1
|
Ashworth DJ, Carrington EJ, Roseveare TM, McMonagle CJ, Ward MR, Fletcher AJ, Düren T, Warren MR, Moggach SA, Oswald IDH, Brammer L. Decoupled MOF Breathing: Pressure-Induced Reversal of Correlation Between Orthogonal Motions in a Diamondoid Framework. Angew Chem Int Ed Engl 2025:e202504297. [PMID: 40294222 DOI: 10.1002/anie.202504297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 04/25/2025] [Accepted: 04/28/2025] [Indexed: 04/30/2025]
Abstract
Responsive porous materials can outperform more rigid analogues in applications requiring precise triggering of molecular uptake/release, switching or gradual change in properties. We have uncovered an unprecedented dynamic response in the diamondoid MOF SHF-62, (Me2NH2)[In(BDC-NHC(O)Me)2] (BDC = 1,4-benzenedicarboxylate), by using pressure as a stimulus. SHF-62 exhibits two distinct framework "breathing" motions involving changes in 1) cross-section and 2) length of its 1D pores. Our study using synchrotron single-crystal X-ray diffraction in sapphire-capillary (p < 0.15 GPa) and diamond-anvil (0.15 < p < 5 GPa) cells reveals that different pressure regimes trigger positive and negative correlation between these two motions, requiring an unprecedented mechanical decoupling. Specifically, the DMF-solvated framework SHF-62-DMF, in DMF as pressure-transmitting medium, undergoes initial hyperexpansion of pore cross-section (p ≤ 0.9 GPa), due to DMF ingress, followed by reversal/reduction at p > 0.9 GPa while pore length contracts for all pressure increases, revealing decoupling of the two framework deformations. By contrast, nonpenetrating medium FC-70 imposes correlated compression (p < 1.4 GPa) of pore cross-section and length, resembling framework activation/desolvation motions but of greater magnitude. Similar behavior occurs for SHF-62-CHCl3 in CHCl3 (p < 0.14 GPa), suggesting minimal ingress of CHCl3. These findings change our understanding of MOF dynamic responses and provide a platform for future responsive materials development.
Collapse
Affiliation(s)
- David J Ashworth
- Department of Chemical and Process Engineering, University of Strathclyde, Montrose Street, Glasgow, G14 1XJ, UK
- Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS), University of Stracthclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Elliot J Carrington
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
| | - Thomas M Roseveare
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
| | - Charles J McMonagle
- European Synchrotron Research Facility, 71 Avenue des Martyrs, Grenoble, 38000, France
| | - Martin R Ward
- Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS), University of Stracthclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Ashleigh J Fletcher
- Department of Chemical and Process Engineering, University of Strathclyde, Montrose Street, Glasgow, G14 1XJ, UK
| | - Tina Düren
- Centre for Integrated Materials, Processes and Structures and Department of Chemical Engineering, University of Bath, Claverton Down, Bath, BA2 7AY, UK
| | - Mark R Warren
- Diamond Light Source, Harwell Science and Innovation Campus, Didcot, OX11 0DE, UK
| | - Stephen A Moggach
- Centre for Microscopy, Characterisation and Analysis, and School of Molecular Science, The University of Western Australia, 35 Stirling Highway, Crawley, Perth, 6009, Australia
| | - Iain D H Oswald
- Strathclyde Institute of Pharmacy & Biomedical Sciences (SIPBS), University of Stracthclyde, 161 Cathedral Street, Glasgow, G4 0RE, UK
| | - Lee Brammer
- Department of Chemistry, University of Sheffield, Brook Hill, Sheffield, S3 7HF, UK
| |
Collapse
|
2
|
Peñaranda-Navarro R, Collados-Salmeron M, Carrilero-Flores E, Saura-Sanmartin A. Molecular Release by the Rotaxane and Pseudorotaxane Approach. Chemistry 2025; 31:e202500350. [PMID: 40047094 DOI: 10.1002/chem.202500350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2025] [Indexed: 03/19/2025]
Abstract
The controlled release of target molecules is a relevant application in several areas, such as medicine, fragrance chemistry and catalysis. Systems which pursue this implementation require a fine-tune of the start and rate of the release, among other properties. In this scenario, rotaxane- and pseudorotaxane-based systems are postulated as ideal scaffolds to accomplish a precise cargo release, due to the special features provided by the intertwined arrangement. This short review covers advances towards the controlled release of different molecules using rotaxane- and pseudorotaxane-based systems, both in solution and in the solid state.
Collapse
Affiliation(s)
- Raquel Peñaranda-Navarro
- Departamento de Química Orgánica, Universidad de Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - Maria Collados-Salmeron
- Departamento de Química Orgánica, Universidad de Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - Elena Carrilero-Flores
- Departamento de Química Orgánica, Universidad de Murcia, Campus de Espinardo, 30100, Murcia, Spain
| | - Adrian Saura-Sanmartin
- Departamento de Química Orgánica, Universidad de Murcia, Campus de Espinardo, 30100, Murcia, Spain
| |
Collapse
|
3
|
Hou T, Wang H, Zhang YY, Di Z, Li CP. A High-Stability Co-MOF with Open Metal Sites for C 2H 2/CO 2/CH 4 Separation. Inorg Chem 2025; 64:4202-4208. [PMID: 39964100 DOI: 10.1021/acs.inorgchem.5c00327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2025]
Abstract
One-step purification of C2H2 from ternary mixtures (C2H2, CO2, and CH4) can significantly reduce the energy consumption of the separation process, but it is extremely challenging. A new Co-MOF (TNU-BTTB-1) with a three-dimensional (3D) framework was synthesized, which displays high thermal stability, retaining its structural integrity at temperatures up to 400 °C. The structure possesses rich accessible open metal sites in the porous walls and shows high uptake for C2H2 (37.4 cm3 g-1) and significant adsorption selectivity for C2H2 over CH4 (20.1) and CO2 (4.9) at 298 K and 100 kPa. Dynamic breakthrough studies show that it exhibits excellent C2H2 separation from C2H2/CO2/CH4 three-component mixtures.
Collapse
Affiliation(s)
- Tianyi Hou
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - He Wang
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Yuan-Yuan Zhang
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Zhengyi Di
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| | - Cheng-Peng Li
- Academy of Interdisciplinary Studies on Intelligent Molecules, Tianjin Key Laboratory of Structure and Performance for Functional Molecules, College of Chemistry, Tianjin Normal University, Tianjin 300387, China
| |
Collapse
|
4
|
Gómez-Muñoz I, Hu Z, Vitórica-Yrezábal IJ, Coronado E, Mínguez Espallargas G. Implementing magnetic properties on demand with a dynamic lanthanoid-organic framework. Chem Sci 2025; 16:2879-2885. [PMID: 39822900 PMCID: PMC11733734 DOI: 10.1039/d4sc07042a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Accepted: 12/19/2024] [Indexed: 01/19/2025] Open
Abstract
We present the synthesis of a lanthanoid-organic framework (LOF) featuring a dynamic structure that exhibits tunable magnetic properties. The LOF undergoes breathing and gate-opening phenomena in response to changes in DMF content and N2 sorption, leading to the emergence of new crystal phases with distinct characteristics. Notably, the desolvated form of the LOF excels as a single-ion magnet, while the fully activated structure demonstrates impressive qubit properties, exhibiting Rabi oscillations up to 60 K. Our work enables precise control over the LOF's geometry, allowing us to selectively tailor its magnetic behavior to achieve either of these two intriguing functionalities.
Collapse
Affiliation(s)
- Iván Gómez-Muñoz
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia c/Catedrático José Beltrán 2 Paterna 46980 Spain
| | - Ziqi Hu
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia c/Catedrático José Beltrán 2 Paterna 46980 Spain
| | - Iñigo J Vitórica-Yrezábal
- Departamento de Química Inorgánica, Facultad de Ciencias, Universidad de Granada Av. Fuente Nueva Granada 18070 Spain
| | - Eugenio Coronado
- Instituto de Ciencia Molecular (ICMol), Universidad de Valencia c/Catedrático José Beltrán 2 Paterna 46980 Spain
| | | |
Collapse
|
5
|
Nadeem TB, Imran M, Tandis E. Applications of MOF-Based Nanocomposites in Heat Exchangers: Innovations, Challenges, and Future Directions. NANOMATERIALS (BASEL, SWITZERLAND) 2025; 15:205. [PMID: 39940181 PMCID: PMC11820813 DOI: 10.3390/nano15030205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Revised: 01/23/2025] [Accepted: 01/24/2025] [Indexed: 02/14/2025]
Abstract
Metal-organic frameworks (MOFs) have garnered significant attention in recent years for their potential to revolutionize heat exchanger performance, thanks to their high surface area, tunable porosity, and exceptional adsorption capabilities. This review focuses on the integration of MOFs into heat exchangers to enhance heat transfer efficiency, improve moisture management, and reduce energy consumption in Heating, Ventilation and Air Conditioning (HVAC) and related systems. Recent studies demonstrate that MOF-based coatings can outperform traditional materials like silica gel, achieving superior water adsorption and desorption rates, which is crucial for applications in air conditioning and dehumidification. Innovations in synthesis techniques, such as microwave-assisted and surface functionalization methods, have enabled more cost-effective and scalable production of MOFs, while also enhancing their thermal stability and mechanical strength. However, challenges related to the high costs of MOF synthesis, stability under industrial conditions, and large-scale integration remain significant barriers. Future developments in hybrid nanocomposites and collaborative efforts between academia and industry will be key to advancing the practical adoption of MOFs in heat exchanger technologies. This review aims to provide a comprehensive understanding of current advancements, challenges, and opportunities, with the goal of guiding future research toward more sustainable and efficient thermal management solutions.
Collapse
Affiliation(s)
- Talha Bin Nadeem
- Department of Mechatronics and Biomedical Engineering, College of Engineering and Physical Sciences, Aston University, Birmingham B4 7ET, UK or (T.B.N.); (E.T.)
- Department of Mechanical Engineering, NED University of Engineering and Technology, Karachi 75270, Pakistan
| | - Muhammad Imran
- Department of Mechatronics and Biomedical Engineering, College of Engineering and Physical Sciences, Aston University, Birmingham B4 7ET, UK or (T.B.N.); (E.T.)
- Energy Systems Group, Energy and Bioproduct Research Institute, College of Engineering and Physical Sciences, Aston University, Birmingham B4 7ET, UK
| | - Emad Tandis
- Department of Mechatronics and Biomedical Engineering, College of Engineering and Physical Sciences, Aston University, Birmingham B4 7ET, UK or (T.B.N.); (E.T.)
| |
Collapse
|
6
|
Kamal S, Khalid M, Khan MS, Shahid M, Ahmad M. Breathing Transition and Effective Iodine Adsorption in a Temperature-Responsive Zn-Based Flexible Metal-Organic Framework. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:1182-1193. [PMID: 39810358 DOI: 10.1021/acs.langmuir.4c04860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
A porous and flexible Zn-MOF was synthesized under solvothermal conditions by using the ligand 2,5-furandicarboxylic acid (2,5-FDA). This flexible Zn-MOF demonstrates a temperature-triggered breathing effect. At low temperature (100 K), we obtained the high-symmetry MOF denoted as SM-A with a unit cell volume of 1958 Å3, characterized by triangular narrow pore (np) channels. Upon increasing the temperature from 100 K to 298 K, the lower symmetry referred to as SM-B was obtained, featuring rhombic large pore (lp) channels, along with an expanded unit cell volume of 7823 Å3. This temperature-induced phase transition involves distortion of the channels and a change in the dimensionality of the framework from 3D (SM-A) to 2D (SM-B). The flexible behavior and phase transition were thoroughly justified with the help of single-crystal X-ray diffraction and differential scanning calorimetry. Additionally, BET analysis revealed a surface area of 85.504 m2/g, with mesopores of 3.05 nm. Leveraging the large-pore channels, SM-B at room temperature was employed as an adsorbent for the removal of hazardous iodine in both the vapor and the solution phases. The discovery of such dynamic MOFs holds potential and may pave the way for novel strategies in advanced applications.
Collapse
Affiliation(s)
- Samrah Kamal
- Functional Inorganic Materials Lab (FIML), Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India
| | - Mohd Khalid
- Functional Inorganic Materials Lab (FIML), Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India
| | - M Shahnawaz Khan
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - M Shahid
- Functional Inorganic Materials Lab (FIML), Department of Chemistry, Aligarh Muslim University, Aligarh, 202002, India
| | - Musheer Ahmad
- Department of Applied Chemistry, Aligarh Muslim University, Aligarh, 202002, India
| |
Collapse
|
7
|
Temmerman W, Goeminne R, Rawat KS, Van Speybroeck V. Computational Modeling of Reticular Materials: The Past, the Present, and the Future. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2412005. [PMID: 39723710 DOI: 10.1002/adma.202412005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/22/2024] [Indexed: 12/28/2024]
Abstract
Reticular materials rely on a unique building concept where inorganic and organic building units are stitched together giving access to an almost limitless number of structured ordered porous materials. Given the versatility of chemical elements, underlying nets, and topologies, reticular materials provide a unique platform to design materials for timely technological applications. Reticular materials have now found their way in important societal applications, like carbon capture to address climate change, water harvesting to extract atmospheric moisture in arid environments, and clean energy applications. Combining predictions from computational materials chemistry with advanced experimental characterization and synthesis procedures unlocks a design strategy to synthesize new materials with the desired properties and functions. Within this review, the current status of modeling reticular materials is addressed and supplemented with topical examples highlighting the necessity of advanced molecular modeling to design materials for technological applications. This review is structured as a templated molecular modeling study starting from the molecular structure of a realistic material towards the prediction of properties and functions of the materials. At the end, the authors provide their perspective on the past, present of future in modeling reticular materials and formulate open challenges to inspire future model and method developments.
Collapse
Affiliation(s)
- Wim Temmerman
- Center for Molecular Modeling (CMM), Ghent University, Technologiepark 46, Zwijnaarde, 9052, Belgium
| | - Ruben Goeminne
- Center for Molecular Modeling (CMM), Ghent University, Technologiepark 46, Zwijnaarde, 9052, Belgium
| | - Kuber Singh Rawat
- Center for Molecular Modeling (CMM), Ghent University, Technologiepark 46, Zwijnaarde, 9052, Belgium
| | - Veronique Van Speybroeck
- Center for Molecular Modeling (CMM), Ghent University, Technologiepark 46, Zwijnaarde, 9052, Belgium
| |
Collapse
|
8
|
Li J, Chen B. Flexible hydrogen-bonded organic frameworks (HOFs): opportunities and challenges. Chem Sci 2024; 15:9874-9892. [PMID: 38966355 PMCID: PMC11220619 DOI: 10.1039/d4sc02628d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 05/20/2024] [Indexed: 07/06/2024] Open
Abstract
Flexible behavior is one of the most fascinating features of hydrogen-bonded organic frameworks (HOFs), which represent an emerging class of porous materials that are self-assembled via H-bonding between organic building units. Due to their unique flexibility, HOFs can undergo structural changes or transformations in response to various stimuli (physical or chemical). Taking advantage of this unique structural feature, flexible HOFs show potential in multifunctional applications such as gas storage/separation, molecular recognition, sensing, proton conductivity, biomedicine, etc. While some other flexible porous materials have been extensively studied, the dynamic behavior of HOFs remains relatively less explored. This perspective highlights the inherent flexible properties of HOFs, discusses their different flexible behaviors, including pore size/shape changes, interpenetration/stacking manner, H-bond breaking/reconstruction, and local dynamic behavior, and highlights their potential applications. We believe that this perspective will not only contribute to HOF chemistry and materials science, but will also facilitate the ongoing extensive research on dynamic porous materials.
Collapse
Affiliation(s)
- Jiantang Li
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, Zhejiang Normal University Jinhua 321004 P. R. China
| | - Banglin Chen
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, College of Chemistry and Materials Sciences, Zhejiang Normal University Jinhua 321004 P. R. China
- Fujian Key Laboratory of Polymer Materials, College of Chemistry and Materials Sciences, Fujian Normal University Fujian 350007 P. R. China
| |
Collapse
|
9
|
Zhang Z, Zhao D. Deciphering Mechanisms of CO 2-Selective Recognition over Acetylene within Porous Materials. CHEM & BIO ENGINEERING 2024; 1:366-380. [PMID: 39975798 PMCID: PMC11835146 DOI: 10.1021/cbe.4c00035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 05/03/2024] [Accepted: 05/06/2024] [Indexed: 02/21/2025]
Abstract
Reverse adsorption of carbon dioxide (CO2) from acetylene (C2H2) presents both significant importance and formidable challenges, particularly in the context of carbon capture, energy efficiency, and environmental sustainability. In this Review, we delve into the burgeoning field of reverse CO2/C2H2 adsorption and separation, underscoring the absence of a cohesive materials design strategy and a comprehensive understanding of the CO2-selective capture mechanisms from C2H2, in contrast to the quite mature methodologies available for C2H2-selective adsorption. Focusing on porous materials, the latest advancements in CO2-selective recognition mechanisms are highlighted. The review establishes that the efficacy of CO2 recognition from C2H2 relies intricately on a myriad of factors, including pore architecture, framework flexibility, functional group interactions, and dynamic responsive behaviors under operating conditions. It is noted that achieving selectivity extends beyond physical sieving, necessitating meticulous adjustments in pore chemistry to exploit the subtle differences between CO2 and C2H2. This comprehensive overview seeks to enhance the understanding of CO2-selective recognition mechanisms, integrating essential insights crucial for the advancement of future materials. It also lays the groundwork for innovative porous materials in CO2/C2H2 separation, addressing the pressing demand for more efficient molecular recognition within gas separation technologies.
Collapse
Affiliation(s)
- Zhaoqiang Zhang
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 117585 Singapore
- State
Key Laboratory of Coordination Chemistry, School of Chemistry and
Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Dan Zhao
- Department
of Chemical and Biomolecular Engineering, National University of Singapore, 117585 Singapore
| |
Collapse
|
10
|
Ahmed MA, Mahmoud SA, Mohamed AA. Nanomaterials-modified reverse osmosis membranes: a comprehensive review. RSC Adv 2024; 14:18879-18906. [PMID: 38873545 PMCID: PMC11167617 DOI: 10.1039/d4ra01796j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 06/02/2024] [Indexed: 06/15/2024] Open
Abstract
Because of its great efficiency and widespread application, reverse osmosis (RO) is a popular tool for water desalination and purification. However, traditional RO membranes have a short lifespan due to membrane fouling, deterioration, decreased salt rejection rate, and the low water flux with aging. As a result, membrane modification has received a lot of attention recently, with nanomaterials being extensively researched to improve membrane efficacy and lifespan. Herein, we present an in-depth analysis of recent advances of RO membranes modification utilizing nanomaterials. An overview of the various nanomaterials used for membrane modification, including metal oxides, zeolites, and carbon nanomaterials, is provided. The synthesis techniques and methods of integrating these nanomaterials into RO membranes are also discussed. The impacts of nanomaterial change on the performance of RO membranes are addressed. The underlying mechanisms responsible for RO membrane enhancements by nanomaterials, such as improved surface hydrophilicity, reduced membrane fouling via surface repulsion and anti-adhesion properties, and enhanced structural stability, are discussed. Furthermore, the review provides a critical analysis of the challenges and limitations associated with the use of nanomaterials to modify RO membranes. Overall, this review provides valuable insights into the modification of RO membranes with nanomaterials, providing a full grasp of the benefits, challenges, and future prospects of this challenging topic.
Collapse
Affiliation(s)
- Mahmoud A Ahmed
- Chemistry Department, Faculty of Science, Ain Shams University Cairo-11566 Egypt
- Veolia Water Technologies Cairo 11835 Egypt
| | - Safwat A Mahmoud
- Physics Department, Faculty of Science, Northern Border University Arar 13211 Saudi Arabia
| | - Ashraf A Mohamed
- Chemistry Department, Faculty of Science, Ain Shams University Cairo-11566 Egypt
| |
Collapse
|
11
|
Fang H, Liu XY, Ding HJ, Mulcair M, Space B, Huang H, Li XW, Zhang SM, Yu MH, Chang Z, Bu XH. Stimulus-Induced Dynamic Behavior Regulation of Flexible Crystals through the Tuning of Module Rigidity. J Am Chem Soc 2024; 146:14357-14367. [PMID: 38726589 DOI: 10.1021/jacs.4c04809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Introducing dynamic behavior into periodic frameworks has borne fruit in the form of flexible porous crystals. The detailed molecular design of frameworks in order to control their collective dynamics is of particular interest, for example, to achieve stimulus-induced behavior. Herein, by varying the degree of rigidity of ditopic pillar linkers, two isostructural flexible metal-organic frameworks (MOFs) with common rigid supermolecular building bilayers were constructed. The subtle substitution of single (in bibenzyl-4,4'-dicarboxylic acid; H2BBDC) with double (in 4,4'-stilbenedicarboxylic acid; H2SDC) C-C bonds in pillared linkers led to markedly different flexible behavior of these two MOFs. Upon the removal of guest molecules, both frameworks clearly show reversible single-crystal-to-single-crystal transformations involving the cis-trans conformation change and a resulting swing of the corresponding pillar linkers, which gives rise to Flex-Cd-MOF-1a and Flex-Cd-MOF-2a, respectively. Strikingly, a more favorable gas-induced dynamic behavior in Flex-Cd-MOF-2a was verified in detail by stepwise C3H6/C3H8 sorption isotherms and the corresponding in situ powder X-ray diffraction experiments. These insights are strongly supported by molecular modeling studies on the sorption mechanism that explores the sorption landscape. Furthermore, a consistency between the macroscopic elasticity and microscopic flexibility of Flex-Cd-MOF-2 was observed. This work fuels a growing interest in developing MOFs with desired chemomechanical functions and presents detailed insights into the origins of flexible MOFs.
Collapse
Affiliation(s)
- Han Fang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China
| | - Xiao-Yi Liu
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Hao-Jing Ding
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Meagan Mulcair
- Department of Chemistry, North Carolina State University, 2700 Stinson Drive, Cox Hall 506, Raleigh, North Carolina 27607, United States
| | - Brian Space
- Department of Chemistry, North Carolina State University, 2700 Stinson Drive, Cox Hall 506, Raleigh, North Carolina 27607, United States
| | - Hongliang Huang
- State Key Laboratory of Separation Membranes and Membrane Processes, Tiangong University, Tianjin 300387, China
| | - Xing-Wang Li
- School of Materials Science and Engineering, National Institute for Advanced Materials, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China
| | - Shu-Ming Zhang
- School of Chemical Engineering and Technology, Hebei University of Technology, Tianjin 300130, China
| | - Mei-Hui Yu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China
| | - Ze Chang
- School of Materials Science and Engineering, National Institute for Advanced Materials, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China
| | - Xian-He Bu
- School of Materials Science and Engineering, National Institute for Advanced Materials, Tianjin Key Laboratory of Metal and Molecule-Based Material Chemistry, Nankai University, Tianjin 300350, China
| |
Collapse
|
12
|
A Mohamed W, Chakraborty J, Bourda L, Lavendomme R, Liu C, Morent R, De Geyter N, Van Hecke K, Kaczmarek AM, Van Der Voort P. Engineering Porosity and Functionality in a Robust Twofold Interpenetrated Bismuth-Based MOF: Toward a Porous, Stable, and Photoactive Material. J Am Chem Soc 2024; 146:13113-13125. [PMID: 38700843 DOI: 10.1021/jacs.3c14739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
Defect engineering in metal-organic frameworks (MOFs) has gained worldwide research traction, as it offers tools to tune the properties of MOFs. Herein, we report a novel 2-fold interpenetrated Bi-based MOF made of a tritopic flexible organic linker, followed by missing-linker defect engineering. This procedure creates a gradually augmented micro- and mesoporosity in the parent (originally nonporous) network. The resulting MOFs can tolerate a remarkable extent of linker vacancy (with absence of up to 60% of linkers per Bi node) created by altering the crystal-growth rate as a function of synthesis temperature and duration. Owing to the enhanced porosity and availability of the uncoordinated Lewis acidic Bi sites, the defect-engineered MOFs manifested improved surface areas, augmented CO2 and water vapor uptake, and catalytic activity. Parallel to this, the impact of defect engineering on the optoelectronic properties of these MOFs has also been studied, offering avenues for new applications.
Collapse
Affiliation(s)
- Wafaa A Mohamed
- Center for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, Krijgslaan 281-S3, Ghent 9000, Belgium
- Department of Chemistry, Faculty of Science, South Valley University, Qena 83523, Egypt
| | - Jeet Chakraborty
- Center for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, Krijgslaan 281-S3, Ghent 9000, Belgium
| | - Laurens Bourda
- Center for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, Krijgslaan 281-S3, Ghent 9000, Belgium
- XStruct, Department of Chemistry, Ghent University, Krijgslaan 281-S3, Ghent 9000, Belgium
| | - Roy Lavendomme
- Center for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, Krijgslaan 281-S3, Ghent 9000, Belgium
- Laboratoire de Chimie Organique (LCO), Université libre de Bruxelles (ULB), Avenue F. D. Roosevelt 50, CP160/06, Brussels B-1050, Belgium
| | - Chunhui Liu
- Center for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, Krijgslaan 281-S3, Ghent 9000, Belgium
- NanoSensing, Department of Chemistry, Ghent University, Krijgslaan 281-S3, Ghent 9000, Belgium
| | - Rino Morent
- RUPT-Research Unit Plasma Technology, Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41-B4, Ghent 9000, Belgium
| | - Nathalie De Geyter
- RUPT-Research Unit Plasma Technology, Department of Applied Physics, Ghent University, Sint-Pietersnieuwstraat 41-B4, Ghent 9000, Belgium
| | - Kristof Van Hecke
- XStruct, Department of Chemistry, Ghent University, Krijgslaan 281-S3, Ghent 9000, Belgium
| | - Anna M Kaczmarek
- NanoSensing, Department of Chemistry, Ghent University, Krijgslaan 281-S3, Ghent 9000, Belgium
| | - Pascal Van Der Voort
- Center for Ordered Materials, Organometallics and Catalysis (COMOC), Department of Chemistry, Ghent University, Krijgslaan 281-S3, Ghent 9000, Belgium
| |
Collapse
|
13
|
Makowski W, Gryta P, Jajko G, Rodlamul P, Jędrzejowski D, Roztocki K, Matoga D. Co-Adsorption of Alcohols and Water in JUK-8 Studied Using Quasi-Equilibrated Thermodesorption. Molecules 2024; 29:2309. [PMID: 38792170 PMCID: PMC11124276 DOI: 10.3390/molecules29102309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/08/2024] [Accepted: 05/10/2024] [Indexed: 05/26/2024] Open
Abstract
JUK-8 ([Zn(oba)(pip)]n, oba2- = 4,4'-oxybis(benzenedicarboxylate), pip = 4-pyridyl-functionalized benzene-1,3-dicarbohydrazide) is a hydrolytically stable flexible metal-organic framework. Owing to its unusual adsorptive properties, JUK-8 can be considered as a promising sensing material for construction of detectors of volatile organic compounds (VOCs) in air. Quasi-equilibrated temperature-programmed desorption and adsorption (QE-TPDA) is a versatile method dedicated to characterization of porous materials. In this work, QE-TPDA was employed to study co-adsorption of water and selected alcohols in JUK-8. For the first time an infrared detector sensitive to organic compounds was used in the QE-TPDA measurements, allowing the study of the influence of water vapor on sorption of VOCs. The QE-TPDA profiles of the studied alcohols, exhibiting two desorption maxima and two adsorption minima, are consistent with the standard sorption isotherms, revealing a two-step adsorption-desorption mechanism. The profiles recorded in the presence of water are noticeably changed in different ways for different alcohols. While at low relative humidity (RH) (ca. 20%) the low temperature adsorption states of ethanol and 1-propanol were only slightly destabilized, for 2-propanol almost complete suppression of adsorption was observed. The results found for moderate RH levels (ca. 50%) indicated that the opening of the JUK-8 structure, responsible for its breathing behavior, was followed by the filling of the just generated pores with a water-alcohol mixture.
Collapse
Affiliation(s)
- Wacław Makowski
- Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387 Kraków, Poland (G.J.); (P.R.); (D.J.)
| | - Patrycja Gryta
- Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387 Kraków, Poland (G.J.); (P.R.); (D.J.)
- Doctoral School of Exact and Natural Sciences, Jagiellonian University in Kraków, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Gabriela Jajko
- Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387 Kraków, Poland (G.J.); (P.R.); (D.J.)
- Doctoral School of Exact and Natural Sciences, Jagiellonian University in Kraków, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Pattaraphon Rodlamul
- Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387 Kraków, Poland (G.J.); (P.R.); (D.J.)
| | - Damian Jędrzejowski
- Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387 Kraków, Poland (G.J.); (P.R.); (D.J.)
- Doctoral School of Exact and Natural Sciences, Jagiellonian University in Kraków, Łojasiewicza 11, 30-348 Kraków, Poland
| | - Kornel Roztocki
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, 61-614 Poznań, Poland
| | - Dariusz Matoga
- Faculty of Chemistry, Jagiellonian University in Kraków, Gronostajowa 2, 30-387 Kraków, Poland (G.J.); (P.R.); (D.J.)
| |
Collapse
|
14
|
Akiyama I, Kato T, Kannaka S, Ito A, Ohtani M. Effect of Boron-Doping on Gate-Opening CO 2 Adsorption in Zinc-Benzimidazolate Coordination Networks. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38709020 DOI: 10.1021/acsami.4c04296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2024]
Abstract
Flexible metal-organic frameworks (MOFs) have attracted much attention as selective gas adsorption and storage. This report describes boron doping in zeolitic imidazolate framework-7 (B-ZIF-7), which exhibits reversible phase transition during CO2 adsorption/desorption. We have successfully prepared B-ZIF-7 coordination networks using boron-bridged benzimidazolate (B(bim)4-) as organic ligands. Powder X-ray diffraction (PXRD) measurements and infrared spectroscopy revealed that B-ZIF-7 has a crystal structure similar to that of ZIF-7 while containing boron bridging in the coordination network. Since B-ZIF-7 forms a cationic coordination network, the guest anions are encapsulated within the pore. CO2 adsorption/desorption measurements at 300 K showed that B-ZIF-7(NO3), which contains nitrate ions (NO3-) as guest anions in its pores, exhibits a S-shaped CO2 adsorption/desorption isotherm, which is characteristic of gate-opening type MOFs. Compared with ZIF-7, B-ZIF-7(NO3) has superior CO2 adsorption capacity in the low-pressure and superior CO2 storage capacity. The CO2 adsorption and desorption behavior of B-ZIF-7(NO3) was analyzed by in situ temperature-controlled PXRD measurements and thermogravimetric analysis under a CO2 atmosphere, and a reversible phase transition was observed. We have also successfully prepared B-ZIF-7(Cl) and B-ZIF-7(OTf) (OTf = CF3SO3-) with different guest anions. The CO2 adsorption/desorption behaviors of B-ZIF-7(Cl) and B-ZIF-7(OTf) were significantly different from those of B-ZIF-7(NO3) and ZIF-7. B-ZIF-7(Cl) showed gate opening at a higher pressure than ZIF-7, and B-ZIF-7(OTf) did not show S-shaped CO2 adsorption isotherm and showed adsorption behavior in micropores. These results indicate that the CO2 adsorption behavior of B-ZIF-7 depends on the interaction between the guest anions and CO2 molecules or the cationic framework and the bulkiness of the guest anions. Boron doping in a coordination network with boron-bridged imidazolate ligands is a promising strategy to increase the gas adsorption capability of porous materials.
Collapse
Affiliation(s)
- Ikuho Akiyama
- School of Engineering Science, Kochi University of Technology, 185 Miyanokuchi, Tosayamada Kami Kochi 782-8502, Japan
| | - Takeshi Kato
- School of Engineering Science, Kochi University of Technology, 185 Miyanokuchi, Tosayamada Kami Kochi 782-8502, Japan
| | - Shino Kannaka
- School of Engineering Science, Kochi University of Technology, 185 Miyanokuchi, Tosayamada Kami Kochi 782-8502, Japan
| | - Akitaka Ito
- School of Engineering Science, Kochi University of Technology, 185 Miyanokuchi, Tosayamada Kami Kochi 782-8502, Japan
| | - Masataka Ohtani
- School of Engineering Science, Kochi University of Technology, 185 Miyanokuchi, Tosayamada Kami Kochi 782-8502, Japan
| |
Collapse
|
15
|
Cui Z, Li Y, Tsyusko OV, Wang J, Unrine JM, Wei G, Chen C. Metal-Organic Framework-Enabled Sustainable Agrotechnologies: An Overview of Fundamentals and Agricultural Applications. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024. [PMID: 38600745 DOI: 10.1021/acs.jafc.4c00764] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/12/2024]
Abstract
With aggravated abiotic and biotic stresses from increasing climate change, metal-organic frameworks (MOFs) have emerged as versatile toolboxes for developing environmentally friendly agrotechnologies aligned with agricultural practices and safety. Herein, we have explored MOF-based agrotechnologies, focusing on their intrinsic properties, such as structural and catalytic characteristics. Briefly, MOFs possess a sponge-like porous structure that can be easily stimulated by the external environment, facilitating the controlled release of agrochemicals, thus enabling precise delivery of agrochemicals. Additionally, MOFs offer the ability to remove or degrade certain pollutants by capturing them within their pores, facilitating the development of MOF-based remediation technologies for agricultural environments. Furthermore, the metal-organic hybrid nature of MOFs grants them abundant catalytic activities, encompassing photocatalysis, enzyme-mimicking catalysis, and electrocatalysis, allowing for the integration of MOFs into degradation and sensing agrotechnologies. Finally, the future challenges that MOFs face in agrotechnologies were proposed to promote the development of sustainable agriculture practices.
Collapse
Affiliation(s)
- Zhaowen Cui
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Yuechun Li
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Olga V Tsyusko
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546, United States
| | - Jianlong Wang
- College of Food Science and Engineering, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Jason M Unrine
- Department of Plant and Soil Sciences, University of Kentucky, Lexington, Kentucky 40546, United States
- Kentucky Water Resources Research Institute, University of Kentucky, Lexington, Kentucky 40506, United States
| | - Gehong Wei
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| | - Chun Chen
- State Key Laboratory for Crop Stress Resistance and High-Efficiency Production, Northwest A&F University, Yangling, Shaanxi 712100, People's Republic of China
| |
Collapse
|
16
|
Fernández-Seriñán P, Roztocki K, Safarifard V, Guillerm V, Rodríguez-Hermida S, Juanhuix J, Imaz I, Morsali A, Maspoch D. Modulation of the Dynamics of a Two-Dimensional Interweaving Metal-Organic Framework through Induced Hydrogen Bonding. Inorg Chem 2024; 63:5552-5558. [PMID: 38484385 DOI: 10.1021/acs.inorgchem.3c04522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Inducing, understanding, and controlling the flexibility in metal-organic frameworks (MOFs) are of utmost interest due to the potential applications of dynamic materials in gas-related technologies. Herein, we report the synthesis of two isostructural two-dimensional (2D) interweaving zinc(II) MOFs, TMU-27 [Zn(bpipa)(bdc)] and TMU-27-NH2 [Zn(bpipa)(NH2-bdc)], based on N,N'-bis-4-pyridyl-isophthalamide (bpipa) and 1,4-benzenedicarboxylate (bdc) or 2-amino-1,4-benzenedicarboxylate (NH2-bdc), respectively. These frameworks differ only by the substitution at the meta-position of their respective bdc groups: an H atom in TMU-27 vs an NH2 group in TMU-27-NH2. This difference strongly influences their respective responses to external stimuli, since we observed that the structure of TMU-27 changed due to desolvation and adsorption, whereas TMU-27-NH2 remained rigid. Using single-crystal X-ray diffraction and CO2-sorption measurements, we discovered that upon CO2 sorption, TMU-27 undergoes a transition from a closed-pore phase to an open-pore phase. In contrast, we attributed the rigidification in TMU-27-NH2 to intermolecular hydrogen bonding between interweaving layers, namely, between the H atoms from the bdc-amino groups and the O atoms from the bpipa-amide groups within these layers. Additionally, by using scanning electron microscopy to monitor the CO2 adsorption and desorption in TMU-27, we were able to establish a correlation between the crystal size of this MOF and its transformation pressure.
Collapse
Affiliation(s)
- Pilar Fernández-Seriñán
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona 08193, Spain
- Chemistry Department of Autonomous, University of Barcelona (UAB), Campus UAB, Bellaterra, Barcelona 08193, Spain
| | - Kornel Roztocki
- Faculty of Chemistry, Adam Mickiewicz University, Uniwersytetu Poznańskiego 8, Poznań 61-614, Poland
| | - Vahid Safarifard
- Department of Chemistry, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Vincent Guillerm
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona 08193, Spain
| | - Sabina Rodríguez-Hermida
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona 08193, Spain
| | - Judith Juanhuix
- ALBA Synchrotron, Cerdanyola del Vallès, Barcelona 08290, Spain
| | - Inhar Imaz
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona 08193, Spain
- Chemistry Department of Autonomous, University of Barcelona (UAB), Campus UAB, Bellaterra, Barcelona 08193, Spain
| | - Ali Morsali
- Department of Chemistry, Faculty of Sciences, Tarbiat Modares University, Tehran P.O. Box 14115-175, Iran
| | - Daniel Maspoch
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and The Barcelona Institute of Science and Technology, Campus UAB, Bellaterra, Barcelona 08193, Spain
- Chemistry Department of Autonomous, University of Barcelona (UAB), Campus UAB, Bellaterra, Barcelona 08193, Spain
- ICREA, Pg. Lluís Companys 23, Barcelona 08010, Spain
| |
Collapse
|
17
|
He X, Hao T, Geng H, Li S, Ran C, Huo M, Shen Y. Sensitization Strategies of Lateral Flow Immunochromatography for Gold Modified Nanomaterials in Biosensor Development. Int J Nanomedicine 2023; 18:7847-7863. [PMID: 38146466 PMCID: PMC10749510 DOI: 10.2147/ijn.s436379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 11/28/2023] [Indexed: 12/27/2023] Open
Abstract
Gold nanomaterials have become very attractive nanomaterials for biomedical research due to their unique physical and chemical properties, including size dependent optical, magnetic and catalytic properties, surface plasmon resonance (SPR), biological affinity and structural suitability. The performance of biosensing and biodiagnosis can be significantly improved in sensitivity, specificity, speed, contrast, resolution and so on by utilizing multiple optical properties of different gold nanostructures. Lateral flow immunochromatographic assay (LFIA) based on gold nanoparticles (GNPs) has the advantages of simple, fast operation, stable technology, and low cost, making it one of the most widely used in vitro diagnostics (IVDs). However, the traditional colloidal gold (CG)-based LFIA can only achieve qualitative or semi-quantitative detection, and its low detection sensitivity cannot meet the current detection needs. Due to the strong dependence of the optical properties of gold nanomaterials on their shape and surface properties, gold-based nanomaterial modification has brought new possibilities to the IVDs: people have attempted to change the morphology and size of gold nanomaterials themselves or hybrid with other elements for application in LFIA. In this paper, many well-designed plasmonic gold nanostructures for further improving the sensitivity and signal output stability of LFIA have been summarized. In addition, some opportunities and challenges that gold-based LFIA may encounter at present or in the future are also mentioned in this paper. In summary, this paper will demonstrate some feasible strategies for the manufacture of potential gold-based nanobiosensors of post of care testing (POCT) for faster detection and more accurate disease diagnosis.
Collapse
Affiliation(s)
- Xingyue He
- State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Tianjiao Hao
- State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Hongxu Geng
- School of Pharmacy, Yantai University, Yantai, 264005, People’s Republic of China
| | - Shengzhou Li
- State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Chuanjiang Ran
- State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Meirong Huo
- State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| | - Yan Shen
- State Key Laboratory of Nature Medicines, China Pharmaceutical University, Nanjing, 210009, People’s Republic of China
| |
Collapse
|
18
|
Kim K, Kim J. Development of a Transferable Force Field between Metal-Organic Framework and Its Polymorph. ACS OMEGA 2023; 8:44328-44337. [PMID: 38027331 PMCID: PMC10666274 DOI: 10.1021/acsomega.3c06937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/22/2023] [Accepted: 10/26/2023] [Indexed: 12/01/2023]
Abstract
Conventionally, force fields for specific metal-organic frameworks (MOFs) are derived from quantum chemical simulations, but this method can be computationally intensive, especially in cases for large MOF structures. In this work, we devise a methodology to reduce the force field derivation costs by replacing the original MOF with a smaller polymorphic structure, with the hypothesis that the force field parameters will be transferrable among chemically identical, polymorphic MOF structures. Specifically, we demonstrate this transferability in MOF-177 structure for H2O and NH3 gas molecules and show that the force field parameters derived from a smaller polymorphic MOF-177 can be used accurately to the original MOF-177 structure. This methodology can accelerate the development of force field parameters for large porous materials, in which computational costs for conventional methods are expensive.
Collapse
Affiliation(s)
- Kyeongrim Kim
- Department of Chemical and
Biomolecular Engineering, Korea Advanced
Institute of Science and Technology, Daejeon 34141, Republic of Korea
| | - Jihan Kim
- Department of Chemical and
Biomolecular Engineering, Korea Advanced
Institute of Science and Technology, Daejeon 34141, Republic of Korea
| |
Collapse
|
19
|
Shivanna M, Otake KI, Hiraide S, Fujikawa T, Wang P, Gu Y, Ashitani H, Kawaguchi S, Kubota Y, Miyahara MT, Kitagawa S. Crossover Sorption of C 2 H 2 /CO 2 and C 2 H 6 /C 2 H 4 in Soft Porous Coordination Networks. Angew Chem Int Ed Engl 2023; 62:e202308438. [PMID: 37534579 DOI: 10.1002/anie.202308438] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/04/2023]
Abstract
Porous sorbents are materials that are used for various applications, including storage and separation. Typically, the uptake of a single gas by a sorbent decreases with temperature, but the relative affinity for two similar gases does not change. However, in this study, we report a rare example of "crossover sorption," in which the uptake capacity and apparent affinity for two similar gases reverse at different temperatures. We synthesized two soft porous coordination polymers (PCPs), [Zn2 (L1)(L2)2 ]n (PCP-1) and [Zn2 (L1)(L3)2 ]n (PCP-2) (L1= 1,4-bis(4-pyridyl)benzene, L2=5-methyl-1,3-di(4-carboxyphenyl)benzene, and L3=5-methoxy-1,3-di(4-carboxyphenyl)benzene). These PCPs exhibits structural changes upon gas sorption and show the crossover sorption for both C2 H2 /CO2 and C2 H6 /C2 H4 , in which the apparent affinity reverse with temperature. We used in situ gas-loading single-crystal X-ray diffraction (SCXRD) analysis to reveal the guest inclusion structures of PCP-1 for C2 H2 , CO2 , C2 H6 , and C2 H4 gases at various temperatures. Interestingly, we observed three-step single-crystal to single-crystal (sc-sc) transformations with the different loading phases under these gases, providing insight into guest binding positions, nature of host-guest or guest-guest interactions, and their phase transformations upon exposure to these gases. Combining with theoretical investigation, we have fully elucidated the crossover sorption in the flexible coordination networks, which involves a reversal of apparent affinity and uptake of similar gases at different temperatures. We discovered that this behaviour can be explained by the delicate balance between guest binding and host-guest and guest-guest interactions.
Collapse
Affiliation(s)
- Mohana Shivanna
- Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study, Kyoto University Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Ken-Ichi Otake
- Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study, Kyoto University Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Shotaro Hiraide
- Department of Chemical Engineering, Kyoto University Nishikyo, Kyoto, 615-8510, Japan
| | - Takao Fujikawa
- Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study, Kyoto University Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Ping Wang
- Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study, Kyoto University Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Yifan Gu
- Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study, Kyoto University Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hirotaka Ashitani
- Department of Physical Science, Graduate School of Science, Osaka Prefecture, University, Sakai, Osaka, 599-8531, Japan
- Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Shogo Kawaguchi
- Japan Synchrotron Radiation Research Institute (JASRI), SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Yoshiki Kubota
- Department of Physical Science, Graduate School of Science, Osaka Prefecture, University, Sakai, Osaka, 599-8531, Japan
- Department of Physics, Graduate School of Science, Osaka Metropolitan University, Sakai, Osaka, 599-8531, Japan
| | - Minoru T Miyahara
- Department of Chemical Engineering, Kyoto University Nishikyo, Kyoto, 615-8510, Japan
| | - Susumu Kitagawa
- Institute for Integrated Cell-Material Sciences, Kyoto University Institute for Advanced Study, Kyoto University Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| |
Collapse
|
20
|
Gu Y, Zheng JJ, Otake KI, Sakaki S, Ashitani H, Kubota Y, Kawaguchi S, Yao MS, Wang P, Wang Y, Li F, Kitagawa S. Soft corrugated channel with synergistic exclusive discrimination gating for CO 2 recognition in gas mixture. Nat Commun 2023; 14:4245. [PMID: 37454124 DOI: 10.1038/s41467-023-39470-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023] Open
Abstract
Developing artificial porous systems with high molecular recognition performance is critical but very challenging to achieve selective uptake of a particular component from a mixture of many similar species, regardless of the size and affinity of these competing species. A porous platform that integrates multiple recognition mechanisms working cooperatively for highly efficient guest identification is desired. Here, we designed a flexible porous coordination polymer (PCP) and realised a corrugated channel system that cooperatively responds to only target gas molecules by taking advantage of its stereochemical shape, location of binding sites, and structural softness. The binding sites and structural deformation act synergistically, exhibiting exclusive discrimination gating (EDG) effect for selective gate-opening adsorption of CO2 over nine similar gas molecules, including N2, CH4, CO, O2, H2, Ar, C2H6, and even higher-affinity gases such as C2H2 and C2H4. Combining in-situ crystallographic experiments with theoretical studies, it is clear that this unparalleled ability to decipher the CO2 molecule is achieved through the coordination of framework dynamics, guest diffusion, and interaction energetics. Furthermore, the gas co-adsorption and breakthrough separation performance render the obtained PCP an efficient adsorbent for CO2 capture from various gas mixtures.
Collapse
Affiliation(s)
- Yifan Gu
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Siping Road 1239, 200092, Shanghai, China
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Jia-Jia Zheng
- Laboratory of Theoretical and Computational Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, 100190, Beijing, China
| | - Ken-Ichi Otake
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - Shigeyoshi Sakaki
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hirotaka Ashitani
- Department of Physical Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
| | - Yoshiki Kubota
- Department of Physical Science, Graduate School of Science, Osaka Prefecture University, Sakai, Osaka, 599-8531, Japan
- Department of Physics, Graduate School of Science, Osaka Metropolitan University, Sakai, Osaka, 599-8531, Japan
| | - Shogo Kawaguchi
- Japan Synchrotron Radiation Research Insitute (JASRI), SPring-8, 1-1-1 Kouto, Sayo-cho, Sayo-gun, Hyogo, 679-5198, Japan
| | - Ming-Shui Yao
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Ping Wang
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Ying Wang
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Siping Road 1239, 200092, Shanghai, China
| | - Fengting Li
- College of Environmental Science and Engineering, State Key Laboratory of Pollution Control and Resource Reuse, Tongji University, Siping Road 1239, 200092, Shanghai, China.
| | - Susumu Kitagawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
21
|
Xiao Y, Chen Y, Wang W, Yang H, Hong AN, Bu X, Feng P. Simultaneous Control of Flexibility and Rigidity in Pore-Space-Partitioned Metal-Organic Frameworks. J Am Chem Soc 2023; 145:10980-10986. [PMID: 37163701 DOI: 10.1021/jacs.3c03130] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Flexi-MOFs are typically limited to low-connected (<9) frameworks. Here we report a platform-wide approach capable of creating a family of high-connected materials (collectively called CPM-220) that integrate exceptional framework flexibility with high rigidity. We show that the multi-module nature of the pore-space-partitioned pacs (partitioned acs net) platform allows us to introduce flexibility as well as to simultaneously impose high rigidity in a tunable module-specific fashion. The inter-modular synergy has remarkable macro-morphological and sub-nanometer structural impacts. A prominent manifestation at both length scales is the retention of X-ray-quality single crystallinity despite huge hexagonal c-axial contraction (≈ 30%) and harsh sample treatment such as degassing and sorption cycles. CPM-220 sets multiple precedents and benchmarks on the pacs platform in both structural and sorption properties. They possess exceptionally high benzene/cyclohexane selectivity, unusual C3H6 and C3H8 isotherms, and promising separation performance for small gas molecules such as C2H2/CO2.
Collapse
Affiliation(s)
- Yuchen Xiao
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yichong Chen
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Wei Wang
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Huajun Yang
- Department of Chemistry and Biochemistry, California State University, Long Beach, California 90840, United States
| | - Anh N Hong
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Xianhui Bu
- Department of Chemistry and Biochemistry, California State University, Long Beach, California 90840, United States
| | - Pingyun Feng
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
22
|
Xiao X, Shen Y, Zhou X, Sun B, Wang Y, Cao J. Innovative nanotechnology-driven fluorescence assays for reporting hydrogen sulfide in food-related matrices. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
23
|
Zheng F, Chen R, Liu Y, Yang Q, Zhang Z, Yang Y, Ren Q, Bao Z. Strengthening Intraframework Interaction within Flexible MOFs Demonstrates Simultaneous Sieving Acetylene from Ethylene and Carbon Dioxide. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207127. [PMID: 36703621 PMCID: PMC10037686 DOI: 10.1002/advs.202207127] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 01/04/2023] [Indexed: 06/18/2023]
Abstract
Efficient separation of acetylene (C2 H2 )/ethylene (C2 H4 ) and acetylene/carbon dioxide (CO2 ) by adsorption is an industrially promising process, but adsorbents capable of simultaneously capturing trace acetylene from ethylene and carbon dioxide are scarce. Herein, a gate-opening effect on three isomorphous flexible metal-organic frameworks (MOFs) named Co(4-DPDS)2 MO4 (M = Cr, Mo, W; 4-DPDS = 4,4-dipyridyldisulfide) is modulated by anion pillars substitution. The shortest CrO4 2- strengthens intraframework hydrogen bonding and thus blocks structural transformation after activation, striking a good balance among working capacity, separation selectivity, and trace impurity removal of flexible MOFs out of nearly C2 H2 /C2 H4 and C2 H2 /CO2 molecular sieving. The exceptional separation performance of Co(4-DPDS)2 CrO4 is confirmed by dynamic breakthrough experiments. It reveals the specific threshold pressures control in anion-pillared flexible materials enabled elimination of the impurity leakage to realize high purity products through precise control of the intraframework interaction. The adsorption mechanism and multimode structural transformation property are revealed by both calculations and crystallography studies. This work demonstrates the feasibility of modulating flexibility for controlling gate-opening effect, especially for some cases of significant aperture shrinkage after activation.
Collapse
Affiliation(s)
- Fang Zheng
- Key Laboratory of Biomass Chemical Engineering of the Ministry of EducationCollege of Chemical and Biological EngineeringZhejiang University38 Zheda RoadHangzhou310027P. R. China
- Institute of Zhejiang University‐Quzhou99 Zheda RoadQuzhouZhejiang Province324000China
| | - Rundao Chen
- Key Laboratory of Biomass Chemical Engineering of the Ministry of EducationCollege of Chemical and Biological EngineeringZhejiang University38 Zheda RoadHangzhou310027P. R. China
| | - Ying Liu
- Key Laboratory of Biomass Chemical Engineering of the Ministry of EducationCollege of Chemical and Biological EngineeringZhejiang University38 Zheda RoadHangzhou310027P. R. China
| | - Qiwei Yang
- Key Laboratory of Biomass Chemical Engineering of the Ministry of EducationCollege of Chemical and Biological EngineeringZhejiang University38 Zheda RoadHangzhou310027P. R. China
- Institute of Zhejiang University‐Quzhou99 Zheda RoadQuzhouZhejiang Province324000China
| | - Zhiguo Zhang
- Key Laboratory of Biomass Chemical Engineering of the Ministry of EducationCollege of Chemical and Biological EngineeringZhejiang University38 Zheda RoadHangzhou310027P. R. China
- Institute of Zhejiang University‐Quzhou99 Zheda RoadQuzhouZhejiang Province324000China
| | - Yiwen Yang
- Key Laboratory of Biomass Chemical Engineering of the Ministry of EducationCollege of Chemical and Biological EngineeringZhejiang University38 Zheda RoadHangzhou310027P. R. China
- Institute of Zhejiang University‐Quzhou99 Zheda RoadQuzhouZhejiang Province324000China
| | - Qilong Ren
- Key Laboratory of Biomass Chemical Engineering of the Ministry of EducationCollege of Chemical and Biological EngineeringZhejiang University38 Zheda RoadHangzhou310027P. R. China
- Institute of Zhejiang University‐Quzhou99 Zheda RoadQuzhouZhejiang Province324000China
| | - Zongbi Bao
- Key Laboratory of Biomass Chemical Engineering of the Ministry of EducationCollege of Chemical and Biological EngineeringZhejiang University38 Zheda RoadHangzhou310027P. R. China
- Institute of Zhejiang University‐Quzhou99 Zheda RoadQuzhouZhejiang Province324000China
| |
Collapse
|
24
|
Kang LL, Xing C, Jin YX, Xie LX, Li ZF, Li G. Two Dual-Function Zr/Hf-MOFs as High-Performance Proton Conductors and Amines Impedance Sensors. Inorg Chem 2023; 62:3036-3046. [PMID: 36757379 DOI: 10.1021/acs.inorgchem.2c03758] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
In the field of sensing, finding high-performance amine molecular sensors has always been a challenging topic. Here, two highly stable 3D MOFs DUT-67(Hf) and DUT-67(Zr) with large specific surface areas and hierarchical pore structures were conveniently synthesized by solvothermal reaction of ZrCl4/HfCl4 with a simple organic ligand, 2,5-thiophene dicarboxylic acid (H2TDC) according to literature approach. By analyzing TGA data, it was found that the two MOFs have defects (unsaturated metal sites) that can interact with substrates (H2O and volatile amine gas), which is conducive to proton transfer and amine compound identification. Further experiments showed that at 100 °C and 98% relative humidity (RH), the optimized proton conductivities of DUT-67(Zr) and DUT-67(Hf) can reach the high values of 2.98 × 10-3 and 3.86 × 10-3 S cm-1, respectively. Moreover, the room temperature sensing characteristics of MOFs' to amine gases were evaluated at 68, 85 and 98% RHs, respectively. Impressively, the prepared MOFs-based sensors have the desired stability and higher sensitivity to amines. Under 68% RH, the detection limits of DUT-67(Zr) or DUT-67(Hf) for volatile amine gases were 0.5 (methylamine), 0.5 (dimethylamine) and 1 ppm (trimethylamine), and 0.5 (methylamine), 0.5 (dimethylamine) and 0.5 ppm (trimethylamine), respectively. As far as we know, this is the best performance of ammonia room temperature sensors in the past proton-conductive MOF sensors.
Collapse
Affiliation(s)
- Lu-Lu Kang
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Chen Xing
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Yi-Xin Jin
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Li-Xia Xie
- College of Science, Henan Agricultural University, Zhengzhou, Henan 450002, PR China
| | - Zi-Feng Li
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| | - Gang Li
- College of Chemistry and Green Catalysis Center, Zhengzhou University, Zhengzhou, Henan 450001, PR China
| |
Collapse
|
25
|
Pandey H, Wang H, Feng L, Wang KY, Zhou HC, Li J, Thonhauser T, Tan K. Revisiting Competitive Adsorption of Small Molecules in the Metal-Organic Framework Ni-MOF-74. Inorg Chem 2023; 62:950-956. [PMID: 36585928 DOI: 10.1021/acs.inorgchem.2c03751] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
To precisely evaluate the potential of metal-organic frameworks (MOFs) for gas separation and purification applications, it is crucial to understand how various molecules competitively adsorb inside MOFs. In this paper, we combine in situ infrared spectroscopy with ab initio calculations to investigate the mechanisms associated with coadsorption of several small molecules, including CO, NO, and CO2 inside the prototypical structure Ni-MOF-74. Surprisingly, we find that the displacement of CO bound inside Ni-MOF-74 (binding energy of 53 kJ/mol) is readily driven by CO2 exposure, even though CO2 has a noticeably weaker binding energy of only 41 kJ/mol; meanwhile, the significantly more strongly binding NO molecule (90 kJ/mol) is not able to easily displace bound CO inside Ni-MOF74. These results show that single-phase binding energies of a molecule inside the MOF cannot completely describe their interaction with the MOF in the presence of other guest molecules. We unveil many crucial factors, such as the kinetic barrier, partial pressure, secondary binding sites, and guest-host/lateral interactions that control the coadsorption process and, combined with the binding energy, are better descriptors of the behavior and adsorption of gas mixtures inside MOFs.
Collapse
Affiliation(s)
- Haardik Pandey
- Department of Physics and Center for Functional Materials, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - Hao Wang
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Liang Feng
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Kun-Yu Wang
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Hong-Cai Zhou
- Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States
| | - Jing Li
- Department of Chemistry and Chemical Biology, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Timo Thonhauser
- Department of Physics and Center for Functional Materials, Wake Forest University, Winston-Salem, North Carolina 27109, United States
| | - Kui Tan
- Department of Materials Science & Engineering, University of Texas at Dallas, Richardson, Texas 75080, United States
| |
Collapse
|
26
|
Luo L, Hao W, Jin B, Guo Z, Guo J, Liu Q, Deng H, Peng R. Solvent-free 3D layered energetic metal organic framework: Structure, stability, and its laser response. J SOLID STATE CHEM 2023. [DOI: 10.1016/j.jssc.2022.123607] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
27
|
Tian S, Bai Y, Li S, Chen Z, Zhang L, Li H, Zhou P, He Y. Simple preparation of UiO-66-NH2-modified microsphere layer/nanofibrous membrane by coaxial spinning for purification of complex wastewater. J Memb Sci 2022. [DOI: 10.1016/j.memsci.2022.121291] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
28
|
Yu X, Pavlov DI, Ryadun AA, Potapov AS, Fedin VP. Variable Dimensionality of Europium(III) and Terbium(III) Coordination Compounds with a Flexible Hexacarboxylate Ligand. Molecules 2022; 27:molecules27227849. [PMID: 36431948 PMCID: PMC9696389 DOI: 10.3390/molecules27227849] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/11/2022] [Accepted: 11/12/2022] [Indexed: 11/16/2022] Open
Abstract
A reaction between 4,4',4″-(benzene-1,3,5-triyltris(oxy))triphthalic acid (H6L) and lanthanide(III) nitrates (Ln = Eu3+, Tb3+) in water under the same conditions gave a molecular coordination compound [Tb(H4.5L)2(H2O)5]∙6H2O in the case of terbium(III) and a one-dimensional linear coordination polymer {[Eu2(H3L)2(H2O)6]∙8H2O}n in the case of europium(III). The crystal structures of both compounds were established by single-crystal X-ray diffraction, and they were further characterized by powder X-ray diffraction, thermogravimetric analysis and infrared spectroscopy. The compounds demonstrated characteristic lanthanide-centered photoluminescence. The lanthanide-dependent dimensionality of the synthesized compounds, which are the first examples of the coordination compounds of hexacarboxylic acid H6L demonstrates its potential as a linker for new coordination polymers.
Collapse
Affiliation(s)
- Xiaolin Yu
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogov Str., 630090 Novosibirsk, Russia
| | - Dmitry I. Pavlov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Alexey A. Ryadun
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., 630090 Novosibirsk, Russia
| | - Andrei S. Potapov
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., 630090 Novosibirsk, Russia
- Correspondence: (A.S.P.); (V.P.F.)
| | - Vladimir P. Fedin
- Nikolaev Institute of Inorganic Chemistry, Siberian Branch of the Russian Academy of Sciences, 3 Lavrentiev Ave., 630090 Novosibirsk, Russia
- Department of Natural Sciences, Novosibirsk State University, 2 Pirogov Str., 630090 Novosibirsk, Russia
- Correspondence: (A.S.P.); (V.P.F.)
| |
Collapse
|
29
|
Shivanna M, Bezrukov AA, Gascón-Pérez V, Otake KI, Sanda S, O’Hearn DJ, Yang QY, Kitagawa S, Zaworotko MJ. Flexible Coordination Network Exhibiting Water Vapor-Induced Reversible Switching between Closed and Open Phases. ACS APPLIED MATERIALS & INTERFACES 2022; 14:39560-39566. [PMID: 35975756 PMCID: PMC9437871 DOI: 10.1021/acsami.2c10002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 07/26/2022] [Indexed: 05/25/2023]
Abstract
That physisorbents can reduce the energy footprint of water vapor capture and release has attracted interest because of potential applications such as moisture harvesting, dehumidification, and heat pumps. In this context, sorbents exhibiting an S-shaped single-step water sorption isotherm are desirable, most of which are structurally rigid sorbents that undergo pore-filling at low relative humidity (RH), ideally below 30% RH. Here, we report that a new flexible one-dimensional (1D) coordination network, [Cu(HQS)(TMBP)] (H2HQS = 8-hydroxyquinoline-5-sulfonic acid and TMBP = 4,4'-trimethylenedipyridine), exhibits at least five phases: two as-synthesized open phases, α ⊃ H2O and β ⊃ MeOH; an activated closed phase (γ); CO2 (δ ⊃ CO2) and C2H2 (ϵ ⊃ C2H2) loaded phases. The γ phase underwent a reversible structural transformation to α ⊃ H2O with a stepped sorption profile (Type F-IV) when exposed to water vapor at <30% RH at 300 K. The hydrolytic stability of [Cu(HQS)(TMBP)] was confirmed by powder X-ray diffraction (PXRD) after immersion in boiling water for 6 months. Temperature-humidity swing cycling measurements demonstrated that working capacity is retained for >100 cycles and only mild heating (<323 K) is required for regeneration. Unexpectedly, the kinetics of loading and unloading of [Cu(HQS)(TMBP)] compares favorably with well-studied rigid water sorbents such as Al-fumarate, MOF-303, and CAU-10-H. Furthermore, a polymer composite of [Cu(HQS)(TMBP)] was prepared and its water sorption retained its stepped profile and uptake capacity over multiple cycles.
Collapse
Affiliation(s)
- Mohana Shivanna
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic of Ireland
- Institute
for Integrated Cell-Material Sciences, Kyoto University Institute
for Advanced Study, Kyoto University Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Andrey A. Bezrukov
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Victoria Gascón-Pérez
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Ken-ichi Otake
- Institute
for Integrated Cell-Material Sciences, Kyoto University Institute
for Advanced Study, Kyoto University Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Suresh Sanda
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Daniel J. O’Hearn
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Qing-Yuan Yang
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| | - Susumu Kitagawa
- Institute
for Integrated Cell-Material Sciences, Kyoto University Institute
for Advanced Study, Kyoto University Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Michael J. Zaworotko
- Department
of Chemical Sciences, Bernal Institute, University of Limerick, Limerick V94 T9PX, Republic of Ireland
| |
Collapse
|
30
|
Wang P, Xue Z, Ken-Ichi O, Kitagawa S. Nitroxyl radical-containing flexible porous coordination polymer for controllable size-aelective aerobic oxidation of alcohols. Chem Commun (Camb) 2022; 58:9026-9029. [PMID: 35875985 DOI: 10.1039/d2cc02772k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The ability of flexible porous coordination polymers (PCPs) to change their structure in response to various stimuli has not been exploited in the design of tunable-selectivity catalysts. Herein, we make use of this ability and prepare nitroxyl radical-containing flexible PCP that can reversibly switch between large- and contracted-pore configurations in response to solvent change and thus promote the controllable size-selective aerobic oxidation of alcohols.
Collapse
Affiliation(s)
- Ping Wang
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Institute for Advanced Study (KUIAS), Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - Ziqian Xue
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Institute for Advanced Study (KUIAS), Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - Otake Ken-Ichi
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Institute for Advanced Study (KUIAS), Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| | - Susumu Kitagawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Institute for Advanced Study (KUIAS), Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto, 606-8501, Japan.
| |
Collapse
|
31
|
Rozenberga L, Skinner W, Lancaster DG, Bloch WM, Blencowe A, Krasowska M, Beattie DA. A europium metal-organic framework for dual Fe 3+ ion and pH sensing. Sci Rep 2022; 12:11982. [PMID: 35835797 PMCID: PMC9283444 DOI: 10.1038/s41598-022-15663-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 06/27/2022] [Indexed: 12/03/2022] Open
Abstract
Metal–organic frameworks (MOFs) with ratiometric sensing properties are desirable for many applications due to their intrinsic self-calibration. We report the re-assessment of the sensing properties of a MOF, originally reported as containing europium(III) and 2-hydroxyterephtalic acid, and having fluorescent ratiometric iron(III) sensing properties. Synchrotron single-crystal X-ray diffraction and proton nuclear magnetic resonance (1H NMR) spectroscopy revealed that the MOF is composed of 2-methoxyterephthalate, not 2-hydroxyterephthalate as originally reported. We found that the MOF exhibits a sensor turn-off response towards Fe3+ ion concentrations in the range 0.5–3.7 ppm (band 425 nm), and a turn-on response towards a decrease of pH from 5.4 to 3.0 (band 375 nm), both resulting from the addition of acidic Fe3+ salt solution to a MOF suspension. Thus, the ratiometric sensing properties and the originally proposed mechanism no longer apply; our work reveals a dynamic quenching mechanism for the fluorescence turn-off response due to the presence of Fe3+ ions, and a ligand protonation mechanism for the turn-on response to a decrease in pH. Our work highlights the importance of a thorough investigation of the structure of any newly synthesized MOF, and, in the case of potential sensors, their selectivity and any environmental effects on their sensing behavior.
Collapse
Affiliation(s)
- Linda Rozenberga
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - William Skinner
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - David G Lancaster
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - Witold M Bloch
- Department of Chemistry and Physics, University of Adelaide, Adelaide, SA, 5000, Australia.
| | - Anton Blencowe
- Applied Chemistry and Translational Biomaterials Group, UniSA Clinical and Health Science, University of South Australia, Adelaide, SA, 5000, Australia
| | - M Krasowska
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia
| | - David A Beattie
- Future Industries Institute, University of South Australia, Mawson Lakes, SA, 5095, Australia.
| |
Collapse
|
32
|
Tan F, Zha L, Zhou Q. Assembly of AIEgen-Based Fluorescent Metal-Organic Framework Nanosheets and Seaweed Cellulose Nanofibrils for Humidity Sensing and UV-Shielding. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2201470. [PMID: 35388558 DOI: 10.1002/adma.202201470] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Integrating synthetic low-dimensional nanomaterials such as metal-organic framework (MOF) nanosheets with a sustainable biopolymer is a promising strategy to endow composites with attractive structural and functional properties for expanded applications. Herein, aggregation-induced-emission luminogen (AIEgen)-based MOF bulk crystals are successfully exfoliated into ultrathin 2D nanosheets. Seaweed cellulose nanofibrils (CNFs) are assembled with low amounts (0.3 to 4.0 wt%) of the 2D nanosheets to generate luminescent composites. The 2D nanosheets are adsorbed onto the CNFs in dilute water suspensions owing to the flexibility of the MOF nanosheets and the high aspect ratio of the CNFs. Transparent films are prepared by solution casting from a water suspension of the CNF-MOF assembly. The fluorescence emission of the composite films is enhanced because of the favored affinity between MOF nanosheets and CNFs. Remarkably, these films demonstrate excellent UV-shielding capacity and high optical transmittance at the visible wavelength range. The composite films also show reversible changes in fluorescence emission intensity in response to ambient humidity. The tensile strength and modulus of the composite films are also enhanced owing to the increased adhesion between CNFs through the adsorbed MOF nanosheets. This work provides a novel pathway to fabricate luminescent CNFs-based composites with tunable optical properties for functional materials.
Collapse
Affiliation(s)
- Fangchang Tan
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, SE-106 91, Sweden
| | - Li Zha
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, SE-106 91, Sweden
| | - Qi Zhou
- Division of Glycoscience, Department of Chemistry, School of Engineering Sciences in Chemistry, Biotechnology and Health, KTH Royal Institute of Technology, AlbaNova University Centre, Stockholm, SE-106 91, Sweden
- Wallenberg Wood Science Center, Department of Fibre and Polymer Technology, KTH Royal Institute of Technology, Stockholm, SE-100 44, Sweden
| |
Collapse
|
33
|
Kolodzeiski E, Amirjalayer S. Dynamic network of intermolecular interactions in metal-organic frameworks functionalized by molecular machines. SCIENCE ADVANCES 2022; 8:eabn4426. [PMID: 35776789 PMCID: PMC10883363 DOI: 10.1126/sciadv.abn4426] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Molecular machines enable external control of structural and dynamic phenomena at the atomic level. To efficiently transfer their tunable properties into designated functionalities, a detailed understanding of the impact of molecular embedding is needed. In particular, a comprehensive insight is fundamental to design hierarchical multifunctional systems that are inspired by biological cells. Here, we applied an on-the-fly trained force field to perform atomistic simulations of a systematically modified rotaxane functionalized metal-organic framework. Our atomistic studies reveal a symmetric and asymmetric interplay of the mechanically bonded rings (MBRs) within the framework depending on the local environment. As a result, their translational motion is modulated ranging from fast oscillatory behavior to cooperative and potentially directed shuttling. The derived picture of competitive interactions, which influence the operation mechanism of the MBRs embedded in these soft porous materials, promotes the development of responsive functional materials, which is a key step toward intelligent matter.
Collapse
Affiliation(s)
- Elena Kolodzeiski
- Physikalisches Institut, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
- Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster, Germany
- Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| | - Saeed Amirjalayer
- Physikalisches Institut, Westfälische Wilhelms-Universität, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
- Center for Nanotechnology, Heisenbergstraße 11, 48149 Münster, Germany
- Center for Multiscale Theory and Computation, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 10, 48149 Münster, Germany
| |
Collapse
|
34
|
Study of CO2 and N2 sorption into ZIF-8 at high pressure and different temperatures. J SOLID STATE CHEM 2022. [DOI: 10.1016/j.jssc.2022.123370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
35
|
Zhao L, Du Z, Ji G, Wang Y, Cai W, He C, Duan C. Eosin Y-Containing Metal-Organic Framework as a Heterogeneous Catalyst for Direct Photoactivation of Inert C-H Bonds. Inorg Chem 2022; 61:7256-7265. [PMID: 35507831 DOI: 10.1021/acs.inorgchem.1c03813] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Xanthene dyes as a class of ideal organic homogeneous photocatalyst have received significant attention in C-H bond activation; however, the inherent nature of fast carrier recombination/deactivation and low stability limits their practical applications. Herein, by the ingenious decoration of eosin Y into a porous metal-organic framework (MOF), a high-performance heterogeneous MOF-based photocatalyst was prepared to efficiently activate inert C-H bonds on the reactants via the hydrogen atom transfer pathway for the functionalization of the C-H bonds. Taking advantage of the fixation effect of a rigid framework, the incorporation of eosin Y into MOF leads to great enhancement of their chemical durability. More importantly, by the introduction of the second auxiliary ligand, the carbonyl groups of xanthene on the eosin Y dyes were perfectly retained and periodically aligned within the confined channels of this rigid framework, which could effectively form excited state radicals to prompt inert C-H bond activation, promoting reaction efficiency by the host-guest supramolecular interaction. New eosin Y-based MOFs were recyclable for six times without reducing photocatalytic activity. This eosin Y functionalized MOF-based heterogeneous photocatalytic system provides an availably catalytic avenue to develop a scalable and sustainable synthetic strategy for the practical application of organic dyes.
Collapse
Affiliation(s)
- Liang Zhao
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Zenggang Du
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Guanfeng Ji
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Yefei Wang
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Wei Cai
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Cheng He
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| | - Chunying Duan
- State Key Laboratory of Fine Chemicals, Dalian University of Technology, Dalian 116024, P. R. China
| |
Collapse
|
36
|
Huang YW, Feng H, Xiong XH, Luo F. Multi-step Phase Transformation from Metal-Organic Frameworks to Inorganic Compounds for High-Purity Th(IV) Generation. Inorg Chem 2022; 61:7212-7216. [PMID: 35502907 DOI: 10.1021/acs.inorgchem.2c00075] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The generation of high-purity thorium is the precondition for next-generation nuclear energy; however, this remains a challenging task. To this end, we present herein an ultrasimple technique with the combination of crystallization plus phase transformation. Crystallization into ECUT-68 is found to show almost 100% selective uptake of Th(IV) over rare earth and UO22+ ions, while multistep phase transformation from metal-organic frameworks (MOFs) to inorganic compounds is found to directly generate inorganic Th(IV) compound and then Th(IV) solution, suggesting its superior application in the generation of high-purity thorium.
Collapse
Affiliation(s)
- Yi-Wei Huang
- School of Biology, Chemistry and Material Science, East China University of Technology, Nanchang, Jiangxi 344000, China
| | - Han Feng
- School of Biology, Chemistry and Material Science, East China University of Technology, Nanchang, Jiangxi 344000, China
| | - Xiao-Hong Xiong
- School of Biology, Chemistry and Material Science, East China University of Technology, Nanchang, Jiangxi 344000, China
| | - Feng Luo
- School of Biology, Chemistry and Material Science, East China University of Technology, Nanchang, Jiangxi 344000, China
| |
Collapse
|
37
|
Li Y, Wang Y, Fan W, Sun D. Flexible metal-organic frameworks for gas storage and separation. Dalton Trans 2022; 51:4608-4618. [PMID: 35225319 DOI: 10.1039/d1dt03842g] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Flexible metal-organic frameworks (MOFs) have gradually attracted much attention due to their reversible structural changes and flexible structural responses. The basic research of flexible MOFs is to study their dynamic responses under different external stimuli and translate the responses into applications. Most research studies on flexible MOFs focus on gas storage and separation, but lack a systematic summary. Here, we review the development of flexible MOFs, the structural transformation under the external effects of temperature, pressure, and guest molecules, and their applications in gas storage and separation. Microporous MOFs with flexible structures provide unique opportunities for fine-tuning their performance because the pore shape and size can be controlled by external stimuli. The characteristics of breathing phenomena and large specific surface area make flexible MOFs suitable candidates for gas storage and separation. Finally, the application prospects of flexible MOFs are reported.
Collapse
Affiliation(s)
- Yue Li
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China.
| | - Yutong Wang
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China.
| | - Weidong Fan
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China.
| | - Daofeng Sun
- State Key Laboratory of Heavy Oil Processing, School of Materials Science and Engineering, College of Science, China University of Petroleum (East China), Qingdao 266580, P. R. China.
| |
Collapse
|
38
|
Liu M, Nothling MD, Zhang S, Fu Q, Qiao GG. Thin film composite membranes for postcombustion carbon capture: Polymers and beyond. Prog Polym Sci 2022. [DOI: 10.1016/j.progpolymsci.2022.101504] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
39
|
A Comprehensive Review on the Use of Metal–Organic Frameworks (MOFs) Coupled with Enzymes as Biosensors. ELECTROCHEM 2022. [DOI: 10.3390/electrochem3010006] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Several studies have shown the development of electrochemical biosensors based on enzymes immobilized in metal–organic frameworks (MOFs). Although enzymes have unique properties, such as efficiency, selectivity, and environmental sustainability, when immobilized, these properties are improved, presenting significant potential for several biotechnological applications. Using MOFs as matrices for enzyme immobilization has been considered a promising strategy due to their many advantages compared to other supporting materials, such as larger surface areas, higher porosity rates, and better stability. Biosensors are analytical tools that use a bioactive element and a transducer for the detection/quantification of biochemical substances in the most varied applications and areas, in particular, food, agriculture, pharmaceutical, and medical. This review will present novel insights on the construction of biosensors with materials based on MOFs. Herein, we have been highlighted the use of MOF for biosensing for biomedical, food safety, and environmental monitoring areas. Additionally, different methods by which immobilizations are performed in MOFs and their main advantages and disadvantages are presented.
Collapse
|
40
|
Ma Y, Tang X, Chen M, Mishima A, Li L, Hori A, Wu X, Ding L, Kusaka S, Matsuda R. Design of a MOF based on octa-nuclear zinc clusters realizing both thermal stability and structural flexibility. Chem Commun (Camb) 2022; 58:1139-1142. [PMID: 34981084 DOI: 10.1039/d1cc05893b] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
An octa-nuclear zinc (Zn8) cluster-based two-fold interpenetrated metal-organic framework (MOF) of [(CH3)2NH2]2[Zn8O3(FDC)6]·7DMF (denoted as Zn8-as; H2FDC = 9H-fluorene-2,7-dicarboxylic acid; DMF = N,N-dimethylformamide) was synthesized by the reaction of a hard base of a curved dicarboxylate ligand (H2FDC) with the borderline acid of Zn(II) under solvothermal conditions. Zn8-as shows significant crystal volume shrinkage upon heating, yielding a solvate-free framework of [(CH3)2NH2]2[Zn8O3(FDC)6] (Zn8-de). Zn8-de displays gated adsorption for C2H2 and type-I adsorption for CO2, attributed to the framework flexibility and the different interactions between the gas molecules and the host framework.
Collapse
Affiliation(s)
- Yunsheng Ma
- School of Materials Engineering, Jiangsu Key Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu, Jiangsu 215500, China. .,Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan.
| | - Xiaoyan Tang
- School of Materials Engineering, Jiangsu Key Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu, Jiangsu 215500, China. .,Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan.
| | - Ming Chen
- School of Materials Engineering, Jiangsu Key Laboratory of Advanced Functional Materials, Changshu Institute of Technology, Changshu, Jiangsu 215500, China.
| | - Akio Mishima
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan.
| | - Liangchun Li
- Shanghai Key Lab of Chemical Assessment and Sustainability, School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Akihiro Hori
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan.
| | - Xiaoyu Wu
- Department of Chemistry, Xi'an JiaoTong-Liverpool University, 111 Ren'ai Road, Suzhou Dushu Lake Higher Education Town, Jiangsu Province, 215123, China
| | - Lifeng Ding
- Department of Chemistry, Xi'an JiaoTong-Liverpool University, 111 Ren'ai Road, Suzhou Dushu Lake Higher Education Town, Jiangsu Province, 215123, China
| | - Shinpei Kusaka
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan.
| | - Ryotaro Matsuda
- Department of Materials Chemistry, Graduate School of Engineering, Nagoya University, Chikusa-ku, Nagoya 464-8603, Japan.
| |
Collapse
|
41
|
Wang P, Kajiwara T, Otake KI, Yao MS, Ashitani H, Kubota Y, Kitagawa S. Xylene Recognition in Flexible Porous Coordination Polymer by Guest-Dependent Structural Transition. ACS APPLIED MATERIALS & INTERFACES 2021; 13:52144-52151. [PMID: 34347426 DOI: 10.1021/acsami.1c10061] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Xylene isomers are crucial chemical intermediates in great demand worldwide; the almost identical physicochemical properties render their current separation approach energy consuming. In this study, we utilized the soft porous coordination polymer (PCP)'s isomer-specific structural transformation, realizing o-xylene (oX) recognition/separation from the binary and ternary isomer mixtures. This PCP has a flexible structure that contains flexible aromatic pendant groups, which both work as recognition sites and induce structural flexibility of the global framework. The PCP exhibits guest-triggered "breathing"-type structural changes, which are accompanied by the rearrangement of the intraframework π-π interaction. By rebuilding π-π stacking with isomer species, the PCP discriminated oX from the other isomers by its specific guest-loading configuration and separated oX from the isomer mixture via selective adsorption. The xylene-selective property of the PCP is dependent on the solvent; in diluted hexane solution, the PCP favors p-xylene (pX) uptake. The separation results combined with crystallographic analyses revealed the effect of the isomer selectivity of the PCP on xylene isomer separation via structural transition and demonstrated its potential as a versatile selective adsorptive medium for challenging separations.
Collapse
Affiliation(s)
- Ping Wang
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Takashi Kajiwara
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Ken-Ichi Otake
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Ming-Shui Yao
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| | - Hirotaka Ashitani
- Department of Physical Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Yoshiki Kubota
- Department of Physical Science, Graduate School of Science, Osaka Prefecture University, 1-1 Gakuen-cho, Naka-ku, Sakai, Osaka 599-8531, Japan
| | - Susumu Kitagawa
- Institute for Integrated Cell-Material Sciences (WPI-iCeMS), Kyoto University Institute for Advanced Study, Kyoto University, Yoshida Ushinomiya-cho, Sakyo-ku, Kyoto 606-8501, Japan
| |
Collapse
|
42
|
An updated status and trends in actinide metal-organic frameworks (An-MOFs): From synthesis to application. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.214011] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
43
|
The non-templating synthesis of macro-cyclic Schiff base ligands containing pyrrole and homopiperazine and their binuclear nickel(II), cobalt(II) and mononuclear platinum(II) complexes: X-ray single crystal and anticancer studies. J Mol Struct 2021. [DOI: 10.1016/j.molstruc.2021.130956] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
44
|
Tang J, Chu Y, Li S, Xu J, Xiong W, Wang Q, Deng F. Breathing Effect via Solvent Inclusions on the Linker Rotational Dynamics of Functionalized MIL-53. Chemistry 2021; 27:14711-14720. [PMID: 34357658 DOI: 10.1002/chem.202102419] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Indexed: 12/24/2022]
Abstract
The breathing effects of functionalized MIL-53-X (X=H, CH3 , NH2 , OH, and NO2 ) induced by the inclusions of water, methanol, acetone, and N,N-dimethylformamide solvents were comprehensively investigated by solid-state NMR spectroscopy. 2D homo-nuclear correlation NMR provided direct experimental evidence for the host-guest interaction between the guest solvents and the MOF frameworks. The variations of the 1 H and 13 C NMR chemical shifts in functionalized MIL-53 from the narrow pore phase transitions to large pore forms due to solvent inclusions were clearly identified. The influence of functionalized linkers and their host-guest interactions with the confined solvents on the rotational dynamics of the linkers was examined by separated-local-field MAS NMR experiments in conjunction with DFT theoretical calculations. It is found that the linker rotational dynamics of functionalized MIL-53 in narrow pore form is closely related to the computational rotational energy barrier. The BDC-NO2 linker of activated MIL-53-NO2 undergoes relatively faster rotation, whereas the BDC-NH2 and BDC-OH linkers of activated MIL-53-NH2 and MIL-53-OH exhibit relatively slower rotation. The host-guest interactions between confined solvents and MIL-53-NO2 , MIL-53-CH3 would significantly induce an increase of the order parameters of unsubstituted carbon and reduce the rotational frequency of linkers. This study provides a spectroscopic approach for the investigation of linker rotation in functionalized MOFs at natural abundance with solvents inclusions.
Collapse
Affiliation(s)
- Jing Tang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, P. R. China.,University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Yueying Chu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, P. R. China
| | - Shenhui Li
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, P. R. China
| | - Jun Xu
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, P. R. China
| | - Wenpeng Xiong
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, P. R. China.,University of Chinese Academy of Sciences, 100049, Beijing, P. R. China
| | - Qiang Wang
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, P. R. China
| | - Feng Deng
- State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics National Center for Magnetic Resonance in Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, 430071, Wuhan, P. R. China
| |
Collapse
|
45
|
Wang SQ, Mukherjee S, Zaworotko MJ. Spiers Memorial Lecture: Coordination networks that switch between nonporous and porous structures: an emerging class of soft porous crystals. Faraday Discuss 2021; 231:9-50. [PMID: 34318839 DOI: 10.1039/d1fd00037c] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Coordination networks (CNs) are a class of (usually) crystalline solids typically comprised of metal ions or cluster nodes linked into 2 or 3 dimensions by organic and/or inorganic linker ligands. Whereas CNs tend to exhibit rigid structures and permanent porosity as exemplified by most metal-organic frameworks, MOFs, there exists a small but growing class of CNs that can undergo extreme, reversible structural transformation(s) when exposed to gases, vapours or liquids. These "soft" or "stimuli-responsive" CNs were introduced two decades ago and are attracting increasing attention thanks to two features: the amenability of CNs to design from first principles, thereby enabling crystal engineering of families of related CNs; and the potential utility of soft CNs for adsorptive storage and separation. A small but growing subset of soft CNs exhibit reversible phase transformations between nonporous (closed) and porous (open) structures. These "switching CNs" are distinguished by stepped sorption isotherms coincident with phase transformation and, perhaps counterintuitively, they can exhibit benchmark properties with respect to working capacity (storage) and selectivity (separation). This review addresses fundamental and applied aspects of switching CNs through surveying their sorption properties, analysing the structural transformations that enable switching, discussing structure-function relationships and presenting design principles for crystal engineering of the next generation of switching CNs.
Collapse
Affiliation(s)
- Shi-Qiang Wang
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic of Ireland.
| | - Soumya Mukherjee
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic of Ireland. .,Department of Chemistry, Technical University of Munich, Lichtenbergstraße 4, 85748 Garching bei München, Germany
| | - Michael J Zaworotko
- Bernal Institute, Department of Chemical Sciences, University of Limerick, Limerick V94 T9PX, Republic of Ireland.
| |
Collapse
|
46
|
Shivanna M, Otake K, Song B, van Wyk LM, Yang Q, Kumar N, Feldmann WK, Pham T, Suepaul S, Space B, Barbour LJ, Kitagawa S, Zaworotko MJ. Benchmark Acetylene Binding Affinity and Separation through Induced Fit in a Flexible Hybrid Ultramicroporous Material. Angew Chem Int Ed Engl 2021; 60:20383-20390. [PMID: 34250717 PMCID: PMC8457195 DOI: 10.1002/anie.202106263] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Indexed: 01/03/2023]
Abstract
Structural changes at the active site of an enzyme induced by binding to a substrate molecule can result in enhanced activity in biological systems. Herein, we report that the new hybrid ultramicroporous material sql-SIFSIX-bpe-Zn exhibits an induced fit binding mechanism when exposed to acetylene, C2 H2 . The resulting phase change affords exceptionally strong C2 H2 binding that in turn enables highly selective C2 H2 /C2 H4 and C2 H2 /CO2 separation demonstrated by dynamic breakthrough experiments. sql-SIFSIX-bpe-Zn was observed to exhibit at least four phases: as-synthesised (α); activated (β); and C2 H2 induced phases (β' and γ). sql-SIFSIX-bpe-Zn-β exhibited strong affinity for C2 H2 at ambient conditions as demonstrated by benchmark isosteric heat of adsorption (Qst ) of 67.5 kJ mol-1 validated through in situ pressure gradient differential scanning calorimetry (PG-DSC). Further, in situ characterisation and DFT calculations provide insight into the mechanism of the C2 H2 induced fit transformation, binding positions and the nature of host-guest and guest-guest interactions.
Collapse
Affiliation(s)
- Mohana Shivanna
- Department of Chemical SciencesBernal InstituteUniversity of LimerickLimerickV94 T9PXRepublic of Ireland
- Institute for Integrated Cell-Material SciencesKyoto University Institute for Advanced Study, Kyoto UniversityYoshida Ushinomiya-cho, Sakyo-kuKyoto606-8501Japan
| | - Ken‐ichi Otake
- Institute for Integrated Cell-Material SciencesKyoto University Institute for Advanced Study, Kyoto UniversityYoshida Ushinomiya-cho, Sakyo-kuKyoto606-8501Japan
| | - Bai‐Qiao Song
- Department of Chemical SciencesBernal InstituteUniversity of LimerickLimerickV94 T9PXRepublic of Ireland
| | - Lisa M. van Wyk
- Department of Chemistry and Polymer ScienceStellenbosch UniversityMatieland7602South Africa
| | - Qing‐Yuan Yang
- Department of Chemical SciencesBernal InstituteUniversity of LimerickLimerickV94 T9PXRepublic of Ireland
| | - Naveen Kumar
- Department of Chemical SciencesBernal InstituteUniversity of LimerickLimerickV94 T9PXRepublic of Ireland
| | - Wesley K. Feldmann
- Department of Chemistry and Polymer ScienceStellenbosch UniversityMatieland7602South Africa
| | - Tony Pham
- Department of ChemistryUniversity of South Florida4202 East Fowler AvenueTampaFL33620USA
- Department of Chemistry, Biochemistry, and PhysicsThe University of Tampa401 West Kennedy BoulevardTampaFL33606-1490USA
| | - Shanelle Suepaul
- Department of ChemistryUniversity of South Florida4202 East Fowler AvenueTampaFL33620USA
| | - Brian Space
- Department of ChemistryUniversity of South Florida4202 East Fowler AvenueTampaFL33620USA
| | - Leonard J. Barbour
- Department of Chemistry and Polymer ScienceStellenbosch UniversityMatieland7602South Africa
| | - Susumu Kitagawa
- Institute for Integrated Cell-Material SciencesKyoto University Institute for Advanced Study, Kyoto UniversityYoshida Ushinomiya-cho, Sakyo-kuKyoto606-8501Japan
| | - Michael J. Zaworotko
- Department of Chemical SciencesBernal InstituteUniversity of LimerickLimerickV94 T9PXRepublic of Ireland
| |
Collapse
|
47
|
Shivanna M, Otake K, Song B, Wyk LM, Yang Q, Kumar N, Feldmann WK, Pham T, Suepaul S, Space B, Barbour LJ, Kitagawa S, Zaworotko MJ. Benchmark Acetylene Binding Affinity and Separation through Induced Fit in a Flexible Hybrid Ultramicroporous Material. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106263] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Mohana Shivanna
- Department of Chemical Sciences Bernal Institute University of Limerick Limerick V94 T9PX Republic of Ireland
- Institute for Integrated Cell-Material Sciences Kyoto University Institute for Advanced Study, Kyoto University Yoshida Ushinomiya-cho, Sakyo-ku Kyoto 606-8501 Japan
| | - Ken‐ichi Otake
- Institute for Integrated Cell-Material Sciences Kyoto University Institute for Advanced Study, Kyoto University Yoshida Ushinomiya-cho, Sakyo-ku Kyoto 606-8501 Japan
| | - Bai‐Qiao Song
- Department of Chemical Sciences Bernal Institute University of Limerick Limerick V94 T9PX Republic of Ireland
| | - Lisa M. Wyk
- Department of Chemistry and Polymer Science Stellenbosch University Matieland 7602 South Africa
| | - Qing‐Yuan Yang
- Department of Chemical Sciences Bernal Institute University of Limerick Limerick V94 T9PX Republic of Ireland
| | - Naveen Kumar
- Department of Chemical Sciences Bernal Institute University of Limerick Limerick V94 T9PX Republic of Ireland
| | - Wesley K. Feldmann
- Department of Chemistry and Polymer Science Stellenbosch University Matieland 7602 South Africa
| | - Tony Pham
- Department of Chemistry University of South Florida 4202 East Fowler Avenue Tampa FL 33620 USA
- Department of Chemistry, Biochemistry, and Physics The University of Tampa 401 West Kennedy Boulevard Tampa FL 33606-1490 USA
| | - Shanelle Suepaul
- Department of Chemistry University of South Florida 4202 East Fowler Avenue Tampa FL 33620 USA
| | - Brian Space
- Department of Chemistry University of South Florida 4202 East Fowler Avenue Tampa FL 33620 USA
| | - Leonard J. Barbour
- Department of Chemistry and Polymer Science Stellenbosch University Matieland 7602 South Africa
| | - Susumu Kitagawa
- Institute for Integrated Cell-Material Sciences Kyoto University Institute for Advanced Study, Kyoto University Yoshida Ushinomiya-cho, Sakyo-ku Kyoto 606-8501 Japan
| | - Michael J. Zaworotko
- Department of Chemical Sciences Bernal Institute University of Limerick Limerick V94 T9PX Republic of Ireland
| |
Collapse
|
48
|
Elsaidi SK, Ostwal M, Zhu L, Sekizkardes A, Mohamed MH, Gipple M, McCutcheon JR, Hopkinson D. 3D printed MOF-based mixed matrix thin-film composite membranes. RSC Adv 2021; 11:25658-25663. [PMID: 35478905 PMCID: PMC9037021 DOI: 10.1039/d1ra03124d] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Accepted: 06/17/2021] [Indexed: 11/21/2022] Open
Abstract
MOF-based mixed-matrix membranes (MMMs) have attracted considerable attention due to their tremendous separation performance and facile processability. In large-scale applications such as CO2 separation from flue gas, it is necessary to have high gas permeance, which can be achieved using thin membranes. However, there are only a handful of MOF MMMs that are fabricated in the form of thin-film composite (TFC) membranes. We propose herein the fabrication of robust thin-film composite mixed-matrix membranes (TFC MMMs) using a three dimensional (3D) printing technique with a thickness of 2-3 μm. We systematically studied the effect of casting concentration and number of electrospray cycles on membrane thickness and CO2 separation performance. Using a low concentration of polymer of intrinsic microporosity (PIM-1) or PIM-1/HKUST-1 solution (0.1 wt%) leads to TFC membranes with a thickness of less than 500 nm, but the fabricated membranes showed poor CO2/N2 selectivity, which could be attributed to microscopic defects. To avoid these microscale defects, we increased the concentration of the casting solution to 0.5 wt% resulting in TFC MMMs with a thickness of 2-3 μm which showed three times higher CO2 permeance than the neat PIM-1 membrane. These membranes represent the first examples of 3D printed TFC MMMs using the electrospray printing technique.
Collapse
Affiliation(s)
- Sameh K Elsaidi
- DOE National Energy Technology Laboratory (NETL) Pittsburgh PA 15236 USA .,Oak Ridge Institute for Science and Education Pittsburgh PA 15236 USA
| | - Mayur Ostwal
- Connecticut Center for Applied Separations Technology, University of Connecticut Storrs CT USA .,Department of Chemical & Biomolecular Engineering, Center for Environmental Sciences and Engineering, University of Connecticut Storrs CT USA
| | - Lingxiang Zhu
- DOE National Energy Technology Laboratory (NETL) Pittsburgh PA 15236 USA .,Leidos Research Support Team 626 Cochrans Mill Road, P.O. Box 10940 Pittsburgh PA 15236 USA
| | - Ali Sekizkardes
- DOE National Energy Technology Laboratory (NETL) Pittsburgh PA 15236 USA .,Leidos Research Support Team 626 Cochrans Mill Road, P.O. Box 10940 Pittsburgh PA 15236 USA
| | - Mona H Mohamed
- Chemistry Department, Faculty of Science, Alexandria University P.O. Box 426, Ibrahimia Alexandria 21321 Egypt.,Department of Chemistry, University of Pittsburgh 219 Parkman Avenue Pittsburgh PA USA
| | - Michael Gipple
- DOE National Energy Technology Laboratory (NETL) Pittsburgh PA 15236 USA .,Deltha New Orleans LA 70114 USA
| | - Jeffrey R McCutcheon
- Connecticut Center for Applied Separations Technology, University of Connecticut Storrs CT USA .,Department of Chemical & Biomolecular Engineering, Center for Environmental Sciences and Engineering, University of Connecticut Storrs CT USA
| | - David Hopkinson
- DOE National Energy Technology Laboratory (NETL) Pittsburgh PA 15236 USA
| |
Collapse
|
49
|
Angeli GK, Loukopoulos E, Kouvidis K, Bosveli A, Tsangarakis C, Tylianakis E, Froudakis G, Trikalitis PN. Continuous Breathing Rare-Earth MOFs Based on Hexanuclear Clusters with Gas Trapping Properties. J Am Chem Soc 2021; 143:10250-10260. [PMID: 34185543 DOI: 10.1021/jacs.1c03762] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Guest responsive porous materials represent an important and fascinating class of multifunctional solids that have attracted considerable attention in recent years. An understanding of how these structures form is essential toward their rational design, which is a prerequisite for the development of tailor-made materials for advanced applications. We herein report a novel series of stable rare-earth (RE) MOFs that show a rare continuous breathing behavior and an unprecedented gas-trapping property. We used an asymmetric 4-c tetratopic carboxylate-based organic ligand that is capable of affording highly crystalline materials upon controlled reaction with RE cations. These MOFs, denoted as RE-thc-MOF-1 (RE: Y3+, Sm3+, Eu3+, Tb3+, Dy3+, Ho3+, and Er3+), feature hexanuclear RE6 clusters that display a highly unusual connectivity and serve as unique 8-c hemi-cuboctahedral secondary building block, resulting in a new (3,3,8)-c thc topology. Extensive single-crystal to single-crystal structural analyses coupled with detailed gas (N2, Ar, Kr, CO2, CH4, and Xe) and vapor (EtOH, CH3CN, C6H6, and C6H14) sorption studies, supported by accurate theoretical calculations, shed light onto the unique swelling behavior. The results reveal a synergistic action involving steric effects, associated with coordinated solvent molecules and 2-fluorobenzoate (2-FBA) nonbridging ligands, as well as cation-framework electrostatic interactions. We were able to probe the individual role of the coordinated solvent molecules and 2-FBA ligands and found that both cooperatively control the gas-breathing and -trapping properties, while 2-FBA controls the vapor adsorption selectivity. These findings provide unique opportunities toward the design and development of tunable RE-based flexible MOFs with tailor-made properties.
Collapse
Affiliation(s)
- Giasemi K Angeli
- Department of Chemistry, University of Crete, Voutes, 71003 Heraklion, Greece
| | - Edward Loukopoulos
- Department of Chemistry, University of Crete, Voutes, 71003 Heraklion, Greece
| | | | - Artemis Bosveli
- Department of Chemistry, University of Crete, Voutes, 71003 Heraklion, Greece
| | | | - Emmanuel Tylianakis
- Department of Chemistry, University of Crete, Voutes, 71003 Heraklion, Greece
| | - George Froudakis
- Department of Chemistry, University of Crete, Voutes, 71003 Heraklion, Greece
| | | |
Collapse
|
50
|
Liu KG, Sharifzadeh Z, Rouhani F, Ghorbanloo M, Morsali A. Metal-organic framework composites as green/sustainable catalysts. Coord Chem Rev 2021. [DOI: 10.1016/j.ccr.2021.213827] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|