1
|
Liu Z, Zhu Y, Hao R, Lin S, Ma D, Wang B. Highly-sensitive optical thermometer developed based on an intervalence charge transfer mashup. Talanta 2024; 274:126054. [PMID: 38599122 DOI: 10.1016/j.talanta.2024.126054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/25/2024] [Accepted: 04/04/2024] [Indexed: 04/12/2024]
Abstract
Optical thermometers based on lanthanide thermal-coupled levels have attracted great attention owing to its fundamental importance in the fields of public health, biology, and integrated circuit. However, the inherent structural properties (shielded effect on 4f configurations, intense non-radiation relaxation) strictly suppress the sensing performance, limiting the relative temperature sensitivity (SR). To circumvent these limitations, we propose an intervalence charge transfer mashup strategy by inducing d0 electron configured transition metals. Specifically, transition metals Ta5+ is incorporated in Tm3+/Eu3+:LiNbO3, which improves the SR from 5.30 to 11.16% K-1. The validity of this component-modulation behavior is observed on other oxide crystals (NaY(Mo1-zWzO4)2) as well. Furthermore, the observed regulation is well explained by DFT calculation that indicates the d-orbit component at valence band minimum remains the core factor governing the electron transfer process. We successfully relate the SR to the band structure of luminescence carrier, offering a novel perspective for the collocation design of lanthanide configurations.
Collapse
Affiliation(s)
- Zhihua Liu
- Sino French Institute of Nuclear Engineering and Technology, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Yunzhong Zhu
- Sino French Institute of Nuclear Engineering and Technology, Sun Yat-Sen University, Zhuhai, 519082, China.
| | - Rui Hao
- School of Physics, Sun Yat-Sen University, Guangzhou, 510275, China
| | - Shaopeng Lin
- Sino French Institute of Nuclear Engineering and Technology, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Decai Ma
- Sino French Institute of Nuclear Engineering and Technology, Sun Yat-Sen University, Zhuhai, 519082, China
| | - Biao Wang
- Sino French Institute of Nuclear Engineering and Technology, Sun Yat-Sen University, Zhuhai, 519082, China; School of Physics, Sun Yat-Sen University, Guangzhou, 510275, China
| |
Collapse
|
2
|
Xu Y, Liang H, Zeng Q, He F, Liu C, Gai S, Ding H, Yang P. A bubble-enhanced lanthanide-doped up/down-conversion platform with tumor microenvironment response for dual-modal photoacoustic and near-infrared-II fluorescence imaging. J Colloid Interface Sci 2024; 659:149-159. [PMID: 38159491 DOI: 10.1016/j.jcis.2023.12.088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 12/12/2023] [Accepted: 12/13/2023] [Indexed: 01/03/2024]
Abstract
As an important tumor diagnosis strategy in precision medicine, multimodal imaging has been widely studied. However, the weak imaging signal with low spatial resolution and the constant signal of lack of specific activation severely limit its disease diagnosis. Herein, a bubble-enhanced lanthanide-based up/down-conversion platform with tumor microenvironment response for dual-mode imaging, LDNP@DMSN-Au@CaCO3 nanoparticles (named as LDAC NPs) were successfully developed. Combining the advantages of photoacoustic imaging (PAI) and the second near-infrared window (NIR-II) fluorescence imaging (FI), significantly improved the accuracy of diseases diagnosis. LDAC NPs with flower-like structure were synthesized through the encapsulation of uniform lanthanide-doped nanoparticles (NaYbF4:Ce,Er@NaYF4 named LDNPs) with dendritic mesoporous silica (DMSN). The gold nanoparticles (Au NPs) were then in situ grown on the surface of DMSN and the surface were finally coated with a layer of calcium carbonate (CaCO3). Under the excitation of the 980 nm laser, LDNPs showed strong emission of NIR-II at 1550 nm due to the doping of Ce and Er ions, showcasing excellent spatial resolution and deep tissue penetration characteristics, while the resulting visible light emission (540 nm) enables Au NPs to generate PAI signals with the aid of LDNPs via the fluorescence resonance energy transfer effect. In acidic tumoral environment, CaCO3 layer could produce CO2 microbubbles, and the PAI signals of LDAC NPs could be further enhanced with the generation of CO2 bubbles due to the bubble cavitation effect. Simultaneously, the NIR-II FI of LDAC NPs was self-enhanced with the degradation of the CaCO3. This intelligent nanoparticle with stimulus-activated dual-mode imaging capability holds great promise in future precision diagnostics.
Collapse
Affiliation(s)
- Yuening Xu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Haoran Liang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Qingtan Zeng
- Changhai Hospital Affiliated to Navy Military Medical University, Shanghai, PR China
| | - Fei He
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China.
| | - Changlin Liu
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - Shili Gai
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China
| | - He Ding
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China.
| | - Piaoping Yang
- Key Laboratory of Superlight Materials and Surface Technology, Ministry of Education, College of Material Sciences and Chemical Engineering, Harbin Engineering University, Harbin 150001, PR China.
| |
Collapse
|
3
|
Gonçalves JM, Bastos ARN, Ribeiro SJL, Carlos LD, Longo RL, Caiut JMA, Ferreira RAS. Thermal properties of nanofluids using hydrophilic and hydrophobic LiYF 4:Yb/Er upconverting nanoparticles. NANOSCALE ADVANCES 2024; 6:1486-1496. [PMID: 38419868 PMCID: PMC10898443 DOI: 10.1039/d3na01114c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 01/26/2024] [Indexed: 03/02/2024]
Abstract
Luminescent nanoparticles have shown great potential for thermal sensing in bio-applications. Nonetheless, these materials lack water dispersibility that can be overcome by modifying their surface properties with water dispersible molecules such as cysteine. Herein, we employ LiYF4:Er3+/Yb3+ upconverting nanoparticles (UCNPs) capped with oleate or modified with cysteine dispersed in cyclohexane or in water, respectively, as thermal probes. Upconversion emission was used to sense temperature with a relative thermal sensitivity of ∼1.24% K-1 (at 300 K) and a temperature uncertainty of 0.8 K for the oleate capped and of 0.5 K for cysteine modified NPs. To study the effect of the cysteine modification in the heat transfer processes, the thermal conductivity of the nanofluids was determined, yielding 0.123(6) W m-1 K-1 for the oleate capped UCNPs dispersed in cyclohexane and 0.50(7) W m-1 K-1 for the cysteine modified UCNPs dispersed in water. Moreover, through the heating curves, the nanofluids' thermal resistances were estimated, showing that the cysteine modification partially prevents heat transfer.
Collapse
Affiliation(s)
- João M Gonçalves
- Department of Physics, CICECO - Aveiro Institute of Materials, University of Aveiro Aveiro 3810-193 Portugal
- Department of Chemistry, Faculdade de Filosofia, Ciências e Letras, University of São Paulo Ribeirão Preto 14040-900 Brazil
| | - Ana R N Bastos
- Department of Physics, CICECO - Aveiro Institute of Materials, University of Aveiro Aveiro 3810-193 Portugal
| | - Sidney J L Ribeiro
- Institute of Chemistry, Universidade Estadual Paulista «Júlio de Mesquisa Filho» Araraquara 14800-060 Brazil
| | - L D Carlos
- Department of Physics, CICECO - Aveiro Institute of Materials, University of Aveiro Aveiro 3810-193 Portugal
| | - Ricardo L Longo
- Departamento de Química Fundamental, Universidade Federal de Pernambuco Recife PE 50740-540 Brazil
| | - José Maurício A Caiut
- Department of Chemistry, Faculdade de Filosofia, Ciências e Letras, University of São Paulo Ribeirão Preto 14040-900 Brazil
| | - Rute A S Ferreira
- Department of Physics, CICECO - Aveiro Institute of Materials, University of Aveiro Aveiro 3810-193 Portugal
| |
Collapse
|
4
|
Ma YY, Li Y, Huang HX, Qian DJ. Fabrication of Eu3+-dipicolinic acid complex functionalized nanoSiO2 composites and their Langmuir-Blodgett films as visual fluorescence probe for tetracycline and oxytetracycline. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/16/2023]
|
5
|
Liu Q, Wang J, Yao C, Yang L, Zhao L, Guo L, Liu JM, Wang S. Functional Micro-/Nanostructures in Agrofood Science: Precise Inspection, Hazard Elimination, and Potential Health Risks. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:1018-1034. [PMID: 36602253 DOI: 10.1021/acs.jafc.2c06838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Nanotechnology, biotechniques, and chemical engineering have arisen as new trends with significant impacts on agrofood science development. Advanced analytical techniques with high sensitivity, specificity, and automation based on micro-/nanomaterials for food hazard elimination have become leading research hotspots in agrofood science. Research progress in micro-/nanomaterials has provided a solid theoretical basis and technical support to solve problems in the industry. However, the rapid development of micro-/nanostructures has also raised concerns regarding potential risks to human health. This review presents the latest advances in the precise inspection and elimination of food hazards from micro-/nanomaterials and discusses the potential threats to human health posed by nanomaterials. The theoretical reference was provided for the application trend of micro-/nanomaterials in the field of agrofood science in the future.
Collapse
Affiliation(s)
- Qisijing Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin300071, China
| | - Jing Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin300071, China
| | - Chixuan Yao
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin300071, China
| | - Lu Yang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin300071, China
| | - Lei Zhao
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, 32500, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, 300072, China
| | - Liqiong Guo
- Institute of Disaster and Emergency Medicine, Tianjin University, Tianjin, 300072, China
- Wenzhou Safety (Emergency) Institute, Tianjin University, Wenzhou, 32500, China
- Tianjin Key Laboratory of Disaster Medicine Technology, Tianjin, 300072, China
| | - Jing-Min Liu
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin300071, China
| | - Shuo Wang
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin300071, China
| |
Collapse
|
6
|
Wu H, Ling Y, Ju S, Chen Y, Xu M, Tang Y. A smartphone-integrated light-up lanthanide fluorescent probe for the visual and ratiometric detection of total phosphorus in human urine and environmental water samples. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2022; 279:121360. [PMID: 35617833 DOI: 10.1016/j.saa.2022.121360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2022] [Revised: 05/02/2022] [Accepted: 05/04/2022] [Indexed: 06/15/2023]
Abstract
Phosphate (Pi) plays an essential role in aquatic ecosystems as well as in physiological processes. Here, a dual-emission probe for the sensitive, specific and visual analysis of Pi is fabricated by coordinating Eu3+ with luminol and 2,6-pyridinedicarboxylic acid (DPA). Pi can significantly enhance the characteristic fluorescence of Eu3+ at 615 nm by promoting energy transfer from DPA to Eu3+ and reducing the quenching effect of water molecule, luminol with inherent emission at 423 nm further enhances the Eu3+ fluorescence. Accordingly, ratiometric detection of Pi can be achieved with the fluorescence ratio F615/F423 as a function of Pi concentration. Linearity between F615/F423 and Pi concentration in the range of 0.1-25 μM is shown, and the limit of detection (LOD, 3σ/K) for Pi is 0.027 µM. In addition, a continuous change in the fluorescence color of the probe from blue to red is observed with increasing Pi concentration under a UV lamp, and a smartphone-based visual method is used for the convenient and effective semi-quantitative determination of Pi. The dual-emission probe has been successfully applied to ratiometric and visual analysis of Pi in human urine and environmental water samples, and adequate results are obtained.
Collapse
Affiliation(s)
- Huifang Wu
- Nantong Key Lab of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China.
| | - Yuwei Ling
- Nantong Key Lab of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Shiying Ju
- Nantong Key Lab of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Yubing Chen
- Nantong Key Lab of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Mengqi Xu
- Nantong Key Lab of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China
| | - Yanfeng Tang
- Nantong Key Lab of Intelligent and New Energy Materials, School of Chemistry and Chemical Engineering, Nantong University, Nantong 226019, China.
| |
Collapse
|
7
|
Olenin AY, Yagov VV. Using the Turn-On Fluorescence Effect in Chemical and Biochemical Analysis. JOURNAL OF ANALYTICAL CHEMISTRY 2022. [DOI: 10.1134/s1061934822090088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
8
|
Zhang L, Zheng B, Zhai J, Lin T. Fabrication of highly luminescent TiO2: Eu3+ thin film with low annealing temperature requirement by co-doping with Sn4+ ions. J RARE EARTH 2022. [DOI: 10.1016/j.jre.2022.07.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/15/2022]
|
9
|
Yang Y, Liu Y, Tu D, Chen M, Zhang Y, Gao H, Chen X. Tumor-Microenvironment-Responsive Biodegradable Nanoagents Based on Lanthanide Nucleotide Self-Assemblies toward Precise Cancer Therapy. Angew Chem Int Ed Engl 2022; 61:e202116983. [PMID: 35084798 DOI: 10.1002/anie.202116983] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Indexed: 12/25/2022]
Abstract
Stimuli-responsive nanoagents, which simultaneously satisfy normal tissue clearance and tumor-specific responsive treatment, are highly attractive for precise cancer theranostics. Herein, we develop a unique template-induced self-assembly strategy for the exquisitely controlled synthesis of self-assembled lanthanide (Ln3+ ) nucleotide nanoparticles (LNNPs) with amorphous structure and tunable size from sub-5 nm to 105 nm. By virtue of the low-temperature (10 K) and high-resolution spectroscopy, the local site symmetry of Ln3+ in LNNPs is unraveled for the first time. The proposed LNNPs are further demonstrated to possess the ability for highly efficient loading and tumor-microenvironment-responsive release of doxorubicin. Particularly, sub-5 nm LNNPs not only exhibit excellent biocompatibility and predominant renal-clearance performance, but also enable efficient tumor retention. These findings reveal the great potential of LNNPs as a new generation of therapeutic platform to overcome the dilemma between efficient therapy and long-term toxicity of nanoagents for future clinical applications.
Collapse
Affiliation(s)
- Yingjie Yang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, and State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yan Liu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, and State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Datao Tu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, and State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Mingmao Chen
- College of Biological Science and Engineering, Fuzhou University, Fuzhou, Fujian, 350108, China
| | - Yunqin Zhang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, and State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Hang Gao
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, and State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China
| | - Xueyuan Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, and State Key Laboratory of Structural Chemistry, Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian, 350002, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
10
|
Liu Y, Zhou M, Zhou MT, Wei HL, Su Y, Su Q. Simultaneous ultraviolet-C and near-infrared enhancement in heterogeneous lanthanide nanocrystals. NANOSCALE 2022; 14:4595-4603. [PMID: 35255115 DOI: 10.1039/d1nr07329j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Lanthanide-doped nanocrystals that simultaneously convert near-infrared (NIR) irradiation into emission of shorter (ultraviolet-C, UVC) and longer wavelengths (NIR) offer many exciting opportunities for application in drug release, photodynamic therapy, deep-tissue bioimaging, and solid-state lasing. However, a formidable challenge is the development of lanthanide-doped nanocrystals with efficient UVC and NIR emissions simultaneously due to their low conversion efficiency. Here, we report a dye-sensitized heterogeneous core-multishell architecture with enhanced UVC emission and NIR emission under 793 nm excitation. This nanocrystal design efficiently suppresses energy trapping induced by interior lattice defects and promotes upconverted UVC emission from Gd3+. Moreover, a significant downshifting emission from Yb3+ at 980 nm was also observed owing to an efficient energy transfer from Nd3+ to Yb3+. Furthermore, by taking advantage of ICG sensitization, we realized a largely enhanced emission from the UVC to NIR spectral region. This study provides a mechanistic understanding of the upconversion and downshifting processes within a heterogeneous architecture while offering exciting opportunities for important biological and energy applications.
Collapse
Affiliation(s)
- Yachong Liu
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China.
| | - Mingzhu Zhou
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China.
| | - Meng-Tao Zhou
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China.
| | - Han-Lin Wei
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China.
| | - Yan Su
- Genome Institute of Singapore, Agency of Science Technology and Research, 138672, Singapore
| | - Qianqian Su
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China.
| |
Collapse
|
11
|
Yang Y, Liu Y, Tu D, Chen M, Zhang Y, Gao H, Chen X. Tumor‐Microenvironment‐Responsive Biodegradable Nanoagents Based on Lanthanide Nucleotide Self‐Assemblies toward Precise Cancer Therapy. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202116983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Yingjie Yang
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, and State Key Laboratory of Structural Chemistry CHINA
| | - Yan Liu
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, and State Key Laboratory of Structural Chemistry 350002 Fuzhou CHINA
| | - Datao Tu
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, and State Key Laboratory of Structural Chemistry CHINA
| | - Mingmao Chen
- Fuzhou University College of Biological Science and Engineering CHINA
| | - Yunqin Zhang
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, and State Key Laboratory of Structural Chemistry CHINA
| | - Hang Gao
- Chinese Academy of Sciences Fujian Institute of Research on the Structure of Matter CAS Key Laboratory of Design and Assembly of Functional Nanostructures, Fujian Key Laboratory of Nanomaterials, and State Key Laboratory of Structural Chemistry CHINA
| | - Xueyuan Chen
- Fujian Institute of Research on the Structure of Matter, Chinese Academy of Sciences 155 West Yangqiao Road Fuzhou CHINA
| |
Collapse
|
12
|
Liu Y, Li G, Wang R, Cai G. Dependence of Luminous Performance on Eu 3+ Site Occupation in SrIn 2(P 2O 7) 2: The Effect of the Local Environment. Inorg Chem 2021; 60:17219-17229. [PMID: 34694131 DOI: 10.1021/acs.inorgchem.1c02550] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The photoluminescence behavior of luminescent materials with rare earth (RE) ions as a luminescence center not only depends on the element type and chemical valence of RE ions but also on their concentration and occupation in the matrix, sometimes including the interaction of the matrix and RE ions or between different RE ions. Herein, special SrIn2(P2O7)2 phosphate, assembled by monolayer [SrO10]∞ and bilayer [In2P4O14]∞ consisting of InO6 units and P2O7 groups, was selected as the host material, and different cation positions (Sr and In) were substituted by Eu3+. The structure refinement in combination with Judd-Ofelt theory has shed light on the differences of the Eu3+ coordination environment in SrIn2(P2O7)2. The structural rigidity of the In3+ site is better than that of the Sr2+ site, making SrIn1.92(P2O7)2: Eu0.08 superior in thermal stability. The average distance between adjacent Sr2+ ions is larger than that between adjacent In3+ ions, causing the higher quantum efficiency of Sr0.9In2(P2O7)2: Eu0.1. The present work demonstrates that the site occupation of Eu3+ has an important effect on its luminous performance. Importantly, the newly developed Eu3+-doped SrIn2(P2O7)2 phosphors, exhibiting outstanding luminous efficiency, favorable thermal stability, and excellent color purity, are promising red components of phosphor-based light-emitting diodes.
Collapse
Affiliation(s)
- Yijia Liu
- School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan, People's Republic of China.,Key Lab of Non-Ferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410083, People's Republic of China
| | - Guihua Li
- School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan, People's Republic of China.,Key Lab of Non-Ferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410083, People's Republic of China
| | - Rongrong Wang
- School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan, People's Republic of China.,Key Lab of Non-Ferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410083, People's Republic of China
| | - Gemei Cai
- School of Materials Science and Engineering, Central South University, Changsha 410083, Hunan, People's Republic of China.,Key Lab of Non-Ferrous Metal Materials Science and Engineering, Ministry of Education, Central South University, Changsha 410083, People's Republic of China
| |
Collapse
|
13
|
Diana R, Caruso U, Panunzi B. Stimuli-Responsive Zinc (II) Coordination Polymers: A Novel Platform for Supramolecular Chromic Smart Tools. Polymers (Basel) 2021; 13:3712. [PMID: 34771269 PMCID: PMC8588226 DOI: 10.3390/polym13213712] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 10/22/2021] [Accepted: 10/24/2021] [Indexed: 12/12/2022] Open
Abstract
The unique role of the zinc (II) cation prompted us to cut a cross-section of the large and complex topic of the stimuli-responsive coordination polymers (CPs). Due to its flexible coordination environment and geometries, easiness of coordination-decoordination equilibria, "optically innocent" ability to "clip" the ligands in emissive architectures, non-toxicity and sustainability, the zinc (II) cation is a good candidate for building supramolecular smart tools. The review summarizes the recent achievements of zinc-based CPs as stimuli-responsive materials able to provide a chromic response. An overview of the past five years has been organised, encompassing 1, 2 and 3D responsive zinc-based CPs; specifically zinc-based metallorganic frameworks and zinc-based nanosized polymeric probes. The most relevant examples were collected following a consequential and progressive approach, referring to the structure-responsiveness relationship, the sensing mechanisms, the analytes and/or parameters detected. Finally, applications of highly bioengineered Zn-CPs for advanced imaging technique have been discussed.
Collapse
Affiliation(s)
- Rosita Diana
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| | - Ugo Caruso
- Department of Chemical Science, University of Naples Federico II, 80126 Napoli, Italy;
| | - Barbara Panunzi
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Portici, Italy;
| |
Collapse
|
14
|
Kabiriyel J, Mohan CR. "Size or mass" which plays a role? An investigation on the optical and ultrasonic properties of chitosan-lanthanide composites. Int J Biol Macromol 2021; 188:609-619. [PMID: 34389396 DOI: 10.1016/j.ijbiomac.2021.08.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 08/02/2021] [Accepted: 08/06/2021] [Indexed: 11/29/2022]
Abstract
In this present exploration, chitosan doped with different lanthanide oxides such as CeO2, Nd2O3, Sm2O3, Eu2O3, Gd2O3, Dy2O3 and Ho2O3 has been prepared and its optical and thermodynamical properties were studied as a function of the ion size of the lanthanide element and its atomic masses. From the refractive index measurement, the space-filling factor and polarizability have been obtained. The propagation of ultrasonic waves like ultrasonic velocity and its derived quantities such as relaxation strength (rs), adiabatic bulk modulus (Ks), acoustic impedance (Z) and adiabatic compressibility (β) have been obtained for different Chitosan-Lanthanide oxides (Ch-LnO). FTIR studies confirm the formation of different Ch-LnO. The variation of all the said properties with ion size is opposite to that of atomic mass due to lanthanide contraction. The results are presented and discussed in a detailed manner.
Collapse
Affiliation(s)
- J Kabiriyel
- Nanostructured lab, Department of Physics, The Gandhigram Rural Institute-Deemed to be University, Gandhigram 624302, Tamil Nadu, India
| | - C Raja Mohan
- Nanostructured lab, Department of Physics, The Gandhigram Rural Institute-Deemed to be University, Gandhigram 624302, Tamil Nadu, India.
| |
Collapse
|
15
|
Kong Z, Zhang P, Chen J, Zhou H, Ma X, Wang H, Shen JW, Liang LJ. Effect of Shape on the Entering of Graphene Quantum Dots into a Membrane: A Molecular Dynamics Simulation. ACS OMEGA 2021; 6:10936-10943. [PMID: 34056246 PMCID: PMC8153953 DOI: 10.1021/acsomega.1c00689] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Accepted: 03/29/2021] [Indexed: 06/12/2023]
Abstract
Graphene quantum dots (GQDs), a new quasi-zero-dimensional nanomaterial, have the advantages of a smaller transverse size, better biocompatibility, and lower toxicity. They have potential applications in biosensors, drug delivery, and biological imaging. Therefore, it is particularly important to understand the transport mechanism of the GQDs on the cell membrane. In particular, the effect of the GQD shapes on the translocation mechanism should be well understood. In this study, the permeation process of the GQDs with different shapes through a 1-palmitoyl-2-oleoylphosphatidylcholine membrane was studied using molecular dynamics. The results show that all small-sized GQDs with different shapes translocated through the lipid membrane at a nanosecond timescale. The GQDs tend to remain on the surface of the cell membrane; then, the corners of the GQDs spontaneously enter the cell membrane; and, finally, the entire GQDs enter the cell membrane and tend to stabilize in the middle of the cell membrane. Moreover, the GQDs do not induce notable damage to the cell membrane, indicating that they are less toxic to cells and can be used as a potential biomedical material.
Collapse
Affiliation(s)
- Zhe Kong
- Center
for Advanced Optoelectronic Materials, Key Laboratory of Novel Materials
for Sensor of Zhejiang Province, College of Materials and Environmental
Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Pengzhen Zhang
- Center
for Advanced Optoelectronic Materials, Key Laboratory of Novel Materials
for Sensor of Zhejiang Province, College of Materials and Environmental
Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Jiangxing Chen
- School
of Science, Westlake University, 18 Shilongshan Road, Hangzhou 310024, China
| | - Hanxing Zhou
- College
of Automation, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Xuanchao Ma
- College
of Automation, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Hongbo Wang
- Center
for Advanced Optoelectronic Materials, Key Laboratory of Novel Materials
for Sensor of Zhejiang Province, College of Materials and Environmental
Engineering, Hangzhou Dianzi University, Hangzhou 310018, China
| | - Jia-Wei Shen
- College
of Pharmacy, School of Medicine, Hangzhou
Normal University, Hangzhou, Zhejiang 311121, China
| | - Li-Jun Liang
- College
of Automation, Hangzhou Dianzi University, Hangzhou 310018, China
| |
Collapse
|
16
|
Li Y, Yu B, Wang H, Wang Y. Structural and optical characteristics of novel rare‐earth‐free red-emitting BaSn(PO4)2:Mn4+ phosphor. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2020.129839] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
17
|
Luminescent Nanomaterials (I). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021. [PMID: 33782869 DOI: 10.1007/978-981-33-6158-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/07/2023]
Abstract
From molecular probes, also known as fluorophores (typically emitting a longer wavelength than the absorbing wavelength), to inorganic nanoparticles, various light-emitting materials have been actively studied and developed for various applications in life science owing to their superior imaging and sensing ability. Especially after the breakthrough development of quantum dots (QDs), studies have pursued the development of the optical properties and biological applications of luminescent inorganic nanoparticles such as upconversion nanoparticles (UCNPs), metal nanoclusters, carbon dots, and so on. In this review, we first provide a brief explanation about the theoretical background and traditional concepts of molecular fluorophores. Then, currently developed luminescent nanoparticles are described as sensing and imaging platforms from general aspects to technical views.
Collapse
|
18
|
Li Z, Liu X, Wang G, Li B, Chen H, Li H, Zhao Y. Photoresponsive supramolecular coordination polyelectrolyte as smart anticounterfeiting inks. Nat Commun 2021; 12:1363. [PMID: 33649315 PMCID: PMC7921134 DOI: 10.1038/s41467-021-21677-4] [Citation(s) in RCA: 97] [Impact Index Per Article: 24.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 02/08/2021] [Indexed: 11/09/2022] Open
Abstract
While photoluminescence printing is a widely applied anticounterfeiting technique, there are still challenges in developing new generation anticounterfeiting materials with high security. Here we report the construction of a photoresponsive supramolecular coordination polyelectrolyte (SCP) through hierarchical self-assembly of lanthanide ion, bis-ligand and diarylethene unit, driven by metal-ligand coordination and ionic interaction. Owing to the conformation-dependent photochromic fluorescence resonance energy transfer between the lanthanide donor and diarylethene acceptor, the ring-closure/ring-opening isomerization of the diarylethene unit leads to a photoreversible luminescence on/off switch in the SCP. The SCP is then utilized as security ink to print various patterns, through which photoreversible multiple information patterns with visible/invisible transformations are realized by simply alternating the irradiation with UV and visible light. This work demonstrates the possibility of developing a new class of smart anticounterfeiting materials, which could be operated in a noninvasive manner with a higher level of security.
Collapse
Affiliation(s)
- Zhiqiang Li
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, P. R. China.
| | - Xiao Liu
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, P. R. China
| | - Guannan Wang
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, P. R. China
| | - Bin Li
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, P. R. China
| | - Hongzhong Chen
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore
| | - Huanrong Li
- Tianjin Key Laboratory of Chemical Process Safety, School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin, P. R. China.
| | - Yanli Zhao
- Division of Chemistry and Biological Chemistry, School of Physical and Mathematical Sciences, Nanyang Technological University, Singapore, Singapore.
| |
Collapse
|
19
|
Shanks HR, Wu S, Nguyen NT, Lu D, Saunders BR. Including fluorescent nanoparticle probes within injectable gels for remote strain measurements and discrimination between compression and tension. SOFT MATTER 2021; 17:1048-1055. [PMID: 33289763 DOI: 10.1039/d0sm01635g] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The ability to remotely and non-invasively monitor and measure the strain within injectable gels used to augment soft tissue is highly desirable. Such information could enable real-time monitoring of gel performance and bespoke gel design. We report progress towards this goal using two fluorescent particle probe systems included within two different injectable gels. The two injectable gels have been previously studied in the contexts of intervertebral disc repair and stretchable gels for cartilage repair. The two fluorophore particle probes are blue or near-infrared (NIR) emitting and are present at very low concentrations. The normalised photoluminescence (PL) intensity from the blue emitting probe is shown to equal the compressive deformation ratio of the gels. Furthermore, the normalised ratio of the PL intensities for the blue and NIR probes varies linearly with deformation ratio over a wide range (from 0.2 to 3.0) with a seamless transition from compression to tension. Hence, PL can discriminate between compression and tension. The new approach established here should apply to other gels and enable remote detection of whether a gel is being compressed or stretched as well as the extent. This study may provide an important step towards remotely and minimally invasively measuring the strain experienced by load-supporting gels in vivo.
Collapse
Affiliation(s)
- Hannah R Shanks
- School of Materials, University of Manchester, MSS Tower, Manchester, M13 9PL, UK.
| | | | | | | | | |
Collapse
|
20
|
Chang H, Kim J, Lee SH, Rho WY, Lee JH, Jeong DH, Jun BH. Luminescent Nanomaterials (II). ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2021; 1309:97-132. [PMID: 33782870 DOI: 10.1007/978-981-33-6158-4_5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In this review, we focus on sensing techniques and biological applications of various luminescent nanoparticles including quantum dot (QD), up-conversion nanoparticles (UCNPs) following the previous chapter. Fluorescent phenomena can be regulated or shifted by interaction between biological targets and luminescence probes depending on their distance, which is so-called Fӧrster resonance energy transfer (FRET). QD-based FRET technique, which has been widely applied as a bioanalytical tool, is described. We discuss time-resolved fluorescence (TRF) imaging and flow cytometry technique, using photoluminescent nanoparticles with unique properties for effectively improving selectivity and sensitivity. Based on these techniques, bioanalytical and biomedical application, bioimaging with QD, UCNPs, and Euripium-activated luminescent nanoprobes are covered. Combination of optical property of these luminescent nanoparticles with special functions such as drug delivery, photothermal therapy (PTT), and photodynamic therapy (PDT) is also described.
Collapse
Affiliation(s)
- Hyejin Chang
- Division of Science Education, Kangwon National University, Chuncheon, Republic of Korea
| | - Jaehi Kim
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, South Korea
| | - Sang Hun Lee
- Department of Chemical and Biological Engineering, Hanbat National University, Daejeon, Republic of Korea
| | - Won-Yeop Rho
- School of International Engineering and Science, Jeonbuk National University, Jeonju, Republic of Korea
| | - Jong Hun Lee
- Department of Food Science and Biotechnology, Gachon University, Seongnam, Republic of Korea
| | - Dae Hong Jeong
- Department of Chemistry Education, Seoul National University, Seoul, Republic of Korea
| | - Bong-Hyun Jun
- Department of Bioscience and Biotechnology, Konkuk University, Seoul, South Korea.
| |
Collapse
|
21
|
Gao N, Yang Y, Shi S, Wang J, Wang S, Li J, Fu L. Ln3+ (Ln = Eu, Dy) - doped Sr2CeO4 fine phosphor particles: Wet chemical preparation, energy transfer and tunable luminescence. J RARE EARTH 2020. [DOI: 10.1016/j.jre.2019.09.014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
22
|
Ma YY, Qian DJ. Visual Luminescent Probes Constructed by Eu 3+ Complex-Functionalized Silica Nanocomposites and Their Langmuir-Blodgett Films at Interfaces. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2020; 36:14092-14103. [PMID: 33170711 DOI: 10.1021/acs.langmuir.0c02728] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The trivalent europium ion (Eu3+) has garnered a great deal of interest for the design of luminescent materials possessing compound-independent emission bands, strong luminescent intensity, and long emission lifetimes. We herein introduce a synthetic methodology capable of constructing visual luminescent probes from Eu3+ complex-functionalized silica nanocomposites and their Langmuir-Blodgett (LB) films at interfaces. In order to facilitate the coordinative stabilization of Eu3+ over carrier surfaces, silica nanoparticles (nanoSiO2) were pregrafted with terpyridyl (TPy) to make nanoSiO2TPy linkers. Then, a well-designed coordination reaction of nanoSiO2TPy with EuCl3 and 2,6-pyridinedicarboxylic acid (DPA) was carried out at solid-liquid and air-water interfaces, where our desired material (denoted as nanoSiO2TPy@EuDPA) and its corresponding LB film are obtained. The presence of TPy and DPA interacting with Eu3+ plays a key role in regulating the chemical nature of the particle surface, hence giving rise to closely packed nanocomposite arrays in the film. As a result, the improvement in uniformity and stability is achieved alongside the enhancement in emission intensity and lifetime. With such advantageous optical properties, we find them workable as facile, green, and affordable luminescent sensors, by which a range of common toxic anions (Cr2O72-, MnO4-, and PO43-) can be visually and quantitatively recognized. Notably, the LB film-based material could afford a higher Ksv value (1.53 × 105 M-1), a lower detection limit (0.157 μM), and better recyclability than its original powder analogue, showcasing its utility as a more promising candidate for practical use.
Collapse
Affiliation(s)
- Yue-Yang Ma
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Dong-Jin Qian
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| |
Collapse
|
23
|
Charpentier C, Cifliku V, Goetz J, Nonat A, Cheignon C, Cardoso Dos Santos M, Francés‐Soriano L, Wong K, Charbonnière LJ, Hildebrandt N. Ultrabright Terbium Nanoparticles for FRET Biosensing and in Situ Imaging of Epidermal Growth Factor Receptors**. Chemistry 2020; 26:14602-14611. [DOI: 10.1002/chem.202002007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/04/2020] [Indexed: 12/16/2022]
Affiliation(s)
- Cyrille Charpentier
- Equipe de synthèse pour l'analyse (SynPA), Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178, CNRS Université de Strasbourg 67087 Strasbourg Cedex France
| | - Vjona Cifliku
- Institute for Integrative Biology of the Cell (I2BC) Université Paris-Saclay, CNRS, CEA 91405 Orsay Cedex France
- nanoFRET.com Laboratoire COBRA (Chimie Organique, Bioorganique, Réactivité et Analyse) Université de Rouen Normandie, CNRS, INSA 76821 Mont-Saint-Aignan Cedex France
| | - Joan Goetz
- Equipe de synthèse pour l'analyse (SynPA), Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178, CNRS Université de Strasbourg 67087 Strasbourg Cedex France
- Department of Chemistry Hong Kong Baptist University Hong Kong P. R. China
| | - Aline Nonat
- Equipe de synthèse pour l'analyse (SynPA), Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178, CNRS Université de Strasbourg 67087 Strasbourg Cedex France
| | - Clémence Cheignon
- Equipe de synthèse pour l'analyse (SynPA), Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178, CNRS Université de Strasbourg 67087 Strasbourg Cedex France
| | - Marcelina Cardoso Dos Santos
- Institute for Integrative Biology of the Cell (I2BC) Université Paris-Saclay, CNRS, CEA 91405 Orsay Cedex France
| | - Laura Francés‐Soriano
- nanoFRET.com Laboratoire COBRA (Chimie Organique, Bioorganique, Réactivité et Analyse) Université de Rouen Normandie, CNRS, INSA 76821 Mont-Saint-Aignan Cedex France
| | - Ka‐Leung Wong
- Department of Chemistry Hong Kong Baptist University Hong Kong P. R. China
| | - Loïc J. Charbonnière
- Equipe de synthèse pour l'analyse (SynPA), Institut Pluridisciplinaire Hubert Curien (IPHC), UMR 7178, CNRS Université de Strasbourg 67087 Strasbourg Cedex France
| | - Niko Hildebrandt
- Institute for Integrative Biology of the Cell (I2BC) Université Paris-Saclay, CNRS, CEA 91405 Orsay Cedex France
- nanoFRET.com Laboratoire COBRA (Chimie Organique, Bioorganique, Réactivité et Analyse) Université de Rouen Normandie, CNRS, INSA 76821 Mont-Saint-Aignan Cedex France
| |
Collapse
|
24
|
Zhang X, Shen T, Kan D, Zhang D, Dong R, An Z, Song Y, Zheng K, Sheng Y, Shi Z, Zou H. Study on the Local Structure and Luminescence Properties of a Y 2Mg 2Al 2Si 2O 12:Eu 3+ Red Phosphor for White-Light-Emitting Diodes. Inorg Chem 2020; 59:9927-9937. [PMID: 32618470 DOI: 10.1021/acs.inorgchem.0c01095] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Structure determines properties, and properties determine applications, which is an important ideology of natural sciences. For optical materials, it is vital to lucubrate the corresponding relationship between the local crystal structure and luminescence properties for their design, synthesis, and application. This work reports a newly designed Y2Mg2Al2Si2O12(YMAS):Eu3+ red phosphor, in which difunctional Eu3+ ion is used as a red-light activator and spectroscopic probe. The qualitative and quantitative studies on the relationship between the local crystal structure and the luminescence properties of YMAS:Eu3+ are performed experimentally and computationally, using the Y3Al5O12 (YAG):Eu3+ as contrast. Moreover, compared with YAG:Eu3+, the newly designed YMAS:Eu3+ has stronger luminescence, superior Commission Internationale de L'Eclairage chromaticity coordinates, a lower optimal doping concentration, and equally excellent thermal stability. The satisfactory color-rendering index of packaged white-light-emitting diodes demonstrates its potential performance as a red phosphor. Briefly, this work provides not only a new case for the study of the local crystal structure and luminescence properties but also a new possibility for the application of a red phosphor in solid-state lighting.
Collapse
Affiliation(s)
- Xiangting Zhang
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Tianze Shen
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Dongxiao Kan
- College of Physics, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Dan Zhang
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Rujia Dong
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Zhengce An
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Yanhua Song
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Keyan Zheng
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Ye Sheng
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Zhan Shi
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, China
| | - Haifeng Zou
- College of Chemistry, Jilin University, Qianjin Street 2699, Changchun 130012, China
| |
Collapse
|
25
|
Zhao CX, Zhang XP, Shu Y, Wang JH. Europium-Pyridinedicarboxylate-Adenine Light-Up Fluorescence Nanoprobes for Selective Detection of Phosphate in Biological Fluids. ACS APPLIED MATERIALS & INTERFACES 2020; 12:22593-22600. [PMID: 32345010 DOI: 10.1021/acsami.0c04318] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Phosphate (Pi) plays important roles in various physiological processes. Its quantification in biological fluids is highly crucial for timely warning of Pi accumulation. Herein, an europium (Eu)-based coordination polymer nanoprobe (Eu/DPA/Ade) is prepared by coordinating 2,6-pyridinedicarboxylic acid (2,6-DPA) and adenine (Ade) with Eu3+. Eu/DPA/Ade exhibits light-up fluorescence response to Pi. The strong coordinating interaction between Eu3+ and O atoms in the Pi group not only shortens the Eu3+-ligand distance to improve the energy transfer from 2,6-DPA to Eu3+ but also attenuates the fluorescence quenching from water molecules in the coordinating sphere of Eu3+. Eu/DPA/Ade produces red emission at λem 618 nm via the "antenna effect". The coligand Ade further promotes the fluorescent emission. The selective recognition of Pi within 10-60 μM is achieved with a detection limit of 4.65 μM. In addition, a certain level of Pi (100-170 μM) causes an exponential increment on the fluorescence of Eu/DPA/Ade and makes it feasible for visual estimation of Pi under irradiation by an ultraviolet lamp at 254 nm. The quantitative detection and visual estimation of Pi in human urine and saliva have been demonstrated.
Collapse
Affiliation(s)
- Chen-Xi Zhao
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Xiao-Ping Zhang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Yang Shu
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| | - Jian-Hua Wang
- Department of Chemistry, College of Sciences, Northeastern University, Shenyang 110819, China
| |
Collapse
|
26
|
Li L, Zhou Y, Qin F, Miao J, Zheng Y, Zhang Z. Eu 3+-based luminescence ratiometric thermometry. RSC Adv 2020; 10:9444-9449. [PMID: 35497207 PMCID: PMC9050129 DOI: 10.1039/d0ra00170h] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 02/24/2020] [Indexed: 01/22/2023] Open
Abstract
Recently, luminescence ratiometric thermometry has gained ever-increasing attention due to its merits of rapid response, non-invasiveness, high spatial resolution, and so forth. For research fields relying on temperature measurements, achieving a higher relative sensitivity of this measurement is still an important task. In this work, we developed a strategy for achieving a more sensitive temperature measurement, one merely depending on the photoluminescence of Eu3+. We showed that using the 5D1–7F1 transition and the hypersensitive 5D0–7F2 transition of Eu3+ can boost the relative sensitivity compared with the method relying on the 5D1–7F1 and 5D0–7F1 transitions of Eu3+. The difference between these two strategies was studied and was explained by the hypersensitive 5D0–7F2 transition more steeply decreasing than the 5D0–7F1 transition with a rise in temperature. Our work is expected to help researchers design sensitive optical thermometers via proper use of this hypersensitive transition. We show that more sensitive luminescence ratiometric thermometry can be achieved using a hypersensitive Eu3+ transition.![]()
Collapse
Affiliation(s)
- Leipeng Li
- School of Physics, Harbin Institute of Technology Harbin 150001 P.R. China
| | - Yuan Zhou
- School of Physics, Harbin Institute of Technology Harbin 150001 P.R. China
| | - Feng Qin
- School of Instrumentation Science and Engineering, Condensed Matter Science and Technology Institute, Harbin Institute of Technology 92 West Dazhi Street, Nan Gang District Harbin Heilongjiang Province 150001 P.R. China +86-451-86402639 +86-451-86402639
| | - Jipeng Miao
- School of Physics, Harbin Institute of Technology Harbin 150001 P.R. China
| | - Yangdong Zheng
- School of Physics, Harbin Institute of Technology Harbin 150001 P.R. China
| | - Zhiguo Zhang
- School of Instrumentation Science and Engineering, Condensed Matter Science and Technology Institute, Harbin Institute of Technology 92 West Dazhi Street, Nan Gang District Harbin Heilongjiang Province 150001 P.R. China +86-451-86402639 +86-451-86402639
| |
Collapse
|
27
|
Liu JQ, Luo ZD, Pan Y, Kumar Singh A, Trivedi M, Kumar A. Recent developments in luminescent coordination polymers: Designing strategies, sensing application and theoretical evidences. Coord Chem Rev 2020. [DOI: 10.1016/j.ccr.2019.213145] [Citation(s) in RCA: 263] [Impact Index Per Article: 52.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
28
|
Cui L, Liang J, Liu H, Zhang K, Li J. Nanomaterials for Angiogenesis in Skin Tissue Engineering. TISSUE ENGINEERING PART B-REVIEWS 2020; 26:203-216. [PMID: 31964266 DOI: 10.1089/ten.teb.2019.0337] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Damage to skin tissue, which causes the disorder of the patient's body homeostasis, threatens the patient's life and increases the personal and social treatment burden. Angiogenesis, a key step in the wound healing process, provides sufficient oxygen and nutrients to the wound area. However, traditional clinical interventions are not enough to stabilize the formation of the vascular system to support wound healing. Due to the unique properties and multiple functions of nanomaterials, it has made a major breakthrough in the application of medicine. Nanomaterials provide a more effective treatment to hasten the angiogenesis and wound healing, by stimulating fundamental factors in the vascular regeneration phase. In the present review article, the basic stages and molecular mechanisms of angiogenesis are analyzed, and the types, applications, and prospects of nanomaterials used in angiogenesis are detailed. Impact statement Wound healing (especially chronic wounds) is currently a clinically important issue. The long-term nonhealing of chronic wounds often plagues patients, medical systems, and causes huge losses to the social economy. There is currently no effective method of treating chronic wounds in the clinic. Angiogenesis is an important step in wound healing. Nanomaterials had properties that are not found in conventional materials, and they have been extensively studied in angiogenesis. This review article provides readers with the molecular mechanisms of angiogenesis and the types and applications of angiogenic nanomaterials, hoping to bring inspiration to overcome chronic wounds.
Collapse
Affiliation(s)
- Longlong Cui
- School of Life Science, Zhengzhou University, Zhengzhou, China
| | - Jiaheng Liang
- School of Life Science, Zhengzhou University, Zhengzhou, China
| | - Han Liu
- School of Life Science, Zhengzhou University, Zhengzhou, China
| | - Kun Zhang
- School of Life Science, Zhengzhou University, Zhengzhou, China
| | - Jingan Li
- Henan Key Laboratory of Advanced Magnesium Alloy, Key Laboratory of Materials Processing and Mold Technology (Ministry of Education), School of Material Science and Engineering, Zhengzhou University, Zhengzhou, China
| |
Collapse
|
29
|
Dutta A, Singh A, Wang X, Kumar A, Liu J. Luminescent sensing of nitroaromatics by crystalline porous materials. CrystEngComm 2020. [DOI: 10.1039/d0ce01087a] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Designing strategies for the syntheses of targeted luminescent MOFs, nanoparticle/MOF composites and COFs described and their application in sensing nitroaromatic compounds and explosives discussed.
Collapse
Affiliation(s)
- Archisman Dutta
- Department of Chemistry
- Faculty of Science
- University of Lucknow
- Lucknow 226 007
- India
| | - Amita Singh
- Department of Chemistry
- Faculty of Science
- University of Lucknow
- Lucknow 226 007
- India
| | - Xiaoxiong Wang
- School of Civil and Environmental Engineering
- Shenzhen Polytechnic
- Shenzhen
- China
| | - Abhinav Kumar
- Department of Chemistry
- Faculty of Science
- University of Lucknow
- Lucknow 226 007
- India
| | - Jianqiang Liu
- Dongguan Key Laboratory of Drug Design and Formulation Technology
- Key Laboratory of Research and Development of New Medical Materials of Guangdong Medical University
- School of Pharmacy
- Guangdong Medical University
- Dongguan 523808
| |
Collapse
|
30
|
Zhang J, Cai G, Wang W, Ma L, Wang X, Jin Z. Tuning of Emission by Eu3+ Concentration in a Pyrophosphate: the Effect of Local Symmetry. Inorg Chem 2019; 59:2241-2247. [DOI: 10.1021/acs.inorgchem.9b02949] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Jing Zhang
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, People’s Republic of China
| | - Gemei Cai
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, People’s Republic of China
| | - Wenjun Wang
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, P.O. Box 603, Beijing 100190, People’s Republic of China
| | - Li Ma
- Department of Physics, Georgia Southern University, Statesboro, Georgia 30460, United States
| | - Xiaojun Wang
- Department of Physics, Georgia Southern University, Statesboro, Georgia 30460, United States
| | - Zhanpeng Jin
- School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, People’s Republic of China
| |
Collapse
|
31
|
Zou H, Yang X, Chen B, Du Y, Ren B, Sun X, Qiao X, Zhang Q, Wang F. Thermal Enhancement of Upconversion by Negative Lattice Expansion in Orthorhombic Yb
2
W
3
O
12. Angew Chem Int Ed Engl 2019. [DOI: 10.1002/ange.201910277] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Hua Zou
- Department of Materials Science and EngineeringCity University of Hong Kong 83 Tat Chee Avenue Hong Kong SAR China
- School of Mathematics and PhysicsJiangsu University of Technology Changzhou 213001 China
| | - Xueqing Yang
- Department of Materials Science and EngineeringCity University of Hong Kong 83 Tat Chee Avenue Hong Kong SAR China
- City University of Hong Kong Shenzhen Research Institute Shenzhen 518057 China
| | - Bing Chen
- Department of Materials Science and EngineeringCity University of Hong Kong 83 Tat Chee Avenue Hong Kong SAR China
- City University of Hong Kong Shenzhen Research Institute Shenzhen 518057 China
| | - Yangyang Du
- Department of Materials Science and EngineeringCity University of Hong Kong 83 Tat Chee Avenue Hong Kong SAR China
- City University of Hong Kong Shenzhen Research Institute Shenzhen 518057 China
| | - Biyun Ren
- Department of Materials Science and EngineeringCity University of Hong Kong 83 Tat Chee Avenue Hong Kong SAR China
- City University of Hong Kong Shenzhen Research Institute Shenzhen 518057 China
| | - Xinwen Sun
- School of Materials Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Xvsheng Qiao
- School of Materials Science and EngineeringZhejiang University Hangzhou 310027 China
| | - Qiwei Zhang
- School of Materials and MetallurgyInner Mongolia University of Science and Technology Baotou 014010 China
| | - Feng Wang
- Department of Materials Science and EngineeringCity University of Hong Kong 83 Tat Chee Avenue Hong Kong SAR China
- City University of Hong Kong Shenzhen Research Institute Shenzhen 518057 China
| |
Collapse
|
32
|
Zou H, Yang X, Chen B, Du Y, Ren B, Sun X, Qiao X, Zhang Q, Wang F. Thermal Enhancement of Upconversion by Negative Lattice Expansion in Orthorhombic Yb 2 W 3 O 12. Angew Chem Int Ed Engl 2019; 58:17255-17259. [PMID: 31523889 DOI: 10.1002/anie.201910277] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Indexed: 01/30/2023]
Abstract
Thermal quenching of photoluminescence represents a significant obstacle to practical applications such as lighting, display, and photovoltaics. Herein, a novel strategy is established to enhance upconversion luminescence at elevated temperatures based on the use of negative thermal expansion host materials. Lanthanide-doped orthorhombic Yb2 W3 O12 crystals are synthesized and characterized by in situ X-ray diffraction and photoluminescence spectroscopy. The thermally induced contraction and distortion of the host lattice is demonstrated to enhance the collection of excitation energy by activator ions. When the temperature is increased from 303 to 573 K, a 29-fold enhancement of green upconversion luminescence in Er3+ activators is achieved. Moreover, the temperature dependence of the upconversion luminescence is reversible. The thermally enhanced upconversion is developed as a sensitive ratiometric thermometer by referring to a thermally quenched upconversion.
Collapse
Affiliation(s)
- Hua Zou
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China.,School of Mathematics and Physics, Jiangsu University of Technology, Changzhou, 213001, China
| | - Xueqing Yang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China.,City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Bing Chen
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China.,City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Yangyang Du
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China.,City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Biyun Ren
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China.,City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| | - Xinwen Sun
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xvsheng Qiao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Qiwei Zhang
- School of Materials and Metallurgy, Inner Mongolia University of Science and Technology, Baotou, 014010, China
| | - Feng Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Hong Kong SAR, China.,City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, China
| |
Collapse
|
33
|
Wang S, Shen B, Wei HL, Liu Z, Chen Z, Zhang Y, Su Y, Zhang JZ, Wang H, Su Q. Comparative investigation of the optical spectroscopic and thermal effect in Nd 3+-doped nanoparticles. NANOSCALE 2019; 11:10220-10228. [PMID: 31089652 DOI: 10.1039/c9nr02493j] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
Nd3+-doped nanoparticles involving 808 nm excitation hold great promise in various biomedical applications, such as bioimaging, biodetection, theranostics and optogenetics. Here we present the synthesis and characterization of core-multishell Nd3+-doped nanoparticles displaying excellent optical properties. We systematically studied the influence of doping concentration, nanostructure design, excitation wavelength and size effect on the upconversion luminescence of Nd3+-doped nanoparticles. Remarkably, the emission intensity of optimized nanoparticles with 808 nm excitation is three times higher than the emission intensity of those with 980 nm excitation. Surprisingly, the optical profiles of Nd3+-doped nanoparticles strongly depend on the excitation wavelengths. The dominant effect responsible for the emission intensity difference and the energy transfer mechanism upon different excitation wavelengths are investigated. Interestingly, the heavily Nd3+-doped nanoparticles not only display efficient upconversion luminescence, but also are able to convert the excitation source to heat under a single 808 nm excitation source. Importantly, these efforts will lead to Nd3+-doped nanoparticles with unprecedented optical and thermal properties that will have broad utility in fundamental research and technological applications.
Collapse
Affiliation(s)
- Shuai Wang
- Institute of Nanochemistry and Nanobiology, Shanghai University, Shanghai 200444, China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Huang P, Zheng W, Tu D, Shang X, Zhang M, Li R, Xu J, Liu Y, Chen X. Unraveling the Electronic Structures of Neodymium in LiLuF 4 Nanocrystals for Ratiometric Temperature Sensing. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2019; 6:1802282. [PMID: 31131196 PMCID: PMC6523367 DOI: 10.1002/advs.201802282] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 02/18/2019] [Indexed: 05/16/2023]
Abstract
Nd3+-doped near-infrared (NIR) luminescent nanocrystals (NCs) have shown great promise in various bioapplications. A fundamental understanding of the electronic structures of Nd3+ in NCs is of vital importance for discovering novel Nd3+-activated luminescent nanoprobes and exploring their new applications. Herein, the electronic structures of Nd3+ in LiLuF4 NCs are unraveled by means of low-temperature and high-resolution optical spectroscopy. The photoactive site symmetry of Nd3+ in LiLuF4 NCs and its crystal-field (CF) transition lines in the NIR region of interest are identified. By taking advantage of the well-resolved and sharp CF transition lines of Nd3+, the application of LiLuF4:Nd3+ NCs as sensitive NIR-to-NIR luminescent nanoprobes for ratiometric detection of cryogenic temperature with a linear range of 77-275 K is demonstrated. These findings reveal the great potential of LiLuF4:Nd3+ NCs in temperature sensing and also lay a foundation for future design of efficient Nd3+-based luminescent nanoprobes.
Collapse
Affiliation(s)
- Ping Huang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Key Laboratory of NanomaterialsFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350002China
| | - Wei Zheng
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Key Laboratory of NanomaterialsFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350002China
| | - Datao Tu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Key Laboratory of NanomaterialsFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350002China
| | - Xiaoying Shang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Key Laboratory of NanomaterialsFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350002China
| | - Meiran Zhang
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Key Laboratory of NanomaterialsFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350002China
| | - Renfu Li
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Key Laboratory of NanomaterialsFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350002China
| | - Jin Xu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Key Laboratory of NanomaterialsFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350002China
| | - Yan Liu
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Key Laboratory of NanomaterialsFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350002China
| | - Xueyuan Chen
- CAS Key Laboratory of Design and Assembly of Functional Nanostructures and Fujian Key Laboratory of NanomaterialsFujian Institute of Research on the Structure of MatterChinese Academy of SciencesFuzhouFujian350002China
| |
Collapse
|
35
|
|
36
|
Udayakantha M, Schofield P, Waetzig GR, Banerjee S. A full palette: Crystal chemistry, polymorphism, synthetic strategies, and functional applications of lanthanide oxyhalides. J SOLID STATE CHEM 2019. [DOI: 10.1016/j.jssc.2018.12.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|