry and Chemical EngineeringYangzhou University Yangzhou 225009 Jiangsu P. R. China
| | - Yuxia Xu
- Guangling CollegeYangzhou University Yangzhou 225009 Jiangsu P. R. China
| | - Huan Pang
- School of Chemistry and Chemical EngineeringYangzhou University Yangzhou 225009 Jiangsu P. R. China
| |
Collapse
|
30
|
Jena SR, Choudhury J. A fast-switching electrochromic device with a surface-confined 3D metallo-organic coordination assembly. Chem Commun (Camb) 2020; 56:559-562. [PMID: 31829325 DOI: 10.1039/c9cc06920h] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Demonstrated herein is a fast (<1 s)-switching solid-state electrochromic device (t = 0.49 s for coloration and 0.90 s for bleaching), fabricated with a novel imidazolium-linked [Fe(terpyridine)2]2+ chromophore-based surface-confined three dimensional metallo-organic coordination assembly. The device also exhibits promising electrochromic attributes such as high coloration efficiency (η = 275 cm2 C-1), moderate operating voltage (from -2 V to +3.2 V) and transmittance contrast (ΔT = 40%), and high cycling stability (up to 4500 cycles).
Collapse
Affiliation(s)
- Satya Ranjan Jena
- Organometallics & Smart Materials Laboratory, Department of Chemistry, Indian Institute of Science Education and Research (IISER) Bhopal, Bhopal 462 066, India.
| | | |
Collapse
|
31
|
Wei XJ, Hao ZC, Han C, Cui GH. Syntheses, crystal structures and photocatalytic properties of three zinc (II) coordination polymers constructed by mixed ligands. J Mol Struct 2020. [DOI: 10.1016/j.molstruc.2019.127117] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
32
|
Construction of Bis(2,6-bis(1-methylbenzimidazol-2-yl)pyridine)iron(II) Coordination Polymer for Incorporation of Magnetic Function. J Inorg Organomet Polym Mater 2019. [DOI: 10.1007/s10904-019-01375-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
33
|
Near-infrared electrochromism of multilayer films of a cyclometalated diruthenium complex prepared by layer-by-layer deposition on metal oxide substrates. Sci China Chem 2019. [DOI: 10.1007/s11426-019-9640-1] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
34
|
Dong X, Ge Q. Metal Ion-Bridged Forward Osmosis Membranes for Efficient Pharmaceutical Wastewater Reclamation. ACS APPLIED MATERIALS & INTERFACES 2019; 11:37163-37171. [PMID: 31545586 DOI: 10.1021/acsami.9b14162] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Membrane performance in separation relies largely on the membrane properties. In this study, metal ions of Cu2+, Co2+, and Fe3+ are used individually as a bridge to develop forward osmosis (FO) membranes via a clean complexation reaction. A metal ion-bridged hydration layer is formed and endows the membrane with a more hydrophilic and smoother surface, higher fouling resistance, and renewability. These improvements make the newly developed membranes superior to the pristine one with better FO performances. The Fe3+-bridged membrane produces water fluxes increased up to 133% (FO mode) and 101% (PRO mode) compared with the pristine membrane against DI water with 0.5-2.0 M MgCl2 as the draw solution. The Fe3+-bridged membrane can efficiently reclaim pharmaceuticals such as trimethoprim and sulfamethoxazole from their dilute solutions with good water permeability and a high pharmaceutical retention. This membrane also exhibits a stronger renewability with water flux restored to 98% of its original value after 20 h experiments in trimethoprim-containing water treatment. This study provides a facile and clean approach to develop highly efficient FO membranes for wastewater reclamation and pharmaceutical enrichment.
Collapse
|
35
|
Fu JH, Wang SY, Chen YS, Prusty S, Chan YT. One-Pot Self-Assembly of Stellated Metallosupramolecules from Multivalent and Complementary Terpyridine-Based Ligands. J Am Chem Soc 2019; 141:16217-16221. [PMID: 31509710 DOI: 10.1021/jacs.9b08731] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
A series of stellated metallosupramolecular architectures have been assembled through three-component integrative self-sorting. Building on the complementary ligand pairing, the initial attempts to synthesize the hexagram complex from a combination of X-shaped tetrakis- and V-shaped bis-terpyridine ligands, and CdII ions, resulted in an unprecedented mixture of stellated octanuclear and dodecanuclear metallocages, which were further isolated by column chromatography. To overcome the unexpected obstacle, the multivalent ligand design along with spontaneous heteroleptic complexation was applied to realization of the one-pot synthesis of the intricate topology. A centrally situated triangle served as a prop for quantitative formation of the six-pointed stellated complex. Notably, in the absence of the triangular prop, a four-pointed star was produced.
Collapse
Affiliation(s)
- Jun-Hao Fu
- Department of Chemistry , National Taiwan University , Taipei 10617 , Taiwan
| | - Shih-Yu Wang
- Department of Chemistry , National Taiwan University , Taipei 10617 , Taiwan
| | - Yu-Sheng Chen
- Department of Chemistry , National Taiwan University , Taipei 10617 , Taiwan
| | - Soumyakanta Prusty
- Department of Chemistry , National Taiwan University , Taipei 10617 , Taiwan
| | - Yi-Tsu Chan
- Department of Chemistry , National Taiwan University , Taipei 10617 , Taiwan
| |
Collapse
|
36
|
Li ZQ, Tang JH, Zhong YW. Multidentate Anchors for Surface Functionalization. Chem Asian J 2019; 14:3119-3126. [PMID: 31389657 DOI: 10.1002/asia.201900989] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 08/06/2019] [Indexed: 01/01/2023]
Abstract
The bottom-up functionalization of solid surfaces shows increasing importance for a wide range of interdisciplinary applications. Multidentate anchors with more than two contact points can bind to solid surfaces with strong chemisorption, well-defined upright configuration, and tailored functionality. The surface functionalization using multidentate anchors with three (tripodal), four (quadripodal), or more binding points is summarized herein, with a focus on those beyond classical tripodal anchors. In particular, the molecular design on how to achieve multisite interaction between anchor and substrate and the introduction of functional groups to thin films are discussed.
Collapse
Affiliation(s)
- Zhong-Qiu Li
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 2 Bei Yi Jie, Zhong Guan Cun, Haidian District, Beijing, 100190, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jian-Hong Tang
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 2 Bei Yi Jie, Zhong Guan Cun, Haidian District, Beijing, 100190, China
| | - Yu-Wu Zhong
- Key Laboratory of Photochemistry, Beijing National Laboratory for Molecular Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, 2 Bei Yi Jie, Zhong Guan Cun, Haidian District, Beijing, 100190, China.,School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
37
|
Banasz R, Wałęsa-Chorab M. Polymeric complexes of transition metal ions as electrochromic materials: Synthesis and properties. Coord Chem Rev 2019. [DOI: 10.1016/j.ccr.2019.03.009] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
38
|
Kuai Y, Li W, Dong Y, Wong WY, Yan S, Dai Y, Zhang C. Multi-color electrochromism from coordination nanosheets based on a terpyridine-Fe(ii) complex. Dalton Trans 2019; 48:15121-15126. [PMID: 31559982 DOI: 10.1039/c9dt02980j] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A new metal complex electrochromic nanosheet with multiple color electrochromism, fast switching speed and excellent cyclic stability was prepared controllably by the liquid–liquid interface self-assembly method.
Collapse
Affiliation(s)
- Yu Kuai
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Weijun Li
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Yujie Dong
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Wai-Yeung Wong
- Department of Applied Biology & Chemical Technology
- The Hong Kong Polytechnic University
- P. R. China
| | - Shuanma Yan
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Yuyu Dai
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| | - Cheng Zhang
- State Key Laboratory Breeding Base of Green Chemistry Synthesis Technology
- College of Chemical Engineering
- Zhejiang University of Technology
- Hangzhou 310014
- P. R. China
| |
Collapse
|
39
|
Belen’kii LI, Evdokimenkova YB. The literature of heterocyclic chemistry, part XVII, 2017. ADVANCES IN HETEROCYCLIC CHEMISTRY 2019:337-418. [DOI: 10.1016/bs.aihch.2019.01.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
40
|
Li ZJ, Shen JJ, Shao JY, Zhong YW. Substituent Effects on the Electrochemistry and Electronic Coupling of Terphenyl-Bridged Cyclometalated Ruthenium-Amine Conjugated Complexes. ACS OMEGA 2018; 3:16744-16752. [PMID: 31458305 PMCID: PMC6643824 DOI: 10.1021/acsomega.8b03058] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 11/28/2018] [Indexed: 06/10/2023]
Abstract
Six terphenyl-bridged cyclometalated ruthenium-amine conjugated complexes 4(PF6)-9(PF6) were synthesized and studied. Three different substituents, methoxy, methyl, and chloro, were used to vary the electronic nature of the amine unit, and two terminal ligands 2,2':6',2″-terpyridine (tpy) and trimethyl-4,4',4″-tricarboxylate-2,2':6',2″-terpyridine (Me3tctpy) were used to tune the electronic nature of the ruthenium component. All complexes, except 7(PF6) with the methoxy substituent and Me3tctpy ligand, display two well-separated redox waves in the potential range of +0.5 to +1.1 V versus Ag/AgCl. The regular electrochemical changes of these complexes help to establish the oxidation order of ruthenium and amine and hence of the direction of the electron transfer in odd-electron state. The degree of electronic coupling was estimated by analyzing the donor-to-acceptor charge transfer band in the near-infrared region obtained by oxidative spectroelectrochemical measurements. Electron paramagnetic resonance analyses and density functional theory calculations were performed on the one-electron oxidized forms to obtain information on the spin distribution of these complexes.
Collapse
Affiliation(s)
- Zhi-Juan Li
- CAS
Laboratory of Photochemistry, Beijing National Laboratory for Molecular
Sciences, CAS Research/Education Center for Excellence in Molecular
Sciences, Institute of Chemistry, Chinese
Academy of Sciences, Beijing 100190, China
- School
of Chemical Sciences, University of Chinese
Academy of Sciences, Beijing 100049, China
| | - Jun-Jian Shen
- CAS
Laboratory of Photochemistry, Beijing National Laboratory for Molecular
Sciences, CAS Research/Education Center for Excellence in Molecular
Sciences, Institute of Chemistry, Chinese
Academy of Sciences, Beijing 100190, China
| | - Jiang-Yang Shao
- CAS
Laboratory of Photochemistry, Beijing National Laboratory for Molecular
Sciences, CAS Research/Education Center for Excellence in Molecular
Sciences, Institute of Chemistry, Chinese
Academy of Sciences, Beijing 100190, China
| | - Yu-Wu Zhong
- CAS
Laboratory of Photochemistry, Beijing National Laboratory for Molecular
Sciences, CAS Research/Education Center for Excellence in Molecular
Sciences, Institute of Chemistry, Chinese
Academy of Sciences, Beijing 100190, China
- School
of Chemical Sciences, University of Chinese
Academy of Sciences, Beijing 100049, China
| |
Collapse
|
41
|
Laschuk NO, Ebralidze II, Poisson J, Egan JG, Quaranta S, Allan JTS, Cusden H, Gaspari F, Naumkin FY, Easton EB, Zenkina OV. Ligand Impact on Monolayer Electrochromic Material Properties. ACS APPLIED MATERIALS & INTERFACES 2018; 10:35334-35343. [PMID: 30230313 DOI: 10.1021/acsami.8b10666] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
In this study, we present a range of efficient highly durable electrochromic materials that demonstrate excellent redox and lifetime stability, sufficient coloration contrast ratios, and the best-in-class electron-transfer constants. The materials were formed by anchoring as little as a monolayer of predefined iron complexes on a surface-enhanced conductive solid support. The thickness of the substrate was optimized to maximize the change in optical density. We demonstrate that even a slight change in molecular sterics and electronics results in materials with sufficiently different properties. Thus, minor changes in the ligand design give access to materials with a wide range of color variations, including green, purple, and brown. Moreover, ligand architecture dictates either orthogonal or parallel alignment of corresponding metal complexes on the surface due to mono- or bis-quaternization. We demonstrate that monoquaternization of the complexes during anchoring to the surface-bound template layer results in redshifts of the photoabsorption peak. The results of in-solution bis-methylation supported by density functional theory calculations show that the second quaternization may lead to an opposite blueshift (in comparison with monomethylated analogs), depending on the ligand electronics and the environmental change. It is shown that the variations of the photoabsorption peak position for different ligands upon attachment to the surface can be related to the calculated charge distribution and excitation-induced redistribution. Overall, the work demonstrates a well-defined method of electrochromic material color tuning via manipulation of sterics and electronics of terpyridine-based ligands.
Collapse
Affiliation(s)
- Nadia O Laschuk
- Faculty of Science , University of Ontario Institute of Technology , 2000 Simcoe Street North , Oshawa , Ontario L1H 7K4 , Canada
| | - Iraklii I Ebralidze
- Faculty of Science , University of Ontario Institute of Technology , 2000 Simcoe Street North , Oshawa , Ontario L1H 7K4 , Canada
| | - Jade Poisson
- Faculty of Science , University of Ontario Institute of Technology , 2000 Simcoe Street North , Oshawa , Ontario L1H 7K4 , Canada
| | - Jacquelyn G Egan
- Faculty of Science , University of Ontario Institute of Technology , 2000 Simcoe Street North , Oshawa , Ontario L1H 7K4 , Canada
| | - Simone Quaranta
- Faculty of Science , University of Ontario Institute of Technology , 2000 Simcoe Street North , Oshawa , Ontario L1H 7K4 , Canada
| | - Jesse T S Allan
- Faculty of Science , University of Ontario Institute of Technology , 2000 Simcoe Street North , Oshawa , Ontario L1H 7K4 , Canada
| | - Hannah Cusden
- Faculty of Science , University of Ontario Institute of Technology , 2000 Simcoe Street North , Oshawa , Ontario L1H 7K4 , Canada
| | - Franco Gaspari
- Faculty of Science , University of Ontario Institute of Technology , 2000 Simcoe Street North , Oshawa , Ontario L1H 7K4 , Canada
| | - Fedor Y Naumkin
- Faculty of Science , University of Ontario Institute of Technology , 2000 Simcoe Street North , Oshawa , Ontario L1H 7K4 , Canada
| | - E Bradley Easton
- Faculty of Science , University of Ontario Institute of Technology , 2000 Simcoe Street North , Oshawa , Ontario L1H 7K4 , Canada
| | - Olena V Zenkina
- Faculty of Science , University of Ontario Institute of Technology , 2000 Simcoe Street North , Oshawa , Ontario L1H 7K4 , Canada
| |
Collapse
|
42
|
Cao L, Wang T, Wang C. Synthetic Strategies for Constructing Two-Dimensional Metal-Organic Layers (MOLs): A Tutorial Review. CHINESE J CHEM 2018. [DOI: 10.1002/cjoc.201800144] [Citation(s) in RCA: 52] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Lingyun Cao
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces; Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University; Xiamen Fujian 361005 China
| | - Tingting Wang
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces; Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University; Xiamen Fujian 361005 China
| | - Cheng Wang
- Collaborative Innovation Center of Chemistry for Energy Materials, State Key Laboratory of Physical Chemistry of Solid Surfaces; Department of Chemistry, College of Chemistry and Chemical Engineering, Xiamen University; Xiamen Fujian 361005 China
| |
Collapse
|
43
|
Le-Quang L, Farran R, Lattach Y, Bonnet H, Jamet H, Guérente L, Maisonhaute E, Chauvin J. Photoactive Molecular Dyads [Ru(bpy) 3-M(ttpy) 2] n+ on Gold (M = Co(III), Zn(II)): Characterization, Intrawire Electron Transfer, and Photoelectric Conversion. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2018; 34:5193-5203. [PMID: 29648828 DOI: 10.1021/acs.langmuir.8b00154] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
We propose in this work a stepwise approach to construct photoelectrodes. This takes advantage of the self-assembly interactions between thiol with a gold surface and terpyridine ligands with first-row transition metals. Here, a [Ru(bpy)3]2+ photosensitive center bearing a free terpyridine group has been used to construct two linear dyads on gold (Au/[ZnII-RuII]4+ and Au/[CoIII-RuII]5+). The stepwise construction was characterized by electrochemistry, quartz crystal microbalance, and atomic force microscopy imaging. The results show that the dyads behave as rigid layers and are inhomogeneously distributed on the surface. The surface coverages are estimated to be in the order of 10-11 mol cm-2. The kinetics of the heterogeneous electron transfer is determined on modified gold ball microelectrodes using Laviron's formula. The oxidation rates of the terminal Ru(II) subunits are estimated to be 700 and 2300 s-1 for Au/[ZnII-RuII]4+ and Au/[CoIII-RuII]5+, respectively. In the latter case, the rate is limited by the kinetics of electron transfer between an intermediate Co(II) center and the gold surface. For Au/[ZnII-RuII]4+, the Zn-bis-terpyridine center is not involved in the electron-transfer process and the oxidation of the Ru(II) subunit occurs through a superexchange process. In the presence of a tertiary amine in solution, the electrodes at a bias of 0.12 V behave as photoanodes when subjected to visible light irradiation. The magnitude of the photocurrent is around 10 μA cm-2 for Au/[CoIII-RuII]5+ and 5 μA cm-2 for Au/[ZnII-RuII]4+, proving the importance of an electron relay on the photon-to-current conversion. The results suggest an efficient conversion for Au/[CoIII-RuII]5+, since each bound dyad, once excited, injects an electron around 10 times per second.
Collapse
Affiliation(s)
- Long Le-Quang
- Département de Chimie Moléculaire , UMR CNRS 5250, Université de Grenoble-Alpes , CS 40700, 38058 Grenoble cedex 9, France
| | - Rajaa Farran
- Département de Chimie Moléculaire , UMR CNRS 5250, Université de Grenoble-Alpes , CS 40700, 38058 Grenoble cedex 9, France
| | - Youssef Lattach
- Département de Chimie Moléculaire , UMR CNRS 5250, Université de Grenoble-Alpes , CS 40700, 38058 Grenoble cedex 9, France
| | - Hugues Bonnet
- Département de Chimie Moléculaire , UMR CNRS 5250, Université de Grenoble-Alpes , CS 40700, 38058 Grenoble cedex 9, France
| | - Hélène Jamet
- Département de Chimie Moléculaire , UMR CNRS 5250, Université de Grenoble-Alpes , CS 40700, 38058 Grenoble cedex 9, France
| | - Liliane Guérente
- Département de Chimie Moléculaire , UMR CNRS 5250, Université de Grenoble-Alpes , CS 40700, 38058 Grenoble cedex 9, France
| | - Emmanuel Maisonhaute
- CNRS Laboratoire Interfaces et Systèmes Electrochimiques, LISE , Sorbonne Université , F-75005 Paris , France
| | - Jérôme Chauvin
- Département de Chimie Moléculaire , UMR CNRS 5250, Université de Grenoble-Alpes , CS 40700, 38058 Grenoble cedex 9, France
| |
Collapse
|
44
|
Zhao M, Huang Y, Peng Y, Huang Z, Ma Q, Zhang H. Two-dimensional metal–organic framework nanosheets: synthesis and applications. Chem Soc Rev 2018; 47:6267-6295. [DOI: 10.1039/c8cs00268a] [Citation(s) in RCA: 733] [Impact Index Per Article: 104.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Synthesis and applications of two-dimensional metal–organic framework nanosheets and their composites are summarized.
Collapse
Affiliation(s)
- Meiting Zhao
- Center for Programmable Materials
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| | - Ying Huang
- Center for Programmable Materials
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| | - Yongwu Peng
- Center for Programmable Materials
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| | - Zhiqi Huang
- Center for Programmable Materials
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| | - Qinglang Ma
- Center for Programmable Materials
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| | - Hua Zhang
- Center for Programmable Materials
- School of Materials Science and Engineering
- Nanyang Technological University
- Singapore 639798
- Singapore
| |
Collapse
|
45
|
Chakraborty S, Newkome GR. Terpyridine-based metallosupramolecular constructs: tailored monomers to precise 2D-motifs and 3D-metallocages. Chem Soc Rev 2018; 47:3991-4016. [DOI: 10.1039/c8cs00030a] [Citation(s) in RCA: 211] [Impact Index Per Article: 30.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Comprehensive summary of the recent developments in the growing field of terpyridine-based, discrete metallosupramolecular architectures.
Collapse
Affiliation(s)
| | - George R. Newkome
- Department of Polymer Science
- University of Akron
- Akron
- USA
- Departments of Chemistry
| |
Collapse
|
46
|
Mondal PC, Singh V, Zharnikov M. Nanometric Assembly of Functional Terpyridyl Complexes on Transparent and Conductive Oxide Substrates: Structure, Properties, and Applications. Acc Chem Res 2017; 50:2128-2138. [PMID: 28829569 DOI: 10.1021/acs.accounts.7b00166] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
Over the last few decades, molecular assemblies on solid substrates have become increasingly popular, challenging the traditional systems and materials in terms of better control over molecular structure and function at the nanoscale. A variety of such assemblies with high complexity and adjustable properties was generated on the basis of organic, inorganic, organometallic, polymeric, and biomolecular building blocks. Particular versatile elements in this context are terpyridyls due to their wide design flexibility, ease of functionalization, and ability to coordinate to a broad variety of transition-metal ions without forming diastereoisomers, which facilitates tuning of their optical and electronic properties. Specifically, metal-terpyridyl complexes are worthy building blocks for generating optoelectronically active assemblies on technologically relevant transparent and conductive oxide substrates. In this context, the present Account summarizes our recent results on the preparation, characterization, and applications of nanometric (2-10 nm) surface-confined molecular assemblies of Cu2+, Fe2+, Ru2+, and Os2+-terpyridyl complexes on SiOx-based substrates (glass, quartz, silicon, and ITO-coated glass). These assemblies rely on covalent bond formation between the iodo-/chloro-terminated functionalized SiOx substrates and the pendant group (mostly pyridyl) hosted on the terpyridyl complexes. Such an anchoring provides excellent thermal, temporal, radiative, and electrochemical stability to the assemblies as needed for technological applications. The functional, covalently assembled monolayers were extended to fabricate molecular dyads (bilayers), triads (trilayers), and oligomers by an established layer-by-layer procedure using suitable metallolinkers such as Cu2+, Ag+, and Pd2+. The chemical, optical, and electrochemical properties of these assemblies could be precisely adjusted by selection of proper metal-terpyridyl complexes and/or metallolinkers, so that the resulting systems served, relying on the specific design, as sensors, catalysts, molecular logic gates, and photochromic devices. For instance, a Cu-terpyridyl-based assembly on a glass substrate showed "turn on" detection of ascorbic acid. In another example, heterometallic molecular triads were exposed to redox-active NO+ for selective oxidation of the metal ions, and the optical readout was utilized for configuring multiple-input-based molecular logic gates. Furthermore, bias-driven (+0.6 to +1.6 V vs Ag/AgCl) optical properties of the heteroleptic Ru2+/Os2+-terpyridyl monolayers were modulated and "read out" by spectro-electrochemical techniques demonstrating high charge/information density (3-4 × 1014 electrons/cm2). Moreover, the manipulation of the M2+/3+ (M = Fe, Ru, and Os) redox wave in the assembly provided the possibility to create mixed-valence redox-states paving the way toward the fabrication of "multi-bit" memory systems. We truly believe that due to these intriguing characteristics and excellent stability, terpyridyl-based molecular assemblies have the potential to become a versatile platform for the next generation of smart optoelectronic devices.
Collapse
Affiliation(s)
- Prakash Chandra Mondal
- National Institute for Nanotechnology, University of Alberta, Edmonton, Alberta T6G 2M9, Canada
| | - Vikram Singh
- Centre
for Nanoscience and Nanotechnology, Panjab University, Chandigarh 160014, India
| | - Michael Zharnikov
- Applied
Physical Chemistry, Heidelberg University, 69120 Heidelberg, Germany
| |
Collapse
|