1
|
Jia H, Kaster N, Khan R, Ayari-Akkari A. The Roles of myomiRs in the Pathogenesis of Sarcopenia: From Literature to In Silico Analysis. Mol Biotechnol 2025:10.1007/s12033-025-01373-0. [PMID: 40025274 DOI: 10.1007/s12033-025-01373-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/30/2024] [Indexed: 03/04/2025]
Abstract
Senile sarcopenia is a condition of age-associated muscular disorder and is a significant health issue around the world. In the current review, we curated the information from the NCBI, PubMed, and Google Scholar literature and explored the non-genetic and genetic causes of senile sarcopenia. Interestingly, the myomiRs such as miR-1, miR-206, miR-133a, miR-133b, miR-208b, and miR-499 are skeletal muscle's critical structural and functional regulators. However, very scattered information is available regarding the roles of myomiRs in different skeletal muscle phenotypes through a diverse list of known target genes. Therefore, these pieces of information must be organized to focus on the conserved target genes and comparable effects of the myomiRs in regulating senile sarcopenia. Hence, in the present review, the roles of pathogenetic factors in regulating senile sarcopenia were highlighted. The literature was further curated for the roles of myomiRs such as hsa-miR-1-3p/206, hsa-miR-27-3p, hsa-miR-146-5p, and hsa-miR-499-5p and their target genes. Additionally, we used different bioinformatics tools and predicted target genes of the myomiRs and found the most critical target genes, shared pathways, and their standard functions in regulating muscle structure and functions. The information gathered in the current review will help the researchers to explore their possible therapeutic potential, especially the use of the myomiRs for the treatment of senile sarcopenia.
Collapse
Affiliation(s)
- Huanxia Jia
- Medical College of Xuchang University, No.1389, Xufan Road, Xuchang, 461000, Henan, People's Republic of China
| | - Nurgulsim Kaster
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, People's Republic of China.
- Faculty of Veterinary and Livestock Technology, S. Seifullin Kazakh Agro Technical University, Astana, Kazakhstan.
| | - Rajwali Khan
- College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, People's Republic of China.
- Department of Livestock Management, Breeding and Genetics, The University of Agriculture, Peshawar, Pakistan.
| | - Amel Ayari-Akkari
- Biology Department, College of Science, King Khalid University, P.O. Box 960, Abha, Saudi Arabia
| |
Collapse
|
2
|
Li K, Song Y, Fan Y, Zhang H, Chu M, Liu Y. Transcriptome integration analysis revealed that miR-103-3p regulates goat myoblast proliferation by targeting FGF18. BMC Genomics 2025; 26:16. [PMID: 39773020 PMCID: PMC11706129 DOI: 10.1186/s12864-024-11183-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Accepted: 12/23/2024] [Indexed: 01/11/2025] Open
Abstract
BACKGROUND Myoblasts serve as the fundamental building blocks of muscle fibers, and there is a positive correlation between the diameter of myofibers during the juvenile phase and the rate of muscle growth, which does not change in adulthood. However, the molecular mechanisms governing myofiber diameter across various developmental stages in goats remain largely unclear. RESULTS In this study, we examined miRNA expression in the longissimus dorsi muscle tissue of goats at two distinct ages: one month, a period characterized by robust muscle growth, and nine months, when muscle development plateaus in adulthood. A total of 408 known miRNAs and 86 novel miRNAs were identified, with 32 miRNAs exhibiting differential expression between the two groups. A functional enrichment analysis of these targeted genes revealed significant enrichment in pathways closely correlated with skeletal muscle growth, development, and senescence. Notably, chi-miR-103-3p was identified among the DE miRNAs and appeared to play an important role in skeletal myoblast proliferation. Bioinformatics analysis, complemented by dual luciferase activity assays revealed that chi-miR-103-3p specifically targets the 3'UTR of FGF18. Subsequent cell transfection experiments demonstrated that chi-miR-103-3p suppresses the expression of FGF18 in goat myoblasts, thereby inhibiting cell proliferation. Moreover, FGF18 was observed to enhance the proliferation of goat myoblasts. CONCLUSIONS Collectively, our data indicated that the elevated expression of chi-miR-103-3p in adult goat myoblasts significantly repressed FGF18 expression, thereby limiting rapid muscle growth. Proliferation and differentiation of myoblasts can affect myofiber number and cell volume expansion. These findings lay the foundation for further elucidation of the molecular mechanisms underlying muscle growth and development across different life stages of goats. Additionally, it could be a potential molecular marker for improving muscle production in goats.
Collapse
Affiliation(s)
- Kunyu Li
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yize Song
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Yekai Fan
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Hui Zhang
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Mingxing Chu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Yufang Liu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
3
|
Oguri G, Ikegami R, Ugawa H, Katoh M, Obi S, Sakuma M, Takeda N, Kano Y, Toyoda S, Nakajima T. Muscle Atrophy and mRNA-miRNA Network Analysis of Vascular Endothelial Growth Factor (VEGF) in a Mouse Model of Denervation-Induced Disuse. Cureus 2024; 16:e68974. [PMID: 39385898 PMCID: PMC11462388 DOI: 10.7759/cureus.68974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
BACKGROUND Skeletal muscle atrophy is frequently caused by the disuse of muscles. It impacts quality of life, especially in aging populations and those with chronic diseases. Understanding the molecular mechanisms underlying muscle atrophy is crucial for developing effective therapies. OBJECTIVE To investigate the roles of vascular endothelial growth factor (VEGF) and various microRNAs (miRNAs) in muscle atrophy using a mouse model of denervation (DEN)-induced disuse, and to elucidate their interactions and regulatory functions through comprehensive network analysis. METHODS The right sciatic nerve of C57BL/6J mice (n=6) was excised to simulate DEN, with the left serving as a sham surgery control (Sham). Following a two-week period, wet muscle weight was measured. Total RNA was extracted from the tibialis anterior muscle for microarray analysis. Significant expression changes were analyzed via Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis and miRNet for miRNAs. RESULTS Denervated limbs showed a significant reduction in muscle weight. Over 1,000 genes displayed increased expression, while 527 showed reductions to less than half of control levels. VEGF, along with specific miRNAs such as miR-106a-5p, miR-mir20a-5p, mir93-5p and mir17-5p, occupied central regulatory nodes within the gene network. Functional analysis revealed that these molecules are involved in key biological processes including regulation of cell migration, vasculature development, and regulation of endothelial cell proliferation. The increased miRNAs were subjected to further network analysis that revealed significant regulatory interactions with target mRNAs. CONCLUSION VEGF and miRNAs play crucial roles in the progression of skeletal muscle atrophy, offering potential targets for therapeutic interventions aimed at reducing atrophy and enhancing muscle regeneration.
Collapse
Affiliation(s)
- Gaku Oguri
- Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, JPN
| | - Ryo Ikegami
- Department of Information Science and Technology, The University of Electro-Communications, Tokyo, JPN
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, JPN
| | - Haruka Ugawa
- Department of Information Science and Technology, The University of Electro-Communications, Tokyo, JPN
- Department of Physical Therapy, Niigata University of Health and Welfare, Niigata, JPN
| | - Manami Katoh
- Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, JPN
| | - Syotaro Obi
- Department of Cardiovascular Medicine, Dokkyo Medical University Hospital, Mibu, JPN
| | - Masashi Sakuma
- Department of Cardiovascular Medicine, Dokkyo Medical University Hospital, Mibu, JPN
| | - Norihiko Takeda
- Department of Cardiovascular Medicine, The University of Tokyo, Tokyo, JPN
| | - Yutaka Kano
- Department of Information Science and Technology, The University of Electro-Communications, Tokyo, JPN
| | - Shigeru Toyoda
- Department of Cardiovascular Medicine, Dokkyo Medical University Hospital, Mibu, JPN
| | - Toshiaki Nakajima
- Department of Cardiovascular Medicine, Dokkyo Medical University Hospital, Mibu, JPN
- Department of Medical KAATSU Training, Dokkyo Medical University Hospital, Mibu, JPN
| |
Collapse
|
4
|
Artigas-Arias M, Curi R, Marzuca-Nassr GN. Myogenic microRNAs as Therapeutic Targets for Skeletal Muscle Mass Wasting in Breast Cancer Models. Int J Mol Sci 2024; 25:6714. [PMID: 38928418 PMCID: PMC11204047 DOI: 10.3390/ijms25126714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Revised: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
Breast cancer is the type of cancer with the highest prevalence in women worldwide. Skeletal muscle atrophy is an important prognostic factor in women diagnosed with breast cancer. This atrophy stems from disrupted skeletal muscle homeostasis, triggered by diminished anabolic signalling and heightened inflammatory conditions, culminating in an upregulation of skeletal muscle proteolysis gene expression. The importance of delving into research on modulators of skeletal muscle atrophy, such as microRNAs (miRNAs), which play a crucial role in regulating cellular signalling pathways involved in skeletal muscle protein synthesis and degradation, has been recognised. This holds true for conditions of homeostasis as well as pathologies like cancer. However, the determination of specific miRNAs that modulate skeletal muscle atrophy in breast cancer conditions has not yet been explored. In this narrative review, we aim to identify miRNAs that could directly or indirectly influence skeletal muscle atrophy in breast cancer models to gain an updated perspective on potential therapeutic targets that could be modulated through resistance exercise training, aiming to mitigate the loss of skeletal muscle mass in breast cancer patients.
Collapse
Affiliation(s)
- Macarena Artigas-Arias
- Programa de Doctorado en Ciencias Mención Biología Celular y Molecular Aplicada, Universidad de La Frontera, Temuco 4811230, Chile;
| | - Rui Curi
- Interdisciplinary Post-graduate Program in Health Sciences, Universidade Cruzeiro do Sul, São Paulo 01506-000, Brazil;
| | - Gabriel Nasri Marzuca-Nassr
- Departamento de Ciencias de la Rehabilitación, Facultad de Medicina, Universidad de La Frontera, Temuco 4811230, Chile
| |
Collapse
|
5
|
Pang S, Chen B, Li Y, Wu S, Chen L. miR-92a-3p promotes pulmonary fibrosis progression by regulating KLF2-mediated endothelial-to-mesenchymal transition. Cytotechnology 2024; 76:291-300. [PMID: 38736725 PMCID: PMC11082104 DOI: 10.1007/s10616-024-00617-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 01/10/2024] [Indexed: 05/14/2024] Open
Abstract
Pulmonary fibrosis (PF) is a chronic lung disease that has a poor prognosis and a serious impact on the quality of life of patients. Here, we investigated the potential role of miR-92a-3p in PF. The mRNA level of miR-92a-3p was significantly increased in both the lung tissues of bleomycin (BLM)--treated mice and pulmonary microvascular endothelial cells (PMVECs). Overexpressing miR-92a-3p increased the mRNA and protein levels of α‑SMA, vimentin, and Col-1 but downregulated E-cadherin. Additionally, the protein and mRNA expression levels of KLF2 were significantly decreased in the lung tissues of BLM-treated mice, suggesting that KLF2 participated in the progression of BLM-induced PF. Downregulating miR-92a-3p upregulated the expression of KLF2 and inhibited the endothelial-to-mesenchymal transition (EndoMT) process, thus alleviating PF in vivo. Altogether, a miR-92a-3p deficiency could significantly reduce the development of myofibroblasts and ameliorate PF progression.
Collapse
Affiliation(s)
- Sisi Pang
- Division of Geriatric Cardiology, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 People’s Republic of China
| | - Bo Chen
- Division of Geriatric Respiratory, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 People’s Republic of China
| | - Yan Li
- Division of Geriatric Respiratory, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 People’s Republic of China
| | - Shuangshuang Wu
- Division of Geriatric Respiratory, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 People’s Republic of China
| | - Lei Chen
- Division of Geriatric Respiratory, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing, 210029 People’s Republic of China
| |
Collapse
|
6
|
Zhou H, Chen X, Deng X, Zhang X, Zeng X, Xu K, Chen H. Transcriptome Analysis of miRNA and mRNA in Porcine Skeletal Muscle following Glaesserella parasuis Challenge. Genes (Basel) 2024; 15:359. [PMID: 38540418 PMCID: PMC10970282 DOI: 10.3390/genes15030359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/10/2024] [Accepted: 03/12/2024] [Indexed: 06/14/2024] Open
Abstract
Glaesserella parasuis (G. parasuis) causes systemic infection in pigs, but its effects on skeletal muscle and underlying mechanisms are poorly understood. We investigated G. parasuis infection in colostrum-deprived piglets, observing decreased daily weight gain and upregulation of inflammatory factors in skeletal muscle. Muscle fiber area and diameter were significantly reduced in the treated group (n = 3) compared to the control group (n = 3), accompanied by increased expression of FOXO1, FBXO32, TRIM63, CTSL, and BNIP3. Based on mRNA and microRNA (miRNA) sequencing, we identified 1642 differentially expressed (DE) mRNAs and 19 known DE miRNAs in skeletal muscle tissues between the two groups. We predicted target genes with opposite expression patterns to the 19 miRNAs and found significant enrichment and activation of the FoxO signaling pathway. We found that the upregulated core effectors FOXO1 and FOXO4 were targeted by downregulated ssc-miR-486, ssc-miR-370, ssc-miR-615, and ssc-miR-224. Further investigation showed that their downstream upregulated genes involved in protein degradation were also targeted by the downregulated ssc-miR-370, ssc-miR-615, ssc-miR-194a-5p, and ssc-miR-194b-5p. These findings suggest that G. parasuis infection causes skeletal muscle atrophy in piglets through accelerated protein degradation mediated by the "miRNAs-FOXO1/4" axis, while further research is necessary to validate the regulatory relationships. Our results provide new insights into the understanding of systemic inflammation growth mechanisms caused by G. parasuis and the role of miRNAs in bacterial infection pathogenesis.
Collapse
Affiliation(s)
- Huanhuan Zhou
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (H.Z.); (X.C.); (K.X.)
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xuexue Chen
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (H.Z.); (X.C.); (K.X.)
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiangwei Deng
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (H.Z.); (X.C.); (K.X.)
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xiaoyu Zhang
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (H.Z.); (X.C.); (K.X.)
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
| | - Xinqi Zeng
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (H.Z.); (X.C.); (K.X.)
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
| | - Ke Xu
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (H.Z.); (X.C.); (K.X.)
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
| | - Hongbo Chen
- Laboratory of Genetic Breeding, Reproduction and Precision Livestock Farming, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan 430023, China; (H.Z.); (X.C.); (K.X.)
- Hubei Provincial Center of Technology Innovation for Domestic Animal Breeding, Wuhan Polytechnic University, Wuhan 430023, China
- Hubei Hongshan Laboratory, Wuhan 430070, China
| |
Collapse
|
7
|
Chodkowska KA, Barszcz M, Tuśnio A. MicroRNA expression and oxidative stress markers in pectoral muscle of broiler chickens fed diets supplemented with phytobiotics composition. Sci Rep 2024; 14:4413. [PMID: 38388757 PMCID: PMC10884404 DOI: 10.1038/s41598-024-54915-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 02/18/2024] [Indexed: 02/24/2024] Open
Abstract
Phytobiotic compositions are commercially used in broiler production, mostly to improve general health and the production parameters. Moreover, some of their active substances may change the expression of miRNA in different tissues. Therefore, the purpose of this study was to evaluate the effect of the phytobiotic composition (PBC) containing white mustard, calamus, turmeric, and common ivy on production parameters, oxidative stress markers and expression of selected miRNAs in pectoral muscle of broiler chickens. The experiment was performed on broiler chickens fed the control diet (without PBC), and a diet supplemented with 60 or 100 mg/kg of PBC for 35 days. After the experiment, samples (blood and muscle) were collected for analyses. The analyzed production parameters included: feed conversion ratio, feed intake and body weight. There was no effect on growth performance of broiler chickens but feeding diet supplemented with 60 mg/kg phytobiotics significantly increased the expression of miR-30a-5p, miR-181a-5p, and miR-206, and decreased that of miR-99a-5p, miR-133a-5p, miR-142-5p, and miR-222 in pectoral muscle of chickens. The addition of 100 mg/kg phytobiotics significantly increased miR-99a-5p and miR-181a-5p expression, and caused down-regulation of the expression of miR-26a-5p and miR-30a-5p. Chickens fed diet supplemented with 100 mg/kg PBC had lower level of lipid peroxidation products in blood, while in the muscle tissue it was higher in birds fed a diet with the addition of 60 mg/kg as compared to the control group. The results suggest that this unique composition of phytobiotics does not affect productive traits but can change expression of miRNAs that are crucial for muscle physiology and pathology in broiler chickens. This additive may also protect against the oxidative stress but the effect is dose dependent.
Collapse
Affiliation(s)
- Karolina A Chodkowska
- Krzyżanowski Partners Spółka z o.o., Zakładowa 7, 26-670, Pionki, Poland.
- AdiFeed Sp. z o.o., Opaczewska 43, 02-201, Warszawa, Poland.
| | - Marcin Barszcz
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110, Jabłonna, Poland
| | - Anna Tuśnio
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110, Jabłonna, Poland
| |
Collapse
|
8
|
Zhang L, Zhong D, Yao C, Liu Q, Shi D, Jiang M, Wang J, Xiong Z, Li H. Buffalo bbu-miR-493-5p Promotes Myoblast Proliferation and Differentiation. Animals (Basel) 2024; 14:533. [PMID: 38396500 PMCID: PMC10886120 DOI: 10.3390/ani14040533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/17/2024] [Accepted: 01/18/2024] [Indexed: 02/25/2024] Open
Abstract
In recent years, the meat and dairy value of buffaloes has become a major concern in buffalo breeding, and the improvement of buffalo beef quality is key to protecting buffalo germplasm resources and solving the problem of beef supply. MiRNAs play a significant role in regulating muscle development. However, the precise mechanism by which they regulate the development of buffalo skeletal muscles remains largely unexplored. In this study, we examined miRNA expression profiles in buffalo myoblasts during the proliferation and differentiation stages. A total of 177 differentially expressed miRNAs were identified, out of which 88 were up-regulated and 89 down-regulated. We focused on a novel miRNA, named bbu-miR-493-5p, that was significantly differentially expressed during the proliferation and differentiation of buffalo myoblasts and highly expressed in muscle tissues. The RNA-FISH results showed that bbu-miR-493-5p was primarily located in the cytoplasm to encourage buffalo myoblasts' proliferation and differentiation. In conclusion, our study lays the groundwork for future research into the regulatory role of miRNAs in the growth of buffalo muscle.
Collapse
Affiliation(s)
- Liyin Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (L.Z.); (D.Z.); (C.Y.); (D.S.); (M.J.); (J.W.)
| | - Dandan Zhong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (L.Z.); (D.Z.); (C.Y.); (D.S.); (M.J.); (J.W.)
| | - Chengxuan Yao
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (L.Z.); (D.Z.); (C.Y.); (D.S.); (M.J.); (J.W.)
| | - Qingyou Liu
- Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan 528225, China;
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (L.Z.); (D.Z.); (C.Y.); (D.S.); (M.J.); (J.W.)
| | - Mingsheng Jiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (L.Z.); (D.Z.); (C.Y.); (D.S.); (M.J.); (J.W.)
| | - Jian Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (L.Z.); (D.Z.); (C.Y.); (D.S.); (M.J.); (J.W.)
| | - Zhaocheng Xiong
- Research & Development Affairs Office, Guangxi University, Nanning 530004, China
| | - Hui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning 530004, China; (L.Z.); (D.Z.); (C.Y.); (D.S.); (M.J.); (J.W.)
| |
Collapse
|
9
|
Pizzol MSD, Ibelli AMG, Cantão ME, Campos FG, de Oliveira HC, de Oliveira Peixoto J, Fernandes LT, de Castro Tavernari F, Morés MAZ, Bastos APA, Ledur MC. Differential expression of miRNAs associated with pectoral myopathies in young broilers: insights from a comparative transcriptome analysis. BMC Genomics 2024; 25:104. [PMID: 38262955 PMCID: PMC10807067 DOI: 10.1186/s12864-024-09983-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 01/06/2024] [Indexed: 01/25/2024] Open
Abstract
INTRODUCTION White Striping (WS) and Wooden Breast (WB) pectoral myopathies are relevant disorders for contemporary broiler production worldwide. Several studies aimed to elucidate the genetic components associated with the occurrence of these myopathies. However, epigenetic factors that trigger or differentiate these two conditions are still unclear. The aim of this study was to identify miRNAs differentially expressed (DE) between normal and WS and WB-affected broilers, and to verify the possible role of these miRNAs in metabolic pathways related to the manifestation of these pectoral myopathies in 28-day-old broilers. RESULTS Five miRNAs were DE in the WS vs control (gga-miR-375, gga-miR-200b-3p, gga-miR-429-3p, gga-miR-1769-5p, gga-miR-200a-3p), 82 between WB vs control and 62 between WB vs WS. Several known miRNAs were associated with WB, such as gga-miR-155, gga-miR-146b, gga-miR-222, gga-miR-146-5p, gga-miR- 29, gga-miR-21-5p, gga-miR-133a-3p and gga-miR-133b. Most of them had not previously been associated with the development of this myopathy in broilers. We also have predicted 17 new miRNAs expressed in the broilers pectoral muscle. DE miRNA target gene ontology analysis enriched 6 common pathways for WS and WB compared to control: autophagy, insulin signaling, FoxO signaling, endocytosis, and metabolic pathways. The WS vs control contrast had two unique pathways, ERBB signaling and the mTOR signaling, while WB vs control had 14 unique pathways, with ubiquitin-mediated proteolysis and endoplasmic reticulum protein processing being the most significant. CONCLUSIONS We found miRNAs DE between normal broilers and those affected with breast myopathies at 28 days of age. Our results also provide novel evidence of the miRNAs role on the regulation of WS and in the differentiation of both WS and WB myopathies. Overall, our study provides insights into miRNA-mediated and pathways involved in the occurrence of WS and WB helping to better understand these chicken growth disorders in an early age. These findings can help developing new approaches to reduce these complex issues in poultry production possibly by adjustments in nutrition and management conditions. Moreover, the miRNAs and target genes associated with the initial stages of WS and WB development could be potential biomarkers to be used in selection to reduce the occurrence of these myopathies in broiler production.
Collapse
Affiliation(s)
- Mariane Spudeit Dal Pizzol
- Programa de Pós-Graduação em Zootecnia, Universidade do Estado de Santa Catarina, UDESC-Oeste, Chapecó, Santa Catarina, Brazil
| | - Adriana Mércia Guaratini Ibelli
- Embrapa Suínos e Aves, Concórdia, Santa Catarina, Brazil
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro Oeste, Guarapuava, Paraná, Brazil
- Present Address: Embrapa Pecuária Sudeste, São Carlos, São Paulo, Brazil
| | | | - Francelly Geralda Campos
- Departamento de Zootecnia, Programa de Pós- Graduação em Zootecnia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Haniel Cedraz de Oliveira
- Departamento de Zootecnia, Programa de Pós- Graduação em Zootecnia, Universidade Federal de Viçosa, Viçosa, Minas Gerais, Brazil
| | - Jane de Oliveira Peixoto
- Embrapa Suínos e Aves, Concórdia, Santa Catarina, Brazil
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro Oeste, Guarapuava, Paraná, Brazil
| | | | - Fernando de Castro Tavernari
- Programa de Pós-Graduação em Zootecnia, Universidade do Estado de Santa Catarina, UDESC-Oeste, Chapecó, Santa Catarina, Brazil
- Embrapa Suínos e Aves, Concórdia, Santa Catarina, Brazil
| | | | - Ana Paula Almeida Bastos
- Embrapa Suínos e Aves, Concórdia, Santa Catarina, Brazil
- Programa de Pós-Graduação em Ciências Veterinárias, Universidade Estadual do Centro Oeste, Guarapuava, Paraná, Brazil
| | - Mônica Corrêa Ledur
- Programa de Pós-Graduação em Zootecnia, Universidade do Estado de Santa Catarina, UDESC-Oeste, Chapecó, Santa Catarina, Brazil.
- Embrapa Suínos e Aves, Concórdia, Santa Catarina, Brazil.
| |
Collapse
|
10
|
Li Z, Zhao W, Wang M, Hussain MZ, Mahjabeen I. Role of microRNAs deregulation in initiation of rheumatoid arthritis: A retrospective observational study. Medicine (Baltimore) 2024; 103:e36595. [PMID: 38241560 PMCID: PMC10798721 DOI: 10.1097/md.0000000000036595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Accepted: 11/21/2023] [Indexed: 01/21/2024] Open
Abstract
Rheumatoid arthritis (RA) is a joint disorder and is considered an important public health concern nowadays. So, identifying novel biomarkers and treatment modalities is urgently needed to improve the health standard of RA patients. Factors involved in RA pathogenesis are genetic/epigenetic modification, environment, and lifestyle. In the case of epigenetic modification, the expression deregulation of microRNAs and the role of histone deacetylase (HDAC) in RA is an important aspect that needs to be addressed. The present study is designed to evaluate the expression pattern of microRNAs related to the HDAC family. Five microRNAs, miR-92a-3p, miR-455-3p, miR-222, miR-140, and miR-146a related to the HDAC family were selected for the present study. Real-time polymerase chain reaction was used to estimate the level of expression of the above-mentioned microRNAs in 150 patients of RA versus 150 controls. Oxidative stress level and histone deacetylation status were measured using the enzyme-linked immunosorbent assay. Statistical analysis showed significant downregulation (P < .0001) of selected microRNAs in RA patients versus controls. Significantly raised level of HDAC (P < .0001) and 8-hydroxy-2'-deoxyguanosine (P < .0001) was observed in patients versus controls. A good diagnostic potential of selected microRNAs in RA was shown by the receiver operating curve analysis. The current study showed a significant role of deregulated expression of the above-mentioned microRNAs in RA initiation and can act as an excellent diagnostic marker for this disease.
Collapse
Affiliation(s)
- Zengxin Li
- Department of Bone Surgery, Department of Orthopaedic Surgery Ⅱ, Affiliated Hospital of Beihua University, Jilin, China
| | - Wen Zhao
- Department of Orthopaedics, The first Affiliated Hospital of Chengdu Medical College, Chengdu City, Sichuan Province, China
| | - Mengchang Wang
- Department of Rehabilitation Medicine, Traditional Chinese Medical Hospital of HuZhou, Huzhou, Zhejiang, China
| | | | - Ishrat Mahjabeen
- Cancer Genetics and Epigenetics Lab, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| |
Collapse
|
11
|
Hung YH, Capeling M, Villanueva JW, Kanke M, Shanahan MT, Huang S, Cubitt R, Rinaldi VD, Schimenti JC, Spence JR, Sethupathy P. Integrative genome-scale analyses reveal post-transcriptional signatures of early human small intestinal development in a directed differentiation organoid model. BMC Genomics 2023; 24:641. [PMID: 37884859 PMCID: PMC10601309 DOI: 10.1186/s12864-023-09743-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 10/14/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are important post-transcriptional gene regulators controlling cellular lineage specification and differentiation during embryonic development, including the gastrointestinal system. However, miRNA-mediated regulatory mechanisms involved in early embryonic development of human small intestine (SI) remains underexplored. To explore candidate roles for miRNAs in prenatal SI lineage specification in humans, we used a multi-omic analysis strategy in a directed differentiation model that programs human pluripotent stem cells toward the SI lineage. RESULTS We leveraged small RNA-seq to define the changing miRNA landscape, and integrated chromatin run-on sequencing (ChRO-seq) and RNA-seq to define genes subject to significant post-transcriptional regulation across the different stages of differentiation. Small RNA-seq profiling revealed temporal dynamics of miRNA signatures across different developmental events of the model, including definitive endoderm formation, SI lineage specification and SI regional patterning. Our multi-omic, integrative analyses showed further that the elevation of miR-182 and reduction of miR-375 are key events during SI lineage specification. We demonstrated that loss of miR-182 leads to an increase in the foregut master marker SOX2. We also used single-cell analyses in murine adult intestinal crypts to support a life-long role for miR-375 in the regulation of Zfp36l2. Finally, we uncovered opposing roles of SMAD4 and WNT signaling in regulating miR-375 expression during SI lineage specification. Beyond the mechanisms highlighted in this study, we also present a web-based application for exploration of post-transcriptional regulation and miRNA-mediated control in the context of early human SI development. CONCLUSION The present study uncovers a novel facet of miRNAs in regulating prenatal SI development. We leveraged multi-omic, systems biology approaches to discover candidate miRNA regulators associated with early SI developmental events in a human organoid model. In this study, we highlighted miRNA-mediated post-transcriptional regulation relevant to the event of SI lineage specification. The candidate miRNA regulators that we identified for the other stages of SI development also warrant detailed characterization in the future.
Collapse
Affiliation(s)
- Yu-Han Hung
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Meghan Capeling
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Jonathan W Villanueva
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Matt Kanke
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Michael T Shanahan
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Sha Huang
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Rebecca Cubitt
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Vera D Rinaldi
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - John C Schimenti
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Jason R Spence
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
- Department of Internal Medicine, Division of Gastroenterology, University of Michigan, Ann Arbor, MI, USA
| | - Praveen Sethupathy
- Department of Biomedical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, NY, USA.
| |
Collapse
|
12
|
Yoon J, Kaya S, Matsumae G, Dole N, Alliston T. miR181a/b-1 controls osteocyte metabolism and mechanical properties independently of bone morphology. Bone 2023; 175:116836. [PMID: 37414200 PMCID: PMC11156520 DOI: 10.1016/j.bone.2023.116836] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 06/30/2023] [Accepted: 07/01/2023] [Indexed: 07/08/2023]
Abstract
Bone derives its ability to resist fracture from bone mass and quality concurrently; however, many questions about the molecular mechanisms controlling bone quality remain unanswered, limiting the development of diagnostics and therapeutics. Despite the increasing evidence on the importance of miR181a/b-1 in bone homeostasis and disease, whether and how osteocyte-intrinsic miR181a/b-1 controls bone quality remains elusive. Osteocyte-intrinsic deletion of miR181a/b-1 in osteocytes in vivo resulted in compromised overall bone mechanical behavior in both sexes, although the parameters affected by miR181a/b-1 varied distinctly based on sex. Furthermore, impaired fracture resistance in both sexes was unexplained by cortical bone morphology, which was altered in female mice and intact in male mice with miR181a/b-1-deficient osteocytes. The role of miR181a/b-1 in the regulation of osteocyte metabolism was apparent in bioenergetic testing of miR181a/b-1-deficient OCY454 osteocyte-like cells and transcriptomic analysis of cortical bone from mice with osteocyte-intrinsic ablation of miR181a/b-1. Altogether, this study demonstrates the control of osteocyte bioenergetics and the sexually dimorphic regulation of cortical bone morphology and mechanical properties by miR181a/b-1, hinting at the role of osteocyte metabolism in the regulation of mechanical behavior.
Collapse
Affiliation(s)
- Jihee Yoon
- Department of Orthopaedic Surgery, University of California San Francisco, California, USA; Oral and Craniofacial Sciences Program, School of Dentistry, University of California San Francisco, California, USA
| | - Serra Kaya
- Department of Orthopaedic Surgery, University of California San Francisco, California, USA
| | - Gen Matsumae
- Department of Orthopaedic Surgery, University of California San Francisco, California, USA
| | - Neha Dole
- Department of Physiology and Cell Biology, University of Arkansas for Medical Sciences, AR, USA
| | - Tamara Alliston
- Department of Orthopaedic Surgery, University of California San Francisco, California, USA; Oral and Craniofacial Sciences Program, School of Dentistry, University of California San Francisco, California, USA.
| |
Collapse
|
13
|
Li Z, Wei H, Hu D, Li X, Guo Y, Ding X, Guo H, Zhang L. Research Progress on the Structural and Functional Roles of hnRNPs in Muscle Development. Biomolecules 2023; 13:1434. [PMID: 37892116 PMCID: PMC10604023 DOI: 10.3390/biom13101434] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/19/2023] [Accepted: 09/20/2023] [Indexed: 10/29/2023] Open
Abstract
Heterogeneous nuclear ribonucleoproteins (hnRNPs) are a superfamily of RNA-binding proteins consisting of more than 20 members. These proteins play a crucial role in various biological processes by regulating RNA splicing, transcription, and translation through their binding to RNA. In the context of muscle development and regeneration, hnRNPs are involved in a wide range of regulatory mechanisms, including alternative splicing, transcription regulation, miRNA regulation, and mRNA stability regulation. Recent studies have also suggested a potential association between hnRNPs and muscle-related diseases. In this report, we provide an overview of our current understanding of how hnRNPs regulate RNA metabolism and emphasize the significance of the key members of the hnRNP family in muscle development. Furthermore, we explore the relationship between the hnRNP family and muscle-related diseases.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Linlin Zhang
- Key Laboratory of Animal Breeding and Healthy Livestock Farming, College of Animal Science and Veterinary Medicine, Tianjin Agricultural University, Tianjin 300392, China; (Z.L.); (H.W.); (D.H.); (X.L.); (Y.G.); (X.D.); (H.G.)
| |
Collapse
|
14
|
Velasquez FC, Roman B, Hernández-Ochoa EO, Leppo MK, Truong SK, Steenbergen C, Schneider MF, Weiss RG, Das S. Contribution of skeletal muscle-specific microRNA-133b to insulin resistance in heart failure. Am J Physiol Heart Circ Physiol 2023; 324:H598-H609. [PMID: 36827227 PMCID: PMC10069972 DOI: 10.1152/ajpheart.00250.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 02/21/2023] [Accepted: 02/22/2023] [Indexed: 02/25/2023]
Abstract
Insulin resistance (IR) is one of the hallmarks of heart failure (HF). Abnormalities in skeletal muscle (SM) metabolism have been identified in patients with HF. However, the underlying mechanisms of IR development in SM in HF are poorly understood. Herein, we hypothesize that HF upregulates miR-133b in SM and in turn alters glucose metabolism and the propensity toward IR. Mitochondria isolated from SM of mice with HF induced by transverse aortic constriction (TAC) showed lower respiration and downregulation of muscle-specific components of the tricarboxylic acid (TCA) cycle, AMP deaminase 1 (AMPD1), and fumarate compared with those from control animals. RNA-Seq and subsequent qPCR validation confirmed upregulation of SM-specific microRNA (miRNA), miR-133b, in TAC versus sham animals. miR-133b overexpression alone resulted in significantly lower mitochondrial respiration, cellular glucose uptake, and glycolysis along with lower ATP production and cellular energy reserve compared with the scramble (Scr) in C2C12 cells. miR-133b binds to the 3'-untranslated region (UTR) of KLF15, the transcription factor for the insulin-sensitive glucose transporter, GLUT4. Overexpression of miR-133b lowers GLUT4 and lowers pAkt in presence of insulin in C2C12 cells. Finally, lowering miR-133b in primary skeletal myocytes isolated from TAC mice using antagomir-133b reversed the changes in KLF15, GLUT4, and AMPD1 compared with the scramble-transfected myocytes. Taken together, these data demonstrate a role for SM miR-133b in altered glucose metabolism in HF and suggest the therapeutic potential in HF to improve glucose uptake and glycolysis by restoring GLUT4 abundance. The data uncover a novel mechanism for IR and ultimately SM metabolic abnormalities in patients with HF.NEW & NOTEWORTHY Heart failure is associated with systemic insulin resistance and abnormalities in glucose metabolism but the underlying mechanisms are poorly understood. In the skeletal muscle, the major peripheral site of glucose utilization, we observe an increase in miR-133b in heart failure mice, which reduces the insulin-sensitive glucose transporter (GLUT4), glucose uptake, and metabolism in C2C12 and in myocytes. The antagomir for miR-133b restores GLUT4 protein and markers of metabolism in skeletal myocytes from heart failure mice demonstrating that miR-133b is an exciting target for systemic insulin resistance in heart failure and an important player in the cross talk between the heart and the periphery in the heart failure syndrome.
Collapse
Affiliation(s)
- Fernanda Carrizo Velasquez
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Barbara Roman
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Erick O Hernández-Ochoa
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Michelle K Leppo
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Sharon K Truong
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Charles Steenbergen
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Martin F Schneider
- Department of Biochemistry and Molecular Biology, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - Robert G Weiss
- Division of Cardiology, Department of Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| | - Samarjit Das
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
- Department of Pathology, Johns Hopkins School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
15
|
Ma J, Zhu Y, Zhou X, Zhang J, Sun J, Li Z, Jin L, Long K, Lu L, Ge L. miR-205 Regulates the Fusion of Porcine Myoblast by Targeting the Myomaker Gene. Cells 2023; 12:cells12081107. [PMID: 37190016 DOI: 10.3390/cells12081107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 01/10/2023] [Accepted: 03/31/2023] [Indexed: 05/17/2023] Open
Abstract
Skeletal muscle formation is an extremely important step in animal growth and development. Recent studies have found that TMEM8c (also known as Myomaker, MYMK), a muscle-specific transmembrane protein, can promote myoblast fusion and plays a key role in the normal development of skeletal muscle. However, the effect of Myomaker on porcine (Sus scrofa) myoblast fusion and the underlying regulatory mechanisms remain largely unknown. Therefore, in this study, we focused on the role and corresponding regulatory mechanism of the Myomaker gene during skeletal muscle development, cell differentiation, and muscle injury repair in pigs. We obtained the entire 3' UTR sequence of porcine Myomaker using the 3' RACE approach and found that miR-205 inhibited porcine myoblast fusion by targeting the 3' UTR of Myomaker. In addition, based on a constructed porcine acute muscle injury model, we discovered that both the mRNA and protein expression of Myomaker were activated in the injured muscle, while miR-205 expression was significantly inhibited during skeletal muscle regeneration. The negative regulatory relationship between miR-205 and Myomaker was further confirmed in vivo. Taken together, the present study reveals that Myomaker plays a role during porcine myoblast fusion and skeletal muscle regeneration and demonstrates that miR-205 inhibits myoblast fusion through targeted regulation of the expression of Myomaker.
Collapse
Affiliation(s)
- Jideng Ma
- Chongqing Academy of Animal Sciences, Chongqing 402460, China
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing 402460, China
- Chongqing Key Laboratory of Pig Industry Sciences, Chongqing 402460, China
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Yan Zhu
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiankun Zhou
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Jinwei Zhang
- Chongqing Academy of Animal Sciences, Chongqing 402460, China
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing 402460, China
- Chongqing Key Laboratory of Pig Industry Sciences, Chongqing 402460, China
| | - Jing Sun
- Chongqing Academy of Animal Sciences, Chongqing 402460, China
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing 402460, China
- Chongqing Key Laboratory of Pig Industry Sciences, Chongqing 402460, China
| | - Zhengjie Li
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Long Jin
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Keren Long
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Lu Lu
- Farm Animal Genetic Resource Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu 611130, China
| | - Liangpeng Ge
- Chongqing Academy of Animal Sciences, Chongqing 402460, China
- Key Laboratory of Pig Industry Sciences, Ministry of Agriculture, Chongqing 402460, China
- Chongqing Key Laboratory of Pig Industry Sciences, Chongqing 402460, China
- Technical Engineering Center for the Development and Utilization of Medical Animal Resources, Chongqing 402460, China
| |
Collapse
|
16
|
Agostini S, Mancuso R, Citterio LA, Mihali GA, Arosio B, Clerici M. Evaluation of serum miRNAs expression in frail and robust subjects undergoing multicomponent exercise protocol (VIVIFRAIL). J Transl Med 2023; 21:67. [PMID: 36726153 PMCID: PMC9891895 DOI: 10.1186/s12967-023-03911-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 01/22/2023] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Frailty, defined as physical performance impairment, is a common condition in older adults and can anticipate the development of sarcopenia, a geriatric syndrome characterized by loss of muscle strength and mass. microRNAs (miRNAs) are short molecules of RNA endowed with the ability to modulate gene expression; miRNAs are present in serum and are considered potential biomarkers for several diseases. Serum concentration of miR-451a, miR-93-5p, miR-155-5p, miR-421-3p, miR-425-5p, miR-495-3p and miR-744-5p was recently shown to be altered in sarcopenic patients. METHODS We verified if a particular miRNAs pattern could be detected in frailty as well by analyzing these molecules in 50 frail and 136 robust subjects. Additionally, a subgroup of these subjects (15 frail and 30 robust) underwent a 12-week program based on a multicomponent exercise protocol (VIVIFRAIL) consisting of resistance training, gait retraining, and balance training. After the program, serum miRNAs concentration was measured again, to verify whether the physical activity had an effect on their concentration. Moreover, clinical characteristics and indicators of physical performance of all subjects were compared before and after intervention to verify the effect of the VIVIFRAIL program. RESULTS At the end of the multicomponent exercise program, Short Physical Performance Battery (SPPB) score as well right and left handgrip (p < 0.05) were significantly increased in frail subjects; right and left handgrip significantly were increased also in robust subjects (p < 0.05). Interestingly, the variation of SPPB was significantly higher in frail compared to robust subjects (p < 0.0001). Moreover, at the end of the program, in frail compared to robust subjects: miR-451a serum concentration was significantly increased (frail: 6.59 × 104; 1.12 × 104-2.5 × 105 c/ng; robust: 2.31 × 104; 1.94 × 103-2.01 × 105 c/ng) (p < 0.05); and 2) miR-93-5p and miR-495-3p serum concentration was reduced, whereas that of miR-155-5p was significantly increased (p < 0.05 in both cases). Serum concentration of miR-93-5p and miR-495-3p was decreased, and that of miR-155-5p was increased at the end of the program in robust subjects alone, statistical significance being reached for miR-93-5p alone (p = 0.02). CONCLUSION These results suggest that serum miR-451a should be investigated as a potential biomarker for frailty and show that the VIVIFRAIL multicomponent program modulates circulatory miRNAs expression, at least in older adults.
Collapse
Affiliation(s)
- Simone Agostini
- grid.418563.d0000 0001 1090 9021Laboratory of Molecular Medicine and Biotechnologies, IRCCS Fondazione Don Carlo Gnocchi ONLUS, Piazza Morandi 3, 20100 Milan, Italy
| | - Roberta Mancuso
- Laboratory of Molecular Medicine and Biotechnologies, IRCCS Fondazione Don Carlo Gnocchi ONLUS, Piazza Morandi 3, 20100, Milan, Italy.
| | - Lorenzo Agostino Citterio
- grid.418563.d0000 0001 1090 9021Laboratory of Molecular Medicine and Biotechnologies, IRCCS Fondazione Don Carlo Gnocchi ONLUS, Piazza Morandi 3, 20100 Milan, Italy
| | - Gabriela Alexandra Mihali
- grid.414818.00000 0004 1757 8749Geriatic Unit, Fondazione IRCCS Ca’ Granda Ospedale Maggiore Policlinico, Milan, Italy
| | - Beatrice Arosio
- grid.4708.b0000 0004 1757 2822Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Mario Clerici
- grid.418563.d0000 0001 1090 9021Laboratory of Molecular Medicine and Biotechnologies, IRCCS Fondazione Don Carlo Gnocchi ONLUS, Piazza Morandi 3, 20100 Milan, Italy ,grid.4708.b0000 0004 1757 2822Department of Pathophysiology and Transplantation, University of Milan, Milan, Italy
| |
Collapse
|
17
|
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that are highly conserved in vertebrates and play important roles in diverse biological processes. miRNAs function to fine-tune gene expression by accelerating the degradation of mRNA and/or by inhibiting protein translation. Identification of muscle-specific miRNAs has extended our knowledge of the molecular network in skeletal muscle. Here we describe methods that are commonly used to analyze the function of miRNAs in skeletal muscle.
Collapse
Affiliation(s)
- Satoshi Oikawa
- Laboratory of Muscle Biology, Faculty of Sport Sciences, Waseda University, Saitama, Japan
| | - Takayuki Akimoto
- Laboratory of Muscle Biology, Faculty of Sport Sciences, Waseda University, Saitama, Japan.
| |
Collapse
|
18
|
Magadum A. Modified mRNA Therapeutics for Heart Diseases. Int J Mol Sci 2022; 23:ijms232415514. [PMID: 36555159 PMCID: PMC9779737 DOI: 10.3390/ijms232415514] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 11/26/2022] [Accepted: 11/27/2022] [Indexed: 12/13/2022] Open
Abstract
Cardiovascular diseases (CVD) remain a substantial global health problem and the leading cause of death worldwide. Although many conventional small-molecule treatments are available to support the cardiac function of the patient with CVD, they are not effective as a cure. Among potential targets for gene therapy are severe cardiac and peripheral ischemia, heart failure, vein graft failure, and some forms of dyslipidemias. In the last three decades, multiple gene therapy tools have been used for heart diseases caused by proteins, plasmids, adenovirus, and adeno-associated viruses (AAV), but these remain as unmet clinical needs. These gene therapy methods are ineffective due to poor and uncontrolled gene expression, low stability, immunogenicity, and transfection efficiency. The synthetic modified mRNA (modRNA) presents a novel gene therapy approach which provides a transient, stable, safe, non-immunogenic, controlled mRNA delivery to the heart tissue without any risk of genomic integration, and achieves a therapeutic effect in different organs, including the heart. The mRNA translation starts in minutes, and remains stable for 8-10 days (pulse-like kinetics). The pulse-like expression of modRNA in the heart induces cardiac repair, cardiomyocyte proliferation and survival, and inhibits cardiomyocyte apoptosis post-myocardial infarction (MI). Cell-specific (cardiomyocyte) modRNA translation developments established cell-specific modRNA therapeutics for heart diseases. With these laudable characteristics, combined with its expression kinetics in the heart, modRNA has become an attractive therapeutic for the treatment of CVD. This review discusses new developments in modRNA therapy for heart diseases.
Collapse
Affiliation(s)
- Ajit Magadum
- Center for Translational Medicine, Temple University, Philadelphia, PA 19140, USA
| |
Collapse
|
19
|
Wu S, Lin S, Zhang X, Alizada M, Wang L, Zheng Y, Ke Q, Xu J. Recent advances in cell-based and cell-free therapeutic approaches for sarcopenia. FASEB J 2022; 36:e22614. [PMID: 36250337 DOI: 10.1096/fj.202200675r] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/02/2022] [Accepted: 10/04/2022] [Indexed: 11/11/2022]
Abstract
Sarcopenia is a progressive loss of muscle mass and function that is connected with increased hospital expenditures, falls, fractures, and mortality. Although muscle loss has been related to aging, injury, hormonal imbalances, and diseases such as malignancies, chronic obstructive pulmonary disease, heart failure, and kidney failure, the underlying pathogenic mechanisms of sarcopenia are unclear. Exercise-based interventions and multimodal strategies are currently being considered as potential therapeutic approaches to prevent or treat these diseases. Although drug therapy research is ongoing, no drug has yet been proven to have a substantial safety and clinical value to be the first drug therapy to be licensed for sarcopenia. To better understand the molecular alterations underlying sarcopenia and effective treatments, we review leading research and available findings from the systemic change to the muscle-specific microenvironment. Furthermore, we explore possible mechanisms of sarcopenia and provide new knowledge for the development of novel cell-free and cell-based therapeutics. This review will assist researchers in developing better therapies to improve muscle health in the elderly.
Collapse
Affiliation(s)
- Shiqiang Wu
- Department of Orthopedic, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Shu Lin
- Centre of Neurological and Metabolic Research, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China.,Group of Neuroendocrinology, Garvan Institute of Medical Research, Sydney, New South Wales, Australia
| | - Xiaolu Zhang
- Department of Orthopedic, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Mujahid Alizada
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Liangmin Wang
- Department of Orthopedic, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Yiqiang Zheng
- Department of Orthopedic, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Qingfeng Ke
- Department of Orthopedic, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Jie Xu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, China.,Department of Orthopedic, Fujian Provincial Hospital, Fuzhou, China
| |
Collapse
|
20
|
Davis LA, Fogarty MJ, Brown A, Sieck GC. Structure and Function of the Mammalian Neuromuscular Junction. Compr Physiol 2022; 12:3731-3766. [PMID: 35950651 PMCID: PMC10461538 DOI: 10.1002/cphy.c210022] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The mammalian neuromuscular junction (NMJ) comprises a presynaptic terminal, a postsynaptic receptor region on the muscle fiber (endplate), and the perisynaptic (terminal) Schwann cell. As with any synapse, the purpose of the NMJ is to transmit signals from the nervous system to muscle fibers. This neural control of muscle fibers is organized as motor units, which display distinct structural and functional phenotypes including differences in pre- and postsynaptic elements of NMJs. Motor units vary considerably in the frequency of their activation (both motor neuron discharge rate and duration/duty cycle), force generation, and susceptibility to fatigue. For earlier and more frequently recruited motor units, the structure and function of the activated NMJs must have high fidelity to ensure consistent activation and continued contractile response to sustain vital motor behaviors (e.g., breathing and postural balance). Similarly, for higher force less frequent behaviors (e.g., coughing and jumping), the structure and function of recruited NMJs must ensure short-term reliable activation but not activation sustained for a prolonged period in which fatigue may occur. The NMJ is highly plastic, changing structurally and functionally throughout the life span from embryonic development to old age. The NMJ also changes under pathological conditions including acute and chronic disease. Such neuroplasticity often varies across motor unit types. © 2022 American Physiological Society. Compr Physiol 12:1-36, 2022.
Collapse
Affiliation(s)
- Leah A. Davis
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Matthew J. Fogarty
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Alyssa Brown
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| | - Gary C. Sieck
- Department of Physiology & Biomedical Engineering, Mayo Clinic, Rochester, Minnesota, USA
| |
Collapse
|
21
|
The Regulatory Effects of MicroRNAs on Tumor Immunity. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2121993. [PMID: 35909469 PMCID: PMC9329000 DOI: 10.1155/2022/2121993] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/24/2022] [Indexed: 12/13/2022]
Abstract
MicroRNAs are endogenous noncoding small RNAs that posttranscriptionally regulate the expressions of their target genes. Accumulating research shows that miRNAs are crucial regulators of immune cell growth and antitumor immune response. Studies on miRNAs and tumors primarily focus on the tumor itself. At the same time, relatively few studies on the indirect regulatory effects of miRNAs in the development of tumors are achieved by affecting the immune system of tumor hosts and altering their immune responses. This review discusses the influence of miRNAs on the antitumor immune system.
Collapse
|
22
|
Huang Y, Chen H, Gao X, Ren H, Gao S. Identification and functional analysis of miRNAs in skeletal muscle of juvenile and adult largemouth bass, Micropterus salmoides. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY. PART D, GENOMICS & PROTEOMICS 2022; 42:100985. [PMID: 35381488 DOI: 10.1016/j.cbd.2022.100985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/20/2022] [Accepted: 03/25/2022] [Indexed: 11/28/2022]
Abstract
MicroRNAs (miRNAs) are considered key regulators to post-transcriptionally regulate gene expression affecting multiple biological activities. However, the developmental process of fish skeletal muscles is regulated by complicated molecular mechanism that has not been completely well-described. In this study, two small RNAs libraries from skeletal muscle of juvenile as well as adult largemouth bass (LMB) were obtained and sequenced using deep sequencing to investigate the development-related miRNAs. We identified an overall number of 486 already recognized miRNAs in addition to 43 novel miRNAs. Comparison of two different skeletal muscle development stages led to the identification of 220 differently expressed miRNAs between juvenile and adult LMB containing 116 up-regulated as well as 104 down-regulated miRNAs. Of them, confirmation of some differently expressed miRNAs was performed via a stem-loop qRT-PCR, which exhibited differently expressed level in juvenile and adult LMB. Furthermore, GO and KEGG enrichment analyses of targets of differently-expressed miRNAs were carried out. Additionally, the analysis of miRNAs-targets interaction network showed that miR-181b-5p_R-1, miR-725 and miR-103 as the nodal miRNAs has over 20 target genes. Moreover, miR-103 could bind the 3'-UTR of actr8, which was validated via dual-luciferase reporter assay. It has been reasonably hypothesized that miR-103 may play a crucial role, which regulate skeletal muscle development of LMB. The present study provides the first identification of miRNA expression profiles at two different skeletal muscle development stages in LMB. Results may be valuable in interpreting the regulatory role miRNAs plays in the growth and developmental process of skeletal muscle and its possible use in LMB breeding.
Collapse
Affiliation(s)
- Yong Huang
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China.
| | - Haigang Chen
- Guangdong Province Key Laboratory of Fish Ecology and Environment, South China Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Guangzhou 510300, China
| | - Xiaochan Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Hongtao Ren
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| | - Shiyang Gao
- College of Animal Science and Technology, Henan University of Science and Technology, Luoyang 471023, China
| |
Collapse
|
23
|
Zhang Z, Deng K, Kang Z, Wang F, Fan Y. MicroRNA profiling reveals miR‐145‐5p inhibits goat myoblast differentiation by targeting the coding domain sequence of USP13. FASEB J 2022; 36:e22370. [DOI: 10.1096/fj.202200246r] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 04/29/2022] [Accepted: 05/10/2022] [Indexed: 12/14/2022]
Affiliation(s)
- Zhen Zhang
- Institute of Sheep and Goat Science Nanjing Agricultural University Nanjing China
| | - Kaiping Deng
- Institute of Sheep and Goat Science Nanjing Agricultural University Nanjing China
| | - Ziqi Kang
- Institute of Sheep and Goat Science Nanjing Agricultural University Nanjing China
| | - Feng Wang
- Institute of Sheep and Goat Science Nanjing Agricultural University Nanjing China
| | - Yixuan Fan
- Institute of Sheep and Goat Science Nanjing Agricultural University Nanjing China
| |
Collapse
|
24
|
Xiong X, Yang M, Yu H, Hu Y, Yang L, Zhu Y, Fei X, Pan B, Xiong Y, Fu W, Li J. MicroRNA‐342‐3p regulates yak oocyte meiotic maturation by targeting DNA methyltransferase 1. Reprod Domest Anim 2022; 57:761-770. [DOI: 10.1111/rda.14119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 03/24/2022] [Accepted: 03/27/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Xianrong Xiong
- Key Laboratory of Qinghai‐Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education Southwest Minzu University Chengdu Sichuan 610041 P.R. China
| | - Manzhen Yang
- Key Laboratory for Animal Science of National Ethnic Affairs Commission Southwest Minzu University Chengdu Sichuan 610041 P.R. China
| | - Hailing Yu
- Key Laboratory for Animal Science of National Ethnic Affairs Commission Southwest Minzu University Chengdu Sichuan 610041 P.R. China
| | - Yulei Hu
- Key Laboratory of Qinghai‐Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education Southwest Minzu University Chengdu Sichuan 610041 P.R. China
| | - Luyu Yang
- Key Laboratory for Animal Science of National Ethnic Affairs Commission Southwest Minzu University Chengdu Sichuan 610041 P.R. China
| | - Yanjin Zhu
- Key Laboratory of Qinghai‐Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education Southwest Minzu University Chengdu Sichuan 610041 P.R. China
| | - Xixi Fei
- Key Laboratory of Qinghai‐Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education Southwest Minzu University Chengdu Sichuan 610041 P.R. China
| | - Bangting Pan
- Key Laboratory of Qinghai‐Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education Southwest Minzu University Chengdu Sichuan 610041 P.R. China
| | - Yan Xiong
- Key Laboratory for Animal Science of National Ethnic Affairs Commission Southwest Minzu University Chengdu Sichuan 610041 P.R. China
| | - Wei Fu
- Key Laboratory of Qinghai‐Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education Southwest Minzu University Chengdu Sichuan 610041 P.R. China
| | - Jian Li
- Key Laboratory of Qinghai‐Tibetan Plateau Animal Genetic Resource Reservation and Exploitation of Ministry of Education Southwest Minzu University Chengdu Sichuan 610041 P.R. China
- Key Laboratory for Animal Science of National Ethnic Affairs Commission Southwest Minzu University Chengdu Sichuan 610041 P.R. China
| |
Collapse
|
25
|
Shapiro D, Massopust R, Taetzsch T, Valdez G. Argonaute 2 is lost from neuromuscular junctions affected with amyotrophic lateral sclerosis in SOD1 G93A mice. Sci Rep 2022; 12:4630. [PMID: 35301367 PMCID: PMC8931107 DOI: 10.1038/s41598-022-08455-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 02/24/2022] [Indexed: 01/22/2023] Open
Abstract
miRNAs are necessary for neuromuscular junction (NMJ) health; however, little is known about the proteins required for their activity in this regard. We examined expression of Argonaute 2 (Ago2) and miRNA biogenesis genes in skeletal muscles during development, following nerve injury and in the SOD1G93A ALS mouse model. We found that these genes are enriched in neonate muscles and in adult muscles following nerve injury. Despite widespread NMJ deterioration, these genes were not increased in muscles of SOD1G93A mice. We also found that Ago2 distribution is linked to maturation, innervation, and health of NMJs. Ago2 increasingly concentrates in synaptic regions during NMJ maturation, disperses following experimental denervation and reconcentrates at the NMJ upon reinnervation. Similar to experimentally denervated muscles, a homogenous distribution of Ago2 was observed in SOD1G93A muscle fibers. To determine if Ago2 is necessary for the health of adult muscles, we excised Ago2 from Ago2fl/fl mice using adeno-associated virus mediated Cre recombinase expression. We observed modest changes in muscle histology after 3 months of Ago2 knockdown. Together, these data provide critical insights into the role of Ago2 and miRNA biogenesis genes in healthy and ALS-afflicted skeletal muscles and NMJs.
Collapse
Affiliation(s)
- Dillon Shapiro
- Molecular Biology, Cell Biology, & Biochemistry Graduate Program, Brown University, Providence, RI, USA
| | - Ryan Massopust
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 70 Ship St, Providence, RI, 02903, USA
| | - Thomas Taetzsch
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 70 Ship St, Providence, RI, 02903, USA
| | - Gregorio Valdez
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, 70 Ship St, Providence, RI, 02903, USA.
- Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, RI, USA.
- Department of Neurology, Warren Alpert Medical School of Brown University, Providence, USA.
| |
Collapse
|
26
|
Hu M, Kuang R, Guo Y, Ma R, Hou Y, Xu Y, Qi X, Wang D, Zhou H, Xiong Y, Han X, Zhang J, Ruan J, Li X, Zhao S, Zhao Y, Xu X. Epigenomics analysis of miRNA cis-regulatory elements in pig muscle and fat tissues. Genomics 2022; 114:110276. [PMID: 35104610 DOI: 10.1016/j.ygeno.2022.110276] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Revised: 01/23/2022] [Accepted: 01/26/2022] [Indexed: 11/04/2022]
Abstract
Although large-scale and accurate identification of cis-regulatory elements on pig protein-coding and long non-coding genes has been reported, similar study on pig miRNAs is still lacking. Here, we systematically characterized the cis-regulatory elements of pig miRNAs in muscle and fat by adopting miRNAomes, ChIP-seq, ATAC-seq, RNA-seq and Hi-C data. In total, the cis-regulatory elements of 257 (85.95%) expressed miRNAs including 226 known and 31 novel miRNAs were identified. Especially, the miRNAs associated with super-enhancers, active promoters, and "A" compartment were significantly higher than those associated by typical enhancers, prompters without H3K27ac, and "B" compartment, respectively. The tissue specific transcription factors were the primary determination of core miRNA expression pattern in muscle and fat. Moreover, the miRNA promoters are more evolutionarily conserved than miRNA enhancers, like other type genes. Our study adds additional important information to existing pig epigenetic data and provides essential resource for future in-depth investigation of pig epigenetics.
Collapse
Affiliation(s)
- Mingyang Hu
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, 430070 Wuhan, China
| | - Renzhuo Kuang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, 430070 Wuhan, China
| | - Yaping Guo
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, 430070 Wuhan, China
| | - Ruixian Ma
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, 430070 Wuhan, China
| | - Ye Hou
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, 430070 Wuhan, China
| | - Yueyuan Xu
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, 430070 Wuhan, China
| | - Xiaolong Qi
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, 430070 Wuhan, China
| | - Daoyuan Wang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, 430070 Wuhan, China
| | - Honghong Zhou
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, 430070 Wuhan, China
| | - Youcai Xiong
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, 430070 Wuhan, China
| | - Xiaosong Han
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, 430070 Wuhan, China
| | - Jinfu Zhang
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, 430070 Wuhan, China
| | - Jinxue Ruan
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, 430070 Wuhan, China
| | - Xinyun Li
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, 430070 Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Shuhong Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, 430070 Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China
| | - Yunxia Zhao
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, 430070 Wuhan, China.
| | - Xuewen Xu
- Key Laboratory of Agricultural Animal Genetics, Breeding, and Reproduction of the Ministry of Education and Key Laboratory of Swine Genetics and Breeding of Ministry of Agriculture, Huazhong Agricultural University, 430070 Wuhan, China; The Cooperative Innovation Center for Sustainable Pig Production, Wuhan, China.
| |
Collapse
|
27
|
Koniari I, Artopoulou E, Velissaris D, Ainslie M, Mplani V, Karavasili G, Kounis N, Tsigkas G. Biomarkers in the clinical management of patients with atrial fibrillation and heart failure. J Geriatr Cardiol 2021; 18:908-951. [PMID: 34908928 PMCID: PMC8648548 DOI: 10.11909/j.issn.1671-5411.2021.11.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Atrial fibrillation (AF) and heart failure (HF) are two cardiovascular diseases with an increasing prevalence worldwide. These conditions share common pathophysiologiesand frequently co-exit. In fact, the occurrence of either condition can 'cause' the development of the other, creating a new patient group that demands different management strategies to that if they occur in isolation. Regardless of the temproral association of the two conditions, their presence is linked with adverse cardiovascular outcomes, increased rate of hospitalizations, and increased economic burden on healthcare systems. The use of low-cost, easily accessible and applicable biomarkers may hasten the correct diagnosis and the effective treatment of AF and HF. Both AF and HF effect multiple physiological pathways and thus a great number of biomarkers can be measured that potentially give the clinician important diagnostic and prognostic information. These will then guide patient centred therapeutic management. The current biomarkers that offer potential for guiding therapy, focus on the physiological pathways of miRNA, myocardial stretch and injury, oxidative stress, inflammation, fibrosis, coagulation and renal impairment. Each of these has different utility in current clinincal practice.
Collapse
Affiliation(s)
- Ioanna Koniari
- Manchester Heart Institute, Manchester University Foundation Trust, Manchester, United Kingdom
| | - Eleni Artopoulou
- Department of Internal Medicine, University Hospital of Patras, Patras, Greece
| | | | - Mark Ainslie
- Manchester Heart Institute, Manchester University Foundation Trust, Manchester, United Kingdom
- Division of Cardiovascular Sciences, University of Manchester
| | - Virginia Mplani
- Department of Cardiology, University Hospital of Patras, Patras, Greece
| | - Georgia Karavasili
- Manchester Heart Institute, Manchester University Foundation Trust, Manchester, United Kingdom
| | - Nicholas Kounis
- Department of Cardiology, University Hospital of Patras, Patras, Greece
| | - Grigorios Tsigkas
- Department of Cardiology, University Hospital of Patras, Patras, Greece
| |
Collapse
|
28
|
Li F, Jing J, Movahed M, Cui X, Cao Q, Wu R, Chen Z, Yu L, Pan Y, Shi H, Shi H, Xue B. Epigenetic interaction between UTX and DNMT1 regulates diet-induced myogenic remodeling in brown fat. Nat Commun 2021; 12:6838. [PMID: 34824202 PMCID: PMC8617140 DOI: 10.1038/s41467-021-27141-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Accepted: 11/05/2021] [Indexed: 02/04/2023] Open
Abstract
Brown adipocytes share the same developmental origin with skeletal muscle. Here we find that a brown adipocyte-to-myocyte remodeling also exists in mature brown adipocytes, and is induced by prolonged high fat diet (HFD) feeding, leading to brown fat dysfunction. This process is regulated by the interaction of epigenetic pathways involving histone and DNA methylation. In mature brown adipocytes, the histone demethylase UTX maintains persistent demethylation of the repressive mark H3K27me3 at Prdm16 promoter, leading to high Prdm16 expression. PRDM16 then recruits DNA methyltransferase DNMT1 to Myod1 promoter, causing Myod1 promoter hypermethylation and suppressing its expression. The interaction between PRDM16 and DNMT1 coordinately serves to maintain brown adipocyte identity while repressing myogenic remodeling in mature brown adipocytes, thus promoting their active brown adipocyte thermogenic function. Suppressing this interaction by HFD feeding induces brown adipocyte-to-myocyte remodeling, which limits brown adipocyte thermogenic capacity and compromises diet-induced thermogenesis, leading to the development of obesity.
Collapse
Affiliation(s)
- Fenfen Li
- grid.256304.60000 0004 1936 7400Department of Biology, Georgia State University, Atlanta, GA 30303 USA
| | - Jia Jing
- grid.256304.60000 0004 1936 7400Department of Biology, Georgia State University, Atlanta, GA 30303 USA
| | - Miranda Movahed
- grid.256304.60000 0004 1936 7400Department of Biology, Georgia State University, Atlanta, GA 30303 USA
| | - Xin Cui
- grid.256304.60000 0004 1936 7400Department of Biology, Georgia State University, Atlanta, GA 30303 USA
| | - Qiang Cao
- grid.256304.60000 0004 1936 7400Department of Biology, Georgia State University, Atlanta, GA 30303 USA
| | - Rui Wu
- grid.256304.60000 0004 1936 7400Department of Biology, Georgia State University, Atlanta, GA 30303 USA
| | - Ziyue Chen
- grid.256304.60000 0004 1936 7400Department of Computer Science, Georgia State University, Atlanta, GA 30303 USA
| | - Liqing Yu
- grid.411024.20000 0001 2175 4264Division of Endocrinology, Diabetes and Nutrition, Department of Medicine, University of Maryland School of Medicine, Baltimore, MD 21201 USA
| | - Yi Pan
- grid.256304.60000 0004 1936 7400Department of Computer Science, Georgia State University, Atlanta, GA 30303 USA ,grid.458489.c0000 0001 0483 7922Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 P.R. China
| | - Huidong Shi
- grid.410427.40000 0001 2284 9329Georgia Cancer Center, Medical College of Georgia, Augusta University, Augusta, GA 30912 USA ,grid.410427.40000 0001 2284 9329Department of Biochemistry and Molecular Biology, Medical College of Georgia, Augusta University, Augusta, GA 30912 USA
| | - Hang Shi
- grid.256304.60000 0004 1936 7400Department of Biology, Georgia State University, Atlanta, GA 30303 USA
| | - Bingzhong Xue
- grid.256304.60000 0004 1936 7400Department of Biology, Georgia State University, Atlanta, GA 30303 USA
| |
Collapse
|
29
|
MiR-29b-1-5p regulates the proliferation and differentiation of chicken primary myoblasts and analysis of its effective targets. Poult Sci 2021; 101:101557. [PMID: 34852967 PMCID: PMC8639469 DOI: 10.1016/j.psj.2021.101557] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/05/2021] [Accepted: 10/14/2021] [Indexed: 12/19/2022] Open
Abstract
Several recent studies investigated the role of the miR-29 family in muscle development. However, only a few studies focused on chicken skeletal muscle. In the present study, cell cycle, 5-ethynyl-2'-deoxyuridine (EdU), cell counting kit-8 (CCK-8), and other assays indicated that miR-29b-1-5p can inhibit the proliferation of chicken primary myoblasts (CPMs); the western blot assay and immunofluorescence detection of MYHC demonstrated that miR-29b-1-5p can promote the differentiation of myoblasts. The functional enrichment analysis revealed that the target genes of miR-29b-1-5p may be involved in muscle tissue development, muscle organ development, and striated muscle tissue development, which are biological processes related to muscle development. The correlation analysis showed that these 6 genes, that is, ankyrin repeat domain 9 (ANKRD9), lactate dehydrogenase A (LDHA), transcription factor 12 (TCF12), FAT atypical cadherin 1 (FAT1), lin-9 homolog (LIN9), and integrin beta 3 binding protein (ITGB3BP), can be used as effective candidate target genes of miR-29b-1-5p. Moreover, miR-29b-1-5p inhibits the expression of ANKRD9 by directly binding the 3'UTR of ANKRD9. Overall, these data indicate that miR-29b-1-5p inhibits the proliferation of primary chicken myoblasts, stimulates their differentiation, and is involved in the process of muscle development and that its effective target gene is ANKRD9. This study identified the molecular mechanism of miR-29b-1-5p in chicken muscle development.
Collapse
|
30
|
Soliman R, Mousa NO, Rashed HR, Moustafa RR, Hamdi N, Osman A, Fahmy N. Assessment of diagnostic potential of some circulating microRNAs in Amyotrophic Lateral Sclerosis Patients, an Egyptian study. Clin Neurol Neurosurg 2021; 208:106883. [PMID: 34454204 DOI: 10.1016/j.clineuro.2021.106883] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 12/20/2022]
Abstract
OBJECTIVE Numerous studies have been carried out to identify the role of microRNA (miRNA) as potential biomarkers for many diseases including amyotrophic lateral sclerosis (ALS). The aim of this study was to explore the circulating levels of some miRNAs in cohort of Egyptian ALS patients in an attempt to correlate the selected miRNA profiles with disease progression. METHODS Thirty ALS patients and 20 age and sex matched healthy controls were enrolled. Circulating miRNA levels were determined in venous blood samples, collected on EDTA, from all the study subjects. The selection of miRNA species (miR-206, miR-142-3p, miR-143-3p, miR-181a-5p, miR-106b-3p, miR-4516 and Let7f-5p) was based on their involvement in the pathophysiology of ALS and was further confirmed by data mining of specific miRNA databases (miRBase and miRDB). RESULTS As compared to the control group, significant consistent upregulation was found in the levels of miR-206, miR-143-3p and to a lesser extent in miR-142-3p. An elevation trend, although not significant, was also found in the levels of miR-181a-5p, miR-106b-3p, and miR-4516. Interestingly, we found that the levels of miR-142-3p were elevated in familial cases, while that of miR-4516 were significantly increased in sporadic cases. Furthermore, the levels of Let7f-5p, although were generally lowered in ALS patients but were also decreased in familial cases as well as in spinal onset ALS as compared to bulbar onset. CONCLUSION This is the first study investigating miRNA profiles in Egyptian ALS patients. We found that some miRNAs are significantly altered in ALS patients, and some may be used to distinguish familial and sporadic cases and bulbar and spinal onset. Larger study is needed, in which we will conduct a correlation of miRNA levels against variations in disease onset, progression as well as systemic inflammatory responses and the extent of neuromuscular involvement in Egyptian ALS patients in an attempt to identify environmental/occupational risk factors.
Collapse
Affiliation(s)
- Radwa Soliman
- Neuromuscular Unit, Neurology and Psychiatry Department, Faculty of Medicine Ain Shams University, Cairo 11566, Egypt.
| | - Nahla O Mousa
- Biotechnology Department, Basic and Applied Sciences Institute, Egypt-Japan University of Science and Technology, Borg Al Arab 21934, Egypt; Biotechnology Program, Chemistry Department, Faculty of Science, Cairo University, Cairo 12613, Egypt.
| | - Hebatallah R Rashed
- Neuromuscular Unit, Neurology and Psychiatry Department, Faculty of Medicine Ain Shams University, Cairo 11566, Egypt.
| | - Ramez R Moustafa
- Neuromuscular Unit, Neurology and Psychiatry Department, Faculty of Medicine Ain Shams University, Cairo 11566, Egypt.
| | - Nabila Hamdi
- Molecular Pathology Unit, German University in Cairo (GUC), Cairo, Egypt.
| | - Ahmad Osman
- Biotechnology Department, Basic and Applied Sciences Institute, Egypt-Japan University of Science and Technology, Borg Al Arab 21934, Egypt; Biochemistry Department, Faculty of Science, Ain Shams University, Cairo 11566, Egypt.
| | - Nagia Fahmy
- Neuromuscular Unit, Neurology and Psychiatry Department, Faculty of Medicine Ain Shams University, Cairo 11566, Egypt.
| |
Collapse
|
31
|
Burtscher J, Millet GP, Place N, Kayser B, Zanou N. The Muscle-Brain Axis and Neurodegenerative Diseases: The Key Role of Mitochondria in Exercise-Induced Neuroprotection. Int J Mol Sci 2021; 22:6479. [PMID: 34204228 PMCID: PMC8235687 DOI: 10.3390/ijms22126479] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/13/2021] [Accepted: 06/15/2021] [Indexed: 12/12/2022] Open
Abstract
Regular exercise is associated with pronounced health benefits. The molecular processes involved in physiological adaptations to exercise are best understood in skeletal muscle. Enhanced mitochondrial functions in muscle are central to exercise-induced adaptations. However, regular exercise also benefits the brain and is a major protective factor against neurodegenerative diseases, such as the most common age-related form of dementia, Alzheimer's disease, or the most common neurodegenerative motor disorder, Parkinson's disease. While there is evidence that exercise induces signalling from skeletal muscle to the brain, the mechanistic understanding of the crosstalk along the muscle-brain axis is incompletely understood. Mitochondria in both organs, however, seem to be central players. Here, we provide an overview on the central role of mitochondria in exercise-induced communication routes from muscle to the brain. These routes include circulating factors, such as myokines, the release of which often depends on mitochondria, and possibly direct mitochondrial transfer. On this basis, we examine the reported effects of different modes of exercise on mitochondrial features and highlight their expected benefits with regard to neurodegeneration prevention or mitigation. In addition, knowledge gaps in our current understanding related to the muscle-brain axis in neurodegenerative diseases are outlined.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, CH-1015 Lausanne, Switzerland; (G.P.M.); (N.P.); (B.K.); (N.Z.)
- Department of Biomedical Sciences, University of Lausanne, CH-1005 Lausanne, Switzerland
| | - Grégoire P. Millet
- Institute of Sport Sciences, University of Lausanne, CH-1015 Lausanne, Switzerland; (G.P.M.); (N.P.); (B.K.); (N.Z.)
- Department of Biomedical Sciences, University of Lausanne, CH-1005 Lausanne, Switzerland
| | - Nicolas Place
- Institute of Sport Sciences, University of Lausanne, CH-1015 Lausanne, Switzerland; (G.P.M.); (N.P.); (B.K.); (N.Z.)
- Department of Biomedical Sciences, University of Lausanne, CH-1005 Lausanne, Switzerland
| | - Bengt Kayser
- Institute of Sport Sciences, University of Lausanne, CH-1015 Lausanne, Switzerland; (G.P.M.); (N.P.); (B.K.); (N.Z.)
- Department of Biomedical Sciences, University of Lausanne, CH-1005 Lausanne, Switzerland
| | - Nadège Zanou
- Institute of Sport Sciences, University of Lausanne, CH-1015 Lausanne, Switzerland; (G.P.M.); (N.P.); (B.K.); (N.Z.)
- Department of Biomedical Sciences, University of Lausanne, CH-1005 Lausanne, Switzerland
| |
Collapse
|
32
|
MicroRNA-mediated regulation of glucose and lipid metabolism. Nat Rev Mol Cell Biol 2021; 22:425-438. [PMID: 33772227 PMCID: PMC8853826 DOI: 10.1038/s41580-021-00354-w] [Citation(s) in RCA: 203] [Impact Index Per Article: 50.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/16/2021] [Indexed: 02/01/2023]
Abstract
In animals, systemic control of metabolism is conducted by metabolic tissues and relies on the regulated circulation of a plethora of molecules, such as hormones and lipoprotein complexes. MicroRNAs (miRNAs) are a family of post-transcriptional gene repressors that are present throughout the animal kingdom and have been widely associated with the regulation of gene expression in various contexts, including virtually all aspects of systemic control of metabolism. Here we focus on glucose and lipid metabolism and review current knowledge of the role of miRNAs in their systemic regulation. We survey miRNA-mediated regulation of healthy metabolism as well as the contribution of miRNAs to metabolic dysfunction in disease, particularly diabetes, obesity and liver disease. Although most miRNAs act on the tissue they are produced in, it is now well established that miRNAs can also circulate in bodily fluids, including their intercellular transport by extracellular vesicles, and we discuss the role of such extracellular miRNAs in systemic metabolic control and as potential biomarkers of metabolic status and metabolic disease.
Collapse
|
33
|
Dobrowolny G, Barbiera A, Sica G, Scicchitano BM. Age-Related Alterations at Neuromuscular Junction: Role of Oxidative Stress and Epigenetic Modifications. Cells 2021; 10:1307. [PMID: 34074012 PMCID: PMC8225025 DOI: 10.3390/cells10061307] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 05/19/2021] [Accepted: 05/22/2021] [Indexed: 12/11/2022] Open
Abstract
With advancing aging, a decline in physical abilities occurs, leading to reduced mobility and loss of independence. Although many factors contribute to the physio-pathological effects of aging, an important event seems to be related to the compromised integrity of the neuromuscular system, which connects the brain and skeletal muscles via motoneurons and the neuromuscular junctions (NMJs). NMJs undergo severe functional, morphological, and molecular alterations during aging and ultimately degenerate. The effect of this decline is an inexorable decrease in skeletal muscle mass and strength, a condition generally known as sarcopenia. Moreover, several studies have highlighted how the age-related alteration of reactive oxygen species (ROS) homeostasis can contribute to changes in the neuromuscular junction morphology and stability, leading to the reduction in fiber number and innervation. Increasing evidence supports the involvement of epigenetic modifications in age-dependent alterations of the NMJ. In particular, DNA methylation, histone modifications, and miRNA-dependent gene expression represent the major epigenetic mechanisms that play a crucial role in NMJ remodeling. It is established that environmental and lifestyle factors, such as physical exercise and nutrition that are susceptible to change during aging, can modulate epigenetic phenomena and attenuate the age-related NMJs changes. This review aims to highlight the recent epigenetic findings related to the NMJ dysregulation during aging and the role of physical activity and nutrition as possible interventions to attenuate or delay the age-related decline in the neuromuscular system.
Collapse
Affiliation(s)
- Gabriella Dobrowolny
- Department of Anatomy, Histology, Forensic Medicine and Orthopaedics (DAHFMO)-Unit of Histology and Medical Embryology, Sapienza University of Rome, Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, 00161 Rome, Italy;
| | - Alessandra Barbiera
- Department of Life Sciences and Public Health, Histology and Embryology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (A.B.); (G.S.)
| | - Gigliola Sica
- Department of Life Sciences and Public Health, Histology and Embryology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (A.B.); (G.S.)
| | - Bianca Maria Scicchitano
- Department of Life Sciences and Public Health, Histology and Embryology Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy; (A.B.); (G.S.)
| |
Collapse
|
34
|
Zhang X, Zhao H, Sheng Q, Liu X, You W, Lin H, Liu G. Regulation of microRNA-33, SREBP and ABCA1 genes in a mouse model of high cholesterol. Arch Anim Breed 2021; 64:103-108. [PMID: 34084908 PMCID: PMC8160998 DOI: 10.5194/aab-64-103-2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Accepted: 02/16/2021] [Indexed: 11/11/2022] Open
Abstract
MicroRNAs are short non-coding RNAs that regulate gene expression. Several microRNAs, useful for coronary artery disease assessment, have previously been identified. MicroRNA-33 is located within SREBP introns and controls cholesterol homeostasis. In order to find the possibility of microRNA-33 as a potential biomarker in high cholesterol disease, we developed a mouse model for coronary heart disease by feeding mice with a high-fat diet. The expression differences of microRNA-33, SREBP and ABCA1 genes in the liver, muscle, and lipid tissues were compared between a high-cholesterol group and control group in mice. The results showed that ABCA1 was up-regulated by high cholesterol conditions in liver, muscle and lipid tissues. SREBP1C was up-regulated by high cholesterol conditions in the liver and lipid tissues and down-regulated by high cholesterol conditions in the muscle tissue. MicroRNA-33 and SREBP2 were down-regulated by high cholesterol conditions in the liver and muscle tissues and up-regulated by high cholesterol conditions in the lipid tissue. Our study suggests that antisense therapeutic targeting of microRNA-33 may be a potential biomarker for cardiovascular disease.
Collapse
Affiliation(s)
- Xianglun Zhang
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.,Shandong Key Lab of Animal Disease Control and Breeding, Jinan, China
| | - Hongbo Zhao
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.,Shandong Key Lab of Animal Disease Control and Breeding, Jinan, China
| | - Qingkai Sheng
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.,Shandong Key Lab of Animal Disease Control and Breeding, Jinan, China
| | - Xiaomu Liu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.,Shandong Key Lab of Animal Disease Control and Breeding, Jinan, China
| | - Wei You
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.,Shandong Key Lab of Animal Disease Control and Breeding, Jinan, China
| | - Haichao Lin
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.,Shandong Key Lab of Animal Disease Control and Breeding, Jinan, China
| | - Guifen Liu
- Institute of Animal Science and Veterinary Medicine, Shandong Academy of Agricultural Sciences, Jinan, China.,Shandong Key Lab of Animal Disease Control and Breeding, Jinan, China
| |
Collapse
|
35
|
Chanda PK, Sukhovershin R, Cooke JP. mRNA-Enhanced Cell Therapy and Cardiovascular Regeneration. Cells 2021; 10:187. [PMID: 33477787 PMCID: PMC7832270 DOI: 10.3390/cells10010187] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/11/2021] [Accepted: 01/16/2021] [Indexed: 12/13/2022] Open
Abstract
mRNA has emerged as an important biomolecule in the global call for the development of therapies during the COVID-19 pandemic. Synthetic in vitro-transcribed (IVT) mRNA can be engineered to mimic naturally occurring mRNA and can be used as a tool to target "undruggable" diseases. Recent advancement in the field of RNA therapeutics have addressed the challenges inherent to this drug molecule and this approach is now being applied to several therapeutic modalities, from cancer immunotherapy to vaccine development. In this review, we discussed the use of mRNA for stem cell generation or enhancement for the purpose of cardiovascular regeneration.
Collapse
Affiliation(s)
| | | | - John P. Cooke
- RNA Therapeutics Program, Center for Cardiovascular Regeneration, Department of Cardiovascular Sciences, Houston Methodist Research Institute, 6670 Bertner Ave., Houston, TX 77030, USA; (P.K.C.); (R.S.)
| |
Collapse
|
36
|
Konar GJ, Ferguson C, Flickinger Z, Kent MR, Patton JG. miRNAs and Müller Glia Reprogramming During Retina Regeneration. Front Cell Dev Biol 2021; 8:632632. [PMID: 33537319 PMCID: PMC7848101 DOI: 10.3389/fcell.2020.632632] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 12/21/2020] [Indexed: 12/15/2022] Open
Abstract
The use of model systems that are capable of robust, spontaneous retina regeneration has allowed for the identification of genetic pathways and components that are required for retina regeneration. Complemented by mouse models in which retina regeneration can be induced after forced expression of key factors, altered chromatin accessibility, or inhibition of kinase/signaling cascades, a clearer picture of the key regulatory events that control retina regeneration is emerging. In all cases, Müller glia (MG) serve as an adult retinal stem cell that must be reprogrammed to allow for regeneration, with the end goal being to understand why regenerative pathways are blocked in mammals, but spontaneous in other vertebrates such as zebrafish. miRNAs have emerged as key gene regulatory molecules that control both development and regeneration in vertebrates. Here, we focus on a small subset of miRNAs that control MG reprogramming during retina regeneration and have the potential to serve as therapeutic targets for treatment of visual disorders and damage.
Collapse
Affiliation(s)
- Gregory J Konar
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Claire Ferguson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Zachary Flickinger
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - Matthew R Kent
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| | - James G Patton
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, United States
| |
Collapse
|
37
|
MANDEEP KAUR, ASHISH KUMAR, S NAVEENKUMAR, NADEEM FAIROZEMOHAMED, SONIKA AHLAWAT, KUMAR VIJHRAMESH, ANITA YADAV, REENA ARORA. Profiling of microRNA from skeletal muscle of Bandur sheep using RNA sequencing. THE INDIAN JOURNAL OF ANIMAL SCIENCES 2021. [DOI: 10.56093/ijans.v90i8.109253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
MicroRNA profiling is a powerful approach for identifying key regulators of molecular functions which control skeletal muscle development, regeneration and function. Information on gene expression and the regulatory factors involved in myogenesis is very limited for Indian sheep. This study reports the identification and characterization of miRNAs from the skeletal muscles of Bandur sheep breed for the first time. Bandur is a consumer favoured, mutton type sheep of India, mainly distributed in Mandya district of Karnataka. Skeletal muscles from four animals of Bandur sheep of similar age, sex and reared under same management conditions were used for RNA sequencing. The total number of reads (15–36 bp) for each library of Bandur sheep ranged from 19,350,000 to 30,000,000. Highly expressed transcripts with an RPKM value of ≥1000 were observed to be 34%, whereas 38% transcripts exhibited RPKM between 100–1000 and 28% had RPKM <100 in Bandur sheep. A total of 110 known mature miRNAs could be identified on comparison with known human and bovine sequences. All the identified miRNAs represented 32 miRNA families and 44 clusters. A total of 499 novel miRNAs were discovered in Bandur sheep. The miRNAs identified in our study were enriched for functions namely cell proliferation, cell differentiation, osteogenesis, lipid metabolism, muscle development, adipocyte differentiation and stress response. Potential gene targets for the identified miRNAs were predicted. Most relevant target genes predicted in our study included MYO5A, SIN3B and NR2F2 which are mainly involved in myogenesis. This study provides information of miRNAs in the skeletal muscle tissue of Bandur sheep.
Collapse
|
38
|
Taetzsch T, Shapiro D, Eldosougi R, Myers T, Settlage RE, Valdez G. The microRNA miR-133b functions to slow Duchenne muscular dystrophy pathogenesis. J Physiol 2021; 599:171-192. [PMID: 32991751 PMCID: PMC8418193 DOI: 10.1113/jp280405] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2020] [Accepted: 09/14/2020] [Indexed: 01/22/2023] Open
Abstract
KEY POINTS Impairment of muscle biogenesis contributes to the progression of Duchenne muscular dystrophy (DMD). As a muscle enriched microRNA that has been implicated in muscle biogenesis, the role of miR-133b in DMD remains unknown. To assess miR-133b function in DMD-affected skeletal muscles, we genetically ablated miR-133b in the mdx mouse model of DMD. We show that deletion of miR-133b exacerbates the dystrophic phenotype of DMD-afflicted skeletal muscle by dysregulating muscle stem cells involved in muscle biogenesis, in addition to affecting signalling pathways related to inflammation and fibrosis. Our results provide evidence that miR-133b may underlie DMD pathology by affecting the proliferation and differentiation of muscle stem cells. ABSTRACT Duchenne muscular dystrophy (DMD) is characterized by progressive skeletal muscle degeneration. No treatments are currently available to prevent the disease. While the muscle enriched microRNA miR-133b has been implicated in muscle biogenesis, its role in DMD remains unknown. To assess miR-133b function in DMD-affected skeletal muscles, we genetically ablated miR-133b in the mdx mouse model of DMD. In the absence of miR-133b, the tibialis anterior muscle of P30 mdx mice is smaller in size and exhibits a thickened interstitial space containing more mononucleated cells. Additional analysis revealed that miR-133b deletion influences muscle fibre regeneration, satellite cell proliferation and differentiation, and induces widespread transcriptomic changes in mdx muscle. These include known miR-133b targets as well as genes involved in cell proliferation and fibrosis. Altogether, our data demonstrate that skeletal muscles utilize miR-133b to mitigate the deleterious effects of DMD.
Collapse
Affiliation(s)
- Thomas Taetzsch
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
| | - Dillon Shapiro
- Molecular Biology, Cell Biology, & Biochemistry Graduate Program, Brown University, Providence, RI, USA
| | - Randa Eldosougi
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
| | - Tracey Myers
- Fralin Biomedical Research Institute at Virginia Tech Carilion, Roanoke, VA, USA
| | | | - Gregorio Valdez
- Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI, USA
- Center for Translational Neuroscience, Robert J. and Nancy D. Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, United States
- Department of Neurology, Warren Alpert Medical School of Brown University, Providence, United States
| |
Collapse
|
39
|
Jiang M, Xu S, Bai M, Zhang A. The emerging role of MEIS1 in cell proliferation and differentiation. Am J Physiol Cell Physiol 2020; 320:C264-C269. [PMID: 33296285 DOI: 10.1152/ajpcell.00422.2020] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cell proliferation and differentiation are the foundation of reproduction and growth. Mistakes in these processes may affect cell survival, or cause cell cycle dysregulation, such as tumorigenesis, birth defects and degenerative diseases, or cell death. Myeloid ecotropic viral integration site 1 (MEIS1) was initially discovered in leukemic mice. Recent research identified MEIS1 as an important transcription factor that regulates cell proliferation and differentiation during cell fate commitment. MEIS1 has a pro-proliferative effect in leukemia cells; however, its overexpression in cardiomyocytes restrains neonatal and adult cardiomyocyte proliferation. In addition, MEIS1 has carcinogenic or tumor suppressive effects in different neoplasms. Thus, this uncertainty suggests that MEIS1 has a unique function in cell proliferation and differentiation. In this review, we summarize the primary findings of MEIS1 in regulating cell proliferation and differentiation. Correlations between MEIS1 and cell fate specification might suggest MEIS1 as a therapeutic target for diseases.
Collapse
Affiliation(s)
- Mingzhu Jiang
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, People's Republic of China
| | - Shuang Xu
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, People's Republic of China
| | - Mi Bai
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, People's Republic of China.,Nanjing Key Lab of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| | - Aihua Zhang
- Department of Nephrology, State Key Laboratory of Reproductive Medicine, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China.,Jiangsu Key Laboratory of Pediatrics, Nanjing Medical University, Nanjing, People's Republic of China.,Nanjing Key Lab of Pediatrics, Children's Hospital of Nanjing Medical University, Nanjing, People's Republic of China
| |
Collapse
|
40
|
Iqbal A, Ping J, Ali S, Zhen G, Juan L, Kang JZ, Ziyi P, Huixian L, Zhihui Z. Role of microRNAs in myogenesis and their effects on meat quality in pig - A review. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2020; 33:1873-1884. [PMID: 32819078 PMCID: PMC7649413 DOI: 10.5713/ajas.20.0324] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/11/2020] [Revised: 07/02/2020] [Accepted: 08/16/2020] [Indexed: 02/02/2023]
Abstract
The demand for food is increasing day by day because of the increasing global population. Therefore, meat, the easiest and largely available source of protein, needs to be produced in large amounts with good quality. The pork industry is a significant shareholder in fulfilling the global meat demands. Notably, myogenesis- development of muscles during embryogenesis- is a complex mechanism which culminates in meat production. But the molecular mechanisms which govern the myogenesis are less known. The involvement of miRNAs in myogenesis and meat quality, which depends on factors such as myofiber composition and intramuscular fat contents which determine the meat color, flavor, juiciness, and water holding capacity, are being extrapolated to increase both the quantity and quality of pork. Various kinds of microRNAs (miRNAs), miR-1, miR-21, miR22, miR-27, miR-34, miR-127, miR-133, miR-143, miR-155, miR-199, miR-206, miR-208, miR-378, and miR-432 play important roles in pig skeletal muscle development. Further, the quality of meat also depends upon myofiber which is developed through the expression of different kinds of miRNAs at different stages. This review will focus on the mechanism of myogenesis, the role of miRNAs in myogenesis, and meat quality with a focus on the pig.
Collapse
Affiliation(s)
- Ambreen Iqbal
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Jiang Ping
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Shaokat Ali
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Gao Zhen
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Liu Juan
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Jin Zi Kang
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Pan Ziyi
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Lu Huixian
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| | - Zhao Zhihui
- Department of Animal Breeding and Genetics, College of Coastal Agricultural Sciences, Guangdong Ocean University, Zhanjiang, Guangdong 524088, China
| |
Collapse
|
41
|
Shigemura M, Welch LC, Sznajder JI. Hypercapnia Regulates Gene Expression and Tissue Function. Front Physiol 2020; 11:598122. [PMID: 33329047 PMCID: PMC7715027 DOI: 10.3389/fphys.2020.598122] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 10/26/2020] [Indexed: 01/20/2023] Open
Abstract
Carbon dioxide (CO2) is produced in eukaryotic cells primarily during aerobic respiration, resulting in higher CO2 levels in mammalian tissues than those in the atmosphere. CO2 like other gaseous molecules such as oxygen and nitric oxide, is sensed by cells and contributes to cellular and organismal physiology. In humans, elevation of CO2 levels in tissues and the bloodstream (hypercapnia) occurs during impaired alveolar gas exchange in patients with severe acute and chronic lung diseases. Advances in understanding of the biology of high CO2 effects reveal that the changes in CO2 levels are sensed in cells resulting in specific tissue responses. There is accumulating evidence on the transcriptional response to elevated CO2 levels that alters gene expression and activates signaling pathways with consequences for cellular and tissue functions. The nature of hypercapnia-responsive transcriptional regulation is an emerging area of research, as the responses to hypercapnia in different cell types, tissues, and species are not fully understood. Here, we review the current understanding of hypercapnia effects on gene transcription and consequent cellular and tissue functions.
Collapse
Affiliation(s)
- Masahiko Shigemura
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL, United States
| | - Lynn C Welch
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL, United States
| | - Jacob I Sznajder
- Division of Pulmonary and Critical Care Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
42
|
Wang L, Song F, Yin H, Zhu W, Fu J, Dong Z, Xu P. Comparative microRNAs expression profiles analysis during embryonic development of common carp, Cyprinus carpio. COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY D-GENOMICS & PROTEOMICS 2020; 37:100754. [PMID: 33186873 DOI: 10.1016/j.cbd.2020.100754] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2020] [Revised: 09/23/2020] [Accepted: 10/26/2020] [Indexed: 12/22/2022]
Abstract
MicroRNAs (miRNAs) play important roles in biological processes by regulating specific gene expression. Limited miRNAs information is available on embryonic development in common carp (Cyprinus carpio) so far. In this study, six important embryonic development stages of C.carpio were collected to perform a times-series of small RNA-seq experiments from cleavage, blastocyst, gastrulation, organ formation, hatching stage to 1 day post-hatching larva. The expression profiles of miRNAs were identified and differentially expressed miRNAs (DEMs) were screened out based on pairwise comparison. A mean of 12,744,989 raw reads and 9,888,123 clean reads were obtained from each library. A total of 2565 miRNAs were identified. 68 of 204 DEMs were overlapped with stage-specific miRNAs, in which 15 were known miRNAs and seemed to play a key role in embryogenesis. Additionally, time-course expression reveals several intriguing fluctuations during embryogenesis. Numerous signaling pathways were identified in embryonic development, including the phototransduction, hippo signaling pathway, Wnt, melanogenesis, histidine metabolism and fatty acid biosynthesis. The results would provide new insight into the roles of miRNAs in embryonic development, and would help us to advance the understanding of miRNA-mediated mechanisms in embryonic development of fish.
Collapse
Affiliation(s)
- Lanmei Wang
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, Jiangsu, China; Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Wuxi 214081, Jiangsu, China
| | - Feibiao Song
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, Jiangsu, China
| | - Haoran Yin
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, Jiangsu, China
| | - Wenbin Zhu
- Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Wuxi 214081, Jiangsu, China
| | - Jianjun Fu
- Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Wuxi 214081, Jiangsu, China
| | - Zaijie Dong
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, Jiangsu, China; Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Wuxi 214081, Jiangsu, China.
| | - Pao Xu
- Wuxi Fisheries College, Nanjing Agricultural University, Wuxi 214081, Jiangsu, China; Freshwater Fisheries Research Center of Chinese Academy of Fishery Sciences, Key Laboratory of Freshwater Fisheries and Germplasm Resources Utilization, Ministry of Agriculture and Rural Affairs, Wuxi 214081, Jiangsu, China.
| |
Collapse
|
43
|
Nutrition and microRNAs: Novel Insights to Fight Sarcopenia. Antioxidants (Basel) 2020; 9:antiox9100951. [PMID: 33023202 PMCID: PMC7601022 DOI: 10.3390/antiox9100951] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 09/28/2020] [Accepted: 09/29/2020] [Indexed: 12/18/2022] Open
Abstract
Sarcopenia is a progressive age-related loss of skeletal muscle mass and strength, which may result in increased physical frailty and a higher risk of adverse events. Low-grade systemic inflammation, loss of muscle protein homeostasis, mitochondrial dysfunction, and reduced number and function of satellite cells seem to be the key points for the induction of muscle wasting, contributing to the pathophysiological mechanisms of sarcopenia. While a range of genetic, hormonal, and environmental factors has been reported to contribute to the onset of sarcopenia, dietary interventions targeting protein or antioxidant intake may have a positive effect in increasing muscle mass and strength, regulating protein homeostasis, oxidative reaction, and cell autophagy, thus providing a cellular lifespan extension. MicroRNAs (miRNAs) are endogenous small non-coding RNAs, which control gene expression in different tissues. In skeletal muscle, a range of miRNAs, named myomiRNAs, are involved in many physiological processes, such as growth, development, and maintenance of muscle mass and function. This review aims to present and to discuss some of the most relevant molecular mechanisms related to the pathophysiological effect of sarcopenia. Besides, we explored the role of nutrition as a possible way to counteract the loss of muscle mass and function associated with ageing, with special attention paid to nutrient-dependent miRNAs regulation. This review will provide important information to better understand sarcopenia and, thus, to facilitate research and therapeutic strategies to counteract the pathophysiological effect of ageing.
Collapse
|
44
|
Shi Y, Mao X, Cai M, Hu S, Lai X, Chen S, Jia X, Wang J, Lai S. miR-194-5p negatively regulates the proliferation and differentiation of rabbit skeletal muscle satellite cells. Mol Cell Biochem 2020; 476:425-433. [PMID: 32997306 PMCID: PMC7867548 DOI: 10.1007/s11010-020-03918-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Accepted: 09/19/2020] [Indexed: 12/20/2022]
Abstract
Skeletal muscle satellite cells (SMSCs), also known as a multipotential stem cell population, play a crucial role during muscle growth and regeneration. In recent years, numerous miRNAs have been associated with the proliferation and differentiation of SMSCs in a number of mammalian species; however, the regulatory mechanisms of miR-194-5p in rabbit SMSCs still remain scarce. In this study, miR-194-5p was first observed to be highly expressed in the rabbit leg muscle. Furthermore, both the mimics and inhibitor of miR-194-5p were used to explore its role in the proliferation and differentiation of rabbit SMSCs cultured in vitro. Results from both EdU and CCK8 assays showed that miR-194-5p inhibited the proliferation of SMSCs. Meanwhile, Mef2c was identified as a target gene of miR-194-5p based on the dual-luciferase reporter assay results. In addition, upregulation of miR-194-5p decreased the expression levels of Mef2c and MyoG during rabbit SMSCs differentiation on Days 3 and 7 of in vitro culture. Taken together, these data demonstrated that miR-194-5p negatively regulates the proliferation and differentiation of rabbit SMSCs by targeting Mef2c.
Collapse
Affiliation(s)
- Yu Shi
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xudong Mao
- Research Institute of Animal Husbandry of Ganzi Tibetan Autonomous Prefecture, Kangding, 626000, China
| | - Mingcheng Cai
- College of Landscape Architecture and Life Science/Institute of Special Plants, Chongqing University of Arts and Sciences, Yongchuan, Chongqing, 402160, China
| | - Shenqiang Hu
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xiulan Lai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Shiyi Chen
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Xianbo Jia
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Jie Wang
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China
| | - Songjia Lai
- Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, 611130, China.
| |
Collapse
|
45
|
Hirota T, Fujita Y, Ieiri I. An updated review of pharmacokinetic drug interactions and pharmacogenetics of statins. Expert Opin Drug Metab Toxicol 2020; 16:809-822. [PMID: 32729746 DOI: 10.1080/17425255.2020.1801634] [Citation(s) in RCA: 83] [Impact Index Per Article: 16.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
INTRODUCTION Hydroxymethylglutaryl-coenzyme A reductase inhibitors (statins) lower cholesterol synthesis in patients with hypercholesterolemia. Increased statin exposure is an important risk factor for skeletal muscle toxicity. Potent inhibitors of cytochrome P450 (CYP) 3A4 significantly increase plasma concentrations of the active forms of simvastatin, lovastatin, and atorvastatin. Fluvastatin is metabolized by CYP2C9, whereas pravastatin, rosuvastatin, and pitavastatin are unaffected by inhibition by either CYP. Statins also have different affinities for membrane transporters involved in processes such as intestinal absorption, hepatic absorption, biliary excretion, and renal excretion. AREAS COVERED In this review, the pharmacokinetic aspects of drug-drug interactions with statins and genetic polymorphisms of CYPs and drug transporters involved in the pharmacokinetics of statins are discussed. EXPERT OPINION Understanding the mechanisms underlying statin interactions can help minimize drug interactions and reduce the adverse side effects caused by statins. Since recent studies have shown the involvement of drug transporters such as OATP and BCRP as well as CYPs in statin pharmacokinetics, further clinical studies focusing on the drug transporters are necessary. The establishment of biomarkers based on novel mechanisms, such as the leakage of microRNAs into the peripheral blood associated with the muscle toxicity, is important for the early detection of statin side effects.
Collapse
Affiliation(s)
- Takeshi Hirota
- Department of Clinical Pharmacokinetics, Division of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Kyushu University , Fukuoka, Japan
| | - Yuito Fujita
- Department of Clinical Pharmacokinetics, Division of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Kyushu University , Fukuoka, Japan
| | - Ichiro Ieiri
- Department of Clinical Pharmacokinetics, Division of Clinical Pharmacy, Graduate School of Pharmaceutical Sciences, Kyushu University , Fukuoka, Japan
| |
Collapse
|
46
|
Exploring the lncRNAs Related to Skeletal Muscle Fiber Types and Meat Quality Traits in Pigs. Genes (Basel) 2020; 11:genes11080883. [PMID: 32759632 PMCID: PMC7465969 DOI: 10.3390/genes11080883] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 07/29/2020] [Accepted: 07/31/2020] [Indexed: 01/07/2023] Open
Abstract
The alteration in skeletal muscle fiber is a critical factor affecting livestock meat quality traits and human metabolic diseases. Long non-coding RNAs (lncRNAs) are a diverse class of non-coding RNAs with a length of more than 200 nucleotides. However, the mechanisms underlying the regulation of lncRNAs in skeletal muscle fibers remain elusive. To understand the genetic basis of lncRNA-regulated skeletal muscle fiber development, we performed a transcriptome analysis to identify the key lncRNAs affecting skeletal muscle fiber and meat quality traits on a pig model. We generated the lncRNA expression profiles of fast-twitch Biceps femoris (Bf) and slow-twitch Soleus (Sol) muscles and identified the differentially expressed (DE) lncRNAs using RNA-seq and performed bioinformatics analyses. This allowed us to identify 4581 lncRNA genes among six RNA libraries and 92 DE lncRNAs between Bf and Sol which are the key candidates for the conversion of skeletal muscle fiber types. Moreover, we detected the expression patterns of lncRNA MSTRG.42019 in different tissues and skeletal muscles of various development stages. In addition, we performed a correlation analyses between the expression of DE lncRNA MSTRG.42019 and meat quality traits. Notably, we found that DE lncRNA MSTRG.42019 was highly expressed in skeletal muscle and its expression was significantly higher in Sol than in Bf, with a positive correlation with the expression of Myosin heavy chain 7 (MYH7) (r = 0.6597, p = 0.0016) and a negative correlation with meat quality traits glycolytic potential (r = −0.5447, p = 0.0130), as well as drip loss (r = −0.5085, p = 0.0221). Moreover, we constructed the lncRNA MSTRG.42019–mRNAs regulatory network for a better understanding of a possible mechanism regulating skeletal muscle fiber formation. Our data provide the groundwork for studying the lncRNA regulatory mechanisms of skeletal muscle fiber conversion, and given the importance of skeletal muscle fiber types in muscle-related diseases, our data may provide insight into the treatment of muscular diseases in humans.
Collapse
|
47
|
Lin D, Chen T, Xie M, Li M, Zeng B, Sun R, Zhu Y, Ye D, Wu J, Sun J, Xi Q, Jiang Q, Zhang Y. Oral Administration of Bovine and Porcine Milk Exosome Alter miRNAs Profiles in Piglet Serum. Sci Rep 2020; 10:6983. [PMID: 32332796 PMCID: PMC7181743 DOI: 10.1038/s41598-020-63485-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 03/20/2020] [Indexed: 12/14/2022] Open
Abstract
Breast milk is the most important nutrient source for newborn mammals. Studies have reported that milk contains microRNAs (miRNAs), which are potential regulatory components. Currently, existing functional and nutritional two competing hypotheses in milk field though little date have been provided for nutritional hypothesis. In this study, we used the qRT-PCR method to evaluated whether milk miRNAs can be absorbed by newborn piglets by feeding them porcine or bovine milk. The result showed that miRNA levels (miR-2284×, 2291, 7134, 1343, 500, 223) were significantly different between bovine and porcine milk. Four miRNAs (miR-2284×, 2291, 7134, 1343) were significantly different in piglet serum after feeding porcine or bovine milk. After separated milk exosomes by ultracentrifugation, the results showed the selected milk miRNAs (miR-2284×, 2291, 7134, 1343) were present in both exosomes and supernatants, and the miRNAs showed the coincidental expression in IPEC-J2 cells. All our founding suggested that the milk miRNAs can be absorbed both in vivo and in vitro, which will building the foundation for understanding whether these sort of miRNAs exert physiological functions after being absorbed and provided additional evidence for the nutritional hypotheses.
Collapse
Affiliation(s)
- Delin Lin
- National Engineering Research Center For Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Province Research Center of Woody Forage Engineering and Technology, Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Ting Chen
- National Engineering Research Center For Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Province Research Center of Woody Forage Engineering and Technology, Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Meiying Xie
- National Engineering Research Center For Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Province Research Center of Woody Forage Engineering and Technology, Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Meng Li
- National Engineering Research Center For Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Province Research Center of Woody Forage Engineering and Technology, Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Bin Zeng
- National Engineering Research Center For Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Province Research Center of Woody Forage Engineering and Technology, Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Ruiping Sun
- Institute of Animal Science and Veterinary Medicine, Hainan Academy of Agricultural Sciences, Haikou, 571100, China
| | - Yanling Zhu
- National Engineering Research Center For Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Province Research Center of Woody Forage Engineering and Technology, Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Dingze Ye
- National Engineering Research Center For Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Province Research Center of Woody Forage Engineering and Technology, Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Jiahan Wu
- National Engineering Research Center For Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Province Research Center of Woody Forage Engineering and Technology, Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Jiajie Sun
- National Engineering Research Center For Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Province Research Center of Woody Forage Engineering and Technology, Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Qianyun Xi
- National Engineering Research Center For Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Province Research Center of Woody Forage Engineering and Technology, Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Qingyan Jiang
- National Engineering Research Center For Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Province Research Center of Woody Forage Engineering and Technology, Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China
| | - Yongliang Zhang
- National Engineering Research Center For Breeding Swine Industry, Guangdong Provincial Key Laboratory of Agro-Animal Genomics and Molecular Breeding, Guangdong Province Research Center of Woody Forage Engineering and Technology, Guangdong Provincial Key Laboratory of Animal Nutrition Control, South China Agricultural University, 483 Wushan Road, Guangzhou, 510642, China.
| |
Collapse
|
48
|
Magadum A, Singh N, Kurian AA, Munir I, Mehmood T, Brown K, Sharkar MTK, Chepurko E, Sassi Y, Oh JG, Lee P, Santos CXC, Gaziel-Sovran A, Zhang G, Cai CL, Kho C, Mayr M, Shah AM, Hajjar RJ, Zangi L. Pkm2 Regulates Cardiomyocyte Cell Cycle and Promotes Cardiac Regeneration. Circulation 2020; 141:1249-1265. [PMID: 32078387 PMCID: PMC7241614 DOI: 10.1161/circulationaha.119.043067] [Citation(s) in RCA: 188] [Impact Index Per Article: 37.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND The adult mammalian heart has limited regenerative capacity, mostly attributable to postnatal cardiomyocyte cell cycle arrest. In the last 2 decades, numerous studies have explored cardiomyocyte cell cycle regulatory mechanisms to enhance myocardial regeneration after myocardial infarction. Pkm2 (Pyruvate kinase muscle isoenzyme 2) is an isoenzyme of the glycolytic enzyme pyruvate kinase. The role of Pkm2 in cardiomyocyte proliferation, heart development, and cardiac regeneration is unknown. METHODS We investigated the effect of Pkm2 in cardiomyocytes through models of loss (cardiomyocyte-specific Pkm2 deletion during cardiac development) or gain using cardiomyocyte-specific Pkm2 modified mRNA to evaluate Pkm2 function and regenerative affects after acute or chronic myocardial infarction in mice. RESULTS Here, we identify Pkm2 as an important regulator of the cardiomyocyte cell cycle. We show that Pkm2 is expressed in cardiomyocytes during development and immediately after birth but not during adulthood. Loss of function studies show that cardiomyocyte-specific Pkm2 deletion during cardiac development resulted in significantly reduced cardiomyocyte cell cycle, cardiomyocyte numbers, and myocardial size. In addition, using cardiomyocyte-specific Pkm2 modified RNA, our novel cardiomyocyte-targeted strategy, after acute or chronic myocardial infarction, resulted in increased cardiomyocyte cell division, enhanced cardiac function, and improved long-term survival. We mechanistically show that Pkm2 regulates the cardiomyocyte cell cycle and reduces oxidative stress damage through anabolic pathways and β-catenin. CONCLUSIONS We demonstrate that Pkm2 is an important intrinsic regulator of the cardiomyocyte cell cycle and oxidative stress, and highlight its therapeutic potential using cardiomyocyte-specific Pkm2 modified RNA as a gene delivery platform.
Collapse
Affiliation(s)
- Ajit Magadum
- Cardiovascular Research Center, Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Neha Singh
- Cardiovascular Research Center, Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Ann Anu Kurian
- Cardiovascular Research Center, Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Irsa Munir
- Cardiovascular Research Center, Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Talha Mehmood
- Cardiovascular Research Center, Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Kemar Brown
- Cardiovascular Research Center, Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Mohammad Tofael Kabir Sharkar
- Cardiovascular Research Center, Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Elena Chepurko
- Cardiovascular Research Center, Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Yassine Sassi
- Cardiovascular Research Center, Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Jae Gyun Oh
- Cardiovascular Research Center, Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Philyoung Lee
- Cardiovascular Research Center, Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Celio XC Santos
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine & Sciences, London SE5 9NU, UK
| | - Avital Gaziel-Sovran
- Cardiovascular Research Center, Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Guoan Zhang
- Proteomics and Metabolomics Core Facility, Weill Cornell Medicine, New York, NY 10021, USA
| | - Chen-Leng Cai
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN 46202, USA
| | - Changwon Kho
- Cardiovascular Research Center, Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Manuel Mayr
- Cardiovascular Research Center, Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine & Sciences, London SE5 9NU, UK
| | - Ajay M. Shah
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine & Sciences, London SE5 9NU, UK
| | - Roger J. Hajjar
- Phospholamban Foundation, Amsterdam,1775 ZH Middenmeer, Netherlands
| | - Lior Zangi
- Cardiovascular Research Center, Mount Sinai Heart, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
- Black Family Stem Cell Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| |
Collapse
|
49
|
Yin J, Qian Z, Chen Y, Li Y, Zhou X. MicroRNA regulatory networks in the pathogenesis of sarcopenia. J Cell Mol Med 2020; 24:4900-4912. [PMID: 32281300 PMCID: PMC7205827 DOI: 10.1111/jcmm.15197] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 02/25/2020] [Accepted: 03/06/2020] [Indexed: 12/11/2022] Open
Abstract
Sarcopenia is an age‐related disease characterized by disturbed homeostasis of skeletal muscle, leading to a decline in muscle mass and function. Loss of muscle mass and strength leads to falls and fracture, and is often accompanied by other geriatric diseases, including osteoporosis, frailty and cachexia, resulting in a general decrease in quality of life and an increase in mortality. Although the underlying mechanisms of sarcopenia are still not completely understood, there has been a marked improvement in the understanding of the pathophysiological changes leading to sarcopenia in recent years. The role of microRNAs (miRNAs), especially, has been clearer in skeletal muscle development and homeostasis. miRNAs form part of a gene regulatory network and have numerous activities in many biological processes. Intervention based on miRNAs may develop into an innovative treatment strategy to conquer sarcopenia. This review is divided into three sections: firstly, the latest understanding of the pathogenesis of sarcopenia is summarized; secondly, increasing evidence for the involvement of miRNAs in the regulation of muscle quantity or quality and muscle homeostasis is highlighted; and thirdly, the possibilities and limitations of miRNAs as a treatment for sarcopenia are explored.
Collapse
Affiliation(s)
- Jiayu Yin
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhiyuan Qian
- Department of Neurosurgery, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yuqi Chen
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Yi Li
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| | - Xiang Zhou
- Department of Cardiology, The Second Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
50
|
Yu Q, Peng C, Ye Z, Tang Z, Li S, Xiao L, Liu S, Yang Y, Zhao M, Zhang Y, Lin H. An estradiol-17β/miRNA-26a/cyp19a1a regulatory feedback loop in the protogynous hermaphroditic fish, Epinephelus coioides. Mol Cell Endocrinol 2020; 504:110689. [PMID: 31891771 DOI: 10.1016/j.mce.2019.110689] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/17/2019] [Accepted: 12/17/2019] [Indexed: 12/27/2022]
Abstract
Cyp19a1a is a key gene responsible for the production of estradiol-17β (E2), the main functional estrogen and a major downstream regulator of reproduction in teleost fish. It is widely known that CYP19 gene expression, aromatase activity, and E2 production can influence gonadal differentiation and sex reversal in teleost fish, but the feedback mechanisms whereby E2 regulates cyp19a1a remain poorly understood, especially regarding the potential roles of endogenous small RNA molecules (miRNAs). Here, we identified miR-26a-5p as a regulatory factor of its predicted target gene (cyp19a1a). In vitro and in vivo studies showed that miR-26a-5p can decrease cyp19a1a expression. Furthermore, high doses of E2 act as a repressor of miR-26a-5p. This study proposes a regulatory feedback loop whereby E2 regulates cyp19a1a through miR-26a-5p, and suggests that this positive feedback is an important aspect of the control of E2 production.
Collapse
Affiliation(s)
- Qi Yu
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266373, China; Southern Marine Science and Engineering Guangdong Laboratory (ZhanJiang), Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Cheng Peng
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, PR China; Guangdong Key Laboratory of Animal Conservation and Resource Utilization, Guangdong Public Laboratory of Wild Animal Conservation and Utilization, Guangdong Institute of Applied Biological Resources, Guangzhou, 510260, China
| | - Zhifeng Ye
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, PR China
| | - Zhujing Tang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, PR China
| | - Shuisheng Li
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (ZhanJiang), Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Ling Xiao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, PR China; Southern Marine Science and Engineering Guangdong Laboratory (ZhanJiang), Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China
| | - Su Liu
- Marine Fisheries Development Center of Guangdong Province, Huizhou, 516081, China
| | - Yuqing Yang
- Marine Fisheries Development Center of Guangdong Province, Huizhou, 516081, China
| | - Mi Zhao
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, PR China.
| | - Yong Zhang
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, PR China; Laboratory for Marine Fisheries Science and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266373, China; Southern Marine Science and Engineering Guangdong Laboratory (ZhanJiang), Fisheries College, Guangdong Ocean University, Zhanjiang, 524088, China; Marine Fisheries Development Center of Guangdong Province, Huizhou, 516081, China.
| | - Haoran Lin
- State Key Laboratory of Biocontrol, Guangdong Provincial Key Laboratory for Aquatic Economic Animals and Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), School of Life Sciences, Sun Yat-Sen University, 510275, Guangzhou, PR China
| |
Collapse
|