1
|
Wu Z, Zhang M, Yan MK, Li C, Pan G, Xuan L. Synthesis and biological evaluation of amino-conjugated bile acid derivatives against non-alcoholic steatohepatitis. Bioorg Med Chem Lett 2025; 122:130210. [PMID: 40139332 DOI: 10.1016/j.bmcl.2025.130210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 02/24/2025] [Accepted: 03/23/2025] [Indexed: 03/29/2025]
Abstract
Non-alcoholic steatohepatitis (NASH) is emerging as a rapidly growing health concern. Bile acids (BAs) function as endocrine signaling molecules and exhibit therapeutic potential for NASH. To develop safer and more effective BA derivatives for NASH treatment, 25 amino acid-conjugated bile acid derivatives were designed and synthesized based on the pharmacological properties of the leading compound A17. The anti-lipid accumulation, anti-inflammatory and anti-fibrosis activities of these compounds were evaluated, and their structure-activity relationships were elucidated. Notably, compound C04 exhibited superior in vitro activity compared to obeticholic acid and demonstrated enhanced efficacy in improving both NASH and fibrosis in preclinical murine models via oral administration. These findings suggest that C04 is a promising candidate for NASH treatment and warrants further investigation.
Collapse
Affiliation(s)
- Zhitao Wu
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210029, China; State Key Laboratory of Drug Research, Shanghai Institute of Material Medica, Chinese Academy of Sciences,501 Haike Road, Shanghai, 201203, China
| | - Mingge Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Material Medica, Chinese Academy of Sciences,501 Haike Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Meng Kun Yan
- State Key Laboratory of Drug Research, Shanghai Institute of Material Medica, Chinese Academy of Sciences,501 Haike Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China
| | - Chenyue Li
- State Key Laboratory of Drug Research, Shanghai Institute of Material Medica, Chinese Academy of Sciences,501 Haike Road, Shanghai, 201203, China; School of Pharmacy, Fudan University, Shanghai 201203, PR China
| | - Guoyu Pan
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210029, China; State Key Laboratory of Drug Research, Shanghai Institute of Material Medica, Chinese Academy of Sciences,501 Haike Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China.
| | - Lijiang Xuan
- School of Chinese Materia Medica, Nanjing University of Chinese Medicine, Nanjing, 210029, China; State Key Laboratory of Drug Research, Shanghai Institute of Material Medica, Chinese Academy of Sciences,501 Haike Road, Shanghai, 201203, China; University of Chinese Academy of Sciences, No.19A Yuquan Road, Beijing, 100049, China.
| |
Collapse
|
2
|
Abdel Monem MS, Adel A, Abbassi MM, Abdelaziz DH, Hassany M, Raziky ME, Sabry NA. Efficacy and safety of dapagliflozin compared to pioglitazone in diabetic and non-diabetic patients with non-alcoholic steatohepatitis: A randomized clinical trial. Clin Res Hepatol Gastroenterol 2025; 49:102543. [PMID: 39884573 DOI: 10.1016/j.clinre.2025.102543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2024] [Revised: 01/21/2025] [Accepted: 01/26/2025] [Indexed: 02/01/2025]
Abstract
BACKGROUND Non-alcoholic steatohepatitis (NASH) is a serious end-stage spectrum of non-alcoholic fatty liver disease (NAFLD) with associated high risk of hepatic and extrahepatic complications. Several studies showed the significant beneficial effect of dapagliflozin on body composition, hepatic and metabolic parameters on NAFLD/NASH patients. The study aimed to investigate the efficacy and safety of dapagliflozin in both diabetic and non-diabetic biopsy-proven NASH patients; compared to pioglitazone. METHODS This was a four-group, prospective, randomized, parallel, open label study in which 100 biopsy-proven NASH patients were selected, stratified to diabetics and non-diabetics and randomized with 1:1 allocation to either 30 mg pioglitazone or 10 mg dapagliflozin, once daily for 24 weeks. Histological evaluation, anthropometric measures, hepatic, metabolic biochemical markers, fibrosis non-invasive markers, quality of life (QOL) and medications adverse events were examined. RESULTS Dapagliflozin showed a comparable histological effect to pioglitazone in both diabetic and non-diabetic patients (P>0.05). As assessed by transient elastography, it also showed a comparable effect on liver fibrosis grade improvement from baseline in diabetics (P=0.287) versus a significant superiority in non-diabetics (P=0.018). Dapagliflozin showed a significant superiority in all anthropometric measures (P<0.001) and QOL (P<0.05) among both diabetics and non-diabetics. There was a significant interaction between interventions and diabetes status on change from baseline of hepatic and metabolic panel collectively (P=0.023) in favor to dapagliflozin among diabetics. CONCLUSION Compared to pioglitazone, dapagliflozin had a comparable effect histologically, superior effect biochemically among diabetics and superior effect on liver fibrosis, steatosis and insulin resistance among non-diabetics. TRIAL REGISTRATION The study was registered on clinicaltrials.gov, identifier number NCT05254626.
Collapse
Affiliation(s)
- Mona S Abdel Monem
- Department of Clinical Pharmacy, Faculty of Pharmacy, Cairo University, Egypt.
| | - Abdulmoneim Adel
- National Hepatology and Tropical Medicine Research Institute, Cairo, Egypt.
| | - Maggie M Abbassi
- Department of Clinical Pharmacy, Faculty of Pharmacy, Cairo University, Egypt.
| | - Doaa H Abdelaziz
- Department of Clinical Pharmacy, Faculty of Pharmacy, Al-Baha University, Al-Baha, Saudi Arabia/Department of Clinical Pharmacy, National Hepatology and Tropical Medicine Research Institute, Cairo, Egypt.
| | - Mohamed Hassany
- National Hepatology and Tropical Medicine Research Institute, Cairo, Egypt.
| | - Maissa El Raziky
- Endemic Medicine and Hepatogastroenterology, Faculty of Medicine, Cairo University, Egypt.
| | - Nirmeen A Sabry
- Department of Clinical Pharmacy, Faculty of Pharmacy, Cairo University, Egypt.
| |
Collapse
|
3
|
Merens V, Knetemann E, Gürbüz E, De Smet V, Messaoudi N, Reynaert H, Verhulst S, van Grunsven LA. Hepatic stellate cell single cell atlas reveals a highly similar activation process across liver disease aetiologies. JHEP Rep 2025; 7:101223. [PMID: 39758511 PMCID: PMC11699746 DOI: 10.1016/j.jhepr.2024.101223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 01/07/2025] Open
Abstract
Background & Aims The progression of chronic liver disease (CLD) is characterized by excessive extracellular matrix deposition, disrupting hepatic architecture and function. Upon liver injury, hepatic stellate cells (HSCs) differentiate towards myofibroblasts and become inflammatory, proliferative and fibrogenic. To date, it is still unclear whether HSC activation is driven by similar mechanisms in different aetiologies. Methods HSCs from multiple publicly available single-cell RNA-sequencing datasets were annotated and merged into a single-cell HSC activation atlas. Spheroid co-cultures of primary mouse hepatocytes/HSCs (n = 5) and ELISAs on patient plasma samples (n = 80) were performed to validate the mechanistic insight obtained from the HSC atlas. Results We established an HSC activation atlas in which HSCs are clearly divided into three distinct transcriptomic profiles: quiescent HSCs, initiatory HSCs and myofibroblasts. These transcriptomic profiles are present in each of the investigated mouse liver injury models as well as in human CLDs, indicating that HSC activation is a conserved process. This activation process is driven by a core set of transcription factors independent of liver injury or species. Furthermore, we reveal novel ligands associated with activation of HSCs in multiple liver injury models and validate the profibrotic effect of parathyroid hormone. Finally, we identify COLEC10 as a conserved marker for quiescent HSCs and a biomarker of liver fibrosis in patients with different CLDs (p <0.0001). Conclusions We reveal unexpected similarities in the regulatory mechanisms of HSCs across diverse liver injury settings and species. The HSC activation atlas has the potential to provide novel insights into liver fibrosis and steer novel treatment options. Impact and implications This study establishes a single-cell atlas of hepatic stellate cells across various liver injuries, highlighting a conserved activation process between different injuries and across species. The discovery of novel activating ligands and the biomarker COLEC10 in human plasma could be used to enhance diagnostic and therapeutic strategies. Additionally, the conserved activation process supports the use of any mouse model for mechanistic studies and testing of new anti-fibrotic compounds, streamlining preclinical research efforts.
Collapse
Affiliation(s)
- Vincent Merens
- Vrije Universiteit Brussel, Liver Cell Biology research group, Laarbeeklaan 103, 1090 Brussel, Belgium
| | - Elisabeth Knetemann
- Vrije Universiteit Brussel, Liver Cell Biology research group, Laarbeeklaan 103, 1090 Brussel, Belgium
| | - Elif Gürbüz
- Vrije Universiteit Brussel, Liver Cell Biology research group, Laarbeeklaan 103, 1090 Brussel, Belgium
| | - Vincent De Smet
- Vrije Universiteit Brussel, Liver Cell Biology research group, Laarbeeklaan 103, 1090 Brussel, Belgium
- Department of Gastro-Enterology and Hepatology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Nouredin Messaoudi
- Department of Gastro-Enterology and Hepatology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Hendrik Reynaert
- Vrije Universiteit Brussel, Liver Cell Biology research group, Laarbeeklaan 103, 1090 Brussel, Belgium
- Department of Gastro-Enterology and Hepatology, Universitair Ziekenhuis Brussel, Brussels, Belgium
| | - Stefaan Verhulst
- Vrije Universiteit Brussel, Liver Cell Biology research group, Laarbeeklaan 103, 1090 Brussel, Belgium
| | - Leo A. van Grunsven
- Vrije Universiteit Brussel, Liver Cell Biology research group, Laarbeeklaan 103, 1090 Brussel, Belgium
| |
Collapse
|
4
|
Tincopa MA, Anstee QM, Loomba R. New and emerging treatments for metabolic dysfunction-associated steatohepatitis. Cell Metab 2024; 36:912-926. [PMID: 38608696 DOI: 10.1016/j.cmet.2024.03.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 02/01/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024]
Abstract
Metabolic dysfunction-associated steatohepatitis (MASH) is a leading etiology of chronic liver disease worldwide, with increasing incidence and prevalence in the setting of the obesity epidemic. MASH is also a leading indication for liver transplantation, given its associated risk of progression to end-stage liver disease. A key challenge in managing MASH is the lack of approved pharmacotherapy. In its absence, lifestyle interventions with a focus on healthy nutrition and regular physical activity have been the cornerstone of therapy. Real-world efficacy and sustainability of lifestyle interventions are low, however. Pharmacotherapy development for MASH is emerging with promising data from several agents with different mechanisms of action (MOAs) in phase 3 clinical trials. In this review, we highlight ongoing challenges and potential solutions in drug development for MASH and provide an overview of available data from emerging therapies across multiple MOAs.
Collapse
Affiliation(s)
- Monica A Tincopa
- MASLD Research Center, Division of Gastroenterology and Hepatology, University of California, San Diego, La Jolla, CA 92103, USA
| | - Quentin M Anstee
- Translational & Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK; Newcastle NIHR Biomedical Research Center, Newcastle upon Tyne Hospitals NHS Trust, Newcastle upon Tyne, UK
| | - Rohit Loomba
- MASLD Research Center, Division of Gastroenterology and Hepatology, University of California, San Diego, La Jolla, CA 92103, USA; School of Public Health, University of California, San Diego, La Jolla, CA 92103, USA.
| |
Collapse
|
5
|
Wang K, Zhang Y, Wang G, Hao H, Wang H. FXR agonists for MASH therapy: Lessons and perspectives from obeticholic acid. Med Res Rev 2024; 44:568-586. [PMID: 37899676 DOI: 10.1002/med.21991] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/06/2023] [Accepted: 10/17/2023] [Indexed: 10/31/2023]
Abstract
Nonalcoholic fatty liver disease, also called metabolic dysfunction-associated steatotic liver disease, is the most common liver disease worldwide and has no approved pharmacotherapy. Due to its beneficial effects on metabolic regulation, inflammation suppression, cell death prevention, and fibrogenesis inhibition, farnesoid X receptor (FXR) is widely accepted as a promising therapeutic target for nonalcoholic steatosis (NASH) or called metabolic dysfunction-associated steatohepatitis (MASH). Many FXR agonists have been developed for NASH/MASH therapy. Obeticholic acid (OCA) is the pioneering frontrunner FXR agonist and the first demonstrating success in clinical trials. Unfortunately, OCA did not receive regulatory approval as a NASH pharmacotherapy because its moderate benefits did not outweigh its safety risks, which may cast a shadow over FXR-based drug development for NASH/MASH. This review summarizes the milestones in the development of OCA for NASH/MASH and discuss its limitations, including moderate hepatoprotection and the undesirable side effects of dyslipidemia, pruritus, cholelithiasis, and liver toxicity risk, in depth. More importantly, we provide perspectives on FXR-based therapy for NASH/MASH, hoping to support a successful bench-to-clinic transition.
Collapse
Affiliation(s)
- Kang Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Yuecan Zhang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Guangji Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Haiping Hao
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| | - Hong Wang
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
6
|
Nguyen M, Asgharpour A, Dixon DL, Sanyal AJ, Mehta A. Emerging therapies for MASLD and their impact on plasma lipids. Am J Prev Cardiol 2024; 17:100638. [PMID: 38375066 PMCID: PMC10875196 DOI: 10.1016/j.ajpc.2024.100638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 01/18/2024] [Accepted: 02/04/2024] [Indexed: 02/21/2024] Open
Abstract
Metabolic-dysfunction associated steatotic liver disease (MASLD) affects 1 out of every 3 individuals in the adult population and the disease prevalence is predicted to increase worldwide. Patients with MASLD are also burdened by cardiovascular disease, which is the leading cause of mortality in this population. Complex metabolic derangements such as insulin resistance and atherogenic dyslipidemia affect patients with MASLD. In patients with MASLD, treatment such as pharmacotherapy may be best directed towards improving the adverse concomitant metabolic disorders associated with MASLD, particularly the ones that may contribute to MASLD. Herein, we discuss conventional therapies that target cardiometabolic risk factors which have the potential to improve hepatic injury, and summarize emerging therapies that target hepatic receptors, fibrosis, and fatty acid oxidation in patients with MASLD. Given the relationship between hepatic injury which leads to MASLD, insulin resistance, and ultimately atherogenic dyslipidemia our review uniquely delves into the effects of conventional and emerging therapies for MASLD on plasma lipid parameters.
Collapse
Affiliation(s)
- Madison Nguyen
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Amon Asgharpour
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
- VCU Stravitz-Sanyal Institute of Liver Disease and Metabolic Health, Richmond, VA, United States
| | - Dave L. Dixon
- Department of Pharmacotherapy and Outcome Science, Virginia Commonwealth University School of Pharmacy, Richmond, VA, United States
- VCU Health Pauley Heart Center, Richmond, VA, United States
| | - Arun J. Sanyal
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
- VCU Stravitz-Sanyal Institute of Liver Disease and Metabolic Health, Richmond, VA, United States
| | - Anurag Mehta
- Department of Internal Medicine, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
- VCU Health Pauley Heart Center, Richmond, VA, United States
| |
Collapse
|
7
|
Chen L, Guo W, Mao C, Shen J, Wan M. Liver fibrosis: pathological features, clinical treatment and application of therapeutic nanoagents. J Mater Chem B 2024; 12:1446-1466. [PMID: 38265305 DOI: 10.1039/d3tb02790b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Liver fibrosis is a reversible damage-repair response, the pathological features of which mainly include damage to hepatocytes, sinusoid capillarization, hepatic stellate cells activation, excessive accumulation of extracellular matrix and inflammatory response. Although some treatments (including drugs and stem cell therapy) for these pathological features have been shown to be effective, more clinical trials are needed to confirm their effectiveness. In recent years, nanomaterials-based therapies have emerged as an innovative and promising alternative to traditional drugs, being explored for the treatment of liver fibrosis diseases. Natural nanomaterials (including extracellular vesicles) and synthetic nanomaterials (including inorganic nanomaterials and organic nanomaterials) are developed to facilitate drug targeting delivery and combination therapy. In this review, the pathological features of liver fibrosis and the current anti-fibrosis drugs in clinical trials are briefly introduced, followed by a detailed introduction of the therapeutic nanoagents for the precise delivery of anti-fibrosis drugs. Finally, the future development trend in this field is discussed.
Collapse
Affiliation(s)
- Lin Chen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Wenyan Guo
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Chun Mao
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Jian Shen
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| | - Mimi Wan
- National and Local Joint Engineering Research Center of Biomedical Functional Materials, School of Chemistry and Materials Science, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
8
|
McEneaney LJ, Vithayathil M, Khan S. Screening, Surveillance, and Prevention of Hepatocellular Carcinoma. GASTROINTESTINAL ONCOLOGY ‐ A CRITICAL MULTIDISCIPLINARY TEAM APPROACH 2E 2024:271-290. [DOI: 10.1002/9781119756422.ch16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
9
|
Branković M, Dukić M, Gmizić T, Popadić V, Nikolić N, Sekulić A, Brajković M, Đokić J, Mahmutović E, Lasica R, Vojnović M, Milovanović T. New Therapeutic Approaches for the Treatment of Patients with Metabolic Dysfunction-Associated Steatotic Liver Disease (MASLD) and Increased Cardiovascular Risk. Diagnostics (Basel) 2024; 14:229. [PMID: 38275476 PMCID: PMC10814440 DOI: 10.3390/diagnostics14020229] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024] Open
Abstract
Metabolic dysfunction-associated steatotic liver disease (MASLD) was previously known as nonalcoholic fatty liver disease (NAFLD). The main characteristic of the disease is the process of long-term liver inflammation, which leads to hepatocyte damage followed by liver fibrosis and eventually cirrhosis. Additionally, these patients are at a greater risk for developing cardiovascular diseases (CVD). They have several pathophysiological mechanisms in common, primarily lipid metabolism disorders and lipotoxicity. Lipotoxicity is a factor that leads to the occurrence of heart disease and the occurrence and progression of atherosclerosis. Atherosclerosis, as a multifactorial disease, is one of the predominant risk factors for the development of ischemic heart disease. Therefore, CVD are one of the most significant carriers of mortality in patients with metabolic syndrome. So far, no pharmacotherapy has been established for the treatment of MASLD, but patients are advised to reduce their body weight and change their lifestyle. In recent years, several trials of different drugs, whose basic therapeutic indications include other diseases, have been conducted. Because it has been concluded that they can have beneficial effects in the treatment of these conditions as well, in this paper, the most significant results of these studies will be presented.
Collapse
Affiliation(s)
- Marija Branković
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia; (M.D.); (T.G.); (V.P.); (N.N.); (A.S.); (M.B.); (J.Đ.)
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (R.L.); (T.M.)
| | - Marija Dukić
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia; (M.D.); (T.G.); (V.P.); (N.N.); (A.S.); (M.B.); (J.Đ.)
| | - Tijana Gmizić
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia; (M.D.); (T.G.); (V.P.); (N.N.); (A.S.); (M.B.); (J.Đ.)
| | - Višeslav Popadić
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia; (M.D.); (T.G.); (V.P.); (N.N.); (A.S.); (M.B.); (J.Đ.)
| | - Novica Nikolić
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia; (M.D.); (T.G.); (V.P.); (N.N.); (A.S.); (M.B.); (J.Đ.)
| | - Ana Sekulić
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia; (M.D.); (T.G.); (V.P.); (N.N.); (A.S.); (M.B.); (J.Đ.)
| | - Milica Brajković
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia; (M.D.); (T.G.); (V.P.); (N.N.); (A.S.); (M.B.); (J.Đ.)
| | - Jelena Đokić
- University Hospital Medical Center Bežanijska Kosa, 11000 Belgrade, Serbia; (M.D.); (T.G.); (V.P.); (N.N.); (A.S.); (M.B.); (J.Đ.)
| | - Edvin Mahmutović
- Department of Internal Medicine, General Hospital Novi Pazar, 36300 Novi Pazar, Serbia;
| | - Ratko Lasica
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (R.L.); (T.M.)
- Department of Cardiology, Emergency Center, University Clinical Center of Serbia, 11000 Belgrade, Serbia
| | - Marko Vojnović
- Clinic of Gastroenterology and Hepatology, University Clinical Center of Serbia, 11000 Belgrade, Serbia;
| | - Tamara Milovanović
- Faculty of Medicine, University of Belgrade, 11000 Belgrade, Serbia; (R.L.); (T.M.)
- Clinic of Gastroenterology and Hepatology, University Clinical Center of Serbia, 11000 Belgrade, Serbia;
| |
Collapse
|
10
|
Narayanan AK, Surendran S, Balakrishnan D, Gopalakrishnan U, Malick S, Valsan A, Philips CA, Watson CJE. A Short Review on Obeticholic Acid: An Effective Modulator of Farnesoid X Receptor. Curr Rev Clin Exp Pharmacol 2024; 19:225-233. [PMID: 38708917 DOI: 10.2174/0127724328239536230919070001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Revised: 07/10/2023] [Accepted: 08/04/2023] [Indexed: 05/07/2024]
Abstract
Farnesoid X receptor (FXR) was identified as an orphan nuclear receptor resembling the steroid receptor in the late '90s. Activation of FXR is a crucial step in many physiological functions of the liver. A vital role of FXR is impacting the amount of bile acids in the hepatocytes, which it performs by reducing bile acid synthesis, stimulating the bile salt export pump, and inhibiting its enterohepatic circulation, thus protecting the hepatocytes against the toxic accumulation of bile acids. Furthermore, FXR mediates bile acid biotransformation in the intestine, liver regeneration, glucose hemostasis, and lipid metabolism. In this review, we first discuss the mechanisms of the disparate pleiotropic actions of FXR agonists. We then delve into the pharmacokinetics of Obeticholic acid (OCA), the first-in-class selective, potent FXR agonist. We additionally discuss the clinical journey of OCA in humans, its current evidence in various human diseases, and its plausible roles in the future.
Collapse
Affiliation(s)
- Anila Kutty Narayanan
- Department of Gastrointestinal Surgery & Solid Organ Transplant, Amrita Institute of Medical Sciences & Research Centre, Amrita University, Kochi 682041, Kerala, India
| | - Sudhindran Surendran
- Department of Gastrointestinal Surgery & Solid Organ Transplant, Amrita Institute of Medical Sciences & Research Centre, Amrita University, Kochi 682041, Kerala, India
| | - Dinesh Balakrishnan
- Department of Gastrointestinal Surgery & Solid Organ Transplant, Amrita Institute of Medical Sciences & Research Centre, Amrita University, Kochi 682041, Kerala, India
| | - Unnikrishnan Gopalakrishnan
- Department of Gastrointestinal Surgery & Solid Organ Transplant, Amrita Institute of Medical Sciences & Research Centre, Amrita University, Kochi 682041, Kerala, India
| | - Shweta Malick
- Department of Gastrointestinal Surgery & Solid Organ Transplant, Amrita Institute of Medical Sciences & Research Centre, Amrita University, Kochi 682041, Kerala, India
| | - Arun Valsan
- Department of Gastroenterology & Hepatology, Amrita Institute of Medical Sciences & Research Centre, Amrita University, Kochi 682041, Kerala, India
| | - Cyriac Abby Philips
- Department of Clinical and Translational Hepatology, The Liver Institute, Rajagiri Hospital, Aluva, Kerala, India
| | - Christopher John Edward Watson
- University of Cambridge and Honorary Consultant Surgeon, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke's Hospital, Cambridge CB2 OQQ, UK
| |
Collapse
|
11
|
Carr RM, Li Y, Chau L, Friedman ES, Lee JJ, Adorini L, Erickson M, Zaru L, Shringarpure R, MacConell L, Bittinger K, Li H, Wu GD. An integrated analysis of fecal microbiome and metabolomic features distinguish non-cirrhotic NASH from healthy control populations. Hepatology 2023; 78:1843-1857. [PMID: 37222264 PMCID: PMC10674038 DOI: 10.1097/hep.0000000000000474] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2022] [Accepted: 04/25/2023] [Indexed: 05/25/2023]
Abstract
BACKGROUND AND AIMS There is great interest in identifying microbiome features as reliable noninvasive diagnostic and/or prognostic biomarkers for non-cirrhotic NASH fibrosis. Several cross-sectional studies have reported gut microbiome features associated with advanced NASH fibrosis and cirrhosis, where the most prominent features are associated with cirrhosis. However, no large, prospectively collected data exist establishing microbiome features that discern non-cirrhotic NASH fibrosis, integrate the fecal metabolome as disease biomarkers, and are unconfounded by BMI and age. APPROACH AND RESULTS Results from shotgun metagenomic sequencing performed on fecal samples prospectively collected from 279 US patients with biopsy-proven NASH (F1-F3 fibrosis) enrolled in the REGENERATE I303 study were compared to those from 3 healthy control cohorts and integrated with the absolute quantification of fecal bile acids. Microbiota beta-diversity was different, and BMI- and age-adjusted logistic regression identified 12 NASH-associated species. Random forest prediction models resulted in an AUC of 0.75-0.81 in a receiver operator characteristic analysis. In addition, specific fecal bile acids were significantly lower in NASH and correlated with plasma C4 levels. Microbial gene abundance analysis revealed 127 genes increased in controls, many involving protein synthesis, whereas 362 genes were increased in NASH many involving bacterial environmental responses (false discovery rate < 0.01). Finally, we provide evidence that fecal bile acid levels may be a better discriminator of non-cirrhotic NASH versus health than either plasma bile acids or gut microbiome features. CONCLUSIONS These results may have value as a set of baseline characteristics of non-cirrhotic NASH against which therapeutic interventions to prevent cirrhosis can be compared and microbiome-based diagnostic biomarkers identified.
Collapse
Affiliation(s)
- Rotonya M. Carr
- Division of Gastroenterology, University of Washington, Seattle, WA 981895
| | - Yun Li
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Lillian Chau
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Elliot S. Friedman
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Jung-Jin Lee
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA 19104
| | | | | | - Luna Zaru
- Intercept Pharmaceuticals, San Diego, CA 92122
| | | | | | - Kyle Bittinger
- Division of Gastroenterology, Hepatology, and Nutrition, Children’s Hospital of Philadelphia, Philadelphia, PA 19104
| | - Hongzhe Li
- Department of Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Gary D. Wu
- Division of Gastroenterology and Hepatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| |
Collapse
|
12
|
Beiriger J, Chauhan K, Khan A, Shahzad T, Parra NS, Zhang P, Chen S, Nguyen A, Yan B, Bruckbauer J, Halegoua-DeMarzio D. Advancements in Understanding and Treating NAFLD: A Comprehensive Review of Metabolic-Associated Fatty Liver Disease and Emerging Therapies. LIVERS 2023; 3:637-656. [DOI: 10.3390/livers3040042] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
This paper provides a comprehensive review of the current understanding of non-alcoholic fatty liver disease (NAFLD) and its progression to non-alcoholic steatohepatitis (NASH), focusing on key factors influencing its pathogenesis and emerging therapeutic strategies. This review highlights the growing prevalence of NAFLD and NASH, emphasizing their multifactorial nature. The manuscript identifies various contributors to NAFLD development, including genetic, dietary, and environmental factors, while examining the intricate interplay between these factors and their impact on hepatic lipid metabolism, inflammation, and insulin resistance. Genetic predisposition, dietary fat intake, and excessive fructose consumption are discussed as significant contributors to NAFLD progression. The article emphasizes the lack of a single therapeutic approach and underscores the need for combination strategies. Lifestyle interventions, particularly weight loss through diet and exercise, remain crucial, while pharmacological options like GLP-1 receptor agonists, obeticholic acid, lanifibranor, and resmetirom show promise but require further validation. Bariatric surgery and emerging endoscopic procedures offer potential in eligible patients. In sum, this article underscores the complexity of NAFLD and NASH, addresses key factors influencing pathogenesis, and discusses emerging therapies advocating for a multifaceted approach to this increasingly prevalent and clinically relevant condition.
Collapse
Affiliation(s)
- Jacob Beiriger
- Sidney Kimmel Medical College, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Kashyap Chauhan
- Department of Internal Medicine, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Adnan Khan
- Department of Internal Medicine, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Taha Shahzad
- Sidney Kimmel Medical College, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Natalia Salinas Parra
- Sidney Kimmel Medical College, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Peter Zhang
- Sidney Kimmel Medical College, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Sarah Chen
- Sidney Kimmel Medical College, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Anh Nguyen
- Sidney Kimmel Medical College, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Brian Yan
- Sidney Kimmel Medical College, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - John Bruckbauer
- Sidney Kimmel Medical College, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Dina Halegoua-DeMarzio
- Department of Internal Medicine, Division of Gastroenterology & Hepatology, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| |
Collapse
|
13
|
Domingues I, Leclercq IA, Beloqui A. Nonalcoholic fatty liver disease: Current therapies and future perspectives in drug delivery. J Control Release 2023; 363:415-434. [PMID: 37769817 DOI: 10.1016/j.jconrel.2023.09.040] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 08/27/2023] [Accepted: 09/20/2023] [Indexed: 10/03/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) affects approximately 25% of the adult population worldwide. This pathology can progress into end-stage liver disease with life-threatening complications, and yet no pharmacologic therapy has been approved. NAFLD is commonly characterized by excessive fat accumulation in the liver and is in closely associated with insulin resistance and metabolic disorders, which suggests that NAFLD is the hepatic manifestation of metabolic syndrome. Regarding treatment options, the current validated strategy relies on lifestyle modifications (exercise and diet restrictions). Although there are no approved drug-based treatments, several clinical trials are ongoing. Novel targets are being discovered, and the repurposing of drugs that show promising effects in NAFLD is starting to gain more interest. The field of nanotechnology has been growing at an increasing rate, with new and more efficient drug delivery strategies being developed for NAFLD treatment. Nanocarriers can easily encapsulate drugs that need to be better protected from the organism to exert their effect or that need help at reaching their target, thereby helping achieve a better bioavailability. Drug delivery systems can also be designed to target the site of the disease, in this case, the liver. In this review, we focus on the current knowledge of NAFLD pathology, the targets being considered for clinical trials, and the current guidelines and ongoing clinical trials, with a specific focus on potential oral treatments for NAFLD using promising drug delivery strategies.
Collapse
Affiliation(s)
- Inês Domingues
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials Group, Avenue Emmanuel Mounier 73, 1200 Brussels, Belgium
| | - Isabelle A Leclercq
- UCLouvain, Université catholique de Louvain, Institute of Experimental and Clinical Research, Laboratory of Hepato-Gastroenterology, Avenue Emmanuel Mounier 53, 1200 Brussels, Belgium.
| | - Ana Beloqui
- UCLouvain, Université catholique de Louvain, Louvain Drug Research Institute, Advanced Drug Delivery and Biomaterials Group, Avenue Emmanuel Mounier 73, 1200 Brussels, Belgium; WEL Research Institute, Avenue Pasteur, 6, 1300 Wavre, Belgium.
| |
Collapse
|
14
|
Adorini L, Trauner M. FXR agonists in NASH treatment. J Hepatol 2023; 79:1317-1331. [PMID: 37562746 DOI: 10.1016/j.jhep.2023.07.034] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 06/19/2023] [Accepted: 07/16/2023] [Indexed: 08/12/2023]
Abstract
The farnesoid X receptor (FXR), a bile acid (BA)-activated nuclear receptor highly expressed in the liver and intestine, regulates the expression of genes involved in cholesterol and bile acid homeostasis, hepatic gluconeogenesis, lipogenesis, inflammation and fibrosis, in addition to controlling intestinal barrier integrity, preventing bacterial translocation and maintaining gut microbiota eubiosis. Non-alcoholic steatohepatitis (NASH), an advanced stage of non-alcoholic fatty liver disease, is characterized by hepatic steatosis, hepatocyte damage (ballooning) and inflammation, leading to fibrosis, cirrhosis and hepatocellular carcinoma. NASH represents a major unmet medical need, but no pharmacological treatments have yet been approved. The pleiotropic mechanisms involved in NASH development offer a range of therapeutic opportunities and among them FXR activation has emerged as an established pharmacological target. Various FXR agonists with different physicochemical properties, which can be broadly classified as BA derivatives, non-BA-derived steroidal FXR agonists, non-steroidal FXR agonists, and partial FXR agonists, are in advanced clinical development. In this review we will summarize key preclinical and clinical features of the most advanced FXR agonists and critically evaluate their potential in NASH treatment.
Collapse
Affiliation(s)
- Luciano Adorini
- Intercept Pharmaceuticals Inc., 305 Madison Ave., Morristown, NJ 07960, USA.
| | - Michael Trauner
- Division of Gastroenterology and Hepatology, Department of Internal Medicine III, Medical University of Vienna, Waehringer Guertel 18-20, A-1090 Vienna, Austria.
| |
Collapse
|
15
|
Huang G, Wallace DF, Powell EE, Rahman T, Clark PJ, Subramaniam VN. Gene Variants Implicated in Steatotic Liver Disease: Opportunities for Diagnostics and Therapeutics. Biomedicines 2023; 11:2809. [PMID: 37893185 PMCID: PMC10604560 DOI: 10.3390/biomedicines11102809] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) describes a steatotic (or fatty) liver occurring as a consequence of a combination of metabolic, environmental, and genetic factors, in the absence of significant alcohol consumption and other liver diseases. NAFLD is a spectrum of conditions. Steatosis in the absence of inflammation is relatively benign, but the disease can progress into more severe forms like non-alcoholic steatohepatitis (NASH), liver cirrhosis, and hepatocellular carcinoma. NAFLD onset and progression are complex, as it is affected by many risk factors. The interaction between genetic predisposition and other factors partially explains the large variability of NAFLD phenotype and natural history. Numerous genes and variants have been identified through large-scale genome-wide association studies (GWAS) that are associated with NAFLD and one or more subtypes of the disease. Among them, the largest effect size and most consistent association have been patatin-like phospholipase domain-containing protein 3 (PNPLA3), transmembrane 6 superfamily member 2 (TM6SF2), and membrane-bound O-acyltransferase domain containing 7 (MBOAT7) genes. Extensive in vitro and in vivo studies have been conducted on these variants to validate these associations. The focus of this review is to highlight the genetics underpinning the molecular mechanisms driving the onset and progression of NAFLD and how they could potentially be used to improve genetic-based diagnostic testing of the disease and develop personalized, targeted therapeutics.
Collapse
Affiliation(s)
- Gary Huang
- Hepatogenomics Research Group, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia;
- Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia;
- School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia
| | - Daniel F. Wallace
- Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia;
- School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia
- Metallogenomics Laboratory, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia
| | - Elizabeth E. Powell
- QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia;
- Department of Gastroenterology and Hepatology, Princess Alexandra Hospital, Brisbane, QLD 4102, Australia
- Centre for Liver Disease Research, Translational Research Institute, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4101, Australia
| | - Tony Rahman
- Department of Gastroenterology and Hepatology, Prince Charles Hospital, Brisbane, QLD 4032, Australia;
| | - Paul J. Clark
- Mater Adult Hospital, Faculty of Medicine, The University of Queensland, Brisbane, QLD 4101, Australia;
| | - V. Nathan Subramaniam
- Hepatogenomics Research Group, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia;
- Centre for Genomics and Personalised Health, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia;
- School of Biomedical Sciences, Queensland University of Technology (QUT), Brisbane, QLD 4059, Australia
| |
Collapse
|
16
|
Dai JJ, Zhang YF, Zhang ZH. Global trends and hotspots of treatment for nonalcoholic fatty liver disease: A bibliometric and visualization analysis (2010-2023). World J Gastroenterol 2023; 29:5339-5360. [PMID: 37899789 PMCID: PMC10600806 DOI: 10.3748/wjg.v29.i37.5339] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/26/2023] [Accepted: 09/04/2023] [Indexed: 09/25/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is chronic, with its progression leading to liver fibrosis and end-stage cirrhosis. Although NAFLD is increasingly common, no treatment guideline has been established. Many mechanistic studies and drug trials have been conducted for new drug development to treat NAFLD. An up-to-date overview on the knowledge structure of NAFLD through bibliometrics, focusing on research hotspots, is necessary to reveal the rational and timely directions of development in this field. AIM To research the latest literature and determine the current trends in treatment for NAFLD. METHODS Publications related to treatment for NAFLD were searched on the Web of Science Core Collection database, from 2010 to 2023. VOSviewers, CiteSpace, and R package "bibliometrix" were used to conduct this bibliometric analysis. The key information was extracted, and the results of the cluster analysis were based on network data for generating and investigating maps for country, institution, journal, and author. Historiography analysis, bursts and cluster analysis, co-occurrence analysis, and trend topic revealed the knowledge structure and research hotspots in this field. GraphPad Prism 9.5.1.733 and Microsoft Office Excel 2019 were used for data analysis and visualization. RESULTS In total, 10829 articles from 120 countries (led by China and the United States) and 8785 institutions were included. The number of publications related to treatment for NAFLD increased annually. While China produced the most publications, the United States was the most cited country, and the United Kingdom collaborated the most from an international standpoint. The University of California-San Diego, Shanghai Jiao Tong University, and Shanghai University of Traditional Chinese Medicine produced the most publications of all the research institutions. The International Journal of Molecular Sciences was the most frequent journal out of the 1523 total journals, and Hepatology was the most cited and co-cited journal. Sanyal AJ was the most cited author, the most co-cited author was Younossi ZM, and the most influential author was Loomba R. The most studied topics included the epidemiology and mechanism of NAFLD, the development of accurate diagnosis, the precise management of patients with NAFLD, and the associated metabolic comorbidities. The major cluster topics were "emerging drug," "glucagon-like peptide-1 receptor agonist," "metabolic dysfunction-associated fatty liver disease," "gut microbiota," and "glucose metabolism." CONCLUSION The bibliometric study identified recent research frontiers and hot directions, which can provide a valuable reference for scholars researching treatments for NAFLD.
Collapse
Affiliation(s)
- Jin-Jin Dai
- Department of Infectious Diseases, Suzhou Hospital of Anhui Medical University, Suzhou 234000, Anhui Province, China
- Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui Province, China
| | - Ya-Fei Zhang
- Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui Province, China
| | - Zhen-Hua Zhang
- Department of Infectious Diseases, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, Anhui Province, China
| |
Collapse
|
17
|
Stoess C, Leszczynska A, Kui L, Feldstein AE. Pyroptosis and gasdermins-Emerging insights and therapeutic opportunities in metabolic dysfunction-associated steatohepatitis. Front Cell Dev Biol 2023; 11:1218807. [PMID: 37664463 PMCID: PMC10470644 DOI: 10.3389/fcell.2023.1218807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 07/24/2023] [Indexed: 09/05/2023] Open
Abstract
In recent years, there has been a rapid expansion in our understanding of regulated cell death, leading to the discovery of novel mechanisms that govern diverse cell death pathways. One recently discovered type of cell death is pyroptosis, initially identified in the 1990s as a caspase-1-dependent lytic cell death. However, further investigations have redefined pyroptosis as a regulated cell death that relies on the activation of pore-forming proteins, particularly the gasdermin family. Among the key regulators of pyroptosis is the inflammasome sensor NOD-like receptor 3 (NLRP3), a critical innate immune sensor responsible for regulating the activation of caspase-1 and gasdermin D. A deeper understanding of pyroptosis and its interplay with other forms of regulated cell death is emerging, shedding light on a complex regulatory network controlling pore-forming proteins and cell fate. Cell death processes play a central role in diseases such as metabolic dysfunction-associated steatotic liver disease, metabolic dysfunction-associated steatohepatitis, autoinflammatory disorders, and cancer. Cell death often acts as a starting point in these diseases, making it an appealing target for drug development. Yet, the complete molecular mechanisms are not fully understood, and new discoveries reveal promising novel avenues for therapeutic interventions. In this review, we summarize recent evidence on pathways and proteins controlling pyroptosis and gasdermins. Furthermore, we will address the role of pyroptosis and the gasdermin family in metabolic dysfunction-associated steatotic liver disease and steatohepatitis. Additionally, we highlight new potential therapeutic targets for treating metabolic dysfunction-associated steatohepatitis and other inflammatory-associated diseases.
Collapse
Affiliation(s)
- Christian Stoess
- Department of Pediatric Gastroenterology, University of California, San Diego, San Diego, CA, United States
- Department of Surgery, TUM School of Medicine, Klinikum rechts der Isar, Technical University of Munich, Munich, Germany
| | - Aleksandra Leszczynska
- Department of Pediatric Gastroenterology, University of California, San Diego, San Diego, CA, United States
| | - Lin Kui
- Department of Pediatric Gastroenterology, University of California, San Diego, San Diego, CA, United States
| | - Ariel E. Feldstein
- Department of Pediatric Gastroenterology, University of California, San Diego, San Diego, CA, United States
| |
Collapse
|
18
|
Samuel S, Abulawi A, Malik R. Hepatitis C and Nonalcoholic Steatohepatitis in the 21st Century: Impact on Liver Disease and Liver Transplantation. GASTROENTEROLOGY INSIGHTS 2023; 14:249-270. [DOI: 10.3390/gastroent14030018] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/03/2025] Open
Abstract
Hepatitis C infection is a leading etiology of hepatic dysfunction and a major indication for liver transplantation due to the development of fibrosis, cirrhosis, and hepatocellular carcinoma. Nonalcoholic fatty liver disease (NAFLD) and, specifically, its subtype nonalcoholic steatohepatitis (NASH) is a rising cause of liver disease. It is predicted to surpass hepatitis C as a leading indication for transplant. The introduction of direct-acting antivirals (DAAs) decreased the prevalence of chronic hepatitis C infections, but the obesity epidemic and metabolic syndrome have increased the prevalence of NASH. Weight loss and dietary modifications are recommended NASH therapies, but unlike for hepatitis C, federally approved agents are lacking and currently under investigation. Clinical trials face many barriers in NASH treatment because of the difficulty of diagnosis and a lack of standardized and accurate clinical and histologic responses. Mortality and morbidity in NASH are heightened because of the presence of multiple comorbidities including cardiovascular disease, diabetes, and renal dysfunction. A liver transplant may be indicated, but a thorough screening of candidates, including a comprehensive cardiovascular assessment, is essential to ensuring successful outcomes pre- and post-transplant. Therapeutic agents for NASH are warranted before it becomes a significant and leading cause of morbidity and mortality worldwide.
Collapse
Affiliation(s)
- Sonia Samuel
- Division of Gastroenterology & Hepatology, Albany Medical Center, 47 New Scotland Ave, Albany, NY 12208, USA
| | - Ahmad Abulawi
- Division of Gastroenterology & Hepatology, Albany Medical Center, 47 New Scotland Ave, Albany, NY 12208, USA
| | - Raza Malik
- Division of Gastroenterology & Hepatology, Albany Medical Center, 47 New Scotland Ave, Albany, NY 12208, USA
| |
Collapse
|
19
|
Alonso-Peña M, Del Barrio M, Peleteiro-Vigil A, Jimenez-Gonzalez C, Santos-Laso A, Arias-Loste MT, Iruzubieta P, Crespo J. Innovative Therapeutic Approaches in Non-Alcoholic Fatty Liver Disease: When Knowing Your Patient Is Key. Int J Mol Sci 2023; 24:10718. [PMID: 37445895 DOI: 10.3390/ijms241310718] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 06/21/2023] [Accepted: 06/24/2023] [Indexed: 07/15/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) encompasses a spectrum of disorders ranging from simple steatosis to non-alcoholic steatohepatitis (NASH). Hepatic steatosis may result from the dysfunction of multiple pathways and thus multiple molecular triggers involved in the disease have been described. The development of NASH entails the activation of inflammatory and fibrotic processes. Furthermore, NAFLD is also strongly associated with several extra-hepatic comorbidities, i.e., metabolic syndrome, type 2 diabetes mellitus, obesity, hypertension, cardiovascular disease and chronic kidney disease. Due to the heterogeneity of NAFLD presentations and the multifactorial etiology of the disease, clinical trials for NAFLD treatment are testing a wide range of interventions and drugs, with little success. Here, we propose a narrative review of the different phenotypic characteristics of NAFLD patients, whose disease may be triggered by different agents and driven along different pathophysiological pathways. Thus, correct phenotyping of NAFLD patients and personalized treatment is an innovative therapeutic approach that may lead to better therapeutic outcomes.
Collapse
Affiliation(s)
- Marta Alonso-Peña
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, 39011 Santander, Spain
| | - Maria Del Barrio
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, 39011 Santander, Spain
| | - Ana Peleteiro-Vigil
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, 39011 Santander, Spain
| | - Carolina Jimenez-Gonzalez
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, 39011 Santander, Spain
| | - Alvaro Santos-Laso
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, 39011 Santander, Spain
| | - Maria Teresa Arias-Loste
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, 39011 Santander, Spain
| | - Paula Iruzubieta
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, 39011 Santander, Spain
| | - Javier Crespo
- Gastroenterology and Hepatology Department, Clinical and Translational Research in Digestive Diseases, Valdecilla Research Institute (IDIVAL), Marqués de Valdecilla University Hospital, 39011 Santander, Spain
- Biomedical Research Networking Center in Hepatic and Digestive Diseases (CIBERehd), 28029 Madrid, Spain
| |
Collapse
|
20
|
Francque S, Ratziu V. Future Treatment Options and Regimens for Nonalcoholic Fatty Liver Disease. Clin Liver Dis 2023; 27:429-449. [PMID: 37024217 DOI: 10.1016/j.cld.2023.01.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/08/2023]
Abstract
Recent progress in our understanding of the pathogenic mechanisms that drive progression of nonalcoholic steatohepatitis as well as lessons learned from several clinical trials that have been conducted over the past 15 years guide our current regulatory framework and trial design. Targeting the metabolic drivers should probably be the backbone of therapy in most of the patients, with some requiring more specific intrahepatic antiinflammatory and antifibrotic actions to achieve success. New and innovative targets and approaches as well as combination therapies are currently explored, while awaiting a better understanding of disease heterogeneity that should allow for future individualized medicine.
Collapse
Affiliation(s)
- Sven Francque
- Department of Gastroenterology and Hepatology, Antwerp University Hospital, Antwerp, Belgium; Laboratory of Experimental Medicine and Paediatrics (LEMP), Faculty of Medicine and Health Sciences, University of Antwerp, Antwerp, Belgium; InflaMed Centre of Excellence, University of Antwerp, Antwerp, Belgium; Translational Sciences in Inflammation and Immunology, University of Antwerp, Antwerp, Belgium; European Reference Network on Hepatological Diseases (ERN RARE-LIVER), Antwerp University Hospital, Drie Eikenstraat 665, Edegem B-2650, Belgium.
| | - Vlad Ratziu
- Sorbonne Université, Paris, France; Institute of Cardiometabolism and Nutrition, Assistance Publique-Hôpitaux De Paris, Hôpital Pitié-Salpêtrière, 47-83 Boulevard de l'Hôpital, Paris Cedex 13 75651, France; INSERM UMRS 1138 CRC, Paris, France.
| |
Collapse
|
21
|
Guo F, Chen K, Dong H, Hu D, Gao Y, Liu C, Laphookhieo S, Lei X. Biomimetic Total Synthesis and the Biological Evaluation of Natural Product (-)-Fargesone A as a Novel FXR Agonist. JACS AU 2022; 2:2830-2838. [PMID: 36590256 PMCID: PMC9795464 DOI: 10.1021/jacsau.2c00600] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 11/24/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Farnesoid X receptor (FXR), a member of the nuclear receptor superfamily, plays an important role in maintaining or reversing metabolic homeostasis during the development of liver diseases. However, developing FXR modulators to intervene in FXR-related diseases is still an unmet clinical need. Therefore, it is significant to develop novel small-molecule agonists for drug discovery targeting FXR. Through a high-throughput chemical screen and follow-up biological validations, we first identified the natural product Fargesone A (FA) as a potent and selective FXR agonist. The limited, variable supply of FA from natural product isolation, however, has impeded its biological exploration and potential drug development. Accordingly, we have developed a biomimetic and scalable total synthesis of FA in nine steps that provides a solution to the supply of FA. Enabled by chemical synthesis, the in vivo efficacy of FA has been further investigated. The results showed that FA alleviates hepatocyte lipid accumulation and cell death in an FXR-dependent manner. Moreover, treatment of bile duct ligation (BDL)-induced liver disorder with FA ameliorates pathological features in mice. Therefore, our work lays the foundation to develop new small-molecule FXR agonists as a potential therapy for liver diseases.
Collapse
Affiliation(s)
- Fusheng Guo
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, Department
of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
- Peking-Tsinghua
Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People’s Republic of China
| | - Kaiqi Chen
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, Department
of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Haoran Dong
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, Department
of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Dachao Hu
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, Department
of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Yihui Gao
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, Department
of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Chendi Liu
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, Department
of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
| | - Surat Laphookhieo
- Center
of Chemical Innovation for Sustainability and School of Science, Mae Fah Luang University, Chiang Rai 57100, Thailand
| | - Xiaoguang Lei
- Beijing
National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic
Chemistry and Molecular Engineering of Ministry of Education, Department
of Chemical Biology, College of Chemistry and Molecular Engineering, Peking University, Beijing 100871, People’s Republic of China
- Peking-Tsinghua
Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, People’s Republic of China
| |
Collapse
|
22
|
Guo F, Gao Y, Li X, Lei X. Natural Product 2-Oxokolavenol Is a Novel FXR Agonist. Molecules 2022; 27:8968. [PMID: 36558100 PMCID: PMC9786051 DOI: 10.3390/molecules27248968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022] Open
Abstract
Acetaminophen (APAP) toxicity is a common cause of hepatic failure, and the development of effective therapy is still urgently needed. Farnesoid X receptor (FXR), a member of the nuclear receptor superfamily, has been identified as a master gene for regulating enterohepatic metabolic homeostasis and has proven to be a promising drug target for various liver diseases. Through high-throughput chemical screening, the natural product 2-oxokolavenol was identified as a novel and selective FXR agonist. Further investigations revealed that 2-oxokolavenol exerts therapeutic efficacy against APAP-induced hepatocyte damage in an FXR-dependent manner. Mechanistically, 2-oxokolavenol forms two hydrogen bonds with M265 and Y369 of human FXR to compatibly fit into the ligand binding pocket of FXR, which potently leads to the recruitment of multiple co-regulators and selectively induces the transcriptional activity of FXR. Our findings thus not only reveal the direct target of natural product 2-oxokolavenol, but also provide a promising hit compound for the design of new FXR modulators with potential clinical value.
Collapse
Affiliation(s)
- Fusheng Guo
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Yihui Gao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Peking University, Beijing 100871, China
| | - Xiaobao Li
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education & Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China
| | - Xiaoguang Lei
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Bioorganic Chemistry and Molecular Engineering of Ministry of Education, Department of Chemical Biology, College of Chemistry and Molecular Engineering, Synthetic and Functional Biomolecules Center, Peking University, Beijing 100871, China
- Peking-Tsinghua Center for Life Science, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| |
Collapse
|
23
|
Juárez-Hernández E, Velázquez-Alemán AP, Castro-Narro G, Uribe M, López-Méndez I. Bariatric endoscopic-surgical therapies for NAFLD. Should they be considered viable options among current treatments? Front Endocrinol (Lausanne) 2022; 13:1026444. [PMID: 36523596 PMCID: PMC9745034 DOI: 10.3389/fendo.2022.1026444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 11/15/2022] [Indexed: 11/30/2022] Open
Abstract
Nowadays, non-alcoholic fatty liver disease is one of the first causes of liver transplant worldwide; many efforts have been done to find the perfect drug for this multifactorial disease. Presently we just have a few drugs that could be used in specific and limited clinical scenarios. Current evidence suggests that bariatric endoscopic and surgical therapies could be strategies with optimal outcomes, with high impact in quality of life, decrease of cardiovascular risk, and improvement in metabolic profile, despite being considered expensive procedures. This review proposes to consider these therapies early together with liver fibrosis evaluation, with long term cost-effectiveness benefits in the absence of response to lifestyle modifications and pharmacological treatments.
Collapse
Affiliation(s)
- Eva Juárez-Hernández
- Translational Research Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| | | | - Graciela Castro-Narro
- Hepatology and Transplants Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| | - Misael Uribe
- Gastroenterology and Obesity Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| | - Iván López-Méndez
- Hepatology and Transplants Unit, Medica Sur Clinic & Foundation, Mexico City, Mexico
| |
Collapse
|
24
|
Josloff K, Beiriger J, Khan A, Gawel RJ, Kirby RS, Kendrick AD, Rao AK, Wang RX, Schafer MM, Pearce ME, Chauhan K, Shah YB, Marhefka GD, Halegoua-DeMarzio D. Comprehensive Review of Cardiovascular Disease Risk in Nonalcoholic Fatty Liver Disease. J Cardiovasc Dev Dis 2022; 9:419. [PMID: 36547416 PMCID: PMC9786069 DOI: 10.3390/jcdd9120419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 11/16/2022] [Accepted: 11/23/2022] [Indexed: 11/29/2022] Open
Abstract
Nonalcoholic Fatty Liver Disease (NAFLD) is a growing global phenomenon, and its damaging effects in terms of cardiovascular disease (CVD) risk are becoming more apparent. NAFLD is estimated to affect around one quarter of the world population and is often comorbid with other metabolic disorders including diabetes mellitus, hypertension, coronary artery disease, and metabolic syndrome. In this review, we examine the current evidence describing the many ways that NAFLD itself increases CVD risk. We also discuss the emerging and complex biochemical relationship between NAFLD and its common comorbid conditions, and how they coalesce to increase CVD risk. With NAFLD's rising prevalence and deleterious effects on the cardiovascular system, a complete understanding of the disease must be undertaken, as well as effective strategies to prevent and treat its common comorbid conditions.
Collapse
Affiliation(s)
- Kevan Josloff
- Sidney Kimmel Medical College, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Jacob Beiriger
- Sidney Kimmel Medical College, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Adnan Khan
- Department of Internal Medicine, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Richard J. Gawel
- Sidney Kimmel Medical College, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Richard S. Kirby
- Sidney Kimmel Medical College, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Aaron D. Kendrick
- Sidney Kimmel Medical College, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Abhinav K. Rao
- Sidney Kimmel Medical College, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Roy X. Wang
- Sidney Kimmel Medical College, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Michelle M. Schafer
- Sidney Kimmel Medical College, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Margaret E. Pearce
- Sidney Kimmel Medical College, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Kashyap Chauhan
- Department of Internal Medicine, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Yash B. Shah
- Sidney Kimmel Medical College, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Gregary D. Marhefka
- Department of Internal Medicine, Division of Cardiology, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| | - Dina Halegoua-DeMarzio
- Department of Internal Medicine, Division of Gastroenterology & Hepatology, Thomas Jefferson University Hospital, Philadelphia, PA 19107, USA
| |
Collapse
|
25
|
Erlinger S. A history of research into the physiology of bile, from Hippocrates to molecular medicine. Clin Liver Dis (Hoboken) 2022; 20:33-44. [PMID: 36518787 PMCID: PMC9742757 DOI: 10.1002/cld.1266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 08/30/2022] [Indexed: 12/14/2022] Open
Abstract
Content available: Audio Recording.
Collapse
|
26
|
Basu R, Noureddin M, Clark JM. Nonalcoholic Fatty Liver Disease: Review of Management for Primary Care Providers. Mayo Clin Proc 2022; 97:1700-1716. [PMID: 36058582 DOI: 10.1016/j.mayocp.2022.04.005] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 03/03/2022] [Accepted: 04/19/2022] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD) is one of the most common causes of chronic liver disease in the United States and worldwide. The progressive form of NAFLD, nonalcoholic steatohepatitis (NASH), is a leading indication for liver transplant. Comorbidities associated with NAFLD development and NASH include type 2 diabetes, obesity, metabolic syndrome, and dyslipidemia. Extrahepatic morbidity and mortality are considerable as NAFLD is associated with an increased risk of cardiovascular disease and chronic kidney disease. Once NAFLD is diagnosed, the presence of liver fibrosis is the central determinant of hepatic prognosis. Severe liver fibrosis requires aggressive clinical management. No pharmacologic agents have regulatory approval in the United States for the treatment of NAFLD or NASH. Management is centered on efforts to reduce underlying obesity (lifestyle, medications, surgical or endoscopic interventions) and metabolic derangements (prediabetes, type 2 diabetes, hypertension, hyperlipidemia, and others). Current pharmacologic therapy for NAFLD is limited mainly to the use of vitamin E and pioglitazone, although other agents are being investigated in clinical trials. Cardiovascular and metabolic risk factors must also be assessed and managed. Here, NAFLD evaluation, diagnosis, and management are considered in the primary care setting and endocrinology clinics.
Collapse
Affiliation(s)
- Rita Basu
- Division of Endocrinology, Department of Medicine, Center of Diabetes Technology, University of Virginia School of Medicine, Charlottesville, VA.
| | - Mazen Noureddin
- Karsh Division of Gastroenterology and Hepatology, Comprehensive Transplant Center, Cedars-Sinai Medical Center, Los Angeles, CA
| | - Jeanne M Clark
- Division of General Internal Medicine, Department of Medicine, The Johns Hopkins University School of Medicine, Baltimore, MD
| |
Collapse
|
27
|
Xu X, Poulsen KL, Wu L, Liu S, Miyata T, Song Q, Wei Q, Zhao C, Lin C, Yang J. Targeted therapeutics and novel signaling pathways in non-alcohol-associated fatty liver/steatohepatitis (NAFL/NASH). Signal Transduct Target Ther 2022; 7:287. [PMID: 35963848 PMCID: PMC9376100 DOI: 10.1038/s41392-022-01119-3] [Citation(s) in RCA: 178] [Impact Index Per Article: 59.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 06/15/2022] [Accepted: 07/08/2022] [Indexed: 11/24/2022] Open
Abstract
Non-alcohol-associated fatty liver/steatohepatitis (NAFL/NASH) has become the leading cause of liver disease worldwide. NASH, an advanced form of NAFL, can be progressive and more susceptible to developing cirrhosis and hepatocellular carcinoma. Currently, lifestyle interventions are the most essential and effective strategies for preventing and controlling NAFL without the development of fibrosis. While there are still limited appropriate drugs specifically to treat NAFL/NASH, growing progress is being seen in elucidating the pathogenesis and identifying therapeutic targets. In this review, we discussed recent developments in etiology and prospective therapeutic targets, as well as pharmacological candidates in pre/clinical trials and patents, with a focus on diabetes, hepatic lipid metabolism, inflammation, and fibrosis. Importantly, growing evidence elucidates that the disruption of the gut-liver axis and microbe-derived metabolites drive the pathogenesis of NAFL/NASH. Extracellular vesicles (EVs) act as a signaling mediator, resulting in lipid accumulation, macrophage and hepatic stellate cell activation, further promoting inflammation and liver fibrosis progression during the development of NAFL/NASH. Targeting gut microbiota or EVs may serve as new strategies for the treatment of NAFL/NASH. Finally, other mechanisms, such as cell therapy and genetic approaches, also have enormous therapeutic potential. Incorporating drugs with different mechanisms and personalized medicine may improve the efficacy to better benefit patients with NAFL/NASH.
Collapse
Affiliation(s)
- Xiaohan Xu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
| | - Kyle L Poulsen
- Department of Anesthesiology, McGovern Medical School, University of Texas Health Science Center, Houston, TX, USA
| | - Lijuan Wu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Shan Liu
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Tatsunori Miyata
- Department of Gastroenterological Surgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Qiaoling Song
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Qingda Wei
- School of Medicine, Zhengzhou University, Zhengzhou, China
| | - Chenyang Zhao
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Chunhua Lin
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, China
| | - Jinbo Yang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao, China.
- Innovation Center of Marine Drug Screening & Evaluation, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China.
| |
Collapse
|
28
|
Abstract
Initially a condition that received limited recognition and whose clinical impact was controversial, non-alcoholic steatohepatitis (NASH) has become a leading cause of chronic liver disease. Although there are no approved therapies, major breakthroughs, which will be reviewed here, have paved the way for future therapeutic successes. The unmet medical need in NASH is no longer disputed, and progress in the understanding of its pathogenesis has resulted in the identification of many pharmacological targets. Key surrogate outcomes for therapeutic trials are now accepted by regulatory agencies, thus creating a path for drug registration. A set of non-invasive measurements enabled early-stage trials to be conducted expeditiously, thus providing early indications on the biological and possibly clinical actions of therapeutic candidates. This generated efficacy results for a number of highly promising compounds that are now in late-stage development. Intense research aimed at further improving the assessment of histological endpoints and in developing non-invasive predictive biomarkers is underway. This will help improve the design and feasibility of successful trials, ultimately providing patients with therapeutic options that can change the course of the disease.
Collapse
|
29
|
Vali Y, Eijk R, Hicks T, Jones WS, Suklan J, Holleboom AG, Ratziu V, Langendam MW, Anstee QM, Bossuyt PMM. Clinicians' Perspectives on Barriers and Facilitators for the Adoption of Non-Invasive Liver Tests for NAFLD: A Mixed-Method Study. J Clin Med 2022; 11:jcm11102707. [PMID: 35628838 PMCID: PMC9146541 DOI: 10.3390/jcm11102707] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 05/09/2022] [Accepted: 05/09/2022] [Indexed: 02/04/2023] Open
Abstract
(1) Background: Given the high prevalence of non-alcoholic fatty liver disease (NAFLD) and the limitations of liver biopsies, multiple non-invasive tests (NITs) have been developed to identify non-alcoholic fatty liver disease (NAFLD) patients at-risk of progression. The availability of these new NITs varies from country to country, and little is known about their implementation and adoption in routine clinical practice. This study aims to explore barriers and facilitators that influence the adoption of NAFLD NITs, from healthcare professionals’ perspectives. (2) Methods: A cross-sectional study was performed using an exploratory mixed-methods approach. Twenty-seven clinicians from eight different countries with different specialties filled in our questionnaire. Of those, 16 participated in semi-structured interviews. Qualitative and quantitative data were collected and summarized using the recently published Non-adoption, Abandonment, Scale-up, Spread, and Sustainability (NASSS) framework for new medical technologies in healthcare organizations. (3) Results: Several factors were reported as influencing the uptake of NITs for NAFLD in clinical practice. Among those: insufficient awareness of tests; lack of practical guidelines and evidence for the performance of tests in appropriate patient populations and care settings; and absence of sufficient reimbursement systems were reported as the most important barriers. Other factors, most notably ‘local champions’, proper functional payment systems, and sufficient resources in academic hospitals, were indicated as important facilitating factors. (4) Conclusions: Clinicians see the adoption of NITs for NAFLD as a complex process that is modulated by several factors, such as robust evidence, practical guidelines, a proper payment system, and local champions. Future research could explore perspectives from other stakeholders on the adoption of NITs.
Collapse
Affiliation(s)
- Yasaman Vali
- Department of Epidemiology and Data Science, Amsterdam Public Health, Amsterdam UMC Location University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (M.W.L.); (P.M.M.B.)
- Correspondence: ; Tel.: +31-(0)20-566-8520
| | - Roel Eijk
- Athena Institute, Faculty of Science, VU University Amsterdam, 1081 HV Amsterdam, The Netherlands;
| | - Timothy Hicks
- NIHR Newcastle In Vitro Diagnostics Co-Operative, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (T.H.); (W.S.J.); (J.S.)
- NIHR Newcastle In Vitro Diagnostics Co-Operative, Newcastle upon Tyne Hospitals Foundation Trust, Newcastle upon Tyne NE1 7RU, UK
| | - William S. Jones
- NIHR Newcastle In Vitro Diagnostics Co-Operative, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (T.H.); (W.S.J.); (J.S.)
- NIHR Newcastle In Vitro Diagnostics Co-Operative, Newcastle upon Tyne Hospitals Foundation Trust, Newcastle upon Tyne NE1 7RU, UK
| | - Jana Suklan
- NIHR Newcastle In Vitro Diagnostics Co-Operative, Translational and Clinical Research Institute, Newcastle University, Newcastle upon Tyne NE1 7RU, UK; (T.H.); (W.S.J.); (J.S.)
- NIHR Newcastle In Vitro Diagnostics Co-Operative, Newcastle upon Tyne Hospitals Foundation Trust, Newcastle upon Tyne NE1 7RU, UK
| | - Adriaan G. Holleboom
- Department of Internal and Vascular Medicine, Amsterdam UMC Location University of Amsterdam, 1105 AZ Amsterdam, The Netherlands;
| | - Vlad Ratziu
- Assistance Publique-Hôpitaux de Paris, Hôpital Beaujon, University Paris-Diderot, 75013 Paris, France;
| | - Miranda W. Langendam
- Department of Epidemiology and Data Science, Amsterdam Public Health, Amsterdam UMC Location University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (M.W.L.); (P.M.M.B.)
| | - Quentin M. Anstee
- The Newcastle Liver Research Group, Translational & Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE1 7RU, UK;
- Newcastle NIHR Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle upon Tyne NE1 7RU, UK
| | - Patrick M. M. Bossuyt
- Department of Epidemiology and Data Science, Amsterdam Public Health, Amsterdam UMC Location University of Amsterdam, 1105 AZ Amsterdam, The Netherlands; (M.W.L.); (P.M.M.B.)
| |
Collapse
|
30
|
Tian SY, Chen SM, Pan CX, Li Y. FXR: structures, biology, and drug development for NASH and fibrosis diseases. Acta Pharmacol Sin 2022; 43:1120-1132. [PMID: 35217809 PMCID: PMC9061771 DOI: 10.1038/s41401-021-00849-4] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 12/21/2021] [Indexed: 12/11/2022]
Abstract
The nuclear receptor farnesoid-X-receptor (FXR) plays an essential role in bile acid, glucose, and lipid homeostasis. In the last two decades, several diseases, such as obesity, type 2 diabetes, nonalcoholic fatty liver disease, cholestasis, and chronic inflammatory diseases of the liver and intestine, have been revealed to be associated with alterations in FXR functions. FXR has become a promising therapeutic drug target, particularly for enterohepatic diseases. Despite the large number of FXR modulators reported, only obeticholic acid (OCA) has been approved for primary biliary cholangitis (PBC) therapy as FXR modulator. In this review, we summarize the structure and function of FXR, the development of FXR modulators, and the structure-activity relationships of FXR modulators. Based on the structural analysis, we discuss potential strategies for developing future therapeutic FXR modulators to overcome current limitations, providing new perspectives for enterohepatic and metabolic diseases treatment.
Collapse
Affiliation(s)
- Si-yu Tian
- grid.12955.3a0000 0001 2264 7233The State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361005 China
| | - Shu-ming Chen
- grid.12955.3a0000 0001 2264 7233The State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361005 China
| | - Cheng-xi Pan
- grid.12955.3a0000 0001 2264 7233The State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361005 China
| | - Yong Li
- The State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, 361005, China.
| |
Collapse
|
31
|
Li H. Intercellular crosstalk of liver sinusoidal endothelial cells in liver fibrosis, cirrhosis and hepatocellular carcinoma. Dig Liver Dis 2022; 54:598-613. [PMID: 34344577 DOI: 10.1016/j.dld.2021.07.006] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 07/09/2021] [Accepted: 07/12/2021] [Indexed: 12/12/2022]
Abstract
Intercellular crosstalk among various liver cells plays an important role in liver fibrosis, cirrhosis, and hepatocellular carcinoma (HCC). Capillarization of liver sinusoidal endothelial cells (LSECs) precedes fibrosis and accumulating evidence suggests that the crosstalk between LSECs and other liver cells is critical in the development and progression of liver fibrosis. LSECs dysfunction, a key event in the progression from fibrosis to cirrhosis, and subsequently obstruction of hepatic sinuses and increased intrahepatic vascular resistance (IHVR) contribute to development of portal hypertension (PHT) and cirrhosis. More importantly, immunosuppressive tumor microenvironment (TME), which is closely related to the crosstalk between LSECs and immune liver cells like CD8+ T cells, promotes advances tumorigenesis, especially HCC. However, the connections within the crosstalk between LSECs and other liver cells during the progression from liver fibrosis to cirrhosis to HCC have yet to be discussed. In this review, we first summarize the current knowledge of how different crosstalk between LSECs and other liver cells, including hepatocytes, hepatic stellate cells (HSCs), macrophoges, immune cells in liver and extra cellular matrix (ECM) contribute to the physiological function and the progrssion from liver fibrosis to cirrhosis, or even to HCC. Then we examine current treatment strategies for LSECs crosstalk in liver fibrosis, cirrhosis and HCC.
Collapse
Affiliation(s)
- Hui Li
- Central Laboratory, Hospital of Chengdu University of Traditional Chinese Medicine, NO. 39 Shi-er-qiao Road, Chengdu, 610072, Sichuan Province, PR China.
| |
Collapse
|
32
|
Harvey BE. NASH: regulatory considerations for clinical drug development and U.S. FDA approval. Acta Pharmacol Sin 2022; 43:1210-1214. [PMID: 35110697 PMCID: PMC9061714 DOI: 10.1038/s41401-021-00832-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/23/2021] [Indexed: 02/08/2023]
Abstract
Nonalcoholic fatty liver disease is a growing public health crisis, with phenotypes from nonalcoholic fatty liver to nonalcoholic steatohepatitis, currently known as NASH, which can progress to liver fibrosis and end stage cirrhosis. NASH is associated with an increased risk of cardiovascular disease and Type 2 diabetes mellitus. There are still no U.S. FDA approved drugs or biological treatments for NASH or related liver diseases. Despite official agency guidance, the regulatory pathway to ultimate product approval is unclear, due to both the extra-hepatic factors that contribute to NASH, as well as the organizational structure of FDA, with its traditional separation of therapeutic indications within discrete review divisions. There is hope that continued evolution of the regulatory process will lead to the ability for clinical trial endpoints supporting NASH treatment approval to include both liver-based and traditional metabolic measures, independent of specific FDA division review.
Collapse
Affiliation(s)
- Brian E Harvey
- Brian E Harvey LLC, "Cooperation, Partnership & Friendship", Maryland, MD, USA.
| |
Collapse
|
33
|
Jiao TY, Ma YD, Guo XZ, Ye YF, Xie C. Bile acid and receptors: biology and drug discovery for nonalcoholic fatty liver disease. Acta Pharmacol Sin 2022; 43:1103-1119. [PMID: 35217817 PMCID: PMC9061718 DOI: 10.1038/s41401-022-00880-z] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 01/25/2022] [Indexed: 02/07/2023]
Abstract
Nonalcoholic fatty liver disease (NAFLD), a series of liver metabolic disorders manifested by lipid accumulation within hepatocytes, has become the primary cause of chronic liver diseases worldwide. About 20%-30% of NAFLD patients advance to nonalcoholic steatohepatitis (NASH), along with cell death, inflammation response and fibrogenesis. The pathogenesis of NASH is complex and its development is strongly related to multiple metabolic disorders (e.g. obesity, type 2 diabetes and cardiovascular diseases). The clinical outcomes include liver failure and hepatocellular cancer. There is no FDA-approved NASH drug so far, and thus effective therapeutics are urgently needed. Bile acids are synthesized in hepatocytes, transported into the intestine, metabolized by gut bacteria and recirculated back to the liver by the enterohepatic system. They exert pleiotropic roles in the absorption of fats and regulation of metabolism. Studies on the relevance of bile acid disturbance with NASH render it as an etiological factor in NASH pathogenesis. Recent findings on the functional identification of bile acid receptors have led to a further understanding of the pathophysiology of NASH such as metabolic dysregulation and inflammation, and bile acid receptors are recognized as attractive targets for NASH treatment. In this review, we summarize the current knowledge on the role of bile acids and the receptors in the development of NAFLD and NASH, especially the functions of farnesoid X receptor (FXR) in different tissues including liver and intestine. The progress in the development of bile acid and its receptors-based drugs for the treatment of NASH including bile acid analogs and non-bile acid modulators on bile acid metabolism is also discussed.
Collapse
Affiliation(s)
- Ting-Ying Jiao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yuan-di Ma
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiao-Zhen Guo
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
| | - Yun-Fei Ye
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cen Xie
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, 201203, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
34
|
Recent Advancements in Antifibrotic Therapies for Regression of Liver Fibrosis. Cells 2022; 11:cells11091500. [PMID: 35563807 PMCID: PMC9104939 DOI: 10.3390/cells11091500] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/21/2022] [Accepted: 04/26/2022] [Indexed: 11/18/2022] Open
Abstract
Cirrhosis is a severe form of liver fibrosis that results in the irreversible replacement of liver tissue with scar tissue in the liver. Environmental toxicity, infections, metabolic causes, or other genetic factors including autoimmune hepatitis can lead to chronic liver injury and can result in inflammation and fibrosis. This activates myofibroblasts to secrete ECM proteins, resulting in the formation of fibrous scars on the liver. Fibrosis regression is possible through the removal of pathophysiological causes as well as the elimination of activated myofibroblasts, resulting in the reabsorption of the scar tissue. To date, a wide range of antifibrotic therapies has been tried and tested, with varying degrees of success. These therapies include the use of growth factors, cytokines, miRNAs, monoclonal antibodies, stem-cell-based approaches, and other approaches that target the ECM. The positive results of preclinical and clinical studies raise the prospect of a viable alternative to liver transplantation in the near future. The present review provides a synopsis of recent antifibrotic treatment modalities for the treatment of liver cirrhosis, as well as a brief summary of clinical trials that have been conducted to date.
Collapse
|
35
|
Yong JN, Ng CH, Lee CWM, Chan YY, Tang ASP, Teng M, Tan DJH, Lim WH, Quek J, Xiao J, Chin YH, Foo R, Chan M, Lin W, Noureddin M, Siddiqui MS, Muthiah MD, Sanyal A, Chew NWS. Non-alcoholic fatty liver disease association with structural heart, systolic and diastolic dysfunction: a meta-analysis. Hepatol Int 2022; 16:269-281. [PMID: 35320497 DOI: 10.1007/s12072-022-10319-6] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 02/11/2022] [Indexed: 01/30/2023]
Abstract
OBJECTIVE Several studies have documented a relationship between non-alcoholic fatty liver disease (NAFLD) and structural heart disease, particularly diastolic function. This meta-analysis will be the first to examine the echocardiographic-derived cardiac function and structural characteristics in NAFLD patients, and its association with liver disease severity and metabolic profile. METHODS Medline and Embase were searched and pairwise meta-analysis was conducted in DerSimonian and Laird to obtain the odds ratio (OR) and mean difference (MD) for dichotomous and continuous variables, respectively, to compare the effects of NAFLD on the echocardiography parameters. RESULTS Forty-one articles involving 33,891 patients underwent echocardiography. NAFLD patients had worse systolic indices with lower ejection fraction (EF, MD: - 0.693; 95% CI: - 1.112 to - 0.274; p = 0.001), and worse diastolic indices with higher E/e' (MD: 1.575; 95% CI: 0.924 to 2.227; p < 0.001) compared to non-NAFLD patients. NAFLD patients displayed increased left ventricular mass (LVM, MD: 34.484; 95% CI: 26.236 to 42.732; p < 0.001) and epicardial adipose thickness (EAT, MD: 0.1343; 95% CI: 0.055 to 0.214; p = 0.001). An increased severity of NAFLD was associated with worse diastolic indices (decreased E/A ratio, p = 0.007), but not with systolic indices. CONCLUSIONS NAFLD is associated with impaired systolic and diastolic function with changes in cardiac structure. Concomitant metabolic risk factors and liver disease severity are independently associated with worsening systolic and diastolic function.
Collapse
Affiliation(s)
- Jie Ning Yong
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Cheng Han Ng
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Chloe Wen-Min Lee
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yu Yi Chan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ansel Shao Pin Tang
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Margaret Teng
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Tower Block Level 10, 1E Kent Ridge Road, Singapore, 119228, Singapore.,National University Centre for Organ Transplantation, National University Health System, Singapore, Singapore
| | - Darren Jun Hao Tan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Wen Hui Lim
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jingxuan Quek
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jieling Xiao
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Yip Han Chin
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Roger Foo
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Cardiology, National University Heart Centre, National University Hospital, Tower Block Level 9, 1E Kent Ridge Road, Singapore, 119228, Singapore
| | - Mark Chan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Cardiology, National University Heart Centre, National University Hospital, Tower Block Level 9, 1E Kent Ridge Road, Singapore, 119228, Singapore
| | - Weiqin Lin
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.,Department of Cardiology, National University Heart Centre, National University Hospital, Tower Block Level 9, 1E Kent Ridge Road, Singapore, 119228, Singapore
| | - Mazen Noureddin
- Cedars-Sinai Fatty Liver Program, Division of Digestive and Liver Diseases, Department of Medicine, Cedars-Sinai Medical Center, Comprehensive Transplant Center, Los Angeles, CA, USA
| | - Mohammad Shadab Siddiqui
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Mark D Muthiah
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,Division of Gastroenterology and Hepatology, Department of Medicine, National University Hospital, Tower Block Level 10, 1E Kent Ridge Road, Singapore, 119228, Singapore. .,National University Centre for Organ Transplantation, National University Health System, Singapore, Singapore.
| | - Arun Sanyal
- Division of Gastroenterology, Hepatology and Nutrition, Department of Internal Medicine, Virginia Commonwealth University, Richmond, VA, USA
| | - Nicholas W S Chew
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore. .,Department of Cardiology, National University Heart Centre, National University Hospital, Tower Block Level 9, 1E Kent Ridge Road, Singapore, 119228, Singapore.
| |
Collapse
|
36
|
Osipova D, Kokoreva K, Lazebnik L, Golovanova E, Pavlov C, Dukhanin A, Orlova S, Starostin K. Regression of Liver Steatosis Following Phosphatidylcholine Administration: A Review of Molecular and Metabolic Pathways Involved. Front Pharmacol 2022; 13:797923. [PMID: 35359878 PMCID: PMC8960636 DOI: 10.3389/fphar.2022.797923] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 02/08/2022] [Indexed: 12/21/2022] Open
Abstract
Liver steatosis is a key pathology in non-alcoholic or metabolic associated fatty liver disease. Though largely ignored for decades it is currently becoming the focus of research in hepatology. It is important to consider its origin and current opportunities in terms of pharmacotherapy. Essential phospholipids (EPLs) rich in phosphatidylcholine (PCH) is a widely used treatment option for fatty liver disease, and there is a solid amount of consistent clinical evidence for the regression of steatosis after treatment with EPLs. As knowledge of PCH (a key component of EPLs) pharmacodynamics and mode of action driving this widely observed clinical effect is currently insufficient, we aimed to explore the potential molecular and metabolic pathways involved in the positive effects of PCH on steatosis regression.
Collapse
Affiliation(s)
- D. Osipova
- Research Centre for Medical Genetics, Moscow, Russia
| | - K. Kokoreva
- Institute of Pediatric Endocrinology, Endocrinology Research Centre, Moscow, Russia
| | - L. Lazebnik
- A. I. Evdokimov Moscow State University of Medicine and Dentistry, Ministry of Health of Russia, Moscow, Russia
| | - E. Golovanova
- A. I. Evdokimov Moscow State University of Medicine and Dentistry, Ministry of Health of Russia, Moscow, Russia
| | - Ch. Pavlov
- I. M. Sechenov First Moscow State Medical University, Ministry of Health of Russia, Moscow, Russia
| | - A. Dukhanin
- Molecular Pharmacology and Radiology Department, Russian National Research Medical University, Moscow, Russia
| | - S. Orlova
- Department of Dietetics and Clinical Nutrition of Continuing Medical Education, Medical Institute, RUDN University, Moscow, Russia
| | | |
Collapse
|
37
|
Non-Alcoholic Fatty Liver Disease Defined by Fatty Liver Index and Incidence of Heart Failure in the Korean Population: A Nationwide Cohort Study. Diagnostics (Basel) 2022; 12:diagnostics12030663. [PMID: 35328216 PMCID: PMC8946898 DOI: 10.3390/diagnostics12030663] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 03/05/2022] [Accepted: 03/06/2022] [Indexed: 12/12/2022] Open
Abstract
Fatty liver index (FLI) is a simple and useful index that evaluates non-alcoholic fatty liver disease (NAFLD), particularly in large epidemiologic studies. Heart failure (HF) is becoming a burden to public health as the global trend toward an aging society continues. Thus, we investigated the effect of FLI on the incidence of HF using large cohort data from the Korean National Health Insurance health database. Methods and Results: A total of 7,958,538 subjects aged over 19 years without baseline HF (men = 4,142,264 and women = 3,816,274) were included. Anthropometric and biochemical measurements were evaluated. FLI scores were calculated and FLI ≥ 60 was considered as having NAFLD. Hazard ratios (HRs) and 95% confidence intervals (CIs) for HF incidence were analysed using multivariable time-dependent Cox proportional hazard models. During a mean follow up of 8.26 years, 17,104 participants developed HF. The FLI components associated with the incidence of HF and FLI showed a causal relationship with HF; the FLI ≥ 60 group had a higher HR for HF (HR 1.493; 95% CIs 1.41−1.581) than the FLI < 30 group. Subgroup analysis showed that fatty liver (FLI ≥ 60) with age ≥ 65 years or women displayed higher HR for HF than fatty liver with age < 65 or men, respectively. An increase in FLI score significantly increased the HR for HF except for those with a FLI score change from <30 to 30−60. Conclusion: NAFLD defined by FLI and increase in FLI score were associated with the incidence of HF. Further detailed prospective studies are needed.
Collapse
|
38
|
Rinella ME, Dufour JF, Anstee QM, Goodman Z, Younossi Z, Harrison SA, Loomba R, Sanyal AJ, Bonacci M, Trylesinski A, Natha M, Shringarpure R, Granston T, Venugopal A, Ratziu V. Non-invasive evaluation of response to obeticholic acid in patients with NASH: Results from the REGENERATE study. J Hepatol 2022; 76:536-548. [PMID: 34793868 DOI: 10.1016/j.jhep.2021.10.029] [Citation(s) in RCA: 103] [Impact Index Per Article: 34.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 10/27/2021] [Accepted: 10/28/2021] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Non-alcoholic steatohepatitis (NASH) is a chronic, progressive fibrotic liver disease that can lead to cirrhosis. While liver biopsy is considered the reference standard for the histologic diagnosis of NASH and staging of fibrosis, its use in clinical practice is limited. Non-invasive tests (NITs) are increasingly being used to identify and stage liver fibrosis in patients with NASH, and several can assess liver-related outcomes. We report changes in various NITs in patients treated with obeticholic acid (OCA) or placebo in the phase III REGENERATE study. METHODS Patients with NASH and fibrosis stage F2 or F3 (n = 931) were randomized (1:1:1) to receive placebo, OCA 10 mg, or OCA 25 mg once daily. Various NITs based on clinical chemistry and/or imaging were evaluated at baseline and throughout the study. RESULTS Rapid, sustained reductions from baseline in alanine aminotransferase (ALT), aspartate aminotransferase (AST), and gamma-glutamyltransferase levels, as well as in Fibrosis-4 (FIB-4), FibroTest, FibroMeter, and FibroScan-AST scores were observed in OCA-treated vs. placebo-treated patients. Reduction in liver stiffness by vibration-controlled transient elastography was observed in the OCA 25 mg group vs. the placebo group at Month 18. NIT changes were associated with shifts in histologic fibrosis stage. The greatest improvements were observed in patients with ≥1-stage fibrosis improvement; however, improvements in ALT, AST, FIB-4, and FibroTest were also observed in OCA-treated patients whose histologic fibrosis remained stable. CONCLUSIONS Based on the REGENERATE Month 18 interim analysis, rapid and sustained improvements in various NITs were observed with OCA treatment. Dynamic changes in selected NITs separated histologic responders from non-responders. These results suggest that NITs may be useful in assessing histologic response to OCA therapy. CLINICALTRIALS. GOV NUMBER NCT02548351 LAY SUMMARY: Non-alcoholic steatohepatitis (NASH) is a chronic, progressive liver disease that can lead to cirrhosis. To diagnose and assess liver fibrosis (scarring) in patients with NASH, non-invasive tests (NITs) are increasingly being used rather than liver biopsy, which is invasive, expensive, and can be risky. In the REGENERATE study, which is evaluating the effects of obeticholic acid vs. placebo in patients with NASH, various NITs were also evaluated. This analysis shows that improvements in levels of certain blood components, as well as favorable results of ultrasound imaging and proprietary tests of liver function, were associated with improvements in liver fibrosis after treatment with obeticholic acid, suggesting that NITs may be useful alternatives to liver biopsy in assessing NASH patients' response to therapy.
Collapse
Affiliation(s)
- Mary E Rinella
- Department of Medicine, Gastroenterology and Hepatology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jean-Francois Dufour
- University Clinic for Visceral Surgery and Medicine, Inselspital, Bern, Switzerland; Hepatology, Department for BioMedical Research, University of Bern, Bern, Switzerland
| | - Quentin M Anstee
- The Newcastle Liver Research Group, Translational & Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom; Newcastle NIHR Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust, Newcastle Upon Tyne, United Kingdom
| | - Zachary Goodman
- Betty and Guy Beatty Center for Integrated Research, Inova Health System, Falls Church, VA, USA
| | - Zobair Younossi
- Betty and Guy Beatty Center for Integrated Research, Inova Health System, Falls Church, VA, USA
| | | | - Rohit Loomba
- Division of Gastroenterology, University of California San Diego, San Diego, CA, USA
| | - Arun J Sanyal
- Department of Internal Medicine, Division of Gastroenterology, Hepatology and Nutrition, Virginia Commonwealth University, Richmond, VA, USA
| | | | | | - Macky Natha
- Intercept Pharmaceuticals, San Diego, CA, USA
| | | | | | | | - Vlad Ratziu
- Sorbonne Université, Assistance Publique-Hôpitaux de Paris, Hôpital Pitié - Salpêtrière, Institute for Cardiometabolism and Nutrition, INSERM UMRS 1138 CRC, Paris, France.
| |
Collapse
|
39
|
Moldovan DC, Ismaiel A, Fagoonee S, Pellicano R, Abenavoli L, Dumitrascu DL. Gut microbiota and cardiovascular diseases axis. Minerva Med 2022; 113:189-199. [PMID: 33969961 DOI: 10.23736/s0026-4806.21.07527-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Gut microbiota, a term that includes microorganisms present in the gastrointestinal tract, has become very attractive lately due to its propensity to act as a virtual organ with endocrine functions, generating various bio-active metabolites, while playing an important role in human health and diseases, including cardiovascular diseases (CVDs). Focusing on the latter field, gastrointestinal dysbiosis that is the imbalance in the gut microbiota composition has been linked to various pathologies such as hypertension, atherosclerosis, myocardial infarction and heart failure. Several pathways were demonstrated to play a role in the complex and intertwined association between the gut microbiota and host, including metabolic endotoxemia, alteration of pattern recognition receptors and short-chain fatty acids, uremic toxins, bile acids and trimethylamine-N-oxide levels, leading to CVDs. Understanding these pathways can allow the identification of metabolites that could be useful predictors for detecting incipient CVDs stages and potential therapeutic targets. In this review, we summarize the pathways associating the gut microbiota with CVDs.
Collapse
Affiliation(s)
- Dora C Moldovan
- Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Department of Internal Medicine, Regional Institute of Gastroenterology and Hepatology Prof. Dr. "O. Fodor", Cluj-Napoca, Romania
| | - Abdulrahman Ismaiel
- Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania -
- Second Department of Internal Medicine, Cluj-Napoca, Romania
| | - Sharmila Fagoonee
- Institute of Biostructure and Bioimaging, National Research Council, Molecular Biotechnology Center, Turin, Italy
| | - Rinaldo Pellicano
- Unit of Gastroenterology, Molinette Hospital, Città della Salute e della Scienza, Turin, Italy
| | - Ludovico Abenavoli
- Department of Health Sciences, The Magna Græcia University of Catanzaro, Catanzaro, Italy
| | - Dan L Dumitrascu
- Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
- Second Department of Internal Medicine, Cluj-Napoca, Romania
| |
Collapse
|
40
|
Albhaisi S, Sanyal AJ. Pharmacology of NASH. COMPREHENSIVE PHARMACOLOGY 2022:214-238. [DOI: 10.1016/b978-0-12-820472-6.00121-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
41
|
Nuclear Receptors in Energy Metabolism. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1390:61-82. [DOI: 10.1007/978-3-031-11836-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
42
|
Elmeged LSMA, Alzahrani MSH. Effect of Biologically Active Substances in Cichorium on Biochemical Changes in Obese Rats. JOURNAL OF BIOCHEMICAL TECHNOLOGY 2022; 13:38-45. [DOI: 10.51847/bn6mhuzxbb] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
|
43
|
Rong L, Zou J, Ran W, Qi X, Chen Y, Cui H, Guo J. Advancements in the treatment of non-alcoholic fatty liver disease (NAFLD). Front Endocrinol (Lausanne) 2022; 13:1087260. [PMID: 36726464 PMCID: PMC9884828 DOI: 10.3389/fendo.2022.1087260] [Citation(s) in RCA: 111] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/28/2022] [Indexed: 01/17/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a series of diseases, involving excessive lipid deposition in the liver and is often accompanied by obesity, diabetes, dyslipidemia, abnormal blood pressure, and other metabolic disorders. In order to more accurately reflect its pathogenesis, an international consensus renamed NAFLD in 2020 as metabolic (dysfunction) associated with fatty liver disease (MAFLD). The changes in diet and lifestyle are recognized the non-drug treatment strategies; however, due to the complex pathogenesis of NAFLD, the current drug therapies are mainly focused on its pathogenic factors, key links of pathogenesis, and related metabolic disorders as targets. There is still a lack of specific drugs. In clinical studies, the common NAFLD treatments include the regulation of glucose and lipid metabolism to protect the liver and anti-inflammation. The NAFLD treatments based on the enterohepatic axis, targeting gut microbiota, are gradually emerging, and various new metabolism-regulating drugs are also under clinical development. Therefore, this review article has comprehensively discussed the research advancements in NAFLD treatment in recent years.
Collapse
Affiliation(s)
- Li Rong
- Department of Gastroenterology, Bishan Hospital of Chongqing Medical University, Bishan Hospital of Chongqing, Chongqing, China
| | - Junyan Zou
- Medical Research Institute, Southwest University, Chongqing, China
- Medical Research Institute, Southwest University, Public Health Hospital Affiliated to Southwest University, Chongqing, China
| | - Wei Ran
- Medical Research Institute, Southwest University, Public Health Hospital Affiliated to Southwest University, Chongqing, China
| | - Xiaohong Qi
- Department of General surgery, Baoshan People’s Hospital of Yunnan Province, Baoshan, Yunnan, China
| | - Yaokai Chen
- Medical Research Institute, Southwest University, Public Health Hospital Affiliated to Southwest University, Chongqing, China
| | - Hongjuan Cui
- Medical Research Institute, Southwest University, Chongqing, China
| | - Jinjun Guo
- Department of Gastroenterology, Bishan Hospital of Chongqing Medical University, Bishan Hospital of Chongqing, Chongqing, China
- *Correspondence: Jinjun Guo,
| |
Collapse
|
44
|
The New Therapeutic Approaches in the Treatment of Non-Alcoholic Fatty Liver Disease. Int J Mol Sci 2021; 22:ijms222413219. [PMID: 34948020 PMCID: PMC8704688 DOI: 10.3390/ijms222413219] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 11/25/2021] [Accepted: 12/02/2021] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is the most prevalent chronic liver disease which is characterized by extremely complex pathogenetic mechanisms and multifactorial etiology. Some of the many pathophysiological mechanisms involved in the development of NAFLD include oxidative stress, impaired mitochondrial metabolism, inflammation, gut microbiota, and interaction between the brain-liver-axis and the regulation of hepatic lipid metabolism. The new therapeutic approaches in the treatment of NAFLD are targeting some of these milestones along the pathophysiological pathway and include drugs like agonists of peroxisome proliferator-activated receptors (PPARs), glucagon-like peptide-1 (GLP-1) agonists, sodium/glucose transport protein 2 (SGLT2) inhibitors, farnesoid X receptor (FXR) agonists, probiotics, and symbiotics. Further efforts in biomedical sciences should focus on the investigation of the relationship between the microbiome, liver metabolism, and response to inflammation, systemic consequences of metabolic syndrome.
Collapse
|
45
|
Grgurevic I, Bozin T, Mikus M, Kukla M, O’Beirne J. Hepatocellular Carcinoma in Non-Alcoholic Fatty Liver Disease: From Epidemiology to Diagnostic Approach. Cancers (Basel) 2021; 13:5844. [PMID: 34830997 PMCID: PMC8616369 DOI: 10.3390/cancers13225844] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 11/14/2021] [Accepted: 11/17/2021] [Indexed: 12/12/2022] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is becoming the leading cause of liver morbidity worldwide and, as such, represents the pathogenic background for the increasing incidence of hepatocellular carcinoma (HCC). The annual incidence of NAFLD-related HCC is expected to increase by 45-130% by 2030. Diabetes mellitus is the most important risk factor for HCC development in NAFLD, with the risk further increased when associated with other metabolic traits, such as obesity, arterial hypertension and dyslipidemia. The highest risk of HCC exists in patients with advanced fibrosis or cirrhosis, although 20-50% of HCC cases arise in NAFLD patients with an absence of cirrhosis. This calls for further investigation of the pathogenic mechanisms that are involved in hepatocarcinogenesis, including genetics, metabolomics, the influence of the gut microbiota and immunological responses. Early identification of patients with or at risk of NAFLD is of utmost importance to improve outcomes. As NAFLD is highly prevalent in the community, the identification of cases should rely upon simple demographic and clinical characteristics. Once identified, these patients should then be evaluated for the presence of advanced fibrosis or cirrhosis and subsequently enter HCC surveillance programs if appropriate. A significant problem is the early recognition of non-cirrhotic NAFLD patients who will develop HCC, where new biomarkers and scores are potential solutions to tackle this issue.
Collapse
Affiliation(s)
- Ivica Grgurevic
- Department of Gastroenterology, Hepatology and Clinical Nutrition, University Hospital Dubrava, 10 000 Zagreb, Croatia;
- Faculty of Pharmacy and Biochemistry, School of Medicine, University of Zagreb, 10 000 Zagreb, Croatia
| | - Tonci Bozin
- Department of Gastroenterology, Hepatology and Clinical Nutrition, University Hospital Dubrava, 10 000 Zagreb, Croatia;
| | - Mislav Mikus
- Department of Obstetrics and Gynecology, University Hospital Centre Zagreb, 10 000 Zagreb, Croatia;
| | - Michal Kukla
- Department of Internal Medicine and Geriatrics, Faculty of Medicine, Jagiellonian University Medical College, 30688 Cracow, Poland;
| | - James O’Beirne
- Department of Hepatology, University of the Sunshine Coast, Sunshine Coast 4556, Australia;
| |
Collapse
|
46
|
Tran CP, Kim JJ, Feld JJ, Wong WWL. Cost-effectiveness of obeticholic acid for the treatment of non-alcoholic steatohepatitis: An early economic evaluation. CANADIAN LIVER JOURNAL 2021; 4:360-369. [PMID: 35989894 PMCID: PMC9235126 DOI: 10.3138/canlivj-2021-0011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Accepted: 05/27/2021] [Indexed: 01/19/2024]
Abstract
BACKGROUND Currently, there are no pharmacological options available for the treatment of non-alcoholic steatohepatitis (NASH). In the 18-month interim analysis of an ongoing randomized, placebo-controlled phase 3 trial (REGENERATE), early results demonstrated that obeticholic acid (OCA) 25 mg significantly improved fibrosis with no worsening of NASH among patients with NASH and fibrosis compared with placebo (PBO). This study aimed to assess the potential cost-effectiveness of OCA compared with PBO in NASH patients. METHODS A state-transition model was developed to perform a cost-utility analysis comparing two treatment strategies, PBO and OCA 25 mg, from a Canadian public payer perspective. The model time horizon was lifetime with annual cycle lengths. Cost and utility parameters were discounted at 1.5% annually. The efficacy data were obtained from the REGENERATE trial, and costs and utilities were derived from other published literature. Probabilistic and deterministic sensitivity analyses were performed to test the robustness of the model. RESULTS Treatment with OCA led to reductions of 3.58% in decompensated cirrhosis cases, 3.95% in hepatocellular carcinoma, 7.88% in liver transplant, and 6.01% in liver-related death. However, at an annual price of CAD $36,000, OCA failed to be cost-effective compared with PBO at an incremental cost-effectiveness ratio of $815,514 per quality-adjusted life year (QALY). An 88% reduction in drug price to an annual cost of $4,300 would make OCA cost-effective at a willingness-to-pay threshold of $50,000/QALY. CONCLUSIONS OCA failed to be cost-effective compared with PBO, despite demonstrating clinical benefits due to a high drug cost. A significant price reduction would be needed to make the drug cost-effective.
Collapse
Affiliation(s)
- Chanh-Phong Tran
- School of Pharmacy, Faculty of Science, University of Waterloo, Kitchener, Ontario, Canada
| | - John J Kim
- School of Pharmacy, Faculty of Science, University of Waterloo, Kitchener, Ontario, Canada
| | - Jordan J Feld
- Toronto Centre for Liver Disease, University Health Network, University of Toronto, Toronto, Ontario, Canada
| | - William WL Wong
- School of Pharmacy, Faculty of Science, University of Waterloo, Kitchener, Ontario, Canada
| |
Collapse
|
47
|
Prevention of NAFLD-associated HCC: Role of lifestyle and chemoprevention. J Hepatol 2021; 75:1217-1227. [PMID: 34339764 DOI: 10.1016/j.jhep.2021.07.025] [Citation(s) in RCA: 89] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/13/2021] [Accepted: 07/15/2021] [Indexed: 02/07/2023]
Abstract
In many countries worldwide, the burden of hepatocellular carcinoma (HCC) associated with non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) is increasing. Preventive strategies are needed to counteract this trend. In this review, we provide an overview of the evidence on preventive strategies in NAFLD-associated HCC. We consider the impact of lifestyle factors such as weight loss, physical activity, smoking, dietary patterns and food items, including coffee and alcohol, on both HCC and NAFLD/NASH. Furthermore, evidence on chemopreventive treatments, including aspirin, antidiabetic treatments and statins is summarised. The role of adjuvant therapies for tertiary prevention of HCC is briefly reviewed.
Collapse
|
48
|
Tan Z, Sun H, Xue T, Gan C, Liu H, Xie Y, Yao Y, Ye T. Liver Fibrosis: Therapeutic Targets and Advances in Drug Therapy. Front Cell Dev Biol 2021; 9:730176. [PMID: 34621747 PMCID: PMC8490799 DOI: 10.3389/fcell.2021.730176] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 08/31/2021] [Indexed: 02/05/2023] Open
Abstract
Liver fibrosis is an abnormal wound repair response caused by a variety of chronic liver injuries, which is characterized by over-deposition of diffuse extracellular matrix (ECM) and anomalous hyperplasia of connective tissue, and it may further develop into liver cirrhosis, liver failure or liver cancer. To date, chronic liver diseases accompanied with liver fibrosis have caused significant morbidity and mortality in the world with increasing tendency. Although early liver fibrosis has been reported to be reversible, the detailed mechanism of reversing liver fibrosis is still unclear and there is lack of an effective treatment for liver fibrosis. Thus, it is still a top priority for the research and development of anti-fibrosis drugs. In recent years, many strategies have emerged as crucial means to inhibit the occurrence and development of liver fibrosis including anti-inflammation and liver protection, inhibition of hepatic stellate cells (HSCs) activation and proliferation, reduction of ECM overproduction and acceleration of ECM degradation. Moreover, gene therapy has been proved to be a promising anti-fibrosis method. Here, we provide an overview of the relevant targets and drugs under development. We aim to classify and summarize their potential roles in treatment of liver fibrosis, and discuss the challenges and development of anti-fibrosis drugs.
Collapse
Affiliation(s)
- Zui Tan
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hongbao Sun
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Taixiong Xue
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Cailing Gan
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Hongyao Liu
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yuting Xie
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yuqin Yao
- West China School of Public Health and West China Fourth Hospital, Sichuan University, Chengdu, China
| | - Tinghong Ye
- Sichuan University-University of Oxford Huaxi Joint Centre for Gastrointestinal Cancer, Frontiers Science Center for Disease-Related Molecular Network, Department of Gastroenterology and Hepatology, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
49
|
Kabarra K, Golabi P, Younossi ZM. Nonalcoholic steatohepatitis: global impact and clinical consequences. Endocr Connect 2021; 10:R240-R247. [PMID: 34486981 PMCID: PMC8558888 DOI: 10.1530/ec-21-0048] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/06/2021] [Indexed: 12/15/2022]
Abstract
Nonalcoholic fatty liver disease (NAFLD) encompasses a spectrum of liver diseases ranging from simple fatty infiltration of liver parenchyma to the potentially progressive type of NAFLD called nonalcoholic steatohepatitis (NASH). Given the obesity epidemic, NAFLD and NASH have reached alarming levels globally. Recent data suggest that more than a quarter of the world population is affected by NAFLD; however, the disease prevalence is higher in certain patient population, that is, 55% prevalence rate among patients with type 2 diabetes (T2DM). Besides T2DM, NAFLD is also closely related to other metabolic abnormalities, such as visceral obesity, hypertension, and hyperlipidemia. It has been suggested that stage of liver fibrosis is the most important factor associated with mortality among patients with NAFLD. Additionally, patients with T2DM have increased risk of adverse outcomes. In addition to these metabolic abnormalities, older age and some genetic factors could pose additional risks. Patients with NAFLD and NASH have significantly impaired health-related quality of life than the general population. There is also a growing economical impact of NAFLD and NASH on healthcare systems around the globe. Despite a number of promising regimens as treatment options, healthy lifestyle modification with diet and exercise remains at the core of management of NAFLD and NASH.
Collapse
Affiliation(s)
- Khaled Kabarra
- Center for Liver Diseases, Department of Medicine, Inova Fairfax Hospital, Falls Church, Virginia, USA
| | - Pegah Golabi
- Betty and Guy Beatty Center for Integrated Research, Inova Health System, Falls Church, Virginia, USA
| | - Zobair M Younossi
- Center for Liver Diseases, Department of Medicine, Inova Fairfax Hospital, Falls Church, Virginia, USA
- Betty and Guy Beatty Center for Integrated Research, Inova Health System, Falls Church, Virginia, USA
- Inova Medicine, Inova Health System, Falls Church, Virginia, USA
- Correspondence should be addressed to Z M Younossi:
| |
Collapse
|
50
|
Stefela A, Kaspar M, Drastik M, Kronenberger T, Micuda S, Dracinsky M, Klepetarova B, Kudova E, Pavek P. (E)-7-Ethylidene-lithocholic Acid (7-ELCA) Is a Potent Dual Farnesoid X Receptor (FXR) Antagonist and GPBAR1 Agonist Inhibiting FXR-Induced Gene Expression in Hepatocytes and Stimulating Glucagon-like Peptide-1 Secretion From Enteroendocrine Cells. Front Pharmacol 2021; 12:713149. [PMID: 34483922 PMCID: PMC8414367 DOI: 10.3389/fphar.2021.713149] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 07/20/2021] [Indexed: 12/12/2022] Open
Abstract
Bile acids (BAs) are key signaling steroidal molecules that regulate glucose, lipid, and energy homeostasis via interactions with the farnesoid X receptor (FXR) and G-protein bile acid receptor 1 (GPBAR1). Extensive medicinal chemistry modifications of the BA scaffold led to the discovery of potent selective or dual FXR and GPBAR1 agonists. Herein, we discovered 7-ethylidene-lithocholic acid (7-ELCA) as a novel combined FXR antagonist/GPBAR1 agonist (IC50 = 15 μM/EC50 = 26 nM) with no off-target activation in a library of 7-alkyl substituted derivatives of BAs. 7-ELCA significantly suppressed the effect of the FXR agonist obeticholic acid in BSEP and SHP regulation in human hepatocytes. Importantly, 7-ELCA significantly stimulated the production of glucagon-like peptide-1 (GLP-1), an incretin with insulinotropic effect in postprandial glucose utilization, in intestinal enteroendocrine cells. We can suggest that 7-ELCA may be a prospective approach to the treatment of type II diabetes as the dual modulation of GPBAR1 and FXR has been supposed to be effective in the synergistic regulation of glucose homeostasis in the intestine.
Collapse
Affiliation(s)
- Alzbeta Stefela
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Miroslav Kaspar
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia.,Faculty of Sciences, Charles University, Prague, Czechia
| | - Martin Drastik
- Department of Physical Chemistry and Biophysics, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Thales Kronenberger
- Department of Internal Medicine VIII, University Hospital of Tübingen, Tübingen, Germany.,School of Pharmacy, University of Eastern Finland, Faculty of Health Sciences, Kuopio, Finland
| | - Stanislav Micuda
- Department of Pharmacology, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Martin Dracinsky
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia
| | - Blanka Klepetarova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia
| | - Eva Kudova
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Prague, Czechia
| | - Petr Pavek
- Department of Pharmacology and Toxicology, Faculty of Pharmacy in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| |
Collapse
|