1
|
Phosphorylation-mediated interaction between human E26 transcription factor 1 and specific protein 1 is required for tumor cell migration. Acta Biochim Biophys Sin (Shanghai) 2022; 54:1441-1452. [PMID: 36305724 PMCID: PMC9828152 DOI: 10.3724/abbs.2022148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Transcription factors, human E26 transcription factor 1 (Ets1) and specific protein 1 (Sp1), are known to induce gene expression in tumorigenicity. High Ets1 expression is often associated with colorectal tumorigenesis. In this study, we discover that metastasis and clone formation in SW480 cells mainly depend on the direct interaction between Ets1 and Sp1 instead of high Ets1 expression. The interaction domains are further addressed to be the segment at Sp1(626-708) and the segment at Ets1(244-331). In addition, the phosphorylation inhibition of Ets1 at Tyr283 by either downregulation of Src kinase or Src family inhibitor treatment decreases the interaction between Sp1 and Ets1 and suppresses SW480 migration. Either administration or overexpression of the peptides harboring the interaction segment strongly inhibits the colony formation and migration of SW480 cells. Our findings suggest that the interaction between Ets1 and Sp1 rather than Ets1 alone promotes transformation in SW480 cells and provide new insight into the Ets1 and Sp1 interaction as an antitumour target in SW480 cells.
Collapse
|
2
|
Puzovic V, Jakic-Razumovic J. Expression of E26 transformation specific-1 (ETS-1) in tumour-infiltrating lymphocytes (TILs) is adverse prognostic factor in invasive breast cancer. Breast Dis 2021; 40:25-31. [PMID: 33459689 DOI: 10.3233/bd-200449] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
AIM OF THE STUDY The microenvironment depicts the relationship between tumour cells and immune response, and every insight into stromal lymphocytes could contribute to explain their role and activity. E26 transformation specific-1 (ETS-1) is a transcription factor that is active in cell proliferation. We analysed its immunohistochemical expression in tumour infiltrating lymphocytes (TILs) in invasive breast cancer and correlated its immunohistochemical score (IHS) to traditional predictive and prognostic factors and survival. MATERIALS AND METHODS The sample contains data of 121 patients with invasive breast cancer, not otherwise specified (NOS) who underwent mammectomy and lymphadenectomy in 2002 at the Clinical Hospital Centre Zagreb, Croatia. Paraffin blocks of the tumour tissue were collected from the pathological archive. Three representative areas of every patient were chosen and multiple tissue samples were made. Immunohistochemical staining with rabbit anti-ETS-1 (Novocastra, UK) and the ABC method was performed on a DAKO Autostainer. The expression of ETS-1 in stromal TILs was analysed on an Olympus 41 microscope. The IHS score was calculated and correlated with clinical and pathological parameters, as well as disease-free survival (DFS) and overall survival (OS). RESULTS In almost all patients (95%), some expression of ETS-1 in TILs was found. A moderate/high score of ETS-1 correlated with larger tumour size and higher histological grade, high proliferation index and low progesterone receptors (PgR). The patients with moderate/high ETS-1 expression in TILs had shorter DFS than patients with weak/negative ETS-1 expression. CONCLUSION In invasive breast cancer NOS, expression of ETS-1 in TILs is an adverse prognostic factor.
Collapse
Affiliation(s)
- Velibor Puzovic
- Department of Pathology and Cytology, General Hospital Dubrovnik, Dubrovnik, Croatia
| | | |
Collapse
|
3
|
Nazir SU, Kumar R, Dil-Afroze, Rasool I, Bondhopadhyay B, Singh A, Tripathi R, Singh N, Khan A, Tanwar P, Agrawal U, Mehrotra R, Hussain S. Differential expression of Ets-1 in breast cancer among North Indian population. J Cell Biochem 2019; 120:14552-14561. [PMID: 31016780 DOI: 10.1002/jcb.28716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 01/31/2019] [Accepted: 02/04/2019] [Indexed: 12/29/2022]
Abstract
Breast cancer is a highly aggressive disease contributing to high mortality rate among females across the globe owing to wide geographical variations, change in lifestyle along with rapid tumor growth, drug resistance, and high metastasis rate. To understand the molecular and genetic basis of breast cancer progression; we studied the role of E26 transformation-specific-1 (Ets-1) transcription factor which is implicated to have a role in carcinogenesis like invasion, metastasis, angiogenesis, etc. Our findings revealed an overexpression of Ets-1 gene in 75 breast cancer tumors as compared with their normal adjacent tissues. The findings significantly established a co-relation between Ets-1 expression in breast cancer tissue with hormonal receptor profiles and ductal-lobular histological subtypes in Indian population. In addition, a differential expression pattern of Ets-1 was observed between high, moderate, and low grades of breast cancer patients. The present study demonstrates a crucial role of Ets-1 transcription factor which may serve as a potential biomarker for breast carcinogenesis.
Collapse
Affiliation(s)
- Sheeraz Un Nazir
- Division of Molecular Oncology and Head, Cellular & Molecular Diagnostics, National Institute of Cancer Prevention & Research, Indian Council of Medical Research, Noida, India
- Department of Biochemistry, Bundelkhand University, Jhansi, UP, India
| | - Ramesh Kumar
- Department of Biochemistry, Bundelkhand University, Jhansi, UP, India
| | - Dil-Afroze
- Department of Immunology and Molecular Medicine, Sher-I- Kashmir Institute of Medical Sciences, Soura, Srinagar, Kashmir, India
| | - Ishrat Rasool
- Department of Immunology and Molecular Medicine, Sher-I- Kashmir Institute of Medical Sciences, Soura, Srinagar, Kashmir, India
| | - Banashree Bondhopadhyay
- Division of Molecular Oncology and Head, Cellular & Molecular Diagnostics, National Institute of Cancer Prevention & Research, Indian Council of Medical Research, Noida, India
| | - Ankita Singh
- Division of Molecular Oncology and Head, Cellular & Molecular Diagnostics, National Institute of Cancer Prevention & Research, Indian Council of Medical Research, Noida, India
| | - Richa Tripathi
- Division of Cytopathology, National Institute of Cancer Prevention & Research, Indian Council of Medical Research, Noida, India
| | - Neha Singh
- Institute of Clinical Sciences, Sahlgrenska University Hospital, Gothenberg University, Gothenberg, Sweden
| | - Asiya Khan
- Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Pranay Tanwar
- Dr. B.R.A. Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, New Delhi, India
| | - Usha Agrawal
- National Institute of Pathology, Indian Council of Medical Research, New Delhi, India
| | - Ravi Mehrotra
- Division of Cytopathology, National Institute of Cancer Prevention & Research, Indian Council of Medical Research, Noida, India
| | - Showket Hussain
- Division of Molecular Oncology and Head, Cellular & Molecular Diagnostics, National Institute of Cancer Prevention & Research, Indian Council of Medical Research, Noida, India
| |
Collapse
|
4
|
Dittmer J. The role of the transcription factor Ets1 in carcinoma. Semin Cancer Biol 2015; 35:20-38. [PMID: 26392377 DOI: 10.1016/j.semcancer.2015.09.010] [Citation(s) in RCA: 149] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2015] [Revised: 09/16/2015] [Accepted: 09/16/2015] [Indexed: 12/12/2022]
Abstract
Ets1 belongs to the large family of the ETS domain family of transcription factors and is involved in cancer progression. In most carcinomas, Ets1 expression is linked to poor survival. In breast cancer, Ets1 is primarily expressed in the triple-negative subtype, which is associated with unfavorable prognosis. Ets1 contributes to the acquisition of cancer cell invasiveness, to EMT (epithelial-to-mesenchymal transition), to the development of drug resistance and neo-angiogenesis. The aim of this review is to summarize the current knowledge on the functions of Ets1 in carcinoma progression and on the mechanisms that regulate Ets1 activity in cancer.
Collapse
Affiliation(s)
- Jürgen Dittmer
- Clinic for Gynecology, Martin Luther University Halle-Wittenberg, Germany.
| |
Collapse
|
5
|
Osmanbeyoglu HU, Pelossof R, Bromberg JF, Leslie CS. Linking signaling pathways to transcriptional programs in breast cancer. Genome Res 2014; 24:1869-80. [PMID: 25183703 PMCID: PMC4216927 DOI: 10.1101/gr.173039.114] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Cancer cells acquire genetic and epigenetic alterations that often lead to dysregulation of oncogenic signal transduction pathways, which in turn alters downstream transcriptional programs. Numerous methods attempt to deduce aberrant signaling pathways in tumors from mRNA data alone, but these pathway analysis approaches remain qualitative and imprecise. In this study, we present a statistical method to link upstream signaling to downstream transcriptional response by exploiting reverse phase protein array (RPPA) and mRNA expression data in The Cancer Genome Atlas (TCGA) breast cancer project. Formally, we use an algorithm called affinity regression to learn an interaction matrix between upstream signal transduction proteins and downstream transcription factors (TFs) that explains target gene expression. The trained model can then predict the TF activity, given a tumor sample’s protein expression profile, or infer the signaling protein activity, given a tumor sample’s gene expression profile. Breast cancers are comprised of molecularly distinct subtypes that respond differently to pathway-targeted therapies. We trained our model on the TCGA breast cancer data set and identified subtype-specific and common TF regulators of gene expression. We then used the trained tumor model to predict signaling protein activity in a panel of breast cancer cell lines for which gene expression and drug response data was available. Correlations between inferred protein activities and drug responses in breast cancer cell lines grouped several drugs that are clinically used in combination. Finally, inferred protein activity predicted the clinical outcome within the METABRIC Luminal A cohort, identifying high- and low-risk patient groups within this heterogeneous subtype.
Collapse
Affiliation(s)
- Hatice U Osmanbeyoglu
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Raphael Pelossof
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| | - Jacqueline F Bromberg
- Department of Medicine, Memorial Sloan Kettering Cancer Center and Weill Cornell Medical College, New York, New York 10065, USA
| | - Christina S Leslie
- Computational Biology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA;
| |
Collapse
|
6
|
Lu G, Zhang Q, Huang Y, Song J, Tomaino R, Ehrenberger T, Lim E, Liu W, Bronson RT, Bowden M, Brock J, Krop IE, Dillon DA, Gygi SP, Mills GB, Richardson AL, Signoretti S, Yaffe MB, Kaelin WG. Phosphorylation of ETS1 by Src family kinases prevents its recognition by the COP1 tumor suppressor. Cancer Cell 2014; 26:222-34. [PMID: 25117710 PMCID: PMC4169234 DOI: 10.1016/j.ccr.2014.06.026] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2013] [Revised: 05/09/2014] [Accepted: 06/27/2014] [Indexed: 12/12/2022]
Abstract
Oncoproteins and tumor suppressors antagonistically converge on critical nodes governing neoplastic growth, invasion, and metastasis. We discovered that phosphorylation of the ETS1 and ETS2 transcriptional oncoproteins at specific serine or threonine residues creates binding sites for the COP1 tumor suppressor protein, which is an ubiquitin ligase component, leading to their destruction. In the case of ETS1, however, phosphorylation of a neighboring tyrosine residue by Src family kinases disrupts COP1 binding, thereby stabilizing ETS1. Src-dependent accumulation of ETS1 in breast cancer cells promotes anchorage-independent growth in vitro and tumor growth in vivo. These findings expand the list of potential COP1 substrates to include proteins whose COP1-binding sites are subject to regulatory phosphorylation and provide insights into transformation by Src family kinases.
Collapse
Affiliation(s)
- Gang Lu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Qing Zhang
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Ying Huang
- Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jiaxi Song
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ross Tomaino
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Tobias Ehrenberger
- Department of Biology, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Elgene Lim
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02215, USA
| | - Wenbin Liu
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Roderick T Bronson
- Rodent Histopathology Core, Dana Farber/Harvard Cancer Center, Harvard Medical School, Boston, MA 02115, USA
| | - Michaela Bowden
- Center for Molecular Oncologic Pathology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Jane Brock
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Ian E Krop
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Deborah A Dillon
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Steven P Gygi
- Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Gordon B Mills
- Department of Systems Biology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Andrea L Richardson
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA; Department of Cancer Cell Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Sabina Signoretti
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Michael B Yaffe
- Department of Biology, Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - William G Kaelin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA.
| |
Collapse
|
7
|
Li S, Huang X, Zhang D, Huang Q, Pei G, Wang L, Jiang W, Hu Q, Tan R, Hua ZC. Requirement of PEA3 for transcriptional activation of FAK gene in tumor metastasis. PLoS One 2013; 8:e79336. [PMID: 24260201 PMCID: PMC3832605 DOI: 10.1371/journal.pone.0079336] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2013] [Accepted: 09/30/2013] [Indexed: 11/19/2022] Open
Abstract
Focal adhesion kinase (FAK) is a non-receptor tyrosine kinase critically involved in cancer metastasis. We found an elevation of FAK expression in highly metastatic melanoma B16F10 cells compared with its less metastatic partner B16F1 cells. Down-regulation of the FAK expression by either small interfering RNA or dominant negative FAK (FAK Related Non-Kinase, FRNK) inhibited the B16F10 cell migration in vitro and invasiveness in vivo. The mechanism by which FAK activity is up-regulated in highly metastatic cells remains unclear. In this study, we reported for the first time that one of the Est family proteins, PEA3, is able to transactivate FAK expression through binding to the promoter region of FAK. We identified a PEA3-binding site between nucleotides -170 and +43 in the FAK promoter that was critical for the responsiveness to PEA3. A stronger affinity of PEA3 to this region contributed to the elevation of FAK expression in B16F10 cells. Both in vitro and in vivo knockdown of PEA3 gene successfully mimicked the cell migration and invasiveness as that induced by FAK down-regulation. The activation of the well-known upstream of PEA3, such as epidermal growth factor, JNK, and ERK can also induce FAK expression. Furthermore, in the metastatic human clinic tumor specimens from the patients with human primary oral squamous cell carcinoma, we observed a strong positive correlation among PEA3, FAK, and carcinoma metastasis. Taking together, we hypothesized that PEA3 might play an essential role in the activation of the FAK gene during tumor metastasis.
Collapse
Affiliation(s)
- Shufeng Li
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Science and School of Stomatology, Affiliated Stomatological Hospital, Nanjing University, Nanjing, People’s Republic of China
| | - Xiaofeng Huang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Science and School of Stomatology, Affiliated Stomatological Hospital, Nanjing University, Nanjing, People’s Republic of China
| | - Dapeng Zhang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Science and School of Stomatology, Affiliated Stomatological Hospital, Nanjing University, Nanjing, People’s Republic of China
| | - Qilai Huang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Science and School of Stomatology, Affiliated Stomatological Hospital, Nanjing University, Nanjing, People’s Republic of China
- Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc., Changzhou, People’s Republic of China
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, People’s Republic of China
| | - Guoshun Pei
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Science and School of Stomatology, Affiliated Stomatological Hospital, Nanjing University, Nanjing, People’s Republic of China
| | - Lixiang Wang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Science and School of Stomatology, Affiliated Stomatological Hospital, Nanjing University, Nanjing, People’s Republic of China
| | - Wenhui Jiang
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Science and School of Stomatology, Affiliated Stomatological Hospital, Nanjing University, Nanjing, People’s Republic of China
| | - Qingang Hu
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Science and School of Stomatology, Affiliated Stomatological Hospital, Nanjing University, Nanjing, People’s Republic of China
| | - Renxiang Tan
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Science and School of Stomatology, Affiliated Stomatological Hospital, Nanjing University, Nanjing, People’s Republic of China
| | - Zi-Chun Hua
- The State Key Laboratory of Pharmaceutical Biotechnology, College of Life Science and School of Stomatology, Affiliated Stomatological Hospital, Nanjing University, Nanjing, People’s Republic of China
- Changzhou High-Tech Research Institute of Nanjing University and Jiangsu TargetPharma Laboratories Inc., Changzhou, People’s Republic of China
- The State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Macau, People’s Republic of China
- * E-mail:
| |
Collapse
|
8
|
Switzer CH, Cheng RYS, Ridnour LA, Glynn SA, Ambs S, Wink DA. Ets-1 is a transcriptional mediator of oncogenic nitric oxide signaling in estrogen receptor-negative breast cancer. Breast Cancer Res 2012; 14:R125. [PMID: 22971289 PMCID: PMC4053102 DOI: 10.1186/bcr3319] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2012] [Accepted: 09/12/2012] [Indexed: 02/04/2023] Open
Abstract
Introduction The Ets-1 transcription factor is a candidate breast cancer oncogene that regulates the expression of genes involved in tumor progression and metastasis. Ets-1 signaling has also been linked to the development of a basal-like breast cancer phenotype. We recently described a nitric oxide (NO)-induced gene signature that is associated with poor disease outcome in estrogen receptor-negative (ER-) breast cancer and contains both stem cell-like and basal-like components. Thus, we examined the role of Ets-1 in NO signaling and NO-induced phenotypes in ER- human breast cancer cells. Methods Promoter region analyses were performed on genes upregulated in inducible nitric oxide synthase (NOS2) high expressing tumors for Ets-binding sites. In vitro mechanisms were examined in human basal-like breast cancer cells lines. NO signaling effects were studied using either forced NOS2 expression or the use of a chemical NO-donor, diethlylenetriamine NONOate (DETANO). Results Promoter region analysis of genes that are up-regulated in human ER-negative breast tumors with high NOS2 expression revealed that the Ets-binding sequence is the only common promoter element present in all of these genes, indicating that Ets-1 is the key transcriptional factor down-stream of oncogenic NOS2-signaling. Accordingly, both forced NOS2 over-expression and exposure to NO-donors resulted in significant Ets-1 transcriptional activation in ER- breast cancer cells. Functional studies showed that NO activated Ets-1 transcriptional activity via a Ras/MEK/ERK signaling pathway by a mechanism that involved Ras S-nitrosylation. RNA knock-down of Ets-1 suppressed NO-induced expression of selected basal-like breast cancer markers such as P-cadherin, S100A8, IL-8 and αβ-crystallin. Additionally, Ets-1 knock-down reduced NO-mediated cellular proliferation, matrix metalloproteinase and cathepsin B activities, as well as matrigel invasion. Conclusions These data show that Ets-1 is a key transcriptional mediator of oncogenic NO signaling that promotes the development of an aggressive disease phenotype in ER- breast cancer in an Ets-1 and Ras-dependent manner, providing novel clues of how NOS2 expression in human breast tumors is functionally linked to poor patient survival.
Collapse
|
9
|
Mattia G, Errico MC, Felicetti F, Petrini M, Bottero L, Tomasello L, Romania P, Boe A, Segnalini P, Di Virgilio A, Colombo MP, Carè A. Constitutive activation of the ETS-1-miR-222 circuitry in metastatic melanoma. Pigment Cell Melanoma Res 2011; 24:953-65. [PMID: 21711453 PMCID: PMC3272348 DOI: 10.1111/j.1755-148x.2011.00881.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2011] [Revised: 06/23/2011] [Indexed: 01/13/2023]
Abstract
MicroRNAs-221 and -222 are highly upregulated in several solid tumors, including melanomas. We demonstrate that the proto-oncogene ETS-1, involved in the pathogenesis of cancers of different origin, is a transcriptional regulator of miR-222 by direct binding to its promoter region. Differently from 293FT cells or early stage melanomas, where unphosphorylated ETS-1 represses miR-222 transcription, in metastatic melanoma the constitutively Thr-38 phosphorylated fraction of ETS-1 induces miR-222. Despite its stepwise decreased expression along with melanoma progression, the oncogenic activity of ETS-1 relies on its RAS/RAF/ERK-dependent phosphorylation status more than on its total amount. To close the loop, we demonstrate ETS-1 as a direct target of miR-222, but not miR-221, showing the novel option of their uncoupled functions. In addition, a spatial redistribution of ETS-1 protein from the nucleus to the cytoplasm is also evidenced in advanced melanoma cells. Finally, in vivo studies confirmed the contribution of miR-222 to the increased invasive potential obtained by ETS- silencing.
Collapse
Affiliation(s)
- Gianfranco Mattia
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore SanitàRome, Italy
| | - M Cristina Errico
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore SanitàRome, Italy
| | - Federica Felicetti
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore SanitàRome, Italy
| | - Marina Petrini
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore SanitàRome, Italy
| | - Lisabianca Bottero
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore SanitàRome, Italy
| | - Luisa Tomasello
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore SanitàRome, Italy
| | - Paolo Romania
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore SanitàRome, Italy
| | - Alessandra Boe
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore SanitàRome, Italy
| | - Patrizia Segnalini
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore SanitàRome, Italy
| | - Antonio Di Virgilio
- Service for Quality and Safety of Animal Experimentation, Istituto Superiore di SanitàRome, Italy
| | - Mario P Colombo
- Immunotherapy and Gene Therapy Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale TumoriMilan, Italy
| | - Alessandra Carè
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore SanitàRome, Italy
| |
Collapse
|
10
|
Laitem C, Leprivier G, Choul-Li S, Begue A, Monte D, Larsimont D, Dumont P, Duterque-Coquillaud M, Aumercier M. Ets-1 p27: a novel Ets-1 isoform with dominant-negative effects on the transcriptional properties and the subcellular localization of Ets-1 p51. Oncogene 2009; 28:2087-99. [PMID: 19377509 DOI: 10.1038/onc.2009.72] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The transcription factor Ets-1 is implicated in various physiological processes and invasive pathologies. We identified a novel variant of ets-1, ets-1Delta(III-VI), resulting from the alternative splicing of exons III to VI. This variant encodes a 27 kDa isoform, named Ets-1 p27. Ets-1 p27 lacks the threonine-38 residue, the Pointed domain and the transactivation domain, all of which are required for the transactivation of Ets-1 target genes. Both inhibitory domains surrounding the DNA-binding domain are conserved, suggesting that Ets-1 p27, like the full-length Ets-1 p51 isoform, is autoinhibited for DNA binding. We showed that Ets-1 p27 binds DNA in the same way as Ets-1 p51 does and that it acts both at a transcriptional and a subcellular localization level, thereby constituting a dual-acting dominant negative of Ets-1 p51. Ets-1 p27 blocks Ets-1 p51-mediated transactivation of target genes and induces the translocation of Ets-1 p51 from the nucleus to the cytoplasm. Furthermore, Ets-1 p27 overexpression represses the tumor properties of MDA-MB-231 mammary carcinoma cells in correlation with the known implication of Ets-1 in various cellular mechanisms. Thus the dual-acting dominant-negative function of Ets-1 p27 gives to the Ets-1 p27/Ets-1 p51 ratio a determining effect on cell fate.
Collapse
Affiliation(s)
- C Laitem
- CNRS Unité Mixte de Recherche 8161, Institut de Biologie de Lille, Institut Pasteur de Lille, Universités de Lille 1 and Lille 2, IFR 142, Lille, France
| | | | | | | | | | | | | | | | | |
Collapse
|