1
|
Li T, Chen YT, Zhang XB, Du RR, Ma LN, Lan YQ. Asymmetric heterogeneous catalysis using crystalline porous materials. Chem Soc Rev 2025. [PMID: 40384435 DOI: 10.1039/d4cs00538d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/20/2025]
Abstract
Asymmetric catalysis has emerged as a pivotal strategy in the synthesis of chiral compounds, offering significant advantages in selectivity and efficiency. In recent years, heterogeneous catalysis has become a focal point in the fields of organic synthesis and materials science due to continuous advancements in science and technology, especially the use of crystalline porous materials (CPMs) as catalysts. This review summarizes recent advances in using CPMs, such as metal-organic frameworks (MOFs), covalent organic frameworks (COFs) and zeolites, as promising supports for asymmetric catalysts. These materials provide high surface areas, tunable porosity, and the ability to host active catalytic sites, which enhance reaction rates and selectivity. In this review, we summarize the stereostructural properties of chiral CPMs to guide the future design of asymmetric heterogeneous catalysts and the study of catalytic mechanisms. Moreover, we discuss various strategies for incorporating catalytic moieties into these frameworks, including direct synthesis, post-synthesis modification and induced synthesis methods. Additionally, we highlight recent examples where CPMs have been successfully applied in asymmetric transformations, examining their mechanistic insights and the role of substrate diffusion in achieving high enantioselectivity. This review concludes with a perspective on the challenges and future directions in this rapidly evolving field, emphasizing the need for further integration of advanced artificial intelligence techniques and design principles to optimize the synthesis and catalytic performance of chiral CPMs.
Collapse
Affiliation(s)
- Teng Li
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China.
| | - Yan-Ting Chen
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China.
| | - Xiao-Bin Zhang
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China.
| | - Rong-Rong Du
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China.
| | - Lin-Na Ma
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China.
| | - Ya-Qian Lan
- Guangdong Provincial Key Laboratory of Carbon Dioxide Resource Utilization, School of Chemistry, South China Normal University, Guangzhou, 510006, P. R. China.
| |
Collapse
|
2
|
Ameen SSM, Omer KM, Shalileh F, Hosseini M. Enhanced biochemical sensing using metallic nanoclusters integrated with metal-organic frameworks (NCs@MOFs): a comprehensive review. MATERIALS HORIZONS 2025; 12:3301-3319. [PMID: 40029098 DOI: 10.1039/d4mh01932f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
In biochemical sensing, substantial progress has been achieved in the design, development, and application of metallic nanoclusters (NCs) and metal-organic frameworks (MOFs) as distinct entities. Integration of these two nanostructured materials is a promising strategy to form innovative composites with improved properties. Some improvements include (i) supporting platform to minimize the aggregation of NCs and enhance the emission efficiency; (ii) dual-emitting NCs@MOFs from the fluorescent/non-fluorescent MOFs and/or fluorescent NCs; and (iii) stability enhancement. These improvements increase the sensitivity, signal-to-noise ratio, and color tonality, lower the limit of detection, and improve other analytical figures of merits. In this review, we outline the preparation methods of NCs@MOF composites with the improvements offered by them in the field of biochemical analysis. Analytical applications in different fields, such as bioanalysis, environmental monitoring and food safety, are presented. Finally, we address the challenges that remain in the development and application of these composites, such as ensuring stability, enhancing the fluorescence intensity, and improving selectivity and scalability. Furthermore, perspectives on future research directions in this rapidly evolving field are offered.
Collapse
Affiliation(s)
- Sameera Sh Mohammed Ameen
- Department of Chemistry, College of Science, University of Zakho, Zakho, Kurdistan region, 42002, Iraq.
| | - Khalid M Omer
- Department of Chemistry, College of Science, University of Sulaimani, Qliasan St. 46002, Sulaymaniyah, Kurdistan region, Iraq.
| | - Farzaneh Shalileh
- Nanobiosensors Lab, Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran.
| | - Morteza Hosseini
- Nanobiosensors Lab, Department of Life Science Engineering, Faculty of New Sciences & Technologies, University of Tehran, Tehran, Iran.
| |
Collapse
|
3
|
Huang Z, Lu H, Dong H, Chen Z, Lu R, Zhao Y, Du Y, Liu Y, Wu Y, Xu M, Bi Y, Zhou Y. Fe 3O 4/Ni nanoparticles anchored nitrogen-doped porous carbon derived from core-shell MOF for simultaneous electrochemical detection of dopamine and 5-hydroxytryptamine. Talanta 2025; 286:127522. [PMID: 39765080 DOI: 10.1016/j.talanta.2025.127522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 11/12/2024] [Accepted: 01/02/2025] [Indexed: 03/03/2025]
Abstract
Pre-designed core-shell metal-organic frameworks (MOFs@MOFs) with customized functionalities can enhance the material properties compared to conventional single MOFs. The porous carbon composites derived from MOFs@MOFs also have excellent functionality due to the presence of multiple metal/metal oxide nanoparticles. This paper synthesized a novel MOFs@MOFs composite (MIL-101(Fe)@Ni-MOF) with a core-shell structure with MIL-101(Fe) as the core and Ni-MOF as the shell. After pyrolysis of the above composite, nitrogen-doped porous carbon (Fe3O4/Ni@NPC) anchored with Fe3O4 nanoparticles and Ni nanoparticles with synergistic catalytic effects were constructed. Fe3O4/Ni@NPC exhibited synergistic catalytic effects for the synchronous and ultra-sensitive detection of dopamine (DA) and 5-hydroxytryptamine (5-HT) with a detection limit of 0.165 μM for DA and 0.327 μM for 5-HT. Highly accurate and sensitive target detection was also achieved in experiments with human serum and PC12 cells, which was of great clinical importance.
Collapse
Affiliation(s)
- Zihan Huang
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, PR China; School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning, 113001, PR China
| | - Hongfeng Lu
- Lab of Biosystem and Microanalysis, State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, PR China
| | - Hui Dong
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, PR China
| | - Zhiao Chen
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, PR China
| | - Renwei Lu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, PR China
| | - Yangguang Zhao
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, PR China
| | - Yanru Du
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, PR China
| | - Yuhan Liu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, PR China
| | - Yuhan Wu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, PR China
| | - Maotian Xu
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, PR China
| | - Yanfeng Bi
- School of Petrochemical Engineering, Liaoning Petrochemical University, Fushun, Liaoning, 113001, PR China
| | - Yanli Zhou
- Henan Key Laboratory of Biomolecular Recognition and Sensing, College of Chemistry and Chemical Engineering, Shangqiu Normal University, Shangqiu, 476000, PR China.
| |
Collapse
|
4
|
Teng F, Wang Z, Xue M, Li H, Wen Q, Xu P, Hao D. Development of Metal-Organic Framework-Based Emamectin Benzoate Nanopesticides for Effective Control of Bursaphelenchus xylophilus. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2025; 41:7455-7466. [PMID: 40062902 DOI: 10.1021/acs.langmuir.4c04975] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2025]
Abstract
Pine wilt disease is caused by Bursaphelenchus xylophilus invasion and has a great impact on global pine resources. Injection of emamectin benzoate (EB) into pine trunks is an effective way to control B. xylophilus. However, EB has limited aqueous solubility, easily photodissociates, and its long-term use causes resistance problems. In this study, the metal-organic framework material ZIF-8 was prepared, and EB was loaded onto ZIF-8 through physical adsorption, resulting in a pH-responsive EB@ZIF-8 nanopesticide with a high drug loading rate (36.04%). Simulated release experiments of EB@ZIF-8 under different pH conditions showed a cumulative release of 64.43% within 10 h at pH 5.0, which increased as the pH decreased, compared to conditions at pH 7.0 and 9.0. EB@ZIF-8 showed positive insecticidal activity in a laboratory biological test (LC50 = 52.503 mg/L). In addition, 7 days after trunk injection in Pinus massoniana, EB residuals were detected in all parts of the branches, with the lowest residue level being 73.39 mg/kg. The proportion of the EB residue in the lower, middle, and upper branches of P. massoniana gradually increased, reaching 43.92% at 28 days after trunk injection, indicating that EB was distributed evenly in the tree. Therefore, EB@ZIF-8 had good morphology, structure, and pH-responsive release performance. EB@ZIF-8 also exhibited a high nematocidal ability due to its smaller particle size and rapid transport in P. massoniana. This study provides a new approach for the development of highly effective EB preparations, improvement of pesticide utilization, and B. xylophilus control.
Collapse
Affiliation(s)
- Fei Teng
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Zhaogui Wang
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Mingyu Xue
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Hui Li
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Quanmin Wen
- Co-Innovation Center for the Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
| | - Peng Xu
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Dejun Hao
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
5
|
Malmir H, Zonoz FM, Baghayeri M, Tayebee R. Synthesis, characterization, and application of mixed-addenda silicon vanado tungstate polyoxometalate integrated into nanoporous MIL-101(Cr) for the quick removal of organic dyes from water. RSC Adv 2025; 15:8918-8930. [PMID: 40129643 PMCID: PMC11931511 DOI: 10.1039/d5ra00443h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 03/06/2025] [Indexed: 03/26/2025] Open
Abstract
In this work, a polyoxometalate, namely, [SiW9V3O40]-7, was successfully encapsulated into the pores of a MIL-101(Cr) metal organic framework (MOF) via a water-based, eco-friendly impregnation method. This was supported by diverse characterization techniques, such as FT-IR spectroscopy, XRPD, FE-SEM, EDX spectroscopy, N2 adsorption-desorption method, and TGA. The resulting composite, SiW9V3@MIL-101(Cr), denoted as SiW9V3@MC, exhibited a high specific surface area (1463.3 m2 g-1), indicating a large capacity for dye adsorption. The composite demonstrated excellent performance in the removal of cationic dyes, such as Rhodamine B (RhB) and methylene blue (MB), from aqueous solutions. The adsorption efficiency was systematically studied using varying factors, including adsorbent amount, dye concentration, pH level, and temperature. The adsorption kinetics were observed to adhere to a pseudo-second-order model, while the adsorption isotherms conformed to the Langmuir model, suggesting the realization of monolayer adsorption onto the surface of the adsorbent. Furthermore, SiW9V3@ MC displayed exceptional reusability, maintaining its activity and selectivity after multiple adsorption-desorption cycles without significant structural degradation. This stability throughout the experiments underscores its ability as a sustainable and affective adsorbent for waste-water treatment applications. The high adsorption capacity, combined with its environmentally friendly synthesis method, positions SiW9V3@MC as a potential option for efficient water purification methods.
Collapse
Affiliation(s)
- Hosna Malmir
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University Sabzevar Iran +989035940022 +989122311389 +989151713477
| | - Farrokhzad M Zonoz
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University Sabzevar Iran +989035940022 +989122311389 +989151713477
| | - Mehdi Baghayeri
- Research Core of Advance Photo-electro Materials (APEM), Faculty of Science, Hakim Sabzevari University Sabzevar Iran +989151735947
| | - Reza Tayebee
- Department of Chemistry, Faculty of Science, Hakim Sabzevari University Sabzevar Iran +989035940022 +989122311389 +989151713477
| |
Collapse
|
6
|
Rojas-Forero AY, Hernández-Benítez LY, Ospina-Castro ML, Galán-Freyle NJ, Castro-Suarez JR, Méndez-López M, Hernández-Rivera SP, Centeno-Ortiz JA, Romero-Nieto SP, Pacheco-Londoño LC. Visible-Light Photocatalytic Activity of a ZnO-Loaded Isoreticular Metal-Organic Framework. Molecules 2025; 30:1375. [PMID: 40142150 PMCID: PMC11944758 DOI: 10.3390/molecules30061375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2025] [Revised: 02/25/2025] [Accepted: 03/05/2025] [Indexed: 03/28/2025] Open
Abstract
A hybrid material composed of IRMOF-3 and ZnO (IRMOF-3/ZnO) was synthesized to enhance photocatalytic methylene blue (MB) degradation under visible-light irradiation. Scanning electron microscopy, Fourier-transform infrared spectroscopy, X-ray diffraction, and diffuse-reflectance UV-Vis analyses confirmed the successful integration of ZnO into the IRMOF-3 framework. Compared with unmodified IRMOF-3, the hybrid demonstrated superior MB decomposition, as evidenced by faster reaction rate constants and shorter half-lives. Monitoring the MB absorbance at 670 nm (λmax) revealed more pronounced colorant removal when IRMOF-3/ZnO was exposed to a visible-light source. Diffuse-reflectance UV-Vis spectroscopy showed that IRMOF-3 has a band gap of 2.7 eV, whereas IRMOF-3/ZnO exhibits a slightly higher band gap of 2.8 eV. This modest shift, coupled with the strong interaction between the ZnO semiconductor and the MOF's amine functionalities, enabled two distinct energy-transfer pathways: intermolecular transfer from IRMOF-3 linkers (acting as visible-light antennas) to ZnO, and intramolecular transfer from Zn to IRMOF-3. Together, these pathways generated abundant free radicals for efficient dye degradation. Despite the necessity for careful synthesis protocols and control of operating conditions to preserve the MOF structure and optimize ZnO loading, the IRMOF-3/ZnO hybrid shows promise as a robust, cost-effective photocatalyst for water-pollutant remediation, taking advantage of the more abundant visible region of solar light.
Collapse
Affiliation(s)
- Ana Y. Rojas-Forero
- Ingeniería Ambiental, Vicerrectoría de Investigación, Universidad ECCI, Bogotá 110231, Colombia; (A.Y.R.-F.); (L.Y.H.-B.)
| | - Laura Y. Hernández-Benítez
- Ingeniería Ambiental, Vicerrectoría de Investigación, Universidad ECCI, Bogotá 110231, Colombia; (A.Y.R.-F.); (L.Y.H.-B.)
| | - María L. Ospina-Castro
- Grupo de Investigación Química Supramolecular Aplicada, Programa de Química, Universidad del Atlántico, Barranquilla 080001, Colombia;
| | - Nataly J. Galán-Freyle
- Facultad de Ciencias Básicas y Biomédicas, Centro de Investigación en Ciencias de la vida, Universidad Simón Bolívar, Barranquilla 080002, Colombia;
| | - John R. Castro-Suarez
- Área Básicas Exactas, Universidad del Sinú, Seccional Cartagena, Cartagena 130015, Colombia;
| | - Maximiliano Méndez-López
- Grupo de Química y Biología, Departamento de Química y Biología, Universidad del Norte, Km 5 Vía Puerto Colombia, Barranquilla 080001, Colombia;
| | - Samuel P. Hernández-Rivera
- ALERT DHS Center of Excellence for Explosives Research, Department of Chemistry, University of Puerto Rico-Mayagüez Campus, Mayagüez, PR 00681, USA; (S.P.H.-R.); (J.A.C.-O.)
| | - José A. Centeno-Ortiz
- ALERT DHS Center of Excellence for Explosives Research, Department of Chemistry, University of Puerto Rico-Mayagüez Campus, Mayagüez, PR 00681, USA; (S.P.H.-R.); (J.A.C.-O.)
| | - Sandra P. Romero-Nieto
- Ingeniería Mecánica, Vicerrectoría de Investigación, Universidad ECCI, Bogotá 111311, Colombia;
| | - Leonardo C. Pacheco-Londoño
- Ingeniería Ambiental, Vicerrectoría de Investigación, Universidad ECCI, Bogotá 110231, Colombia; (A.Y.R.-F.); (L.Y.H.-B.)
- Facultad de Ciencias Básicas y Biomédicas, Centro de Investigación en Ciencias de la vida, Universidad Simón Bolívar, Barranquilla 080002, Colombia;
- ALERT DHS Center of Excellence for Explosives Research, Department of Chemistry, University of Puerto Rico-Mayagüez Campus, Mayagüez, PR 00681, USA; (S.P.H.-R.); (J.A.C.-O.)
| |
Collapse
|
7
|
Hu X, Zhou J, Deng Z, Zhang WX. MIL-100-Fe self-assembled cellulose nanofibers sponge for Diclofenac cascade encapsulation. Carbohydr Polym 2025; 352:123182. [PMID: 39843044 DOI: 10.1016/j.carbpol.2024.123182] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/20/2024] [Accepted: 12/21/2024] [Indexed: 01/24/2025]
Abstract
The conventional hydrothermal synthesis and inherent hysteresis behavior limited the application of MOFs owing to the low kinetic efficiency in dynamic molecular adsorption. Herein, we developed an in-situ nucleation strategy for the preparation of MIL-100-Fe and immobilized it with hierarchy porous scaffold of TEMPO oxidized cellulose nanofiber (TCNF) sponge in the absence of additional organic solvent during fabrication under ambient conditions. The newly recognized mechanisms of gradient molecular transfer were proposed to illustrate the comprehensive DCF adsorption process from solution to micropores of MIL-100-Fe at molecule level triggered by the stray capacitance, varied Laplace pressure, size exclusion and cellulosic labyrinth. Additionally, the superior biocompatibility and natural degradability (in 24 h) of MIL@TCNF sponge were demonstrated. The used material could be converted rapidly to zero-valent iron (ZVI) sponge via simple reduction process, achieving both dehalogenation of Diclofenac (DCF) and material regeneration. These findings uncover the propagable mechanisms of molecular-diffusion driven adsorption cascade and provide a novel fabrication strategy of 3-D environmental functional sponge with reusability and biodegradability for water pollution control.
Collapse
Affiliation(s)
- Xiaolei Hu
- State Key Laboratory for Pollution Control, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Jie Zhou
- State Key Laboratory for Pollution Control, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Zilong Deng
- State Key Laboratory for Pollution Control, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China.
| | - Wei-Xian Zhang
- State Key Laboratory for Pollution Control, College of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| |
Collapse
|
8
|
Wang Y, Su P, Lin Z, Li X, Chen K, Ye T, Li Y, Zou Y, Wang W. A Tribo/Piezoelectric Nanogenerator Based on Bio-MOFs for Energy Harvesting and Antibacterial Wearable Device. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2418207. [PMID: 39838742 DOI: 10.1002/adma.202418207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 01/12/2025] [Indexed: 01/23/2025]
Abstract
New types of metal-organic framework (MOF) materials have great potential in solving the current global dilemma on energy, environment, and medical care. Herein, based on two kinds of biomolecule-MOFs (Bio-MOFs) with favorable biocompatibility and degradation-reconstruction characteristics, we have established a self-powered muti-functional device to achieve an efficient and broad-spectrum environmental energy collection and biomedical applications. Combining Zn(II) and carnosine-based Zn-Car_MOF possessing a high piezoelectric response (d33 = 11.17 pm V-1) with patterned polydimethylsiloxane (PDMS) film, a tribo-piezoelectric hybrid nanogenerator (TPHG) is constructed with a synergy output of triboelectric and piezoelectric effects. The Zn-Car_TPHG demonstrates a high output performance (131 V at 100 kPa) and a wide range of pressure response (1 Pa-100 kPa), possessing applications in environmental energy collection and biomedical sensors. To expand the application of the wearable device, a conductive hexagonal prism MOF (Cu3(2,3,6,7,10,11-hexahydroxytriphenylene)2 (Cu-HHTP)) is synthesized and employed to load thymol (Thy). Cooperating with Zn-Car_TPHG, the resulting Cu-HHTP/Thy can achieve an efficient self-powered ROS (singlet oxygen (1O2) and hydroxyl radical (·OH)) generation and drug synergistic broad-spectrum sterilization effect (efficiency ≥ 98%). In a word, the flexible wearable device based on the muti-functional Bio-MOFs is sustainable and environmentally friendly, possessing wide application potential in fields of environmental energy collection, biosensors, and self-powered antibacterial.
Collapse
Affiliation(s)
- Yuqi Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Smart Biomaterials of Zhejiang Province and Center for Bionanoengineering, Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Peipei Su
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhang Lin
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Xiaolin Li
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
- Engineering Research Center of Functional Materials Intelligent Manufacturing of Zhejiang Province, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
| | - Kangbo Chen
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Tingting Ye
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Key Laboratory of Smart Biomaterials of Zhejiang Province and Center for Bionanoengineering, Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yaping Li
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Yang Zou
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Wei Wang
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310027, China
- Engineering Research Center of Functional Materials Intelligent Manufacturing of Zhejiang Province, ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311215, China
- Key Laboratory of Smart Biomaterials of Zhejiang Province and Center for Bionanoengineering, Key Laboratory of Biomass Chemical Engineering of the Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
9
|
Liu J, Dong Y, Cai Y, Mao F, Zhang C, Lan X, Wu H. Architecting polyoxovanadate-based POMOF adsorbent for specific removal of creatinine. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:9697-9709. [PMID: 40138132 DOI: 10.1007/s11356-025-36321-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Accepted: 03/18/2025] [Indexed: 03/29/2025]
Abstract
A new polyoxovanadates-based metal-organic framework (POV-MOF) Ag2(Tipa)2(V6O16) (Ag-V-MOF) with unique curly layered structure has been designed by virtue of a stellated tridentate N-containing ligand of tri-(4-(1-H-imidazol-1-yl)phenyl)amine (Tipa). After effectually alkali-treated by sodium hydroxide solution in certain concentrations, the modified materials, named EAx-Ag-V (x = 1, 2, 3, and 4) were obtained expectedly, among which EA3-Ag-V exhibited a gratifying performance in adsorption creatinine, a major uremic toxin generated during hemodialysis treatment in patients with renal failure. The maximum adsorption capacity of creatinine was 140.45 mg g-1 for EA3-Ag-V, and it also displayed a good reusability and stable adsorption performance in a wide pH range. In this work, two statistical models of definitive screening design (DSD) and central composite rotatable design (CCRD) were applied effectively to determine the effect of mixed co-existing substances to the adsorption process. Based on the batches of experiments and characteristic measurements, as well as fractal dimension analyses of the materials, the underlying adsorption mechanism between creatinine and EA3-Ag-V was detailedly revealed, including π-π interaction, H-bonding force, and electrostatic attraction.
Collapse
Affiliation(s)
- Jiadi Liu
- Jiangsu Key Laboratory of Pesticide Sciences, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Yawen Dong
- Jiangsu Key Laboratory of Pesticide Sciences, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Yunheng Cai
- Jiangsu Key Laboratory of Pesticide Sciences, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Feifei Mao
- Jiangsu Key Laboratory of Pesticide Sciences, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Chunyong Zhang
- Jiangsu Key Laboratory of Pesticide Sciences, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China
| | - Xue Lan
- Ministry of Ecology and Environment, Nanjing Institute of Environmental Science, Nanjing, 210042, P. R. China
| | - Hua Wu
- Jiangsu Key Laboratory of Pesticide Sciences, Department of Chemistry, College of Sciences, Nanjing Agricultural University, Nanjing, 210095, P. R. China.
| |
Collapse
|
10
|
Zhu F, Zhao Y, Dai C, Xu Y, Zhou Y. Iridium(III) complex functionalized ZIF-8 as a novel POD-like nanozyme for visual assay of triazine pesticides. Analyst 2025; 150:953-961. [PMID: 39916443 DOI: 10.1039/d4an01467g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/25/2025]
Abstract
Due to the unique advantages of mimicking natural enzymes, nanozymes have received ever-growing interest in a wide range of fields including analytical chemistry in the past two decades. Exploring novel kinds of nanozymes with efficient active sites has always been one of the most important and hot topics in nanozyme-related research so far, especially in portable monitors. Herein, zeolitic imidazolate framework-8 (ZIF-8) incorporated with an organometallic iridium(III) complex as a new active site denoted as Irppy-ZIF-8 obtained via a one-pot coordination reaction between the iridium solvent complex and 2-methylimidazole is reported as an efficient peroxidase (POD)-like nanozyme. Importantly, due to the specific inhibition effects of triazine pesticides on the POD-like activities of this novel nanozyme, a portable acetylcholinesterase (AChE)-free colorimetric sensor via a smartphone apart from a UV-vis spectrometer to detect triazine pesticides in real vegetable sample analysis is further successfully proposed in this work. It should be noted that this work could not only open up a new avenue to explore novel kinds of nanozymes from organometallic complexes as active sites, but also promote the progress in emerging applications of nanozymes in visual and portable sensors in the future.
Collapse
Affiliation(s)
- Fangming Zhu
- School of Chemistry and Life Sciences, Jiangsu Key Laboratory for Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China.
| | - Yibo Zhao
- School of Chemistry and Life Sciences, Jiangsu Key Laboratory for Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China.
| | - Chenji Dai
- School of Chemistry and Life Sciences, Jiangsu Key Laboratory for Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China.
| | - Yaoyao Xu
- School of Chemistry and Life Sciences, Jiangsu Key Laboratory for Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China.
| | - Yuyang Zhou
- School of Chemistry and Life Sciences, Jiangsu Key Laboratory for Environmental Functional Materials, Suzhou University of Science and Technology, Suzhou, Jiangsu 215009, China.
| |
Collapse
|
11
|
Ling H, Tian B, Hu X, Wang W, Zhang J, Liu R, Lu Z, Guo Y, Zhao H. Applications of Metal-Organic Frameworks and Their Derivatives in Fuel Cells. Molecules 2025; 30:981. [PMID: 40076206 PMCID: PMC11901833 DOI: 10.3390/molecules30050981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2025] [Revised: 02/12/2025] [Accepted: 02/18/2025] [Indexed: 03/14/2025] Open
Abstract
Metal-organic frameworks (MOFs) and their derivatives represent a novel class of porous crystalline materials characterized by exceptional porosity, high specific surface areas, and uniquely tunable physicochemical properties. These attributes render them highly promising for applications in the field of fuel cells. This review provides a comprehensive overview of the classification of MOFs and their current applications as catalysts, catalyst supports, and membranes in fuel cells. Additionally, the potential prospects and challenges associated with using MOFs and their derivatives in fuel cells are discussed, aiming to advance their development and offer valuable insights for researchers in this field.
Collapse
Affiliation(s)
- Hongbiao Ling
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China; (H.L.); (X.H.); (W.W.); (J.Z.); (R.L.); (Z.L.); (Y.G.)
- Shanxi Province Union Laboratory of Clean Energy Materials, Shanxi Datong University, Datong 037009, China
| | - Baoqiang Tian
- Shanxi Center of Technology Innovation for Advanced Power Battery Material, Shanxi Normal University, Taiyuan 030031, China;
| | - Xiaoyan Hu
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China; (H.L.); (X.H.); (W.W.); (J.Z.); (R.L.); (Z.L.); (Y.G.)
| | - Weixu Wang
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China; (H.L.); (X.H.); (W.W.); (J.Z.); (R.L.); (Z.L.); (Y.G.)
| | - Jiaxing Zhang
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China; (H.L.); (X.H.); (W.W.); (J.Z.); (R.L.); (Z.L.); (Y.G.)
| | - Rui Liu
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China; (H.L.); (X.H.); (W.W.); (J.Z.); (R.L.); (Z.L.); (Y.G.)
| | - Zhen Lu
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China; (H.L.); (X.H.); (W.W.); (J.Z.); (R.L.); (Z.L.); (Y.G.)
| | - Yong Guo
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China; (H.L.); (X.H.); (W.W.); (J.Z.); (R.L.); (Z.L.); (Y.G.)
| | - Haidong Zhao
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Datong 037009, China; (H.L.); (X.H.); (W.W.); (J.Z.); (R.L.); (Z.L.); (Y.G.)
- Shanxi Province Union Laboratory of Clean Energy Materials, Shanxi Datong University, Datong 037009, China
| |
Collapse
|
12
|
Borah P, McLeod N, Gupta NK, Yeo RJ, Ghosh T, Aabdin Z, Li L, Bhatt P, Liu Y, Palgrave R, Lim YF, Xu Z, Handoko AD. Incarcerating bismuth nanoparticles into a thiol-laced metal-organic framework for electro and photocatalysis. MATERIALS HORIZONS 2025; 12:1290-1302. [PMID: 39618325 DOI: 10.1039/d4mh01153h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Close integration of metal nanoparticles (NPs) into a metal-organic framework (MOF) can be leveraged to achieve tailored functionality of the resulting composite structure. Here, we demonstrate a "ship-in-a-bottle" approach to produce ≈4.0 nm bismuth (Bi) NPs within a thiol-rich zirconium-based MOF of Zr-DMBD (DMBD = 2,5-dimercapto-1,4-benzenedicarboxylate). We found that the incorporation of Bi NPs into the Zr-DMBD framework relies on the free-standing thiol groups. These thiols have two roles - (i) aid in binding precursor Bi3+ preventing to form the insoluble bismuthyl unit (BiO+) and (ii) controlling the growth of Bi NPs. The resulting composite, denoted as BiNP@Zr-DMBD-1, displayed enhanced catalytic activity due to strong interactions between Bi NPs and organic linkers mediated by sulfur, promoting charge transfer from the Bi NP to the MOF matrix. BiNP@Zr-DMBD-1 remained stable after CO2 electroreduction to formate in a flow setting, with >88% faradaic efficiency at 25 mA cm-2 current density. Additionally, BiNP@Zr-DMBD-1 composite was shown to exhibit photoactivity beyond the typical near-UV absorption range of Bi NPs, where it completely degraded methylene blue dye within 1 h of blue LED irradiation. This work therefore underlines the potential of thiol-rich MOFs in developing new nanomaterials for diverse catalytic applications.
Collapse
Affiliation(s)
- Parijat Borah
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore.
| | - Natalie McLeod
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore.
- Department of Chemistry, University College London, 20 Gordon St., WC1H 0AJ, London, UK
| | - Nipun Kumar Gupta
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore.
| | - Reuben J Yeo
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore.
| | - Tanmay Ghosh
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore.
| | - Zainul Aabdin
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore.
| | - Lidao Li
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore.
| | - Prajna Bhatt
- Department of Chemistry, University College London, 20 Gordon St., WC1H 0AJ, London, UK
| | - Yuhan Liu
- Department of Chemistry, University College London, 20 Gordon St., WC1H 0AJ, London, UK
| | - Robert Palgrave
- Department of Chemistry, University College London, 20 Gordon St., WC1H 0AJ, London, UK
| | - Yee-Fun Lim
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore.
| | - Zhengtao Xu
- Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), Singapore 138634, Republic of Singapore.
| | - Albertus Denny Handoko
- Institute of Sustainability for Chemicals, Energy and Environment (ISCE2), Agency for Science, Technology and Research (A*STAR), 1 Pesek Road, Jurong Island, Singapore 627833, Republic of Singapore.
| |
Collapse
|
13
|
Guo M, Meng Q, Gao ML, Zheng L, Li Q, Jiao L, Jiang HL. Single-Atom Pt Loaded on MOF-Derived Porous TiO 2 with Maxim-Ized Pt Atom Utilization for Selective Hydrogenation of Halonitro-benzene. Angew Chem Int Ed Engl 2025; 64:e202418964. [PMID: 39470988 DOI: 10.1002/anie.202418964] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 10/29/2024] [Accepted: 10/29/2024] [Indexed: 11/01/2024]
Abstract
The location control of single atoms relative to supports is challenging for single-atom catalysts, leading to a large proportion of inaccessible single atoms buried under supports. Herein, a "sequential thermal transition" strategy is developed to afford single-atom Pt preferentially dispersed on the outer surface of TiO2. Specifically, a Ti-MOF confining Pt nanoparticles is converted to PtNPs and TiO2 composite coated by carbon (PtNPs&TiO2@C-800) at 800 °C in N2. Subsequent thermal-driven atomization of PtNPs at 600 °C in air produce single-atom Pt decorated TiO2 (Pt1/TiO2-600). The resulting Pt1/TiO2-600 exhibits superior p-chloroaniline (p-CAN) selectivity (99 %) to PtNPs/TiO2-400 (45 %) and much better activity than Pt1@TiO2-600 with randomly dispersed Pt1 both outside and inside TiO2 in the hydrogenation of p-chloronitrobenzene (p-CNB). Mechanism investigations reveal that Pt1/TiO2-600 achieves 100 % accessibility of Pt1 and preferably adsorbs the -NO2 group of p-CNB while weakly adsorbs -Cl group of p-CNB and p-CAN, promoting catalytic activity and selectivity.
Collapse
Affiliation(s)
- Mingchun Guo
- Hefei National Research Center for Physical Sciences at the Microscale, College of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Qiangqiang Meng
- Hefei National Research Center for Physical Sciences at the Microscale, College of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Ming-Liang Gao
- Hefei National Research Center for Physical Sciences at the Microscale, College of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Lirong Zheng
- Beijing Synchrotron Radiation Facility, Institute of High Energy Physics, Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Qunxiang Li
- Hefei National Research Center for Physical Sciences at the Microscale, College of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Long Jiao
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| | - Hai-Long Jiang
- Hefei National Research Center for Physical Sciences at the Microscale, College of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui, 230026, P. R. China
| |
Collapse
|
14
|
Qi Y, Zhao H, Lei Y. Organic molecular design for high-power density sodium-ion batteries. Chem Commun (Camb) 2025; 61:2375-2386. [PMID: 39807016 DOI: 10.1039/d4cc05773b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Organic materials, with abundant resources, low cost, high flexibility, tunable structures, lightweight nature, and wide operating temperature range, are regarded as promising candidates for sodium-ion batteries (SIBs). Unfortunately, their poor electronic and ionic conductivity remain significant challenges, hindering the achievement of high power density for sodium storage. Power density, a critical factor in battery performance evaluation, is essential for assessing fast charging capabilities. Therefore, it is essential to summarize strategies for high-power density SIBs in further development. To address these limitations and guide future development, this highlight summarizes key advancements in SIB research over the past decade. We outline the effective molecular design strategies for improving high-power-density sodium storage, with a focus on structural optimizations ranging from the backbone to the side chains. Additionally, we propose future perspectives on electrodes, electrolytes, and potential applications to enhance the power density of organic sodium-ion batteries. This review is intended to give a comprehensive guideline on the future design of organic materials for fast-charge ability and overall performance.
Collapse
Affiliation(s)
- Ying Qi
- Fachgebiet Angewandte Nanophysik, Institut für Physik & IMN MacroNano, Technische Universität Ilmenau, Ilmenau 98693, Germany.
| | - Huaping Zhao
- Fachgebiet Angewandte Nanophysik, Institut für Physik & IMN MacroNano, Technische Universität Ilmenau, Ilmenau 98693, Germany.
| | - Yong Lei
- Fachgebiet Angewandte Nanophysik, Institut für Physik & IMN MacroNano, Technische Universität Ilmenau, Ilmenau 98693, Germany.
| |
Collapse
|
15
|
Zhang J, Gao M, Wang Y, Wei Y, Qi Y, Liu Q, Li X, Ma Q, Huang J, Feng Y. Light-induced charge transfer from a fullerene to a zeolitic imidazolate framework enhances alkaline electrocatalytic hydrogen production. NANOSCALE 2025; 17:2193-2199. [PMID: 39655515 DOI: 10.1039/d4nr04236k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
In the process of water electrolysis, the oxygen evolution reaction (OER) suffers from a high energy barrier, which has become a key factor restricting the large-scale commercial application of renewable energy technology. Therefore, it is necessary to develop a durable, efficient, low-cost and environmentally friendly OER electrocatalyst. In the present work, a photo-responsive fullerene (C60) was encapsulated in the cavity of cobalt-containing flake-like zeolitic imidazolate framework-67 (C60@F-ZIF-67). Benefiting from the light-induced charge/energy transfer from the fullerene carbon cage to the metal Co active sites, the as-synthesized C60@F-ZIF-67 exhibited remarkably enhanced OER activity under UV light irradiation. Specifically, the overpotential of 10 mA cm-2 for C60@F-ZIF-67 decreased from 465 mV in the dark to 324 mV under light in 1 M KOH, amounting to an activity improvement of approximately 30.32%. This work provides a new route for the design and construction of photo-assisted efficient electrocatalysts for water splitting.
Collapse
Affiliation(s)
- Jun Zhang
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China.
| | - Mengting Gao
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China.
| | - Ying Wang
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China.
| | - Ying Wei
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China.
| | - Yirong Qi
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China.
| | - Qingqing Liu
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China.
| | - Xu Li
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China.
| | - Qunzhi Ma
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China.
| | - Jianfeng Huang
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China.
| | - Yongqiang Feng
- School of Materials Science and Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, People's Republic of China.
| |
Collapse
|
16
|
Qu L, Xu Y, Cui W, Wu L, Feng Y, Gu Y, Pan H. Trends in conductive MOFs for sensing: A review. Anal Chim Acta 2025; 1336:343307. [PMID: 39788646 DOI: 10.1016/j.aca.2024.343307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Revised: 10/04/2024] [Accepted: 10/05/2024] [Indexed: 01/12/2025]
Abstract
Metal-organic frameworks (MOFs) are porous, ordered arrays formed by coordination bonds between organic ligands and metal ions or clusters. The highly tunable properties of the MOF structure and performance make it possible to meet the needs of many applications. Conductive MOFs are essential in the domain of sensing due to their electrical conductivity, porosity, and catalytic properties, offering an effective platform for detection. Numerous sensing devices that utilize conductive MOFs have been created. This text presents a thorough overview of the diverse applications of conductive MOFs within the sensing field. The results of this work provide insights into the properties and synthesis methods of conductive MOFs and the working mechanisms of sensors based on conductive MOFs, which will help to deepen the study of such materials, provide a new vision for the design and production of novel functional materials, and promote the development and application of sensors based on conductive MOFs.
Collapse
Affiliation(s)
- Lingli Qu
- Shanghai Urban Construction Vocational College, Shanghai, 201999, China; Institute of Urban Food Safety, Shanghai Urban Construction Vocational College, Shanghai, 201999, China.
| | - Yiwen Xu
- State Key Laboratory of Digital Medical Engineering, Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210096, China; Southeast University-Monash University Joint Graduate School, Suzhou, 215123, China
| | - Weikang Cui
- Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Lingjuan Wu
- Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Yi Feng
- Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Yangyang Gu
- Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China
| | - Hongzhi Pan
- Shanghai University of Medicine & Health Sciences, Shanghai, 201318, China.
| |
Collapse
|
17
|
Shao Q. Chemistry of Materials for Energy and Environmental Sustainability. Molecules 2024; 29:5929. [PMID: 39770018 PMCID: PMC11676661 DOI: 10.3390/molecules29245929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2024] [Accepted: 12/13/2024] [Indexed: 01/11/2025] Open
Abstract
In contemporary society, energy serves as the cornerstone of human survival and development, exerting a profound influence on the economic development of nations and the trajectory of global progress [...].
Collapse
Affiliation(s)
- Qinguo Shao
- School of Intelligent Manufacturing and Control Engineering, Shandong Institute of Petroleum and Chemical Technology, Dongying 257061, China;
- Dongying Key Laboratory of Mechanical Surface Engineering and Corrosion Protection, Shandong Institute of Petroleum and Chemical Technology, Dongying 257061, China
- Shandong Provincial Engineering Research Center for Green Manufacturing and Intelligent Control, Shandong Institute of Petroleum and Chemical Technology, Dongying 257061, China
| |
Collapse
|
18
|
Shao ZW, Xiong C, Yang J, Mei Z, Xiong L, Wu W, Liu C. A Zr-hydroxamate metal-organic framework with intrinsic chelating sites for postsynthetic Pd metalation and Suzuki-Miyaura catalysis. Chem Commun (Camb) 2024; 60:11100-11103. [PMID: 39282707 DOI: 10.1039/d4cc03895a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/02/2024]
Abstract
A highly crystalline and robust Zr-hydroxamate metal-organic framework (MOF) was prepared from a pyrazine-based ligand, featuring abundant N,N' chelating sites. High-degree Pd(II) metalation of the MOF was achieved through straightforward postsynthetic modification, with detailed coordination chemistry elucidated spectroscopically. The Pd-functionalized MOF was then studied as a heterogeneous Suzuki-Miyaura catalyst, through combined experimental/computational methods.
Collapse
Affiliation(s)
- Zhen-Wu Shao
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China.
| | - Chaozhi Xiong
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China.
| | - Jiajie Yang
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China.
| | - Zhewei Mei
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China.
| | - Li Xiong
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China.
| | - Wenjing Wu
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China.
| | - Chong Liu
- School of Chemical Engineering, Sichuan University, Chengdu, 610065, China.
| |
Collapse
|
19
|
Fu Y, Zhang W, Ma H. Application and Challenge of Metal/Covalent Organic Frameworks in Ammonia Sorption and Separation. Chempluschem 2024; 89:e202400236. [PMID: 38895820 DOI: 10.1002/cplu.202400236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/31/2024] [Accepted: 06/17/2024] [Indexed: 06/21/2024]
Abstract
As both a critical chemical feedstock and an environmental pollutant, the production and utilization of ammonia (NH3) are accompanied by the progress of social civilization. In recent years, research on metal/covalent organic framework materials as NH3 adsorbents has attracted increasing attention due to their high porosity, versatile architecture and tunable functionality. This review was organized to highlight the recent advancement of MOF/COF materials for NH3 sorption, which successively presented the key properties of solid adsorbents and summarized the strategies along with their mechanisms for enhancing NH3 adsorption. In addition, perspectives and outlook regarding the future development of MOF/COF-based NH3 adsorbents were outlined to meet the requirements of practical applications under various condition.
Collapse
Affiliation(s)
- Yu Fu
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Wenxiang Zhang
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| | - Heping Ma
- School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an, 710049, China
| |
Collapse
|
20
|
Chiñas-Rojas LE, Domínguez JE, Herrera LÁA, González-Jiménez FE, Colorado-Peralta R, Arenzano Altaif JA, Rivera Villanueva JM. Exploring Synthesis Strategies and Interactions between MOFs and Drugs for Controlled Drug Loading and Release, Characterizing Interactions through Advanced Techniques. ChemMedChem 2024; 19:e202400144. [PMID: 39049537 DOI: 10.1002/cmdc.202400144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 06/11/2024] [Indexed: 07/27/2024]
Abstract
This study explores various aspects of Metal-Organic Frameworks (MOFs), focusing on synthesis techniques to adjust pore size and key ligands and metals for crafting carrier MOFs. It investigates MOF-drug interactions, including hydrogen bonding, van der Waals, and electrostatic interactions, along with kinetic studies. The multifaceted applications of MOFs in drug delivery systems are elucidated. The morphology and structure of MOFs are intricately linked to synthesis methodology, impacting attributes like crystallinity, porosity, and surface area. Hydrothermal synthesis yields MOFs with high crystallinity, suitable for catalytic applications, while solvothermal synthesis generates MOFs with increased porosity, ideal for gas and liquid adsorption. Understanding MOF-drug interactions is crucial for optimizing drug delivery, affecting charge capacity, stability, and therapeutic efficacy. Kinetic studies determine drug release rates and uniformity, vital for controlled drug delivery. Overall, comprehending drug-MOF interactions and kinetics is essential for developing effective and controllable drug delivery systems.
Collapse
Affiliation(s)
- Lidia E Chiñas-Rojas
- Facultad de Ciencias Químicas, Universidad Veracruzana, Prolongación de Oriente 6, No. 1009, Col. Rafael Alvarado, C.P. 94340, Orizaba, Veracruz, México
| | - José E Domínguez
- Department of Nanotechnology, INTESU, Universidad Tecnológica del Centro de Veracruz, México
| | - Luis Ángel Alfonso Herrera
- Basic Science Department, Metropolitan-Azcapotzalco Autonomous University (UAM), Av. San Pablo No 180, Col. Reynosa-Tamaulipas, Ciudad de México, 02200, México
| | - Francisco E González-Jiménez
- Facultad de Ciencias Químicas, Universidad Veracruzana, Prolongación de Oriente 6, No. 1009, Col. Rafael Alvarado, C.P. 94340, Orizaba, Veracruz, México
| | - Raúl Colorado-Peralta
- Facultad de Ciencias Químicas, Universidad Veracruzana, Prolongación de Oriente 6, No. 1009, Col. Rafael Alvarado, C.P. 94340, Orizaba, Veracruz, México
| | - Jesús Antonio Arenzano Altaif
- Facultad de ingeniería, Universidad Veracruzana, UV, campus Ixtaczoquitlán carretera sumidero-dos ríos km 1., C.P. 94452, Veracruz, México
| | - José María Rivera Villanueva
- Facultad de Ciencias Químicas, Universidad Veracruzana, Prolongación de Oriente 6, No. 1009, Col. Rafael Alvarado, C.P. 94340, Orizaba, Veracruz, México
| |
Collapse
|
21
|
Wei F, Zhang Q, Ren Q, Chen H, Zhang Y, Liang Z. Zn/Cr-MOFs/TiO 2 Composites as Adsorbents for Levofloxacin Hydrochloride Removal. Molecules 2024; 29:4477. [PMID: 39339472 PMCID: PMC11434544 DOI: 10.3390/molecules29184477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/08/2024] [Accepted: 08/13/2024] [Indexed: 09/30/2024] Open
Abstract
The Zn/Cr-MOFs/TiO2 composites were synthesized using the solvothermal method. XRD, FTIR, and SEM techniques were utilized to characterize the Zn/Cr-MOFs/TiO2 composites employed for simulating levofloxacin hydrochloride in wastewater. The impact of the mass of the Zn/Cr-MOFs/TiO2 composite, concentration of levofloxacin hydrochloride, solution pH, and temperature on the adsorption performance was investigated. Experimental findings indicated that at pH 6, the maximum removal efficiency of levofloxacin hydrochloride by the Zn/Cr-MOFs/TiO2 composite was achieved at 88.8%, with an adsorption capacity of 246.3 mg/g. To analyze the experimental data, both pseudo-first-order and pseudo-second-order kinetics models were applied, revealing that the pseudo-second-order model provided a better fit to the data. Additionally, Langmuir and Freundlich isotherm models were used to study equilibrium adsorption behavior and showed good agreement with both kinetic modeling and Langmuir isotherm analysis results. These observations suggest that monolayer adsorption predominates during the removal process of levofloxacin hydrochloride by Zn/Cr-MOFs/TiO2 composites.
Collapse
Affiliation(s)
- Fuhua Wei
- College of Chemistry and Chemical Engineering, Anshun University, Anshun 561000, China; (Q.Z.); (Q.R.); (Y.Z.)
| | - Qin Zhang
- College of Chemistry and Chemical Engineering, Anshun University, Anshun 561000, China; (Q.Z.); (Q.R.); (Y.Z.)
| | - Qinhui Ren
- College of Chemistry and Chemical Engineering, Anshun University, Anshun 561000, China; (Q.Z.); (Q.R.); (Y.Z.)
| | - Hongliang Chen
- College of Chemistry and Chemical Engineering, Anshun University, Anshun 561000, China; (Q.Z.); (Q.R.); (Y.Z.)
| | - Yutao Zhang
- College of Chemistry and Chemical Engineering, Anshun University, Anshun 561000, China; (Q.Z.); (Q.R.); (Y.Z.)
| | - Zhao Liang
- Institute of Micro/Nano Materials and Devices, Ningbo University of Technology, Ningbo 315211, China
| |
Collapse
|
22
|
Rasaily S, Chettri S, Sharma D, Baruah K, Dewan R, Tamang S, Pariyar A. MOF-Derived Ni/NiO-C Nanocomposites as Bifunctional Electrocatalysts Capable of Driving Both ORR and OER. Inorg Chem 2024. [PMID: 39267285 DOI: 10.1021/acs.inorgchem.4c02856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/17/2024]
Abstract
Bifunctional electrocatalysts, capable of efficiently driving both the oxygen reduction reaction (ORR) and the oxygen evolution reaction (OER), are crucial for advancing electrochemical processes. While noble-metal-based catalysts are widely recognized for their role in oxygen processes, current state-of-the-art designs are limited to either ORR or OER activity, presenting a notable research gap. In addressing this challenge, we have developed a novel Ni/NiO-C nanocomposite catalyst derived from a nickel-based metal-organic framework (Ni-SKU-5). For the ORR, the Ni/NiO-C catalyst exhibits an onset potential of 0.95 V vs RHE in a 1.0 M KOH solution, coupled with a Tafel slope of -99 mV dec-1 at 1600 rpm. Moreover, the catalyst displays excellent stability, maintaining a performance of over 90% after 10 h of continuous reaction. Furthermore, the catalyst proves effective in the OER, boasting an overpotential of 370 mV (at 10 mA cm-2) and a Tafel slope of 114 mV dec-1, highlighting its bifunctionality. The bifunctional overpotential of the Ni/NiO-C composite is measured at 820 mV, surpassing that of the 20% Pt/C electrocatalyst (860 mV), highlighting its potential for practical applications. Comparative experiments establish the origin of the robust bifunctional reactivity toward the conformal hybrid structure, porous framework, and the synergistic effect operating among the constituents of the nanocomposite.
Collapse
Affiliation(s)
- Sagarmani Rasaily
- Department of Chemistry, School of Physical Sciences, Sikkim University, Gangtok 737102, East Sikkim, India
| | - Shivanand Chettri
- Department of Chemistry, School of Physical Sciences, Sikkim University, Gangtok 737102, East Sikkim, India
| | - Debesh Sharma
- Department of Chemistry, School of Physical Sciences, Sikkim University, Gangtok 737102, East Sikkim, India
| | - Khanindram Baruah
- Department of Chemistry, School of Physical Sciences, Sikkim University, Gangtok 737102, East Sikkim, India
- Centre for Advanced Studies, Department of Chemistry, North-Eastern Hill University, Shillong 793022, Meghalaya, India
| | - Rajani Dewan
- Department of Chemistry, St Joseph's College, Darjeeling 734104, West Bengal, India
| | - Sudarsan Tamang
- Department of Chemistry, School of Physical Sciences, Sikkim University, Gangtok 737102, East Sikkim, India
| | - Anand Pariyar
- Department of Chemistry, School of Physical Sciences, Sikkim University, Gangtok 737102, East Sikkim, India
| |
Collapse
|
23
|
Liang JG, Gao WX, Chung CW, Dayao LA, Chou HH, Lin ZH, Wan D, Huang JH, Chen YC, Lu TT. Structure-dependent magnetoelectric and magnetothermal effects of MOF-derived zero-valence cobalt and iron oxide nanoparticles on a carbonaceous matrix. Chem Commun (Camb) 2024; 60:10136-10139. [PMID: 39189125 DOI: 10.1039/d4cc03743j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/28/2024]
Abstract
For the first time, the dominant magnetoelectric activity of ZIF-67-derived carbonaceous microparticles embedded with Co nanoparticles and distinctive magnetothermal effect of MIL-88B-derived Fe3O4 nanocubes decorated on carbonaceous microrods, respectively, were explored to be controlled by the structure of the MOF-derived electrically conductive carbonaceous matrix and metal nanoparticles.
Collapse
Affiliation(s)
- Jing-Guan Liang
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| | - Wei-Xiang Gao
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Chieh-Wei Chung
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Loise Ann Dayao
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Ho-Hsiu Chou
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Zong-Hong Lin
- Department of Biomedical Engineering, National Taiwan University, Taipei, 106319, Taiwan
| | - Dehui Wan
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Jen-Huang Huang
- Department of Chemical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
| | - Ying-Chieh Chen
- Department of Materials Science and Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan.
| | - Tsai-Te Lu
- Institute of Biomedical Engineering, National Tsing Hua University, Hsinchu, 30013, Taiwan
- Department of Chemistry, National Tsing Hua University, Hsinchu, 30013, Taiwan.
- Department of Chemistry, Chung Yuan Christian University, Taoyuan 32023, Taiwan
| |
Collapse
|
24
|
Fehér Z, Richter D, Dargó G, Kupai J. Factors influencing the performance of organocatalysts immobilised on solid supports: A review. Beilstein J Org Chem 2024; 20:2129-2142. [PMID: 39224231 PMCID: PMC11368055 DOI: 10.3762/bjoc.20.183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Accepted: 08/01/2024] [Indexed: 09/04/2024] Open
Abstract
Organocatalysis has become a powerful tool in synthetic chemistry, providing a cost-effective alternative to traditional catalytic methods. The immobilisation of organocatalysts offers the potential to increase catalyst reusability and efficiency in organic reactions. This article reviews the key parameters that influence the effectiveness of immobilised organocatalysts, including the type of support, immobilisation techniques and the resulting interactions. In addition, the influence of these factors on catalytic activity, selectivity and recyclability is discussed, providing an insight into optimising the performance of immobilised organocatalysts for practical applications in organic chemistry.
Collapse
Affiliation(s)
- Zsuzsanna Fehér
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Dóra Richter
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - Gyula Dargó
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| | - József Kupai
- Department of Organic Chemistry and Technology, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
| |
Collapse
|
25
|
Wang Q, Hao M, Yu F, Giannakoudakis DA, Sun Y. Enhanced degradation of 2,4-dichlorophenol in groundwater by defective iron-based metal-organic frameworks: Role of SO 3- and electron transfer. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 940:173644. [PMID: 38823695 DOI: 10.1016/j.scitotenv.2024.173644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Revised: 05/02/2024] [Accepted: 05/28/2024] [Indexed: 06/03/2024]
Abstract
The purposeful formation of crystal defects was regarded as an attractive strategy to enhance the catalytic activity of Fe-MOFs. In this study, the pyrolytic hydrochloric acid-modulated MIL-101-NH2 (P250HMN-2) was fabricated for the first time, and the important role of pyrolysis in the formation of crystal defects was confirmed. PDS was introduced as an enhancer for the P250HMN-2/Na2SO3 system. Without pH adjustment, 99.7 % of 2,4-DCP was removed by the P250HMN-2/Na2SO3/PDS system in 180 min. The catalytic performance of P250HMN-2 improved 2.5-fold than that of MIL-101-NH2. It was found that the high density of Fe-CUSs on P250HMN-2 were the major active sites, which could efficiently react with SO32- to generate ROS through electron transfer. The results of quenching experiments, probe tests, and EPR tests indicated that SO3-, SO4-, 1O2, OH, and SO5- were involved in the 2,4-DCP degradation process, with SO3-, SO4-, and 1O2 playing major roles. Moreover, P250HMN-2 could effectively degrade 2,4-DCP for 148 h in a fixed-bed reactor with excellent stability and reusability, indicating a promising catalyst for practical applications.
Collapse
Affiliation(s)
- Qiongyao Wang
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, Xi'an 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an 710054, China; Department of Environmental Engineering, School of Water and Environment, Chang'an University, Xi'an 710054, China
| | - Mingge Hao
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, Xi'an 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an 710054, China; Department of Environmental Engineering, School of Water and Environment, Chang'an University, Xi'an 710054, China
| | - Fangxin Yu
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, Xi'an 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an 710054, China; Department of Environmental Engineering, School of Water and Environment, Chang'an University, Xi'an 710054, China
| | | | - Yongchang Sun
- Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Chang'an University, Xi'an 710054, China; Key Laboratory of Eco-hydrology and Water Security in Arid and Semi-arid Regions of Ministry of Water Resources, Chang'an University, Xi'an 710054, China; Department of Environmental Engineering, School of Water and Environment, Chang'an University, Xi'an 710054, China.
| |
Collapse
|
26
|
Shen Y, Xu S, Ni H, Li Q, Qian J. Tuning Morphologies of Metal-Organic Framework-Derived Ni 3P/Ni Carbon Nanocomposites for Water Oxidation. Inorg Chem 2024; 63:15127-15133. [PMID: 39072378 DOI: 10.1021/acs.inorgchem.4c02194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2024]
Abstract
The oxygen evolution reaction (OER) frequently acts as a kinetic bottleneck in various energy storage and conversion systems. Effective electrocatalysts for the OER play a crucial role in reducing the reaction barrier and expediting the reaction. Multicomponent transition metal phosphides (TMPs) have garnered an extensive amount of attention as a result of their exceptional performance in the OER. Here, we present a direct method for preparing two intrinsic morphologies of metal-organic frameworks (MOFs), barrel-like BMM-10 and pancake-like BMM-10(Ac), achieved by establishing a protonation/deprotonation equilibrium with varying NO3-/Ac- ratios. The BMM-10(Ac)-C catalyst was synthesized via heat treatment of the BMM-10(Ac) precursor, exhibiting superior OER performance. It realized an overpotential of 286 mV at a current density of 10 mA cm-2, with a Tafel slope of 111.17 mV decade-1 and a current retention of 98.03%. This improvement arises from the synergistic interaction between Ni3P/Ni nanoparticles and the partially graphitic carbon layer, augmenting the exposure of active sites. Furthermore, alterations in the morphological features of MOF-derived Ni3P/Ni carbon nanocomposites adjusted the active electrochemical surface area, thereby modulating the overall OER performance of the corresponding TMP carbon nanocomposites. This methodology can be extended to control the morphology of other MOFs and their derivatives, providing innovative avenues for the design and synthesis of new MOF-based TMP nanomaterials.
Collapse
Affiliation(s)
- Yanqiong Shen
- College of Chemistry and Chemical Engineering, Zhaotong University, Zhaotong 657000, Yunnan, P. R. China
| | - Shaojie Xu
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, P. R. China
| | - Huijie Ni
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, P. R. China
| | - Qipeng Li
- College of Chemistry and Chemical Engineering, Zhaotong University, Zhaotong 657000, Yunnan, P. R. China
| | - Jinjie Qian
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325035, Zhejiang, P. R. China
| |
Collapse
|
27
|
Kong F, Chen W. Carbon Dioxide Capture and Conversion Using Metal-Organic Framework (MOF) Materials: A Comprehensive Review. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1340. [PMID: 39195378 DOI: 10.3390/nano14161340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 08/08/2024] [Accepted: 08/10/2024] [Indexed: 08/29/2024]
Abstract
The escalating threat of anthropogenic climate change has spurred an urgent quest for innovative CO2 capture and utilization (CCU) technologies. Metal-organic frameworks (MOFs) have emerged as prominent candidates in CO2 capture and conversion due to their large specific surface area, well-defined porous structure, and tunable chemical properties. This review unveils the latest advancements in MOF-based materials specifically designed for superior CO2 adsorption, precise separation, advanced photocatalytic and electrocatalytic CO2 reduction, progressive CO2 hydrogenation, and dual functionalities. We explore the strategies that enhance MOF efficiency and examine the challenges of and opportunities afforded by transitioning from laboratory research to industrial application. Looking ahead, this review offers a visionary perspective on harnessing MOFs for the sustainable capture and conversion of CO2.
Collapse
Affiliation(s)
- Fanyi Kong
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| | - Wenqian Chen
- Key Laboratory of Organic Compound Pollution Control Engineering (MOE), School of Environmental and Chemical Engineering, Shanghai University, Shanghai 200444, China
| |
Collapse
|
28
|
Miyagawa A, Kuno H, Nagatomo S, Nakatani K. Evolution of myoglobin diffusion mechanisms: exploring pore and surface diffusion in a single silica particle. ANAL SCI 2024; 40:1545-1551. [PMID: 38652419 DOI: 10.1007/s44211-024-00575-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 04/04/2024] [Indexed: 04/25/2024]
Abstract
This study elucidates the mass transfer mechanism of myoglobin (Mb) within a single silica particle with a 50 nm pore size at various pH levels (6.0, 6.5, 6.8, and 7.0). Investigation of Mb distribution ratio (R) and distribution kinetics was conducted using absorption microspectroscopy. The highest R was observed at pH 6.8, near the isoelectric point of Mb, as the electrostatic repulsion between Mb molecules on the silica surface decreased. The time-course absorbance of Mb in the silica particle was rigorously analyzed based on a first-order reaction, yielding the intraparticle diffusion coefficient of Mb (Dp). Dp-(1 + R)-1 plots at different pH values were evaluated using the pore and surface diffusion model. Consequently, we found that at pH 6.0, Mb diffused in the silica particle exclusively through surface diffusion, whereas pore diffusion made a more substantial contribution at higher pH. Furthermore, we demonstrated that Mb diffusion was hindered by slow desorption, associated with the electrostatic charge of Mb. This comprehensive analysis provides insights into the diffusion mechanisms of Mb at acidic, neutral, and basic pH conditions.
Collapse
Affiliation(s)
- Akihisa Miyagawa
- Department of Chemistry, Institute of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8571, Japan
| | - Hatsuhi Kuno
- Department of Chemistry, Institute of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8571, Japan
| | - Shigenori Nagatomo
- Department of Chemistry, Institute of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8571, Japan.
| | - Kiyoharu Nakatani
- Department of Chemistry, Institute of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki, 305-8571, Japan.
| |
Collapse
|
29
|
Zhou Q, Yan R, Zhang Y, Lei C. Cobalt and zinc nanoparticles from pyrolysis of their MOF precursors exhibiting potent organophosphorus hydrolase-mimicking activities. Chem Commun (Camb) 2024; 60:8216-8219. [PMID: 38919023 DOI: 10.1039/d4cc02170c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/27/2024]
Abstract
Cobalt and zinc nanoparticles from pyrolysis of cobalt-containing ZIF-67 and zinc-containing ZIF-90 exhibited potent organophosphorus hydrolase-mimicking activities for the hydrolysis of organophosphorus compounds within minutes at pH 9.0 and 25-40 °C. The resulting nanozymes could find potential applications in many areas such as chemical decontamination, environmental protection and defense of chemical weapons.
Collapse
Affiliation(s)
- Qiongfang Zhou
- Guilin University of Technology, College of Chemistry and Bioengineering, Guilin, Guangxi 541006, China.
| | - Rongqiu Yan
- Guilin University of Technology, College of Chemistry and Bioengineering, Guilin, Guangxi 541006, China.
| | - Yu Zhang
- Guilin University of Technology, College of Chemistry and Bioengineering, Guilin, Guangxi 541006, China.
| | - Chenghong Lei
- Guilin University of Technology, College of Chemistry and Bioengineering, Guilin, Guangxi 541006, China.
| |
Collapse
|
30
|
Li F, Huang J, Meng Y, Li J, Zhang L, Sheng D. In situ confinement of ultra-small metal nanoparticles in redox-active zirconium MOFs for catalysis. Chem Commun (Camb) 2024. [PMID: 39054916 DOI: 10.1039/d4cc01976h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Herein, we successfully fabricated ultra-small metal nanoparticles into two stable Zr-based metal-organic frameworks via in situ redox reactions between triphenylamine and the corresponding metal ions to afford Pd NPs@1 and Pd NPs@2, which exhibit excellent activity and reusability for Suzuki coupling reactions as heterogeneous catalysts.
Collapse
Affiliation(s)
- Fugang Li
- Fujian Cross Strait Institute of Flexible Electronics (Future Technologies), Fujian Normal University, Fuzhou 350117, China.
| | - Jinyi Huang
- Fujian Cross Strait Institute of Flexible Electronics (Future Technologies), Fujian Normal University, Fuzhou 350117, China.
| | - Yuxuan Meng
- Fujian Cross Strait Institute of Flexible Electronics (Future Technologies), Fujian Normal University, Fuzhou 350117, China.
| | - Ji Li
- Institute of Flexible Electronics, Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | - Liangliang Zhang
- Fujian Cross Strait Institute of Flexible Electronics (Future Technologies), Fujian Normal University, Fuzhou 350117, China.
- Institute of Flexible Electronics, Northwestern Polytechnical University (NPU), Xi'an 710072, China
| | - Daopeng Sheng
- State Key Laboratory of Radiation Medicine and Protection, School for Radiological and Interdisciplinary Sciences (RAD-X) and Collaborative Innovation Center of Radiation Medicine of Jiangsu Higher Education Institutions, Soochow University, Suzhou, 215123, China
| |
Collapse
|
31
|
Li T, Ning T, Liu X, Zhao C, Shi X, Xu G. Dihydroxyl modified UiO-66 as dispersive solid-phase extraction sorbent coupled with ultra-high performance liquid chromatography tandem mass spectrometry for detection of neonicotinoid insecticides. J Chromatogr A 2024; 1727:464970. [PMID: 38744187 DOI: 10.1016/j.chroma.2024.464970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 04/30/2024] [Accepted: 05/05/2024] [Indexed: 05/16/2024]
Abstract
The extensive usage of neonicotinoid insecticides (NIs) has raised many concerns about their potential harm to environment and human health. Thus, it is of great importance to develop an efficient and reliable method to determine NIs in food samples. In this work, three Zr4+-based metal-organic frameworks functionalized with various numbers of hydroxyl groups were fabricated with a facile one-pot solvothermal method. Among them, dihydroxy modified UiO-66 (UiO-66-(OH)2) exhibited best adsorption performance towards five target NIs. Then, a sensitive and efficient method for detection of NIs from vegetable and fruit samples was established based on dispersive solid phase extraction (dSPE) with UiO-66-(OH)2 as adsorbent coupled with ultra-high performance liquid chromatography tandem mass spectrometry (UHPLC-MS/MS). Key parameters affecting the dSPE procedure including amounts of adsorbent, adsorption time, eluent solvents and desorption time were investigated. Under the optimal conditions, rapid adsorption of NIs within five minutes was achieved due to the high affinity of UiO-66-(OH)2 towards NIs. The developed method exhibited high sensitivity with limits of detection (LODs) varied from 0.003 to 0.03 ng/mL and wide linearity range over 3-4 orders of magnitude from 0.01 to 500 ng/mL. Furthermore, the established method was applied for determining trace NIs from complex matrices with recoveries ranging from 74.6 to 99.6 % and 77.0-106.8 % for pear and tomato samples, respectively. The results indicate the potential of UiO-66-(OH)2 for efficient enrichment of trace NIs from complex matrices.
Collapse
Affiliation(s)
- Ting Li
- School of Chemistry, Dalian University of Technology, Dalian 116024, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Tao Ning
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Xinyu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China; Liaoning Province Key Laboratory of Metabolomics, Dalian, China
| | - Chunxia Zhao
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China; Liaoning Province Key Laboratory of Metabolomics, Dalian, China
| | - Xianzhe Shi
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China; Liaoning Province Key Laboratory of Metabolomics, Dalian, China.
| | - Guowang Xu
- School of Chemistry, Dalian University of Technology, Dalian 116024, China; CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China; University of Chinese Academy of Sciences, Beijing 100049, China; Liaoning Province Key Laboratory of Metabolomics, Dalian, China.
| |
Collapse
|
32
|
Yamada K, Miyagawa A, Honma R, Nagatomo S, Nakatani K. Effect of Organic Solvent on the Mass Transfer Mechanism of Coumarin 102 in a Single Octadecylsilyl Silica Gel/Organic Solvent-Water System by Laser Trapping and Fluorescence Microspectroscopy. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:14303-14310. [PMID: 38958592 DOI: 10.1021/acs.langmuir.4c00878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2024]
Abstract
Understanding mass transfer kinetics within individual porous particles is crucial for theoretically explaining the retention and elution behaviors in chromatography and drug delivery. Using laser trapping and fluorescence microspectroscopy, we investigated the diffusion mechanism of coumarin 102 (C102) into single octadecylsilyl particle in acetonitrile (ACN)/water, N,N-dimethylformamide (DMF)/water, and 1-butanol (BuOH)/water solutions. The intraparticle diffusion behavior of C102 was evaluated using the spherical diffusion equation, allowing us to determine the intraparticle diffusion coefficients (Dintra): (8-10) × 10-9 cm2 s-1 for ACN, (10-16) × 10-9 cm2 s-1 for DMF, and (4-6) × 10-9 cm2 s-1 for BuOH. The obtained Dintra values were further analyzed using a pore and surface diffusion model. Thus, we revealed that the diffusion mechanism of C102 differed depending on the organic solvent: surface diffusion for ACN and DMF and pore and surface diffusions for BuOH were observed. This difference is attributed to the formation of a concentrated liquid phase of ACN and DMF at the interface of the alkyl chain and the bulk solution in the pore.
Collapse
Affiliation(s)
- Kazuki Yamada
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Akihisa Miyagawa
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Ren Honma
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Shigenori Nagatomo
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| | - Kiyoharu Nakatani
- Department of Chemistry, Faculty of Pure and Applied Sciences, University of Tsukuba, Tsukuba, Ibaraki 305-8577, Japan
| |
Collapse
|
33
|
Al-Wasidi AS, Tarek M, Said GE, Naglah AM, Almehizia AA, Khatab TK. Copper-Vit B 3 MOF preparation, characterization and catalytic evaluation in a one-pot synthesis of benzoxanthenones with docking validation as anti H. pylori. RSC Adv 2024; 14:20454-20465. [PMID: 38946771 PMCID: PMC11208899 DOI: 10.1039/d4ra03468f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 06/16/2024] [Indexed: 07/02/2024] Open
Abstract
Copper-Vit B3 MOF was successfully prepared by efficient and eco hydrothermal method. The prepared MOF was characterized as a tetragonal crystal copper-MOF nanoparticles by FTIR, SEM, TEM, EDX and XRD. The prepared nanoparticles were used as an effective, inexpensive and low-toxic catalyst in the one-pot synthesis of some new benzoxanthenone derivatives. As example 4-(9,9-dimethyl-11-oxo-8,10,11,12-tetrahydro-9H-benzo[a]xanthen-12-yl)phenyl benzoate (4h) was synthesized in high yield 92%. The MOF catalyst's role is activating the nucleophilic attack by increasing the carbonyl polarization, and this generally improves the reaction time, which ranges between 20-60 minutes and products' yields ranging between 80-92%. Prepared compounds (4a-4j) undergo molecular docking scanning as Helicobacter pylori type II dehydroquinase inhibitors, and the data obtained showed that there are three promises of the prepared compounds 4d, 4e, 4h and 4j compared with amoxicillin.
Collapse
Affiliation(s)
- Asma S Al-Wasidi
- Department of Chemistry, College of Science, Princess Nourah Bint Abdulrahman University Riyadh 11671 Saudi Arabia
| | - Mahmoud Tarek
- Chemistry Department, Faculty of Science, Mansoura University 35516 Mansoura Egypt
| | - Gehad E Said
- Chemistry Department, Faculty of Science, Mansoura University 35516 Mansoura Egypt
| | - Ahmed M Naglah
- Drug Exploration and Development Chair (DEDC), Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University P. O. Box 2457 Riyadh 11451 Saudi Arabia
| | - Abdulrahman A Almehizia
- Drug Exploration and Development Chair (DEDC), Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University P. O. Box 2457 Riyadh 11451 Saudi Arabia
| | - Tamer K Khatab
- Organometallic and Organometalloid Chemistry Department, National Research Centre 33 ElBehouth St., Dokki 12622 Giza Egypt
| |
Collapse
|
34
|
Behera J, Pal A, Sahoo R, Das MC. Variation in Catalytic Efficacies of a 2D pH-Stable MOF by Altering Activation Methods. Chemistry 2024; 30:e202400375. [PMID: 38622985 DOI: 10.1002/chem.202400375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/12/2024] [Accepted: 04/15/2024] [Indexed: 04/17/2024]
Abstract
Although it is well-known that the Lewis acidity of Metal-Organic Frameworks (MOFs) can effectively enhance their catalytic activity in organic transformations, access to these Lewis-acidic sites remains a key hurdle to widespread applications of Lewis-acidic catalysis by MOFs. Easy accessibility of strong Lewis acidic sites onto 2D MOFs by using proper activation methods can be a cornerstone in attaining desired catalytic performance. Herein, we report a new 2D chemically stable MOF, IITKGP-60, which displayed excellent framework robustness over a wide pH range (2-12). Benefiting from the abundant open metal sites (OMSs) and framework robustness, the catalytic activity of the developed material was explored in one-pot three-component Strecker reaction and Knoevenagel condensation reaction. Moreover, the developed catalyst is superior in catalyzing the reactions involving sterically hindered substrate (1-naphthaldehyde) with high turnover number. A comparative catalytic study was conducted using different activation methods (chloroform and methanol exchanged activated samples), highlighting the significant effect of activation methods on its catalytic performances. The sustainable synthetic pathway under solvent-free conditions for a broad scope of substrates using low catalyst loading and excellent recyclability made the developed pH-stable framework a promising heterogeneous catalyst.
Collapse
Affiliation(s)
- Janaki Behera
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, WB, India
| | - Arun Pal
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, WB, India
- School of Science, Constructor University, Campus Ring 1, 28759, Bremen, Germany
| | - Rupam Sahoo
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, WB, India
| | - Madhab C Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur, 721302, WB, India
| |
Collapse
|
35
|
Shi Z, Dong F, Han W, Dong X, Tang Z. Engineering Co 3O 4@3DOM LaCoO 3 multistage-pore nanoreactor with superior SO 2 resistance for toluene catalytic combustion. NANOSCALE 2024; 16:10760-10778. [PMID: 38757969 DOI: 10.1039/d4nr00806e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2024]
Abstract
Sulfur dioxide poisoning is a significant factor in catalyst deactivation during the catalytic combustion of volatile organic compounds. In this study, we prepared the LaCoO3 and Co3O4 composite catalysts using both the Ship-in-Bottle and Building-Bottle-Around-Ship approaches. Three-dimensionally ordered macropores (3DOM LaCoO3) were utilized as nanoreactors to protect the active sites during the catalytic combustion of toluene, preventing SO2 poisoning. Additionally, we grew ZIF-67 confined in the nanoreactor to create a multistage-pore structure. The Co3O4@3DOM LaCoO3 catalysts exhibited excellent activity in the complete catalytic oxidation of toluene. Various characterization studies confirmed the presence of a significant number of Co3+ species and an abundance of surface weak acid sites in the Co3O4@3DOM LaCoO3 catalysts, which synergistically enhanced the conversion of VOCs at low temperatures. Notably, the multistage pore structure provided a favorable reaction environment, accelerating the adsorption and diffusion of toluene and intermediates, resulting in excellent sulfur resistance of the catalysts. Moreover, XPS analysis confirmed a strong interaction between Co3O4 and LaCoO3, promoting rapid electron transfer and increasing the activation of O2-. In situ DRIFTS experiments verified that toluene mainly follows the MvK mechanism over Co3O4@3DOM LaCoO3 catalysts, indicating the following reaction pathway: toluene adsorption → benzyl alcohol → benzaldehyde → benzoate → anhydride → CO2 and H2O.
Collapse
Affiliation(s)
- Zhan Shi
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, and National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Fang Dong
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, and National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Weiliang Han
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, and National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
| | - Xiuyan Dong
- School of Chemistry and Chemical Engineering, Lanzhou Jiaotong University, Lanzhou 730070, China.
| | - Zhicheng Tang
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, and National Engineering Research Center for Fine Petrochemical Intermediates, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou, 730000, China.
| |
Collapse
|
36
|
Tian K, Wei C, Wang Z, Li Y, Xi B, Xiong S, Feng J. Heterogenization-Activated Zinc Telluride via Rectifying Interfacial Contact to Afford Synergistic Confinement-Adsorption-Catalysis for High-Performance Lithium-Sulfur Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2309422. [PMID: 38200681 DOI: 10.1002/smll.202309422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 12/11/2023] [Indexed: 01/12/2024]
Abstract
The notorious shuttle effect and sluggish conversion kinetics of intermediate polysulfides (Li2S4, Li2S6, Li2S8) are severely hindered the large-scale development of Lithium-sulfur (Li-S) batteries. Rectifying interface effect has been a solution to regulate the electron distribution of catalysts via interfacial charge exchange. Herein, a ZnTe-ZnO heterojunction encapsulated in nitrogen-doped hierarchical porous carbon (ZnTe-O@NC) derived from metal-organic framework is fabricated. Theoretical calculations and experiments prove that the built-in electric field constructed at ZnTe-ZnO heterojunction via the rectifying interface contact, thus promoting the charge transfer as well as enhancing adsorption and conversion kinetics toward polysulfides, thereby stimulating the catalytic activity of the ZnTe. Meanwhile, the nitrogen-doped hierarchical porous carbon acts as confinement substrate also enables fast electrons/ions transport, combining with ZnTe-ZnO heterojunction realize a synergistic confinement-adsorption-catalysis toward polysulfides. As a result, the Li-S batteries with S/ZnTe-O@NC electrodes exhibit an impressive rate capability (639.7 mAh g-1 at 3 C) and cycling performance (70% capacity retention at 1 C over 500 cycles). Even with a high sulfur loading, it still delivers a superior electrochemical performance. This work provides a novel perspective on designing highly catalytic materials to achieve synergistic confinement-adsorption-catalysis for high-performance Li-S batteries.
Collapse
Affiliation(s)
- Kangdong Tian
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, P. R. China
| | - Chuanliang Wei
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Zhengran Wang
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, P. R. China
| | - Yuan Li
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, P. R. China
| | - Baojuan Xi
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Shenglin Xiong
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, Shandong, 250100, P. R. China
| | - Jinkui Feng
- Key Laboratory for Liquid-Solid Structural Evolution & Processing of Materials (Ministry of Education), School of Materials Science and Engineering, Shandong University, Jinan, Shandong, 250061, P. R. China
| |
Collapse
|
37
|
de Lima AFV, Lourenço ADA, Silva VD, Menezes de Oliveira AL, Rostas AM, Barbu-Tudoran L, Leostean C, Pana O, da Silva RB, Macedo DA, da Silva FF. Co 3O 4/activated carbon nanocomposites as electrocatalysts for the oxygen evolution reaction. Dalton Trans 2024; 53:8563-8575. [PMID: 38682235 DOI: 10.1039/d3dt03720g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024]
Abstract
The Oxygen Evolution Reaction (OER) is crucial in various processes such as hydrogen production via water splitting. Several electrocatalysts, including metal oxides, have been evaluated to enhance the reaction efficiency. Zeolitic Imidazolate Framework-67 (ZIF-67) has been employed as a precursor to produce Co3O4, showing high OER activity. Additionally, the formation of composites with carbon-based materials improves the activity of these materials. Thus, this work focuses on synthesizing ZIF-67 and commercial activated carbon (AC) composites, which were used as precursors to obtain Co3O4/C electrocatalysts by calculating ZIF-67/CX (X = 10, 30, and 50, the mass percentage of AC). The obtained materials were thoroughly characterized by employing X-ray powder diffraction (XRD), confirming the cobalt oxide structure with a sphere-like morphology as observed in the TEM images. The presence of oxygen vacancies was confirmed by infrared spectroscopy and EPR measurements. The electrocatalytic performance in the OER was investigated by linear sweep voltammetry (LSV), which revealed an overpotential of 325 mV at 10 mA cm-2 and a Tafel slope value of 65.32 mV dec-1 for Co3O4/C10, superior in activity to several previously reported studies in the literature and electrochemical stability of up to 8 hours. The reduced value of charge transfer resistance, high double-layer capacitance, and the presence of Co3+ ions justify the superior performance of the Co3O4/C10 electrocatalyst.
Collapse
Affiliation(s)
- Andrei F V de Lima
- Departamento de Química, Universidade Federal da Paraíba, 58051-900, João Pessoa-PB, Brazil.
| | - Annaíres de A Lourenço
- Departamento de Química, Universidade Federal da Paraíba, 58051-900, João Pessoa-PB, Brazil.
| | - Vinícius D Silva
- Programa de Pós-Graduação em Ciência e Engenharia de Materiais - PPCEM, Universidade Federal da Paraíba, 58051-900, João Pessoa-PB, Brazil
| | - André L Menezes de Oliveira
- Núcleo de Pesquisa e Extensão LACOM, Departamento de Química, Universidade Federal da Paraíba, 52051-85, João Pessoa-PB, Brazil
| | - Arpad M Rostas
- Department of Physics of Nanostructure Systems, National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
| | - Lucian Barbu-Tudoran
- Department of Physics of Nanostructure Systems, National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
| | - Cristian Leostean
- Department of Physics of Nanostructure Systems, National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
| | - Ovidiu Pana
- Department of Physics of Nanostructure Systems, National Institute for Research and Development of Isotopic and Molecular Technologies, 400293 Cluj-Napoca, Romania
| | - Rodolfo B da Silva
- Programa de Pós-Graduação em Ciência e Engenharia de Materiais - PPCEM, Universidade Federal da Paraíba, 58051-900, João Pessoa-PB, Brazil
| | - Daniel A Macedo
- Programa de Pós-Graduação em Ciência e Engenharia de Materiais - PPCEM, Universidade Federal da Paraíba, 58051-900, João Pessoa-PB, Brazil
| | - Fausthon F da Silva
- Departamento de Química, Universidade Federal da Paraíba, 58051-900, João Pessoa-PB, Brazil.
| |
Collapse
|
38
|
Zheng Y, Cai X, Chen G, Xiang D, Shi W, Shen J, Xiang B. Single Atom-Dispersed Silver Incorporated in ZIF-8-Derived Porous Carbon for Enhanced Photothermal Activity and Antibacterial Activities. Int J Nanomedicine 2024; 19:4253-4261. [PMID: 38766662 PMCID: PMC11102103 DOI: 10.2147/ijn.s459176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024] Open
Abstract
Purpose Recently, Single-atom-loaded carbon-based material is a new environmentally friendly and stable photothermal antibacterial nanomaterial. It is still a great challenge to achieve single-atom loading on carbon materials. Materials and Methods Herein, We doped single-atom Ag into ZIF-8-derived porous carbon to obtain Ag-doped ZIF-8-derived porous carbon(AgSA-ZDPC). The as-prepared samples were characterized by XRD, XPS, FESEM, EDX, TEM, and HAADF-STEM which confirmed that the single-atom Ag successfully doped into the porous carbon. Further, the photothermal properties and antimicrobial activity of AgSA-ZDPC have been tested. Results The results showed that the temperature increased by 30 °C after near-infrared light irradiation(1 W/cm2) for 5 min which was better than ZIF-8-derived porous carbon(ZDPC). It also exhibits excellent photothermal stability after the laser was switched on and off 5 times. When the AgSA-ZDPC concentration was greater than 50 µg/mL and the near-infrared irradiation was performed for 5 min, the growth inhibition of S. aureus and E. coli was almost 100%. Conclusion This work provides a simple method for the preparation of single-atom Ag-doped microporous carbon which has potential antibacterial application.
Collapse
Affiliation(s)
- Yutong Zheng
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua, 418000, People’s Republic of China
| | - Xiaoyi Cai
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua, 418000, People’s Republic of China
| | - Gui Chen
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua, 418000, People’s Republic of China
| | - Dexuan Xiang
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua, 418000, People’s Republic of China
| | - Wei Shi
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua, 418000, People’s Republic of China
| | - Jianliang Shen
- State Key Laboratory of Ophthalmology, Wenzhou Medical University, University of Chinese Academy of Sciences, Wenzhou, 325000, People’s Republic of China
| | - Bailin Xiang
- College of Chemistry and Materials Engineering, Huaihua University, Huaihua, 418000, People’s Republic of China
| |
Collapse
|
39
|
Long L, Wang X, Fu H, Qu X, Zheng S, Xu Z. Robust Activity and Stability of P-Doped Fe-Carbon Composites Derived from MOF for Bromate Reduction. ACS APPLIED MATERIALS & INTERFACES 2024; 16:21838-21848. [PMID: 38634144 DOI: 10.1021/acsami.4c00911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Iron-based materials are effective for the reductive removal of the disinfection byproduct bromate in water, while the construction of highly stable and active Fe-based materials with wide pH adaptability remains greatly challenging. In this study, highly dispersed iron phosphide-decorated porous carbon (Fe2P(x)@P(z)NC-y) was prepared via the thermal hydrolysis of Fe@ZIF-8, followed by phosphorus doping (P-doping) and pyrolysis. The reduction performances of Fe2P(x)@P(z)NC-y for bromate reduction were evaluated. Characterization results showed that the Fe, P, and N elements were homogeneously distributed in the carbonaceous matrix. P-doping regulated the coordination environment of Fe atoms and enhanced the conductivity, porosity, and wettability of the carbonaceous matrix. As a result, Fe2P(x)@P(1.0)NC-950 exhibited enhanced reactivity and stability with an intrinsic reduction kinetic constant (kint) 1.53-1.85 times higher than Fe(x)@NC-950 without P-doping. Furthermore, Fe2P(0.125)@P(1.0)NC-950 displayed superior reduction efficiency and prominent stability with very low Fe leaching (4.53-22.98 μg L-1) in a wide pH range of 4.0-10.0. The used Fe2P(0.125)@P(1.0)NC-950 could be regenerated by phosphating, and the regenerated Fe2P(0.125)@P(1.0)NC-950 maintained 85% of its primary reduction activity after five reuse cycles. The study clearly demonstrates that Fe2P-decorated porous carbon can be applied as a robust and stable Fe-based material in aqueous bromate reduction.
Collapse
Affiliation(s)
- Li Long
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Xuechun Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Heyun Fu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Xiaolei Qu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Shourong Zheng
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| | - Zhaoyi Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
40
|
Grödler D, Burguera S, Frontera A, Strub E. Investigating Recurrent Matere Bonds in Pertechnetate Compounds. Chemistry 2024; 30:e202400100. [PMID: 38385852 DOI: 10.1002/chem.202400100] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 02/23/2024]
Abstract
In this manuscript we evaluate the X-ray structure of five new pertechnetate derivatives of general formula [M(H2O)4(TcO4)2], M=Mg, Co, Ni, Cu, Zn (compounds 1-5) and one perrhenate compound Zn(H2O)4(ReO4)2 (6). In these complexes the metal center exhibits an octahedral coordination with the pertechnetate units as axial ligands. All compounds exhibit the formation of directional Tc⋅⋅⋅O Matere bonds (MaBs) that propagate the [M(H2O)4(TcO4)2], into 1D supramolecular polymers in the solid state. Such 1D polymers are linked, generating 2D layers, by combining additional MaBs and hydrogen bonds (HBs). Such concurrent motifs have been analyzed theoretically, suggesting the noncovalent σ-hole nature of the MaBs. The interaction energies range from weak (~ -2 kcal/mol) for the MaBs to strong (~ -30 kcal/mol) for the MaB+HB assemblies, where HB dominates. In case of M=Zn, the corresponding perrhenate Zn(H2O)4(ReO4)2 complex, has been also synthesized for comparison purposes, resulting in the formation of an isostructural X-ray structure, corroborating the structure-directing role of Matere bonds.
Collapse
Affiliation(s)
- Dennis Grödler
- Department of Chemistry, Division of Nuclear Chemistry, University of Cologne, Zülpicher Str. 45, 50674, Cologne, Germany
| | - Sergi Burguera
- Departament de Química, Universitat de les Illes Balears, Crta. De Valldemossa km 7.5, 07122, Palma de Mallorca (Baleares), SPAIN
| | - Antonio Frontera
- Departament de Química, Universitat de les Illes Balears, Crta. De Valldemossa km 7.5, 07122, Palma de Mallorca (Baleares), SPAIN
| | - Erik Strub
- Department of Chemistry, Division of Nuclear Chemistry, University of Cologne, Zülpicher Str. 45, 50674, Cologne, Germany
| |
Collapse
|
41
|
Chen XY, Cao LH, Bai XT, Cao XJ. Charge-Assisted Ionic Hydrogen-Bonded Organic Frameworks: Designable and Stabilized Multifunctional Materials. Chemistry 2024; 30:e202303580. [PMID: 38179818 DOI: 10.1002/chem.202303580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 01/03/2024] [Accepted: 01/04/2024] [Indexed: 01/06/2024]
Abstract
Hydrogen-bonded organic frameworks (HOFs) are a class of crystalline framework materials assembled by hydrogen bonds. HOFs have the advantages of high crystallinity, mild reaction conditions, good solution processability, and reproducibility. Coupled with the reversibility and flexibility of hydrogen bonds, HOFs can be assembled into a wide diversity of crystalline structures. Since the bonding energy of hydrogen bonds is lower than that of ligand and covalent bonds, the framework of HOFs is prone to collapse after desolventisation and the stability is not high, which limits the development and application of HOFs. In recent years, numerous stable and functional HOFs have been developed by π-π stacking, highly interpenetrated networks, charge-assisted, ligand-bond-assisted, molecular weaving, and covalent cross-linking. Charge-assisted ionic HOFs introduce electrostatic attraction into HOFs to improve stability while enriching structural diversity and functionality. In this paper, we review the development, the principles of rational design and assembly of charge-assisted ionic HOFs, and introduces the different building block construction modes of charge-assisted ionic HOFs. Highlight the applications of charge-assisted ionic HOFs in gas adsorption and separation, proton conduction, biological applications, etc., and prospects for the diverse design of charge-assisted ionic HOFs structures and multifunctional applications.
Collapse
Affiliation(s)
- Xu-Yong Chen
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Li-Hui Cao
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Xiang-Tian Bai
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| | - Xiao-Jie Cao
- Shaanxi Key Laboratory of Chemical Additives for Industry, College of Chemistry and Chemical Engineering, Shaanxi University of Science and Technology, Xi'an, 710021, P. R. China
| |
Collapse
|
42
|
Liu Z, Liu X, Zhang W, Gao R, Wei H, Yu CY. Current advances in modulating tumor hypoxia for enhanced therapeutic efficacy. Acta Biomater 2024; 176:1-27. [PMID: 38232912 DOI: 10.1016/j.actbio.2024.01.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/08/2023] [Accepted: 01/09/2024] [Indexed: 01/19/2024]
Abstract
Hypoxia is a common feature of most solid tumors, which promotes the proliferation, invasion, metastasis, and therapeutic resistance of tumors. Researchers have been developing advanced strategies and nanoplatforms to modulate tumor hypoxia to enhance therapeutic effects. A timely review of this rapidly developing research topic is therefore highly desirable. For this purpose, this review first introduces the impact of hypoxia on tumor development and therapeutic resistance in detail. Current developments in the construction of various nanoplatforms to enhance tumor treatment in response to hypoxia are also systematically summarized, including hypoxia-overcoming, hypoxia-exploiting, and hypoxia-disregarding strategies. We provide a detailed discussion of the rationale and research progress of these strategies. Through a review of current trends, it is hoped that this comprehensive overview can provide new prospects for clinical application in tumor treatment. STATEMENT OF SIGNIFICANCE: As a common feature of most solid tumors, hypoxia significantly promotes tumor progression. Advanced nanoplatforms have been developed to modulate tumor hypoxia to enhanced therapeutic effects. In this review, we first introduce the impact of hypoxia on tumor progression. Current developments in the construction of various nanoplatforms to enhance tumor treatment in response to hypoxia are systematically summarized, including hypoxia-overcoming, hypoxia-exploiting, and hypoxia-disregarding strategies. We discuss the rationale and research progress of the above strategies in detail, and finally introduce future challenges for treatment of hypoxic tumors. By reviewing the current trends, this comprehensive overview can provide new prospects for clinical translatable tumor therapy.
Collapse
Affiliation(s)
- Zihan Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Xinping Liu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Wei Zhang
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Ruijie Gao
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China
| | - Hua Wei
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| | - Cui-Yun Yu
- Hunan Province Cooperative Innovation Center for Molecular Target New Drug Study, School of Pharmaceutical Science, Hengyang Medical School, University of South China, Hengyang, 421001, China.
| |
Collapse
|
43
|
Mow R, Russell-Parks GA, Redwine GEB, Petel BE, Gennett T, Braunecker WA. Polymer-Coated Covalent Organic Frameworks as Porous Liquids for Gas Storage. CHEMISTRY OF MATERIALS : A PUBLICATION OF THE AMERICAN CHEMICAL SOCIETY 2024; 36:1579-1590. [PMID: 38370283 PMCID: PMC10870717 DOI: 10.1021/acs.chemmater.3c02828] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2023] [Revised: 01/02/2024] [Accepted: 01/04/2024] [Indexed: 02/20/2024]
Abstract
Several synthetic methods have recently emerged to develop high-surface-area solid-state organic framework-based materials into free-flowing liquids with permanent porosity. The fluidity of these porous liquid (PL) materials provides them with advantages in certain storage and transport processes. However, most framework-based materials necessitate the use of cryogenic temperatures to store weakly bound gases such as H2, temperatures where PLs lose their fluidity. Covalent organic framework (COF)-based PLs that could reversibly form stable complexes with H2 near ambient temperatures would represent a promising development for gas storage and transport applications. We report here the development, characterization, and evaluation of a material with these remarkable characteristics based on Cu(I)-loaded COF colloids. Our synthetic strategy required tailoring conditions for growing robust coatings of poly(dimethylsiloxane)-methacrylate (PDMS-MA) around COF colloids using atom transfer radical polymerization (ATRP). We demonstrate exquisite control over the coating thickness on the colloidal COF, quantified by transmission electron microscopy and dynamic light scattering. The coated COF material was then suspended in a liquid polymer matrix to make a PL. CO2 isotherms confirmed that the coating preserved the general porosity of the COF in the free-flowing liquid, while CO sorption measurements using diffuse reflectance infrared Fourier transform spectroscopy (DRIFTS) confirmed the preservation of Cu(I) coordination sites. We then evaluated the gas sorption phenomenon in the Cu(I)-COF-based PLs using DRIFTS and temperature-programmed desorption measurements. In addition to confirming that H2 transport is possible at or near mild refrigeration temperatures with these materials, our observations indicate that H2 diffusion is significantly influenced by the glass-transition temperature of both the coating and the liquid matrix. The latter result underscores an additional potential advantage of PLs in tailoring gas diffusion and storage temperatures through the coating composition.
Collapse
Affiliation(s)
- Rachel
E. Mow
- Materials
Science Program, Colorado School of Mines, Golden, Colorado 80401, United States
- Chemistry
and Nanoscience Center, National Renewable
Energy Laboratory, 15013 Denver West Pkwy, Golden, Colorado 80401, United States
| | - Glory A. Russell-Parks
- Department
of Chemistry, Colorado School of Mines, 1012 14th Street, Golden, Colorado 80401, United States
- Chemistry
and Nanoscience Center, National Renewable
Energy Laboratory, 15013 Denver West Pkwy, Golden, Colorado 80401, United States
| | - Grace E. B. Redwine
- Department
of Chemistry, Colorado School of Mines, 1012 14th Street, Golden, Colorado 80401, United States
- Chemistry
and Nanoscience Center, National Renewable
Energy Laboratory, 15013 Denver West Pkwy, Golden, Colorado 80401, United States
| | - Brittney E. Petel
- Catalytic
Carbon Transformation and Scale-Up Center, National Renewable Energy Laboratory, 15013 Denver West Pkwy, Golden, Colorado 80401, United States
| | - Thomas Gennett
- Materials
Science Program, Colorado School of Mines, Golden, Colorado 80401, United States
- Department
of Chemistry, Colorado School of Mines, 1012 14th Street, Golden, Colorado 80401, United States
- Chemistry
and Nanoscience Center, National Renewable
Energy Laboratory, 15013 Denver West Pkwy, Golden, Colorado 80401, United States
| | - Wade A. Braunecker
- Department
of Chemistry, Colorado School of Mines, 1012 14th Street, Golden, Colorado 80401, United States
- Chemistry
and Nanoscience Center, National Renewable
Energy Laboratory, 15013 Denver West Pkwy, Golden, Colorado 80401, United States
| |
Collapse
|
44
|
Xing G, Peng D, Ben T. Crystalline porous organic salts. Chem Soc Rev 2024; 53:1495-1513. [PMID: 38165686 DOI: 10.1039/d3cs00855j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2024]
Abstract
Crystalline porous organic salts (CPOSs), formed by the self-assembly of organic acids and organic bases through ionic bonding, possess definite structures and permanent porosity and have rapidly emerged as an important class of porous organic materials in recent years. By rationally designing and controlling tectons, acidity/basicity (pKa), and topology, stable CPOSs with permanent porosity can be efficiently constructed. The characteristics of ionic bonds, charge-separated highly polar nano-confined channels, and permanent porosity endow CPOSs with unique physicochemical properties, offering extensive research opportunities for exploring their functionalities and application scenarios. In this review, we systematically summarize the latest progress in CPOS research, describe the synthetic strategies for synthesizing CPOSs, delineate their structural characteristics, and highlight the differences between CPOSs and hydrogen-bonded organic frameworks (HOFs). Furthermore, we provide an overview of the potential applications of CPOSs in areas such as negative linear compression (NLC), proton conduction, rapid transport of CO2, selective and rapid transport of K+ ions, atmospheric water harvesting (AWH), gas sorption, molecular rotors, fluorescence modulation, room-temperature phosphorescence (RTP) and catalysis. Finally, the challenges and future perspectives of CPOSs are presented.
Collapse
Affiliation(s)
- Guolong Xing
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua, 321004, P. R. China.
- Science and Technology Center for Quantum Biology, National Institute of Extremely-Weak Magnetic Field Infrastructure, Hangzhou 310000, P. R. China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, P. R. China
| | - Daoling Peng
- Science and Technology Center for Quantum Biology, National Institute of Extremely-Weak Magnetic Field Infrastructure, Hangzhou 310000, P. R. China
- Key Laboratory of Theoretical Chemistry of Environment, Ministry of Education, School of Environment, South China Normal University, Guangzhou 510006, P. R. China
| | - Teng Ben
- Zhejiang Engineering Laboratory for Green Syntheses and Applications of Fluorine-Containing Specialty Chemicals, Institute of Advanced Fluorine-Containing Materials, Zhejiang Normal University, Jinhua, 321004, P. R. China.
- Science and Technology Center for Quantum Biology, National Institute of Extremely-Weak Magnetic Field Infrastructure, Hangzhou 310000, P. R. China
- Key Laboratory of the Ministry of Education for Advanced Catalysis Materials, Institute of Physical Chemistry, Zhejiang Normal University, Jinhua, 321004, P. R. China
| |
Collapse
|
45
|
Shah SSA, Sohail M, Murtza G, Waseem A, Rehman AU, Hussain I, Bashir MS, Alarfaji SS, Hassan AM, Nazir MA, Javed MS, Najam T. Recent trends in wastewater treatment by using metal-organic frameworks (MOFs) and their composites: A critical view-point. CHEMOSPHERE 2024; 349:140729. [PMID: 37989439 DOI: 10.1016/j.chemosphere.2023.140729] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 10/26/2023] [Accepted: 11/13/2023] [Indexed: 11/23/2023]
Abstract
Respecting the basic need of clean and safe water on earth for every individual, it is necessary to take auspicious steps for waste-water treatment. Recently, metal-organic frameworks (MOFs) are considered as promising material because of their intrinsic features including the porosity and high surface area. Further, structural tunability of MOFs by following the principles of reticular chemistry, the MOFs can be functionalized for the high adsorption performance as well as adsorptive removal of target materials. However, there are still some major concerns associated with MOFs limiting their commercialization as promising adsorbents for waste-water treatment. The cost, toxicity and regenerability are the major issues to be addressed for MOFs to get insightful results. In this article, we have concise the current strategies to enhance the adsorption capacity of MOFs during the water-treatment for the removal of toxic dyes, pharmaceuticals, and heavy metals. Further, we have also discussed the role of metallic nodes, linkers and associated functional groups for effective removal of toxic water pollutants. In addition to conformist overview, we have critically analyzed the MOFs as adsorbents in terms of toxicity, cost and regenerability. These factors are utmost important to address before commercialization of MOFs as adsorbents for water-treatment. Finally, some future perspectives are discussed to give directions for potential research.
Collapse
Affiliation(s)
- Syed Shoaib Ahmad Shah
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Manzar Sohail
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Ghulam Murtza
- Department of Chemistry, School of Natural Sciences, National University of Sciences and Technology, Islamabad, 44000, Pakistan
| | - Amir Waseem
- Department of Chemistry, Quaid-i-Azam University, Islamabad, Pakistan
| | - Aziz Ur Rehman
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan
| | - Iftikhar Hussain
- Department of Mechanical Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong
| | - Muhammad Sohail Bashir
- Institute of Physical Science and Information Technology, Key Laboratory of Structure and Functional Regulation of Hybrid Materials of Ministry of Education, Anhui University, Hefei, Anhui, 230601, China
| | - Saleh S Alarfaji
- Department of Chemistry, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Ahmed M Hassan
- Faculty of Engineering and Technology, Future University in Egypt, New Cairo, 11835, Egypt
| | - Muhammad Altaf Nazir
- Institute of Chemistry, The Islamia University of Bahawalpur, Bahawalpur, 63100, Pakistan.
| | - Muhammad Sufyan Javed
- School of Physical Science and Technology, Lanzhou University, Lanzhou, 730000, China.
| | - Tayyaba Najam
- College of Chemistry and Environmental Sciences, Shenzhen University, Shenzhen, 518060, Guangdong, China.
| |
Collapse
|
46
|
Wang J, Wu R, Liu Z, Qi L, Xu H, Yang H, Li Y, Liu L, Feng G, Zhang L. Core-Shell Structured Nanozyme with PDA-Mediated Enhanced Antioxidant Efficiency to Treat Early Intervertebral Disc Degeneration. ACS APPLIED MATERIALS & INTERFACES 2024; 16:5103-5119. [PMID: 38233333 DOI: 10.1021/acsami.3c15938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Abstract
Early intervention during intervertebral disc degeneration (IDD) plays a vital role in inhibiting its deterioration and activating the regenerative process. Aiming at the high oxidative stress (OS) in the IDD microenvironment, a core-shell structured nanozyme composed of Co-doped NiO nanoparticle (CNO) as the core encapsulated with a polydopamine (PDA) shell, named PDA@CNO, was constructed, hoping to regulate the pathological environment. The results indicated that the coexistence of abundant Ni3+/Ni2+and Co3+/Co2+redox couples in CNO provided rich catalytic sites; meanwhile, the quinone and catechol groups in the PDA shell could enable the proton-coupled electron transfer, thus endowing the PDA@CNO nanozyme with multiple antioxidative enzyme-like activities to scavenge •O2-, H2O2, and •OH efficiently. Under OS conditions in vitro, PDA@CNO could effectively reduce the intracellular ROS in nucleus pulposus (NP) into friendly H2O and O2, to protect NP cells from stagnant proliferation, abnormal metabolism (senescence, mitochondria dysfunction, and impaired redox homeostasis), and inflammation, thereby reconstructing the extracellular matrix (ECM) homeostasis. The in vivo local injection experiments further proved the desirable therapeutic effects of the PDA@CNO nanozyme in a rat IDD model, suggesting great potential in prohibiting IDD from deterioration.
Collapse
Affiliation(s)
- Jing Wang
- Analytical Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Ruibang Wu
- Analytical Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Zheng Liu
- Analytical Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Lin Qi
- Analytical Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Huilun Xu
- Analytical Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Hao Yang
- Analytical Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Yubao Li
- Analytical Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Limin Liu
- Analytical Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Ganjun Feng
- Analytical Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| | - Li Zhang
- Analytical Testing Center, Department of Orthopedic Surgery and Orthopedic Research Institute, West China Hospital, Sichuan University, Chengdu 610065, China
| |
Collapse
|
47
|
Chen L, Wang F, Zhang J, Wei H, Dang L. Integrating g-C 3N 4 nanosheets with MOF-derived porous CoFe 2O 4 to form an S-scheme heterojunction for efficient pollutant degradation via the synergy of photocatalysis and peroxymonosulfate activation. ENVIRONMENTAL RESEARCH 2024; 241:117653. [PMID: 37980982 DOI: 10.1016/j.envres.2023.117653] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 10/27/2023] [Accepted: 11/11/2023] [Indexed: 11/21/2023]
Abstract
When confronted with wastewater that is characterized by complex composition, stable molecular structure, and high concentration, relying solely on photocatalytic technology proves inadequate in achieving satisfactory degradation results. Therefore, the integration of other highly efficient degradation techniques has emerged as a viable approach to address this challenge. Herein, a novel strategy was employed whereby the exfoliated g-C3N4 nanosheets (CNs) with exceptional photocatalytic performance, were intimately combined with porous rod-shaped cobalt ferrite (CFO) through a co-calcination process to form the composite CFO/CNs, which exhibited remarkable efficacy in the degradation of various organic pollutants through the combination of photocatalysis and Fenton-like process synergistically, exemplified by the representative case of tetracycline hydrochloride (TCH, 200 mL, 50 mg/L). Specifically, under 1 mM of peroxymonosulfate (PMS) and illumination conditions, 50 mg of 1CFO/9CNs achieved a TCH removal ratio of ∼90% after 60 min of treatment. Furthermore, this work comprehensively investigated the influence of various factors, including catalyst and PMS dosages, solution pH, and the presence of anions and humate, on the degradation efficiency of pollutants. Besides, quenching experiments and EPR tests confirmed the establishment of an S-scheme heterojunction between CNs and CFO, which facilitated the effective spatial separation of photoexcited charge carriers and preserved the potent redox potential of photogenerated electrons and holes. This work offers a valuable reference for the integration of photocatalysis with the PMS-based Fenton-like process.
Collapse
Affiliation(s)
- Lijun Chen
- Green Separation & Chemical Process Safety Lab, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Feihong Wang
- Green Separation & Chemical Process Safety Lab, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Jiahao Zhang
- Green Separation & Chemical Process Safety Lab, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China
| | - Hongyuan Wei
- Green Separation & Chemical Process Safety Lab, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China.
| | - Leping Dang
- Green Separation & Chemical Process Safety Lab, School of Chemical Engineering and Technology, Tianjin University, Tianjin, 300072, PR China.
| |
Collapse
|
48
|
Dhakshinamoorthy A, Navalón S, Primo A, García H. Selective Gas-Phase Hydrogenation of CO 2 to Methanol Catalysed by Metal-Organic Frameworks. Angew Chem Int Ed Engl 2024; 63:e202311241. [PMID: 37815860 DOI: 10.1002/anie.202311241] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 09/19/2023] [Accepted: 10/10/2023] [Indexed: 10/11/2023]
Abstract
Large scale production of green CH3 OH obtained from CO2 and green H2 is a highly wanted process due to the role of CH3 OH as H2 /energy carrier and for producing chemicals. Starting with a short summary of the advantages of metal-organic frameworks (MOFs) as catalysts in liquid-phase reactions, the present article highlights the opportunities that MOFs may offer also for some gas-phase reactions, particularly for the selective CO2 hydrogenation to CH3 OH. It is commented that there is a temperature compatibility window that combines the thermal stability of some MOFs with the temperature required in the CO2 hydrogenation to CH3 OH that frequently ranges from 250 to 300 °C. The existing literature in this area is briefly organized according to the role of MOF as providing the active sites or as support of active metal nanoparticles (NPs). Emphasis is made to show how the flexibility in design and synthesis of MOFs can be used to enhance the catalytic activity by adjusting the composition of the nodes and the structure of the linkers. The influence of structural defects and material crystallinity, as well as the role that should play theoretical calculations in models have also been highlighted.
Collapse
Affiliation(s)
- Amarajothi Dhakshinamoorthy
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022, Spain
- School of Chemistry, Madurai Kamaraj University, Madurai, 625021 Tamil Nadu, India
| | - Sergio Navalón
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022, Spain
| | - Ana Primo
- Instituto Universitario de Tecnología Química, CSIC-UPV, Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022, Spain
| | - Hermenegildo García
- Instituto Universitario de Tecnología Química, CSIC-UPV, Universitat Politècnica de València, Camino de Vera s/n, Valencia, 46022, Spain
| |
Collapse
|
49
|
John G, Priyadarshini S, Babu A, Mohan H, Oh BT, Navaneethan M, Jesuraj PJ. Unleashing the room temperature boronization: Blooming of Ni-ZIF nanobuds for efficient photo/electro catalysis of water. CHEMOSPHERE 2024; 346:140574. [PMID: 37926164 DOI: 10.1016/j.chemosphere.2023.140574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 09/18/2023] [Accepted: 10/26/2023] [Indexed: 11/07/2023]
Abstract
Water splitting provides an environmental-friendly and sustainable approach for generating hydrogen fuel. The inherent energetic barrier in two-core half reactions such as the Hydrogen Evolution Reaction (HER) and Oxygen Evolution Reaction (OER) leads to undesired increased overpotential and constrained reaction kinetics. These challenges pose significant challenges that demand innovative solutions to overcome. One of the efficient ways to address this issue is tailoring the morphology and crystal structure of metal-organic frameworks (MOF). Nickel Zeolite Imidazolate Framework (Ni-ZIF) is a popular MOF and it can be tailored using facile chemical methods to unleash a remarkable bifunctional electro/photo catalyst. This innovative solution holds the capability to address prevailing obstacles such as inadequate electrical conductivity and limited access to active metal centers due to the influence of organic ligands. Thereby, applying boronization to the Ni-ZIF under different duration, one can induce blooming of nanobuds under room temperature and modify oxygen vacancies in order to achieve higher reaction kinetics in electro/photo catalysis. It can be evidenced by the 24-h boronized Ni-ZIF (BNZ), exhibiting lower overpotentials as electrocatalyst (OER-396 mV & HER-174 mV @ 20 mA/cm2) in 1 M KOH electrolyte and augmented gas evolution rates when employed as a photocatalyst (Hydrogen-14.37 μmol g-1min-1 & Oxygen-7.40 μmol g-1min-1). The 24-h boronization is identified as the optimum stage of crystalline to amorphous transformation which provided crystalline/amorphous boundaries as portrayed by X-Ray diffraction (XRD) and High Resolution-Transmission Electron Microscopy (HR-TEM) analysis. The flower-like transformation of 24-BNZ, characterized by crystalline-amorphous boundaries initiates with partial disruption of Ni-N bonds and formation of Ni-B bonds as evident from X-ray Photoelectron Spectroscopy (XPS). Further, the 24-h BNZ exhibit bifunctional catalytic activities with pre-longed stability. Overall, this work presents a comprehensive study of the electrocatalytic and photocatalytic water splitting properties of the tailored Ni-ZIF material.
Collapse
Affiliation(s)
- G John
- Functional Material and Energy Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Potheri, Chengalpattu, 603 203, India
| | - S Priyadarshini
- Functional Material and Energy Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Potheri, Chengalpattu, 603 203, India
| | - Anandha Babu
- Nanotechnology Research Centre (NRC), Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Potheri, Chengalpattu, 603 203, India; Department of Physics, Bannari Amman Institute of Technology, Sathyamangalam, Tamil nadu, India; Department of Physiology, Saveetha Dental college and hospitals, Saveetha Institute of Medical and Technical sciences, Saveetha University, chennai - 600077, Tamil nadu, India
| | - Harshavardhan Mohan
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54590, Republic of Korea
| | - Byung-Taek Oh
- Division of Biotechnology, Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Iksan, 54590, Republic of Korea
| | - M Navaneethan
- Functional Material and Energy Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Potheri, Chengalpattu, 603 203, India; Nanotechnology Research Centre (NRC), Faculty of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Potheri, Chengalpattu, 603 203, India
| | - P Justin Jesuraj
- Functional Material and Energy Devices Laboratory, Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, Potheri, Chengalpattu, 603 203, India.
| |
Collapse
|
50
|
Rajaboina RK, Khanapuram UK, Vivekananthan V, Khandelwal G, Potu S, Babu A, Madathil N, Velpula M, Kodali P. Crystalline Porous Material-Based Nanogenerators: Recent Progress, Applications, Challenges, and Opportunities. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2306209. [PMID: 37641193 DOI: 10.1002/smll.202306209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/16/2023] [Indexed: 08/31/2023]
Abstract
Nanogenerator (NG) is a potential technology that allows to build self-powered systems, sensors, flexible and portable electronics in the current Internet of Things (IoT) generation. Nanogenerators include piezoelectric nanogenerators (PENGs) and triboelectric nanogenerators (TENGs), convert different forms of mechanical motion into useful electrical signals. They have evolved and expanded their applications in various fields since their discovery in 2006 and 2012. Material selection is crucial for designing efficient NGs, with high conversion efficiencies. In the recent past, crystalline porous mat erials (metal-organic frameworks (MOFs) and covalent organic frameworks (COFs)) have been widely reported as potential candidates for nanogenerators, owing to their special properties of large surface area, porosity tailoring, ease of surface, post-synthesis modification, and chemical stability. The present organized review provides a complete overview of all the crystalline porous materials (CPMs)-based nanogenerator devices reported in the literature, including synthesis, characterization, device fabrication, and potential applications. Additionally, this review article discusses current challenges, future directions, and perspectives in the field of CPMs-NGs.
Collapse
Affiliation(s)
- Rakesh Kumar Rajaboina
- Department of Physics, Energy Materials and Devices Lab, National Institute of Technology-Warangal, Warangal, Telangana, 506004, India
| | - Uday Kumar Khanapuram
- Department of Physics, Energy Materials and Devices Lab, National Institute of Technology-Warangal, Warangal, Telangana, 506004, India
| | - Venkateswaran Vivekananthan
- Center for Flexible Electronics, Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation, Vijayawada, Andhra Pradesh, 522302, India
| | - Gaurav Khandelwal
- Materials and Manufacturing Research Group, James Watt School of Engineering, University of Glasgow, Glasgow, G128QQ, UK
| | - Supraja Potu
- Department of Physics, Energy Materials and Devices Lab, National Institute of Technology-Warangal, Warangal, Telangana, 506004, India
| | - Anjaly Babu
- Department of Physics, Energy Materials and Devices Lab, National Institute of Technology-Warangal, Warangal, Telangana, 506004, India
| | - Navaneeth Madathil
- Department of Physics, Energy Materials and Devices Lab, National Institute of Technology-Warangal, Warangal, Telangana, 506004, India
| | - Mahesh Velpula
- Department of Physics, Energy Materials and Devices Lab, National Institute of Technology-Warangal, Warangal, Telangana, 506004, India
| | - Prakash Kodali
- Department of Electronics and Communication Engineering, Flexible Electronics Lab, National Institute of Technology-Warangal, Warangal, 506004, India
| |
Collapse
|