1
|
Cha B, Yea Y, Kim S, Njaramba LK, Yoon Y, Park CM. Synthesis and performance evaluation of bentonite co-doped with sulfur and bromine for selective radionuclide sequestration from aqueous environments. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138244. [PMID: 40239511 DOI: 10.1016/j.jhazmat.2025.138244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2025] [Revised: 04/01/2025] [Accepted: 04/09/2025] [Indexed: 04/18/2025]
Abstract
This study investigates the synthesis and application of bentonite co-doped with sulfur and bromine (S/Br-B-2.0) as a novel, scalable adsorbent for the selective removal of 60Co and 85,90Sr, which are significant contaminants in liquid radioactive waste, with the aim of overcoming the limitations of conventional treatment methods. The material was synthesized by a hydrothermal method and characterized by XRD, FE-SEM, BET, FTIR, XPS, and zeta potential analysis. The adsorption kinetics revealed different mechanisms: 60Co followed a pseudo-second-order model, suggesting chemisorption, while 85,90Sr followed a Elovich model, applied to heterogeneous surfaces, highlighting variations in surface activity and activation energy. Isothermal studies showed that 60Co adsorption followed the Freundlich model, indicating multilayer adsorption with a maximum capacity of 46.66 mg/g, while 85,90Sr followed the Langmuir model, indicating monolayer adsorption with a capacity of 43.20 mg/g. Batch experiments confirmed consistent performance over pH, temperature, and dosage variations. Reusability tests showed moderate retention of adsorption capacity after five cycles, proving the durability of the material. Response surface methodology optimized the adsorption process by analyzing the effects of pH, temperature, concentration, and contact time. The results highlight the potential of S/Br-B-2.0 as an efficient and sustainable solution for radionuclide removal, particularly for managing liquid radioactive waste in water treatment and environmental remediation.
Collapse
Affiliation(s)
- Byungjun Cha
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| | - Yeonji Yea
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| | - Sewoon Kim
- Department of Civil and Environmental Engineering, University of Iowa, lowa City, IA 52242, USA.
| | - Lewis Kamande Njaramba
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| | - Yeomin Yoon
- Department of Environmental Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea.
| | - Chang Min Park
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea; Department of Civil and Environmental Engineering, University of Iowa, lowa City, IA 52242, USA; Department of Environmental Science and Engineering, Ewha Womans University, 52 Ewhayeodae-gil, Seodaemun-gu, Seoul 03760, Republic of Korea.
| |
Collapse
|
2
|
Xu MK, Zhang XQ, Xu YQ, Chu XQ, Xu H, Zhou X, Rao W, Shen ZL. Iron-Mediated One-Pot Dehydroxylative Cross-Electrophile Coupling of Alcohol with Disulfide for Thioether Synthesis by Using TCT as a Hydroxyl-Activating Agent. Org Lett 2025; 27:5152-5158. [PMID: 40338043 DOI: 10.1021/acs.orglett.5c01308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
An efficient dehydroxythiolation between alcohols and disulfides using the widely abundant and cheapest iron as a reaction mediator was developed. The one-pot thiolation proceeded effectively via C-O bond activation with the aid of cyanuric chloride (TCT) as a hydroxyl-activating agent to give the corresponding thioethers in modest to excellent yields, displaying both a wide substrate scope (applicable to benzyl alcohol, allyl alcohol, and primary alkyl alcohol) and good functional group tolerance. In addition, diselenide was also proven to be an appropriate substrate for the protocol, and the reaction could be subjected to scale-up synthesis. Preliminary mechanistic examination revealed that transiently formed TCT-derived ether A, which is generated in situ via the reaction of TCT with alcohol, possibly serves as the pivotal intermediate of the cross-electrophile thioetherification.
Collapse
Affiliation(s)
- Meng-Ke Xu
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xuan-Qi Zhang
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Yong-Qing Xu
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xue-Qiang Chu
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Hao Xu
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Xiaocong Zhou
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
- College of Biological, Chemical Science and Engineering, Jiaxing University, 118 Jiahang Road, Jiaxing 314001, China
| | - Weidong Rao
- Jiangsu Provincial Key Lab for the Chemistry and Utilization of Agro-Forest Biomass, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhi-Liang Shen
- Technical Institute of Fluorochemistry (TIF), School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| |
Collapse
|
3
|
Wu X, Sun X, Wang C, Liao H, Lei M, Pan Y, Zhang Y, Gao P. Amorphization engineering of Ni-cysteine coordination composition for urea electro-oxidation at large current density. J Colloid Interface Sci 2025; 679:1141-1149. [PMID: 39423680 DOI: 10.1016/j.jcis.2024.10.059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/09/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
Unavoidable oxygen evolution reaction (OER) and the relatively high potential to form real active sites of Ni3+ species severely decrease the efficiency of urea-assisted hydrogen generation facility. Herein, amorphization Ni-cysteine coordination (aNi-cys) is constructed as efficient urea electro-oxidation reaction (UOR) catalyst with highly capable of suppressing competitive OER and promoting the Ni2+ to Ni3+ in-situ electrochemical configuration through deliberately regulating the Ni/l-cysteine coordination environment. The abundant ligand atoms (N, S, and O) of l-cysteine considerably tuned the Ni electronic structure to the most suitable state while the amorphization thin lamellas increased the exposed active sites and befitting for the access of electrolyte to electrode surface, resulting improved UOR activity with a large peak current density of 263 mA cm-2, far exceeding crystalline Ni-cysteine coordination (cNi-cys) and long-term stability for 50 h working. Excitingly, only 41 kWh is required to produce 1 kg H2 (50 mA cm-2) from a home-made urea-assisted simulated seawater electrolysis apparatus, about 8 kWh energy saving from that of water splitting. This work gives a clue for preparing advanced electrocatalysts applicable to urea-related energy system with large current density.
Collapse
Affiliation(s)
- Xiulin Wu
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Hunan 411105, China
| | - Xiujuan Sun
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Hunan 411105, China.
| | - Chaoqi Wang
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Hunan 411105, China
| | - Hailong Liao
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Hunan 411105, China
| | - Mingjie Lei
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Hunan 411105, China
| | - Yuan Pan
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Hunan 411105, China
| | - Yuwei Zhang
- Guangzhou Key Laboratory of Analytical Chemistry for Biomedicine, GDMPA Key Laboratory for Process Control and Quality Evaluation of Chiral Pharmaceuticals, School of Chemistry, South China Normal University, Guangzhou 510006, China.
| | - Ping Gao
- Key Laboratory of Environmentally Friendly Chemistry and Applications of Ministry of Education, College of Chemistry, Xiangtan University, Hunan 411105, China
| |
Collapse
|
4
|
Truong VA, Tran MH, Nguyen TH, Nguyen HT. Deep eutectic solvent as a green catalyst for the one-pot multicomponent synthesis of 2-substituted benzothiazole derivatives. RSC Adv 2024; 14:39462-39471. [PMID: 39679424 PMCID: PMC11640684 DOI: 10.1039/d4ra07400a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/02/2024] [Indexed: 12/17/2024] Open
Abstract
The need for diverse essential chemicals and resources has markedly risen alongside the advancement of civilization. Regrettably, many toxic solvents used in chemical laboratories and industrial settings pose significant risks to the health of researchers and intensify environmental pollution. Deep eutectic solvents (DESs), serving as an alternative to ionic liquids, provide superior environmental benefits and have garnered significant interest in chemical research. DESs have garnered increasing interest in the field of chemistry for their use as catalysts and solvents. Benzothiazole is an organic molecule with a heterocyclic nucleus (thiazole) that possesses a wide range of biological activities. In this study, we established [CholineCl][Imidazole]2 as an efficient catalyst for the one-pot multicomponent synthesis of 2-substituted benzothiazole derivatives using conventional heating under solvent-free conditions. Its reactivity remains stable with a maximum yield of 78% for 2-phenylbenzo[d]thiazole, and using a solvent that is both environmentally safe and compatible with the reusability of the [CholineCl][Imidazole]2 catalyst, the reaction time can be effectively decreased.
Collapse
Affiliation(s)
- Vy Anh Truong
- Department of Organic Chemistry, Faculty of Chemistry, University of Science Ho Chi Minh City Vietnam +84-908-108-824
- Vietnam National University Ho Chi Minh City Vietnam
| | - Minh Hai Tran
- Department of Organic Chemistry, Faculty of Chemistry, University of Science Ho Chi Minh City Vietnam +84-908-108-824
- Vietnam National University Ho Chi Minh City Vietnam
| | - Trinh Hao Nguyen
- Department of Organic Chemistry, Faculty of Chemistry, University of Science Ho Chi Minh City Vietnam +84-908-108-824
- Vietnam National University Ho Chi Minh City Vietnam
- Faculty of Interdisciplinary Science, University of Science Ho Chi Minh City Vietnam
| | - Hai Truong Nguyen
- Department of Organic Chemistry, Faculty of Chemistry, University of Science Ho Chi Minh City Vietnam +84-908-108-824
- Vietnam National University Ho Chi Minh City Vietnam
| |
Collapse
|
5
|
Ma D, Li N, Zhu D, Li F. Heterocyclic effect boosted peroxidase-like activity of MIL(Fe) metal-organic framework for colorimetric assay and dye removal. JOURNAL OF HAZARDOUS MATERIALS 2024; 480:136148. [PMID: 39405683 DOI: 10.1016/j.jhazmat.2024.136148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/26/2024] [Accepted: 10/11/2024] [Indexed: 12/01/2024]
Abstract
Metal-organic frameworks (MOFs) have emerged as promising candidates for enzyme mimics due to their abundant pore structures and adjustable active sites. The catalytic activity particularly depends on the electronic character of the organic ligand. In this study, we report an iron-based MOF nanozyme FeTDC, created by replacing the 1,4-dicarboxybenzene ligand with five-membered 2,5-thiophenedicarboxylic acid (H2TDC). In comparison with the phenyl analogue, the sulfur-based heterocyclic ligand demonstrates high electron delocalization, and a low pKa value, which are beneficial for enhancing the metal/ligand interactions. Accordingly, FeTDC can facilitate the oxidation of the benzidine substrate in the presence of H2O2, thereby exhibiting remarkable peroxidase-like activity. The generation of hydroxyl radical (•OH) at the Fe active sites contributes to the catalytic process. Furthermore, the smartphone-assisted colorimetric assay of pyrophosphate was developed with high sensitivity, based on its inhibitory effect. When FeTDC was utilized for the removal of benzidine dye under high-salt condition, a 90 % of removal rate was achieved due to the synergistic effect of enzyme catalysis and physical adsorption. This work presents a novel perspective of heterocyclic effect on the design of MOF nanozymes, thereby expanding their applicability in the control of pollutants.
Collapse
Affiliation(s)
- Dejie Ma
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Na Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, PR China
| | - Dangqiang Zhu
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, PR China.
| | - Feng Li
- College of Chemistry and Pharmaceutical Sciences, Qingdao Agricultural University, Qingdao 266109, PR China.
| |
Collapse
|
6
|
Gao Y, Tian X, Wang Y, Zhu J, Lou X, Qin M, Lu M, Cai Z. Zr-based multivariate metal-organic framework for rapid extraction of sulfonamide antibiotics from water and food samples. JOURNAL OF HAZARDOUS MATERIALS 2024; 476:135019. [PMID: 38925054 DOI: 10.1016/j.jhazmat.2024.135019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/19/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
Based on multiple ligands strategy, a series of multivariate metal organic frameworks (MTV-MOFs) named as PCN-224-DCDPSx were prepared using one-pot solvothermal method to extract and remove sulfonamide antibiotics (SAs). The pore structure and adsorption performance can be further regulated by modulating the doping ratios of medium-tetra(4-carboxylphenyl) porphyrin and 4,4'-dicarboxydiphenyl sulfones. The MTV-MOFs of PCN-224-DCDPS1.0 possesses very large specific surface area (1625 m2/g). Using PCN-224-DCDPS1.0 as sorbent, a dispersive solid-phase extraction method was developed to extract and preconcentrate SAs from water, eggs, and milk prior to high performance liquid chromatography analysis. The limits of detection of method were determined between 0.17 and 0.27 ng/mL with enrichment factors ranging 214-327. The adsorption can be finished within 30 s, and the recovery rate remains above 80 % after 10 repeated uses. The adsorption capacities of sorbent were determined from 300 to 621 mg/g for sulfadiazine, sulphapyridine, sulfamethoxydiazine, sulfachlorpyridazine, sulfabenzamide, and sulfadimethoxine. The adsorption mechanisms were investigated and can be attributed to π-π interactions, hydrogen bonds, and electrostatic interactions. This work represents a method for preparation of MTV-MOFs and uses as sorbent for extraction and enrichment of trace pollutants from complex samples.
Collapse
Affiliation(s)
- Yanmei Gao
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Xiao Tian
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Youmei Wang
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Jiawen Zhu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Xuejing Lou
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Mengjie Qin
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China
| | - Minghua Lu
- Henan International Joint Laboratory of Medicinal Plants Utilization, College of Chemistry and Molecular Sciences, Henan University, Kaifeng 475004, Henan, China.
| | - Zongwei Cai
- State Key Laboratory of Environmental and Biological Analysis, Department of Chemistry, Hong Kong Baptist University, Hong Kong, China
| |
Collapse
|
7
|
Qi X, Zhu F, Chang Z, Deng Y. Engineered E. coli for Long-Term Oral Enzyme Delivery. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:16172-16179. [PMID: 39042860 DOI: 10.1021/acs.langmuir.4c01253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/25/2024]
Abstract
Intestinal flora shows excellent affinity in the gut, and the adhesive property is borrowed for oral drug delivery. A facile strategy for bacteria engineering has been successfully developed by introducing metal-organic framework (MOF) mineralization. The MOF exoskeleton serves as an extendable platform for accommodating various cargoes with good Escherichia coli morphology maintained. The artificial exoskeleton surrounding E. coli is employed for encapsulating macromolecules as a therapeutic cargo, maintaining good bioactivity with high immobilization efficiency (60%) after systematic optimization of the MOF precursor. Leveraging the natural affinity of E. coli in the gut, the in-vivo tracking of MOF-engineered E. coli in the gastrointestinal tract confirmed excellent adhesion to the GI mucosa and a 17.9-fold increase in the gut retention half-time, demonstrating significant advantages in retention capability. In comparison, the control group without E. coli equipment resulted in quick gut passage. Furthermore, the artificially engineered E. coli serves as an effective carrier for macromolecules without notable oral toxicity, as evidenced by biocompatibility evaluations in cells and animals. Overall, the MOF-engineered E. coli provides an extendable platform for loading on-demand cargoes in versatile therapeutic functions with promising clinical transnationality for long-term applications.
Collapse
Affiliation(s)
- Xiaoyue Qi
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Fengyuan Zhu
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| | - Ziyong Chang
- Civil and Resource Engineering School, University of Science and Technology Beijing, Beijing 100083, China
| | - Yulin Deng
- School of Medical Technology, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
8
|
Tian S, Shi X, Wang S, He Y, Zheng B, Deng X, Zhou Z, Wu W, Xin K, Tang L. Recyclable Fe 3O 4@UiO-66-PDA core-shell nanomaterials for extensive metal ion adsorption: Batch experiments and theoretical analysis. J Colloid Interface Sci 2024; 665:465-476. [PMID: 38537592 DOI: 10.1016/j.jcis.2024.03.150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 03/22/2024] [Accepted: 03/22/2024] [Indexed: 04/17/2024]
Abstract
With the ever-increasing challenge of heavy metal pollution, the imperative for developing highly efficient adsorbents has become apparent to remove metal ions from wastewater completely. In this study, we introduce a novel magnetic core-shell adsorbent, Fe3O4@UiO-66-PDA. It features a polydopamine (PDA) modified zirconium-based metal-organic framework (UiO-66) synthesized through a simple solvothermal method. The adsorbent boasts a unique core-shell architecture with a high specific surface area, abundant micropores, and remarkable thermal stability. The adsorption capabilities of six metal ions (Fe3+, Mn2+, Pb2+, Cu2+, Hg2+, and Cd2+) were systematically investigated, guided by the theory of hard and soft acids and bases. Among these, three representative metal ions (Fe3+, Pb2+, and Hg2+) were scrutinized in detail. The activated Fe3O4@UiO-66-PDA exhibited exceptional adsorption capacities for these metal ions, achieving impressive values of 97.99 mg/g, 121.42 mg/g, and 130.72 mg/g, respectively, at pH 5.0. Moreover, the adsorbent demonstrated efficient recovery from aqueous solution using an external magnet, maintaining robust adsorption efficiency (>80%) and stability even after six cycles. To delve deeper into the optimized adsorption of Hg2+, density functional theory (DFT) analysis was employed, revealing an adsorption energy of -2.61 eV for Hg2+. This notable adsorption capacity was primarily attributed to electron interactions and coordination effects. This study offers valuable insights into metal ion adsorption facilitated, by magnetic metal-organic framework (MOF) materials.
Collapse
Affiliation(s)
- Shuangqin Tian
- School of Chemistry Science and Engineering, Yunnan University, Kunming 650091, Yunnan Province, PR China.
| | - Xin Shi
- School of Chemistry Science and Engineering, Yunnan University, Kunming 650091, Yunnan Province, PR China; Honghe Prefecture Nationality Senior High School, Honghe 661200, Yunnan Province, PR China.
| | - Shujie Wang
- School of Chemistry Science and Engineering, Yunnan University, Kunming 650091, Yunnan Province, PR China.
| | - Yi He
- School of Chemistry Science and Engineering, Yunnan University, Kunming 650091, Yunnan Province, PR China.
| | - Bifang Zheng
- School of Chemistry Science and Engineering, Yunnan University, Kunming 650091, Yunnan Province, PR China.
| | - Xianhong Deng
- School of Chemistry Science and Engineering, Yunnan University, Kunming 650091, Yunnan Province, PR China.
| | - Ziqin Zhou
- School of Chemistry Science and Engineering, Yunnan University, Kunming 650091, Yunnan Province, PR China.
| | - Wenbin Wu
- School of Chemistry Science and Engineering, Yunnan University, Kunming 650091, Yunnan Province, PR China.
| | - Kai Xin
- School of Chemistry Science and Engineering, Yunnan University, Kunming 650091, Yunnan Province, PR China.
| | - Lihong Tang
- School of Chemistry Science and Engineering, Yunnan University, Kunming 650091, Yunnan Province, PR China.
| |
Collapse
|
9
|
Liu Z, Wang J, Dong S, Wang L, Li L, Cao Z, Zhang Y, Cheng L, Yang J. Ultrasonic controllable synthesis of sulfur-functionalized metal-organic frameworks (S-MOFs) and their application in piezo-photocatalytic rapid reduction of hexavalent chromium (Cr). ULTRASONICS SONOCHEMISTRY 2024; 107:106912. [PMID: 38762940 PMCID: PMC11130732 DOI: 10.1016/j.ultsonch.2024.106912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/06/2024] [Accepted: 05/14/2024] [Indexed: 05/21/2024]
Abstract
The United Nations' Sustainable Development Goals (SDGs) are significant in guiding modern scientific research. In recent years, scholars have paid much attention to MOFs materials as green materials. However, piezo catalysis of MOFs materials has not been widely studied. Piezoelectric materials can convert mechanical energy into electrical energy, while MOFs are effective photocatalysts for removing pollutants. Therefore, it is crucial to design MOFs with piezoelectric properties and photosensitivity. In this study, sulfur-functionalized metal-organic frameworks (S-MOFs) were prepared using organic sulfur-functionalized ligand (H2TDC) ultrasonic synthesis to enhance their piezoelectric properties and visible light absorption. The study demonstrated that the S-MOFs significantly enhanced the reduction of a 10 mg/L solution of hexavalent chromium to 99.4 % within 10 min, using only 15 mg of catalyst. The orbital energy level differences of the elements were analyzed using piezo response force microscopy (PFM) and X-ray photoelectron spectroscopy (XPS). The results showed that MOFs functionalized with sulfur atom ligands have a built-in electric field that facilitates charge separation and migration. This study presents a new approach to enhance the piezoelectric properties of MOFs, which broadens their potential applications in piezo catalysis and piezo-photocatalysis. Additionally, it provides a sustainable method for reducing hexavalent chromium, contributing to the achievement of sustainable development goals, specifically SDG-6, SDG-7, SDG-9, and SDG-12.
Collapse
Affiliation(s)
- Zhiwei Liu
- School of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry Simulation, National & Local Joint Engineering Research Center of High-Value Utilization of Coal-Based Solid Waste, Institute of Coal Conversion and Cyclic Economy, Hohhot, 010051, People's Republic of China
| | - Jingjing Wang
- School of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry Simulation, National & Local Joint Engineering Research Center of High-Value Utilization of Coal-Based Solid Waste, Institute of Coal Conversion and Cyclic Economy, Hohhot, 010051, People's Republic of China
| | - Shanghai Dong
- School of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry Simulation, National & Local Joint Engineering Research Center of High-Value Utilization of Coal-Based Solid Waste, Institute of Coal Conversion and Cyclic Economy, Hohhot, 010051, People's Republic of China
| | - Liying Wang
- School of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry Simulation, National & Local Joint Engineering Research Center of High-Value Utilization of Coal-Based Solid Waste, Institute of Coal Conversion and Cyclic Economy, Hohhot, 010051, People's Republic of China.
| | - Lu Li
- School of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry Simulation, National & Local Joint Engineering Research Center of High-Value Utilization of Coal-Based Solid Waste, Institute of Coal Conversion and Cyclic Economy, Hohhot, 010051, People's Republic of China
| | - Zhenzhu Cao
- School of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry Simulation, National & Local Joint Engineering Research Center of High-Value Utilization of Coal-Based Solid Waste, Institute of Coal Conversion and Cyclic Economy, Hohhot, 010051, People's Republic of China
| | - Yongfeng Zhang
- School of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry Simulation, National & Local Joint Engineering Research Center of High-Value Utilization of Coal-Based Solid Waste, Institute of Coal Conversion and Cyclic Economy, Hohhot, 010051, People's Republic of China
| | - Lin Cheng
- School of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry Simulation, National & Local Joint Engineering Research Center of High-Value Utilization of Coal-Based Solid Waste, Institute of Coal Conversion and Cyclic Economy, Hohhot, 010051, People's Republic of China
| | - Jucai Yang
- School of Chemical Engineering, Inner Mongolia University of Technology, Inner Mongolia Key Laboratory of Theoretical and Computational Chemistry Simulation, National & Local Joint Engineering Research Center of High-Value Utilization of Coal-Based Solid Waste, Institute of Coal Conversion and Cyclic Economy, Hohhot, 010051, People's Republic of China
| |
Collapse
|
10
|
Deng W, Kuang X, Xu Z, Li D, Li Y, Zhang Y. Adsorption of Cadmium and Lead Capacity and Environmental Stability of Magnesium-Modified High-Sulfur Hydrochar: Greenly Utilizing Chicken Feather. TOXICS 2024; 12:356. [PMID: 38787135 PMCID: PMC11126130 DOI: 10.3390/toxics12050356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/29/2024] [Accepted: 05/10/2024] [Indexed: 05/25/2024]
Abstract
Chicken feathers represent a viable material for producing biochar adsorbents. Traditional slow pyrolysis methods often result in sulfur element losses from chicken feathers, whereas hydrothermal reactions generate substantial amounts of nutrient-rich hydrothermal liquor. Magnesium-modified high-sulfur hydrochar MWF was synthesized through magnesium modification, achieving a S content of 3.68%. The maximum equilibrium adsorption amounts of MWF for Cd2+ and Pb2+ were 25.12 mg·g-1 and 70.41 mg·g-1, respectively, representing 4.00 times and 2.75 times of WF. Magnesium modification elevated the sulfur content, pH, ash content, and electronegativity of MWF. The primary mechanisms behind MWF's adsorption of Cd2+ and Pb2+ involve magnesium ion exchange and complexation with C=O/O=C-O, quaternary N, and S functional groups. MWF maintains robust stability and antioxidative properties, even with low aromaticity levels. Given the lower energy consumption during hydrochar production, MWF offers notable carbon sequestration benefits. The hydrothermal solution derived from MWF is nutrient-rich. Following supplementation with inorganic fertilizer, the hydrothermal solution of MWF significantly enhanced bok choy growth compared to the control group. In general, adopting magnesium-modified hydrothermal reactions to produce hydrochar and converting the resultant hydrothermal solution into water-soluble fertilizer proves a viable strategy for the eco-friendly utilization of chicken feathers. This approach carries substantial value for heavy metal remediation and agricultural practices.
Collapse
Affiliation(s)
- Weiqi Deng
- Key Laboratory of Arable Land Conservation (South China), Ministry of Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (W.D.); (X.K.); (Z.X.); (Y.L.)
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China
- WENS Foodstuff Group Co., Ltd., Yunfu 527400, China
| | - Xubin Kuang
- Key Laboratory of Arable Land Conservation (South China), Ministry of Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (W.D.); (X.K.); (Z.X.); (Y.L.)
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China
| | - Zhaoxin Xu
- Key Laboratory of Arable Land Conservation (South China), Ministry of Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (W.D.); (X.K.); (Z.X.); (Y.L.)
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China
| | - Deyun Li
- School of Environmental Science and Engineering, Shaanxi University of Science & Technology, Xi’an 710021, China;
| | - Yongtao Li
- Key Laboratory of Arable Land Conservation (South China), Ministry of Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (W.D.); (X.K.); (Z.X.); (Y.L.)
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China
| | - Yulong Zhang
- Key Laboratory of Arable Land Conservation (South China), Ministry of Agriculture, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; (W.D.); (X.K.); (Z.X.); (Y.L.)
- College of Natural Resources and Environment, Joint Institute for Environmental Research & Education, South China Agricultural University, Guangzhou 510642, China
- WENS Foodstuff Group Co., Ltd., Yunfu 527400, China
| |
Collapse
|
11
|
Liao K, Chen L, Meng R, Feng Y, Meng S, Lu H, Ma J, Peng C, Zhang C, Yang J. Reconstructable Carbon Monolayer-MoS 2 Intercalated Heterostructure Enabled by Atomic Layers-Confined Topotactic Transformation for Ultrafast Lithium Storage. J Am Chem Soc 2024; 146:12020-12029. [PMID: 38651300 DOI: 10.1021/jacs.4c01550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2024]
Abstract
The intercalation structure of two-dimensional materials with expanded interlayer distance can facilitate mass transport, which is promising in fast-charging lithium-ion batteries (LIBs). However, the designed intercalation structures will be pulverized and destroyed under tough working conditions, causing overall performance deterioration of the batteries. Here, we present that an intercalated heterostructure made of the typical layered material of MoS2 intercalated by N-doped graphene-like carbon monolayer (MoS2/g-CM) through a polymer intercalation strategy exhibits a unique behavior of reversible reconstructability as an LIB anode during cycling. A mechanism of "carbon monolayers-confined topotactic transformation" is proposed, which is evidenced by substantial in/ex situ characterizations. The intercalated heterostructure of MoS2/g-CM featuring a reconstructable property and efficient interlayer electron/ion transport exhibits an unprecedented rate capability up to 50 A g-1 and outstanding long cyclability. Moreover, the proposed strategy based on g-CM intercalation has been extended to the MoSe2 system, also realizing reconstructability of the intercalated heterostructure and improved LIB performance, demonstrating its versatility and great potential in applications.
Collapse
Affiliation(s)
- Kexuan Liao
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, P. R. China
| | - Lu Chen
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, P. R. China
| | - Ruijin Meng
- Department of Applied Physics, The Hong Kong Polytechnic University, Hunghom 999077, Hong Kong
| | - Yutong Feng
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Shuo Meng
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Hang Lu
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
| | - Jie Ma
- College of Environmental Science and Engineering, Tongji University, Siping Road 1239, Shanghai 200092, P. R. China
| | - Chengxin Peng
- School of Materials and Chemistry, University of Shanghai for Science and Technology, Shanghai 200093, P. R. China
| | - Chi Zhang
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, P. R. China
| | - Jinhu Yang
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, P. R. China
- State Key Laboratory of Cardiovascular Diseases, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, P. R. China
| |
Collapse
|
12
|
Petkova ZS, Rusew RI, Shivachev BL, Kurteva VB. Functionalization of 2-Mercapto-5-methyl-1,3,4-thiadiazole: 2-(ω-Haloalkylthio) Thiadiazoles vs. Symmetrical Bis-Thiadiazoles. Molecules 2024; 29:1938. [PMID: 38731428 PMCID: PMC11085375 DOI: 10.3390/molecules29091938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/18/2024] [Accepted: 04/19/2024] [Indexed: 05/13/2024] Open
Abstract
A study on the functionalisation of 2-mercapto-5-methyl-1,3,4-thiadiazole has been conducted, yielding two series of products: 2-(ω-haloalkylthio)thiadiazoles and symmetrical bis-thiadiazoles, with variable chain lengths. The experimental conditions were optimised for each class of compounds by altering the base used and the reagents' proportions, leading to the development of separate protocols tailored to their specific reactivity and purification needs. The target halogenide reagents and bis-thiadiazole ligands were obtained either as single products or as mixtures easily separable by chromatography. Characterisation of the products was performed using 1D and 2D NMR spectra in solution, complemented by single crystal X-ray diffraction (XRD) for selected samples, to elucidate their structural properties.
Collapse
Affiliation(s)
- Zhanina S. Petkova
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 9, 1113 Sofia, Bulgaria;
| | - Rusi I. Rusew
- Institute of Mineralogy and Crystallography “Acad. Ivan Kostov”, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 107, 1113 Sofia, Bulgaria;
| | - Boris L. Shivachev
- Institute of Mineralogy and Crystallography “Acad. Ivan Kostov”, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 107, 1113 Sofia, Bulgaria;
| | - Vanya B. Kurteva
- Institute of Organic Chemistry with Centre of Phytochemistry, Bulgarian Academy of Sciences, Acad. G. Bonchev Str., Bl. 9, 1113 Sofia, Bulgaria;
| |
Collapse
|
13
|
Wang T, Hussain I, Ma L, Zhong Y, Zhang W, Yang G. Rational synthesis of two isostructural thiophene-containing metal-organic frameworks toward photocatalytic degradation of organic pollutants. J Colloid Interface Sci 2024; 660:681-691. [PMID: 38271804 DOI: 10.1016/j.jcis.2024.01.104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 01/03/2024] [Accepted: 01/14/2024] [Indexed: 01/27/2024]
Abstract
In this work, thiophene moieties (as the crucial functional groups) have been successfully incorporated into the skeleton of metal-organic frameworks (MOFs) by using thienyl-substituted triazole ligands. Reaction of AgCF3SO3 with 3-phenyl-5-(2-thienyl)-1,2,4-triazole (PTTzH) or 3,5-bis(2-thienyl)-1,2,4-triazole (BTTzH) afforded two isostructural MOFs (AgTz-3 and AgTz-4) in gram-scale. AgTz-4 with higher thiophene content showed significantly stronger photocatalytic activity than AgTz-3 with lower thiophene content. Noteworthy, the photodegradation rate constants of AgTz-4 were 0.055 mg·L-1·min-1 for rhodamine B and 0.24 min-1 for salazosulfapyridine, which is comparable or even higher than some MOF-based materials reported in the literature. More importantly, AgTz-4 demonstrated good reusability and stability after four cycles of photodegradation. Our experimental results revealed that the enhanced photodegradation efficiency can be attributed to the increased light absorption capacity and optimized band structure of Ag-MOFs resulting from the introduction of thiophene groups into MOF structures.
Collapse
Affiliation(s)
- Tian Wang
- Green Catalysis Center and College of Chemistry, Zhengzhou University, 450001 Zhengzhou, Henan, PR China
| | - Imtiaz Hussain
- Green Catalysis Center and College of Chemistry, Zhengzhou University, 450001 Zhengzhou, Henan, PR China
| | - Limin Ma
- Green Catalysis Center and College of Chemistry, Zhengzhou University, 450001 Zhengzhou, Henan, PR China
| | - Yujin Zhong
- Green Catalysis Center and College of Chemistry, Zhengzhou University, 450001 Zhengzhou, Henan, PR China
| | - Wenhua Zhang
- Green Catalysis Center and College of Chemistry, Zhengzhou University, 450001 Zhengzhou, Henan, PR China.
| | - Guang Yang
- Green Catalysis Center and College of Chemistry, Zhengzhou University, 450001 Zhengzhou, Henan, PR China.
| |
Collapse
|
14
|
Shao Z, Ding L, Zhu W, Fan C, Di K, Yuan R, Wang K. Highly selective detection and removal of mercury ions in the aquatic environment based on magnetic ZIF-71 multifunctional composites with sufficient chlorine functional groups. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 921:171085. [PMID: 38387584 DOI: 10.1016/j.scitotenv.2024.171085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/16/2024] [Accepted: 02/17/2024] [Indexed: 02/24/2024]
Abstract
The development of both detection and removal technologies for heavy metal ions is of great importance. Most of the existing adsorbents that contain oxygen, nitrogen or sulfur functional groups can remove heavy metals, but achieving both selective detection and removal of a single metal ion is difficult because they bind to a wide range of heavy metal ions. Herein, we selected zeolite imidazolium hydrochloride framework-71 (ZIF-71) with sufficient chlorine functional groups to fabricate magnetic ZIF-71 multifunctional composites (M-ZIF-71). M-ZIF-71 had a large specific surface area, excellent water stability, and good magnetic properties, which made M-ZIF-71 conducive to the separation and recovery of adsorbents and the assembly of electrodes. M-ZIF-71 exhibited high selectivity, wide linear range (1-500 μg/L), and low detection limit (0.32 μg/L) for electrochemical detection of mercury ions (Hg2+). Meanwhile, M-ZIF-71 demonstrated rapid Hg2+ adsorption with a high capacity of 571.2 mg/g and excellent recyclability. The high selectivity for Hg2+ was attributed to the powerful affinity of highly electronegative chlorine and Hg2+. Moreover, XPS spectra demonstrated the interaction between chlorine and Hg2+. This work provides a new inspiration for applications in the targeted monitoring and removal of heavy metal pollution.
Collapse
Affiliation(s)
- Zhiying Shao
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Lijun Ding
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Weiran Zhu
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Cunhao Fan
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Kezuo Di
- School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Ruishuang Yuan
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Kun Wang
- Key Laboratory of Modern Agricultural Equipment and Technology (Jiangsu University), Ministry of Education, School of Agricultural Engineering, Jiangsu University, Zhenjiang 212013, PR China; School of Chemistry and Chemical Engineering, Jiangsu University, Zhenjiang 212013, PR China; Key Laboratory of Sensor Analysis of Tumor Marker, Ministry of Education, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China.
| |
Collapse
|
15
|
Yang JM, Liu BW, Zhang W. Superior Adsorptive Removal of Anionic Azo Dyes from Aqueous Solutions Using Sulfonic Acid Group-Modified MIL-101@Graphene Oxide Composite. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:6962-6970. [PMID: 38523302 DOI: 10.1021/acs.langmuir.3c04012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
It is critical to remove organic contaminants from wastewater released by the printing and dyeing industry for addressing water pollution issue. Therefore, the fabrication of new adsorbents with excellent removal efficiencies is an urgent task. A composite of MIL-101 partially functionalized with -SO3H (MIL-101-SO3H) and graphene oxide (GO) was prepared by assembling MIL-101-SO3H truncated octahedrons on the GO framework. The synthesized MIL-101-SO3H@GO has a superior adsorption efficiency for anionic azo dyes. The maximum adsorption capacities of MIL-101-SO3H@GO-1 for Congo red, methyl orange, acid orange 7, and acid orange G reached 2711.3, 818.8, 551.2, and 319.8 mg/g, respectively, which are considerably higher than those obtained using unmodified MIL-101. This is because additional interactions that promote azo dye adsorption, such as hydrogen bonding between the dye and the sulfonic acid groups of MIL-101-SO3H or the carboxyl groups of GO, were induced, and agglomerate pores that accommodated the dye were formed in the composite. The ultrahigh removal efficiency of the composite for azo dyes is mainly driven by hydrogen bonding, electrostatic interactions, π-π stacking between the MIL-101-SO3H@GO and dye molecules, synergistic interactions at the interface of GO and MIL-101-SO3H microcrystals, and the pore-filling effect. Understanding these driving forces for dye adsorption can contribute to the development of sustainable and functionally modified metal-organic framework composite adsorbents.
Collapse
Affiliation(s)
- Ji-Min Yang
- School of Chemistry & Chemical Engineering, Linyi University, Linyi 276005, China
| | - Bo-Wen Liu
- School of Chemistry & Chemical Engineering, Linyi University, Linyi 276005, China
| | - Wei Zhang
- School of Chemistry & Chemical Engineering, Linyi University, Linyi 276005, China
| |
Collapse
|
16
|
Awasthi MK, Amobonye A, Bhagwat P, Ashokkumar V, Gowd SC, Dregulo AM, Rajendran K, Flora G, Kumar V, Pillai S, Zhang Z, Sindhu R, Taherzadeh MJ. Biochemical engineering for elemental sulfur from flue gases through multi-enzymatic based approaches - A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 914:169857. [PMID: 38190912 DOI: 10.1016/j.scitotenv.2023.169857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 12/30/2023] [Accepted: 12/31/2023] [Indexed: 01/10/2024]
Abstract
Flue gases are the gases which are produced from industries related to chemical manufacturing, petrol refineries, power plants and ore processing plants. Along with other pollutants, sulfur present in the flue gas is detrimental to the environment. Therefore, environmentalists are concerned about its removal and recovery of resources from flue gases due to its activation ability in the atmosphere to transform into toxic substances. This review is aimed at a critical assessment of the techniques developed for resource recovery from flue gases. The manuscript discusses various bioreactors used in resource recovery such as hollow fibre membrane reactor, rotating biological contractor, sequential batch reactor, fluidized bed reactor, entrapped cell bioreactor and hybrid reactors. In conclusion, this manuscript provides a comprehensive analysis of the potential of thermotolerant and thermophilic microbes in sulfur removal. Additionally, it evaluates the efficacy of a multi-enzyme engineered bioreactor in this process. Furthermore, the study introduces a groundbreaking sustainable model for elemental sulfur recovery, offering promising prospects for environmentally-friendly and economically viable sulfur removal techniques in various industrial applications.
Collapse
Affiliation(s)
- Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China.
| | - Ayodeji Amobonye
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P O Box 1334, Durban 4000, South Africa
| | - Prashant Bhagwat
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P O Box 1334, Durban 4000, South Africa
| | - Veeramuthu Ashokkumar
- Center for Waste Management and Renewable Energy, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600077, India
| | - Sarath C Gowd
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University, Andhra Pradesh, India
| | - Andrei Mikhailovich Dregulo
- National Research University "Higher School of Economics", 17 Promyshlennaya str, 198095, Saint-Petersburg, Russia
| | - Karthik Rajendran
- Department of Environmental Science and Engineering, School of Engineering and Sciences, SRM University, Andhra Pradesh, India
| | - G Flora
- Department of Botany, St. Mary's College (Autonomous), Tamil Nadu, India
| | - Vinay Kumar
- Bioconversion and Tissue Engineering (BITE) Laboratory, Department of Community Medicine, Saveetha Medical College and Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Chennai, Thandalam-602105, India
| | - Santhosh Pillai
- Department of Biotechnology and Food Science, Faculty of Applied Sciences, Durban University of Technology, P O Box 1334, Durban 4000, South Africa
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi Province 712100, PR China
| | - Raveendran Sindhu
- Department of Food Technology, TKM Institute of Technology, Kollam 691 505, Kerala, India
| | | |
Collapse
|
17
|
Zhang L, Yang X, Yuan Q, Wei Z, Ding J, Chu T, Rong C, Zhang Q, Ye Z, Xuan FZ, Zhai Y, Zhang B, Yang X. Elucidating the structure-stability relationship of Cu single-atom catalysts using operando surface-enhanced infrared absorption spectroscopy. Nat Commun 2023; 14:8311. [PMID: 38097617 PMCID: PMC10721631 DOI: 10.1038/s41467-023-44078-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Accepted: 11/29/2023] [Indexed: 12/17/2023] Open
Abstract
Understanding the structure-stability relationship of catalysts is imperative for the development of high-performance electrocatalytic devices. Herein, we utilize operando attenuated total reflectance surface-enhanced infrared absorption spectroscopy (ATR-SEIRAS) to quantitatively monitor the evolution of Cu single-atom catalysts (SACs) during the electrochemical reduction of CO2 (CO2RR). Cu SACs are converted into 2-nm Cu nanoparticles through a reconstruction process during CO2RR. The evolution rate of Cu SACs is highly dependent on the substrates of the catalysts due to the coordination difference. Density functional theory calculations demonstrate that the stability of Cu SACs is highly dependent on their formation energy, which can be manipulated by controlling the affinity between Cu sites and substrates. This work highlights the use of operando ATR-SEIRAS to achieve mechanistic understanding of structure-stability relationship for long-term applications.
Collapse
Affiliation(s)
- Li Zhang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Xiaoju Yang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Qing Yuan
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhiming Wei
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Jie Ding
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Tianshu Chu
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, Key Laboratory of Pressure Systems and Safety of Ministry of Education, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Chao Rong
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, Key Laboratory of Pressure Systems and Safety of Ministry of Education, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Qiao Zhang
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Zhenkun Ye
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Wuhan, 430074, China
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Fu-Zhen Xuan
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, Key Laboratory of Pressure Systems and Safety of Ministry of Education, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yueming Zhai
- The Institute for Advanced Studies, Wuhan University, Wuhan, 430072, China
| | - Bowei Zhang
- Shanghai Key Laboratory of Intelligent Sensing and Detection Technology, Key Laboratory of Pressure Systems and Safety of Ministry of Education, School of Mechanical and Power Engineering, East China University of Science and Technology, Shanghai, 200237, China.
| | - Xuan Yang
- Key Laboratory of Material Chemistry for Energy Conversion and Storage, Huazhong University of Science and Technology, Wuhan, 430074, China.
- Hubei Key Laboratory of Bioinorganic Chemistry and Materia Medica, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
18
|
Patra R, Mondal S, Sarma D. Thiol and thioether-based metal-organic frameworks: synthesis, structure, and multifaceted applications. Dalton Trans 2023; 52:17623-17655. [PMID: 37961841 DOI: 10.1039/d3dt02884d] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
Metal-organic frameworks (MOFs) are unique hybrid porous materials formed by combining metal ions or clusters with organic ligands. Thiol and thioether-based MOFs belong to a specific category of MOFs where one or many thiols or thioether groups are present in organic linkers. Depending on the linkers, thiol-thioether MOFs can be divided into three categories: (i) MOFs where both thiol or thioether groups are part of the carboxylic acid ligands, (ii) MOFs where only thiol or thioether groups are present in the organic linker, and (iii) MOFs where both thiol or thioether groups are part of azolate-containing linkers. MOFs containing thiol-thioether-based acid ligands are synthesized through two primary approaches; one is by utilizing thiol and thioether-based carboxylic acid ligands where the bonding pattern of ligands with metal ions plays a vital role in MOF formation (HSAB principle). MOFs synthesized by this approach can be structurally differentiated into two categories: structures without common structural motifs and structures with common structural motifs (related to UiO-66, UiO-67, UiO-68, MIL-53, NU-1100, etc.). The second approach to synthesize thiol and thioether-based MOFs is indirect methods, where thiol or thioether functionality is introduced in MOFs by techniques like post-synthetic modifications (PSM), post-synthetic exchange (PSE) and by forming composite materials. Generally, MOFs containing only thiol-thioether-based ligands are synthesized by interfacial assisted synthesis, forming two-dimensional sheet frameworks, and show significantly high conductivity. A limited study has been done on MOFs containing thiol-thioether-based azolate ligands where both nitrogen- and sulfur-containing functionality are present in the MOF frameworks. These materials exhibit intriguing properties stemming from the interplay between metal centres, organic ligands, and sulfur functionality. As a result, they offer great potential for multifaceted applications, ranging from catalysis, sensing, and conductivity, to adsorption. This perspective is organised through an introduction, schematic representations, and tabular data of the reported thiol and thioether MOFs and concluded with future directions.
Collapse
Affiliation(s)
- Rajesh Patra
- Department of Chemistry, Indian Institute of Technology Patna, Bihar 801106, India.
| | - Sumit Mondal
- Department of Chemistry, Indian Institute of Technology Patna, Bihar 801106, India.
| | - Debajit Sarma
- Department of Chemistry, Indian Institute of Technology Patna, Bihar 801106, India.
| |
Collapse
|
19
|
Zou S, Lei J, Gao T, Xu X, Gou Q. C···S Tetrel Bond Favored in the Phenyl Isothiocyanate-CO 2 Complex: A Rotational Study. J Phys Chem A 2023; 127:9959-9965. [PMID: 37979188 DOI: 10.1021/acs.jpca.3c05187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2023]
Abstract
The rotational spectrum of the phenyl isothiocyanate-CO2 complex was investigated by pulsed-jet Fourier transform microwave spectroscopy complemented by quantum chemical calculations. Only one isomer, with CO2 almost in the plane of phenyl isothiocyanate, has been detected in the pulsed jet, of which the spectrum displays a quadrupole coupling hyperfine structure due to the presence of a 14N nucleus (I = 1). This structure is nearly equal to the lowest energy geometry obtained by B3LYP-D3(BJ)/6-311++G(d,p), which has been dominated by a C···S tetrel bond (n → π* interaction) and one secondary C-H···O hydrogen bond (n → σ* interaction). Molecular electrostatic potential and natural bond orbital analysis were used to characterize the noncovalent interactions of the complex. The results from this study would lay the groundwork for the design and advancement of materials that exhibit high efficiency in capturing CO2.
Collapse
Affiliation(s)
- Siyu Zou
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
| | - Juncheng Lei
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
| | - Tianyue Gao
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
| | - Xuefang Xu
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
| | - Qian Gou
- Department of Chemistry, School of Chemistry and Chemical Engineering, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
- School of Chemistry and Chemical Engineering, Chongqing Key Laboratory of Theoretical and Computational Chemistry, Chongqing University, Daxuecheng South Rd. 55, 401331 Chongqing, China
| |
Collapse
|
20
|
Fang L, Zeng J, Wang H, He F, Wan H, Li M, Ren W, Ding L, Yang L, Luo X. Insights into the proton-enhanced mechanism of hexavalent chromium removal by amine polymers in strong acid wastewater: Reduction of hexavalent chromium and sequestration of trivalent chromium. J Colloid Interface Sci 2023; 650:515-525. [PMID: 37421754 DOI: 10.1016/j.jcis.2023.06.212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/17/2023] [Accepted: 06/30/2023] [Indexed: 07/10/2023]
Abstract
Adsorption is a green technology of treating heavy metal-contaminated strong acid wastewaters for the recycling of heavy metal and reuse of strong acid. Herein, three amine polymers (APs) with different alkalinities and electron donating abilities were prepared to investigate the adsorption-reduction processes of Cr(VI). It was found that the removal of Cr(VI) was controlled by the concentration of -NRH+ on the surface of APs at pH > 2, which relies on the alkalinity of APs. However, the high concentration of NRH+ significantly facilitated the adsorption of Cr(VI) on the surface of APs and accelerated the mass transfer between Cr(VI) and APs at strong acid environment (pH ≤ 2). More importantly, the reduction of Cr(VI) was enhanced at pH ≤ 2, due to the high reduction potential of Cr(VI) (E ≥ 0.437). The ratio of reduction to adsorption (α) of Cr(VI) was above 0.70, and the proportion of Cr(III) bonding on Ph-AP excessed 67.6 %. Finally, a proton-enhanced mechanism of Cr(VI) removal was verified by analyzing FTIR and XPS spectra as well as constructing DFT model. This study provides a theoretical basis for the removal of Cr(VI) in the strong acid wastewater.
Collapse
Affiliation(s)
- Lili Fang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China; College of Chemistry, Nanchang University, Nanchang 330031, PR China
| | - Jinwen Zeng
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Huiling Wang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Fan He
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Huiqin Wan
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Mengling Li
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Wei Ren
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China.
| | - Lin Ding
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Liming Yang
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China
| | - Xubiao Luo
- Key Laboratory of Jiangxi Province for Persistent Pollutants Control and Resources Recycle, Nanchang Hangkong University, Nanchang 330063, PR China; College of Chemistry, Nanchang University, Nanchang 330031, PR China; School of Life Science, Jinggangshan University, Ji'an 343009, PR China.
| |
Collapse
|
21
|
Xiang H, Wang J, Guo Z, Chen Y, Jiang B, Ye S, Yi W. Functional Polythioamides Derived from Thiocarbonyl Fluoride. Angew Chem Int Ed Engl 2023; 62:e202313779. [PMID: 37749059 DOI: 10.1002/anie.202313779] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 09/25/2023] [Accepted: 09/25/2023] [Indexed: 09/27/2023]
Abstract
Polythioamide is a unique type of sulfur-containing polymer with advanced functionalities. Nonetheless, the elemental sulfur commonly used in their synthesis tends to react readily with unsaturated functional groups, thereby limiting the scope of eligible substrates. Inspired by the highly efficient sulfur-fluoride exchange (SuFEx) polymerization through discrete hubs, we present herein a pioneering and versatile approach to the synthesis of polythioamides from diboronic acids, secondary diamines, and thiocarbonyl fluoride as the central connective hub. Well-defined structures, including previously inaccessible unsaturated substrates, were realized. These newly devised polythioamides can efficiently and selectively bind to metal ions and were applied in precious-metal recovery. Further development resulted in PdII -crosslinked single-chain nanoparticles serving as recyclable homogeneous catalysts, thus demonstrating the vast potential of these unprecedented polythioamides. We anticipate that thiocarbonyl fluoride could emerge as a potent hub for facilitating the intricate synthesis of sulfur-containing polymers.
Collapse
Affiliation(s)
- Haonan Xiang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Jieping Wang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Zihao Guo
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Yucong Chen
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Beihan Jiang
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Sitao Ye
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
| | - Wenbin Yi
- School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing, 210094, China
- Key Laboratory of Organofluorine Chemistry, Shanghai Institute Organic Chemistry, Chinese Academy of Sciences, Shanghai, 200032, China
| |
Collapse
|
22
|
Kaur M, Kumar S, Yusuf M, Lee J, Malik AK, Ahmadi Y, Kim KH. Schiff base-functionalized metal-organic frameworks as an efficient adsorbent for the decontamination of heavy metal ions in water. ENVIRONMENTAL RESEARCH 2023; 236:116811. [PMID: 37541413 DOI: 10.1016/j.envres.2023.116811] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/29/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
Adsorptive removal of heavy metal ions from water is an energy- and cost-effective water decontamination technology. Schiff base functionalities can be incorporated into the pore cages of metal-organic frameworks (MOFs) via direct synthesis, post-synthetic modification, and composite formation. Such incorporation can efficiently enhance the interactions between the MOF adsorbent and target heavy metal ions to promote the selective adsorption of the latter. Accordingly, Schiff base-functionalized MOFs have great potential to selectively remove a particular metal ion from the aqueous solutions in the presence of coexisting (interfering) metal ions through the binding sites within their pore cages. Schiff base-functionalized MOFs can bind divalent metal ions (e.g., Pb(II), Co(II), Cu(II), Cd (II), and Hg (II)) more strongly than trivalent metal ions (e.g., Cr(III)). The adsorption capacity range of Schiff base-functionalized MOFs for divalent ions is thus much more broad (22.4-713 mg g-1) than that of trivalent metal ions (118-127 mg g-1). To evaluate the adsorption performance between different adsorbents, the two parameters (i.e., adsorption capacity and partition coefficient (PC)) are derived and used for comparison. Further, the possible interactions between the Schiff base sites and the target heavy metal ions are discussed to help understand the associated removal mechanisms. This review delivers actionable knowledge for developing Schiff-base functionalized MOFs toward the adsorptive removal of heavy metal ions in water in line with their performance evaluation and associated removal mechanisms. Finally, this review highlights the challenges and forthcoming research and development needs of Schiff base-functionalized MOFs for diverse fields of operations.
Collapse
Affiliation(s)
- Manpreet Kaur
- Department of Chemistry, Punjabi University, Patiala, 147002, Punjab, India
| | - Sanjay Kumar
- Department of Chemistry, Multani Mal Modi College, Patiala, 147 001, Punjab, India
| | - Mohamad Yusuf
- Department of Chemistry, Punjabi University, Patiala, 147002, Punjab, India
| | - Jechan Lee
- Department of Global Smart City & School of Civil, Architectural Engineering, and Landscape Architecture, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Ashok Kumar Malik
- Department of Chemistry, Punjabi University, Patiala, 147002, Punjab, India
| | - Younes Ahmadi
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea
| | - Ki-Hyun Kim
- Department of Civil and Environmental Engineering, Hanyang University, Seoul, 04763, Republic of Korea.
| |
Collapse
|
23
|
Saddique Z, Imran M, Latif S, Javaid A, Nawaz S, Zilinskaite N, Franco M, Baradoke A, Wojciechowska E, Boczkaj G. Advanced nanomaterials and metal-organic frameworks for catalytic bio-diesel production from microalgal lipids - A review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 349:119028. [PMID: 39492394 DOI: 10.1016/j.jenvman.2023.119028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/13/2023] [Accepted: 09/15/2023] [Indexed: 11/05/2024]
Abstract
Increasing energy demands require exploring renewable, eco-friendly (green), and cost-effective energy resources. Among various sources of biodiesel, microalgal lipids are an excellent resource, owing to their high abundance in microalgal biomass. Transesterification catalyzed by advanced materials, especially nanomaterials and metal-organic frameworks (MOFs), is a revolutionary process for overcoming the energy crisis. This review elaborates on the conversion of microalgal lipids (including genetically modified algae) into biodiesel while primarily focusing on the transesterification of lipids into biodiesel by employing catalysts based on above mentioned advanced materials. Furthermore, current challenges faced by this process for industrial scale upgradation are presented with future perspectives and concluding remarks. These materials offer higher conversion (>90%) of microalgae into biodiesel. Nanocatalytic processes, lack the need for higher pressure and temperature, which simplifies the overall process for industrial-scale application. Green biodiesel production from microalgae offers better fuel than fossil fuels in terms of performance, quality, and less environmental harm. The chemical and thermal stability of advanced materials (particularly MOFs) is the main benefit of the blue recycling of catalysts. Advanced materials-based catalysts are reported to reduce the risk of biodiesel contamination. While purity of glycerin as side product makes it useful skin-related product. However, these aspects should still be controlled in future studies. Further studies should relate to additional aspects of green production, including waste management strategies and quality control of obtained products. Finally, catalysts stability and recycling aspects should be explored.
Collapse
Affiliation(s)
- Zohaib Saddique
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, 54000, Pakistan
| | - Muhammad Imran
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, 54000, Pakistan
| | - Shoomaila Latif
- School of Physical Sciences, University of the Punjab, Lahore, 54000, Pakistan
| | - Ayesha Javaid
- Centre for Inorganic Chemistry, School of Chemistry, University of the Punjab, Lahore, 54000, Pakistan
| | - Shahid Nawaz
- Department of Chemistry, The University of Lahore, Lahore, Pakistan
| | - Nemira Zilinskaite
- Gurdon Institute, Department of Physiology, Development and Neuroscience, University of Cambridge, Tennis Court Road, Cambridge, CB2 1QN, UK; Faculty of Medicine, University of Vilnius, M. K. Čiurlionio g. 21, LT-03101, Vilnius, Lithuania
| | - Marcelo Franco
- Biotransformation and Organic Biocatalysis Research Group, Department of Exact Sciences, Santa Cruz State University, 45654-370, Ilhéus, Brazil
| | - Ausra Baradoke
- Department of Chemistry, University of Oxford, South Parks Road, Oxford, OX1 3QZ, United Kingdom
| | - Ewa Wojciechowska
- Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, 80-233, Gdańsk, G. Narutowicza 11/12 Str, Poland
| | - Grzegorz Boczkaj
- Gdańsk University of Technology, Faculty of Civil and Environmental Engineering, Department of Sanitary Engineering, 80-233, Gdańsk, G. Narutowicza 11/12 Str, Poland; EkoTech Center, Gdańsk University of Technology, G. Narutowicza St. 11/12, Gdansk, 80-233, Poland.
| |
Collapse
|
24
|
Karbalaee Hosseini A, Tadjarodi A. Novel Zn metal-organic framework with the thiazole sites for fast and efficient removal of heavy metal ions from water. Sci Rep 2023; 13:11430. [PMID: 37454199 PMCID: PMC10349873 DOI: 10.1038/s41598-023-38523-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023] Open
Abstract
Pollution of water by heavy metal ions such as Pb2+ and Hg2+ is considered as an important issue, because of the potential toxic effects these ions impose on environmental ecosystems and human health. A new Zn-based metal-organic framework, [Zn2(DPTTZ) (OBA)2] (IUST-2), was synthesized through a solvothermal method by the reaction of 2, 5-di (4- pyridyl) thiazolo [5, 4-d] thiazole ligand (DPTTZ), the "V-shape" 4,4'-oxybis (benzoic acid) ligand (OBA) and zinc nitrate (Zn(NO3)2·6H2O). This novel MOF has been characterized by several analysis techniques such as fourier transform infrared spectroscopy (FT-IR), elemental analysis (EA), powder x-ray diffraction (PXRD), thermogravimetry analysis (TGA), differential thermal analysis (DTA), field emission scanning electron microscopy (FE-SEM), Brunauer-Emmett-Teller (BET) surface area analysis and single-crystal X-ray diffraction (SXRD). This 3D MOF was tested for removing Pb2+ and Hg2+ ions from water. The factors that were investigated on the elimination of Pb2+ and Hg2+ ions were of pH, adsorption time, and the effect of initial ions concentration. According to the results, this particular Zn-MOF had significant performance in eliminating Pb2+ and Hg2+ ions from water with a removal efficiency of more than 97% and 87% within 3 min, respectively.
Collapse
Affiliation(s)
- Akram Karbalaee Hosseini
- Research Laboratory of Inorganic Materials Synthesis, Department of Chemistry, Iran University of Science and Technology (IUST), Tehran, 16846-13114, Iran
| | - Azadeh Tadjarodi
- Research Laboratory of Inorganic Materials Synthesis, Department of Chemistry, Iran University of Science and Technology (IUST), Tehran, 16846-13114, Iran.
| |
Collapse
|
25
|
Liu Y, Wang S, Li Z, Chu H, Zhou W. Insight into the surface-reconstruction of metal–organic framework-based nanomaterials for the electrocatalytic oxygen evolution reaction. Coord Chem Rev 2023. [DOI: 10.1016/j.ccr.2023.215117] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/03/2023]
|
26
|
Zhou X, Liu S, Yang C, Qin J, Hu Y. Photocatalytic hydrogen energy recovery from sulfide-containing wastewater using thiol-UiO-66 modified Mn0.5Cd0.5S nanocomposites. Sep Purif Technol 2023. [DOI: 10.1016/j.seppur.2023.123772] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
|
27
|
Zhang S, Qian L, Zhou Y, Guo Y. High selective removal towards Hg(II) from aqueous solution with magnetic diatomite-based adsorbent functionalized by poly(3-aminothiophenol): conditional optimization, application, and mechanism. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:56121-56136. [PMID: 36913017 DOI: 10.1007/s11356-023-26070-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
A novel diatomite-based (DMT) material was obtained by post-functionalization of DMT/CoFe2O4 with 3-aminothiophenol and applied to remove Hg(II) ions from aqueous solution. The obtained adsorbent of DMT/CoFe2O4-p-ATP was detected by various characterization means. The optimization of response surface methodology reveals that magnetic diatomite-based material of DMT/CoFe2O4-p-ATP has an optimal adsorption capability of 213.2 mg/g towards Hg(II). The removal process of Hg(II) is fitted well to pseudo-second-order and Langmuir models, respectively, indicating that the adsorption process is controlled by monolayer chemisorption. DMT/CoFe2O4-p-ATP exhibits superior affinity towards Hg(II) through electrostatic attraction and surface chelation, compared with other coexisting heavy metal ions. Meanwhile, the prepared adsorbent DMT/CoFe2O4-p-ATP displays excellent recyclability, good magnetic separation performance, and satisfying stability. The as-prepared diatomite-based DMT/CoFe2O4-p-ATP can be a promising adsorbent for mercury ions.
Collapse
Affiliation(s)
- Shuyuan Zhang
- Department of Municipal Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Lin Qian
- Department of Municipal Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yu Zhou
- Department of Municipal Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China
| | - Yongfu Guo
- Department of Municipal Engineering, Suzhou University of Science and Technology, Suzhou, 215009, China.
- Jiangsu Collaborative Innovation Center of Water Treatment Technology and Material, Suzhou, 215009, Jiangsu, China.
| |
Collapse
|
28
|
Chowdhury S, Sharma P, Kundu K, Das PP, Rathi P, Siril PF. Systematic Thiol Decoration in a Redox-Active UiO-66-(SH) 2 Metal-Organic Framework: A Case Study under Oxidative and Reductive Conditions. Inorg Chem 2023; 62:3875-3885. [PMID: 36802595 DOI: 10.1021/acs.inorgchem.2c04233] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2023]
Abstract
The practical applicability of thiolated metal-organic frameworks (MOFs) remains challenging due to their low crystallinity and transient stability. Herein, we present a one-pot solvothermal synthesis process using varying ratios of 2,5-dimercaptoterephthalic acid (DMBD) and 1,4-benzene dicarboxylic acid (100/0, 75/25, 50/50, 25/75, and 0/100) to prepare stable mixed-linker UiO-66-(SH)2 MOFs (ML-U66SX). For each variant, the effects of different linker ratios on the crystallinity, defectiveness, porosity, and particle size have been discussed in detail. In addition, the impact of modulator concentration on these features has also been described. The stability of ML-U66SX MOFs was investigated under reductive and oxidative chemical conditions. The mixed-linker MOFs were used as sacrificial catalyst supports to highlight the interplay of template stability on the rate of the gold-catalyzed 4-nitrophenol hydrogenation reaction. The release of catalytically active gold nanoclusters originating from the framework collapse decreased with the controlled DMBD proportion, resulting in a 59% drop in the normalized rate constants (9.11-3.73 s-1 mg-1). In addition, post-synthetic oxidation (PSO) was used to further probe the stability of the mixed-linker thiol MOFs under harsh oxidative conditions. Following oxidation, the UiO-66-(SH)2 MOF underwent immediate structural breakdown, unlike other mixed-linker variants. Along with crystallinity, the microporous surface area of the post-synthetically oxidized UiO-66-(SH)2 MOF could be increased from 0 to 739 m2 g-1. Thus, the present study delineates a mixed-linker strategy to stabilize the UiO-66-(SH)2 MOF under harsh chemical conditions through meticulous thiol decoration.
Collapse
Affiliation(s)
- Sumanta Chowdhury
- School of Basic Sciences and Advanced Materials Research Centre, Indian Institute of Technology Mandi, Mandi 175005, Himachal Pradesh, India
| | - Parul Sharma
- School of Basic Sciences and Advanced Materials Research Centre, Indian Institute of Technology Mandi, Mandi 175005, Himachal Pradesh, India
| | - Koustav Kundu
- School of Basic Sciences and Advanced Materials Research Centre, Indian Institute of Technology Mandi, Mandi 175005, Himachal Pradesh, India
| | - Partha Pratim Das
- Centre for Novel States of Complex Materials Research, Seoul National University, Seoul 08826, Republic of Korea
| | - Preeti Rathi
- School of Basic Sciences and Advanced Materials Research Centre, Indian Institute of Technology Mandi, Mandi 175005, Himachal Pradesh, India
| | - Prem Felix Siril
- School of Basic Sciences and Advanced Materials Research Centre, Indian Institute of Technology Mandi, Mandi 175005, Himachal Pradesh, India
| |
Collapse
|
29
|
Cui GY, Zhang W, Yang JM. Selective adsorptive removal of anionic dyes from aqueous solutions using MIL-101@GO: Effect of GO. Colloids Surf A Physicochem Eng Asp 2023. [DOI: 10.1016/j.colsurfa.2023.131364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/30/2023]
|
30
|
Song E, Anh Thu Tran N, Woon Kang Y, Yu H, Yoo CY, Tae Park J, Cho Y. Two-Dimensional Bimetallic Cobalt-Copper Metal Organic Framework for Improved Desalination Performance of Capacitive Deionization. J IND ENG CHEM 2023. [DOI: 10.1016/j.jiec.2023.03.028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
31
|
Hu B, Wei T, Cui Y, Xu X, Li Q. Hg(II) immobilization and detection using gel formation with tetra-(4-pyridylphenyl)ethylene and an aggregation-induced luminescence effect. Sci Rep 2023; 13:2135. [PMID: 36747001 PMCID: PMC9902491 DOI: 10.1038/s41598-023-29431-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Accepted: 02/03/2023] [Indexed: 02/08/2023] Open
Abstract
Tetra-(4-pyridylphenyl)ethylene (TPPE), featuring an aggregation-induced luminescence effect (AIE), has been synthesized and used for selective detection of Hg2+ in DMF/H2O (3:7, v/v) binary solutions. There was a color change from colorless to yellow in the detection of the Hg2+ ions, in addition to an increased fluorescence emission. This shows that TPPE will function as an excellent "turn-on" fluorescence probe in the detection Hg2+. Moreover, the interference of Al3+, Ba2+, Mn2+, Ca2+, Fe3+, Cu2+, Ag+, Cd2+, Co2+, Ni2+, Mg2+, Pb2+, Zn2+, and Cr3+ ions was found to be negligible under optimized solvent conditions. Cysteine and EDTA were also found to form TPPE-based fluorescent switches with the Hg2+ ions. The practical use of the TPPE sensor was also demonstrated by using a specific test kit. Characterization using FT-IR, NMR titration, UV titration, EDS, and HR-MS techniques showed that Hg2+ will form a 1:1 complex with TPPE. Also, the observation of a Tyndall effect, in addition to UV absorption and fluorescence spectra, did clearly demonstrate the presence of an AIE. More noteworthy, TPPE and Hg2+ were found to form a metal-organic gel (MOG) in the DMF solution. The SEM, TEM, ICP, and Zeta potential analyses confirmed that the fluorescent MOG could further adsorb an excess of Hg2+ ions. The BET analyses revealed that the MOG showed a type IV-H3 hysteresis loop according to the International Union of Pure and Applied Chemistry classification. The results of the XRD analysis and of the spectroscopic titrations show that a π-π stacking may be the auxiliary driving force for the gel formation, after that a coordination has taken place. These results indicate that further research on structurally simple metal ion fluorescent probes, which are based on the AIE, is promising for the achievement of a simultaneous fluorescent detection and adsorption of heavy metal pollutants.
Collapse
Affiliation(s)
- Bing Hu
- College of Science, Gansu Agricultural University, Lanzhou, 730070, Gansu, People's Republic of China.
| | - Taibao Wei
- grid.412260.30000 0004 1760 1427College of Chemistry and Chemical Engineering, Northwest Normal University, Lanzhou, 730070 Gansu People’s Republic of China
| | - Yanjun Cui
- grid.411734.40000 0004 1798 5176College of Science, Gansu Agricultural University, Lanzhou, 730070 Gansu People’s Republic of China
| | - Xia Xu
- grid.411734.40000 0004 1798 5176College of Science, Gansu Agricultural University, Lanzhou, 730070 Gansu People’s Republic of China
| | - Qiao Li
- grid.411291.e0000 0000 9431 4158College of Chemical Engineering, Lanzhou University of Arts and Science, Lanzhou, 730000 Gansu People’s Republic of China
| |
Collapse
|
32
|
Lee G, Park G, Kim S, Jhung SH. Adsorptive removal of aromatic diamines from water using metal-organic frameworks functionalized with a nitro group. JOURNAL OF HAZARDOUS MATERIALS 2023; 443:130133. [PMID: 36274546 DOI: 10.1016/j.jhazmat.2022.130133] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/30/2022] [Accepted: 10/03/2022] [Indexed: 06/16/2023]
Abstract
Adsorptive removal of aromatic diamines such as methylenedianiline (MDA) and p-phenylenediamine (PPD) was firstly investigated with nitro-functionalized metal-organic frameworks (MOFs, MIL-101(Cr)-NO2). The MIL-101(Cr)-NO2 showed much better performances in the removal of MDA and PPD, in both adsorption capacity and kinetics, than any other adsorbents. For example, MIL-101(Cr)-NO2 had a much higher maximum adsorption capacity for MDA (1111 mg·g-1) than activated carbon (208 mg·g-1) or a reported adsorbent (391 mg·g-1). Based on experimental results, hydrogen bonding (especially, via the formation of a 6-membered ring (6-MR) between -NO2 of the adsorbent and -NH2 of the adsorbates) could be suggested as the main mechanism to interpret the noticeable adsorption of the diamines. Importantly, this is the first example to confirm that MOFs with nitro group can be a competitive adsorbent to remove organics composed of amino group, especially via making 6-MR through hydrogen bonding. Higher adsorption of MDA than that of PPD over MIL-101(Cr)-NO2 might be explained with π-π interaction between aromatic rings (π-lean aromatics of MOF and π-rich aromatics of the adsorbates). Moreover, MIL-101(Cr)-NO2 could be recycled after simple washing, suggesting the potential use of the MOF in adsorptive purification of contaminated water with organics with amino groups.
Collapse
Affiliation(s)
- Gyudong Lee
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, South Korea
| | - Geondo Park
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, South Korea
| | - Sunghwan Kim
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, South Korea.
| | - Sung Hwa Jhung
- Department of Chemistry and Green-Nano Materials Research Center, Kyungpook National University, Daegu 41566, South Korea.
| |
Collapse
|
33
|
Liang X, Liang Y, Zhong S, Liu Z, Li F, Zhang Y, Yin Y, Huang Z. Mechanochemical-assisted reduction of human hair for efficient and selective removal of aqueous Hg(II) to the ppb level. J Mol Liq 2023. [DOI: 10.1016/j.molliq.2022.121124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
34
|
Qi X, Liu K, Lu X, Deng Y, Chang Z. Metal-organic frameworks-based microtrapper for real-time monitoring of targeted analyte and mechanism study. Talanta 2023; 253:123921. [PMID: 36126524 DOI: 10.1016/j.talanta.2022.123921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 09/01/2022] [Accepted: 09/04/2022] [Indexed: 12/13/2022]
Abstract
Interstitial fluid (ISF) provides important information of clinical value and physiological significance beyond blood tests for obtaining more precise health information and disease theranostics. Generally, current strategies are limited to simple extraction with time-consuming follow-up procedures. Facing challenges in efficient and real-time monitoring of target analytes in transdermal ISF, we develop metal-organic framework (MOF)-functionalized microneedle (MN) patches to achieve efficient antibiotics sampling, coupling direct analysis in real time mass spectrometry (DART-MS). The MOF MN microtrapper is constructed in a double-layered structure with a hard core and a better tissue penetration was accomplished. The MOF-based microtrapper manifests good in-vitro and in-vivo antibiotics tracking capability with a semi-quantitative method established. Moreover, the hydrogen-bond driven interaction is clarified by using molecular dynamics simulations (MDS) and related computational analysis. Good penetration safety is confirmed by histological analysis with promising clinical transnationality. We anticipate MOF MN-based microdevices provide a versatile minimally invasive strategy for transdermal ISF extraction and an extendable platform for a range of target molecules monitoring, including drugs, metabolites, biomarkers, et c, with promising clinical transnationality.
Collapse
Affiliation(s)
- Xiaoyue Qi
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China; Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, 100081, China.
| | - Kexin Liu
- School of Medical Technology, Beijing Institute of Technology, Beijing, 100081, China; Institute of Engineering Medicine, Beijing Institute of Technology, Beijing, 100081, China
| | - Xueguang Lu
- Institute of Chemistry Chinese Academy of Sciences, Beijing, 100190, China
| | - Yulin Deng
- Beijing Key Laboratory for Separation and Analysis in Biomedicine and Pharmaceuticals, School of Life Science, Beijing Institute of Technology, Beijing, 100081, China.
| | - Ziyong Chang
- Civil and Resource Engineering School, University of Science and Technology Beijing, Beijing, 100083, China
| |
Collapse
|
35
|
Guo X, Wang L, Wang L, Huang Q, Bu L, Wang Q. Metal-organic frameworks for food contaminant adsorption and detection. Front Chem 2023; 11:1116524. [PMID: 36742039 PMCID: PMC9890379 DOI: 10.3389/fchem.2023.1116524] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/02/2023] [Indexed: 01/19/2023] Open
Abstract
Metal-organic framework materials (MOFs) have been widely used in food contamination adsorption and detection due to their large specific surface area, specific pore structure and flexible post-modification. MOFs with specific pore size can be targeted for selective adsorption of some contaminants and can be used as pretreatment and pre-concentration steps to purify samples and enrich target analytes for food contamination detection to improve the detection efficiency. In addition, MOFs, as a new functional material, play an important role in developing new rapid detection methods that are simple, portable, inexpensive and with high sensitivity and accuracy. The aim of this paper is to summarize the latest and insightful research results on MOFs for the adsorption and detection of food contaminants. By summarizing Zn-based, Cu-based and Zr-based MOFs with low cost, easily available raw materials and convenient synthesis conditions, we describe their principles and discuss their applications in chemical and biological contaminant adsorption and sensing detection in terms of stability, adsorption capacity and sensitivity. Finally, we present the limitations and challenges of MOFs in food detection, hoping to provide some ideas for future development.
Collapse
|
36
|
Le TA, Huynh TP. Current advances in the Chemical functionalization and Potential applications of Guar gum and its derivatives. Eur Polym J 2023. [DOI: 10.1016/j.eurpolymj.2023.111852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
|
37
|
Metal organic framework composites as adsorbents: Synergistic effect for water purification. Coord Chem Rev 2022. [DOI: 10.1016/j.ccr.2022.214815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
38
|
Zhou Y, Zeng Z, Guo Y, Zheng X. Selective adsorption of Hg(ii) with diatomite-based mesoporous materials functionalized by pyrrole-thiophene copolymers: condition optimization, application and mechanism. RSC Adv 2022; 12:33160-33174. [PMID: 36425157 PMCID: PMC9673902 DOI: 10.1039/d2ra05938j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/03/2022] [Indexed: 11/29/2023] Open
Abstract
A novel diatomite-based mesoporous material of MCM-41/co-(PPy-Tp) was prepared with MCM-41 as carrier and functionalized with the copolymer of pyrrole and thiophene. The physicochemical characteristics of the as-prepared materials were characterized by various characterization means. The removal behaviour of Hg(ii) was adequately investigated via series of single factor experiments and some vital influence factors were optimized via response surface methodology method. The results exhibit that diatomite-based materials MCM-41/co-(PPy-Tp) has an optimal adsorption capability of 537.15 mg g-1 towards Hg(ii) at pH = 7.1. The removal process of Hg(ii) onto MCM-41/co-(PPy-Tp) is controlled by monolayer chemisorption based on the fitting results of pseudo-second-order kinetic and Langmuir models. In addition, the adsorption of Hg(ii) ions onto MCM-41/co-(PPy-Tp) is mainly completed through forming a stable complex with N or S atoms in MCM-41/co-(PPy-Tp) by electrostatic attraction and chelation. The as-developed MCM-41/co-(PPy-Tp) displays excellent recyclability and stabilization, has obviously selective adsorption for Hg(ii) in the treatment of actual electroplating wastewater. Diatomite-based mesoporous material functionalized by the copolymer of pyrrole and thiophene exhibits promising application prospect.
Collapse
Affiliation(s)
- Yu Zhou
- Department of Municipal Engineering, Suzhou University of Science and Technology Suzhou 215009 China
| | - Zheng Zeng
- Department of Municipal Engineering, Suzhou University of Science and Technology Suzhou 215009 China
| | - Yongfu Guo
- Department of Municipal Engineering, Suzhou University of Science and Technology Suzhou 215009 China
- Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment Suzhou 215009 Jiangsu China
| | - Xinyu Zheng
- Department of Municipal Engineering, Suzhou University of Science and Technology Suzhou 215009 China
| |
Collapse
|
39
|
Tapangpan P, Chiangraeng N, Boer SA, Semakul N, Nimmanpipug P, Rujiwatra A. Mercury removal efficiency of disulfide- and thiol-functionalized lanthanide coordination polymers. CHEMOSPHERE 2022; 305:135330. [PMID: 35724718 DOI: 10.1016/j.chemosphere.2022.135330] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 05/24/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
To compare efficiency of disulfide and thiol groups in removing mercury from aqueous medium without noteworthy influence from structural differences, a series of new [LnIII(dtba)1.5(H2O)2] (LnIII = EuIII (I), GdIII (II) and TbIII (III), H2dtba = 4,4'-dithiobenzoic acid) were synthesized and characterized. The single crystal structure of I was elucidated and is described. Reaction of II with hydrazine gave IISH containing disulfide and thiol groups. Experimental data confirmed the preserved framework structure and the co-existing of disulfide and thiol groups in IISH. Robustness of II and IISH over a wide range of pH (2-10) was confirmed and their mercury removal performances at different pH were evaluated in terms of removal efficiencies (%R), equilibrium uptake capacities (qe) and distribution constant (Kd). The dependence of these parameters on pH is reported. The best values of %R, qe and Kd could be achieved at pH 10 at which surfaces of the adsorbents were negatively charged; 86%R, 429 mg g-1, and 6.04 × 103 mL g-1 (II), and 98%R, 490 mg g-1 and 5.08 × 104 mL g-1 (IISH). At pH 7, influences of the initial concentration of mercury on performances of the adsorbents as well as the adsorption isotherms and kinetics were examined from which the better performance of IISH has been concluded. The characterization of the adsorptions by the Langmuir model and the pseudo-second-order kinetic as well as their excellent consistency with the experimental data are included. At neutral pH, selectivity to the adsorption of mercury and tolerance to common anions were illustrated. The better affinity between mercury and thiol group and therefore its contribution to the better performance of IISH was then ascertained by a computational study.
Collapse
Affiliation(s)
- Pimchanok Tapangpan
- Department of Chemistry, Faculty of Science, Chiang Mai University, 239 Houy Kaew Road, Chiang Mai, 50200, Thailand
| | - Natthiti Chiangraeng
- Department of Chemistry, Faculty of Science, Chiang Mai University, 239 Houy Kaew Road, Chiang Mai, 50200, Thailand
| | - Stephanie A Boer
- ANSTO Australian Synchrotron, 800 Blackburn Road, Clayton, VIC, 3168, Australia
| | - Natthawat Semakul
- Department of Chemistry, Faculty of Science, Chiang Mai University, 239 Houy Kaew Road, Chiang Mai, 50200, Thailand; Materials Science Research Center, Faculty of Science, Chiang Mai University, 239 Houy Kaew Road, Chiang Mai, 50200, Thailand
| | - Piyarat Nimmanpipug
- Department of Chemistry, Faculty of Science, Chiang Mai University, 239 Houy Kaew Road, Chiang Mai, 50200, Thailand; Materials Science Research Center, Faculty of Science, Chiang Mai University, 239 Houy Kaew Road, Chiang Mai, 50200, Thailand
| | - Apinpus Rujiwatra
- Department of Chemistry, Faculty of Science, Chiang Mai University, 239 Houy Kaew Road, Chiang Mai, 50200, Thailand; Materials Science Research Center, Faculty of Science, Chiang Mai University, 239 Houy Kaew Road, Chiang Mai, 50200, Thailand.
| |
Collapse
|
40
|
Analogize of metal-organic frameworks (MOFs) adsorbents functional sites for Hg2+ ions removal. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121471] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
41
|
Nguyen TT, Duy Nguyen TH, Thi Huynh TT, Dinh Dang MH, Thuy Nguyen LH, Le Hoang Doan T, Nguyen TP, Nguyen MA, Tran PH. Ionic liquid-immobilized silica gel as a new sorbent for solid-phase extraction of heavy metal ions in water samples. RSC Adv 2022; 12:19741-19750. [PMID: 35865198 PMCID: PMC9260518 DOI: 10.1039/d2ra02980d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/30/2022] [Indexed: 12/25/2022] Open
Abstract
In the current study, we have developed a solid-phase extraction (SPE) method with novel C18-alkylimidazolium ionic liquid immobilized silica (SiO2–(CH2)3–Im–C18) for the preconcentration of trace heavy metals from aqueous samples as a prior step to their determination by inductively coupled plasma mass spectrometry (ICPMS). The material was characterized by Fourier-transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), Thermogravimetric Analysis (TGA), Energy-Dispersive X-ray Spectroscopy (EDS), and Brunauer–Emmett–Teller (BET) analysis. A mini-column packed with SiO2–(CH2)3–Im–C18 sorbent was used for the extraction of the metal ions complexed with 1-(2-pyridylazo)-2-naphthol (PAN) from the water sample. The effects of pH, PAN concentration, length of the alkyl chain of the ionic liquid, eluent concentration, eluent volume, and breakthrough volume have been investigated. The SiO2–(CH2)3–Im–C18 allows the isolation and preconcentration of the heavy metal ions with enrichment factors of 150, 60, 80, 80, and 150 for Cr3+, Ni2+, Cu2+, Cd2+, and Pb2+, respectively. The limits of detection (LODs) for Cr3+, Ni2+, Cu2+, Cd2+, and Pb2+ were 0.724, 11.329, 4.571, 0.112, and 0.819 μg L−1, respectively with the relative standard deviation (RSD) in the range of 0.941–1.351%. Novel C18-alkylimidazolium ionic liquid immobilized silica (SiO2–(CH2)3–Im–C18) was synthesized through a four-step procedure. It showed high efficiency for the separation/preconcentration of trace heavy metal ions from aqueous samples.![]()
Collapse
Affiliation(s)
- The Thai Nguyen
- Department of Organic Chemistry, Faculty of Chemistry, University of Science Ho Chi Minh City Vietnam .,Vietnam National University Ho Chi Minh City Vietnam
| | - Tu-Hoai Duy Nguyen
- Department of Organic Chemistry, Faculty of Chemistry, University of Science Ho Chi Minh City Vietnam .,Vietnam National University Ho Chi Minh City Vietnam
| | - Tam Thanh Thi Huynh
- Department of Organic Chemistry, Faculty of Chemistry, University of Science Ho Chi Minh City Vietnam .,Vietnam National University Ho Chi Minh City Vietnam
| | - Minh-Huy Dinh Dang
- Vietnam National University Ho Chi Minh City Vietnam .,Center for Innovative Materials and Architectures (INOMAR) Ho Chi Minh City Vietnam
| | - Linh Ho Thuy Nguyen
- Vietnam National University Ho Chi Minh City Vietnam .,Center for Innovative Materials and Architectures (INOMAR) Ho Chi Minh City Vietnam
| | - Tan Le Hoang Doan
- Vietnam National University Ho Chi Minh City Vietnam .,Center for Innovative Materials and Architectures (INOMAR) Ho Chi Minh City Vietnam
| | - Thinh Phuc Nguyen
- Vietnam National University Ho Chi Minh City Vietnam .,Department of Analytical Chemistry, Faculty of Chemistry, University of Science Ho Chi Minh City Vietnam
| | - Mai Anh Nguyen
- Vietnam National University Ho Chi Minh City Vietnam .,Department of Analytical Chemistry, Faculty of Chemistry, University of Science Ho Chi Minh City Vietnam
| | - Phuong Hoang Tran
- Department of Organic Chemistry, Faculty of Chemistry, University of Science Ho Chi Minh City Vietnam .,Vietnam National University Ho Chi Minh City Vietnam
| |
Collapse
|
42
|
Jeelani A, Muthu S, Ramesh P, Irfan A. Experimental spectroscopic, molecular structure, electronic solvation, biological prediction and topological analysis of 2, 4, 6-tri (propan-2-yl) benzenesulfonyl chloride: An antidepressant agent. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
43
|
Zhang X, Li H, Ye M, Zhang H, Wang G, Zhang Y. Bacterial cellulose hybrid membrane grafted with high ratio of adipic dihydrazide for highly efficient and selective recovery of gold from e-waste. Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.121021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
44
|
Song KS, Ashirov T, Talapaneni SN, Clark AH, Yakimov AV, Nachtegaal M, Copéret C, Coskun A. Porous polyisothiocyanurates for selective palladium recovery and heterogeneous catalysis. Chem 2022; 8:2043-2059. [DOI: https:/doi.org/10.1016/j.chempr.2022.05.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/03/2024]
|
45
|
Xu T, Zhou X, Xiao X, Yuan Y, Liu L, Huang T, Li C, Tang Z, Chen T. Nickel-Catalyzed Decarbonylative Thioetherification of Carboxylic Acids with Thiols. J Org Chem 2022; 87:8672-8684. [PMID: 35723528 DOI: 10.1021/acs.joc.2c00866] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A nickel-catalyzed decarbonylative thioetherification of carboxylic acids with thiols was developed. Under the reaction conditions, benzoic acids, cinnamic acids, and benzyl carboxylic acids coupled with various thiols including both aromatic and aliphatic ones produce the corresponding thioethers in up to 99% yields. Moreover, this reaction was applicable to the modification of bioactive molecules such as 3-methylflavone-8-carboxylic acid, probenecid, and flufenamic acid, and the synthesis of acaricide chlorbenside. These results well demonstrated the potential synthetic value of this new reaction in organic synthesis.
Collapse
Affiliation(s)
- Tianhao Xu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Xingyu Zhou
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Xiong Xiao
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Yan Yuan
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Long Liu
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Tianzeng Huang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Chunya Li
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Zhi Tang
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| | - Tieqiao Chen
- Key Laboratory of Ministry of Education for Advanced Materials in Tropical Island Resources, Hainan Provincial Key Lab of Fine Chem, Hainan Provincial Fine Chemical Engineering Research Center, Hainan University, Haikou 570228, China
| |
Collapse
|
46
|
|
47
|
Nanomaterials with Excellent Adsorption Characteristics for Sample Pretreatment: A Review. NANOMATERIALS 2022; 12:nano12111845. [PMID: 35683700 PMCID: PMC9182308 DOI: 10.3390/nano12111845] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Revised: 05/24/2022] [Accepted: 05/25/2022] [Indexed: 12/10/2022]
Abstract
Sample pretreatment in analytical chemistry is critical, and the selection of materials for sample pretreatment is a key factor for high enrichment ability, good practicality, and satisfactory recoveries. In this review, the recent progress of the sample pretreatment methods based on various nanomaterials (i.e., carbon nanomaterials, porous nanomaterials, and magnetic nanomaterials) with excellent adsorption efficiency, selectivity, and reproducibility, as well as their applications, are presented. Due to the unique nanoscale physical–chemical properties, magnetic nanomaterials have been used for the extraction of target analytes by easy-to-handle magnetic separation under a magnetic field, which can avoid cumbersome centrifugation and filtration steps. This review also highlights the preparation process and reaction mechanism of nanomaterials used in the sample pretreatment methods, which have been applied for the extraction organophosphorus pesticides, fluoroquinolone antibiotics, phenoxy carboxylic acids, tetracycline antibiotics, hazardous metal ions, and rosmarinic acid. In addition, the remaining challenges and future directions for nanomaterials used as sorbents in the sample pretreatment are discussed.
Collapse
|
48
|
Wu Y, Chen H, Chen Y, Sun N, Deng C. Metal organic frameworks as advanced extraction adsorbents for separation and analysis in proteomics and environmental research. Sci China Chem 2022. [DOI: 10.1007/s11426-021-1195-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
49
|
Coordination polymers of d- and f-elements with (1,4-phenylene)dithiazole dicarboxylic acid. Inorganica Chim Acta 2022. [DOI: 10.1016/j.ica.2022.120923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
50
|
Ji H, Liu S, Shi H, Wang W. Phosphomolybdic acid-based sulfur-containing metal–organic framework as an efficient catalyst for dibenzothiophene oxidative desulfurization. J Sulphur Chem 2022. [DOI: 10.1080/17415993.2022.2039142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Affiliation(s)
- Haifeng Ji
- School of Petroleum and Chemical Engineering, Jilin Institute of Chemical Technology, Jilin, People’s Republic of China
| | - Shuting Liu
- School of Petroleum and Chemical Engineering, Jilin Institute of Chemical Technology, Jilin, People’s Republic of China
| | - Hongfei Shi
- School of Petroleum and Chemical Engineering, Jilin Institute of Chemical Technology, Jilin, People’s Republic of China
| | - Weidong Wang
- School of Chemical Engineering and Resource Recycling, Wuzhou University, Wuzhou, People’s Republic of China
| |
Collapse
|