1
|
Wang J, Song Y, Tan X, Wang T, Shi Y, Xu X, Du J, Yu Z, Song B. Targeting PIM1 by Bruceine D attenuates skin fibrosis via myofibroblast ferroptosis. Redox Biol 2025; 82:103619. [PMID: 40168881 PMCID: PMC11993190 DOI: 10.1016/j.redox.2025.103619] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2025] [Accepted: 03/25/2025] [Indexed: 04/03/2025] Open
Abstract
Skin pan-fibrosis diseases-such as hypertrophic scar (HS), keloid scar (KS), and systemic sclerosis (SSc)-pose significant threats to patients' health and quality of life. In this study, the authors conducted both in vivo and in vitro experiments and discovered that the serine/threonine kinase PIM1 is upregulated in the myofibroblasts of human HS, KS, and SSc tissues, as well as in various animal models of skin fibrosis. Overexpression of PIM1 enhanced the profibrotic phenotypes of human hypertrophic scar fibroblasts (HSFs), which serve as key effector cells in the pathogenesis of skin pan-fibrosis diseases. Through high-throughput screening and subsequent laboratory assays, we identified the small molecule Bruceine D (BD) as a direct binder of PIM1. BD promoted ferroptosis in HSFs by selectively suppressing the PIM1-KEAP1-NRF2 pathway through augmented degradation of PIM1. In various in vivo models-including a hypertrophic scar mouse model, a rabbit ear hypertrophic scar model, and a bleomycin (BLM)-induced skin fibrosis mouse model-BD effectively attenuated fibrotic phenotypes. Collectively, these findings demonstrate that PIM1 serves as a common biomarker and therapeutic target for skin pan-fibrosis diseases. BD mitigates skin fibrosis by activating ferroptosis via PIM1 inhibition, highlighting its great translational potential and high promise to be developed to a clinical drug in treating these conditions, especially those with abnormally elevated PIM1 expression.
Collapse
Affiliation(s)
- Jianzhang Wang
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yajuan Song
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xiaoying Tan
- Department of Nephrology and Rheumatology, University Medical Center Göttingen, Göttingen, 37075, Germany
| | - Tong Wang
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Yi Shi
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Xingbo Xu
- Clinic for Cardiology and Pulmonology, University Medical Center Göttingen, Göttingen, 37075, Germany.
| | - Juan Du
- Department of Dermatology, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
| | - Zhou Yu
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| | - Baoqiang Song
- Department of Plastic Surgery, Xijing Hospital, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
2
|
Verçosa BLA, Muniz-Junqueira MI, Borges LDF, Melo MN, Vasconcelos AC. Enhanced apoptosis, inflammatory cellularity, collagen deposition, and interaction between fibroblasts and Leishmania amastigotes in undamaged ear skin of dogs with leishmaniosis. Vet Parasitol 2025; 337:110488. [PMID: 40315687 DOI: 10.1016/j.vetpar.2025.110488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2025] [Revised: 04/25/2025] [Accepted: 04/27/2025] [Indexed: 05/04/2025]
Abstract
Fibroblasts are located close to the area of skin inoculation of Leishmania promastigotes. They are a potential cellular target for early parasite infection, harboring amastigotes of Leishmania spp. This study aimed to determine the apoptosis in fibroblasts, and to correlate these results with inflammation, parasite load, AgNOR (Argyrophilic Nucleolar Organizer Region) index, and clinical features in Leishmania-affected dogs. Fragments from the undamaged ear skin of 16 Leishmania-infected and seven uninfected dogs were evaluated by histomorphometry and immunohistochemical analysis, which correlated fibroblast apoptosis to clinical manifestation and parasite load. Ultra-thin sections were examined under transmission electronic microscopy (TEM). When applying immunohistochemical analysis, Leishmania amastigotes were only found in clinically affected dogs. The cellularity of the inflammatory infiltrate and the AgNOR index (fibroblasts and inflammatory infiltrate) were higher in clinically affected dogs. The collagen deposition score was statistically significantly higher in Leishmania-infected dogs. The apoptotic index of inflammatory cells and fibroblasts proved to be higher in clinically affected dogs. From an ultrastructural point of view, apoptotic cells shrank, while the nuclear chromatin and cytoplasm condensed. Amastigotes were observed within inflammatory cells (neutrophils and macrophages) and in the inner portions of fibroblasts. Fibroblast apoptosis was related to both the increase in the parasite load and the intensity of the inflammatory response. Histomorphometric assessments (inflammation, parasite load, AgNOR index, and apoptosis) and clinical manifestations were also associated. Collagen deposition was positively correlated with AgNOR expression and the apoptotic index (inflammatory cell and fibroblast). Therefore, fibroblast apoptosis contributes to the infection process, pathogenesis, and chronicity of canine leishmaniosis. Moreover, fibroblasts may well provide an escape mechanism for immune defenses against Leishmania.
Collapse
Affiliation(s)
- Barbara Laurice Araújo Verçosa
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil; Laboratório de Imunologia Celular, Faculdade de Medicina, Universidade de Brasília, Brasília, Brazil.
| | | | - Luciano de F Borges
- Departamento de Ciências Biológicas, Universidade Federal de São Paulo, Diadema, São Paulo, Brazil.
| | - Maria Norma Melo
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| | - Anilton Cesar Vasconcelos
- Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Minas Gerais, Brazil.
| |
Collapse
|
3
|
Nakata T, Kirita Y, Umehara M, Nakamura M, Sawai S, Minamida A, Yamauchi-Sawada H, Sunahara Y, Matoba Y, Okuno-Ozeki N, Nakamura I, Nakai K, Yagi-Tomita A, Yamashita N, Tamagaki K, Humphreys BD, Matoba S, Kusaba T. Injured tubular epithelia-derived CCN1 promotes the mobilization of fibroblasts toward injury sites after kidney injury. iScience 2025; 28:112176. [PMID: 40224016 PMCID: PMC11987671 DOI: 10.1016/j.isci.2025.112176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/28/2025] [Accepted: 03/04/2025] [Indexed: 04/15/2025] Open
Abstract
Humoral factors that prompt fibroblasts to migrate to an injury site at an appropriate time point are deemed indispensable for repair after kidney injury. We herein demonstrated the pivotal roles of injured tubule-derived cellular communication network factor 1 (CCN1) in the mobilization of fibroblasts to the injury site after kidney injury. Based on analyses of ligand-receptor interactions in vitro and tubular epithelial-specific transcriptomics in vivo, we identified the up-regulation of CCN1 during the early phases of kidney injury. CCN1 promotes fibroblast chemotaxis through focal adhesion kinase-extracellular signal-regulated kinase (ERK) signaling. In vivo analyses utilizing tubular-specific CCN1 knockout (KO) mice demonstrated the sparse accumulation of fibroblasts around injured sites after injury, resulting in ameliorated tissue fibrosis in CCN1-KO mice. These results reveal an epithelial-fibroblast CCN1 signaling axis that mobilizes fibroblasts to injured tubule early after acute injury but that promotes interstitial fibrosis at late time points.
Collapse
Affiliation(s)
- Tomohiro Nakata
- Department of Nephrolog, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yuhei Kirita
- Department of Nephrolog, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Minato Umehara
- Department of Nephrolog, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Masashi Nakamura
- Department of Nephrolog, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Shinji Sawai
- Department of Nephrolog, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Atsushi Minamida
- Department of Nephrolog, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Hiroko Yamauchi-Sawada
- Department of Nephrolog, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yasuto Sunahara
- Department of Nephrolog, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Yayoi Matoba
- Department of Nephrolog, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Natsuko Okuno-Ozeki
- Department of Nephrolog, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Itaru Nakamura
- Department of Nephrolog, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Kunihiro Nakai
- Department of Nephrolog, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Aya Yagi-Tomita
- Department of Nephrolog, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Noriyuki Yamashita
- Department of Nephrolog, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Keiichi Tamagaki
- Department of Nephrolog, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Benjamin D. Humphreys
- Division of Nephrology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Satoaki Matoba
- Department of Cardiovascular Medicine, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| | - Tetsuro Kusaba
- Department of Nephrolog, Graduate School of Medical Science, Kyoto Prefectural University of Medicine, Kyoto, Japan
| |
Collapse
|
4
|
McDermott M, Mehta R, Roussos Torres ET, MacLean AL. Modeling the dynamics of EMT reveals genes associated with pan-cancer intermediate states and plasticity. NPJ Syst Biol Appl 2025; 11:31. [PMID: 40210876 PMCID: PMC11986130 DOI: 10.1038/s41540-025-00512-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Accepted: 03/28/2025] [Indexed: 04/12/2025] Open
Abstract
Epithelial-mesenchymal transition (EMT) is a cell state transition co-opted by cancer that drives metastasis via stable intermediate states. Here we study EMT dynamics to identify marker genes of highly metastatic intermediate cells via mathematical modeling with single-cell RNA sequencing (scRNA-seq) data. Across multiple tumor types and stimuli, we identified genes consistently upregulated in EMT intermediate states, many previously unrecognized as EMT markers. Bayesian parameter inference of a simple EMT mathematical model revealed tumor-specific transition rates, providing a framework to quantify EMT progression. Consensus analysis of differential expression, RNA velocity, and model-derived dynamics highlighted SFN and NRG1 as key regulators of intermediate EMT. Independent validation confirmed SFN as an intermediate state marker. Our approach integrates modeling and inference to identify genes associated with EMT dynamics, offering biomarkers and therapeutic targets to modulate tumor-promoting cell state transitions driven by EMT.
Collapse
Affiliation(s)
- MeiLu McDermott
- Department of Quantitative and Computational Biology, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, USA
| | - Riddhee Mehta
- Department of Quantitative and Computational Biology, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, USA
| | - Evanthia T Roussos Torres
- Department of Medicine, Division of Medical Oncology, Keck School of Medicine, Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA, USA
| | - Adam L MacLean
- Department of Quantitative and Computational Biology, Dornsife College of Letters, Arts and Sciences, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
5
|
Dworak H, Rozmaric T, Grillari J, Ogrodnik M. Cells of all trades - on the importance of spatial positioning of senescent cells in development, healing and aging. FEBS Lett 2025:10.1002/1873-3468.70037. [PMID: 40156464 PMCID: PMC7617592 DOI: 10.1002/1873-3468.70037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/28/2025] [Accepted: 03/04/2025] [Indexed: 04/01/2025]
Abstract
Biological processes are often spatially regulated, ensuring molecular and cellular events occur in their most strategically advantageous locations. Cellular senescence, marked by cell cycle arrest and hypersecretion, is recognized as an important part of physiological processes like development and healing, but it also contributes to aging and disease. However, the spatial distribution of senescent cells and its physiological and pathological impact remain unclear. Here we compile evidence on senescent cell localization in development, healing, and aging. We emphasize the significance of their spatial patterns and speculate on the effects of disrupted spatial positioning of senescence in relation to pathologies. To summarize the specific spatial functions of senescent cells, we propose to refer to them as 'barrier' and 'conductor' functions. The 'barrier' function of senescent cells, due to their altered morphology and apoptosis resistance, separates tissues and builds a border between two environments. The conductor function, with the secretion of signaling factors, influences the surrounding area and stimulates migration, differentiation, or proliferation, among other processes. Overall, this Review explores the spatial patterning of cellular senescence in biological processes, highlighting its dual roles as 'barrier' and 'conductor' functions, and examines the implications of senescent cell distribution in development, healing, aging, and disease.
Collapse
Affiliation(s)
- Helene Dworak
- Ludwig Boltzmann Institute for Traumatology. The Research Center in cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Tomaz Rozmaric
- Ludwig Boltzmann Institute for Traumatology. The Research Center in cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| | - Johannes Grillari
- Ludwig Boltzmann Institute for Traumatology. The Research Center in cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
- Institute of Molecular Biotechnology, BOKU University, Vienna, Muthgasse 18, Vienna, Austria
| | - Mikolaj Ogrodnik
- Ludwig Boltzmann Institute for Traumatology. The Research Center in cooperation with AUVA, Vienna, Austria
- Austrian Cluster for Tissue Regeneration, Vienna, Austria
| |
Collapse
|
6
|
Shen L, Zhou Y, Gong J, Fan H, Liu L. The role of macrophages in hypertrophic scarring: molecular to therapeutic insights. Front Immunol 2025; 16:1503985. [PMID: 40226618 PMCID: PMC11986478 DOI: 10.3389/fimmu.2025.1503985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Accepted: 03/14/2025] [Indexed: 04/15/2025] Open
Abstract
Hypertrophic Scar (HS) is a common fibrotic disease of the skin, usually caused by injury to the deep dermis due to trauma, burns, or surgical injury. The main feature of HS is the thickening and hardening of the skin, often accompanied by itching and pain, which seriously affects the patient's quality of life. Macrophages are involved in all stages of HS genesis through phenotypic changes. M1-type macrophages primarily function in the early inflammatory phase by secreting pro-inflammatory factors, while M2-type macrophages actively contribute to tissue repair and fibrosis. Despite advances in understanding HS pathogenesis, the precise mechanisms linking macrophage phenotypic changes to fibrosis remain incompletely elucidated. This review addresses these gaps by discussing the pathological mechanisms of HS formation, the phenotypic changes of macrophages at different stages of HS formation, and the pathways through which macrophages influence HS progression. Furthermore, emerging technologies for HS treatment and novel therapeutic strategies targeting macrophages are highlighted, offering potential avenues for improved prevention and treatment of HS.
Collapse
Affiliation(s)
| | | | | | - Hongqiao Fan
- Department of Galactophore, The First Hospital of Hunan University of Chinese
Medicine, Changsha, Hunan, China
| | - Lifang Liu
- Department of Galactophore, The First Hospital of Hunan University of Chinese
Medicine, Changsha, Hunan, China
| |
Collapse
|
7
|
Liu Y, Yang Z, Lin N, Liu Y, Chen H. Highly expressed VGLL3 in keloid fibroblasts promotes glycolysis and collagen production via the activation of Wnt/β-catenin signaling. Cell Signal 2025; 127:111604. [PMID: 39826675 DOI: 10.1016/j.cellsig.2025.111604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2024] [Revised: 12/24/2024] [Accepted: 01/11/2025] [Indexed: 01/22/2025]
Abstract
PURPOSE This study investigated the effects and related mechanisms of Vestigial-like family member 3 (VGLL3) on keloid fibroblast (KF) proliferation, apoptosis, collagen production, and glycolysis. METHODS Western blot, qRT-PCR, and immunohistochemistry were used for determining VGLL3 expression. KF viability, proliferation, and apoptosis were assessed using CCK-8 assay, EdU assay, and flow cytometry. Changes in the protein expression levels of α-SMA, fibronectin, collagen I, and collagen III were examined utilizing western blotting. The pathways related to VGLL3 were analyzed using Gene Set Enrichment Analysis. Changes in glycolysis were assessed by measuring oxygen consumption rate (OCR), extracellular acidification rate (ECAR), glucose uptake, and lactate production. WNT2 and β-catenin protein levels were measured using western blotting. RESULTS VGLL3 was upregulated in human keloid tissues. In KFs, overexpression of VGLL3 inhibited cell apoptosis, promoted cell proliferation and protein expression of α-SMA, fibronectin, collagen I, and collagen III. Moreover, it reduced OCR level, and increased the levels of ECAR, glucose uptake, and lactate production. On the other hand, the knockdown of VGLL3 had the opposite effect. WNT2 and β-catenin protein levels were enhanced by overexpression of VGLL3 and reduced by VGLL3 knockdown. Silencing of WNT2 reversed the effects of VGLL3 on apoptosis, proliferation, collagen production, and glycolysis in KFs. CONCLUSIONS VGLL3 promoted glycolysis in KFs and keloid progression, which was achieved through the activation of Wnt signaling pathway. Therefore, targeting VGLL3 may be a promising therapeutic strategy for the treatment of keloids.
Collapse
Affiliation(s)
- Yining Liu
- Department of Burn and Plastic Surgery, the Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, PR China; Medical College, Qingdao University, Qingdao 266003, Shandong, PR China
| | - Zelei Yang
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, PR China
| | - Nan Lin
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, PR China
| | - Yanxin Liu
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, PR China
| | - Huaxia Chen
- Department of Burn and Plastic Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, PR China.
| |
Collapse
|
8
|
Chastney MR, Kaivola J, Leppänen VM, Ivaska J. The role and regulation of integrins in cell migration and invasion. Nat Rev Mol Cell Biol 2025; 26:147-167. [PMID: 39349749 DOI: 10.1038/s41580-024-00777-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/23/2024] [Indexed: 01/29/2025]
Abstract
Integrin receptors are the main molecular link between cells and the extracellular matrix (ECM) as well as mediating cell-cell interactions. Integrin-ECM binding triggers the formation of heterogeneous multi-protein assemblies termed integrin adhesion complexes (IACs) that enable integrins to transform extracellular cues into intracellular signals that affect many cellular processes, especially cell motility. Cell migration is essential for diverse physiological and pathological processes and is dysregulated in cancer to favour cell invasion and metastasis. Here, we discuss recent findings on the role of integrins in cell migration with a focus on cancer cell dissemination. We review how integrins regulate the spatial distribution and dynamics of different IACs, covering classical focal adhesions, emerging adhesion types and adhesion regulation. We discuss the diverse roles integrins have during cancer progression from cell migration across varied ECM landscapes to breaching barriers such as the basement membrane, and eventual colonization of distant organs.
Collapse
Affiliation(s)
- Megan R Chastney
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Jasmin Kaivola
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Veli-Matti Leppänen
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland
| | - Johanna Ivaska
- Turku Bioscience Centre, University of Turku and Åbo Akademi University, Turku, Finland.
- Department of Life Technologies, University of Turku, Turku, Finland.
- InFLAMES Research Flagship Center, University of Turku, Turku, Finland.
- Western Finnish Cancer Center (FICAN West), University of Turku, Turku, Finland.
- Foundation for the Finnish Cancer Institute, Helsinki, Finland.
| |
Collapse
|
9
|
Xu F, Gao Y, Xin H, Cao C, Ma W, Sun W, Ma Q. A review on multifunctional calcium alginate fibers for full-time and multipurposed wound treatment: From fundamentals to advanced applications. Int J Biol Macromol 2025; 290:139133. [PMID: 39722391 DOI: 10.1016/j.ijbiomac.2024.139133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2024] [Revised: 12/09/2024] [Accepted: 12/22/2024] [Indexed: 12/28/2024]
Abstract
Recent progress in wound healing has highlighted the need for more effective treatment strategies capable of addressing the complex biological and physiological challenges of wound repair. Traditional wound dressings often fail to address the complex and evolving needs of chronic, acute, and burn wounds, particularly in terms of promoting healing, preventing infection, and supporting tissue regeneration. In response to these challenges, calcium alginate fibers (CAFs) have emerged as promising materials, characterized by their exceptional structural properties and diverse biological functions, offering significant commercial potential for the development of advanced wound dressings and therapeutic solutions. Here, a brief review of the CAFs for promoting wound healing is presented, with specific discussions of the fundamental characteristics of CAFs and its feasibility to be applied for adjusting physiological and pathological processes involved in wound healing. Then, a comprehensive and in-depth depiction of emerging representative fabrication techniques for generating CAFs is categorized and reviewed. Moreover, emerging applications benefits from the CAFs are reviewed, highlighting the multifunctional roles and benefits of CAFs in facilitating wound repair. Finally, the challenges and perspectives for further advancing CAFs toward a more powerful and versatile therapeutic strategy are discussed, particularly regarding new opportunities in biomedical research and clinical applications.
Collapse
Affiliation(s)
- Fenglan Xu
- Department of Clinical Pharmacy, The Affiliated Hospital of Jiangsu University, Jiangsu University, Zhenjiang 212001, China; School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Yang Gao
- Department of Pharmacy, Weifang People's Hospital, Weifang 261041, China; School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Huan Xin
- School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Chenxi Cao
- School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Wenyuan Ma
- School of Pharmacy, Qingdao University, Qingdao 266071, China
| | - Wentao Sun
- School of Health and Life Sciences, University of Health and Rehabilitation Sciences, Qingdao 266113, China.
| | - Qingming Ma
- School of Pharmacy, Qingdao University, Qingdao 266071, China.
| |
Collapse
|
10
|
Zhang L, Xie J, Dai W, Lu B, Yi S. Schwann cells in regeneration and cancer. Front Pharmacol 2025; 16:1506552. [PMID: 39981185 PMCID: PMC11840318 DOI: 10.3389/fphar.2025.1506552] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/09/2025] [Indexed: 02/22/2025] Open
Abstract
Schwann cells are specific peripheral glial cells with remarkable plasticity following peripheral nerve injury. Injury responses stimulate c-Jun activation in Schwann cells, drive epithelial-mesenchymal transition and cellular phenotypic changes, and induce the generation of reprogrammed repair Schwann cells to orchestrate peripheral nerve regeneration process. Schwann cells and/or Schwann cell-derived molecules are commonly used as supporting cells and/or neurotrophic factors to construct Schwann cell-based tissue-engineered nerve grafts for repairing severe peripheral nerve injury with long defects. Transplantation of Schwann cells and/or Schwann cell-derived molecules also serves as a helpful approach for the treatment of other injured tissues, such as the spinal cord, skin, digit tip, and bone. Schwann cells are not only associated with tissue regeneration but also involved in tumorigenesis and tumor progression. Schwann cells are the major cellular component of neurofibromatosis type 1 and the sole cell type in neurofibromatosis type 2 and schwannomatosis. In addition, Schwann cells also function as an important player in the tumor microenvironment and aid in the growth and invasiveness of many other solid cancers. In the present review, we outline the physiological and pathological activities of Schwann cells and discuss the functional roles of Schwann cells in homeostasis, regeneration, and cancer.
Collapse
Affiliation(s)
- Lan Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Jiale Xie
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Wenyu Dai
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Bing Lu
- Department of Clinical Biobank and Institute of Oncology, Affiliated Hospital of Nantong University, Nantong University, Nantong, Jiangsu, China
| | - Sheng Yi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| |
Collapse
|
11
|
Ghadimi T, Latifi N, Hivechi A, Hosseinpour Sarmadi V, Bayat Shahbazi S, Amini N, B Milan P, Abbaszadeh A, Larijani G, Fathalian H, Mortazavi S, Latifi F, Ghadimi F, Farokh Forghani S, Naderi Gharahgheshlagh S. Sargassum glaucescens Extract/Marine-Derived Collagen Blend Sponge and Their Properties for Wound Healing. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2025; 27:25. [PMID: 39751891 DOI: 10.1007/s10126-024-10402-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 12/05/2024] [Indexed: 01/04/2025]
Abstract
Burn wounds are challenging to treat due to considerable tissue damage and fluid loss. Creating wound dressings from natural and biological materials makes it possible to treat wounds and promote rapid epithelialization to speed healing and restore skin function. As a result, the ability of a collagen scaffold (Col) made from rainbow trout (Oncorhynchus mykiss) and putative bioactive phytochemical components from a Sargassum glaucescens (S. glaucescens) extract (SGE) to promote burn wound healing was assessed in this work. Synthesized collagen (40 mg/ml)/SGE (1-3 mg/ml) samples were then characterized physiochemically and physiologically. The physicochemical examination validated the bioactive component of SGE, the type of collagen (type I, α1, and α2), the successful incorporation of SGE into collagen scaffolds (Col/SGE), the thermal stability, and excellent hydrophilicity and water absorption capacity of produced scaffolds. Moreover, biological experiments approved the excellent antioxidant and antibacterial activity of SGE, structural stability improvement against degradation, and cell proliferation enhancement without cell toxicity. The results showed the Col/SGE 3 mg/ml sample also had the highest level of cell activity, according to the antibacterial and cell viability assays. Additionally, using Col/SGE in vivo on burn wounds in rat models demonstrated a quicker rate of wound healing with stronger re-epithelialization and dermal remodeling, fewer inflammatory cells, more fibroblast cells, and great collagen buildup. Therefore, since the collagen/SGE scaffold is structurally stable and can potentially promote cell proliferation without causing cell toxicity, the acquired results suggested that it may significantly impact wound healing.
Collapse
Affiliation(s)
- Tayyeb Ghadimi
- Burn Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Plastic and Reconstructive Surgery, Hazrat Fatemeh Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Noorahmad Latifi
- Burn Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Plastic and Reconstructive Surgery, Hazrat Fatemeh Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ahmad Hivechi
- Department of Plastic and Reconstructive Surgery, Hazrat Fatemeh Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
- Institutes of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
- Institute of Pharmacy, Martin-Luther-University Halle-Wittenberg, Halle (Saale), Germany
| | - Vahid Hosseinpour Sarmadi
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Institutes of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | | - Naser Amini
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Institutes of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Peiman B Milan
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Institutes of Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Abolfazl Abbaszadeh
- Department of Plastic and Reconstructive Surgery, Hazrat Fatemeh Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Ghazaleh Larijani
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Hamid Fathalian
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Shokoufeh Mortazavi
- Department of Plastic and Reconstructive Surgery, Hazrat Fatemeh Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Fatemeh Latifi
- Department of Oral and Maxillofacial Surgery, Dental School, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Ghadimi
- Faculty of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Siamak Farokh Forghani
- Burn Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Plastic and Reconstructive Surgery, Hazrat Fatemeh Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| | - Soheila Naderi Gharahgheshlagh
- Burn Research Center, Iran University of Medical Sciences, Tehran, Iran.
- Department of Plastic and Reconstructive Surgery, Hazrat Fatemeh Hospital, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
12
|
Chen C, Yang J, Shang R, Tang Y, Cai X, Chen Y, Liu Z, Hu W, Zhang W, Zhang X, Huang Y, Hu X, Yin W, Lu Q, Sheng H, Fan D, Ju Z, Luo G, He W. Orchestration of Macrophage Polarization Dynamics by Fibroblast-Secreted Exosomes during Skin Wound Healing. J Invest Dermatol 2025; 145:171-184.e6. [PMID: 38838771 DOI: 10.1016/j.jid.2024.05.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/30/2024] [Accepted: 05/04/2024] [Indexed: 06/07/2024]
Abstract
Macrophages undertake pivotal yet dichotomous functions during skin wound healing, mediating both early proinflammatory immune activation and late anti-inflammatory tissue remodeling processes. The timely phenotypic transition of macrophages from inflammatory M1 to proresolving M2 activation states is essential for efficient healing. However, the endogenous mechanisms calibrating macrophage polarization in accordance with the evolving tissue milieu remain undefined. In this study, we reveal an indispensable immunomodulatory role for fibroblast-secreted exosomes in directing macrophage activation dynamics. Fibroblast-derived exosomes permitted spatiotemporal coordination of macrophage phenotypes independent of direct intercellular contact. Exosomes enhanced macrophage sensitivity to both M1 and M2 polarizing stimuli, yet they also accelerated timely switching from M1 to M2 phenotypes. Exosome inhibition dysregulated macrophage responses, resulting in aberrant inflammation and impaired healing, whereas provision of exogenous fibroblast-derived exosomes corrected defects. Topical application of fibroblast-derived exosomes onto chronic diabetic wounds normalized dysregulated macrophage activation to resolve inflammation and restore productive healing. Our findings elucidate fibroblast-secreted exosomes as remote programmers of macrophage polarization that calibrate immunological transitions essential for tissue repair. Harnessing exosomes represents a previously unreported approach to steer productive macrophage activation states with immense therapeutic potential for promoting healing in chronic inflammatory disorders.
Collapse
Affiliation(s)
- Cheng Chen
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Jiacai Yang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Ruoyu Shang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Yuanyang Tang
- Department of Infectious Diseases, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Xin Cai
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Yunxia Chen
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Zhihui Liu
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Wengang Hu
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Weiguang Zhang
- Department of Intensive Care, Southwest Hospital, Army Medical University, Chongqing, China
| | - Xiaorong Zhang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Yong Huang
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Xiaohong Hu
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Wenjing Yin
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China; Academy of Biological Engineering, Chongqing University, Chongqing, China
| | - Qudong Lu
- Department of Urology, Army 73rd Group Military Hospital, Xiamen, China
| | - Hao Sheng
- Department of Urology, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Dejiang Fan
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China
| | - Zhenyu Ju
- Key Laboratory of Regenerative Medicine of Ministry of Education, Guangzhou Regenerative Medicine and Health Guangdong Laboratory, Institute of Aging and Regenerative Medicine, Jinan University, Guangzhou, China
| | - Gaoxing Luo
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China.
| | - Weifeng He
- Institute of Burn Research, State Key Laboratory of Trauma, Burn and Combined Injury, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, China; Chongqing Key Laboratory for Disease Proteomics, Chongqing, China.
| |
Collapse
|
13
|
Yin M, Tong X, Feng Y, Zhang Z, Zhu M, Qiu Q, Huang Y, Hao X, Liu Z, Hu X, Gong C. Polyhedrin microcrystals embedded with bFGF promote wound healing. Int J Biol Macromol 2024; 282:136711. [PMID: 39490869 DOI: 10.1016/j.ijbiomac.2024.136711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/07/2024] [Accepted: 10/17/2024] [Indexed: 11/05/2024]
Abstract
Growth factors play a critical role in wound healing, and finding a suitable biosustained-release system has always been a research hotspot. Bombyx mori cypovirus (BmCPV) is an insect virus, which produces polyhedra that encapsulate progeny virions. In this study, we found that the viral structural protein VP7 encoded by the BmCPV genomic dsRNAs S7 segment can interact with polyhedrin (Polh) encoded by the BmCPV genomic dsRNAs S10 segment. We also confirmed that the amino acid sequence at position 331-360 (VP7-tag) of VP7 is needed to interact with Polh. We found that VP7-tag can be used as an immobilization signal to direct the incorporation of foreign proteins into polyhedra. Furthermore, we constructed polyhedra (bFGF-polyhedra) containing basic fibroblast growth factor (bFGF) using a baculovirus expression system co-expressing Polh and bFGF-VP7 (fusion of VP7-tag to C-terminus of bFGF). We found that bFGF-VP7 embedded into polyhedra was difficult to degrade in the natural environment, and bFGF-VP7 was continuously released from the polyhedra, enhancing cell proliferation and migration. The animal model was used to assess the effect of bFGF-polyhedra spray on the healing of full-thickness wounds. bFGF-polyhedra promoted the expression of TGF-β1, α-SMA, and PCNA, inhibited the expression of proinflammatory factors NF-κB and COX-2, promoted the proliferation and differentiation of fibroblasts, enhanced collagen production and epidermal regeneration, and improved wound healing. These results indicated that bFGF-polyhedra has a promising potential for accelerating wound healing.
Collapse
Affiliation(s)
- Mei Yin
- School of Life Science, Soochow University, Suzhou 215123, China
| | - Xinyu Tong
- School of Life Science, Soochow University, Suzhou 215123, China
| | - Yongjie Feng
- School of Life Science, Soochow University, Suzhou 215123, China
| | - Ziyao Zhang
- School of Life Science, Soochow University, Suzhou 215123, China
| | - Min Zhu
- School of Life Science, Soochow University, Suzhou 215123, China
| | - Qunnan Qiu
- School of Life Science, Soochow University, Suzhou 215123, China
| | - Yuqing Huang
- School of Life Science, Soochow University, Suzhou 215123, China
| | - Xinyue Hao
- School of Life Science, Soochow University, Suzhou 215123, China
| | - Zhuo Liu
- School of Life Science, Soochow University, Suzhou 215123, China
| | - Xiaolong Hu
- School of Life Science, Soochow University, Suzhou 215123, China; Institute of Agricultural Biotechnology and Ecological Research, Soochow University, Suzhou 215123, China.
| | - Chengliang Gong
- School of Life Science, Soochow University, Suzhou 215123, China; Institute of Agricultural Biotechnology and Ecological Research, Soochow University, Suzhou 215123, China.
| |
Collapse
|
14
|
Karakuş NR, Türk S, Guney Eskiler G, Syzdykbayev M, Appazov NO, Özacar M. Investigation of Tannic Acid Crosslinked PVA/PEI-Based Hydrogels as Potential Wound Dressings with Self-Healing and High Antibacterial Properties. Gels 2024; 10:682. [PMID: 39590038 PMCID: PMC11593458 DOI: 10.3390/gels10110682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/11/2024] [Accepted: 10/18/2024] [Indexed: 11/28/2024] Open
Abstract
This study developed hydrogels containing different ratios of TA using polyvinyl alcohol (PVA) and polyethyleneimine (PEI) polymers crosslinked with tannic acid (TA) for the treatment of burn wounds. Various tests, such as scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), swelling, moisture retention, contact angle, tensile strength, the scratch test, antibacterial activity and the in vitro drug-release test, were applied to characterize the developed hydrogels. Additionally, the hydrogels were examined for cytotoxic properties and cell viability with the WST-1 test. TA improved both the self-healing properties of the hydrogels and showed antibacterial activity, while the added gentamicin (GEN) further increased the antibacterial activities of the hydrogels. The hydrogels exhibited good hydrophilic properties and high swelling capacity, moisture retention, and excellent antibacterial activity, especially to S. aureus. In addition, the swelling and drug-release kinetics of hydrogels were investigated, and while swelling of hydrogels obeyed the pseudo-second-order modeling, the drug release occurred in a diffusion-controlled manner according to the Higuchi and Korsmeyer-Peppas models. These results show that PVA/PEI-based hydrogels have promising potential for wound dressings with increased mechanical strength, swelling, moisture retention, self-healing, and antibacterial properties.
Collapse
Affiliation(s)
- Nimet Rumeysa Karakuş
- Department of Biomedical Engineering, Institute of Natural Sciences, Sakarya University, 54187 Sakarya, Türkiye;
- Biomaterials, Energy, Photocatalysis, Enzyme Technology, Nano & Advanced Materials, Additive Manufacturing, Environmental Applications and Sustainability Research & Development Group (BIOENAMS R & D Group), Sakarya University, 54050 Sakarya, Türkiye;
| | - Serbülent Türk
- Biomaterials, Energy, Photocatalysis, Enzyme Technology, Nano & Advanced Materials, Additive Manufacturing, Environmental Applications and Sustainability Research & Development Group (BIOENAMS R & D Group), Sakarya University, 54050 Sakarya, Türkiye;
- Biomedical, Magnetic and Semiconductor Materials Application and Research Center (BIMAS-RC), Sakarya University, 54187 Sakarya, Türkiye
| | - Gamze Guney Eskiler
- Department of Medical Biology, Faculty of Medicine, Sakarya University, 54100 Sakarya, Türkiye;
| | - Marat Syzdykbayev
- Laboratory of Engineering Profile “Physical and Chemical Methods of Analysis”, Korkyt Ata Kyzylorda University, Aiteke bi Str., 29A, Kyzylorda 120014, Kazakhstan;
| | - Nurbol O. Appazov
- Laboratory of Engineering Profile “Physical and Chemical Methods of Analysis”, Korkyt Ata Kyzylorda University, Aiteke bi Str., 29A, Kyzylorda 120014, Kazakhstan;
- KazEcoChem LLP, D.Konaev Str. 12, Astana 010010, Kazakhstan
| | - Mahmut Özacar
- Biomaterials, Energy, Photocatalysis, Enzyme Technology, Nano & Advanced Materials, Additive Manufacturing, Environmental Applications and Sustainability Research & Development Group (BIOENAMS R & D Group), Sakarya University, 54050 Sakarya, Türkiye;
- Department of Chemistry, Faculty of Science, Sakarya University, 54050 Sakarya, Türkiye
| |
Collapse
|
15
|
Preetam S, Ghosh A, Mishra R, Pandey A, Roy DS, Rustagi S, Malik S. Electrical stimulation: a novel therapeutic strategy to heal biological wounds. RSC Adv 2024; 14:32142-32173. [PMID: 39399261 PMCID: PMC11467653 DOI: 10.1039/d4ra04258a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 09/02/2024] [Indexed: 10/15/2024] Open
Abstract
Electrical stimulation (ES) has emerged as a powerful therapeutic modality for enhancing biological wound healing. This non-invasive technique utilizes low-level electrical currents to promote tissue regeneration and expedite the wound healing process. ES has been shown to accelerate wound closure, reduce inflammation, enhance angiogenesis, and modulate cell migration and proliferation through various mechanisms. The principle goal of wound management is the rapid recovery of the anatomical continuity of the skin, to prevent infections from the external environment and maintain homeostasis conditions inside. ES at the wound site is a compelling strategy for skin wound repair. Several ES applications are described in medical literature like AC, DC, and PC to improve cutaneous perfusion and accelerate wound healing. This review aimed to evaluate the primary factors and provides an overview of the potential benefits and mechanisms of ES in wound healing, and its ability to stimulate cellular responses, promote tissue regeneration, and improve overall healing outcomes. We also shed light on the application of ES which holds excellent promise as an adjunct therapy for various types of wounds, including chronic wounds, diabetic ulcers, and surgical incisions.
Collapse
Affiliation(s)
- Subham Preetam
- Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST) Daegu 42988 Republic of Korea
| | - Arka Ghosh
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology Bhubaneswar 751003 Odisha India
| | - Richa Mishra
- Department of Computer Engineering, Parul Institute of Engineering and Technology (PIET), Parul University Ta. Waghodia Vadodara Gujarat 391760 India
| | - Arunima Pandey
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology Bhubaneswar 751003 Odisha India
| | - Debanjan Singha Roy
- KIIT School of Biotechnology, Kalinga Institute of Industrial Technology Bhubaneswar 751003 Odisha India
| | - Sarvesh Rustagi
- School of Applied and Life Sciences, Uttaranchal University 22 Dehradun Uttarakhand India
| | - Sumira Malik
- Amity Institute of Biotechnology, Amity University Jharkhand Ranchi Jharkhand 834001 India
- Department of Biotechnology, University Center for Research & Development (UCRD) Chandigarh University Ludhiana Highway Mohali 140413 Punjab India
| |
Collapse
|
16
|
Zhou T, Zhang C, Wang X, Lin J, Yu J, Liang Y, Guo H, Yang M, Shen X, Li J, Shi R, Wang Y, Yang J, Shu Z. Research on traditional Chinese medicine as an effective drug for promoting wound healing. JOURNAL OF ETHNOPHARMACOLOGY 2024; 332:118358. [PMID: 38763370 DOI: 10.1016/j.jep.2024.118358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 04/26/2024] [Accepted: 05/16/2024] [Indexed: 05/21/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE The incidence of skin trauma is high and the repair process is complex, often leading to poor healing and other issues, which can result in significant economic and social burdens. Traditional Chinese medicine (TCM) is a valuable resource with proven effectiveness and safety in wound repair, widely utilized in clinical practice. A systematic analysis of wound healing with a focus on TCM research progress holds both academic and clinical importance. AIM OF THE REVIEW This article reviews the research progress of TCM in promoting wound healing, and provides basic data for the development of innovative drugs that promote wound healing. MATERIALS AND METHODS This article provides a review of the literature from the past decade and conducts a thorough analysis of various databases that contain reports on the use of TCM for wound repair. The data for this systematic research was gathered from electronic databases including CNKI, SciFinder, and PubMed. The study explores and summarizes the research findings and patterns by creating relevant charts. RESULTS This study reviewed the mechanism of wound healing, experimental TCM methods to promote wound healing, the theory and mode of action of TCM to promote wound healing, the active ingredients of TCM that promote wound healing, the efficacy of TCM formulae to promote wound healing, and the potential toxicity of TCM and its antidotes. This study enriched the theory of TCM in promoting wound healing. CONCLUSION Skin wound healing is a complex process that can be influenced by various internal and external factors. This article offers a theoretical foundation for exploring and utilizing TCM resources that enhance wound repair. By analyzing a range of TCM that promote wound healing, the article highlights the clinical importance and future potential of these medicines in promoting wound healing.
Collapse
Affiliation(s)
- Tong Zhou
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, PR China
| | - Chongyang Zhang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, PR China
| | - Xiao Wang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, PR China
| | - Jiazi Lin
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, PR China
| | - Jiamin Yu
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, PR China
| | - Yefang Liang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, PR China
| | - Huilin Guo
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, PR China
| | - Mengru Yang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, PR China
| | - Xuejuan Shen
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, PR China
| | - Jianhua Li
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, PR China
| | - Ruixiang Shi
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, PR China
| | - Yi Wang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| | - Ji Yang
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China.
| | - Zunpeng Shu
- School of Chinese Materia Medica, Guangdong Pharmaceutical University, Guangzhou, 510006, PR China; Key Laboratory of Cell Proliferation and Regulation Biology, Ministry of Education, Department of Biology, Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, PR China.
| |
Collapse
|
17
|
Liu T, Hao J, Lei H, Chen Y, Liu L, Jia L, Gu J, Kang H, Shi J, He J, Song Y, Tang Y, Fan D. Recombinant collagen for the repair of skin wounds and photo-aging damage. Regen Biomater 2024; 11:rbae108. [PMID: 39323745 PMCID: PMC11422187 DOI: 10.1093/rb/rbae108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 08/01/2024] [Accepted: 08/27/2024] [Indexed: 09/27/2024] Open
Abstract
The skin, being the body's primary defense mechanism, is susceptible to various injuries such as epidermal wounds, natural aging, and ultraviolet-induced damage. As a result, there is growing interest in researching skin repair methods. Traditional animal-derived collagen, widely available on the market, poses risks due to its immunogenicity and potential for viral contamination. In contrast, recombinant collagen sourced from human genes offers a safer alternative. To investigate the potential of human recombinant collagen in skin repair, our research team applied two types, type I human collagen (Col I) and CF-1552(I), to two different skin injury models: a wound-healing model and a photo-aging model. Our findings indicate that both Col I and CF-1552(I) effectively enhance wound healing and repair skin damaged by ultraviolet exposure. Notably, CF-1552(I) showed effects comparable to Col I in promoting cell proliferation in the wound-healing model and increasing malondialdehyde content in the photo-aging model, suggesting that CF-1552(I) may offer greater potential for skin repair compared to the larger Col I molecule.
Collapse
Affiliation(s)
- Taishan Liu
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech & Biomed Research Institute, Northwest University, Xi'an 710069, China
| | - Jiayun Hao
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech & Biomed Research Institute, Northwest University, Xi'an 710069, China
| | - Huan Lei
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech & Biomed Research Institute, Northwest University, Xi'an 710069, China
| | - Yanru Chen
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech & Biomed Research Institute, Northwest University, Xi'an 710069, China
| | - Lin Liu
- Xi'an Giant Biotechnology Co. Ltd., Xi'an 710100, China
| | - Liping Jia
- Xi'an Giant Biotechnology Co. Ltd., Xi'an 710100, China
| | - Juan Gu
- Shaanxi Giant Biotechnology Co. Ltd., Xi'an 710076, China
| | - Huaping Kang
- Shaanxi Giant Biotechnology Co. Ltd., Xi'an 710076, China
| | - Jingjing Shi
- Shaanxi Giant Biotechnology Co. Ltd., Xi'an 710076, China
| | - Jing He
- Xi'an Giant Biotechnology Co. Ltd., Xi'an 710100, China
| | - Yangbin Song
- Shaanxi Giant Biotechnology Co. Ltd., Xi'an 710076, China
| | - Yuqi Tang
- Shaanxi Giant Biotechnology Co. Ltd., Xi'an 710076, China
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Shaanxi R&D Center of Biomaterials and Fermentation Engineering, School of Chemical Engineering, Northwest University, Xi'an 710069, China
- Biotech & Biomed Research Institute, Northwest University, Xi'an 710069, China
| |
Collapse
|
18
|
Youssef KK, Nieto MA. Epithelial-mesenchymal transition in tissue repair and degeneration. Nat Rev Mol Cell Biol 2024; 25:720-739. [PMID: 38684869 DOI: 10.1038/s41580-024-00733-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/26/2024] [Indexed: 05/02/2024]
Abstract
Epithelial-mesenchymal transitions (EMTs) are the epitome of cell plasticity in embryonic development and cancer; during EMT, epithelial cells undergo dramatic phenotypic changes and become able to migrate to form different tissues or give rise to metastases, respectively. The importance of EMTs in other contexts, such as tissue repair and fibrosis in the adult, has become increasingly recognized and studied. In this Review, we discuss the function of EMT in the adult after tissue damage and compare features of embryonic and adult EMT. Whereas sustained EMT leads to adult tissue degeneration, fibrosis and organ failure, its transient activation, which confers phenotypic and functional plasticity on somatic cells, promotes tissue repair after damage. Understanding the mechanisms and temporal regulation of different EMTs provides insight into how some tissues heal and has the potential to open new therapeutic avenues to promote repair or regeneration of tissue damage that is currently irreversible. We also discuss therapeutic strategies that modulate EMT that hold clinical promise in ameliorating fibrosis, and how precise EMT activation could be harnessed to enhance tissue repair.
Collapse
Affiliation(s)
| | - M Angela Nieto
- Instituto de Neurociencias (CSIC-UMH), Sant Joan d'Alacant, Spain.
- CIBERER, Centro de Investigación Biomédica en Red de Enfermedades Raras, ISCIII, Madrid, Spain.
| |
Collapse
|
19
|
Qi Y, Ma G. Comprehensive bioinformatic analysis reveals a fibroblast-related gene signature for the diagnosis of keloids. Heliyon 2024; 10:e35011. [PMID: 39157347 PMCID: PMC11327581 DOI: 10.1016/j.heliyon.2024.e35011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/12/2024] [Accepted: 07/22/2024] [Indexed: 08/20/2024] Open
Abstract
Aim A keloid is a fibroproliferative cutaneous disorder secondary to skin injury, caused by an imbalance in fibroblast proliferation and apoptosis. However, the pathogenesis is not fully understood. In this study, candidate genes for keloid were identified and used to construct a diagnostic model. Methods Three datasets related to keloids were downloaded from NCBI Gene Expression Omnibus. Fibroblast-related genes were screened, and fibroblast scores for the samples were determined. Then, a weighted gene co-expression network analysis (WGCNA) was used to identify modules and genes associated with keloids and the fibroblast score. Differentially expressed genes (DEGs) between keloid and control samples were identified and compared with fibroblast-related genes and genes in the modules. Overlapping genes were evaluated using functional enrichment analyses. Signature genes were further screened, and a diagnostic model was constructed. Finally, correlations between immune cell frequences and signature genes were analyzed. Results In total, 124 fibroblast-related genes were obtained, and the fibroblast score was an effective indicator of the sample type. WGCNA revealed five modules that were significantly correlated with both the disease state and fibroblast scores, including 1760 genes. Additionally, 589 DEGs were identified, including 16 that overlapped with fibroblast-related genes and genes identified in the WGCNA. These genes were related to cell proliferation and apoptosis and were involved in FoxO, Rap1, p53, Ras, MAPK, and PI3K-Akt pathways. Finally, a six fibroblast-related gene signature (CCNB1, EGFR, E2F8, BTG1, TP63, and IGF1) was identified and used for diagnostic model construction. The proportions of regulatory T cells and macrophages were significantly higher in keloid tissues than in controls. Conclusion The established model based on CCNB1, EGFR, E2F8, BTG1, TP63, and IGF1 showed good performance and may be useful for keloid diagnosis.
Collapse
Affiliation(s)
- Yue Qi
- Plastic Surgery Hospital Chinese Academy of Medical Sciences, 33rd BaDaChu Street, Beijing, 100144, China
| | - GuiE Ma
- Plastic Surgery Hospital Chinese Academy of Medical Sciences, 33rd BaDaChu Street, Beijing, 100144, China
| |
Collapse
|
20
|
da Fonseca DM, Rodrigues L, Sousa-Baptista J, Marcos-Tejedor F, Mota M, Cunha RA, Fernandes C, Gonçalves T. Caffeine Protects Keratinocytes from Trichophyton mentagrophytes Infection and Behaves as an Antidermatophytic Agent. Int J Mol Sci 2024; 25:8303. [PMID: 39125871 PMCID: PMC11311904 DOI: 10.3390/ijms25158303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 07/21/2024] [Accepted: 07/25/2024] [Indexed: 08/12/2024] Open
Abstract
Caffeine affords several beneficial effects on human health, acting as an antioxidant, anti-inflammatory agent, and analgesic. Caffeine is widely used in cosmetics, but its antimicrobial activity has been scarcely explored, namely against skin infection agents. Dermatophytes are the most common fungal agents of human infection, mainly of skin infections. This work describes the in vitro effect of caffeine during keratinocyte infection by Trichophyton mentagrophytes, one of the most common dermatophytes. The results show that caffeine was endowed with antidermatophytic activity with a MIC, determined following the EUCAST standards, of 8 mM. Caffeine triggered a modification of the levels of two major components of the fungal cell wall, β-(1,3)-glucan and chitin. Caffeine also disturbed the ultrastructure of the fungal cells, particularly the cell wall surface and mitochondria, and autophagic-like structures were observed. During dermatophyte-human keratinocyte interactions, caffeine prevented the loss of viability of keratinocytes and delayed spore germination. Overall, this indicates that caffeine can act as a therapeutic and prophylactic agent for dermatophytosis.
Collapse
Affiliation(s)
- Diogo M. da Fonseca
- FMUC—Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal; (D.M.d.F.); (J.S.-B.); (M.M.); (R.A.C.)
- CNC-UC—Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, 3004-504 Coimbra, Portugal; (L.R.); (C.F.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Lisa Rodrigues
- CNC-UC—Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, 3004-504 Coimbra, Portugal; (L.R.); (C.F.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - José Sousa-Baptista
- FMUC—Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal; (D.M.d.F.); (J.S.-B.); (M.M.); (R.A.C.)
- CNC-UC—Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, 3004-504 Coimbra, Portugal; (L.R.); (C.F.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Félix Marcos-Tejedor
- Department of Medical Sciences, Faculty of Health Sciences, University of Castilla-La Mancha, 45600 Talavera de la Reina, Toledo, Spain;
| | - Marta Mota
- FMUC—Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal; (D.M.d.F.); (J.S.-B.); (M.M.); (R.A.C.)
- CNC-UC—Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, 3004-504 Coimbra, Portugal; (L.R.); (C.F.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Rodrigo A. Cunha
- FMUC—Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal; (D.M.d.F.); (J.S.-B.); (M.M.); (R.A.C.)
- CNC-UC—Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, 3004-504 Coimbra, Portugal; (L.R.); (C.F.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Chantal Fernandes
- CNC-UC—Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, 3004-504 Coimbra, Portugal; (L.R.); (C.F.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| | - Teresa Gonçalves
- FMUC—Faculty of Medicine, University of Coimbra, Rua Larga, 3004-504 Coimbra, Portugal; (D.M.d.F.); (J.S.-B.); (M.M.); (R.A.C.)
- CNC-UC—Center for Neuroscience and Cell Biology of Coimbra, University of Coimbra, 3004-504 Coimbra, Portugal; (L.R.); (C.F.)
- CIBB—Centre for Innovative Biomedicine and Biotechnology, University of Coimbra, 3004-504 Coimbra, Portugal
| |
Collapse
|
21
|
Indrakumar S, Dash TK, Mishra V, Tandon B, Chatterjee K. Silk Fibroin and Its Nanocomposites for Wound Care: A Comprehensive Review. ACS POLYMERS AU 2024; 4:168-188. [PMID: 38882037 PMCID: PMC11177305 DOI: 10.1021/acspolymersau.3c00050] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 02/15/2024] [Accepted: 02/21/2024] [Indexed: 06/18/2024]
Abstract
For most individuals, wound healing is a highly organized, straightforward process, wherein the body transitions through different phases in a timely manner. However, there are instances where external intervention becomes necessary to support and facilitate different phases of the body's innate healing mechanism. Furthermore, in developing countries, the cost of the intervention significantly impacts access to treatment options as affordability becomes a determining factor. This is particularly true in cases of long-term wound treatment and management, such as chronic wounds and infections. Silk fibroin (SF) and its nanocomposites have emerged as promising biomaterials with potent wound-healing activity. Driven by this motivation, this Review presents a critical overview of the recent advancements in different aspects of wound care using SF and SF-based nanocomposites. In this context, we explore various formats of hemostats and assess their suitability for different bleeding situations. The subsequent sections discuss the primary causes of nonhealing wounds, i.e., prolonged inflammation and infections. Herein, different treatment strategies to achieve immunomodulatory and antibacterial properties in a wound dressing were reviewed. Despite exhibiting excellent pro-healing properties, few silk-based products reach the market. This Review concludes by highlighting the bottlenecks in translating silk-based products into the market and the prospects for the future.
Collapse
Affiliation(s)
- Sushma Indrakumar
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| | - Tapan Kumar Dash
- Fibroheal Woundcare Pvt. Ltd., Yelahanka New Town, Bangalore 560064, India
| | - Vivek Mishra
- Fibroheal Woundcare Pvt. Ltd., Yelahanka New Town, Bangalore 560064, India
| | - Bharat Tandon
- Fibroheal Woundcare Pvt. Ltd., Yelahanka New Town, Bangalore 560064, India
| | - Kaushik Chatterjee
- Department of Materials Engineering, Indian Institute of Science, Bangalore 560012, India
| |
Collapse
|
22
|
Kuan CH, Tai KY, Lu SC, Wu YF, Wu PS, Kwang N, Wang WH, Mai-Yi Fan S, Wang SH, Chien HF, Lai HS, Lin MH, Plikus MV, Lin SJ. Delayed Collagen Production without Myofibroblast Formation Contributes to Reduced Scarring in Adult Skin Microwounds. J Invest Dermatol 2024; 144:1124-1133.e7. [PMID: 38036291 DOI: 10.1016/j.jid.2023.10.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 10/02/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023]
Abstract
In adult mammals, wound healing predominantly follows a fibrotic pathway, culminating in scar formation. However, cutaneous microwounds generated through fractional photothermolysis, a modality that produces a constellation of microthermal zones, exhibit a markedly different healing trajectory. Our study delineates the cellular attributes of these microthermal zones, underscoring a temporally limited, subclinical inflammatory milieu concomitant with rapid re-epithelialization within 24 hours. This wound closure is facilitated by the activation of genes associated with keratinocyte migration and differentiation. In contrast to macrothermal wounds, which predominantly heal through a robust myofibroblast-mediated collagen deposition, microthermal zones are characterized by absence of wound contraction and feature delayed collagen remodeling, initiating 5-6 weeks after injury. This distinct wound healing is characterized by a rapid re-epithelialization process and a muted inflammatory response, which collectively serve to mitigate excessive myofibroblast activation. Furthermore, we identify an initial reparative phase characterized by a heterogeneous extracellular matrix protein composition, which precedes the delayed collagen remodeling. These findings extend our understanding of cutaneous wound healing and may have significant implications for the optimization of therapeutic strategies aimed at mitigating scar formation.
Collapse
Affiliation(s)
- Chen-Hsiang Kuan
- Graduate Institute of Clinical Research, College of Medicine, National Taiwan University, Taipei, Taiwan; Division of Plastic Surgery, Department of Surgery, National Taiwan University Hospital, College of Medicine, Taipei, Taiwan; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan
| | - Kang-Yu Tai
- Genome and Systems Biology Degree Program, National Taiwan University and Academia Sinica, Taipei, Taiwan
| | - Shao-Chi Lu
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Yueh-Feng Wu
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Pei-Shan Wu
- Department of Ophthalmology, National Taiwan University Hospital, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Nellie Kwang
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, California, USA
| | - Wei-Hung Wang
- Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan
| | - Sabrina Mai-Yi Fan
- Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan
| | - Shiou-Han Wang
- Department of Dermatology, National Taiwan University Hospital, College of Medicine, Taipei, Taiwan
| | - Hsiung-Fei Chien
- Division of Plastic Surgery, Department of Surgery, Taipei Medical University Hospital, Taipei, Taiwan; TMU Center for Cell Therapy and Regeneration Medicine, Taipei Medical University, Taipei, Taiwan
| | - Hong-Shiee Lai
- Department of Surgery, National Taiwan University Hospital, College of Medicine, Taipei, Taiwan; Department of Surgery, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Miao-Hsia Lin
- Graduate Institute and Department of Microbiology, College of Medicine, National Taiwan University, Taipei, Taiwan
| | - Maksim V Plikus
- Department of Developmental and Cell Biology, School of Biological Sciences, University of California, Irvine, Irvine, California, USA; NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, Irvine, California, USA; Sue and Bill Gross Stem Cell Research Center, University of California, Irvine, Irvine, California, USA
| | - Sung-Jan Lin
- Graduate Institute of Clinical Research, College of Medicine, National Taiwan University, Taipei, Taiwan; Research Center for Developmental Biology and Regenerative Medicine, National Taiwan University, Taipei, Taiwan; Department of Biomedical Engineering, College of Medicine and College of Engineering, National Taiwan University, Taipei, Taiwan; Department of Medical Research, National Taiwan University Hospital, Taipei, Taiwan; Center for Frontier Medicine, National Taiwan University Hospital, Taipei, Taiwan.
| |
Collapse
|
23
|
Hoving JJA, Harford-Wright E, Wingfield-Digby P, Cattin AL, Campana M, Power A, Morgan T, Torchiaro E, Quereda V, Lloyd AC. N-cadherin directs the collective Schwann cell migration required for nerve regeneration through Slit2/3-mediated contact inhibition of locomotion. eLife 2024; 13:e88872. [PMID: 38591541 PMCID: PMC11052573 DOI: 10.7554/elife.88872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 03/27/2024] [Indexed: 04/10/2024] Open
Abstract
Collective cell migration is fundamental for the development of organisms and in the adult for tissue regeneration and in pathological conditions such as cancer. Migration as a coherent group requires the maintenance of cell-cell interactions, while contact inhibition of locomotion (CIL), a local repulsive force, can propel the group forward. Here we show that the cell-cell interaction molecule, N-cadherin, regulates both adhesion and repulsion processes during Schwann cell (SC) collective migration, which is required for peripheral nerve regeneration. However, distinct from its role in cell-cell adhesion, the repulsion process is independent of N-cadherin trans-homodimerisation and the associated adherens junction complex. Rather, the extracellular domain of N-cadherin is required to present the repulsive Slit2/Slit3 signal at the cell surface. Inhibiting Slit2/Slit3 signalling inhibits CIL and subsequently collective SC migration, resulting in adherent, nonmigratory cell clusters. Moreover, analysis of ex vivo explants from mice following sciatic nerve injury showed that inhibition of Slit2 decreased SC collective migration and increased clustering of SCs within the nerve bridge. These findings provide insight into how opposing signals can mediate collective cell migration and how CIL pathways are promising targets for inhibiting pathological cell migration.
Collapse
Affiliation(s)
- Julian JA Hoving
- UCL Laboratory for Molecular Cell Biology and the UCL Cancer Institute, University College LondonLondonUnited Kingdom
| | - Elizabeth Harford-Wright
- UCL Laboratory for Molecular Cell Biology and the UCL Cancer Institute, University College LondonLondonUnited Kingdom
| | - Patrick Wingfield-Digby
- UCL Laboratory for Molecular Cell Biology and the UCL Cancer Institute, University College LondonLondonUnited Kingdom
| | - Anne-Laure Cattin
- UCL Laboratory for Molecular Cell Biology and the UCL Cancer Institute, University College LondonLondonUnited Kingdom
| | - Mariana Campana
- UCL Laboratory for Molecular Cell Biology and the UCL Cancer Institute, University College LondonLondonUnited Kingdom
| | - Alex Power
- UCL Laboratory for Molecular Cell Biology and the UCL Cancer Institute, University College LondonLondonUnited Kingdom
| | - Toby Morgan
- UCL Laboratory for Molecular Cell Biology and the UCL Cancer Institute, University College LondonLondonUnited Kingdom
| | - Erica Torchiaro
- UCL Laboratory for Molecular Cell Biology and the UCL Cancer Institute, University College LondonLondonUnited Kingdom
| | - Victor Quereda
- UCL Laboratory for Molecular Cell Biology and the UCL Cancer Institute, University College LondonLondonUnited Kingdom
| | - Alison C Lloyd
- UCL Laboratory for Molecular Cell Biology and the UCL Cancer Institute, University College LondonLondonUnited Kingdom
| |
Collapse
|
24
|
Williams AM, Horne-Badovinac S. Fat2 polarizes Lar and Sema5c to coordinate the motility of collectively migrating epithelial cells. J Cell Sci 2024; 137:jcs261173. [PMID: 37593878 PMCID: PMC10508692 DOI: 10.1242/jcs.261173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 07/24/2023] [Indexed: 08/19/2023] Open
Abstract
Migrating epithelial cells globally align their migration machinery to achieve tissue-level movement. Biochemical signaling across leading-trailing cell-cell interfaces can promote this alignment by partitioning migratory behaviors like protrusion and retraction to opposite sides of the interface. However, how signaling proteins become organized at interfaces to accomplish this is poorly understood. The follicular epithelial cells of Drosophila melanogaster have two signaling modules at their leading-trailing interfaces - one composed of the atypical cadherin Fat2 (also known as Kugelei) and the receptor tyrosine phosphatase Lar, and one composed of Semaphorin5c and its receptor Plexin A. Here, we show that these modules form one interface signaling system with Fat2 at its core. Trailing edge-enriched Fat2 concentrates both Lar and Semaphorin5c at leading edges of cells, but Lar and Semaphorin5c play little role in the localization of Fat2. Fat2 is also more stable at interfaces than Lar or Semaphorin5c. Once localized, Lar and Semaphorin5c act in parallel to promote collective migration. We propose that Fat2 serves as the organizer of this interface signaling system by coupling and polarizing the distributions of multiple effectors that work together to align the migration machinery of neighboring cells.
Collapse
Affiliation(s)
- Audrey Miller Williams
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
| | - Sally Horne-Badovinac
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL 60637, USA
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL 60637, USA
| |
Collapse
|
25
|
Hutchenreuther J, Nguyen J, Quesnel K, Vincent KM, Petitjean L, Bourgeois S, Boyd M, Bou-Gharios G, Postovit LM, Leask A. Cancer-associated Fibroblast-specific Expression of the Matricellular Protein CCN1 Coordinates Neovascularization and Stroma Deposition in Melanoma Metastasis. CANCER RESEARCH COMMUNICATIONS 2024; 4:556-570. [PMID: 38363129 PMCID: PMC10898341 DOI: 10.1158/2767-9764.crc-23-0571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/19/2024] [Accepted: 02/09/2024] [Indexed: 02/17/2024]
Abstract
Melanoma is the leading cause of skin cancer-related death. As prognosis of patients with melanoma remains problematic, identification of new therapeutic targets remains essential. Matricellular proteins are nonstructural extracellular matrix proteins. They are secreted into the tumor microenvironment to coordinate behavior among different cell types, yet their contribution to melanoma is underinvestigated. Examples of matricellular proteins include those comprising the CCN family. The CCN family member, CCN1, is highly proangiogenic. Herein, we show that, in human patients with melanoma, although found in several tumor cell types, CCN1 is highly expressed by a subset of cancer-associated fibroblasts (CAF) in patients with melanoma and this expression correlates positively with expression of proangiogenic genes and progressive disease/resistance to anti-PD1 checkpoint inhibitors. Consistent with these observations, in a syngeneic C57BL6 mouse model of melanoma, loss of CCN1 expression from Col1A2-Cre-, herein identified as "universal," fibroblasts, impaired metastasis of subcutaneously injected B16F10 tumor cells to lung, concomitant with disrupted neovascularization and collagen organization. Disruption of the extracellular matrix in the loss of CCN1 was validated using a novel artificial intelligence-based image analysis platform that revealed significantly decreased phenotypic fibrosis and composite morphometric collagen scores. As drug resistance is linked to matrix deposition and neoangiogenesis, these data suggest that CCN1, due to its multifaceted role, may represent a novel therapeutic target for drug-resistant melanoma. Our data further emphasize the essential role that cancer-associated, (universal) Col1A2-Cre-fibroblasts and extracellular matrix remodeling play in coordinating behavior among different cell types within the tumor microenvironment. SIGNIFICANCE In human patients, the expression of proangiogenic matricellular protein CCN1 in CAFs correlates positively with expression of stroma and angiogenic markers and progressive disease/resistance to checkpoint inhibitor therapy. In an animal model, loss of CCN1 from CAFs impaired metastasis of melanoma cells, neovascularization, and collagen deposition, emphasizing that CAFs coordinate cellular behavior in a tumor microenvironment and that CCN1 may be a novel target.
Collapse
Affiliation(s)
- James Hutchenreuther
- Department of Physiology and Pharmacology, University of Western Ontario, London, Ontario, Canada
| | - John Nguyen
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Katherine Quesnel
- Department of Dentistry, University of Western Ontario, London, Ontario, Canada
| | - Krista M. Vincent
- Department of Oncology, University of Alberta, Edmonton, Alberta, Canada
- Department of Medical Genetics, Children's Hospital of Eastern Ontario, Ottawa, Ontario, Canada
| | | | - Sophia Bourgeois
- Department of Biology, University of Western Ontario, London, Ontario, Canada
| | - Mark Boyd
- Office of the Vice President of Research, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - George Bou-Gharios
- Department of Musculoskeletal and Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, United Kingdom
| | - Lynne-Marie Postovit
- Department of Biomedical and Molecular Sciences, Queens University, Kingston, Ontario, Canada
| | - Andrew Leask
- College of Dentistry, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| |
Collapse
|
26
|
Hou L, Hong H, Cao W, Wei L, Weng L, Yuan S, Xiao C, Zhang Q, Wang Q, Lai D. Identification and characterization of multipotential stem cells in immortalized normal ovarian surface epithelial cells. Acta Biochim Biophys Sin (Shanghai) 2024; 56:239-254. [PMID: 38243680 PMCID: PMC10984850 DOI: 10.3724/abbs.2023253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 09/21/2023] [Indexed: 01/21/2024] Open
Abstract
The ovarian surface epithelium (OSE) is a single layer of squamous-to-cuboidal epithelial cells that experience repetitive ovulatory rupture and subsequent repair. However, the characteristics of human immortalized ovarian surface epithelial cells (IOSE80) remain elusive. This study aims to determine whether IOSE80 cells have the characteristics of stem cell proliferation and multilineage differentiation and their application in regenerative medicine. IOSE80 cells are sequenced by high-throughput transcriptome analysis, and 5 sets of public data are used to compare the differences between IOSE80 cells and bone marrow mesenchymal stem cells, pluripotent stem cells, and oocytes in transcriptome profiling. The IOSE80 cells present a cobblestone-like monolayer and express the epithelial cell marker KRT18; the stem cell markers IFITM3, ALDH1A1, and VIM; lowly express stem cell marker LGR5 and germ cell markers DDX4 and DAZL. In addition, the GO terms "regulation of stem cell proliferation", "epithelial cell proliferation", etc., are significantly enriched ( P<0.05). IOSE80 cells have the potential to act as mesenchymal stem cells to differentiate into adipocytes with lipid droplets, osteoblasts, and chondroblasts in vitro. IOSE80 cells express pluripotent stem cell markers, including OCT4, SSEA4, TRA-1-60, and TRA-1-81, and they can be induced into three germ layers in vitro. IOSE80 cells also form oocyte-like cells in vitro and in vivo. In addition, IOSE80 cells exhibit robust proliferation, migration, and ovarian repair functions after in vivo transplantation. This study demonstrates that IOSE80 cells have the characteristics of pluripotent/multipotent stem cells, indicating their important role in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Lin Hou
- The International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200030China
- Shanghai Key Laboratory of Embryo Original DiseasesShanghai200030China
| | - Hanqing Hong
- The International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200030China
- Shanghai Key Laboratory of Embryo Original DiseasesShanghai200030China
| | - Wenjiao Cao
- The International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200030China
- Shanghai Key Laboratory of Embryo Original DiseasesShanghai200030China
| | - Liutong Wei
- The International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200030China
- Shanghai Key Laboratory of Embryo Original DiseasesShanghai200030China
| | - Lichun Weng
- The International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200030China
- Shanghai Key Laboratory of Embryo Original DiseasesShanghai200030China
| | - Shuang Yuan
- The International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200030China
- Shanghai Key Laboratory of Embryo Original DiseasesShanghai200030China
| | - Chengqi Xiao
- The International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200030China
- Shanghai Key Laboratory of Embryo Original DiseasesShanghai200030China
| | - Qiuwan Zhang
- The International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200030China
- Shanghai Key Laboratory of Embryo Original DiseasesShanghai200030China
| | - Qian Wang
- The International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200030China
- Shanghai Key Laboratory of Embryo Original DiseasesShanghai200030China
| | - Dongmei Lai
- The International Peace Maternity and Child Health HospitalSchool of MedicineShanghai Jiao Tong UniversityShanghai200030China
- Shanghai Key Laboratory of Embryo Original DiseasesShanghai200030China
| |
Collapse
|
27
|
Kida M, Fatima I, Rozhkova E, Otero-Viñas M, Wu M, Kalin JH, Cole PA, Falanga V, Alani RM, Sharov AA. Inhibition of the CoREST Repressor Complex Promotes Wound Re-Epithelialization through the Regulation of Keratinocyte Migration. J Invest Dermatol 2024; 144:378-386.e2. [PMID: 37633457 PMCID: PMC10790709 DOI: 10.1016/j.jid.2023.07.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Revised: 07/24/2023] [Accepted: 07/31/2023] [Indexed: 08/28/2023]
Abstract
Wound healing is a complex process involving phases of hemostasis, inflammation, proliferation, and remodeling. The regenerative process in the skin requires coordination between many regulators, including signaling molecules, transcription factors, and the epigenetic machinery. In this study, we show that chromatin regulators HDAC1 and LSD1, key components of the CoREST repressor complex, are upregulated in the regenerating epidermis during wound repair. We also show that corin, a synthetic dual inhibitor of the CoREST complex and HDAC1/LSD1 activities, significantly accelerates wound closure through enhanced re-epithelialization in a mouse tail wound model. Acetylated H3K9 (methylation of histone H3 at lysine 9) expression, a histone modification targeted by HDAC1, is increased in keratinocytes after topical treatment with 100 nM and 1 μM of corin. In vitro experiments demonstrate that corin promotes migration and inhibits the proliferation of human keratinocytes. Furthermore, expression levels of genes promoting keratinocyte migration, such as AREG, CD24, EPHB2, ITGAX, PTGS, SCT1, SERPINB2, SERPINE1, SLPI, SNAI2, and TWIST, increased in keratinocytes treated with corin. These data demonstrate that dual inhibition of class I histone deacetylases and LSD1 by corin may serve as a new approach for promoting wound re-epithelialization and provide a platform for further applications of corin for the treatment of chronic wounds.
Collapse
Affiliation(s)
- Maki Kida
- Department of Dermatology, Chobanian & Avedisian School of Medicine, Boston University, Boston, Massachusetts, USA
| | - Iqra Fatima
- Department of Dermatology, Chobanian & Avedisian School of Medicine, Boston University, Boston, Massachusetts, USA
| | - Elena Rozhkova
- Department of Dermatology, Chobanian & Avedisian School of Medicine, Boston University, Boston, Massachusetts, USA
| | - Marta Otero-Viñas
- Department of Dermatology, Chobanian & Avedisian School of Medicine, Boston University, Boston, Massachusetts, USA; The Tissue Repair and Regeneration Laboratory (TR2Lab), Faculty of Sciences and Technology, University of Vic - Central University of Catalonia, Vic, Spain
| | - Muzhou Wu
- Department of Dermatology, Chobanian & Avedisian School of Medicine, Boston University, Boston, Massachusetts, USA
| | - Jay H Kalin
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Philip A Cole
- Division of Genetics, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA; Department of Biological Chemistry and Molecular Pharmacology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Vincent Falanga
- Department of Dermatology, Chobanian & Avedisian School of Medicine, Boston University, Boston, Massachusetts, USA
| | - Rhoda M Alani
- Department of Dermatology, Chobanian & Avedisian School of Medicine, Boston University, Boston, Massachusetts, USA
| | - Andrey A Sharov
- Department of Dermatology, Chobanian & Avedisian School of Medicine, Boston University, Boston, Massachusetts, USA.
| |
Collapse
|
28
|
Barbosa JL, de Melo MIA, da Silva Cunha P, de Miranda MC, Barrioni BR, Moreira CDF, da Fonseca Ferreira A, Arantes RME, de Sá MA, de Magalhães Pereira M, Rodrigues MA, Novikoff S, Gomes DA, de Goes AM. Development of a membrane and a bilayer of chitosan, gelatin, and polyhydroxybutyrate to be used as wound dressing for the regeneration of rat excisional wounds. J Biomed Mater Res A 2024; 112:82-98. [PMID: 37795871 DOI: 10.1002/jbm.a.37616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 08/09/2023] [Accepted: 09/07/2023] [Indexed: 10/06/2023]
Abstract
The skin is the largest organ in the human body that acts as a protective barrier from the outside environment. Certain dermatological pathologies or significant skin lesions can result in serious complications. Several studies have focused on the development of tissue-engineered skin substitutes. In this study, a new bilayer scaffold composed of a chitosan-gelatin membrane and a chitosan-polyhydroxybutyrate (PHB) porous matrix was synthesized and populated with human adipose-derived mesenchymal stem cells (hASCs) to be potentially used for wound dressing applications. By combining this membrane and porous matrix with the stem cells, we aimed to provide immunomodulation and differentiation capabilities for the wound environment, as well as mechanical strength and biocompatibility for the underlying tissue. The membrane was prepared from the mixture of chitosan and gelatin in a 2:1 ratio and the porous matrix was prepared from the mixture of chitosan and PHB, in equal proportions to form a final solution at 2.5% (m/v). Fourier transform infrared spectroscopy analysis showed the formation of blends, and micro-computed tomography, scanning electron microscopy and atomic force microscopy images demonstrated membrane roughness and matrix porosity. The MTT assay showed that the scaffolds were biocompatible with hASC. The membrane and the bilayer were used as dressing and support for cell migration in the dorsal excisional wound model in Wistar rats. Histological and gene transcriptional analyses showed that the animals that received the scaffolds regenerated the hair follicles in the deep dermis in the central region of the wound. Our results demonstrate the potential of these new biomaterials as dressings in wound healing studies, favoring tissue regeneration.
Collapse
Affiliation(s)
- Joana Lobato Barbosa
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Mariane Izabella Abreu de Melo
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Serviço de Radiofármacos, Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, Brazil
| | - Pricila da Silva Cunha
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Instituto Federal de Educação, Ciência e Tecnologia do Sudeste de Minas Gerais, Muriaé, Brazil
| | - Marcelo Coutinho de Miranda
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | | | - Rosa Maria Esteves Arantes
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Marcos Augusto de Sá
- Departamento de Morfologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | - Michele Angela Rodrigues
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Serviço de Radiofármacos, Centro de Desenvolvimento da Tecnologia Nuclear (CDTN), Belo Horizonte, Brazil
| | - Silviene Novikoff
- Transplants Immunobiology Laboratory, Department of Immunology, University of São Paulo, São Paulo, Brazil
| | - Dawidson Assis Gomes
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Alfredo Miranda de Goes
- Departamento de Bioquímica e Imunologia, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
- Departamento de Patologia Geral, Instituto de Ciências Biológicas, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
29
|
Fazilaty H, Basler K. Reactivation of embryonic genetic programs in tissue regeneration and disease. Nat Genet 2023; 55:1792-1806. [PMID: 37904052 DOI: 10.1038/s41588-023-01526-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 09/11/2023] [Indexed: 11/01/2023]
Abstract
Embryonic genetic programs are reactivated in response to various types of tissue damage, providing cell plasticity for tissue regeneration or disease progression. In acute conditions, these programs remedy the damage and then halt to allow a return to homeostasis. In chronic situations, including inflammatory diseases, fibrosis and cancer, prolonged activation of embryonic programs leads to disease progression and tissue deterioration. Induction of progenitor identity and cell plasticity, for example, epithelial-mesenchymal plasticity, are critical outcomes of reactivated embryonic programs. In this Review, we describe molecular players governing reactivated embryonic genetic programs, their role during disease progression, their similarities and differences and lineage reversion in pathology and discuss associated therapeutics and drug-resistance mechanisms across many organs. We also discuss the diversity of reactivated programs in different disease contexts. A comprehensive overview of commonalities between development and disease will provide better understanding of the biology and therapeutic strategies.
Collapse
Affiliation(s)
- Hassan Fazilaty
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland.
| | - Konrad Basler
- Department of Molecular Life Sciences, University of Zürich, Zürich, Switzerland
| |
Collapse
|
30
|
Goto N, Suzuki H, Zheng L, Okano Y, Okita Y, Watanabe Y, Kato Y, Kato M. Promotion of squamous cell carcinoma tumorigenesis by oncogene-mediated THG-1/TSC22D4 phosphorylation. Cancer Sci 2023; 114:3972-3983. [PMID: 37607779 PMCID: PMC10551599 DOI: 10.1111/cas.15934] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/26/2023] [Accepted: 08/02/2023] [Indexed: 08/24/2023] Open
Abstract
Carcinoma cells possess high proliferative and invasive potentials and exhibit a resilience against stresses, metabolic disorder, and therapeutic efforts. These properties are mainly acquired by genetic alterations including driver gene mutations. However, the detailed molecular mechanisms have not been fully elucidated. Here, we provide a novel mechanism connecting oncogenic signaling and the tumorigenic properties by a transforming growth factor-β1-stimulated clone 22 (TSC-22) family protein, THG-1 (also called as TSC22D4). THG-1 is localized at the basal layer of normal squamous epithelium and overexpressed in squamous cell carcinomas (SCCs). THG-1 knockdown suppressed SCC cell proliferation, invasiveness, and xenograft tumor formation. In contrast, THG-1 overexpression promoted the EGF-induced proliferation and stratified epithelium formation. Furthermore, THG-1 is phosphorylated by the receptor tyrosine kinase (RTK)-RAS-ERK pathway, which promoted the oncogene-mediated tumorigenesis. Moreover, THG-1 involves in the alternative splicing of CD44 variants, a regulator of invasiveness, stemness, and oxidative stress resistance under the RTK pathway. These findings highlight the pivotal roles of THG-1 as a novel effector of SCC tumorigenesis, and the detection of THG-1 phosphorylation by our established specific antibody could contribute to cancer diagnosis and therapy.
Collapse
Affiliation(s)
- Nohara Goto
- Department of Experimental Pathology, Faculty of MedicineUniversity of TsukubaTsukubaJapan
- Ph.D. Program in Human Biology, School of Integrative and Global MajorsUniversity of TsukubaTsukubaJapan
| | - Hiroyuki Suzuki
- Department of Experimental Pathology, Faculty of MedicineUniversity of TsukubaTsukubaJapan
- Department of Antibody Drug DevelopmentTohoku University Graduate School of MedicineSendaiJapan
| | - Ling Zheng
- Department of Experimental Pathology, Faculty of MedicineUniversity of TsukubaTsukubaJapan
| | - Yasuhito Okano
- Department of Experimental Pathology, Faculty of MedicineUniversity of TsukubaTsukubaJapan
| | - Yukari Okita
- Department of Experimental Pathology, Faculty of MedicineUniversity of TsukubaTsukubaJapan
| | - Yukihide Watanabe
- Department of Experimental Pathology, Faculty of MedicineUniversity of TsukubaTsukubaJapan
| | - Yukinari Kato
- Department of Antibody Drug DevelopmentTohoku University Graduate School of MedicineSendaiJapan
| | - Mitsuyasu Kato
- Department of Experimental Pathology, Faculty of MedicineUniversity of TsukubaTsukubaJapan
| |
Collapse
|
31
|
Bernabé-Rubio M, Ali S, Bhosale PG, Goss G, Mobasseri SA, Tapia-Rojo R, Zhu T, Hiratsuka T, Battilocchi M, Tomás IM, Ganier C, Garcia-Manyes S, Watt FM. Myc-dependent dedifferentiation of Gata6 + epidermal cells resembles reversal of terminal differentiation. Nat Cell Biol 2023; 25:1426-1438. [PMID: 37735598 PMCID: PMC10567550 DOI: 10.1038/s41556-023-01234-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 08/16/2023] [Indexed: 09/23/2023]
Abstract
Dedifferentiation is the process by which terminally differentiated cells acquire the properties of stem cells. During mouse skin wound healing, the differentiated Gata6-lineage positive cells of the sebaceous duct are able to dedifferentiate. Here we have integrated lineage tracing and single-cell mRNA sequencing to uncover the underlying mechanism. Gata6-lineage positive and negative epidermal stem cells in wounds are transcriptionally indistinguishable. Furthermore, in contrast to reprogramming of induced pluripotent stem cells, the same genes are expressed in the epidermal dedifferentiation and differentiation trajectories, indicating that dedifferentiation does not involve adoption of a new cell state. We demonstrate that dedifferentiation is not only induced by wounding, but also by retinoic acid treatment or mechanical expansion of the epidermis. In all three cases, dedifferentiation is dependent on the master transcription factor c-Myc. Mechanotransduction and actin-cytoskeleton remodelling are key features of dedifferentiation. Our study elucidates the molecular basis of epidermal dedifferentiation, which may be generally applicable to adult tissues.
Collapse
Affiliation(s)
- Miguel Bernabé-Rubio
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, UK
| | - Shahnawaz Ali
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, UK
| | - Priyanka G Bhosale
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, UK
| | - Georgina Goss
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, UK
| | | | - Rafael Tapia-Rojo
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King's College London, London, UK
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, London, UK
| | - Tong Zhu
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King's College London, London, UK
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, London, UK
| | - Toru Hiratsuka
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, UK
- Department of Oncogenesis and Growth Regulation, Research Center, Osaka International Cancer Institute, Chuoku, Japan
| | - Matteo Battilocchi
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, UK
| | - Inês M Tomás
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, UK
| | - Clarisse Ganier
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, UK
| | - Sergi Garcia-Manyes
- Department of Physics, Randall Centre for Cell and Molecular Biophysics, Centre for the Physical Science of Life and London Centre for Nanotechnology, King's College London, London, UK
- Single Molecule Mechanobiology Laboratory, The Francis Crick Institute, London, UK
| | - Fiona M Watt
- Centre for Gene Therapy and Regenerative Medicine, King's College London, London, UK.
- Directors' Unit, EMBL Heidelberg, Heidelberg, Germany.
| |
Collapse
|
32
|
Zhang Y, Shen Y, Zhao L, Zhao Q, Zhao L, Yi S. Transcription Factor BCL11A Regulates Schwann Cell Behavior During Peripheral Nerve Regeneration. Mol Neurobiol 2023; 60:5352-5365. [PMID: 37316757 DOI: 10.1007/s12035-023-03432-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 06/05/2023] [Indexed: 06/16/2023]
Abstract
Nerve injury-induced Schwann cell dedifferentiation helps to construct a favorable microenvironment for axon growth. Transcription factors regulate cell reprogramming and thus may be critical for Schwann cell phenotype switch during peripheral nerve regeneration. Here, we show that transcription factor B-cell lymphoma/leukemia 11A (BCL11A) is up-regulated in Schwann cells of injured peripheral nerves. Bcl11a silencing suppresses Schwann cell viability, decreases Schwann cell proliferation and migration rates, and impairs the debris clearance ability of Schwann cells. Reduced Bcl11a in injured peripheral nerves results in restricted axon elongation and myelin wrapping, leading to recovery failure. Mechanistically, we demonstrate that BCL11A may mediate Schwann cell activity through binding to the promoter of nuclear receptor subfamily 2 group F member 2 (Nr2f2) and regulating Nr2f2 expression. Collectively, we conclude that BCL11A is essential for Schwann cell activation and peripheral nerve regeneration, providing a potential therapeutic target for the treatment of peripheral nerve injury.
Collapse
Affiliation(s)
- Yunsong Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Yinying Shen
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Li Zhao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Qian Zhao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China
| | - Lili Zhao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China.
| | - Sheng Yi
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, NMPA Key Laboratory for Research and Evaluation of Tissue Engineering Technology Products, Nantong University, Nantong, Jiangsu, China.
| |
Collapse
|
33
|
Vu R, Dragan M, Sun P, Werner S, Dai X. Epithelial-Mesenchymal Plasticity and Endothelial-Mesenchymal Transition in Cutaneous Wound Healing. Cold Spring Harb Perspect Biol 2023; 15:a041237. [PMID: 36617638 PMCID: PMC10411868 DOI: 10.1101/cshperspect.a041237] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Epithelial and endothelial cells possess the inherent plasticity to undergo morphological, cellular, and molecular changes leading to their resemblance of mesenchymal cells. A prevailing notion has been that cutaneous wound reepithelialization involves partial epithelial-to-mesenchymal transition (EMT) of wound-edge epidermal cells to enable their transition from a stationary state to a migratory state. In this review, we reflect on past findings that led to this notion and discuss recent studies that suggest a refined view, focusing predominantly on in vivo results using mammalian excisional wound models. We highlight the concept of epithelial-mesenchymal plasticity (EMP), which emphasizes a reversible conversion of epithelial cells across multiple intermediate states within the epithelial-mesenchymal spectrum, and discuss the critical importance of restricting EMT for effective wound reepithelialization. We also outline the current state of knowledge on EMP in pathological wound healing, and on endothelial-to-mesenchymal transition (EndMT), a process similar to EMT, as a possible mechanism contributing to wound fibrosis and scar formation. Harnessing epithelial/endothelial-mesenchymal plasticity may unravel opportunities for developing new therapeutics to treat human wound healing pathologies.
Collapse
Affiliation(s)
- Remy Vu
- Department of Biological Chemistry, University of California, Irvine, California 92697-1700, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, California 92697-1700, USA
| | - Morgan Dragan
- Department of Biological Chemistry, University of California, Irvine, California 92697-1700, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, California 92697-1700, USA
| | - Peng Sun
- Department of Biological Chemistry, University of California, Irvine, California 92697-1700, USA
| | - Sabine Werner
- Institute of Molecular Health Sciences, Department of Biology, 8093 ETH Zurich, Switzerland
| | - Xing Dai
- Department of Biological Chemistry, University of California, Irvine, California 92697-1700, USA
- NSF-Simons Center for Multiscale Cell Fate Research, University of California, Irvine, California 92697-1700, USA
| |
Collapse
|
34
|
Sample RA, Nogueira MF, Mitra RD, Puram SV. Epigenetic regulation of hybrid epithelial-mesenchymal cell states in cancer. Oncogene 2023; 42:2237-2248. [PMID: 37344626 PMCID: PMC10578205 DOI: 10.1038/s41388-023-02749-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/09/2023] [Accepted: 06/08/2023] [Indexed: 06/23/2023]
Abstract
Epithelial-to-mesenchymal transition (EMT) is a process by which cells lose their epithelial characteristics and gain mesenchymal phenotypes. In cancer, EMT is thought to drive tumor invasion and metastasis. Recent efforts to understand EMT biology have uncovered that cells undergoing EMT attain a spectrum of intermediate "hybrid E/M" states, which exist along an epithelial-mesenchymal continuum. Here, we summarize recent studies characterizing the epigenetic drivers of hybrid E/M states. We focus on the histone-modification writers, erasers, and readers that assist or oppose the canonical hybrid E/M transcription factors that modulate hybrid E/M state transitions. We also examine the role of chromatin remodelers and DNA methylation in hybrid E/M states. Finally, we highlight the challenges of targeting hybrid E/M pharmacologically, and we propose future directions that might reveal the specific and targetable mechanisms by which hybrid E/M drives metastasis in patients.
Collapse
Affiliation(s)
- Reilly A Sample
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA
| | - Marina F Nogueira
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA
| | - Robi D Mitra
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.
- Edison Family Center for Genome Sciences and Systems Biology, Washington University School of Medicine in St. Louis, St. Louis, MO, USA.
| | - Sidharth V Puram
- Department of Genetics, Washington University School of Medicine, St. Louis, MO, USA.
- Department of Otolaryngology-Head and Neck Surgery, Washington University School of Medicine, St. Louis, MO, USA.
- Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
35
|
Chao H, Zheng L, Hsu P, He J, Wu R, Xu S, Zeng R, Zhou Y, Ma H, Liu H, Tang Q. IL-13RA2 downregulation in fibroblasts promotes keloid fibrosis via JAK/STAT6 activation. JCI Insight 2023; 8:157091. [PMID: 36757802 PMCID: PMC10070111 DOI: 10.1172/jci.insight.157091] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Accepted: 02/07/2023] [Indexed: 02/10/2023] Open
Abstract
Keloids are considered the manifestation of a fibroproliferative disease characterized by chronic inflammation that is induced following skin injury. Deciphering the underlying mechanism of keloid formation is essential for improving treatment outcomes. Here, we found that more macrophages were activated toward the M2 subtype in keloid dermis when compared with normal dermis. Western blotting revealed that the level of phosphorylated STAT6 (p-STAT6), a known inducer of M2 polarization, was higher in keloid fibroblasts as opposed to fibroblasts from normal dermis. Moreover, keloid fibrosis was shown to be positively correlated with the level of p-STAT6. Further, we identified downregulation of IL-13RA2, a decoy receptor for IL-13, in keloid fibroblasts compared with fibroblasts from normal dermis. Ectopic expression of IL-13RA2 in keloid fibroblasts resulted in inhibition of STAT6 phosphorylation, cell proliferation, migration, invasion, extracellular matrix secretion, and myofibroblast marker expression, as well as an increase in apoptosis. Consistently, knockdown of IL-13RA2 in normal fibroblasts induced a keloidal status. Furthermore, both in vitro application and intratumoral injection of p-STAT6 inhibitor AS1517499 in a patient-derived xenograft keloid-implantation mouse model resulted in proliferation inhibition and tissue necrosis, apoptosis, and myofibroblast marker reduction. Collectively, this study elucidates the key role of IL-13RA2 in keloid pathology and inspires further translational research of keloid treatment concerning JAK/STAT6 inhibition.
Collapse
Affiliation(s)
- Hua Chao
- Division of Plastic and Reconstructive Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Lisheng Zheng
- Department of Pathology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Pojui Hsu
- Division of Plastic and Reconstructive Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jinyun He
- Division of Plastic and Reconstructive Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ridong Wu
- Division of Vascular Surgery, the First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shuqia Xu
- Division of Plastic and Reconstructive Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Ruixi Zeng
- Division of Plastic and Reconstructive Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Yuan Zhou
- Division of Plastic and Reconstructive Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Huisi Ma
- Department of Pathology, Foshan Women and Children's Hospital, Foshan, China
| | - Haibo Liu
- Division of Plastic and Reconstructive Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Qing Tang
- Division of Plastic and Reconstructive Surgery, First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
36
|
Hama R, Reinhardt JW, Ulziibayar A, Watanabe T, Kelly J, Shinoka T. Recent Tissue Engineering Approaches to Mimicking the Extracellular Matrix Structure for Skin Regeneration. Biomimetics (Basel) 2023; 8:biomimetics8010130. [PMID: 36975360 PMCID: PMC10046023 DOI: 10.3390/biomimetics8010130] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 03/20/2023] [Accepted: 03/21/2023] [Indexed: 03/29/2023] Open
Abstract
Inducing tissue regeneration in many skin defects, such as large traumatic wounds, burns, other physicochemical wounds, bedsores, and chronic diabetic ulcers, has become an important clinical issue in recent years. Cultured cell sheets and scaffolds containing growth factors are already in use but have yet to restore normal skin tissue structure and function. Many tissue engineering materials that focus on the regeneration process of living tissues have been developed for the more versatile and rapid initiation of treatment. Since the discovery that cells recognize the chemical-physical properties of their surrounding environment, there has been a great deal of work on mimicking the composition of the extracellular matrix (ECM) and its three-dimensional network structure. Approaches have used ECM constituent proteins as well as morphological processing methods, such as fiber sheets, sponges, and meshes. This review summarizes material design strategies in tissue engineering fields, ranging from the morphology of existing dressings and ECM structures to cellular-level microstructure mimicry, and explores directions for future approaches to precision skin tissue regeneration.
Collapse
Affiliation(s)
- Rikako Hama
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
- Department of Biotechnology and Life Science, Graduate School of Engineering, Tokyo University of Agriculture and Technology, 2-24-16 Naka-Cho, Koganei 184-8588, Japan
| | - James W Reinhardt
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Anudari Ulziibayar
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Tatsuya Watanabe
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - John Kelly
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
| | - Toshiharu Shinoka
- Center for Regenerative Medicine, The Abigail Wexner Research Institute, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
- Department of Cardiothoracic Surgery, The Heart Center, Nationwide Children's Hospital, 700 Children's Drive, Columbus, OH 43205, USA
- Department of Surgery, Cardiovascular Tissue Engineering Program, Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
37
|
Williams AM, Horne-Badovinac S. Fat2 polarizes Lar and Sema5c to coordinate the motility of collectively migrating epithelial cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.28.530349. [PMID: 36909523 PMCID: PMC10002635 DOI: 10.1101/2023.02.28.530349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Migrating epithelial cells globally align their migration machinery to achieve tissue-level movement. Biochemical signaling across leading-trailing cell-cell interfaces can promote this alignment by partitioning migratory behaviors like protrusion and retraction to opposite sides of the interface. However, how the necessary signaling proteins become organized at this site is poorly understood. The follicular epithelial cells of Drosophila melanogaster have two signaling modules at their leading-trailing interfaces-one composed of the atypical cadherin Fat2 and the receptor tyrosine phosphatase Lar, and one composed of Semaphorin 5c and its receptor Plexin A. Here we show that these modules form one interface signaling system with Fat2 at its core. Trailing edge-enriched Fat2 concentrates both Lar and Sema5c at cells' leading edges, likely by slowing their turnover at this site. Once localized, Lar and Sema5c act in parallel to promote collective migration. Our data suggest a model in which Fat2 couples and polarizes the distributions of multiple effectors that work together to align the migration machinery of neighboring cells.
Collapse
Affiliation(s)
- Audrey Miller Williams
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
| | - Sally Horne-Badovinac
- Department of Molecular Genetics and Cell Biology, University of Chicago, Chicago, IL, USA
- Committee on Development, Regeneration, and Stem Cell Biology, University of Chicago, Chicago, IL, USA
| |
Collapse
|
38
|
Leite CDS, Bonafé GA, Pires OC, dos Santos TW, Pereira GP, Pereira JA, Rocha T, Martinez CAR, Ortega MM, Ribeiro ML. Dipotassium Glycyrrhizininate Improves Skin Wound Healing by Modulating Inflammatory Process. Int J Mol Sci 2023; 24:ijms24043839. [PMID: 36835248 PMCID: PMC9965141 DOI: 10.3390/ijms24043839] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023] Open
Abstract
Wound healing is characterized by a systemic and complex process of cellular and molecular activities. Dipotassium Glycyrrhizinate (DPG), a side product derived from glycyrrhizic acid, has several biological effects, such as being antiallergic, antioxidant, antibacterial, antiviral, gastroprotective, antitumoral, and anti-inflammatory. This study aimed to evaluate the anti-inflammatory effect of topical DPG on the healing of cutaneous wounds by secondary intention in an in vivo experimental model. Twenty-four male Wistar rats were used in the experiment, and were randomly divided into six groups of four. Circular excisions were performed and topically treated for 14 days after wound induction. Macroscopic and histopathological analyses were performed. Gene expression was evaluated by real-time qPCR. Our results showed that treatment with DPG caused a decrease in the inflammatory exudate as well as an absence of active hyperemia. Increases in granulation tissue, tissue reepithelization, and total collagen were also observed. Furthermore, DPG treatment reduced the expression of pro-inflammatory cytokines (Tnf-α, Cox-2, Il-8, Irak-2, Nf-kB, and Il-1) while increasing the expression of Il-10, demonstrating anti-inflammatory effects across all three treatment periods. Based on our results, we conclude that DPG attenuates the inflammatory process by promoting skin wound healing through the modulation of distinct mechanisms and signaling pathways, including anti-inflammatory ones. This involves modulation of the expression of pro- and anti-inflammatory cytokine expression; promotion of new granulation tissue; angiogenesis; and tissue re-epithelialization, all of which contribute to tissue remodeling.
Collapse
Affiliation(s)
- Camila dos Santos Leite
- Laboratory of Immunopharmacology and Molecular Biology, São Francisco University Medical School (USF), Bragança Paulista, São Paulo 12916-900, Brazil
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University Medical School (USF), Bragança Paulista, São Paulo 12916-900, Brazil
| | - Gabriel Alves Bonafé
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University Medical School (USF), Bragança Paulista, São Paulo 12916-900, Brazil
| | - Oscar César Pires
- Laboratory of Pharmacology, Taubaté University (UNITAU), Taubaté, São Paulo 12030-180, Brazil
| | - Tanila Wood dos Santos
- Laboratory of Immunopharmacology and Molecular Biology, São Francisco University Medical School (USF), Bragança Paulista, São Paulo 12916-900, Brazil
| | - Geovanna Pacciulli Pereira
- Department of Surgery and Proctology, São Francisco University (USF), Bragança Paulista, São Paulo 12916-900, Brazil
| | - José Aires Pereira
- Department of Surgery and Proctology, São Francisco University (USF), Bragança Paulista, São Paulo 12916-900, Brazil
| | - Thalita Rocha
- Postgraduate Program in Biomaterials and Regenerative Medicine, Faculty of Medical Sciences and Health, Pontifical Catholic University of São Paulo, São Paulo 05014-901, Brazil
| | - Carlos Augusto Real Martinez
- Department of Surgery and Proctology, São Francisco University (USF), Bragança Paulista, São Paulo 12916-900, Brazil
| | - Manoela Marques Ortega
- Laboratory of Cell and Molecular Tumor Biology and Bioactive Compounds, São Francisco University Medical School (USF), Bragança Paulista, São Paulo 12916-900, Brazil
| | - Marcelo Lima Ribeiro
- Laboratory of Immunopharmacology and Molecular Biology, São Francisco University Medical School (USF), Bragança Paulista, São Paulo 12916-900, Brazil
- Correspondence:
| |
Collapse
|
39
|
Saravanan P, R P, Balachander N, K KRS, S S, S R. Anti-inflammatory and wound healing properties of lactic acid bacteria and its peptides. Folia Microbiol (Praha) 2023; 68:337-353. [PMID: 36780113 PMCID: PMC9924211 DOI: 10.1007/s12223-022-01030-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 12/29/2022] [Indexed: 02/14/2023]
Abstract
Recent studies manifest an increase of inflammatory diseases at an alarming rate due to gut microbiota dysbiosis, genetic and other environmental factors. Lactic acid bacteria (LAB) are known for their antimicrobial properties and their extensive applications in food and pharmaceutical industries. Cyclic peptides are receiving increased attention due to their remarkable stability to withstand variations in temperature and pH. LAB produces anti-inflammatory that can inhibit lipopolysaccharide-induced production of proinflammatory cytokines in macrophages. The structural backbones of cyclic peptides offer a promising approach for the treatment of chronic inflammatory conditions. The current review aims to present the overview of anti-inflammatory and wound healing properties of LAB-derived cyclic peptides.
Collapse
Affiliation(s)
- Parikhshith Saravanan
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering & Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, India
| | - Pooja R
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering & Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, India
| | - Nanditaa Balachander
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering & Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, India
| | - Kesav Ram Singh K
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering & Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, India
| | - Silpa S
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering & Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, India
| | - Rupachandra S
- Department of Biotechnology, School of Bioengineering, Faculty of Engineering & Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai, 603 203, India.
| |
Collapse
|
40
|
The Role of Platelets in the Pathogenesis and Pathophysiology of Adenomyosis. J Clin Med 2023; 12:jcm12030842. [PMID: 36769489 PMCID: PMC9918158 DOI: 10.3390/jcm12030842] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 01/04/2023] [Accepted: 01/11/2023] [Indexed: 01/24/2023] Open
Abstract
Widely viewed as an enigmatic disease, adenomyosis is a common gynecological disease with bewildering pathogenesis and pathophysiology. One defining hallmark of adenomyotic lesions is cyclic bleeding as in eutopic endometrium, yet bleeding is a quintessential trademark of tissue injury, which is invariably followed by tissue repair. Consequently, adenomyotic lesions resemble wounds. Following each bleeding episode, adenomyotic lesions undergo tissue repair, and, as such, platelets are the first responder that heralds the subsequent tissue repair. This repeated tissue injury and repair (ReTIAR) would elicit several key molecular events crucial for lesional progression, eventually leading to lesional fibrosis. Platelets interact with adenomyotic cells and actively participate in these events, promoting the lesional progression and fibrogenesis. Lesional fibrosis may also be propagated into their neighboring endometrial-myometrial interface and then to eutopic endometrium, impairing endometrial repair and causing heavy menstrual bleeding. Moreover, lesional progression may result in hyperinnervation and an enlarged uterus. In this review, the role of platelets in the pathogenesis, progression, and pathophysiology is reviewed, along with the therapeutic implication. In addition, I shall demonstrate how the notion of ReTIAR provides a much needed framework to tether to and piece together many seemingly unrelated findings and how it helps to make useful predictions.
Collapse
|
41
|
Yang S, Lu S, Ren L, Bian S, Zhao D, Liu M, Wang J. Ginseng-derived nanoparticles induce skin cell proliferation and promote wound healing. J Ginseng Res 2023; 47:133-143. [PMID: 36644388 PMCID: PMC9834025 DOI: 10.1016/j.jgr.2022.07.005] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 05/31/2022] [Accepted: 07/19/2022] [Indexed: 01/18/2023] Open
Abstract
Background Past studies suggested that ginseng extracts and ginseng-derived molecules exerted significant regulatory effects on skin. However, no reports have described the effects of ginseng-derived nanoparticles (GDNPs) on skin cell proliferation and wound healing. In this study, we investigated whether GDNPs regulate the proliferation of skin cells and promote wound healing in a mouse model. Methods GDNPs were separated and purified via differential centrifugation and sucrose/D2O gradient ultracentrifugation. GDNP uptake, cell proliferation and cell cycle progression were measured by confocal microscopy, CCK-8 assay and flow cytometry, respectively. Cell migration and angiogenic effects were assessed by the wound scratch assay and tube formation assay, respectively. ELISA was used to detect extracellular matrix secretion. The relevant signaling pathway was confirmed by western blotting. The effects of GDNPs on skin wound healing were assessed by wound observation, HE staining, and western blotting. Results GDNPs possessed the essential features of exosomes, and they were accumulated by skin cells. Treatment with GDNPs notably enhanced the proliferation of HaCaT, BJ and HUVECs. GDNPs also enhanced the migration in HaCaT cells and HUVECs and angiogenesis in HUVECs. GDNPs increased the secretion of MMP-1, fibronectin-1, elastin-1, and COL1A1 in all three cell lines. GDNPs regulated cell proliferation through the ERK and AKT/ mTOR pathways. Furthermore, GDNPs facilitated skin wound healing and decreased inflammation in a mouse skin wound model. Conclusion GDNPs can promote skin wound healing through the ERK and AKT/mTOR pathways. GDNPs thus represent an alternative treatment for chronic skin wounds.
Collapse
Affiliation(s)
| | | | | | | | | | - Meichen Liu
- Corresponding author. Jilin Ginseng Academy, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, Jilin, 130117, China.
| | - Jiawen Wang
- Corresponding author. Jilin Ginseng Academy, Changchun University of Chinese Medicine, 1035 Boshuo Road, Changchun, Jilin, 130117, China.
| |
Collapse
|
42
|
Sun J, Zhou J, Zhou J, Xu W, Du Y, Jia Z, Shen Y, Lin X, Wang X, Bao Y, Rao Z, Dong S, Luo Y, Cong W, Jin L, Li X. FGF4 Promotes Skin Wound Repair through p38 MAPK and GSK3β-Mediated Stabilization of Slug. J Invest Dermatol 2022; 143:1073-1084.e8. [PMID: 36521556 DOI: 10.1016/j.jid.2022.11.015] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 11/01/2022] [Accepted: 11/03/2022] [Indexed: 12/15/2022]
Abstract
Cutaneous wound healing is an orderly and intricate process that restores the barrier function and integrity of injured skin. Re-epithelialization, which involves the proliferation and migration of keratinocytes to cover the denuded surface, is essential for successful wound closure. There are many members of the FGF family, of which the paracrine-acting FGF1 and FGF7 subfamily members have been identified as positive regulators of wound repair. However, the role and underlying mechanisms of some other paracrine FGFs in wound repair still remain obscure. In this report, we found that paracrine FGF4 localized predominantly to the epidermal keratinocytes and was markedly upregulated at the wound edges in response to re-epithelialization in human and mouse wound models. Blockade of FGF4 resulted in delayed re-epithelialization of human ex vivo skin wounds, whereas recombinant FGF4 treatment promoted re-epithelialization and wound repair. Mechanistically, recombinant FGF4 promotes p38 MAPK‒GSK3β‒mediated stabilization of Slug by reducing its ubiquitination, which triggers epithelial-to-mesenchymal transition and promotes the migration and proliferation of keratinocytes and thus wound re-epithelialization. Our findings uncover FGF4 as an important regulator of wound healing, highlighting a promising therapeutic avenue for skin injury.
Collapse
Affiliation(s)
- Jian Sun
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jie Zhou
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jianhui Zhou
- Department of Pediatrics, Taizhou Hospital of Zhejiang Province Affiliated to Wenzhou Medical University, Taizhou, China
| | - Wenxin Xu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yali Du
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhenyu Jia
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yingjie Shen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China; School of Life Sciences, Huzhou University, Huzhou, China
| | - Xiaohua Lin
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xulan Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yuxuan Bao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Zhiheng Rao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Siyang Dong
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China; The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Yongde Luo
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China; The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Weitao Cong
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Litai Jin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
43
|
Hu B, Shen X, Qin W, Zhang L, Zou T, Dong Q, Qin LX. A Prognostic Nomogram for Hepatocellular Carcinoma Based on Wound Healing and Immune Checkpoint Genes. J Clin Transl Hepatol 2022; 10:891-900. [PMID: 36304515 PMCID: PMC9547254 DOI: 10.14218/jcth.2021.00296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 09/18/2021] [Accepted: 11/16/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND AND AIMS Wound healing and tumor progression share some common biological features; however, how variations in wound healing patterns affect hepatocellular carcinoma (HCC) prognosis remains unclear. METHODS We analyzed the wound healing patterns of 594 HCC samples from The Cancer Genome Atlas (TCGA) and the International Cancer Genome Consortium (ICGC) and correlated them with immune infiltration and the expression levels of immune checkpoint genes. A risk score, which we named the "heal.immune" score, was established via stepwise Cox estimation. We constructed a nomogram based on age, sex, TNM stage, and heal.immune score and explored its predictive value for HCC prognosis. Seventy-four clinical patients were enrolled in this study, and all were from Huashan Hospital of Fudan University between 2015 and 2017 to serve as an independent validation group. RESULTS We identified two distinct wound healing patterns in HCC. The biological processes of healing cluster 1 (C1) are related to metabolism, while those of healing cluster 2 (C2) are related to the inflammatory response and immune cell accumulation. A total of 565 wound healing-related genes (based on Gene Ontology) and 25 immune checkpoint genes were considered. By analyzing differentially expressed genes and implementing a stepwise Cox estimation analysis, six genes with p values less than 0.02 in a multivariate Cox estimation were chosen as the "heal.immune" gene set (FCER1G, PLAT, ITGA5, CCNB1, CD86 and CD40). The "heal.immune" gene set, as an OS risk factor, was further validated in Fudan cohort. We constructed a nomogram to predict the 1-, 3- and 5-year overall survival (OS) in the TCGA cohort. The area under curve vales of the receiver characteristic operator curves were 0.82, 0.76 and 0.73 in the training group and 0.84, 0.76 and 0.72 in the test group. CONCLUSIONS We established a prognostic nomogram based on the heal.immune gene signature, which includes six wound healing- and immunity-related genes. This nomogram accurately predicts the OS of HCC patients.
Collapse
Affiliation(s)
| | | | | | - Lan Zhang
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Tiantian Zou
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Qiongzhu Dong
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Lun-Xiu Qin
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| |
Collapse
|
44
|
Martinez FE, Cassettaria LL, Nicolaua NC, de Barros Camargoa VM, de Almeida Chuffaa LG, Pinheiroa PFF, Padovania CR, Martinez M. Ageing decreases the healing of wounds in the skin of alcohol-preferring rats. J Wound Care 2022; 31:872-881. [PMID: 36240793 DOI: 10.12968/jowc.2022.31.10.872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
OBJECTIVE Alcohol consumption combined with ageing alters the healing process of the skin. We evaluated whether ageing decreases the healing of incisional wounds in the skin of Wistar rats of Universidade de Chile of variety B (UChB). METHOD A total of 20 adult rats and 20 older UChB rats, divided into two groups which underwent surgical aggression in the anterior region of the abdomen, were used: G1, adult rats (100 days old, control) with water and 10% ethanol; G2, aged rats (540 days old, experimental) with water and 10% ethanol; evaluated at 4, 7, 14 and 21 days after surgery. RESULTS Ageing did not alter the rupture force and collagen elasticity and resistance. There were increases in telomerase with the implementation of cellular senescence, in interleukin 1-alpha (IL-1α) at 14 days of healing, in epidermal growth factor (EGF) at 14 and 21 days of healing with delayed growth and development of keratinocytes, also an increase of IL-β at 4 days, and decrease in tumour necrosis factor (TNFα) at 7 days, associated with chronic scarring. There was an increase in vascular endothelial growth factor (VEGF) at 4 and 7 days, responsible for the early vessels re-establishment. There was a decrease in transforming growth factor 2-beta (TGFβ2) and β3 at 4 and 7 days of healing respectively, and estradiol at 4 days. CONCLUSION Ageing decreases the skin healing in incisional wounds in alcohol-preferring rats.
Collapse
|
45
|
Jiao Y, Chen X, Nong B, Luo M, Niu Y, Huang S, Zhang J, Wei A, Huang J. Transplantation of Wharton's jelly mesenchymal stem cells encapsulated with Hydroactive® Gel promotes diabetic wound antifibrotic healing in type 2 diabetic rats. J Mater Chem B 2022; 10:8330-8346. [PMID: 36168995 DOI: 10.1039/d2tb01649d] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Diabetic cutaneous ulcers (DCU) are a complication for diabetes patients, mostly occurring in the foot and causing non-healing diabetic foot ulcers. Mesenchymal stem cell (MSC)-based therapy is currently being investigated as a therapeutic avenue for chronic diabetic ulcers. However, poor engraftment, short retention, and low survival still limit the treatment effectiveness. Hydroactive® Gel is a sterile transparent gel made of natural hydrocolloid, which has been widely used for wound management. Whether transplantation of Wharton's jelly mesenchymal stem cells (WJMSCs) encapsulated with Hydroactive® Gel is helpful to diabetic ulcers wound healing remains to be explored. The biocompatibility experiments showed that WJMSCs embedded in Hydroactive® Gel did not influence the cell viability, survival, proliferation, and apoptosis of WJMSCs in vitro. RNA-seq results also implied that Hydroactive® Gel + WJMSCs transplantation activated the "cytokine-cytokine receptor interaction", "mononuclear cell differentiation", "regulation of cell-cell adhesion", and "chemokine receptor activity" to accelerate the inflammatory reaction and epidermis regeneration in diabetic wounds. Histological analysis results demonstrated that Hydroactive® Gel encapsulated WJMSCs transplantation promoted diabetic wound healing and regeneration, indicating improved dermis regeneration, sebaceous gland formation, and type III collagen fiber deposition. Besides, immunohistochemical analysis results showed that Hydroactive® Gel + WJMSCs transplantation also facilitated the transformation of pro-inflammatory M1 macrophages to anti-inflammatory M2 macrophages, cell proliferation, and neovascularization at the wound site. Hydroactive® Gel encapsulation further prolonged the retention time of WJMSCs at the diabetic wound site. Above all, Hydroactive® Gel accelerates WJMSCs-mediated diabetic wound healing by promoting macrophage transformation, facilitating cell proliferation and angiogenesis, and prolonging cell retention time. Our findings may potentially provide a useful therapeutic strategy based on the combination of WJMSCs and biomedical materials for patients with diabetic cutaneous ulcers.
Collapse
Affiliation(s)
- Yiren Jiao
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Xiaolin Chen
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Baoting Nong
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Mingxun Luo
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Yongxia Niu
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China.
| | - Sunxing Huang
- Key Laboratory of Reproductive Medicine of Guangdong Province, The First Affiliated Hospital and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| | - Jue Zhang
- Department of Endocrinology, Foshan Hospital of Traditional Chinese Medicine, Foshan 528000, China.
| | - Aisheng Wei
- Department of Endocrinology, Foshan Hospital of Traditional Chinese Medicine, Foshan 528000, China.
| | - Junjiu Huang
- MOE Key Laboratory of Gene Function and Regulation, State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-sen University, Guangzhou, 510275, China. .,Key Laboratory of Reproductive Medicine of Guangdong Province, The First Affiliated Hospital and School of Life Sciences, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
46
|
Theocharidis G, Rahmani S, Lee S, Li Z, Lobao A, Kounas K, Katopodi XL, Wang P, Moon S, Vlachos IS, Niewczas M, Mooney D, Veves A. Murine macrophages or their secretome delivered in alginate dressings enhance impaired wound healing in diabetic mice. Biomaterials 2022; 288:121692. [PMID: 35934520 PMCID: PMC9977170 DOI: 10.1016/j.biomaterials.2022.121692] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 07/12/2022] [Accepted: 07/19/2022] [Indexed: 12/12/2022]
Abstract
Diabetic foot ulceration is a devastating diabetic complication with unmet needs. We explored the efficacy of calcium-crosslinked alginate dressings in topically delivering primary macrophages and their secretome to diabetic wounds. The alginate bandages had a microporous structure that enabled even cell loading with prolonged cell survival and egress following wound placement. In vitro experiments showed that we could successfully differentiate and polarize primary murine bone marrow derived monocytes into M0, M1, M2a and M2c defined states with distinct gene expression, surface protein and secretome profiles. The primary macrophages were delivered in the bandages, migrated within the wounds and were still present for as long as 16 days post-injury. In wounds of db/db mice, treatment with all macrophage subtypes and their secretome, when compared to control, accelerated wound healing. Bulk RNA sequencing analysis and multiplex protein quantification of wound lysates revealed that M2c macrophages conditioned media had the most impact in wound healing affecting processes like neurogenesis, while M1 conditioned media promoted keratinization and epidermal differentiation. Collectively, our results indicate that alginate dressings can serve as a delivery platform for topical treatment of diabetic wounds and that conditioned media from distinctly polarized macrophages is equally or more effective than their parental cells in advancing wound healing and could therefore be a promising and technically advantageous alternative to cell therapy.
Collapse
Affiliation(s)
- Georgios Theocharidis
- Joslin-Beth Israel Deaconess Foot Center and the Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Sahar Rahmani
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
| | - Sangmin Lee
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
| | - Zhuqing Li
- Joslin-Beth Israel Deaconess Foot Center and the Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Antonio Lobao
- Joslin-Beth Israel Deaconess Foot Center and the Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Konstantinos Kounas
- Joslin-Beth Israel Deaconess Foot Center and the Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Xanthi-Lida Katopodi
- Cancer Research Institute | HMS Initiative for RNA Medicine | Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Peng Wang
- Joslin-Beth Israel Deaconess Foot Center and the Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA
| | - Salina Moon
- Research Division, Joslin Diabetes Center, Boston, MA, USA
| | - Ioannis S Vlachos
- Cancer Research Institute | HMS Initiative for RNA Medicine | Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA; Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Monika Niewczas
- Research Division, Joslin Diabetes Center, Harvard Medical School, Boston, MA, USA
| | - David Mooney
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, MA, Wyss Institute for Biologically Inspired Engineering, Harvard University, Cambridge, MA, USA
| | - Aristidis Veves
- Joslin-Beth Israel Deaconess Foot Center and the Rongxiang Xu, MD, Center for Regenerative Therapeutics, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
47
|
Al Sadoun H. Macrophage Phenotypes in Normal and Diabetic Wound Healing and Therapeutic Interventions. Cells 2022; 11:2430. [PMID: 35954275 PMCID: PMC9367932 DOI: 10.3390/cells11152430] [Citation(s) in RCA: 35] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Revised: 07/30/2022] [Accepted: 08/02/2022] [Indexed: 11/29/2022] Open
Abstract
Macrophage differentiation and polarization are essential players in the success of the wound-healing process. Acute simple wounds progress from inflammation to proliferation/regeneration and, finally, to remodeling. In injured skin, macrophages either reside in the epithelium or are recruited from monocytes. Their main role is supported by their plasticity, which allows them to adopt different phenotypic states, such as the M1-inflammatory state, in which they produce TNF and NO, and the M2-reparative state, in which they resolve inflammation and exhibit a reparative function. Reparative macrophages are an essential source of growth factors such as TGF-β and VEGF and are not found in nonhealing wounds. This review discusses the differences between macrophage phenotypes in vitro and in vivo, how macrophages originate, and how they cross-communicate with other cellular components in a wound. This review also highlights the dysregulation of macrophages that occurs in nonhealing versus overhealing wounds and fibrosis. Then, the therapeutic manipulation of macrophages is presented as an attractive strategy for promoting healing through the secretion of growth factors for angiogenesis, keratinocyte migration, and collagen production. Finally, Hoxa3 overexpression is discussed as an example of the therapeutic repolarization of macrophages to the normal maturation state and phenotype with better healing outcomes.
Collapse
Affiliation(s)
- Hadeel Al Sadoun
- Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia; ; Tel.: +966-(12)-6400000 (ext. 24277)
- Stem Cell Unit, King Fahad Medical Research Centre, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| |
Collapse
|
48
|
Zhao X, Xu M, Tang Y, Xie D, Wang Y, Chen M. Changes in miroRNA-103 expression in wound margin tissue are related to wound healing of diabetes foot ulcers. Int Wound J 2022; 20:467-483. [PMID: 35837786 PMCID: PMC9885465 DOI: 10.1111/iwj.13895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 02/03/2023] Open
Abstract
To investigate the relationship between small noncoding microRNA-103 (miR-103) and wound healing of diabetic foot ulcers (DFU) and the underlying molecular mechanism, forty type 2 diabetes mellitus with DFU (DFU group), and 20 patients with a chronic skin ulcer of lower limbs and normal glucose tolerance (SUC group) were included. Quantitative real-time PCR method was used to determine miR-103 expression levels in the wound margin tissue of subjects, and to analyse the relationship between the expression of miR-103 and DFU wound healing. In vitro experiments were also performed to understand the effect of miR-103 on the high glucose-induced injury of normal human dermal fibroblasts (NHDFs) cells. The results showed that the miR-103 expression level in the DFU group was significantly higher than that in the SUC group [5.81 (2.25-9.36) vs 2.08 (1.15-5.72)] (P < 0.05). The expression level of miR-103 in the wound margin tissue of DFU was negatively correlated with the healing rate of foot ulcers after four weeks (P = 0.037). In vitro experiments revealed that miR-103 could inhibit the proliferation and migration of NHDF cells and promote the apoptosis of NHDF cells by targeted regulation of regulator of calcineurin 1 (RCAN1) gene expression in a high glucose environment. Down-regulation of miR-103 could alleviate high glucose-induced NHDF cell injury by promoting RCAN1 expression. Therefore, the increased expression of miR-103 is involved in the functional damage of NHDF cells induced by high-glucose conditions, which is related to poor wound healing of DFU. These research findings will provide potential targets for the diagnosis and treatment of chronic skin wounds in diabetes.
Collapse
Affiliation(s)
- Xiaotong Zhao
- Department of Endocrinologythe First Affiliated Hospital of Anhui Medical UniversityHefeiPeople's Republic of China
| | - Murong Xu
- Department of Endocrinologythe First Affiliated Hospital of Anhui Medical UniversityHefeiPeople's Republic of China
| | - Ying Tang
- Department of Endocrinologythe First Affiliated Hospital of Anhui Medical UniversityHefeiPeople's Republic of China
| | - Dandan Xie
- Department of Endocrinologythe First Affiliated Hospital of Anhui Medical UniversityHefeiPeople's Republic of China
| | - Youmin Wang
- Department of Endocrinologythe First Affiliated Hospital of Anhui Medical UniversityHefeiPeople's Republic of China
| | - Mingwei Chen
- Department of Endocrinologythe First Affiliated Hospital of Anhui Medical UniversityHefeiPeople's Republic of China
| |
Collapse
|
49
|
Martínez-Martínez E, Atzei P, Vionnet C, Roubaty C, Kaeser-Pebernard S, Naef R, Dengjel J. A Dual-Acting Nitric Oxide Donor and Phosphodiesterase 5 Inhibitor Activates Autophagy in Primary Skin Fibroblasts. Int J Mol Sci 2022; 23:ijms23126860. [PMID: 35743299 PMCID: PMC9224465 DOI: 10.3390/ijms23126860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 06/07/2022] [Accepted: 06/17/2022] [Indexed: 02/01/2023] Open
Abstract
Wound healing pathologies are an increasing problem in ageing societies. Chronic, non-healing wounds, which cause high morbidity and severely reduce the quality of life of affected individuals, are frequently observed in aged individuals and people suffering from diseases affected by the Western lifestyle, such as diabetes. Causal treatments that support proper wound healing are still scarce. Here, we performed expression proteomics to study the effects of the small molecule TOP-N53 on primary human skin fibroblasts and keratinocytes. TOP-N53 is a dual-acting nitric oxide donor and phosphodiesterase-5 inhibitor increasing cGMP levels to support proper wound healing. In contrast to keratinocytes, which did not exhibit global proteome alterations, TOP-N53 had profound effects on the proteome of skin fibroblasts. In fibroblasts, TOP-N53 activated the cytoprotective, lysosomal degradation pathway autophagy and induced the expression of the selective autophagy receptor p62/SQSTM1. Thus, activation of autophagy might in part be responsible for beneficial effects of TOP-N53.
Collapse
Affiliation(s)
- Esther Martínez-Martínez
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland; (E.M.-M.); (C.V.); (C.R.); (S.K.-P.)
| | - Paola Atzei
- Topadur Pharma AG, Grabenstrasse 11A, 8952 Schlieren, Switzerland; (P.A.); (R.N.)
| | - Christine Vionnet
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland; (E.M.-M.); (C.V.); (C.R.); (S.K.-P.)
| | - Carole Roubaty
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland; (E.M.-M.); (C.V.); (C.R.); (S.K.-P.)
| | - Stephanie Kaeser-Pebernard
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland; (E.M.-M.); (C.V.); (C.R.); (S.K.-P.)
| | - Reto Naef
- Topadur Pharma AG, Grabenstrasse 11A, 8952 Schlieren, Switzerland; (P.A.); (R.N.)
| | - Jörn Dengjel
- Department of Biology, University of Fribourg, 1700 Fribourg, Switzerland; (E.M.-M.); (C.V.); (C.R.); (S.K.-P.)
- Correspondence:
| |
Collapse
|
50
|
Ganier C, Rognoni E, Goss G, Lynch M, Watt FM. Fibroblast Heterogeneity in Healthy and Wounded Skin. Cold Spring Harb Perspect Biol 2022; 14:a041238. [PMID: 35667795 PMCID: PMC9248828 DOI: 10.1101/cshperspect.a041238] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Fibroblasts are the main cell type in the dermis. They are responsible for the synthesis and deposition of structural proteins such as collagen and elastin, which are integrated into the extracellular matrix (ECM). Mouse and human studies using flow cytometry, cell culture, skin reconstitution, and lineage tracing experiments have shown the existence of different subpopulations of fibroblasts, including papillary fibroblasts, reticular fibroblasts, and fibroblasts comprising the dermal papilla at the base of the hair follicle. In recent years, the technological advances in single-cell sequencing have allowed researchers to study the repertoire of cells present in full-thickness skin including the dermis. Multiple groups have confirmed that distinct fibroblast populations can be identified in mouse and human dermis on the basis of differences in the transcriptional profile. Here, we discuss the current state of knowledge regarding dermal fibroblast heterogeneity in healthy mouse and human skin, highlighting the similarities and differences between mouse and human fibroblast subpopulations. We also discuss how fibroblast heterogeneity may provide insights into physiological wound healing and its dysfunction in pathological states such as hypertrophic and keloid scars.
Collapse
Affiliation(s)
- Clarisse Ganier
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, London SE1 9RT, United Kingdom
| | - Emanuel Rognoni
- Centre for Endocrinology, William Harvey Research Institute, Barts and the London School of Medicine and Dentistry, Queen Mary University of London, London EC1M 6BQ, United Kingdom
| | - Georgina Goss
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, London SE1 9RT, United Kingdom
| | - Magnus Lynch
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, London SE1 9RT, United Kingdom
- St John's Institute of Dermatology, King's College London, London SE1 9RT, United Kingdom
| | - Fiona M Watt
- Centre for Stem Cells and Regenerative Medicine, King's College London, Guy's Hospital, London SE1 9RT, United Kingdom
| |
Collapse
|