1
|
Fang B, Bai H, Zhang J, Wang L, Li P, Ge Y, Yang H, Wang H, Peng B, Hu W, Ma H, Chen X, Fu L, Li L. Albumins constrainting the conformation of mitochondria-targeted photosensitizers for tumor-specific photodynamic therapy. Biomaterials 2025; 315:122914. [PMID: 39461059 DOI: 10.1016/j.biomaterials.2024.122914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 10/29/2024]
Abstract
Tumor ablation Preclinical organelle-targeted phototherapies have effectively achieved tumor photoablation for regenerative biomedical applications in cancer therapies. However, engineering effective phototherapy drugs with precise tumor-localization targeting and organelle direction remains challenging. Herein, we report a albumins constrainting mitochondrial-targeted photosensitizer nanoparticles (PSs@BSAs) for tumor-specific photodynamic therapy. X-ray crystallography elucidates the two-stage assembly mechanism of PSs@BSAs. Femtosecond transient absorption spectroscopy and quantum mechanical calculations reveal the implications of conformational dynamics at the excited state. PSs@BSAs can efficiently disable mitochondrial activity, and further disrupt tumor angiogenesis based on the photodynamic effect. This triggers a metabolic and oxidative stress crisis to facilitate photoablation of solid tumor and antitumor metastasis. The study fully elucidates the interdisciplinary issues of chemistry, physics, and biological interfaces, thereby opening new horizons to inspire the engineering of organelle-targeted tumor-specific photosensitizers for biomedical applications.
Collapse
Affiliation(s)
- Bin Fang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710072, China; State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Hua Bai
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jiaxin Zhang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Limin Wang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - PanPan Li
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Yihao Ge
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, China
| | - Hui Yang
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, China
| | - Hui Wang
- Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361102, China
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Wenbo Hu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Huili Ma
- Key Laboratory of Flexible Electronics (KLOFE) & Institute of Advanced Materials (IAM), Nanjing Tech University (NanjingTech), Nanjing, 211816, China
| | - Xi Chen
- Key Laboratory of Synthetic and Natural Functional Molecule of the Ministry of Education, College of Chemistry and Materials Science, Northwest University, Xi'an, 710127, China.
| | - Li Fu
- State Key Laboratory of Solidification Processing, School of Materials Science and Engineering, Northwestern Polytechnical University, Xi'an, 710072, China.
| | - Lin Li
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710072, China; Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361102, China; Future Display Institute in Xiamen, Xiamen, 361005, China.
| |
Collapse
|
2
|
Kumar P, Banerjee D, Mitra K, Bhowmick S, Das NS, Chandra A, Chatterjee BK, Chattopadhyay KK. Enhancement of Cold Electron Emission in Europium Doped Zinc Oxide Rod: An Experimental Verification of Simulative Prediction. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2411110. [PMID: 40042295 DOI: 10.1002/smll.202411110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 02/13/2025] [Indexed: 04/11/2025]
Abstract
The present work describes the enhanced cold emission properties of chemically synthesized zinc oxide (ZnO) rods after doping with europium (Eu). X-ray diffraction confirms the proper phase formation, whereas energy-dispersive X-ray analysis shows the material stoichiometry. The field emission scanning electron micrographs reveal that Eu doping increases the surface roughness of individual ZnO rods. Also, Eu doping notably enhances the water-repellent properties of ZnO with a water contact angle as high as 130 °. Fourier-transformed infrared spectra provide information regarding different vibrational energy levels present, whereas PL spectra show prominent signals at 440, 466, 580, and 615 nm come from both the host and dopant material. ANSYS-Maxwell simulation predicts a significant enhancement of cold emission properties of the doped ZnO. Experimentally, more than a 2.5-time increment is achieved in the enhancement factor for the doped sample. Also, the turn-on field shows a significant reduction from 5.26 to 2.65 V µm-1. The reasons behind this enhancement are believed to be changes in material roughness, favorable band bending, and the newly evolved energy state. This work thus establishes the potential of Eu-doped ZnO to be simultaneously used as hydrophobic cold emitters as well as suitable components in optoelectronic devices.
Collapse
Affiliation(s)
- P Kumar
- Thin Film and Nanotechnology Laboratory, Department of Physics, Faculty of Engineering and Computing Sciences, Teerthanker Mahaveer University, Moradabad, Uttar Pradesh, 244001, India
| | - D Banerjee
- Thin Film and Nanotechnology Laboratory, Department of Physics, Faculty of Engineering and Computing Sciences, Teerthanker Mahaveer University, Moradabad, Uttar Pradesh, 244001, India
| | - K Mitra
- Department of Applied Chemistry, Ramakrishna Mission Vidyamandira, Belur Math, Howrah, 711202, India
| | - S Bhowmick
- Department of Applied Chemistry, Ramakrishna Mission Vidyamandira, Belur Math, Howrah, 711202, India
| | - N S Das
- Department of Basic Science and Humanities, Techno International Batanagar, Maheshtala, Kolkata, 700141, India
| | - A Chandra
- Thin Film and Nanoscience Laboratory, Department of Physics, Jadavpur University, Kolkata, West Bengal, 700032, India
| | - B K Chatterjee
- School of Forensic Science, National Forensic Sciences University, Sector-9, Gandhinagar, Gujarat, 382007, India
| | - K K Chattopadhyay
- Thin Film and Nanoscience Laboratory, Department of Physics, Jadavpur University, Kolkata, West Bengal, 700032, India
| |
Collapse
|
3
|
Shen Y, Fang B, Shao T, Zhang J, Li H, Wang L, Li P, Wang H, Bai H, Huang K, Hu W, Bian K, Peng B, Li L. Enhanced mitochondrial fluorescence imaging through confinement fluorescence effect within a rigid silicon suboxide network. Biosens Bioelectron 2025; 267:116823. [PMID: 39368296 DOI: 10.1016/j.bios.2024.116823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 09/22/2024] [Accepted: 09/29/2024] [Indexed: 10/07/2024]
Abstract
Fluorescence imaging technology has emerged as a powerful tool for studying intricate mitochondrial morphology within living cells. However, the need for fluorophores with stable fluorescence intensity and low phototoxicity poses significant challenges, particularly for long-term live-cell mitochondrial monitoring. To address this, we introduce the confinement fluorescence effect (CFE) into the design of fluorophores. This strategy involves confining small-molecule fluorophores within a silicon suboxide network structure of nanoparticles (CEF-NPs), which restricts molecular rotation, resulting in the suppression of non-radiative transition and the isolation of encapsulated fluorophores from surrounding quenching factors. CFE-NPs (SY2@SiOx) exhibit exceptional properties, such as high fluorescence intensity (80-fold) and reduced phototoxicity (0.15-fold). Furthermore, the TPP + -functionalized CFE-NPs (SY2@SiOxTPP) demonstrated efficacy in mitochondrial imaging and mitochondrial dynamics monitoring. Biochemistry assays indicated that SY2@SiOxTPP exhibits significantly lower phototoxicity to mitochondrial functions compared to both small-molecule fluorophore and commercial Mito Tracker. This approach allows for the long-term dynamic monitoring of mitochondrial morphological changes through fluorescence imaging, without impairing mitochondrial functionality.
Collapse
Affiliation(s)
- Yu Shen
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering Northwestern Polytechnical University, Xi'an, 710072, China; College of Pharmaceutical Sciences, Anhui Xinhua University, Hefei, 230088, China
| | - Bin Fang
- Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China; Future Display Institute in Xiamen, Xiamen, 361005, China
| | - Tao Shao
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering Northwestern Polytechnical University, Xi'an, 710072, China
| | - Jiaxin Zhang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering Northwestern Polytechnical University, Xi'an, 710072, China
| | - Haoqin Li
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering Northwestern Polytechnical University, Xi'an, 710072, China
| | - Limin Wang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering Northwestern Polytechnical University, Xi'an, 710072, China
| | - Panpan Li
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering Northwestern Polytechnical University, Xi'an, 710072, China
| | - Hui Wang
- Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
| | - Hua Bai
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering Northwestern Polytechnical University, Xi'an, 710072, China
| | - Kai Huang
- Future Display Institute in Xiamen, Xiamen, 361005, China
| | - Wenbo Hu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering Northwestern Polytechnical University, Xi'an, 710072, China
| | - Ka Bian
- Department of Otolaryngology Head and Neck Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, 710038, China.
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering Northwestern Polytechnical University, Xi'an, 710072, China; Monash Institute of Pharmaceutical Sciences (MIPS), Monash University, 399 Royal Parade, Parkville, Victoria, 3052, Australia.
| | - Lin Li
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering Northwestern Polytechnical University, Xi'an, 710072, China; Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China; Future Display Institute in Xiamen, Xiamen, 361005, China.
| |
Collapse
|
4
|
Xiao X, He G, Ma J, Cheng X, Wang R, Chen H. The Throttle Effect in Metal-Organic Frameworks for Distinguishing Water Isotopes. NANO LETTERS 2024. [PMID: 39513733 DOI: 10.1021/acs.nanolett.4c03881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Metal-organic frameworks (MOFs) have been widely used for separation, but amplifying subtle differences between similar molecules to achieve effective separation remains a great challenge. In this study, we utilize the fluorescent molecule uranine (Ura) to modulate the pores of zeolitic-imidazolate framework 8 (ZIF8), creating an unusual throttle effect. By monitoring fluorescence intensity changes in Ura, the transport diffusion process could be quantified to reveal the diffusion constant of solvents. When we pushed the Ura occupancy to its limit (from 59% to 76% and 98%), the diffusion rate decreases by 2 orders of magnitude. Most importantly, there is a significant dissymmetry between the two-way exchange rates of solvents, and the rates of H2O and D2O became distinguishable. Such unusual throttle effects disappear at low Ura occupancy of 59% and 76%. We believe that the throttle effect with small-molecule loading could provide a universal design principle for MOF-based applications, especially for isotope separation.
Collapse
Affiliation(s)
- Xiao Xiao
- School of Materials Science and Engineering, Zhejiang University, Hangzhou, Zhejiang 310027, China
- Department of Chemistry, School of Science and Key Laboratory for Quantum Materials of Zhejiang Province, Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Guangyu He
- Department of Chemistry, School of Science and Key Laboratory for Quantum Materials of Zhejiang Province, Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Junbao Ma
- Department of Chemistry, School of Science and Key Laboratory for Quantum Materials of Zhejiang Province, Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Xuejun Cheng
- Department of Chemistry, School of Science and Key Laboratory for Quantum Materials of Zhejiang Province, Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Ruoxu Wang
- Department of Chemistry, School of Science and Key Laboratory for Quantum Materials of Zhejiang Province, Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| | - Hongyu Chen
- Department of Chemistry, School of Science and Key Laboratory for Quantum Materials of Zhejiang Province, Research Center for Industries of the Future, Westlake University, Hangzhou, Zhejiang 310030, China
- Institute of Natural Sciences, Westlake Institute for Advanced Study, Hangzhou, Zhejiang 310024, China
| |
Collapse
|
5
|
Zhang Y, Miao R, Sha H, Ma W, Huang Y, Chen H. A universal strategy for constructing high-performance silica-based AIE materials for biomedical application. J Colloid Interface Sci 2024; 669:419-429. [PMID: 38723531 DOI: 10.1016/j.jcis.2024.04.231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 04/09/2024] [Accepted: 04/30/2024] [Indexed: 05/27/2024]
Abstract
As an emerging fluorophore, aggregation-induced emission luminogens (AIEgens) have received widespread attention in recent years, but the inherent drawbacks of AIEgens, such as the poor water-solubility and insufficient fluorescence stability in complex environments, restrict their performance in practical applications. Herein, we report a universal strategy based on hydrophobic dendritic mesoporous silica (HMSN) that can integrate different AIE molecules to construct multi-color fluorescent AIE materials. Specifically, HMSN with central radial pores was used as a powerful carrier for direct loading AIE molecules and restricting their intramolecular motions. Due to the pore-domain restriction effect and hydrophobic interaction, the obtained silica-based AIE materials have bright fluorescence with a maximum quantum yield of 68.38%, high colloidal/fluorescence stability, and excellent biosafety. Further, these silica-based AIE materials can be conjugated with functional antibodies to obtain probes with different targetability. After integration with immunomagnetic beads, the prepared detection probes achieved the quantitative detection of cardiac troponin I with the limit of detection (LOD) of 0.508 ng/mL. Overall, the targeting probes stemming from silica-based AIE materials can not only achieve cell-specific imaging, but quantify the number of Jurkat cells (LOD = 270 cells/mL) to further determine the specific etiology of the disease.
Collapse
Affiliation(s)
- Yu Zhang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-Xi Road, Shanghai 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Runjie Miao
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-Xi Road, Shanghai 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Haifeng Sha
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-Xi Road, Shanghai 200050, China
| | - Wenyan Ma
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-Xi Road, Shanghai 200050, China; School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| | - Yuefeng Huang
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-Xi Road, Shanghai 200050, China; School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China
| | - Hangrong Chen
- State Key Laboratory of High Performance Ceramics and Superfine Microstructure, Shanghai Institute of Ceramics, Chinese Academy of Sciences, 1295 Ding-Xi Road, Shanghai 200050, China; Center of Materials Science and Optoelectronics Engineering, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China; School of Chemistry and Materials Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, 1 Sub-lane Xiangshan, Hangzhou 310024, China.
| |
Collapse
|
6
|
Liu Q, Liu X, Yu X, Zhang X, Zhu M, Cheng Y. Circularly Polarized Room Temperature Phosphorescence through Twisting-Induced Helical Structures from Polyvinyl Alcohol-Based Fibers Containing Hydrogen-Bonded Dyes. Angew Chem Int Ed Engl 2024; 63:e202403391. [PMID: 38717757 DOI: 10.1002/anie.202403391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Indexed: 06/16/2024]
Abstract
Room temperature phosphorescence (RTP) materials have garnered significant attention owing to its distinctive optical characteristics and broad range of potential applications. However, the challenge remains in producing RTP materials with more simplicity, versatility, and practicality on a large scale, particularly in achieving chiral signals within a single system. Herein, we show that a straightforward and effective combination of wet spinning and twisting technique enables continuously fabricating RTP fibers with twisting-induced helical chirality. By leveraging the hydrogen bonding interactions between polyvinyl alcohol (PVA) and quinoline derivatives, along with the rigid microenvironment provided by PVA chains, typically, Q-NH2@PVA fiber demonstrates outstanding phosphorescent characteristics with RTP lifetime of 1.08 s and phosphorescence quantum yield of 24.6 %, and the improved tensile strength being 1.7 times than pure PVA fiber (172±5.82 vs 100±5.65 MPa). Impressively, the transformation from RTP to circularly polarized room temperature phosphorescence (CP-RTP) is readily achieved by imparting left- or right-hand helical structure through simply twisting, enabling large-scale production of chiral Q-NH2@PVA fiber with dissymmetry factor of 10-2. Besides, an array of displays and encryption patterns are crafted by weaving or seaming to exemplify the promising applications of these PVA-based fibers with outstanding adaptivity in cutting-edge anti-counterfeiting technology.
Collapse
Affiliation(s)
- Qin Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Xiaoqing Liu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Xiaoxiao Yu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Xinhai Zhang
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Meifang Zhu
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| | - Yanhua Cheng
- State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, P. R. China
| |
Collapse
|
7
|
Lu F, Xu X, Zhu X, Shen L, Wan W, Hu M. Based on FRET to construct color-tunable ultralong lifetime room temperature phosphorescent carbon dots in aqueous solution. SPECTROCHIMICA ACTA. PART A, MOLECULAR AND BIOMOLECULAR SPECTROSCOPY 2024; 304:123404. [PMID: 37722162 DOI: 10.1016/j.saa.2023.123404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Revised: 08/20/2023] [Accepted: 09/12/2023] [Indexed: 09/20/2023]
Abstract
Room temperature phosphorescent (RTP) Carbon Dots have been capturing increasing attention in recent years, while building a general method to adjust the emission color of RTP carbon dots is still a big challenge. Herein we report a simple method that combine the carbon nanodots and dyes (R6G and DCF) in SiO2 nanosphere to get a series of multicolor RTP nanodots (CD@SiO2@dye) with long lifetime in aqueous solution. Leverage on chitosan quaternary ammonium as matrix and diethylenetriamine as N-doping resource to form a cross-linked skeleton as a luminescent center (namely CD), and a rigid network is formed by silica encapsulation (CD@SiO2) to restrict the non-radiative transition process to generate the phosphorescence. The CD-based composites, with 1.10 s green (503 nm) phosphorescence emission, serve as activator to stimulate the corresponding luminescence of organic dyes. Then, based on Förster resonance energy transfer (FRET) process from CDs (as donor) to organic dyes (as acceptor) under UV excitation, the CD@SiO2@R6G emit ultra-long lifetime (1.13 s) orange-yellow (570 nm) afterglow, and CD@SiO2@DCF emit ultra-long lifetime (1.20 s) yellow-green afterglow (530 nm). Furthermore, it also achieves RTP colors control when the ratio of CDs and the dyes changes, the ratio of green emission and dye's emission activated by CDs will gradually change as well. These kinds of materials keep the inherent advantages of low toxicity and luminous stability, and achieve adjustable RTP color in aqueous solution. Our research provides a strategy to synthesize water-soluble long-life RTP CDs with adjustable color and lifetime.
Collapse
Affiliation(s)
- Feng Lu
- School of Medicine, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Xinhuan Xu
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Xingdong Zhu
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Linxin Shen
- School of Medicine, Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Weizheng Wan
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Min Hu
- School of Chemistry, Xi'an Jiaotong University, Xi'an 710049, PR China.
| |
Collapse
|
8
|
Zhang C, Fang H, Du W, Zhang D, Qu Y, Tang F, Ding A, Huang K, Peng B, Li L, Huang W. Ultrafast Detection of Monoamine Oxidase A in Live Cells and Clinical Glioma Tissues Using an Affinity Binding-Based Two-Photon Fluorogenic Probe. Angew Chem Int Ed Engl 2023; 62:e202310134. [PMID: 37585321 DOI: 10.1002/anie.202310134] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 08/13/2023] [Accepted: 08/15/2023] [Indexed: 08/18/2023]
Abstract
Abnormal expression of monoamine oxidase A (MAO-A) has been implicated in the development of human glioma, making MAO-A a promising target for therapy. Therefore, a rapid determination of MAO-A is critical for diagnosis. Through in silico screening of two-photon fluorophores, we discovered that a derivative of N,N-dimethyl-naphthalenamine (pre-mito) can effectively fit into the entrance of the MAO-A cavity. Substitutions on the N-pyridine not only further explore the MAO-A cavity, but also enable mitochondrial targeting ability. The aminopropyl substituted molecule, CD1, showed the fastest MAO-A detection (within 20 s), high MAO-A affinity and selectivity. It was also used for in situ imaging of MAO-A in living cells, enabling a comparison of the MAO-A content in human glioma and paracancerous tissues. Our results demonstrate that optimizing the affinity binding-based fluorogenic probes significantly improves their detection rate, providing a general approach for rapid detection probe design and optimization.
Collapse
Affiliation(s)
- Congcong Zhang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
| | - Haixiao Fang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
- Future Display Institute in Xiamen, Xiamen, 361005, China
| | - Wei Du
- School of Basic Medical Sciences, Anhui Medical University, Hefei, 230032, China
| | - Duoteng Zhang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
| | - Yunwei Qu
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
| | - Fang Tang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
- Future Display Institute in Xiamen, Xiamen, 361005, China
| | - Aixiang Ding
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
| | - Kai Huang
- Future Display Institute in Xiamen, Xiamen, 361005, China
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
- Wuhan National Laboratory for Optoelectronics - Advanced Biomedical Imaging Facility, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lin Li
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
- Future Display Institute in Xiamen, Xiamen, 361005, China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| | - Wei Huang
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen, 361005, China
- Future Display Institute in Xiamen, Xiamen, 361005, China
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering, Northwestern Polytechnical University, Xi'an, 710072, China
| |
Collapse
|
9
|
Zhai R, Fang B, Lai Y, Peng B, Bai H, Liu X, Li L, Huang W. Small-molecule fluorogenic probes for mitochondrial nanoscale imaging. Chem Soc Rev 2023; 52:942-972. [PMID: 36514947 DOI: 10.1039/d2cs00562j] [Citation(s) in RCA: 31] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Mitochondria are inextricably linked to the development of diseases and cell metabolism disorders. Super-resolution imaging (SRI) is crucial in enhancing our understanding of mitochondrial ultrafine structures and functions. In addition to high-precision instruments, super-resolution microscopy relies heavily on fluorescent materials with unique photophysical properties. Small-molecule fluorogenic probes (SMFPs) have excellent properties that make them ideal for mitochondrial SRI. This paper summarizes recent advances in the field of SMFPs, with a focus on the chemical and spectroscopic properties required for mitochondrial SRI. Finally, we discuss future challenges in this field, including the design principles of SMFPs and nanoscopic techniques.
Collapse
Affiliation(s)
- Rongxiu Zhai
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China.
| | - Bin Fang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China. .,School of Materials Science and Engineering, Northwestern Polytechnical University, 127 West Youyi Road, Xi'an 710072, China
| | - Yaqi Lai
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China.
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China.
| | - Hua Bai
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China.
| | - Xiaowang Liu
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China.
| | - Lin Li
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China. .,The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, Fujian, China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics, Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME), Northwestern Polytechnical University, Xi'an 710072, China. .,The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, Fujian, China
| |
Collapse
|
10
|
Fang B, Shen Y, Peng B, Bai H, Wang L, Zhang J, Hu W, Fu L, Zhang W, Li L, Huang W. Small‐Molecule Quenchers for Förster Resonance Energy Transfer: Structure, Mechanism, and Applications. Angew Chem Int Ed Engl 2022; 61:e202207188. [DOI: 10.1002/anie.202207188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Indexed: 11/09/2022]
Affiliation(s)
- Bin Fang
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
- State Key Laboratory of Solidification Processing School of Materials Science and Engineering Northwestern Polytechnical University 127 West Youyi Road Xi'an 710072 China
| | - Yu Shen
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
| | - Hua Bai
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
| | - Limin Wang
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
| | - Jiaxin Zhang
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
| | - Wenbo Hu
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
| | - Li Fu
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
- State Key Laboratory of Solidification Processing School of Materials Science and Engineering Northwestern Polytechnical University 127 West Youyi Road Xi'an 710072 China
| | - Wei Zhang
- Teaching and Evaluation Center of Air Force Medical University Xi'an 710032 China
| | - Lin Li
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
- The Institute of Flexible Electronics (IFE, Future Technologies) Xiamen University Xiamen 361005, Fujian China
| | - Wei Huang
- Frontiers Science Center for Flexible Electronics Xi'an Institute of Flexible Electronics (IFE) and Xi'an Institute of Biomedical Materials & Engineering (IBME) Northwestern Polytechnical University Xi'an 710072 China
- The Institute of Flexible Electronics (IFE, Future Technologies) Xiamen University Xiamen 361005, Fujian China
| |
Collapse
|
11
|
de la Cerda-Pedro JE, Hernández-Ortiz OJ, Vázquez-García RA, López-Ruiz H, Gómez-Aguilar R, Farfán N, Padilla-Martínez II. 3-(4-Formylphenyl)-triazole functionalized coumarins as violet-blue luminophores and n-type semiconductors: synthesis, photophysical, electrochemical and thermal properties. RSC Adv 2022; 12:28137-28146. [PMID: 36320249 PMCID: PMC9527578 DOI: 10.1039/d2ra03266j] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/24/2022] [Indexed: 11/20/2022] Open
Abstract
3-(4-Formylphenyl)-triazole-coumarin hybrid chromophores (FPhTCs) were synthesized in good yields, using a click chemistry protocol, and were also structurally characterized. Their photophysical, electrochemical and thermal properties were measured demonstrating that FPhTCs are luminescent in the blue-violet region of the electromagnetic spectrum, both in solution and the solid state. They showed an electrochemical band-gap values of 2.79 ± 0.08 eV, resistivity values between 104 and 105 Ω cm and are thermally stable up to 225 °C, properties that promise FPhTCs as good candidates for optoelectronic or imaging applications. Their solution and solid state photoluminescent properties are discussed and supported by theoretical calculations.
Collapse
Affiliation(s)
- José Emilio de la Cerda-Pedro
- Laboratorio de Química Supramolecular y Nanociencias de la Unidad Profesional Interdisciplinaria de Biotecnología del Instituto Politécnico Nacional Av. Acueducto s/n Barrio la laguna Ticomán Ciudad de México 07340 Mexico
- Facultad de Química, Departamento de Química Orgánica, Universidad Nacional Autónoma de México, Circuito Escolar Ciudad Universitaria 04510 Ciudad de México Mexico
| | - Oscar J Hernández-Ortiz
- Área Académica de Ciencias de la Tierra y Materiales, Universidad Autónoma del Estado de Hidalgo km. 4.5 Carretera Pachuca-Tulancingo, Col. Carboneras, Mineral de la Reforma Hidalgo 42184 Mexico
| | - Rosa A Vázquez-García
- Área Académica de Ciencias de la Tierra y Materiales, Universidad Autónoma del Estado de Hidalgo km. 4.5 Carretera Pachuca-Tulancingo, Col. Carboneras, Mineral de la Reforma Hidalgo 42184 Mexico
| | - Heraclio López-Ruiz
- Área Académica de Química, Universidad Autónoma del Estado de Hidalgo km. 4.5 Carretera Pachuca-Tulancingo, Col. Carboneras, Mineral de la Reforma Hidalgo 42184 Mexico
| | - Ramón Gómez-Aguilar
- Unidad Profesional en Ingeniería y Tecnologías Avanzadas del Instituto Politécnico Nacional Av. I.P.N No. 2580 Col. La Laguna Ticomán, Gustavo A. Madero Ciudad de México 07340 Mexico
| | - Norberto Farfán
- Facultad de Química, Departamento de Química Orgánica, Universidad Nacional Autónoma de México, Circuito Escolar Ciudad Universitaria 04510 Ciudad de México Mexico
| | - Itzia I Padilla-Martínez
- Laboratorio de Química Supramolecular y Nanociencias de la Unidad Profesional Interdisciplinaria de Biotecnología del Instituto Politécnico Nacional Av. Acueducto s/n Barrio la laguna Ticomán Ciudad de México 07340 Mexico
| |
Collapse
|
12
|
Fang B, Shen Y, Peng B, Bai H, Wang L, Zhang J, Hu W, Fu L, Zhang W, Li L, Huang W. Small Molecule Quenchers for Förster Resonance Energy Transfer: Structure, Mechanism and Applications. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202207188] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Affiliation(s)
- Bin Fang
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Yu Shen
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Bo Peng
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Hua Bai
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Limin Wang
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Jiaxin Zhang
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Wenbo Hu
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Li Fu
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| | - Wei Zhang
- Air Force Medical University Teaching and Evaluation Center CHINA
| | - Lin Li
- Nanjing Tech University Institute of Advanced Materials 30 South Puzhu Road 210008 Nanjing CHINA
| | - Wei Huang
- Northwestern Polytechnical University Frontiers Science Center for Flexible Electronics CHINA
| |
Collapse
|
13
|
Guo J, Fang B, Bai H, Wang L, Peng B, Qin XJ, Fu L, Yao C, Li L, Huang W. Dual/Multi-responsive fluorogenic probes for multiple analytes in mitochondria: From design to applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116697] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
14
|
Miyagishi HV, Masai H, Terao J. Linked Rotaxane Structure Restricts Local Molecular Motions in Solution to Enhance Fluorescence Properties of Tetraphenylethylene. Chemistry 2022; 28:e202103175. [PMID: 34981571 DOI: 10.1002/chem.202103175] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Indexed: 01/02/2023]
Abstract
The restriction of local molecular motions is critical for improving the fluorescence quantum yields (FQYs) and the photostability of fluorescent dyes. Herein, we report a supramolecular approach to enhance the performance of fluorescent dyes by incorporating a linked rotaxane structure with permethylated α-cyclodextrins. Tetraphenylethylene (TPE) derivatives generally exhibit low FQYs in solution due to the molecular motions in the excited state. We show that TPE with linked rotaxane structures on two sides displays up to 15-fold higher FQYs. Detailed investigations with variable temperature 1 H NMR, UV-Vis, and photoluminescence spectroscopy revealed that the linked rotaxane structure rigidifies the TPE moiety and thus suppresses the local molecular motions and non-radiative decay. Moreover, the linked rotaxane structure enhances the FQY of the dye in various solvents, including aqueous solutions, and improves the photostability through the inhibition of local molecular motions in the excited TPE.
Collapse
Affiliation(s)
- Hiromichi V Miyagishi
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Hiroshi Masai
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| | - Jun Terao
- Department of Basic Science, Graduate School of Arts and Sciences, The University of Tokyo, 3-8-1, Komaba, Meguro-ku, Tokyo, 153-8902, Japan
| |
Collapse
|
15
|
Fang B, Zhang B, Zhai R, Wang L, Ding Y, Li H, Bai H, Wang Z, Peng B, Li L, Fu L. Two-photon fluorescence imaging of mitochondrial viscosity with water-soluble pyridinium inner salts. NEW J CHEM 2022. [DOI: 10.1039/d1nj05020f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Viscosity-induced emission of fluorogenic probes was used to detect intracellular mitochondrial viscosity, even in different tissues and/or zebrafish via TPFM.
Collapse
Affiliation(s)
- Bin Fang
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, Shaanxi, P. R. China
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, P. R. China
| | - Beilin Zhang
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, Shaanxi, P. R. China
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, P. R. China
| | - Rongxiu Zhai
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, P. R. China
| | - Limin Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, P. R. China
| | - Yang Ding
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, P. R. China
| | - Huizi Li
- Department of Outpatient, PLA Rocket Force Characteristic Medical Center, 16 Xinwai Avenue, Beijing 100088, P. R. China
| | - Hua Bai
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, P. R. China
| | - Zhenhua Wang
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, P. R. China
| | - Bo Peng
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, P. R. China
| | - Lin Li
- Frontiers Science Center for Flexible Electronics (FSCFE), Shaanxi Institute of Flexible Electronics (SIFE) & Shaanxi Institute of Biomedical Materials and Engineering (SIBME), Northwestern Polytechnical University (NPU), 127 West Youyi Road, Xi’an 710072, P. R. China
- The Institute of Flexible Electronics (IFE, Future Technologies), Xiamen University, Xiamen 361005, Fujian, P. R. China
| | - Li Fu
- School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, Shaanxi, P. R. China
| |
Collapse
|