1
|
Zhao X, Zhu G, Xue M, He H. Identification and regulation of EMT cells in vivo by laser stimulation. APL Bioeng 2025; 9:026119. [PMID: 40438388 PMCID: PMC12119126 DOI: 10.1063/5.0268350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2025] [Accepted: 05/16/2025] [Indexed: 06/01/2025] Open
Abstract
Cells undergoing epithelial-to-mesenchymal transition (EMT) exhibit significant plasticity, making them more tumorigenic, invasive, and stem-like. PLCG2 has been identified as being linked to EMT. Specifically, the PLCG2-high subpopulation of tumor cells shows strong correlations with metastasis. However, it remains unclear whether PLCG2 serves as a direct driver of EMT. In this study, we employ an in vivo photostimulation method using tightly focused femtosecond-laser scanning to activate intracellular Ca2+ signaling and induce PLCG2 upregulation. By constructing a subcutaneous tumor model with prostate cancer PC3 cells and single-cell RNA sequencing, we identify distinct cell populations, including cancer stem cells, epithelial tumor cells, proliferating cells, and EMT cells. Upon photostimulation, EMT cells are notably expanded among the primary tumor cells, while epithelial tumor cells decrease in number. During the tumor progression, treatment with a specific PLCG2 inhibitor effectively suppresses the growth of the primary tumor but has no significant impact on metastatic cells. These findings offer valuable insights into the role of PLCG2 in regulating EMT and tumor development.
Collapse
Affiliation(s)
- Xiaohui Zhao
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200031, China
| | - Guang Zhu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200031, China
| | - Meng Xue
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200031, China
| | - Hao He
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200031, China
| |
Collapse
|
2
|
Huang J, Liu F, Xu ZF, Xiang HL, Yuan Q, Zhang C. Minichromosome maintenance 4 plays a key role in protecting against acute kidney injury by regulating tubular epithelial cells survival and regeneration. J Adv Res 2025:S2090-1232(25)00192-4. [PMID: 40107353 DOI: 10.1016/j.jare.2025.03.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 02/19/2025] [Accepted: 03/16/2025] [Indexed: 03/22/2025] Open
Abstract
INTRODUCTION Minichromosome maintenance 4 (MCM4), a constituent of the MCM family, playing a pivotal role in DNA replication. Although MCM4 expression has been widely linked to various malignant tumors, its role in kidney diseases is not well-studied. This study primarily investigates the role and underlying mechanism of MCM4 in acute kidney injury (AKI). OBJECTIVES Characterizing a novel target of MCM4 in patients with AKI. METHODS We used CRISPR/Cas9 gene editing to delete MCM4 gene in tubular cells from C57BL/6J mice. Adeno-associated virus 9 harboring MCM4 was administered via intraparenchymal injection into the kidney to enhance MCM4 expression in vivo. These mice were used to established cisplatin- and ischemic reperfusion injury (IRI)-induced AKI mouse models, for detecting the functional role of MCM4 in the pathological process of AKI. RESULTS MCM4 level was increased in the tubules of cisplatin- and IRI-induced AKI mouse models. Compare to wide-type mice, MCM4 knockout mice demonstrated greater degree of histological damage and a higher ratio of apoptotic tubular cells, as well as kidney dysfunction upon cisplatin- and IRI-induced AKI models. Conversely, MCM4 overexpression ameliorated the severity of kidney injury and promoted regenerative capacity of tubular cells during AKI development. Mechanically, loss of MCM4 induced the expression of p53-binding protein 1, activating the p53/p21 pathway and exacerbating AKI progression. Additional, MAD2B, as an upstream molecule of MCM4, regulates the transcription level of MCM4 by affecting the level of E2F1. CONCLUSIONS These findings demonstrate that MCM4 upregulation during AKI development is an adaptive response that preserves tubular cell regenerative capacity and limits the severity of renal injury, thus highlighting the potential value of MCM4 as a biomarker or therapeutic target in patients with AKI.
Collapse
Affiliation(s)
- Jing Huang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Feng Liu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhi-Feng Xu
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Hui-Ling Xiang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qian Yuan
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chun Zhang
- Department of Nephrology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China.
| |
Collapse
|
3
|
Rich J, Bennaroch M, Notel L, Patalakh P, Alberola J, Issa F, Opolon P, Bawa O, Rondof W, Marchais A, Dessen P, Meurice G, Le-Gall M, Polrot M, Ser-Le Roux K, Mamchaoui K, Droin N, Raslova H, Maire P, Geoerger B, Pirozhkova I. DiPRO1 distinctly reprograms muscle and mesenchymal cancer cells. EMBO Mol Med 2024; 16:1840-1885. [PMID: 39009887 PMCID: PMC11319797 DOI: 10.1038/s44321-024-00097-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 06/13/2024] [Accepted: 06/18/2024] [Indexed: 07/17/2024] Open
Abstract
We have recently identified the uncharacterized ZNF555 protein as a component of a productive complex involved in the morbid function of the 4qA locus in facioscapulohumeral dystrophy. Subsequently named DiPRO1 (Death, Differentiation, and PROliferation related PROtein 1), our study provides substantial evidence of its role in the differentiation and proliferation of human myoblasts. DiPRO1 operates through the regulatory binding regions of SIX1, a master regulator of myogenesis. Its relevance extends to mesenchymal tumors, such as rhabdomyosarcoma (RMS) and Ewing sarcoma, where DiPRO1 acts as a repressor via the epigenetic regulators TIF1B and UHRF1, maintaining methylation of cis-regulatory elements and gene promoters. Loss of DiPRO1 mimics the host defense response to virus, awakening retrotransposable repeats and the ZNF/KZFP gene family. This enables the eradication of cancer cells, reprogramming the cellular decision balance towards inflammation and/or apoptosis by controlling TNF-α via NF-kappaB signaling. Finally, our results highlight the vulnerability of mesenchymal cancer tumors to si/shDiPRO1-based nanomedicines, positioning DiPRO1 as a potential therapeutic target.
Collapse
Affiliation(s)
- Jeremy Rich
- UMR8126 CNRS, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Melanie Bennaroch
- UMR8126 CNRS, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Laura Notel
- UMR8126 CNRS, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Polina Patalakh
- UMR8126 CNRS, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Julien Alberola
- UMR8126 CNRS, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Fayez Issa
- INSERM U1016, CNRS UMR 8104, Institut Cochin, Université Paris-Cité, Paris, France
| | - Paule Opolon
- Pathology and Cytology Section, UMS AMMICA, CNRS, INSERM, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Olivia Bawa
- Pathology and Cytology Section, UMS AMMICA, CNRS, INSERM, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Windy Rondof
- Bioinformatics Platform, UMS AMMICA, CNRS, INSERM, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer campus, INSERM U1015, Université Paris-Saclay, Villejuif, France
| | - Antonin Marchais
- Bioinformatics Platform, UMS AMMICA, CNRS, INSERM, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer campus, INSERM U1015, Université Paris-Saclay, Villejuif, France
| | - Philippe Dessen
- Bioinformatics Platform, UMS AMMICA, CNRS, INSERM, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Guillaume Meurice
- Bioinformatics Platform, UMS AMMICA, CNRS, INSERM, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Morgane Le-Gall
- Proteom'IC facility, Université Paris Cité, CNRS, INSERM, Institut Cochin, F-75014, Paris, France
| | - Melanie Polrot
- Pre-clinical Evaluation Unit (PFEP), INSERM, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Karine Ser-Le Roux
- Pre-clinical Evaluation Unit (PFEP), INSERM, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Kamel Mamchaoui
- Sorbonne Université, Inserm, Institut de Myologie, Centre de Recherche en Myologie, F-75013, Paris, France
| | - Nathalie Droin
- Genomic Platform, UMS AMMICA US 23 INSERM UAR 3655 CNRS, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
- UMR1287 INSERM, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Hana Raslova
- UMR1287 INSERM, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France
| | - Pascal Maire
- INSERM U1016, CNRS UMR 8104, Institut Cochin, Université Paris-Cité, Paris, France
| | - Birgit Geoerger
- Department of Pediatric and Adolescent Oncology, Gustave Roussy Cancer campus, INSERM U1015, Université Paris-Saclay, Villejuif, France
| | - Iryna Pirozhkova
- UMR8126 CNRS, Gustave Roussy Cancer campus, Université Paris-Saclay, Villejuif, France.
- INSERM U1016, CNRS UMR 8104, Institut Cochin, Université Paris-Cité, Paris, France.
| |
Collapse
|
4
|
Jiang Y, Xue Y, Yuan X, Ye S, Liu M, Shi Y, Zhou H. MCM6 Inhibits Decidualization via Cross-Talking with ERK Pathway in Human Endometrial Stromal Cells. Reprod Sci 2024; 31:1915-1923. [PMID: 38347378 DOI: 10.1007/s43032-024-01463-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/12/2024] [Indexed: 07/03/2024]
Abstract
Decidualization plays an important role in the implantation of the embryo, but the molecular action implicated in this process is not completely known. Herein, we found that, compared with the proliferative endometrial tissues, the expression of minichromosome maintenance complex component 6 (MCM6) was markedly decreased in the secretory endometrial tissues. To verify the function of MCM6 in decidualization, in vitro decidualization model was constructed by treating human endometrial stromal cells (HESCs) with estrogen (E2) and progesterone (P4). Consistently, MCM6 level was downregulated in E2P4-treated HESCs. Administration of E2P4 accumulated HESCs in G1 cell cycle phase, leading to cell growth suppression. Ectopic expression of MCM6 promoted the transition of G1/S and restored the proliferation of HESCs that were inhibited by E2P4. MCM6 overexpression led to aberrant activation of extracellular signal-regulated kinase (ERK) and treatment with ERK agonist Ro 67-7476 restored MCM6 expression and cell proliferation inhibited by E2P4. Our data suggested that MCM6/ERK feedback loop plays a negative role in E2P4-induced decidualization and implies that MCM6 may be a promising target for meliorating uterine receptivity.
Collapse
Affiliation(s)
- Yaling Jiang
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Yuan Xue
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xinhua Yuan
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Shengqin Ye
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mingxing Liu
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yu Shi
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hua Zhou
- Department of Obstetrics and Gynecology, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, Guangdong-Hong Kong-Macao Greater Bay Area Higher Education Joint Laboratory of Maternal-Fetal Medicine, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
5
|
Tian W, Zhao J, Zhang X, Li P, Li X, Hong Y, Li S. RUNX1 regulates MCM2/CDC20 to promote COAD progression modified by deubiquitination of USP31. Sci Rep 2024; 14:13906. [PMID: 38886545 PMCID: PMC11183096 DOI: 10.1038/s41598-024-64726-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 06/12/2024] [Indexed: 06/20/2024] Open
Abstract
Colon adenocarcinoma (COAD) is the second leading cause of cancer death, and there is still a lack of diagnostic biomarkers and therapeutic targets. In this study, bioinformatics analysis of the TCGA database was used to obtain RUNX1, a gene with prognostic value in COAD. RUNX1 plays an important role in many malignancies, and its molecular regulatory mechanisms in COAD remain to be fully understood. To explore the physiological role of RUNX1, we performed functional analyses, such as CCK-8, colony formation and migration assays. In addition, we investigated the underlying mechanisms using transcriptome sequencing and chromatin immunoprecipitation assays. RUNX1 is highly expressed in COAD patients and significantly correlates with survival. Silencing of RUNX1 significantly slowed down the proliferation and migratory capacity of COAD cells. Furthermore, we demonstrate that CDC20 and MCM2 may be target genes of RUNX1, and that RUNX1 may be physically linked to the deubiquitinating enzyme USP31, which mediates the upregulation of RUNX1 protein to promote transcriptional function. Our results may provide new insights into the mechanism of action of RUNX1 in COAD and reveal potential therapeutic targets for this disease.
Collapse
Affiliation(s)
- Wei Tian
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Dalian Medical University, Dalian, China
| | - Jingyuan Zhao
- Stem Cell Clinical Research Center, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xinyu Zhang
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Dalian Medical University, Dalian, China
| | - Pengfei Li
- The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Dalian Medical University, Dalian, China
| | - Xuening Li
- Dalian Medical University, Dalian, China
| | - Yuan Hong
- Clinical Laboratory Center, Dalian Municipal Central Hospital, Dalian, China.
| | - Shuai Li
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, Dalian, China.
| |
Collapse
|
6
|
Cao L, Liu H, Han Z, Huang C, Guo C, Zhao L, Gao C, Xu Y, Wang G, Feng Z, Li S. MCM8 promotes lung cancer progression through upregulating DNAJC10. J Cell Mol Med 2024; 28:e18488. [PMID: 39031896 PMCID: PMC11190951 DOI: 10.1111/jcmm.18488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 04/09/2024] [Accepted: 05/28/2024] [Indexed: 07/22/2024] Open
Abstract
MCM8 is a helicase, which participates in DNA replication and tumorigenesis and is upregulated in many human cancers, including lung cancer (LC); however, the function of MCM8 in LC tumour progression is unclear. In this study, we found that MCM8 was expressed at high levels in LC cells and tissues. Further, MCM8 upregulation was associated with advanced tumour grade and lymph node metastasis, and indicated poor prognosis. Silencing of MCM8 suppressed cell growth and migration in vitro and in vivo, while ectopic MCM8 expression promoted cell cycle progression, as well as cell migration, proliferation, and apoptosis. Mechanistically, DNAJC10 was identified as a downstream target of MCM8, using gene array and CO-IP assays. DNAJC10 overexpression combatted the inhibitory activity of MCM8 knockdown on LC progression, while silencing DNAJC10 alleviated the oncogenic function of MCM8 overexpression. MCM8 expression was positively correlated with that of DNAJC10 in LC samples from The Cancer Genome Atlas database, and DNAJC10 upregulation was also associated with poor overall survival of patients with LC. This study indicated that MCM8/DNAJC10 axis plays an important role in in LC development, and maybe as a new potential therapeutic target or a diagnostic biomarker for treating patients with LC.
Collapse
Affiliation(s)
- Lei Cao
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Hongsheng Liu
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Zhijun Han
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Cheng Huang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Chao Guo
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Luo Zhao
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Chao Gao
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Yuan Xu
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Guige Wang
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| | - Zhe Feng
- Department of Thoracic Surgery, Beijing Sixth Hospital, Beijing, China
| | - Shanqing Li
- Department of Thoracic Surgery, Peking Union Medical College Hospital, Peking Union Medical College and Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
7
|
Acharya A, Bret H, Huang JW, Mütze M, Göse M, Kissling VM, Seidel R, Ciccia A, Guérois R, Cejka P. Mechanism of DNA unwinding by MCM8-9 in complex with HROB. Nat Commun 2024; 15:3584. [PMID: 38678026 PMCID: PMC11055865 DOI: 10.1038/s41467-024-47936-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 04/15/2024] [Indexed: 04/29/2024] Open
Abstract
HROB promotes the MCM8-9 helicase in DNA damage response. To understand how HROB activates MCM8-9, we defined their interaction interface. We showed that HROB makes important yet transient contacts with both MCM8 and MCM9, and binds the MCM8-9 heterodimer with the highest affinity. MCM8-9-HROB prefer branched DNA structures, and display low DNA unwinding processivity. MCM8-9 unwinds DNA as a hexamer that assembles from dimers on DNA in the presence of ATP. The hexamer involves two repeating protein-protein interfaces between the alternating MCM8 and MCM9 subunits. One of these interfaces is quite stable and forms an obligate heterodimer across which HROB binds. The other interface is labile and mediates hexamer assembly, independently of HROB. The ATPase site formed at the labile interface contributes disproportionally more to DNA unwinding than that at the stable interface. Here, we show that HROB promotes DNA unwinding downstream of MCM8-9 loading and ring formation on ssDNA.
Collapse
Affiliation(s)
- Ananya Acharya
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, 6500, Switzerland
- Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), Zürich, 8093, Switzerland
| | - Hélène Bret
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France
| | - Jen-Wei Huang
- Department of Genetics and Development, Institute for Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Martin Mütze
- Peter Debye Institute for Soft Matter Physics, Universität Leipzig, Leipzig, 04103, Germany
| | - Martin Göse
- Peter Debye Institute for Soft Matter Physics, Universität Leipzig, Leipzig, 04103, Germany
| | - Vera Maria Kissling
- Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), Zürich, 8093, Switzerland
- Particles-Biology Interactions Laboratory, Department of Materials Meet Life, Swiss Federal Laboratories for Materials Science and Technology (Empa), St. Gallen, 9014, Switzerland
| | - Ralf Seidel
- Peter Debye Institute for Soft Matter Physics, Universität Leipzig, Leipzig, 04103, Germany
| | - Alberto Ciccia
- Department of Genetics and Development, Institute for Cancer Genetics, Herbert Irving Comprehensive Cancer Center, Columbia University Irving Medical Center, New York, NY, USA
| | - Raphaël Guérois
- Université Paris-Saclay, CEA, CNRS, Institute for Integrative Biology of the Cell (I2BC), 91198, Gif-sur-Yvette, France.
| | - Petr Cejka
- Institute for Research in Biomedicine, Università della Svizzera italiana (USI), Faculty of Biomedical Sciences, Bellinzona, 6500, Switzerland.
- Department of Biology, Institute of Biochemistry, Eidgenössische Technische Hochschule (ETH), Zürich, 8093, Switzerland.
| |
Collapse
|
8
|
Liu Q, Luo X, Liang Z, Qin D, Xu M, Wang M, Guo W. Coordination between circadian neural circuit and intracellular molecular clock ensures rhythmic activation of adult neural stem cells. Proc Natl Acad Sci U S A 2024; 121:e2318030121. [PMID: 38346182 PMCID: PMC10895264 DOI: 10.1073/pnas.2318030121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 01/08/2024] [Indexed: 02/15/2024] Open
Abstract
The circadian clock throughout the day organizes the activity of neural stem cells (NSCs) in the dentate gyrus (DG) of adult hippocampus temporally. However, it is still unclear whether and how circadian signals from the niches contribute to daily rhythmic variation of NSC activation. Here, we show that norepinephrinergic (NEergic) projections from the locus coeruleus (LC), a brain arousal system, innervate into adult DG, where daily rhythmic release of norepinephrine (NE) from the LC NEergic neurons controlled circadian variation of NSC activation through β3-adrenoceptors. Disrupted circadian rhythmicity by acute sleep deprivation leads to transient NSC overactivation and NSC pool exhaustion over time, which is effectively ameliorated by the inhibition of the LC NEergic neuronal activity or β3-adrenoceptors-mediated signaling. Finally, we demonstrate that NE/β3-adrenoceptors-mediated signaling regulates NSC activation through molecular clock BMAL1. Therefore, our study unravels that adult NSCs precisely coordinate circadian neural circuit and intrinsic molecular circadian clock to adapt their cellular behavior across the day.
Collapse
Affiliation(s)
- Qiang Liu
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Xing Luo
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
- Graduate School, University of Chinese Academy of Sciences, Beijing100093, China
| | - Ziqi Liang
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
- Graduate School, University of Chinese Academy of Sciences, Beijing100093, China
| | - Dezhe Qin
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
- Graduate School, University of Chinese Academy of Sciences, Beijing100093, China
| | - Mingyue Xu
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
- Graduate School, University of Chinese Academy of Sciences, Beijing100093, China
| | - Min Wang
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
| | - Weixiang Guo
- State Key Laboratory for Molecular and Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing100101, China
- Graduate School, University of Chinese Academy of Sciences, Beijing100093, China
| |
Collapse
|
9
|
Leung TCN, Lu SN, Chu CN, Lee J, Liu X, Ngai SM. Temporal Quantitative Proteomic and Phosphoproteomic Profiling of SH-SY5Y and IMR-32 Neuroblastoma Cells during All- Trans-Retinoic Acid-Induced Neuronal Differentiation. Int J Mol Sci 2024; 25:1047. [PMID: 38256121 PMCID: PMC10816102 DOI: 10.3390/ijms25021047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/05/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
The human neuroblastoma cell lines SH-SY5Y and IMR-32 can be differentiated into neuron-like phenotypes through treatment with all-trans-retinoic acid (ATRA). After differentiation, these cell lines are extensively utilized as in vitro models to study various aspects of neuronal cell biology. However, temporal and quantitative profiling of the proteome and phosphoproteome of SH-SY5Y and IMR-32 cells throughout ATRA-induced differentiation has been limited. Here, we performed relative quantification of the proteomes and phosphoproteomes of SH-SY5Y and IMR-32 cells at multiple time points during ATRA-induced differentiation. Relative quantification of proteins and phosphopeptides with subsequent gene ontology analysis revealed that several biological processes, including cytoskeleton organization, cell division, chaperone function and protein folding, and one-carbon metabolism, were associated with ATRA-induced differentiation in both cell lines. Furthermore, kinase-substrate enrichment analysis predicted altered activities of several kinases during differentiation. Among these, CDK5 exhibited increased activity, while CDK2 displayed reduced activity. The data presented serve as a valuable resource for investigating temporal protein and phosphoprotein abundance changes in SH-SY5Y and IMR-32 cells during ATRA-induced differentiation.
Collapse
Affiliation(s)
- Thomas C. N. Leung
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
| | - Scott Ninghai Lu
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (S.N.L.); (C.N.C.); (J.L.); (X.L.)
| | - Cheuk Ning Chu
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (S.N.L.); (C.N.C.); (J.L.); (X.L.)
| | - Joy Lee
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (S.N.L.); (C.N.C.); (J.L.); (X.L.)
| | - Xingyu Liu
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (S.N.L.); (C.N.C.); (J.L.); (X.L.)
| | - Sai Ming Ngai
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, China
- School of Life Sciences, The Chinese University of Hong Kong, Hong Kong, China; (S.N.L.); (C.N.C.); (J.L.); (X.L.)
- AoE Centre for Genomic Studies on Plant-Environment Interaction for Sustainable Agriculture and Food Security, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
10
|
Lim B, Jang MJ, Oh SM, No JG, Lee J, Kim SE, Ock SA, Yun IJ, Kim J, Chee HK, Kim WS, Kang HJ, Cho K, Oh KB, Kim JM. Comparative transcriptome analysis between long- and short-term survival after pig-to-monkey cardiac xenotransplantation reveals differential heart failure development. Anim Cells Syst (Seoul) 2023; 27:234-248. [PMID: 37808548 PMCID: PMC10552608 DOI: 10.1080/19768354.2023.2265150] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Accepted: 07/27/2023] [Indexed: 10/10/2023] Open
Abstract
Cardiac xenotransplantation is the potential treatment for end-stage heart failure, but the allogenic organ supply needs to catch up to clinical demand. Therefore, genetically-modified porcine heart xenotransplantation could be a potential alternative. So far, pig-to-monkey heart xenografts have been studied using multi-transgenic pigs, indicating various survival periods. However, functional mechanisms based on survival period-related gene expression are unclear. This study aimed to identify the differential mechanisms between pig-to-monkey post-xenotransplantation long- and short-term survivals. Heterotopic abdominal transplantation was performed using a donor CD46-expressing GTKO pig and a recipient cynomolgus monkey. RNA-seq was performed using samples from POD60 XH from monkey and NH from age-matched pigs, D35 and D95. Gene-annotated DEGs for POD60 XH were compared with those for POD9 XH (Park et al. 2021). DEGs were identified by comparing gene expression levels in POD60 XH versus either D35 or D95 NH. 1,804 and 1,655 DEGs were identified in POD60 XH versus D35 NH and POD60 XH versus D95 NH, respectively. Overlapped 1,148 DEGs were annotated and compared with 1,348 DEGs for POD9 XH. Transcriptomic features for heart failure and inhibition of T cell activation were observed in both long (POD60)- and short (POD9)-term survived monkeys. Only short-term survived monkey showed heart remodeling and regeneration features, while long-term survived monkey indicated multi-organ failure by neural and hormonal signaling as well as suppression of B cell activation. Our results reveal differential heart failure development and survival at the transcriptome level and suggest candidate genes for specific signals to control adverse cardiac xenotransplantation effects.
Collapse
Affiliation(s)
- Byeonghwi Lim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Min-Jae Jang
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Seung-Mi Oh
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Jin Gu No
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Wanju, Republic of Korea
| | - Jungjae Lee
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| | - Sang Eun Kim
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Wanju, Republic of Korea
| | - Sun A. Ock
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Wanju, Republic of Korea
| | - Ik Jin Yun
- Departments of Surgery, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Junseok Kim
- Departments of Thoracic and Cardiovascular Surgery, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Hyun Keun Chee
- Departments of Thoracic and Cardiovascular Surgery, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Wan Seop Kim
- Departments of Pathology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Republic of Korea
| | - Hee Jung Kang
- Department of Laboratory Medicine, Hallym University College of Medicine, Hallym University Sacred Heart Hospital, Anyang, Republic of Korea
| | - Kahee Cho
- Primate Organ Transplantation Centre, Genia Inc., Seongnam, Republic of Korea
| | - Keon Bong Oh
- Animal Biotechnology Division, National Institute of Animal Science, RDA, Wanju, Republic of Korea
| | - Jun-Mo Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong, Republic of Korea
| |
Collapse
|
11
|
Yu S, Dai W, Zhao S, Yang Y, Xu Y, Wang J, Deng Q, He J, Shi D. Function and mechanism of MCM8 in the development and progression of colorectal cancer. J Transl Med 2023; 21:623. [PMID: 37710286 PMCID: PMC10503009 DOI: 10.1186/s12967-023-04084-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 03/25/2023] [Indexed: 09/16/2023] Open
Abstract
Colorectal cancer (CRC) has become a global health problem which has almost highest morbidity and mortality in all types of cancers. This study aimed to uncover the biological functions and underlying mechanism of MCM8 in the development and progression of CRC. The expression level of MCM8 was found to be upregulated in CRC tissues and significantly associated with tumor grade and patients' survival. Knocking down MCM8 expression in CRC cells could restrain cell growth and cell motility while promoting cell apoptosis in vitro, as well as inhibit tumor growth in xenograft mice model. Based on the RNA screening performing on CRC cells with or without MCM8 knockdown and the following IPA analysis, CHSY1 was identified as a potential target of MCM8 in CRC, whose expression was also found to be higher in tumor tissues than in normal tissues. Moreover, it was demonstrated that MCM8 may regulate the expression of CHSY1 through affecting its NEDD4-mediated ubiquitination, both of which synergistically execute tumor promotion effects on CRC. In conclusion, the outcomes of our study showed the first evidence that MCM8 act as a tumor promotor in CRC, and may be a promising therapeutic target of CRC treatment.
Collapse
Affiliation(s)
- Shaojun Yu
- Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, Ministry of Education, Zhejiang University School of Medicine, Hangzhou, Zhejiang China
| | - Weixing Dai
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, 270 Dong’an Road, Shanghai, 200032 PR China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Senlin Zhao
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, 270 Dong’an Road, Shanghai, 200032 PR China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Yongzhi Yang
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, 270 Dong’an Road, Shanghai, 200032 PR China
| | - Ye Xu
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, 270 Dong’an Road, Shanghai, 200032 PR China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| | - Jianwei Wang
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, Ministry of Education, Zhejiang University School of Medicine, Hangzhou, Zhejiang China
| | - Qun Deng
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, The Second Affiliated Hospital, Ministry of Education, Zhejiang University School of Medicine, Hangzhou, Zhejiang China
| | - Jinghu He
- Department of General Surgery, Changhai Hospital Affiliated to Navy Medical University, Shanghai, China
| | - Debing Shi
- Department of Colorectal Surgery, Fudan University Shanghai Cancer Center, 270 Dong’an Road, Shanghai, 200032 PR China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032 China
| |
Collapse
|
12
|
Ünal Ç, Özmen T, İlgün AS, Ordu Ç, Özkurt E, Ak N, Alço G, Erdoğan İyigün Z, Kurt S, Duymaz T, Öztürk MA, Elbüken Çelebi F, Yararbaş K, Soybir G, Aktepe F, Özmen V. MCM-2 Levels as a Potential Biomarker for Predicting High-Risk Breast Cancer Patients According to TAILORx Classification. BREAST CANCER (DOVE MEDICAL PRESS) 2023; 15:659-669. [PMID: 37674872 PMCID: PMC10478780 DOI: 10.2147/bctt.s421535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 08/11/2023] [Indexed: 09/08/2023]
Abstract
Background The minichromosome maintenance protein-2 (MCM-2) is a more sensitive proliferation marker than Ki-67. This study aimed to evaluate the relationship between MCM-2 and Oncotype DX recurrence score (ODX-RS) and determine an MCM-2 cutoff value in high-risk patients according to TAILORx risk categorization. Methods Hormone receptor (HR) positive HER-2 negative early-stage breast cancer patients (pT1-2, pN0-N1, M0) who had ODX-RS were included in the study. According to the TAILORx trial, patients were divided into two groups with high (ODX-RS ≥26) and low risk (ODX-RS <26) in terms of ODX-RS. Formalin-fixed-paraffin-embedded tissues of patients were re-evaluated, and 3 µm sections were prepared for MCM-2 immuno-histochemical staining. The relationship between ODX-RS and the percentage of MCM-2 staining was evaluated in two groups. The ROC curve analysis was performed to determine the MCM-2 cut-off value for the TAILORx high-risk group (ODX-RS ≥26). Results The mean MCM-2 value was significantly higher in the high-risk group [(60.2 ± 11.2 vs 34.4 ± 13.8, p < 0.001)]. In the multivariate analysis, MCM-2 (OR: 1.27, 95% CI: 1.08-1.49, p = 0.003) and progesterone receptor (PR) levels ≤10% (OR: 60.9, 95% CI: 4.1-89.7, p = 0.003) were found to be independent factors indicating a high-risk group. A one-unit increase in MCM-2 level increased the likelihood of being in the high-risk group by 1.27 times. In the ROC curve analysis, the optimal MCM-2 cut-off level was 50 (AUC: 0.921, sensitivity: 86.7%, specificity: 96.0%, p < 0.001). Conclusion Our study is the first study in the literature to investigate the relationship between ODX-RS and MCM-2 levels in HR-positive HER-2 negative early breast-cancer patients. In this study, MCM-2 was an independent risk factor in identifying high-risk patients according to TAILORx risk classification. MCM 2 cut-off value (50) may help the decision on adjuvant chemotherapy in patients where the Oncotype DX test cannot be performed.
Collapse
Affiliation(s)
- Çağlar Ünal
- Division of Medical Oncology, Department of Internal Medicine, Kartal Dr. Lütfi Kırdar City Hospital, İstanbul, Turkey
| | - Tolga Özmen
- Division of Gastrointestinal and Oncologic Surgery, Harvard Medical School, Boston, MA, USA
- Division of Gastrointestinal and Oncologic Surgery, Massachusetts General Hospital, Boston, MA, USA
| | | | - Çetin Ordu
- Division of Medical Oncology, Department of Internal Medicine, Gayrettepe Florence Nightingale Hospital, İstanbul, Turkey
| | - Enver Özkurt
- Department of General Surgery, Istanbul Florence Nightingale Hospital, İstanbul, Turkey
| | - Naziye Ak
- Division of Medical Oncology, Department of Internal Medicine, Istanbul Florence Nightingale Hospital, İstanbul, Turkey
| | - Gül Alço
- Department of Radiation Oncology, Gayrettepe Florence Nightingale Hospital, İstanbul, Turkey
| | - Zeynep Erdoğan İyigün
- Department of Physical Therapy and Rehabilitation, Göztepe Medical Park Hospital, İstanbul, Turkey
| | - Sevgi Kurt
- Department of Plastic Surgery, Istanbul Florence Nightingale Hospital, İstanbul, Turkey
| | - Tomris Duymaz
- Department of Physiotherapy and Rehabilitation, Faculty of Health Sciences, Istanbul Bilgi University, Istanbul, Turkey
| | | | | | - Kanay Yararbaş
- Department of Medical Genetics, Demiroglu Bilim University, Istanbul, Turkey
| | - Gürsel Soybir
- Department of General Surgery, Memorial Şişli Hospital, İstanbul, Turkey
| | - Fatma Aktepe
- Department of Pathology, Memorial Şişli Hospital, İstanbul, Turkey
| | - Vahit Özmen
- Department of General Surgery, Istanbul University Istanbul School of Medicine, İstanbul, Turkey
| |
Collapse
|
13
|
Weng Z, Zheng J, Zhou Y, Lu Z, Wu Y, Xu D, Li H, Liang H, Liu Y. Structural and mechanistic insights into the MCM8/9 helicase complex. eLife 2023; 12:RP87468. [PMID: 37535404 PMCID: PMC10400076 DOI: 10.7554/elife.87468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/04/2023] Open
Abstract
MCM8 and MCM9 form a functional helicase complex (MCM8/9) that plays an essential role in DNA homologous recombination repair for DNA double-strand break. However, the structural characterization of MCM8/9 for DNA binding/unwinding remains unclear. Here, we report structures of the MCM8/9 complex using cryo-electron microscopy single particle analysis. The structures reveal that MCM8/9 is arranged into a heterohexamer through a threefold symmetry axis, creating a central channel that accommodates DNA. Multiple characteristic hairpins from the N-terminal oligosaccharide/oligonucleotide (OB) domains of MCM8/9 protrude into the central channel and serve to unwind the duplex DNA. When activated by HROB, the structure of MCM8/9's N-tier ring converts its symmetry from C3 to C1 with a conformational change that expands the MCM8/9's trimer interface. Moreover, our structural dynamic analyses revealed that the flexible C-tier ring exhibited rotary motions relative to the N-tier ring, which is required for the unwinding ability of MCM8/9. In summary, our structural and biochemistry study provides a basis for understanding the DNA unwinding mechanism of MCM8/9 helicase in homologous recombination.
Collapse
Affiliation(s)
- Zhuangfeng Weng
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Jiefu Zheng
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Yiyi Zhou
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Zuer Lu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Yixi Wu
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
| | - Dongyi Xu
- State Key Laboratory of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing, China
| | - Huanhuan Li
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, China
| | - Huanhuan Liang
- Pharmaceutical Sciences (Shenzhen), Sun Yat-sen University, Shenzhen, China
| | - Yingfang Liu
- Shenzhen Key Laboratory for Systems Medicine in Inflammatory Diseases, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Shenzhen, China
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangdong Institute of Gastroenterology, Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, Guangzhou, China
| |
Collapse
|
14
|
Helderman NC, Terlouw D, Bonjoch L, Golubicki M, Antelo M, Morreau H, van Wezel T, Castellví-Bel S, Goldberg Y, Nielsen M. Molecular functions of MCM8 and MCM9 and their associated pathologies. iScience 2023; 26:106737. [PMID: 37378315 PMCID: PMC10291252 DOI: 10.1016/j.isci.2023.106737] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/29/2023] Open
Abstract
Minichromosome Maintenance 8 Homologous Recombination Repair Factor (MCM8) and Minichromosome Maintenance 9 Homologous Recombination Repair Factor (MCM9) are recently discovered minichromosome maintenance proteins and are implicated in multiple DNA-related processes and pathologies, including DNA replication (initiation), meiosis, homologous recombination and mismatch repair. Consistent with these molecular functions, variants of MCM8/MCM9 may predispose carriers to disorders such as infertility and cancer and should therefore be included in relevant diagnostic testing. In this overview of the (patho)physiological functions of MCM8 and MCM9 and the phenotype of MCM8/MCM9 variant carriers, we explore the potential clinical implications of MCM8/MCM9 variant carriership and highlight important future directions of MCM8 and MCM9 research. With this review, we hope to contribute to better MCM8/MCM9 variant carrier management and the potential utilization of MCM8 and MCM9 in other facets of scientific research and medical care.
Collapse
Affiliation(s)
| | - Diantha Terlouw
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Laia Bonjoch
- Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Mariano Golubicki
- Oncology Section and Molecular Biology Laboratory, Hospital of Gastroenterology "Dr. C.B. Udaondo", Buenos Aires, Argentina
| | - Marina Antelo
- Oncology Section and Molecular Biology Laboratory, Hospital of Gastroenterology "Dr. C.B. Udaondo", Buenos Aires, Argentina
| | - Hans Morreau
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Tom van Wezel
- Department of Pathology, Leiden University Medical Center, Leiden, the Netherlands
| | - Sergi Castellví-Bel
- Gastroenterology Department, Institut d’Investigacions Biomèdiques August Pi I Sunyer (IDIBAPS), Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Hospital Clínic, Universitat de Barcelona, Barcelona, Spain
| | - Yael Goldberg
- Raphael Recanati Genetic Institute, Rabin Medical Center-Beilinson Hospital, Petah Tikva, Israel
| | - Maartje Nielsen
- Department of Clinical Genetics, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
15
|
Acharya A, Bret H, Huang JW, Mütze M, Göse M, Kissling V, Seidel R, Ciccia A, Guérois R, Cejka P. Mechanism of DNA unwinding by hexameric MCM8-9 in complex with HROB. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.12.544631. [PMID: 37398313 PMCID: PMC10312610 DOI: 10.1101/2023.06.12.544631] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
The human MCM8-9 helicase functions in concert with HROB in the context of homologous recombination, but its precise function is unknown. To gain insights into how HROB regulates MCM8-9, we first used molecular modeling and biochemistry to define their interaction interface. We show that HROB makes important contacts with both MCM8 and MCM9 subunits, which directly promotes its DNA-dependent ATPase and helicase activities. MCM8-9-HROB preferentially binds and unwinds branched DNA structures, and single-molecule experiments reveal a low DNA unwinding processivity. MCM8-9 unwinds DNA as a hexameric complex that assembles from dimers on DNA in the presence of ATP, which is prerequisite for its helicase function. The hexamer formation thus involves two repeating protein-protein interfaces forming between the alternating MCM8 and MCM9 subunits. One of these interfaces is rather stable and forms an obligate heterodimer, while the other interface is labile and mediates the assembly of the hexamer on DNA, independently of HROB. The ATPase site composed of the subunits forming the labile interface disproportionally contributes to DNA unwinding. HROB does not affect the MCM8-9 ring formation, but promotes DNA unwinding downstream by possibly coordinating ATP hydrolysis with structural transitions accompanying translocation of MCM8-9 on DNA.
Collapse
|
16
|
Ku X, Wang J, Li H, Meng C, Yu F, Yu W, Li Z, Zhou Z, Zhang C, Hua Y, Yan W, Jin J. Proteomic Portrait of Human Lymphoma Reveals Protein Molecular Fingerprint of Disease Specific Subtypes and Progression. PHENOMICS (CHAM, SWITZERLAND) 2023; 3:148-166. [PMID: 37197640 PMCID: PMC10110798 DOI: 10.1007/s43657-022-00075-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/20/2022] [Accepted: 08/25/2022] [Indexed: 05/19/2023]
Abstract
An altered proteome in lymph nodes often suggests abnormal signaling pathways that may be associated with diverse lymphatic disorders. Current clinical biomarkers for histological classification of lymphomas have encountered many discrepancies, particularly for borderline cases. Therefore, we launched a comprehensive proteomic study aimed to establish a proteomic landscape of patients with various lymphatic disorders and identify proteomic variations associated with different disease subgroups. In this study, 109 fresh-frozen lymph node tissues from patients with various lymphatic disorders (with a focus on Non-Hodgkin's Lymphoma) were analyzed by data-independent acquisition mass spectrometry. A quantitative proteomic landscape was comprehensively characterized, leading to the identification of featured protein profiles for each subgroup. Potential correlations between clinical outcomes and expression profiles of signature proteins were also probed. Two representative signature proteins, phospholipid-binding proteins Annexin A6 (ANXA6) and Phospholipase C Gamma 2 (PLCG2), were successfully validated via immunohistochemistry. We also evaluated the capability of acquired proteomic signatures to segregate multiple lymphatic abnormalities and identified several core signature proteins, such as Sialic Acid Binding Ig Like Lectin 1 (SIGLEC1) and GTPase of immunity-associated protein 5 (GIMAP5). In summary, the established lympho-specific data resource provides a comprehensive map of protein expression in lymph nodes during multiple disease states, thus extending the existing human tissue proteome atlas. Our findings will be of great value in exploring protein expression and regulation underlying lymphatic malignancies, while also providing novel protein candidates to classify various lymphomas for more precise medical practice. Supplementary Information The online version contains supplementary material available at 10.1007/s43657-022-00075-w.
Collapse
Affiliation(s)
- Xin Ku
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Jinghan Wang
- Department of Hematology, The First Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, 310003 China
- Cancer Center, Zhejiang University, Hangzhou, 310003 China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, 310003 China
| | - Haikuo Li
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240 China
- Present Address: Division of Biology & Biomedical Sciences, Washington University in St. Louis School of Medicine, St. Louis, 63130 USA
| | - Chen Meng
- Bavarian Center for Biomolecular Mass Spectrometry, Technical University of Munich, 85354 Freising, Germany
| | - Fang Yu
- Department of Pathology, The First Affiliated Hospital of Zhejiang University, Hangzhou, 310003 China
| | - Wenjuan Yu
- Department of Hematology, The First Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, 310003 China
| | - Zhongqi Li
- Department of Surgical Oncology, College of Medicine, The First Affiliated Hospital, Zhejiang University, Hangzhou, 310003 China
| | - Ziqi Zhou
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Can Zhang
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Ying Hua
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Wei Yan
- Shanghai Center for Systems Biomedicine, Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Jiao Tong University, Shanghai, 200240 China
| | - Jie Jin
- Department of Hematology, The First Affiliated Hospital of Medical School of Zhejiang University, Hangzhou, 310003 China
- Cancer Center, Zhejiang University, Hangzhou, 310003 China
- Key Laboratory of Hematologic Malignancies, Diagnosis and Treatment, Hangzhou, 310003 China
| |
Collapse
|
17
|
Li X, Wu J, Yi F, Lai J, Chen J. High temporal-resolution transcriptome landscapes of maize embryo sac and ovule during early seed development. PLANT MOLECULAR BIOLOGY 2023; 111:233-248. [PMID: 36508138 DOI: 10.1007/s11103-022-01318-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 10/07/2022] [Indexed: 06/18/2023]
Abstract
Here we provided a high temporal-resolution transcriptome atlas of maize embryo sac and ovule to reveal the gene activity dynamic during early seed development. The early maize (Zea mays) seed development is initiated from double fertilization in the embryo sac and needs to undergo a highly dynamic and complex development process to form the differentiated embryo and endosperm. Despite the importance of maize seed for food, feed, and biofuel, many regulators responsible for controlling its early development are not known yet. Here, we reported a high temporal-resolution transcriptome atlas of embryo sac and ovule based on 44 time point samples collected within the first four days of seed development. A total of 25,187 genes including 1598 transcription factors (TFs) involved in early seed development were detected. Global comparisons of the expressions of these genes revealed five distinct development stages of early seed, which are mainly related to double fertilization, asymmetric cell division of the zygote, as well as coenocyte formation, cellularization and differentiation in endosperm. We identified 3327 seed-specific genes, which more than one thousand seed-specific genes with main expressions during early seed development were newly identified here, including 859 and 186 genes predominantly expressed in the embryo sac and ovule, respectively. Combined with the published transcriptome data of seed, we uncovered the dominant auxin biosynthesis, transport and signaling related genes at different development stages and subregions of seed. These results are helpful for understanding the genetic control of early seed development.
Collapse
Affiliation(s)
- Xinchen Li
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, People's Republic of China
- Department of Plant Genetics and Breeding, National Maize Improvement Center, China Agricultural University, Beijing, People's Republic of China
| | - Jian Wu
- CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, People's Republic of China
| | - Fei Yi
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, People's Republic of China
- Engineering Research Center of Plant Growth Regulator, Ministry of Education & College of Agronomy and Biotechnology, China Agricultural University, Beijing, People's Republic of China
| | - Jinsheng Lai
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, People's Republic of China
- Department of Plant Genetics and Breeding, National Maize Improvement Center, China Agricultural University, Beijing, People's Republic of China
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, People's Republic of China
| | - Jian Chen
- State Key Laboratory of Plant Physiology and Biochemistry, China Agricultural University, Beijing, People's Republic of China.
- Department of Plant Genetics and Breeding, National Maize Improvement Center, China Agricultural University, Beijing, People's Republic of China.
- Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, Beijing, People's Republic of China.
| |
Collapse
|
18
|
MCM2 in human cancer: functions, mechanisms, and clinical significance. Mol Med 2022; 28:128. [PMID: 36303105 PMCID: PMC9615236 DOI: 10.1186/s10020-022-00555-9] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/10/2022] [Indexed: 11/18/2022] Open
Abstract
Background Aberrant DNA replication is the main source of genomic instability that leads to tumorigenesis and progression. MCM2, a core subunit of eukaryotic helicase, plays a vital role in DNA replication. The dysfunction of MCM2 results in the occurrence and progression of multiple cancers through impairing DNA replication and cell proliferation. Conclusions MCM2 is a vital regulator in DNA replication. The overexpression of MCM2 was detected in multiple types of cancers, and the dysfunction of MCM2 was correlated with the progression and poor prognoses of malignant tumors. According to the altered expression of MCM2 and its correlation with clinicopathological features of cancer patients, MCM2 was thought to be a sensitive biomarker for cancer diagnosis, prognosis, and chemotherapy response. The anti-tumor effect induced by MCM2 inhibition implies the potential of MCM2 to be a novel therapeutic target for cancer treatment. Since DNA replication stress, which may stimulate anti-tumor immunity, frequently occurs in MCM2 deficient cells, it also proposes the possibility that MCM2 targeting improves the effect of tumor immunotherapy.
Collapse
|
19
|
Tiwari R, Bommi PV, Gao P, Schipma MJ, Zhou Y, Quaggin SE, Chandel NS, Kapitsinou PP. Chemical inhibition of oxygen-sensing prolyl hydroxylases impairs angiogenic competence of human vascular endothelium through metabolic reprogramming. iScience 2022; 25:105086. [PMID: 36157579 PMCID: PMC9494243 DOI: 10.1016/j.isci.2022.105086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/24/2022] [Accepted: 08/31/2022] [Indexed: 11/18/2022] Open
Abstract
Endothelial cell (EC) metabolism has emerged as a driver of angiogenesis. While hypoxia inactivates the oxygen sensors prolyl-4 hydroxylase domain-containing proteins 1-3 (PHD1-3) and stimulates angiogenesis, the effects of PHDs on EC functions remain poorly defined. Here, we investigated the impact of chemical PHD inhibition by dimethyloxalylglycine (DMOG) on angiogenic competence and metabolism of human vascular ECs. DMOG reduced EC proliferation, migration, and tube formation capacities, responses that were associated with an unfavorable metabolic reprogramming. While glycolytic genes were induced, multiple genes encoding sub-units of mitochondrial complex I were suppressed with concurrent decline in nicotinamide adenine dinucleotide (NAD+) levels. Importantly, the DMOG-induced defects in EC migration could be partially rescued by augmenting NAD+ levels through nicotinamide riboside or citrate supplementation. In summary, by integrating functional assays, transcriptomics, and metabolomics, we provide insights into the effects of PHD inhibition on angiogenic competence and metabolism of human vascular ECs.
Collapse
Affiliation(s)
- Ratnakar Tiwari
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, 303 East Superior Street, SQBRC 8-408, Chicago, 60611 IL, USA
- Division of Nephrology & Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Prashant V. Bommi
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, 303 East Superior Street, SQBRC 8-408, Chicago, 60611 IL, USA
- Division of Nephrology & Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Peng Gao
- Department of Medicine and Robert H. Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Matthew J. Schipma
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Yalu Zhou
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, 303 East Superior Street, SQBRC 8-408, Chicago, 60611 IL, USA
- Division of Nephrology & Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Susan E. Quaggin
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, 303 East Superior Street, SQBRC 8-408, Chicago, 60611 IL, USA
- Division of Nephrology & Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Navdeep S. Chandel
- Department of Medicine and Robert H. Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Pinelopi P. Kapitsinou
- Feinberg Cardiovascular Research Institute, Northwestern University Feinberg School of Medicine, 303 East Superior Street, SQBRC 8-408, Chicago, 60611 IL, USA
- Division of Nephrology & Hypertension, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
- Department of Medicine and Robert H. Lurie Cancer Center, Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| |
Collapse
|
20
|
Transcription profiling of feline mammary carcinomas and derived cell lines reveals biomarkers and drug targets associated with metabolic and cell cycle pathways. Sci Rep 2022; 12:17025. [PMID: 36220861 PMCID: PMC9553959 DOI: 10.1038/s41598-022-20874-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 09/20/2022] [Indexed: 12/29/2022] Open
Abstract
The molecular heterogeneity of feline mammary carcinomas (FMCs) represents a prognostic and therapeutic challenge. RNA-Seq-based comparative transcriptomic profiling serves to identify recurrent and exclusive differentially expressed genes (DEGs) across sample types and molecular subtypes. Using mass-parallel RNA-Seq, we identified DEGs and performed comparative function-based analysis across 15 tumours (four basal-like triple-negative [TN], eight normal-like TN, and three luminal B fHER2 negative [LB fHER2-]), two cell lines (CL, TiHo-0906, and TiHo-1403) isolated from the primary tumours (LB fHER2-) of two cats included in this study, and 13 healthy mammary tissue controls. DEGs in tumours were predominantly upregulated; dysregulation of CLs transcriptome was more extensive, including mostly downregulated genes. Cell-cycle and metabolic-related DEGs were upregulated in both tumours and CLs, including therapeutically-targetable cell cycle regulators (e.g. CCNB1, CCNB2, CDK1, CDK4, GTSE1, MCM4, and MCM5), metabolic-related genes (e.g. FADS2 and SLC16A3), heat-shock proteins (e.g. HSPH1, HSP90B1, and HSPA5), genes controlling centrosome disjunction (e.g. RACGAP1 and NEK2), and collagen molecules (e.g. COL2A1). DEGs specifically upregulated in basal-like TN tumours were involved in antigen processing and presentation, in normal-like TN tumours encoded G protein-coupled receptors (GPCRs), and in LB fHER2- tumours were associated with lysosomes, phagosomes, and endosomes formation. Downregulated DEGs in CLs were associated with structural and signalling cell surface components. Hence, our results suggest that upregulation of genes enhancing proliferation and metabolism is a common feature among FMCs and derived CLs. In contrast, the dissimilarities observed in dysregulation of membrane components highlight CLs' disconnection with the tumour microenvironment. Furthermore, recurrent and exclusive DEGs associated with dysregulated pathways might be useful for the development of prognostically and therapeutically-relevant targeted panels.
Collapse
|
21
|
Lim C, Lim B, Kil DY, Kim JM. Hepatic transcriptome profiling according to growth rate reveals acclimation in metabolic regulatory mechanisms to cyclic heat stress in broiler chickens. Poult Sci 2022; 101:102167. [PMID: 36257074 PMCID: PMC9579409 DOI: 10.1016/j.psj.2022.102167] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 07/17/2022] [Accepted: 08/24/2022] [Indexed: 11/15/2022] Open
Abstract
Climate change has numerous effects on poultry that result in welfare concerns and economic losses in agricultural industries. However, the mechanisms underlying the acclimation to heat stress in poultry have not been comprehensively defined. Therefore, identifying associated patterns of gene regulation and understanding the molecular mechanisms of acclimation to a warmer environment will provide insights into the acclimation system of broiler chickens. We profiled differentially expressed genes (DEGs) associated with differences in growth performance under heat stress conditions in the liver tissues of broilers based on RNA sequencing data. The DEGs were identified by comparison to the gene expression levels of broilers exhibiting average growth at 28 d of age (D28A) and D36A relative to those at D21A. In D36A, 507 and 312 DEGs were up- and downregulated, respectively, whereas 400 and 156 DEGs were up- and downregulated in D28A, respectively. Pathway enrichment analysis further revealed that “fatty acid degradation” and “heat shock protein expression” were upregulated in broilers exhibiting a higher growth and weight, whereas “cell cycle arrest” and “amino acid metabolism” were downregulated. Transcriptome profiling revealed that the acclimatized group supplied fat and energy from the liver to tissues through the breakdown of fatty acids. Furthermore, homeostasis was maintained via heat shock proteins and antioxidant enzymes. The characterized candidate genes and mechanisms associated with the response to heat stress might serve as a foundation for improving the ability of broilers to acclimatize under heat stress conditions.
Collapse
Affiliation(s)
- C Lim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - B Lim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - D Y Kil
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea
| | - J M Kim
- Department of Animal Science and Technology, Chung-Ang University, Anseong-si, Gyeonggi-do 17546, Republic of Korea.
| |
Collapse
|
22
|
Comparative Transcriptome Analysis Reveals That WSSV IE1 Protein Plays a Crucial Role in DNA Replication Control. Int J Mol Sci 2022; 23:ijms23158176. [PMID: 35897756 PMCID: PMC9330391 DOI: 10.3390/ijms23158176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2022] [Revised: 07/19/2022] [Accepted: 07/22/2022] [Indexed: 12/10/2022] Open
Abstract
For DNA viruses, the immediate-early (IE) proteins are generally essential regulators that manipulate the host machinery to support viral replication. Recently, IE1, an IE protein encoded by white spot syndrome virus (WSSV), has been demonstrated to function as a transcription factor. However, the target genes of IE1 during viral infection remain poorly understood. Here, we explored the host target genes of IE1 using RNAi coupled with transcriptome sequencing analysis. A total of 429 differentially expressed genes (DEGs) were identified from penaeid shrimp, of which 284 genes were upregulated and 145 genes were downregulated after IE1 knockdown. GO and KEGG pathway enrichment analysis revealed the identified DEGs are significantly enriched in the minichromosome maintenance (MCM) complex and DNA replication, indicating that IE1 plays a critical role in DNA replication control. In addition, it was found that Penaeus vannamei MCM complex genes were remarkably upregulated after WSSV infection, while RNAi-mediated knockdown of PvMCM2 reduced the expression of viral genes and viral loads at the early infection stage. Finally, we demonstrated that overexpression of IE1 promoted the expression of MCM complex genes as well as cellular DNA synthesis in insect High-Five cells. Collectively, our current data suggest that the WSSV IE1 protein is a viral effector that modulates the host DNA replication machinery for viral replication.
Collapse
|
23
|
Chen R, Hu B, Jiang M, Deng W, Zheng P, Fu B. Bioinformatic Analysis of the Expression and Clinical Significance of the DNA Replication Regulator MCM Complex in Bladder Cancer. Int J Gen Med 2022; 15:5465-5485. [PMID: 35698656 PMCID: PMC9188401 DOI: 10.2147/ijgm.s368573] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 05/26/2022] [Indexed: 12/04/2022] Open
Abstract
Objective The minichromosome maintenance (MCM) complex (MCM2, MCM3, MCM4, MCM5, MCM6, and MCM7), which regulates DNA replication and cell cycle progression, is essential for the development and progression of multiple tumors, but their role in bladder cancer development remains unclear. In the present study, the biological role and clinical significance of the MCM complex in bladder cancer were systematically elucidated. Materials and Methods We analyzed DNA mutations, mRNA expression and protein levels, protein–protein interaction (PPI) networks, functional enrichment, prognostic value of MCM2/3/4/5/6/7 in bladder urothelial carcinoma (BLC) and the connections between the immune cell infiltration and the overall survival of BLC patients with the MCM expression levels using Oncomine, Gene Expression Profiling Interactive Analysis (GEPIA), the Cancer Genome Atlas database (TCGA), Human Protein Atlas, UALCAN, STRING, cBioPortal, TIMER and GSCALite databases. Results The outcomes showed that the mRNA expression level of each member of the MCM complex was significantly correlated with histologic grade and tumor histology in BLC patients. Moreover, survival analysis showed that MCM/2/3/4/5/6/7 mRNA expressions were significantly associated with prognosis in patients with bladder cancer. Moreover, we experimentally validated the overexpression of the MCM2-7 complex in the BLC. Based on functional enrichment and PPI network analysis, the MCM complex might promote the progression of bladder cancer by activating DNA replication and accelerating cell cycle progression. In addition, MCM2/3/4/5/6/7 genes were also significantly associated with tumor immune cells infiltration and the drug sensitivity in BLC. Conclusion Our study suggests that the MCM complex especially MCM2/4/6/7 might be potential molecular therapeutic targets for BLC treatment and might be useful biomarkers for diagnosis and prognosis.
Collapse
Affiliation(s)
- Ru Chen
- Department of Urology, the First Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, People’s Republic of China
- Department of Urology, The First Hospital of Putian City, Putian, Fujian, People’s Republic of China
| | - Bing Hu
- Department of Urology, the First Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, People’s Republic of China
| | - Ming Jiang
- Department of Urology, the First Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, People’s Republic of China
| | - Wen Deng
- Department of Urology, the First Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, People’s Republic of China
| | - Ping Zheng
- Department of Urology, Shangrao municipal Hospital, Shangrao, 334000, Jiangxi Province, People’s Republic of China
| | - Bin Fu
- Department of Urology, the First Affiliated Hospital of Nanchang University, Nanchang City, Jiangxi Province, People’s Republic of China
- Jiangxi Institute of Urology, Nanchang City, Jiangxi Province, People’s Republic of China
- Correspondence: Bin Fu, Email
| |
Collapse
|
24
|
Hyder T, Marti JLG, Nasrazadani A, Brufsky AM. Statins and endocrine resistance in breast cancer. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2022; 4:356-364. [PMID: 35582035 PMCID: PMC9019265 DOI: 10.20517/cdr.2020.112] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 01/10/2021] [Accepted: 01/15/2021] [Indexed: 12/21/2022]
Abstract
Most breast cancers are hormone-receptor positive (HR+). However, more women eventually die from HR+ breast cancer than from either HER2+ or triple negative breast cancer. Endocrine therapies continue to be the mainstay of treatment. In 40% of these cases, recurrences in early-stage disease and progression in the metastatic setting are largely a function of the development of endocrine resistance. A multitude of mediators and pathways have been associated with endocrine resistance in breast cancer including the mevalonate pathway, which is integral to cholesterol biosynthesis. The mevalonate pathway and the downstream activation of associated cytoplasmic pathways including PI3K-AKT-mTOR and RAS-MEK-ERK have been known to affect cancer cell proliferation, cell survival, cell invasion, and metastasis. These are important mechanisms leading to the inevitable development of endocrine resistance in HR+ breast cancer. Statins are a class of drugs that inhibits HMG-CoA reductase, an enzyme in the mevalonate pathway that plays a central role in cholesterol production. In vitro and in vitro studies suggest that the role of statins in blocking the mevalonate pathway effectively disrupts downstream pathways involved in estrogen receptor expression and cellular processes such as cell survival, proliferation, stress, cell cycle, inhibition of apoptosis, and autophagy. Overcoming these key mechanisms heralds a role for statins in the prevention of endocrine resistance.
Collapse
Affiliation(s)
- Tara Hyder
- University of Pittsburgh Physicians, Pittsburgh, PA 15213, USA
| | - Juan Luis Gomez Marti
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Azadeh Nasrazadani
- UPMC Hillman Cancer Center, Magee Women's Hospital, Pittsburgh, PA 15213, USA
| | - Adam M Brufsky
- UPMC Hillman Cancer Center, Magee Women's Hospital, Pittsburgh, PA 15213, USA
| |
Collapse
|
25
|
Chen S, Zhang Y, Ding X, Li W. Identification of lncRNA/circRNA-miRNA-mRNA ceRNA Network as Biomarkers for Hepatocellular Carcinoma. Front Genet 2022; 13:838869. [PMID: 35386284 PMCID: PMC8977626 DOI: 10.3389/fgene.2022.838869] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 02/24/2022] [Indexed: 12/24/2022] Open
Abstract
Background: Hepatocellular carcinoma (HCC) accounts for the majority of liver cancer, with the incidence and mortality rates increasing every year. Despite the improvement of clinical management, substantial challenges remain due to its high recurrence rates and short survival period. This study aimed to identify potential diagnostic and prognostic biomarkers in HCC through bioinformatic analysis. Methods: Datasets from GEO and TCGA databases were used for the bioinformatic analysis. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were carried out by WebGestalt website and clusterProfiler package of R. The STRING database and Cytoscape software were used to establish the protein-protein interaction (PPI) network. The GEPIA website was used to perform expression analyses of the genes. The miRDB, miRWalk, and TargetScan were employed to predict miRNAs and the expression levels of the predicted miRNAs were explored via OncomiR database. LncRNAs were predicted in the StarBase and LncBase while circRNA prediction was performed by the circBank. ROC curve analysis and Kaplan-Meier (KM) survival analysis were performed to evaluate the diagnostic and prognostic value of the gene expression, respectively. Results: A total of 327 upregulated and 422 downregulated overlapping DEGs were identified between HCC tissues and noncancerous liver tissues. The PPI network was constructed with 89 nodes and 178 edges and eight hub genes were selected to predict upstream miRNAs and ceRNAs. A lncRNA/circRNA-miRNA-mRNA network was successfully constructed based on the ceRNA hypothesis, including five lncRNAs (DLGAP1-AS1, GAS5, LINC00665, TYMSOS, and ZFAS1), six circRNAs (hsa_circ_0003209, hsa_circ_0008128, hsa_circ_0020396, hsa_circ_0030051, hsa_circ_0034049, and hsa_circ_0082333), eight miRNAs (hsa-miR-150-5p, hsa-miR-19b-3p, hsa-miR-23b-3p, hsa-miR-26a-5p, hsa-miR-651-5p, hsa-miR-10a-5p, hsa-miR-214-5p and hsa-miR-486-5p), and five mRNAs (CDC6, GINS1, MCM4, MCM6, and MCM7). The ceRNA network can promote HCC progression via cell cycle, DNA replication, and other pathways. Clinical diagnostic and survival analyses demonstrated that the ZFAS1/hsa-miR-150-5p/GINS1 ceRNA regulatory axis had a high diagnostic and prognostic value. Conclusion: These results revealed that cell cycle and DNA replication pathway could be potential pathways to participate in HCC development. The ceRNA network is expected to provide potential biomarkers and therapeutic targets for HCC management, especially the ZFAS1/hsa-miR-150-5p/GINS1 regulatory axis.
Collapse
Affiliation(s)
- Shanshan Chen
- Cancer Center, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Yongchao Zhang
- Cancer Center, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Xiaoyan Ding
- Cancer Center, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Wei Li
- Cancer Center, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
26
|
Bianco PR. OB-fold Families of Genome Guardians: A Universal Theme Constructed From the Small β-barrel Building Block. Front Mol Biosci 2022; 9:784451. [PMID: 35223988 PMCID: PMC8881015 DOI: 10.3389/fmolb.2022.784451] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
The maintenance of genome stability requires the coordinated actions of multiple proteins and protein complexes, that are collectively known as genome guardians. Within this broadly defined family is a subset of proteins that contain oligonucleotide/oligosaccharide-binding folds (OB-fold). While OB-folds are widely associated with binding to single-stranded DNA this view is no longer an accurate depiction of how these domains are utilized. Instead, the core of the OB-fold is modified and adapted to facilitate binding to a variety of DNA substrates (both single- and double-stranded), phospholipids, and proteins, as well as enabling catalytic function to a multi-subunit complex. The flexibility accompanied by distinctive oligomerization states and quaternary structures enables OB-fold genome guardians to maintain the integrity of the genome via a myriad of complex and dynamic, protein-protein; protein-DNA, and protein-lipid interactions in both prokaryotes and eukaryotes.
Collapse
Affiliation(s)
- Piero R. Bianco
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
27
|
Samad A, Huq MA, Rahman MS. Bioinformatics approaches identified dasatinib and bortezomib inhibit the activity of MCM7 protein as a potential treatment against human cancer. Sci Rep 2022; 12:1539. [PMID: 35087187 PMCID: PMC8795118 DOI: 10.1038/s41598-022-05621-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Accepted: 01/14/2022] [Indexed: 12/17/2022] Open
Abstract
Minichromosome Maintenance Complex Component 7 (MCM7) is a key component of the DNA replication licensing factor and hexamer MCM (MCM2-7) complex that regulates the DNA replication process. The MCM7 protein is associated with tumor cell proliferation that plays an important role in different human cancer progression. As the protein is highly expressed during the cancer development process, therefore, inhibition of the protein can be utilized as a treatment option for different human cancer. However, the study aimed to identify potential small molecular drug candidates against the MCM7 protein that can utilize treatment options for human cancer. Initially, the compounds identified from protein-drugs network analysis have been retrieved from NetworkAnalyst v3.0 server and screened through molecular docking, MM-GBSA, DFT, pharmacokinetics, toxicity, and molecular dynamics (MD) simulation approach. Two compounds namely Dasatinib (CID_3062316) and Bortezomib (CID_387447) have been identified throughout the screening process, which have the highest negative binding affinity (Kcal/mol) and binding free energy (Kcal/mol). The pharmacokinetics and toxicity analysis identified drug-like properties and no toxicity properties of the compounds, where 500 ns MD simulation confirmed structural stability of the two compounds to the targeted proteins. Therefore, we can conclude that the compounds dasatinib and bortezomib can inhibit the activity of the MCM7 and can be developed as a treatment option against human cancer.
Collapse
Affiliation(s)
- Abdus Samad
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
- Bioinformatics and Microbial Biotechnology Laboratory, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Md Amdadul Huq
- Department of Food and Nutrition, College of Biotechnology and Natural Resource, Chung-Ang University, Anseong, Gyeonggi-do, 17546, Republic of Korea.
| | - Md Shahedur Rahman
- Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
- Bioinformatics and Microbial Biotechnology Laboratory, Department of Genetic Engineering and Biotechnology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh.
| |
Collapse
|
28
|
Wei XC, Xia YR, Zhou P, Xue X, Ding S, Liu LJ, Zhu F. Hepatitis B core antigen modulates exosomal miR-135a to target vesicle-associated membrane protein 2 promoting chemoresistance in hepatocellular carcinoma. World J Gastroenterol 2021; 27:8302-8322. [PMID: 35068871 PMCID: PMC8717014 DOI: 10.3748/wjg.v27.i48.8302] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 06/22/2021] [Accepted: 11/11/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is one of the most common malignant tumors. The association of hepatitis B virus (HBV) infection with HCC is hitherto documented. Exosomal miRNAs contribute to cancer progression and chemoresistance. HBV X protein has been known to modulate miRNAs that facilitate cell proliferation and the process of hepatocarcinogenesis. However, there has been no report on hepatitis B core antigen (HBc) regulating exosomal miRNAs to induce drug resistance of HCC cells. AIM To elucidate the mechanism by which HBc promotes Doxorubicin hydrochloride (Dox) resistance in HCC. METHODS Exosomes were isolated by ultracentrifugation. The morphology and size of exosomes were evaluated by Dynamic Light Scattering (DLS) and transmission electron microscopy (TEM). The miRNAs differentially expressed in HCC were identified using The Cancer Genome Atlas (TCGA) database. The level of miR-135a-5p in patient tissue samples was detected by quantitative polymerase chain reaction. TargetScan and luciferase assay were used to predict and prove the target gene of miR-135a-5p. Finally, we identified the effects of miR-135a-5p on anti-apoptosis and the proliferation of HCC in the presence or absence of Dox using flow cytometry, Cell counting kit 8 (CCK-8) assay and western blot. RESULTS We found that HBc increased the expression of exosomal miR-135a-5p. Integrated analysis of bioinformatics and patient samples found that miR-135a-5p was increased in HCC tissues in comparison with paracancerous tissues. Bioinformatic analysis and in vitro validation identified vesicle-associated membrane protein 2 (VAMP2) as a novel target gene of miR-135a-5p. Functional assays showed that exosomal miR-135a-5p induced apoptosis protection, cell proliferation, and chemotherapy resistance in HCC. In addition, the rescue experiment demonstrated that VAMP2 reversed apoptosis protection, cell growth, and drug resistance by miR-135a-5p. Finally, HBc promoted HCC anti-apoptosis, proliferation, and drug resistance and prevented Dox-induced apoptosis via the miR-135a-5p/VAMP2 axis. CONCLUSION These data suggested that HBc upregulated the expression of exosomal miR-135a-5p and promoted anti-apoptosis, cell proliferation, and chemical resistance through miR-135a-5p/VAMP2. Thus, our work indicated an essential role of the miR-135a-5p/VAMP2 regulatory axis in chemotherapy resistance of HCC and a potential molecular therapeutic target for HCC.
Collapse
Affiliation(s)
- Xiao-Cui Wei
- State Key Laboratory of Virology, Hubei Province Key Laboratory of Allergy and Immunology, Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Ya-Ru Xia
- State Key Laboratory of Virology, Hubei Province Key Laboratory of Allergy and Immunology, Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Ping Zhou
- State Key Laboratory of Virology, Hubei Province Key Laboratory of Allergy and Immunology, Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Xing Xue
- State Key Laboratory of Virology, Hubei Province Key Laboratory of Allergy and Immunology, Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Shuang Ding
- State Key Laboratory of Virology, Hubei Province Key Laboratory of Allergy and Immunology, Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Li-Juan Liu
- State Key Laboratory of Virology, Hubei Province Key Laboratory of Allergy and Immunology, Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, Hubei Province, China
| | - Fan Zhu
- State Key Laboratory of Virology, Hubei Province Key Laboratory of Allergy and Immunology, Department of Medical Microbiology, School of Medicine, Wuhan University, Wuhan 430071, Hubei Province, China
| |
Collapse
|
29
|
Zhang J, Zhang H, Wang Y, Wang Q. MCM2-7 in Clear Cell Renal Cell Carcinoma: MCM7 Promotes Tumor Cell Proliferation. Front Oncol 2021; 11:782755. [PMID: 34993142 PMCID: PMC8724441 DOI: 10.3389/fonc.2021.782755] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 12/02/2021] [Indexed: 11/23/2022] Open
Abstract
Background Clear cell renal cell carcinoma (ccRCC) accounts for 60-70% of renal cell carcinoma (RCC) cases. Finding more therapeutic targets for advanced ccRCC is an urgent mission. The minichromosome maintenance proteins 2-7 (MCM2-7) protein forms a stable heterohexamer and plays an important role in DNA replication in eukaryotic cells. In the study, we provide a comprehensive study of MCM2-7 genes expression and their potential roles in ccRCC. Methods The expression and prognosis of the MCM2-7 genes in ccRCC were analyzed using data from TCGA, GEO and ArrayExpress. MCM2-7 related genes were identified by weighted co-expression network analysis (WGCNA) and Metascape. CancerSEA and GSEA were used to analyze the function of MCM2–7 genes in ccRCC. The gene effect scores (CERES) of MCM2-7, which reflects carcinogenic or tumor suppressor, were obtained from DepMap. We used clinical and expression data of MCM2-7 from the TCGA dataset and the LASSO Cox regression analysis to develop a risk score to predict survival of patients with ccRCC. The correlations between risk score and other clinical indicators such as gender, age and stage were also analyzed. Further validation of this risk score was engaged in another cohort, E-MTAB-1980 from the ArrayExpress dataset. Results The mRNA and protein expression of MCM2-7 were increased in ccRCC compared with normal tissues. High MCM2, MCM4, MCM6 and MCM7 expression were associated with a poor prognosis of ccRCC patients. Functional enrichment analysis revealed that MCM2-7 might influence the progress of ccRCC by regulating the cell cycle. Knockdown of MCM7 can inhibit the proliferation of ccRCC cells. A two-gene risk score including MCM4 and MCM6 can predict overall survival (OS) of ccRCC patients. The risk score was successfully verified by further using Arrayexpress cohort. Conclusion We analyze MCM2-7 mRNA and protein levels in ccRCC. MCM7 is determined to promote tumor proliferation. Meanwhile, our study has determined a risk score model composed of MCM2-7 can predict the prognosis of ccRCC patients, which may help future treatment strategies.
Collapse
Affiliation(s)
- Junneng Zhang
- Laboratory Medicine Department, The Fifth Hospital of Xiamen, Xiamen, China
- *Correspondence: Junneng Zhang, ; Qingshui Wang,
| | - Huanzong Zhang
- Laboratory Medicine Department, The Fifth Hospital of Xiamen, Xiamen, China
| | - Yinghui Wang
- Laboratory Medicine Department, The Fifth Hospital of Xiamen, Xiamen, China
| | - Qingshui Wang
- Key Laboratory of Optoelectronic Science and Technology for Medicine of Ministry of Education, College of Life Sciences, Fujian Normal University, Fuzhou, China
- *Correspondence: Junneng Zhang, ; Qingshui Wang,
| |
Collapse
|
30
|
Han W, Wu YZ, Zhao XY, Gong ZH, Shen GL. Integrative Analysis of Minichromosome Maintenance Proteins and Their Prognostic Significance in Melanoma. Front Oncol 2021; 11:715173. [PMID: 34490114 PMCID: PMC8417415 DOI: 10.3389/fonc.2021.715173] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 07/29/2021] [Indexed: 01/16/2023] Open
Abstract
Background Minichromosome maintenance (MCM) is known for participating in cell cycle progression, as well as DNA replication. While the diverse expression patterns and prognostic values of MCMs in melanoma still remained unclear. Methods In the present study, the transcriptional and clinical profiles of MCMs were explored in patients with melanoma from multiple databases, including GEO, TCGA, ONCOMINE, GEPIA, UALCAN, cBioPortal, and TIMER databases. Results We found that the elevated expressions of MCM2–6 and MCM10 were significantly expressed in melanoma compared to normal skin. High mRNA levels of MCM4, MCM5, and MCM10 were closely related to worse prognosis in patients with melanoma. GSEA showed hallmark pathways were most involved in mTORC1 signaling, G2M checkpoint, E2F targets, and mitotic spindle. Furthermore, we found potential correlations between the MCM expression and the immune cell infiltration, including B cells, CD4+ T cells, CD8+ T cells, neutrophils, macrophages, and dendritic cells. Conclusion Upregulated MCM gene expression in melanoma probably played a crucial part in the development and progression of melanoma. The upregulated MCM4/5/10 expressions could be used as potential prognostic markers to improve the poor outcome and prognostic accuracy in patients with melanoma. Our study might shed light on the selection of prognostic biomarkers as well as the underlying molecular pathogenesis of melanoma.
Collapse
Affiliation(s)
- Wei Han
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Surgery, Soochow University, Suzhou, China
| | - Yi-Zhu Wu
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Surgery, Soochow University, Suzhou, China
| | - Xiao-Yu Zhao
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Surgery, Soochow University, Suzhou, China
| | - Zhen-Hua Gong
- Department of Burn and Plastic Surgery, Affiliated Hospital 2 of Nantong University, The First People's Hospital of Nantong, Nantong, China
| | - Guo-Liang Shen
- Department of Burn and Plastic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, China.,Department of Surgery, Soochow University, Suzhou, China
| |
Collapse
|
31
|
Zhou J, Wang M, Zhou Z, Wang W, Duan J, Wu G. Expression and Prognostic Value of MCM Family Genes in Osteosarcoma. Front Mol Biosci 2021; 8:668402. [PMID: 34239894 PMCID: PMC8257954 DOI: 10.3389/fmolb.2021.668402] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 06/10/2021] [Indexed: 11/16/2022] Open
Abstract
We performed a detailed cancer VS normal analysis to explore the expression and prognostic value of minichromosome maintenance (MCM) proteinsin human sarcoma. The mRNA expression levels of the MCM family genes in sarcoma were analyzed using data from ONCOMINE, GEPIA and CCLE databases. KEGG database was used to analyze the function of MCM2–7 complex in DNA replication and cell cycle. QRT-PCR and western blot were used to confirm the differential expression of key MCMs in osteosarcoma cell lines. Cell Counting Kit-8 and flow cytometry method were used to detect the cell proliferation and apoptosis of hFOB1.19 cells. The results showed that MCM1–7 and MCM10 were all upregulated in sarcoma in ONCOMINE database. MCM2, and MCM4–7 were highly expressed in sarcoma in GEPIA database. Moreover, all these ten factors were highly expressed in sarcoma cell lines. Furthermore, we analyzed the prognostic value of MCMs for sarcoma in GEPIA and found that MCM2, MCM3, MCM4, and MCM10 are prognostic biomarkers for human sarcoma. Analysis results using KEGG datasets showed that MCM4 and MCM6–7 constituted a core structure of MCM2-7 hexamers. We found that AzadC treatment and overexpression of MCM4 significantly promoted hFOB1.19 cell proliferation and inhibited apoptosis. The present study implied that MCM2–4 and 10 are potential biomarkers for the prognosis of sarcoma. The prognostic role of MCM4 may be attributable to the change in its DNA methylation patterns.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Mingyong Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, China.,Institute of Osteoporosis Diagnosis and Treatments of Soochow University, Suzhou, China
| | - Zhen Zhou
- Menzies Institute for Medical Research, University of Tasmania, Hobart, TAS, Australia
| | - Wanchun Wang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Juan Duan
- Department of Geriatrics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Gen Wu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
32
|
Structural study of the N-terminal domain of human MCM8/9 complex. Structure 2021; 29:1171-1181.e4. [PMID: 34043945 DOI: 10.1016/j.str.2021.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Revised: 04/26/2021] [Accepted: 05/07/2021] [Indexed: 11/20/2022]
Abstract
MCM8/9 is a complex involved in homologous recombination (HR) repair pathway. MCM8/9 dysfunction can cause genome instability and result in primary ovarian insufficiency (POI). However, the mechanism underlying these effects is largely unknown. Here, we report crystal structures of the N-terminal domains (NTDs) of MCM8 and MCM9, and build a ring-shaped NTD structure based on a 6.6 Å resolution cryoelectron microscopy map. This shows that the MCM8/9 complex forms a 3:3 heterohexamer in an alternating pattern. A positively charged DNA binding channel and a putative ssDNA exit pathway for fork DNA unwinding are revealed. Based on the atomic model, the potential effects of the clinical POI mutants are interpreted. Surprisingly, the zinc-finger motifs are found to be capable of binding an iron atom as well. Overall, our results provide a model for the formation of the MCM8/9 complex and provide a path for further studies.
Collapse
|
33
|
Elevated expression of minichromosome maintenance 3 indicates poor outcomes and promotes G1/S cell cycle progression, proliferation, migration and invasion in colorectal cancer. Biosci Rep 2021; 40:225547. [PMID: 32597491 PMCID: PMC7350890 DOI: 10.1042/bsr20201503] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Revised: 06/23/2020] [Accepted: 06/25/2020] [Indexed: 02/06/2023] Open
Abstract
Background: The minichromosome maintenance (MCM) family, a core component of DNA replication, is involved in cell cycle process. Abnormal proliferation has been identified as a crucial process in the evolution of colorectal cancer (CRC). However, the roles of the MCM family in CRC remain largely unknown. Methods: Here, the expression, prognostic significance and functions of the MCM family in CRC were systematically analyzed through a series of online databases including CCLE, Oncomine, HPA, cBioPortal and cancerSEA. Results: We found all MCM family members were highly expressed in CRC, but only elevation of MCM3 expression was associated with poor prognosis of patients with CRC. Further in vitro and in vivo experiments were performed to examine the role of MCM3 in CRC. Analysis of CCLE database and qRT-PCR assay confirmed that MCM3 was overexpressed in CRC cell lines. Moreover, knockdown of MCM3 significantly suppressed transition of G1 to S phase in CRC cells. Furthermore, down-regulation of MCM3 inhibited CRC cell proliferation, migration, invasion and promoted apoptosis. Conclusion: These findings reveal that MCM3 may function as an oncogene and a potential prognosis biomarker. Thus, the association between abnormal expression of MCM3 and the initiation of CRC deserves further exploration.
Collapse
|
34
|
Ren Z, Li J, Zhao S, Qiao Q, Li R. Knockdown of MCM8 functions as a strategy to inhibit the development and progression of osteosarcoma through regulating CTGF. Cell Death Dis 2021; 12:376. [PMID: 33828075 PMCID: PMC8027380 DOI: 10.1038/s41419-021-03621-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/09/2021] [Accepted: 03/11/2021] [Indexed: 12/19/2022]
Abstract
Osteosarcoma is the most common primary malignant tumor of bone derived from osteoblasts, which is a noteworthy threat to the health of children and adolescents. In this study, we found that MCM8 has significantly higher expression level in osteosarcoma tissues in comparison with normal tissues, which was also correlated with more advanced tumor grade and pathological stage. In agreement with the role of MCM proteins as indicators of cell proliferation, knockdown/overexpression of MCM8 inhibited/promoted osteosarcoma cell proliferation in vitro and tumor growth in vivo. Also, MCM8 knockdown/overexpression was also significantly associated with the promotion/inhibition of cell apoptosis and suppression/promotion of cell migration. More importantly, mechanistic study identified CTGF as a potential downstream target of MCM8, silencing of which could enhance the regulatory effects of MCM8 knockdown and alleviate the effects of MCM8 overexpression on osteosarcoma development. In summary, MCM8/CTGF axis was revealed as critical participant in the development and progression of osteosarcoma and MCM8 may be a promising therapeutic target for osteosarcoma treatment.
Collapse
Affiliation(s)
- Zhinan Ren
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China
| | - Jun Li
- Department of Orthopedics, The Second Affiliated Hospital of Anhui Medical University, 678 Furong, Hefei, 230601, China
| | - Shanwen Zhao
- Department of Foot and Ankle Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510610, China.,Orthopaedic Hospital of Guangdong Province, Guangzhou, 510630, China.,Academy of Orthopaedics, Guangdong Province, Guangzhou, 510630, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Guangzhou, 510515, China
| | - Qi Qiao
- Department of Orthopedics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, China.
| | - Runguang Li
- Department of Foot and Ankle Surgery, Center for Orthopaedic Surgery, The Third Affiliated Hospital of Southern Medical University, Guangzhou, 510610, China. .,Orthopaedic Hospital of Guangdong Province, Guangzhou, 510630, China. .,Academy of Orthopaedics, Guangdong Province, Guangzhou, 510630, China. .,Guangdong Provincial Key Laboratory of Bone and Joint Degenerative Diseases, Guangzhou, 510515, China. .,Department of Orthopedics, Linzhi People's Hospital, Linzhi, 860000, China.
| |
Collapse
|
35
|
Ehteda A, Simon S, Franshaw L, Giorgi FM, Liu J, Joshi S, Rouaen JRC, Pang CNI, Pandher R, Mayoh C, Tang Y, Khan A, Ung C, Tolhurst O, Kankean A, Hayden E, Lehmann R, Shen S, Gopalakrishnan A, Trebilcock P, Gurova K, Gudkov AV, Norris MD, Haber M, Vittorio O, Tsoli M, Ziegler DS. Dual targeting of the epigenome via FACT complex and histone deacetylase is a potent treatment strategy for DIPG. Cell Rep 2021; 35:108994. [PMID: 33852836 DOI: 10.1016/j.celrep.2021.108994] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 12/24/2020] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
Diffuse intrinsic pontine glioma (DIPG) is an aggressive and incurable childhood brain tumor for which new treatments are needed. CBL0137 is an anti-cancer compound developed from quinacrine that targets facilitates chromatin transcription (FACT), a chromatin remodeling complex involved in transcription, replication, and DNA repair. We show that CBL0137 displays profound cytotoxic activity against a panel of patient-derived DIPG cultures by restoring tumor suppressor TP53 and Rb activity. Moreover, in an orthotopic model of DIPG, treatment with CBL0137 significantly extends animal survival. The FACT subunit SPT16 is found to directly interact with H3.3K27M, and treatment with CBL0137 restores both histone H3 acetylation and trimethylation. Combined treatment of CBL0137 with the histone deacetylase inhibitor panobinostat leads to inhibition of the Rb/E2F1 pathway and induction of apoptosis. The combination of CBL0137 and panobinostat significantly prolongs the survival of mice bearing DIPG orthografts, suggesting a potential treatment strategy for DIPG.
Collapse
Affiliation(s)
- Anahid Ehteda
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Sandy Simon
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Laura Franshaw
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Federico M Giorgi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Jie Liu
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Swapna Joshi
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Jourdin R C Rouaen
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Chi Nam Ignatius Pang
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | - Ruby Pandher
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Chelsea Mayoh
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia; School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
| | - Yujie Tang
- State Key Laboratory of Oncogenes and Related Genes, Key Laboratory of Cell Differentiation and Apoptosis of National Ministry of Education, Department of Pathophysiology, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Aaminah Khan
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Caitlin Ung
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Ornella Tolhurst
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Anne Kankean
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Elisha Hayden
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Rebecca Lehmann
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Sylvie Shen
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Anjana Gopalakrishnan
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Peter Trebilcock
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Katerina Gurova
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Andrei V Gudkov
- Department of Cell Stress Biology, Roswell Park Comprehensive Cancer Center, Buffalo, NY, USA
| | - Murray D Norris
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia; Centre for Childhood Cancer Research, University of New South Wales, Sydney, NSW, Australia
| | - Michelle Haber
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia
| | - Orazio Vittorio
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia; School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia
| | - Maria Tsoli
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia; School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia.
| | - David S Ziegler
- Children's Cancer Institute, Lowy Cancer Research Centre, University of New South Wales, Sydney, NSW, Australia; School of Women's and Children's Health, University of New South Wales, Sydney, NSW, Australia; Kid's Cancer Centre, Sydney Children's Hospital, Randwick, NSW, Australia.
| |
Collapse
|
36
|
Pal U, Halder P, Ray A, Sarkar S, Datta S, Ghosh P, Ghosh S. The etiology of Down syndrome: Maternal MCM9 polymorphisms increase risk of reduced recombination and nondisjunction of chromosome 21 during meiosis I within oocyte. PLoS Genet 2021; 17:e1009462. [PMID: 33750944 PMCID: PMC8021012 DOI: 10.1371/journal.pgen.1009462] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 04/01/2021] [Accepted: 03/03/2021] [Indexed: 11/21/2022] Open
Abstract
Altered patterns of recombination on 21q have long been associated with the nondisjunction chromosome 21 within oocytes and the increased risk of having a child with Down syndrome. Unfortunately the genetic etiology of these altered patterns of recombination have yet to be elucidated. We for the first time genotyped the gene MCM9, a candidate gene for recombination regulation and DNA repair in mothers with or without children with Down syndrome. In our approach, we identified the location of recombination on the maternal chromosome 21 using short tandem repeat markers, then stratified our population by the origin of meiotic error and age at conception. We observed that twenty-five out of forty-one single nucleotide polymorphic sites within MCM9 exhibited an association with meiosis I error (N = 700), but not with meiosis II error (N = 125). This association was maternal age-independent. Several variants exhibited aprotective association with MI error, some were neutral. Maternal age stratified characterization of cases revealed that MCM9 risk variants were associated with an increased chance of reduced recombination on 21q within oocytes. The spatial distribution of single observed recombination events revealed no significant change in the location of recombination among women harbouring MCM9 risk, protective, or neutral variant. Additionally, we identified a total of six novel polymorphic variants and two novel alleles that were either risk imparting or protective against meiosis I nondisjunction. In silico analyses using five different programs suggest the risk variants either cause a change in protein function or may alter the splicing pattern of transcripts and disrupt the proportion of different isoforms of MCM9 products within oocytes. These observations bring us a significant step closer to understanding the molecular basis of recombination errors in chromosome 21 nondisjunction within oocytes that leads to birth of child with Down syndrome. We studied MCM9 variations in the genome of women with a Down syndrome child by stratifying the women based on MCM9 genotypes, meiotic error group, and their age of conception. We identified polymorphisms are associated with reduced recombination and nondisjunction of chromosome 21 at the meiosis I stage of oogenesis in a maternal age-independent manner. But these variants do not affect the position of chiasma formation. In Silico analyses revealed the presence of MCM9 variants that may cause alteration in protein function due to amino acid substitution. We also identified splice variants in MCM9. We hypothesize that the polymorphisms in MCM9 predispose women to experience reduced recombination on chromosome 21 in oocytes at meiosis I, which ultimately leads to the birth of a child with Down syndrome.
Collapse
Affiliation(s)
- Upamanyu Pal
- Cytogenetics and Genomics Research Unit, Department of Zoology, University of Calcutta, Taraknath Palit Siksha Prangan (Ballygunge Science College Campus), Kolkata, West Bengal, India
| | - Pinku Halder
- Cytogenetics and Genomics Research Unit, Department of Zoology, University of Calcutta, Taraknath Palit Siksha Prangan (Ballygunge Science College Campus), Kolkata, West Bengal, India
| | - Anirban Ray
- Department of Zoology, Bangabasi Morning College (affiliated to University of Calcutta), Kolkata, West Bengal, India
| | - Sumantra Sarkar
- Department of Paediatric Medicine, Institute of Post Graduate Medical Education and Research (IPGMER), Bhowanipore, Kolkata, West Bengal, India
- Department of Paediatric Medicine, Diamond Harbour Government Medical College & Hospital, Diamond Harbour, West Bengal, India
| | - Supratim Datta
- Department of Paediatric Medicine, Institute of Post Graduate Medical Education and Research (IPGMER), Bhowanipore, Kolkata, West Bengal, India
| | - Papiya Ghosh
- Department of Zoology, Bijoykrishna Girls’ College (Affiliated to University of Calcutta), Howrah, West Bengal, India
| | - Sujay Ghosh
- Cytogenetics and Genomics Research Unit, Department of Zoology, University of Calcutta, Taraknath Palit Siksha Prangan (Ballygunge Science College Campus), Kolkata, West Bengal, India
- * E-mail:
| |
Collapse
|
37
|
Yoshimura A, Sutani T, Shirahige K. Functional control of Eco1 through the MCM complex in sister chromatid cohesion. Gene 2021; 784:145584. [PMID: 33753149 DOI: 10.1016/j.gene.2021.145584] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2020] [Revised: 03/03/2021] [Accepted: 03/12/2021] [Indexed: 10/21/2022]
Abstract
Sister chromatid cohesion (SCC) is essential for the maintenance of genome integrity. The establishment of SCC is coupled to DNA replication, and this is achieved in budding yeast Saccharomyces cerevisiae by a mechanism that is dependent on the interaction between Eco1 acetyltransferase and PCNA in the DNA replication complex. In vertebrates, the Eco1 homolog ESCO2 has been reported to interact with MCM complex in the DNA replication complex to establish DNA replication-dependent cohesion. Here we show that budding yeast Eco1 is also physically interacted with the MCM complex. We found that Eco1 was specifically bound to Mcm2 subunit in the MCM complex and they interacted via their N-terminal regions, using yeast two-hybrid system. The underlying mechanism of the interaction was different between yeast and vertebrates. Intensive molecular dissection of Eco1 identified residues important for interaction with Mcm2 and/or PCNA. Mutant forms of Eco1 (Eco1mWW and Eco1mGRK), where sets of the identified residues were substituted with alanine, resulted in impaired SCC, decreased level of acetylation of Smc3, and a reduction of Eco1 protein amount in yeast cells. We, hence, suggest that Eco1 is stabilized by its interactions with MCM complex and PCNA, which allows it to promote DNA replication-coupled SCC establishment.
Collapse
Affiliation(s)
- Atsunori Yoshimura
- Laboratory of Genome Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | - Takashi Sutani
- Laboratory of Genome Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| | - Katsuhiko Shirahige
- Laboratory of Genome Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan.
| |
Collapse
|
38
|
Liang Z, Zhang Y, Chen Q, Hao J, Wang H, Li Y, Yan Y. Analysis of MCM Proteins' Role as a Potential Target of Statins in Patients with Acute Type A Aortic Dissection through Bioinformatics. Genes (Basel) 2021; 12:387. [PMID: 33803192 PMCID: PMC7998850 DOI: 10.3390/genes12030387] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 02/27/2021] [Accepted: 03/02/2021] [Indexed: 11/18/2022] Open
Abstract
Acute aortic dissection is one of the most severe vascular diseases. The molecular mechanisms of aortic expansion and dissection are unclear. Clinical studies have found that statins play a protective role in aortic dissection development and therapy; however, the mechanism of statins' effects on the aorta is unknown. The Gene Expression Omnibus (GEO) dataset GSE52093, GSE2450and GSE8686 were analyzed, and genes expressed differentially between aortic dissection samples and normal samples were determined using the Networkanalyst and iDEP tools. Weight gene correlation network analysis (WGCNA), functional annotation, pathway enrichment analysis, and the analysis of the regional variations of genomic features were then performed. We found that the minichromosome maintenance proteins (MCMs), a family of proteins targeted by statins, were upregulated in dissected aortic wall tissues and play a central role in cell-cycle and mitosis regulation in aortic dissection patients. Our results indicate a potential molecular target and mechanism for statins' effects in patients with acute type A aortic dissection.
Collapse
Affiliation(s)
- Zheyong Liang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an 710061, China; (Y.Z.); (Q.C.); (J.H.); (H.W.); (Y.L.); (Y.Y.)
| | | | | | | | | | | | | |
Collapse
|
39
|
Li X, Wang X, Zhao J, Wang J, Wu J. PRMT5 promotes colorectal cancer growth by interaction with MCM7. J Cell Mol Med 2021; 25:3537-3547. [PMID: 33675123 PMCID: PMC8034445 DOI: 10.1111/jcmm.16436] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 02/01/2021] [Accepted: 02/22/2021] [Indexed: 12/23/2022] Open
Abstract
Protein arginine methyltransferase 5 (PRMT5) is a type of methyltransferase enzyme that can catalyse arginine methylation of histones and non‐histone proteins. Accumulating evidence indicates that PRMT5 promotes cancer development and progression. However, its function in colorectal cancer (CRC) is poorly understood. In this study, we revealed the oncogenic roles of PRMT5 in CRC. We found that PRMT5 promoted CRC cell proliferation, migration and invasion in vitro and in vivo. We identified minichromosome maintenance‐7 (MCM7) as the direct PRMT5‐binding partner. A co‐immunoprecipitation (co‐IP) assay indicated that PRMT5 physically interacted with MCM7 and that the direct binding domain was located between residues 1‐248 in MCM7. In addition, our results from analysis of 99 CRC tissues and 77 adjacent non‐cancerous tissues indicated that the PRMT5 and MCM7 expression levels were significantly higher in CRC tissues than in control tissues, which was further confirmed by bioinformatic analysis using TCGA and GEO datasets. We also found that MCM7 promoted CRC cell proliferation, migration and invasion in vitro. Furthermore, we observed that increased PRMT5 expression predicted unfavourable patient survival in CRC patients and in the subgroup of patients with a tumour size of ≤5 cm. These data suggested that PRMT5 and MCM7 might be novel potential targets for the treatment of CRC.
Collapse
Affiliation(s)
- Xiangwei Li
- Department of Pathology & Pathophysiology, and Department of Colorectal Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.,Department of Pathology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xin Wang
- Department of Pathology & Pathophysiology, and Department of Colorectal Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiahui Zhao
- Department of Pathology & Pathophysiology, and Department of Colorectal Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jian Wang
- Department of Colorectal Surgery and Oncology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jingjing Wu
- Department of Pathology & Pathophysiology, and Department of Colorectal Surgery of the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
40
|
Mohammed Khalid AA, Parisse P, Medagli B, Onesti S, Casalis L. Atomic Force Microscopy Investigation of the Interactions between the MCM Helicase and DNA. MATERIALS (BASEL, SWITZERLAND) 2021; 14:687. [PMID: 33540751 PMCID: PMC7867263 DOI: 10.3390/ma14030687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/21/2021] [Accepted: 01/26/2021] [Indexed: 11/16/2022]
Abstract
The MCM (minichromosome maintenance) protein complex forms an hexameric ring and has a key role in the replication machinery of Eukaryotes and Archaea, where it functions as the replicative helicase opening up the DNA double helix ahead of the polymerases. Here, we present a study of the interaction between DNA and the archaeal MCM complex from Methanothermobacter thermautotrophicus by means of atomic force microscopy (AFM) single molecule imaging. We first optimized the protocol (surface treatment and buffer conditions) to obtain AFM images of surface-equilibrated DNA molecules before and after the interaction with the protein complex. We discriminated between two modes of interaction, one in which the protein induces a sharp bend in the DNA, and one where there is no bending. We found that the presence of the MCM complex also affects the DNA contour length. A possible interpretation of the observed behavior is that in one case the hexameric ring encircles the dsDNA, while in the other the nucleic acid wraps on the outside of the ring, undergoing a change of direction. We confirmed this topographical assignment by testing two mutants, one affecting the N-terminal β-hairpins projecting towards the central channel, and thus preventing DNA loading, the other lacking an external subdomain and thus preventing wrapping. The statistical analysis of the distribution of the protein complexes between the two modes, together with the dissection of the changes of DNA contour length and binding angle upon interaction, for the wild type and the two mutants, is consistent with the hypothesis. We discuss the results in view of the various modes of nucleic acid interactions that have been proposed for both archaeal and eukaryotic MCM complexes.
Collapse
Affiliation(s)
- Amna Abdalla Mohammed Khalid
- Elettra-Sincrotrone Trieste, 34149 Trieste, Italy; (A.A.M.K.); (B.M.)
- Department of Physics, PhD School in Nanotechnology, University of Trieste, 34127 Trieste, Italy
| | - Pietro Parisse
- Elettra-Sincrotrone Trieste, 34149 Trieste, Italy; (A.A.M.K.); (B.M.)
- Istituto Officina dei Materiali, Consiglio Nazionale delle Ricerche (IOM-CNR), 34149 Trieste, Italy
| | - Barbara Medagli
- Elettra-Sincrotrone Trieste, 34149 Trieste, Italy; (A.A.M.K.); (B.M.)
- Department of Chemical and Pharmaceutical Sciences, University of Trieste, 34127 Trieste, Italy
| | - Silvia Onesti
- Elettra-Sincrotrone Trieste, 34149 Trieste, Italy; (A.A.M.K.); (B.M.)
| | - Loredana Casalis
- Elettra-Sincrotrone Trieste, 34149 Trieste, Italy; (A.A.M.K.); (B.M.)
| |
Collapse
|
41
|
Comparative genomic analysis reveals evolutionary and structural attributes of MCM gene family in Arabidopsis thaliana and Oryza sativa. J Biotechnol 2020; 327:117-132. [PMID: 33373625 DOI: 10.1016/j.jbiotec.2020.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Revised: 11/16/2020] [Accepted: 12/17/2020] [Indexed: 11/20/2022]
Abstract
The mini-chromosome maintenance (MCM) family, a large and functionally diverse protein family belonging to the AAA+ superfamily, is essential for DNA replication in all eukaryotic organisms. The MCM 2-7 form a hetero-hexameric complex which serves as licensing factor necessary to ensure the proper genomic DNA replication during the S phase of cell cycle. MCM 8-10 are also associated with the DNA replication process though their roles are particularly unclear. In this study, we report an extensive in silico analysis of MCM gene family (MCM 2-10) in Arabidopsis and rice. Comparative analysis of genomic distribution across eukaryotes revealed conservation of core MCMs 2-7 while MCMs 8-10 are absent in some taxa. Domain architecture analysis underlined MCM 2-10 subfamily specific features. Phylogenetic analyses clustered MCMs into 9 clades as per their subfamily. Duplication events are prominent in plant MCM family, however no duplications are observed in Arabidopsis and rice MCMs. Synteny analysis among Arabidopsis thaliana, Oryza sativa, Glycine max and Zea mays MCMs demonstrated orthologous relationships and duplication events. Further, estimation of synonymous and non-synonymous substitution rates illustrated evolution of MCM family under strong constraints. Expression profiling using available microarray data and qRT-PCR revealed differential expression under various stress conditions, hinting at their potential use to develop stress resilient crops. Homology modeling of Arabidopsis and rice MCM 2-7 and detailed comparison with yeast MCMs identified conservation of eukaryotic specific insertions and extensions as compared to archeal MCMs. Protein-protein interaction analysis revealed an extensive network of putative interacting partners mainly involved in DNA replication and repair. The present study provides novel insights into the MCM family in Arabidopsis and rice and identifies unique features, thus opening new perspectives for further targeted analyses.
Collapse
|
42
|
Proteomic signatures of 16 major types of human cancer reveal universal and cancer-type-specific proteins for the identification of potential therapeutic targets. J Hematol Oncol 2020; 13:170. [PMID: 33287876 PMCID: PMC7720039 DOI: 10.1186/s13045-020-01013-x] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 11/26/2020] [Indexed: 11/10/2022] Open
Abstract
Background Proteomic characterization of cancers is essential for a comprehensive understanding of key molecular aberrations. However, proteomic profiling of a large cohort of cancer tissues is often limited by the conventional approaches. Methods We present a proteomic landscape of 16 major types of human cancer, based on the analysis of 126 treatment-naïve primary tumor tissues, 94 tumor-matched normal adjacent tissues, and 12 normal tissues, using mass spectrometry-based data-independent acquisition approach.
Results In our study, a total of 8527 proteins were mapped to brain, head and neck, breast, lung (both small cell and non-small cell lung cancers), esophagus, stomach, pancreas, liver, colon, kidney, bladder, prostate, uterus and ovary cancers, including 2458 tissue-enriched proteins. Our DIA-based proteomic approach has characterized major human cancers and identified universally expressed proteins as well as tissue-type-specific and cancer-type-specific proteins. In addition, 1139 therapeutic targetable proteins and 21 cancer/testis (CT) antigens were observed. Conclusions Our discoveries not only advance our understanding of human cancers, but also have implications for the design of future large-scale cancer proteomic studies to assist the development of diagnostic and/or therapeutic targets in multiple cancers.
Collapse
|
43
|
Huang B, Lin M, Lu L, Chen W, Tan J, Zhao J, Cao Z, Zhu X, Lin J. Identification of mini-chromosome maintenance 8 as a potential prognostic marker and its effects on proliferation and apoptosis in gastric cancer. J Cell Mol Med 2020; 24:14415-14425. [PMID: 33155430 PMCID: PMC7753872 DOI: 10.1111/jcmm.16062] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2020] [Revised: 10/06/2020] [Accepted: 10/19/2020] [Indexed: 12/11/2022] Open
Abstract
Mini-chromosome maintenance (MCM) proteins play important roles in initiating eukaryotic genome replication. The MCM family of proteins includes several members associated with the development and progression of certain cancers. We performed online data mining to assess the expression of MCMs in gastric cancer (GC) and the correlation between their expression and survival in patients with GC. Notably, MCM8 expression was undoubtedly up-regulated in GC, and higher expression correlated with shorter overall survival (OS) and progression-free survival (PFS) in patients with GC. However, the role of MCM8 in GC has not been previously explored. Our in vitro experiments revealed that MCM8 knockdown inhibited cell growth and metastasis. Moreover, MCM8 knockdown induced apoptosis. Mechanistically, the expression levels of Bax and cleaved caspase-3 were increased, whereas Bcl-2 expression decreased. Additionally, we demonstrated that MCM8 knockdown suppressed tumorigenesis in vivo. Overall, these results suggest that MCM8 plays a significant role in GC progression.
Collapse
Affiliation(s)
- Bin Huang
- Academy of Integrative MedicineFujian University of Traditional Chinese MedicineFuzhouChina
- Fujian Key Laboratory of Integrative Medicine on GeriatricsFujian University of Traditional Chinese MedicineFuzhouChina
| | - Minghe Lin
- Academy of Integrative MedicineFujian University of Traditional Chinese MedicineFuzhouChina
| | - Lisha Lu
- Department of OncologyAffiliated People’s Hospital of Fujian University of Traditional Chinese MedicineFuzhouChina
| | - Wujin Chen
- Department of OncologyAffiliated People’s Hospital of Fujian University of Traditional Chinese MedicineFuzhouChina
| | - Jingzhuang Tan
- Academy of Integrative MedicineFujian University of Traditional Chinese MedicineFuzhouChina
- Fujian Key Laboratory of Integrative Medicine on GeriatricsFujian University of Traditional Chinese MedicineFuzhouChina
| | - Jinyan Zhao
- Academy of Integrative MedicineFujian University of Traditional Chinese MedicineFuzhouChina
- Fujian Key Laboratory of Integrative Medicine on GeriatricsFujian University of Traditional Chinese MedicineFuzhouChina
| | - Zhiyun Cao
- Academy of Integrative MedicineFujian University of Traditional Chinese MedicineFuzhouChina
- Fujian Key Laboratory of Integrative Medicine on GeriatricsFujian University of Traditional Chinese MedicineFuzhouChina
| | - Xiaoqin Zhu
- Academy of Integrative MedicineFujian University of Traditional Chinese MedicineFuzhouChina
- Fujian Key Laboratory of Integrative Medicine on GeriatricsFujian University of Traditional Chinese MedicineFuzhouChina
| | - Jiumao Lin
- Academy of Integrative MedicineFujian University of Traditional Chinese MedicineFuzhouChina
- Fujian Key Laboratory of Integrative Medicine on GeriatricsFujian University of Traditional Chinese MedicineFuzhouChina
| |
Collapse
|
44
|
Li HT, Wei B, Li ZQ, Wang X, Jia WX, Xu YZ, Liu JY, Shao MN, Chen SX, Mo NF, Zhao D, Zuo WP, Qin J, Li P, Zhang QL, Yang XL. Diagnostic and prognostic value of MCM3 and its interacting proteins in hepatocellular carcinoma. Oncol Lett 2020; 20:308. [PMID: 33093917 PMCID: PMC7573876 DOI: 10.3892/ol.2020.12171] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Accepted: 06/08/2020] [Indexed: 12/18/2022] Open
Abstract
Aberrant DNA replication is one of the driving forces behind oncogenesis. Furthermore, minichromosome maintenance complex component 3 (MCM3) serves an essential role in DNA replication. Therefore, in the present study, the diagnostic and prognostic value of MCM3 and its interacting proteins in hepatocellular carcinoma (HCC) were investigated. By utilizing The Cancer Genome Atlas (TCGA) database, global MCM3 mRNA levels were assessed in HCC and normal liver tissues. Its effects were further analyzed by reverse transcription-quantitative PCR (RT-qPCR), western blotting and immunohistochemistry in 78 paired HCC and adjacent tissues. Functional and pathway enrichment analyses were performed using the Search Tool for the Retrieval of Interacting Genes database. The expression levels of proteins that interact with MCM3 were also analyzed using the TCGA database and RT-qPCR. Finally, algorithms combining receiver operating characteristic (ROC) curves were constructed using binary logistic regression using the TCGA results. Increased MCM3 mRNA expression with high α-fetoprotein levels and advanced Edmondson-Steiner grade were found to be characteristic of HCC. Survival analysis revealed that high MCM3 expression was associated with poor outcomes in patients with HCC. In addition, MCM3 protein expression was associated with increased tumor invasion in HCC tissues. MCM3 and its interacting proteins were found to be primarily involved in DNA replication, cell cycle and a number of binding processes. Algorithms combining ROCs of MCM3 and its interacting proteins were found to have improved HCC diagnosis ability compared with MCM3 and other individual diagnostic markers. In conclusion, MCM3 appears to be a promising diagnostic biomarker for HCC. Additionally, the present study provides a basis for the multi-gene diagnosis of HCC using MCM3.
Collapse
Affiliation(s)
- Hong-Tao Li
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi 541100, P.R. China
| | - Bing Wei
- College of International Education, Guilin Medical University, Guilin, Guangxi 541100, P.R. China
| | - Zhou-Quan Li
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi 541100, P.R. China
| | - Xiao Wang
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi 541100, P.R. China.,Department of Pathology, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Wen-Xian Jia
- College of Pharmacy, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Yan-Zhen Xu
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi 541100, P.R. China
| | - Jia-Yi Liu
- Department of Pathology, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Meng-Nan Shao
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi 541100, P.R. China
| | - Sui-Xia Chen
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi 541100, P.R. China
| | - Nan-Fang Mo
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi 541100, P.R. China
| | - Dong Zhao
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi 541100, P.R. China
| | - Wen-Pu Zuo
- Medical Scientific Research Center, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Jian Qin
- School of Public Health, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Ping Li
- Department of Pathology, The First Affiliated Hospital, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China.,College and Hospital of Stomatology, Guangxi Medical University, Nanning, Guangxi 530021, P.R. China
| | - Qin-Le Zhang
- Genetic and Metabolic Central Laboratory, The Maternal and Children Health Hospital of Guangxi, Nanning, Guangxi 530005, P.R. China
| | - Xiao-Li Yang
- Scientific Research Center, Guilin Medical University, Guilin, Guangxi 541100, P.R. China
| |
Collapse
|
45
|
Qian W, Li Z, Song W, Zhao T, Wang W, Peng J, Wei L, Xia Q, Cheng D. A novel transcriptional cascade is involved in Fzr-mediated endoreplication. Nucleic Acids Res 2020; 48:4214-4229. [PMID: 32182338 PMCID: PMC7192621 DOI: 10.1093/nar/gkaa158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 02/29/2020] [Indexed: 01/08/2023] Open
Abstract
Endoreplication, known as endocycle, is a variant of the cell cycle that differs from mitosis and occurs in specific tissues of different organisms. Endoreplicating cells generally undergo multiple rounds of genome replication without chromosome segregation. Previous studies demonstrated that Drosophila fizzy-related protein (Fzr) and its mammalian homolog Cdh1 function as key regulators of endoreplication entrance by activating the anaphase-promoting complex/cyclosome to initiate the ubiquitination and subsequent degradation of cell cycle factors such as Cyclin B (CycB). However, the molecular mechanism underlying Fzr-mediated endoreplication is not completely understood. In this study, we demonstrated that the transcription factor Myc acts downstream of Fzr during endoreplication in Drosophila salivary gland. Mechanistically, Fzr interacts with chromatin-associated histone H2B to enhance H2B ubiquitination in the Myc promoter and promotes Myc transcription. In addition to negatively regulating CycB transcription, the Fzr-ubiquitinated H2B (H2Bub)-Myc signaling cascade also positively regulates the transcription of the MCM6 gene that is involved in DNA replication by directly binding to specific motifs within their promoters. We further found that the Fzr-H2Bub-Myc signaling cascade regulating endoreplication progression is conserved between insects and mammalian cells. Altogether, our work uncovers a novel transcriptional cascade that is involved in Fzr-mediated endoreplication.
Collapse
Affiliation(s)
- Wenliang Qian
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China.,Chongqing Key Laboratory of Sericultural Science, Chongqing engineering and technology research center for novel silk materials, Southwest University, Chongqing 400715, China
| | - Zheng Li
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China.,Chongqing Key Laboratory of Sericultural Science, Chongqing engineering and technology research center for novel silk materials, Southwest University, Chongqing 400715, China
| | - Wei Song
- Medical Research Institute, Wuhan University, Wuhan 430071, China.,Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Tujing Zhao
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China.,Chongqing Key Laboratory of Sericultural Science, Chongqing engineering and technology research center for novel silk materials, Southwest University, Chongqing 400715, China
| | - Weina Wang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China.,Chongqing Key Laboratory of Sericultural Science, Chongqing engineering and technology research center for novel silk materials, Southwest University, Chongqing 400715, China
| | - Jian Peng
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China.,Chongqing Key Laboratory of Sericultural Science, Chongqing engineering and technology research center for novel silk materials, Southwest University, Chongqing 400715, China
| | - Ling Wei
- School of Life Science, Southwest University, Chongqing 400715, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China.,Chongqing Key Laboratory of Sericultural Science, Chongqing engineering and technology research center for novel silk materials, Southwest University, Chongqing 400715, China
| | - Daojun Cheng
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing 400715, China.,Chongqing Key Laboratory of Sericultural Science, Chongqing engineering and technology research center for novel silk materials, Southwest University, Chongqing 400715, China
| |
Collapse
|
46
|
Moyano P, García J, García JM, Pelayo A, Muñoz-Calero P, Frejo MT, Anadon MJ, Lobo M, Del Pino J. Chlorpyrifos-induced cell proliferation in human breast cancer cell lines differentially mediated by estrogen and aryl hydrocarbon receptors and KIAA1363 enzyme after 24 h and 14 days exposure. CHEMOSPHERE 2020; 251:126426. [PMID: 32171938 DOI: 10.1016/j.chemosphere.2020.126426] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 02/27/2020] [Accepted: 03/04/2020] [Indexed: 05/28/2023]
Abstract
Organophosphate biocide chlorpyrifos (CPF) is involved with breast cancer. However, the mechanisms remain unknown. CPF increases cell division in MCF-7 cells, by estrogen receptor alpha (ERα) activation, although it is a weak ERα agonist, suggesting other mechanisms should be involved. Aromatic hydrocarbon receptor (AhR) activation increases cell division in human breast cancer cells, and CPF strongly activates it. Finally, the KIAA1363 enzyme, which is regulated by CPF, is overexpressed in cancer cells. Accordingly, we hypothesized that CPF or its metabolite chlorpyrifos-oxon (CPFO) could induce cell viability promotion in MCF-7 and MDA-MB-231 cell lines, through mechanisms related to ERα, AhR, and KIAA1363, after 24 h and 14 days treatment. Results show that, after acute and long-term treatment, CPF and CPFO alter differently KIAA1363, AhR, ER and cytochrome P450 isoenzyme 1A1 (CYP1A1) expression. In addition, they induced cell proliferation through ERα activation after 24 h exposure in MCF-7 cells and through KIAA1363 overexpression and AhR activation in MCF-7 and MDA-MB-231 cells after acute and long-term treatment. The results obtained in this work provide new information relative to the mechanisms involved in the CPF toxic effects that could lead to breast cancer disease.
Collapse
Affiliation(s)
- Paula Moyano
- Department of Pharmacology and Toxicology, Medicine School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Jimena García
- Department of Pharmacology, Health Sciences School, Alfonso X University, 28691, Madrid, Spain
| | - José Manuel García
- Department of Pharmacology and Toxicology, Medicine School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Adela Pelayo
- Department of Legal Medicine, Psychiatry and Pathology, Medicine School, Complutense University of Madrid, 28040, Madrid, Spain
| | | | - María Teresa Frejo
- Department of Pharmacology and Toxicology, Medicine School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Maria Jose Anadon
- Department of Legal Medicine, Psychiatry and Pathology, Medicine School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Margarita Lobo
- Department of Pharmacology and Toxicology, Medicine School, Complutense University of Madrid, 28040, Madrid, Spain
| | - Javier Del Pino
- Department of Pharmacology and Toxicology, Medicine School, Complutense University of Madrid, 28040, Madrid, Spain.
| |
Collapse
|
47
|
Heddar A, Beckers D, Fouquet B, Roland D, Misrahi M. A Novel Phenotype Combining Primary Ovarian Insufficiency Growth Retardation and Pilomatricomas With MCM8 Mutation. J Clin Endocrinol Metab 2020; 105:dgaa155. [PMID: 32242235 DOI: 10.1210/clinem/dgaa155] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 04/01/2020] [Indexed: 11/19/2022]
Abstract
CONTEXT Primary Ovarian insufficiency (POI) affects 1% of women aged <40 years and leads most often to definitive infertility with adverse health outcomes. Very recently, genes involved in deoxyribonucleic acid (DNA) repair have been shown to cause POI. OBJECTIVE To identify the cause of a familial POI in a consanguineous Turkish family. DESIGN Exome sequencing was performed in the proposita and her mother. Chromosomal breaks were studied in lymphoblastoid cell lines treated with mitomycin (MMC). SETTING AND PATIENTS The proposita presented intrauterine and postnatal growth retardation, multiple pilomatricomas in childhood, and primary amenorrhea. She was treated with growth hormone (GH) from age 14 to 18 years. RESULTS We identified a novel nonsense variant in exon 9 of the minichromosome maintenance complex component 8 gene (MCM8) NM_001281522.1: c0.925C > T/p.R309* yielding either a truncated protein or nonsense-mediated messenger ribonucleic acid decay.The variant was homozygous in the daughter and heterozygous in the mother. MMC induced DNA breaks and aberrant metaphases in the patient's lymphoblastoid cells. The mother's cells had intermediate but significantly higher chromosomal breaks compared with a control. CONCLUSION We describe a novel phenotype of syndromic POI related to a novel truncating MCM8 variant. We show for the first time that spontaneous tumors (pilomatricomas) are associated with an MCM8 genetic defect, making the screening of this gene necessary before starting GH therapy in patients with POI with short stature, especially in a familial or consanguineous context. Appropriate familial monitoring in the long term is necessary, and fertility preservation should be considered in heterozygous siblings to avoid rapid follicular atresia.
Collapse
Affiliation(s)
- Abdelkader Heddar
- Universités Paris Sud, Paris Saclay, Faculté de Médecine; Unité de Génétique Moléculaire des Maladies Métaboliques et de la Reproduction, Hôpitaux Universitaires Paris-Sud, Hôpital Bicêtre AP-HP, Le Kremlin-Bicêtre, France
| | - Dominique Beckers
- Université catholique de Louvain, CHU UCL Namur, Pediatric Endocrinology, Yvoir, Belgium
| | - Baptiste Fouquet
- Universités Paris Sud, Paris Saclay, Faculté de Médecine; Unité de Génétique Moléculaire des Maladies Métaboliques et de la Reproduction, Hôpitaux Universitaires Paris-Sud, Hôpital Bicêtre AP-HP, Le Kremlin-Bicêtre, France
| | - Dominique Roland
- Centre de Génétique Humaine, Institut de Pathologie et de Génétique, Gosselies, Belgium
| | - Micheline Misrahi
- Universités Paris Sud, Paris Saclay, Faculté de Médecine; Unité de Génétique Moléculaire des Maladies Métaboliques et de la Reproduction, Hôpitaux Universitaires Paris-Sud, Hôpital Bicêtre AP-HP, Le Kremlin-Bicêtre, France
| |
Collapse
|
48
|
Rajendra S, Sharma P, Gautam SD, Saxena M, Kapur A, Sharma P, Merrett N, Yang T, Santos LD, Pavey D, Sharaiha O, McKay O, Dixson H, Xuan W. Association of Biomarkers for Human Papillomavirus With Survival Among Adults With Barrett High-grade Dysplasia and Esophageal Adenocarcinoma. JAMA Netw Open 2020; 3:e1921189. [PMID: 32058552 PMCID: PMC12064093 DOI: 10.1001/jamanetworkopen.2019.21189] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2019] [Accepted: 12/16/2019] [Indexed: 12/28/2022] Open
Abstract
Importance The presence of high-risk human papillomavirus (HPV) has been associated with a favorable outcome in Barrett high-grade dysplasia (HGD) and esophageal adenocarcinoma (EAC). Nevertheless, the prognostic significance of other HPV-related biomarkers (ie, retinoblastoma protein [pRb], cyclin D1 [CD1], minichromosome maintenance protein [MCM2] and Ki-67) is unknown. Objective To examine the association between HPV-related biomarkers and survival in adult patients with Barrett HGD and EAC. Design, Setting, and Participants This retrospective case-control study examined the hypothesis that the HPV-related cell cycle markers (pRb, CD1, and Ki-67) and the viral surrogate marker (MCM2) may be associated with a favorable prognosis in Barrett HGD and EAC. Pretreatment biopsies were used for HPV DNA determination via polymerase chain reaction and immunohistochemistry for the HPV-related biomarkers. Recruitment of patients occurred in secondary and tertiary referral centers, with 151 patients assessed for eligibility. The study period was from December 1, 2002, to November 28, 2017, and the dates of analysis were from September 9, 2011, to November 28, 2017. Main Outcomes and Measures Disease-free survival and overall survival. Results Of 151 patients assessed for eligibility, 9 were excluded. Among the 142 patients with Barrett HGD or EAC (126 [88.7%] men; mean [SD] age, 66.0 [12.1] years; 142 [100%] white), 37 were HPV positive and 105 were HPV negative. No association with disease-free survival was noted for pRb, CD1, Ki-67, and MCM2. In regard to overall survival, only low expression of CD1 had a favorable prognosis (hazard ratio [HR], 0.53; 95% CI, 0.30-0.95; adjusted P = .03). All the biomarkers stratified by HPV status showed significant associations with survival. Patients with HPV-positive, low-expression pRb esophageal tumors were associated with a significantly improved disease-free survival compared with the HPV-negative, high-expression Rb tumors (HR, 0.33; 95% CI, 0.12-0.93; adjusted P = .04). Similarly, HPV-positive, low-expression CD1 was associated with a significantly favorable disease-free survival (HR, 0.26; 95% CI, 0.09-0.76; adjusted P = .01), as was HPV-positive, high-expression MCM2 (HR, 0.27; 95% CI, 0.09-0.78; adjusted P = .02). In regard to overall survival, HPV was significantly associated only with low CD1 (HR, 0.38; 95% CI, 0.15-0.94; adjusted P = .04). Conclusions and Relevance This study's findings suggest that low expression of CD1 appears to be an independent prognostic marker in Barrett HGD and EAC. Human papillomavirus positivity in combination with pRb, CD1, MCM2, and Ki-67 was associated with a survival benefit in esophageal tumors. These findings suggest the possibility of personalization of therapy for Barrett HGD and EAC based on viral status.
Collapse
Affiliation(s)
- Shanmugarajah Rajendra
- Gastro-Intestinal Viral Oncology Group, Ingham Institute for Applied Medical Research, Liverpool, Sydney, New South Wales, Australia
- South Western Sydney Clinical School, University of New South Wales, Liverpool, Sydney, New South Wales, Australia
- Department of Gastroenterology and Hepatology, Bankstown-Lidcombe Hospital, South Western Sydney Local Health Network, Bankstown, Sydney, New South Wales, Australia
| | - Preeti Sharma
- Gastro-Intestinal Viral Oncology Group, Ingham Institute for Applied Medical Research, Liverpool, Sydney, New South Wales, Australia
- South Western Sydney Clinical School, University of New South Wales, Liverpool, Sydney, New South Wales, Australia
| | - Shweta Dutta Gautam
- Gastro-Intestinal Viral Oncology Group, Ingham Institute for Applied Medical Research, Liverpool, Sydney, New South Wales, Australia
- South Western Sydney Clinical School, University of New South Wales, Liverpool, Sydney, New South Wales, Australia
| | - Manoj Saxena
- South Western Sydney Clinical School, University of New South Wales, Liverpool, Sydney, New South Wales, Australia
- Department of Intensive Care, Bankstown-Lidcombe Hospital, South Western Sydney Local Health Network, Bankstown, Sydney, New South Wales, Australia
| | - Amit Kapur
- Graduate School of Medicine, The University of Wollongong, Wollongong, New South Wales, Australia
| | - Prateek Sharma
- Veterans Affairs Medical Center, Division of Gastroenterology and Hepatology, University of Kansas School of Medicine, Kansas City, Missouri
| | - Neil Merrett
- Discipline of Surgery, Western Sydney University School of Medicine, Penrith, New South Wales, Australia
- Department of Upper Gastrointestinal Surgery, Bankstown-Lidcombe Hospital, Bankstown, Sydney, New South Wales, Australia
| | - Tao Yang
- SydPath, St Vincent’s Hospital Sydney, Darlinghurst, New South Wales, Australia
| | - Leonardo D. Santos
- Department of Anatomical Pathology, Sydney South West Pathology Service, Liverpool Hospital, Liverpool, Sydney, New South Wales, Australia
| | - Darren Pavey
- Gastro-Intestinal Viral Oncology Group, Ingham Institute for Applied Medical Research, Liverpool, Sydney, New South Wales, Australia
- South Western Sydney Clinical School, University of New South Wales, Liverpool, Sydney, New South Wales, Australia
- Department of Gastroenterology and Hepatology, Bankstown-Lidcombe Hospital, South Western Sydney Local Health Network, Bankstown, Sydney, New South Wales, Australia
| | - Omar Sharaiha
- South Western Sydney Clinical School, University of New South Wales, Liverpool, Sydney, New South Wales, Australia
- Department of Gastroenterology and Hepatology, Bankstown-Lidcombe Hospital, South Western Sydney Local Health Network, Bankstown, Sydney, New South Wales, Australia
| | - Owen McKay
- South Western Sydney Clinical School, University of New South Wales, Liverpool, Sydney, New South Wales, Australia
- Department of Gastroenterology and Hepatology, Bankstown-Lidcombe Hospital, South Western Sydney Local Health Network, Bankstown, Sydney, New South Wales, Australia
| | - Hugh Dixson
- South Western Sydney Clinical School, University of New South Wales, Liverpool, Sydney, New South Wales, Australia
- Department of Nuclear Medicine, Bankstown-Lidcombe Hospital, South Western Sydney Local Health Network, Bankstown, Sydney, New South Wales, Australia
| | - Wei Xuan
- Ingham Institute for Applied Medical Research, Liverpool, Sydney, New South Wales, Australia
| |
Collapse
|
49
|
Vychytilova-Faltejskova P, Slaby O. MicroRNA-215: From biology to theranostic applications. Mol Aspects Med 2019; 70:72-89. [PMID: 30904345 DOI: 10.1016/j.mam.2019.03.002] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2019] [Revised: 03/10/2019] [Accepted: 03/17/2019] [Indexed: 02/07/2023]
|
50
|
CDK1, CCNB1, CDC20, BUB1, MAD2L1, MCM3, BUB1B, MCM2, and RFC4 May Be Potential Therapeutic Targets for Hepatocellular Carcinoma Using Integrated Bioinformatic Analysis. BIOMED RESEARCH INTERNATIONAL 2019; 2019:1245072. [PMID: 31737652 PMCID: PMC6815605 DOI: 10.1155/2019/1245072] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/07/2019] [Accepted: 08/01/2019] [Indexed: 12/13/2022]
Abstract
Hepatocellular carcinoma (HCC) is a malignant tumor with high mortality. The abnormal expression of genes is significantly related to the occurrence of HCC. The aim of this study was to explore the differentially expressed genes (DEGs) of HCC and to provide bioinformatics basis for the occurrence, prevention and treatment of HCC. The DEGs of HCC and normal tissues in GSE102079, GSE121248, GSE84402 and GSE60502 were obtained using R language. The GO function analysis and KEGG pathway enrichment analysis of DEGs were carried out using the DAVID database. Then, the protein–protein interaction (PPI) network was constructed using the STRING database. Hub genes were screened using Cytoscape software and verified using the GEPIA, UALCAN, and Oncomine database. We used HPA database to exhibit the differences in protein level of hub genes and used LinkedOmics to reveal the relationship between candidate genes and tumor clinical features. Finally, we obtained transcription factor (TF) of hub genes using NetworkAnalyst online tool. A total of 591 overlapping up-regulated genes were identified. These genes were related to cell cycle, DNA replication, pyrimidine metabolism, and p53 signaling pathway. Additionally, the GEPIA database showed that the CDK1, CCNB1, CDC20, BUB1, MAD2L1, MCM3, BUB1B, MCM2, and RFC4 were associated with the poor survival of HCC patients. UALCAN, Oncomine, and HPA databases and qRT-PCR confirmed that these genes were highly expressed in HCC tissues. LinkedOmics database indicated these genes were correlated with overall survival, pathologic stage, pathology T stage, race, and the age of onset. TF analysis showed that MYBL2, KDM5B, MYC, SOX2, and E2F4 were regulators to these nine hub genes. Overexpression of CDK1, CCNB1, CDC20, BUB1, MAD2L1, MCM3, BUB1B, MCM2, and RFC4 in tumor tissues predicted poor survival in HCC. They may be potential therapeutic targets for HCC.
Collapse
|