1
|
Bustamante-Brito R, Vera-Ponce de León A, Rosenblueth M, Martínez-Romero E. Comparative genomics of the carmine cochineal symbiont Candidatus Dactylopiibacterium carminicum reveals possible protection to the host against viruses via CRISPR/Cas. Syst Appl Microbiol 2024; 47:126540. [PMID: 39068732 DOI: 10.1016/j.syapm.2024.126540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/25/2024] [Accepted: 07/18/2024] [Indexed: 07/30/2024]
Abstract
We present new genomes from the bacterial symbiont Candidatus Dactylopiibacterium carminicum obtained from non-domesticated carmine cochineals belonging to the scale insect Dactylopius (Hemiptera: Coccoidea: Dactylopiidae). As Dactylopiibacterium has not yet been cultured in the laboratory, metagenomes and metatranscriptomics have been key in revealing putative symbiont functions. Dactylopiibacterium is a nitrogen-fixing beta-proteobacterium that may be vertically transmitted and shows differential gene expression inside the cochineal depending on the tissue colonized. Here we found that all cochineal species tested had Dactylopiibacterium carminicum which has a highly conserved genome. All Dactylopiibacterium genomes analyzed had genes involved in nitrogen fixation and plant polymer degradation. Dactylopiibacterium genomes resemble those from free-living plant bacteria, some found as endophytes. Notably, we found here a new putative novel function where the bacteria may protect the insect from viruses, since all Dactylopiibacterium genomes contain CRISPRs with a spacer matching nucleopolyhedrovirus that affects insects.
Collapse
Affiliation(s)
- Rafael Bustamante-Brito
- Center for Genomic Sciences, Universidad Nacional Autónoma de México, UNAM, Cuernavaca, Morelos C.P. 62210, Mexico
| | - Arturo Vera-Ponce de León
- Center for Genomic Sciences, Universidad Nacional Autónoma de México, UNAM, Cuernavaca, Morelos C.P. 62210, Mexico; Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Centre for Integrative Genetics (CIGENE), Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Mónica Rosenblueth
- Center for Genomic Sciences, Universidad Nacional Autónoma de México, UNAM, Cuernavaca, Morelos C.P. 62210, Mexico
| | - Esperanza Martínez-Romero
- Center for Genomic Sciences, Universidad Nacional Autónoma de México, UNAM, Cuernavaca, Morelos C.P. 62210, Mexico.
| |
Collapse
|
2
|
Rosenberg E, Zilber-Rosenberg I. Reconstitution and Transmission of Gut Microbiomes and Their Genes between Generations. Microorganisms 2021; 10:microorganisms10010070. [PMID: 35056519 PMCID: PMC8780831 DOI: 10.3390/microorganisms10010070] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 12/26/2021] [Accepted: 12/28/2021] [Indexed: 12/13/2022] Open
Abstract
Microbiomes are transmitted between generations by a variety of different vertical and/or horizontal modes, including vegetative reproduction (vertical), via female germ cells (vertical), coprophagy and regurgitation (vertical and horizontal), physical contact starting at birth (vertical and horizontal), breast-feeding (vertical), and via the environment (horizontal). Analyses of vertical transmission can result in false negatives (failure to detect rare microbes) and false positives (strain variants). In humans, offspring receive most of their initial gut microbiota vertically from mothers during birth, via breast-feeding and close contact. Horizontal transmission is common in marine organisms and involves selectivity in determining which environmental microbes can colonize the organism's microbiome. The following arguments are put forth concerning accurate microbial transmission: First, the transmission may be of functions, not necessarily of species; second, horizontal transmission may be as accurate as vertical transmission; third, detection techniques may fail to detect rare microbes; lastly, microbiomes develop and reach maturity with their hosts. In spite of the great variation in means of transmission discussed in this paper, microbiomes and their functions are transferred from one generation of holobionts to the next with fidelity. This provides a strong basis for each holobiont to be considered a unique biological entity and a level of selection in evolution, largely maintaining the uniqueness of the entity and conserving the species from one generation to the next.
Collapse
|
3
|
Petrů M, Dohnálek V, Füssy Z, Doležal P. Fates of Sec, Tat, and YidC Translocases in Mitochondria and Other Eukaryotic Compartments. Mol Biol Evol 2021; 38:5241-5254. [PMID: 34436602 PMCID: PMC8662606 DOI: 10.1093/molbev/msab253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Formation of mitochondria by the conversion of a bacterial endosymbiont was a key moment in the evolution of eukaryotes. It was made possible by outsourcing the endosymbiont's genetic control to the host nucleus, while developing the import machinery for proteins synthesized on cytosolic ribosomes. The original protein export machines of the nascent organelle remained to be repurposed or were completely abandoned. This review follows the evolutionary fates of three prokaryotic inner membrane translocases Sec, Tat, and YidC. Homologs of all three translocases can still be found in current mitochondria, but with different importance for mitochondrial function. Although the mitochondrial YidC homolog, Oxa1, became an omnipresent independent insertase, the other two remained only sporadically present in mitochondria. Only a single substrate is known for the mitochondrial Tat and no function has yet been assigned for the mitochondrial Sec. Finally, this review compares these ancestral mitochondrial proteins with their paralogs operating in the plastids and the endomembrane system.
Collapse
Affiliation(s)
- Markéta Petrů
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Vít Dohnálek
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Zoltán Füssy
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| | - Pavel Doležal
- Department of Parasitology, Faculty of Science, Charles University, BIOCEV, Vestec, Czech Republic
| |
Collapse
|
4
|
Maire J, Blackall LL, van Oppen MJH. Intracellular Bacterial Symbionts in Corals: Challenges and Future Directions. Microorganisms 2021; 9:2209. [PMID: 34835335 PMCID: PMC8619543 DOI: 10.3390/microorganisms9112209] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 10/21/2021] [Accepted: 10/21/2021] [Indexed: 02/07/2023] Open
Abstract
Corals are the main primary producers of coral reefs and build the three-dimensional reef structure that provides habitat to more than 25% of all marine eukaryotes. They harbor a complex consortium of microorganisms, including bacteria, archaea, fungi, viruses, and protists, which they rely on for their survival. The symbiosis between corals and bacteria is poorly studied, and their symbiotic relationships with intracellular bacteria are only just beginning to be acknowledged. In this review, we emphasize the importance of characterizing intracellular bacteria associated with corals and explore how successful approaches used to study such microorganisms in other systems could be adapted for research on corals. We propose a framework for the description, identification, and functional characterization of coral-associated intracellular bacterial symbionts. Finally, we highlight the possible value of intracellular bacteria in microbiome manipulation and mitigating coral bleaching.
Collapse
Affiliation(s)
- Justin Maire
- School of Biosciences, The University of Melbourne, Melbourne, VIC 3010, Australia; (L.L.B.); (M.J.H.v.O.)
| | - Linda L. Blackall
- School of Biosciences, The University of Melbourne, Melbourne, VIC 3010, Australia; (L.L.B.); (M.J.H.v.O.)
| | - Madeleine J. H. van Oppen
- School of Biosciences, The University of Melbourne, Melbourne, VIC 3010, Australia; (L.L.B.); (M.J.H.v.O.)
- Australian Institute of Marine Science, Townsville, QLD 4810, Australia
| |
Collapse
|
5
|
Husnik F, Tashyreva D, Boscaro V, George EE, Lukeš J, Keeling PJ. Bacterial and archaeal symbioses with protists. Curr Biol 2021; 31:R862-R877. [PMID: 34256922 DOI: 10.1016/j.cub.2021.05.049] [Citation(s) in RCA: 87] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Most of the genetic, cellular, and biochemical diversity of life rests within single-celled organisms - the prokaryotes (bacteria and archaea) and microbial eukaryotes (protists). Very close interactions, or symbioses, between protists and prokaryotes are ubiquitous, ecologically significant, and date back at least two billion years ago to the origin of mitochondria. However, most of our knowledge about the evolution and functions of eukaryotic symbioses comes from the study of animal hosts, which represent only a small subset of eukaryotic diversity. Here, we take a broad view of bacterial and archaeal symbioses with protist hosts, focusing on their evolution, ecology, and cell biology, and also explore what functions (if any) the symbionts provide to their hosts. With the immense diversity of protist symbioses starting to come into focus, we can now begin to see how these systems will impact symbiosis theory more broadly.
Collapse
Affiliation(s)
- Filip Husnik
- Okinawa Institute of Science and Technology, Okinawa, 904-0495, Japan; Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Daria Tashyreva
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic
| | - Vittorio Boscaro
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Emma E George
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Julius Lukeš
- Institute of Parasitology, Biology Centre, Czech Academy of Sciences, 370 05 České Budějovice, Czech Republic; Faculty of Science, University of South Bohemia, 370 05 České Budějovice, Czech Republic
| | - Patrick J Keeling
- Department of Botany, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| |
Collapse
|
6
|
Almeida C. A potential third-order role of the host endoplasmic reticulum as a contact site in interkingdom microbial endosymbiosis and viral infection. ENVIRONMENTAL MICROBIOLOGY REPORTS 2021; 13:255-271. [PMID: 33559322 DOI: 10.1111/1758-2229.12938] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 02/04/2021] [Accepted: 02/05/2021] [Indexed: 06/12/2023]
Abstract
The normal functioning of eukaryotic cells depends on the compartmentalization of metabolic processes within specific organelles. Interactions among organelles, such as those between the endoplasmic reticulum (ER) - considered the largest single structure in eukaryotic cells - and other organelles at membrane contact sites (MCSs) have also been suggested to trigger synergisms, including intracellular immune responses against pathogens. In addition to the ER-endogenous functions and ER-organelle MCSs, we present the perspective of a third-order role of the ER as a host contact site for endosymbiotic microbial non-pathogens and pathogens, from endosymbiont bacteria to parasitic protists and viruses. Although understudied, ER-endosymbiont interactions have been observed in a range of eukaryotic hosts, including protists, plants, algae, and metazoans. Host ER interactions with endosymbionts could be an ER function built from ancient, conserved mechanisms selected for communicating with mutualistic endosymbionts in specific life cycle stages, and they may be exploited by pathogens and parasites. The host ER-'guest' interactome and traits in endosymbiotic biology are briefly discussed. The acknowledgment and understanding of these possible mechanisms might reveal novel evolutionary perspectives, uncover the causes of unexplained cellular disorders and suggest new pharmacological targets.
Collapse
Affiliation(s)
- Celso Almeida
- ENDOBIOS Biotech®, Praceta Progresso Clube n° 6, 2725-110 Mem-Martins, Portugal
| |
Collapse
|
7
|
Goodrich-Blair H. Interactions of host-associated multispecies bacterial communities. Periodontol 2000 2021; 86:14-31. [PMID: 33690897 DOI: 10.1111/prd.12360] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The oral microbiome comprises microbial communities colonizing biotic (epithelia, mucosa) and abiotic (enamel) surfaces. Different communities are associated with health (eg, immune development, pathogen resistance) and disease (eg, tooth loss and periodontal disease). Like any other host-associated microbiome, colonization and persistence of both beneficial and dysbiotic oral microbiomes are dictated by successful utilization of available nutrients and defense against host and competitor assaults. This chapter will explore these general features of microbe-host interactions through the lens of symbiotic (mutualistic and antagonistic/pathogenic) associations with nonmammalian animals. Investigations in such systems across a broad taxonomic range have revealed conserved mechanisms and processes that underlie the complex associations among microbes and between microbes and hosts.
Collapse
Affiliation(s)
- Heidi Goodrich-Blair
- Department of Microbiology, University of Tennessee-Knoxville, Knoxville, Tennessee, USA
| |
Collapse
|
8
|
Driscoll TP, Verhoeve VI, Brockway C, Shrewsberry DL, Plumer M, Sevdalis SE, Beckmann JF, Krueger LM, Macaluso KR, Azad AF, Gillespie JJ. Evolution of Wolbachia mutualism and reproductive parasitism: insight from two novel strains that co-infect cat fleas. PeerJ 2020; 8:e10646. [PMID: 33362982 PMCID: PMC7750005 DOI: 10.7717/peerj.10646] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/03/2020] [Indexed: 12/26/2022] Open
Abstract
Wolbachiae are obligate intracellular bacteria that infect arthropods and certain nematodes. Usually maternally inherited, they may provision nutrients to (mutualism) or alter sexual biology of (reproductive parasitism) their invertebrate hosts. We report the assembly of closed genomes for two novel wolbachiae, wCfeT and wCfeJ, found co-infecting cat fleas (Ctenocephalides felis) of the Elward Laboratory colony (Soquel, CA, USA). wCfeT is basal to nearly all described Wolbachia supergroups, while wCfeJ is related to supergroups C, D and F. Both genomes contain laterally transferred genes that inform on the evolution of Wolbachia host associations. wCfeT carries the Biotin synthesis Operon of Obligate intracellular Microbes (BOOM); our analyses reveal five independent acquisitions of BOOM across the Wolbachia tree, indicating parallel evolution towards mutualism. Alternately, wCfeJ harbors a toxin-antidote operon analogous to the wPip cinAB operon recently characterized as an inducer of cytoplasmic incompatibility (CI) in flies. wCfeJ cinB and three adjacent genes are collectively similar to large modular toxins encoded in CI-like operons of certain Wolbachia strains and Rickettsia species, signifying that CI toxins streamline by fission of large modular toxins. Remarkably, the C. felis genome itself contains two CI-like antidote genes, divergent from wCfeJ cinA, revealing episodic reproductive parasitism in cat fleas and evidencing mobility of CI loci independent of WO-phage. Additional screening revealed predominant co-infection (wCfeT/wCfeJ) amongst C. felis colonies, though fleas in wild populations mostly harbor wCfeT alone. Collectively, genomes of wCfeT, wCfeJ, and their cat flea host supply instances of lateral gene transfers that could drive transitions between parasitism and mutualism.
Collapse
Affiliation(s)
| | - Victoria I. Verhoeve
- Microbiology and Immunology, University of Maryland at Baltimore, Baltimore, MD, USA
| | | | | | - Mariah Plumer
- Microbiology and Immunology, University of Maryland at Baltimore, Baltimore, MD, USA
| | - Spiridon E. Sevdalis
- Microbiology and Immunology, University of Maryland at Baltimore, Baltimore, MD, USA
| | - John F. Beckmann
- Entomology and Plant Pathology, Auburn University, Auburn, AL, USA
| | - Laura M. Krueger
- Orange County Mosquito and Vector Control District, Garden Grove, CA, USA
| | - Kevin R. Macaluso
- Microbiology and Immunology, University of South Alabama, Mobile, AL, USA
| | - Abdu F. Azad
- Microbiology and Immunology, University of Maryland at Baltimore, Baltimore, MD, USA
| | - Joseph J. Gillespie
- Microbiology and Immunology, University of Maryland at Baltimore, Baltimore, MD, USA
| |
Collapse
|
9
|
Gupta A, Nair S. Dynamics of Insect-Microbiome Interaction Influence Host and Microbial Symbiont. Front Microbiol 2020; 11:1357. [PMID: 32676060 PMCID: PMC7333248 DOI: 10.3389/fmicb.2020.01357] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 05/27/2020] [Indexed: 12/21/2022] Open
Abstract
Insects share an intimate relationship with their gut microflora and this symbiotic association has developed into an essential evolutionary outcome intended for their survival through extreme environmental conditions. While it has been clearly established that insects, with very few exceptions, associate with several microbes during their life cycle, information regarding several aspects of these associations is yet to be fully unraveled. Acquisition of bacteria by insects marks the onset of microbial symbiosis, which is followed by the adaptation of these bacterial species to the gut environment for prolonged sustenance and successful transmission across generations. Although several insect-microbiome associations have been reported and each with their distinctive features, diversifications and specializations, it is still unclear as to what led to these diversifications. Recent studies have indicated the involvement of various evolutionary processes operating within an insect body that govern the transition of a free-living microbe to an obligate or facultative symbiont and eventually leading to the establishment and diversification of these symbiotic relationships. Data from various studies, summarized in this review, indicate that the symbiotic partners, i.e., the bacteria and the insect undergo several genetic, biochemical and physiological changes that have profound influence on their life cycle and biology. An interesting outcome of the insect-microbe interaction is the compliance of the microbial partner to its eventual genome reduction. Endosymbionts possess a smaller genome as compared to their free-living forms, and thus raising the question what is leading to reductive evolution in the microbial partner. This review attempts to highlight the fate of microbes within an insect body and its implications for both the bacteria and its insect host. While discussion on each specific association would be too voluminous and outside the scope of this review, we present an overview of some recent studies that contribute to a better understanding of the evolutionary trajectory and dynamics of the insect-microbe association and speculate that, in the future, a better understanding of the nature of this interaction could pave the path to a sustainable and environmentally safe way for controlling economically important pests of crop plants.
Collapse
Affiliation(s)
| | - Suresh Nair
- Plant-Insect Interaction Group, International Centre for Genetic Engineering and Biotechnology, New Delhi, India
| |
Collapse
|
10
|
Abstract
Host-beneficial endosymbioses, which are formed when a microorganism takes up residence inside another cell and provides a fitness advantage to the host, have had a dramatic influence on the evolution of life. These intimate relationships have yielded the mitochondrion and the plastid (chloroplast) - the ancient organelles that in part define eukaryotic life - along with many more recent associations involving a wide variety of hosts and microbial partners. These relationships are often envisioned as stable associations that appear cooperative and persist for extremely long periods of time. But recent evidence suggests that this stable state is often born from turbulent and conflicting origins, and that the apparent stability of many beneficial endosymbiotic relationships - although certainly real in many cases - is not an inevitable outcome of these associations. Here we review how stable endosymbioses form, how they are maintained, and how they sometimes break down and are reborn. We focus on relationships formed by insects and their resident microorganisms because these symbioses have been the focus of significant empirical work over the last two decades. We review these relationships over five life stages: origin, birth, middle age, old age, and death.
Collapse
|
11
|
Blackstone NW. Chemiosmosis, Evolutionary Conflict, and Eukaryotic Symbiosis. Results Probl Cell Differ 2020; 69:237-251. [PMID: 33263875 DOI: 10.1007/978-3-030-51849-3_9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Mutualistic symbiosis, in which individuals of different species cooperate and both benefit, has long been an evolutionary puzzle. Why should individuals of two different species cooperate? In this case, as in all others, cooperation is not automatic, but rather requires the mediation of evolutionary conflicts. In chemiosmosis, redox reactions produce a trans-membrane "proton-motive force" that powers energy-requiring reactions in most organisms. Chemiosmosis may also have a role in conflict mediation. Chemiosmosis rapidly produces considerable amounts of products, increasing the risk of end-product inhibition and the formation of dangerous by-products, such as reactive oxygen species. While several mechanisms can modulate chemiosmosis, potential negative effects can also be ameliorated by simply dispersing excess product into the environment. This "free lunch you are forced to make" can attract individuals of other species leading to groups, in which other organisms share the products that are released into the environment by the chemiosmotic cell or organism. Since the time of Darwin, evolutionary biology has recognized that groups are the key to the evolution of cooperation. With many small groups, chance associations of cooperators can arise, even if cooperation is selected against at the individual level. Groups of cooperators can then outcompete groups of defectors, which do not cooperate. Indeed, numerous symbioses may have arisen in this way, perhaps most notably the symbioses of host cells and chemiosmotic bacteria that gave rise to the eukaryotic cell. Other examples in which one partner relies on chemiosmotic products supplied by the other include lichens, corals or other metazoans and dinoflagellates, sap-feeding insects, and plant-rhizobia and plant-mycorrhiza interactions. More problematic are cases of gut microbiomes-for instance, those of termites, ruminants, and even human beings. Under some but not all circumstances, chemiosmosis can be co-opted into punishing defectors and enforcing cooperation, thus leading to mutualistic symbioses.
Collapse
Affiliation(s)
- Neil W Blackstone
- Department of Biological Sciences, Northern Illinois University, DeKalb, IL, USA.
| |
Collapse
|
12
|
Thairu MW, Hansen AK. It's a small, small world: unravelling the role and evolution of small RNAs in organelle and endosymbiont genomes. FEMS Microbiol Lett 2019; 366:5371121. [PMID: 30844054 DOI: 10.1093/femsle/fnz049] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Accepted: 03/05/2019] [Indexed: 12/19/2022] Open
Abstract
Organelles and host-restricted bacterial symbionts are characterized by having highly reduced genomes that lack many key regulatory genes and elements. Thus, it has been hypothesized that the eukaryotic nuclear genome is primarily responsible for regulating these symbioses. However, with the discovery of organelle- and symbiont-expressed small RNAs (sRNAs) there is emerging evidence that these sRNAs may play a role in gene regulation as well. Here, we compare the diversity of organelle and bacterial symbiont sRNAs recently identified using genome-enabled '-omic' technologies and discuss their potential role in gene regulation. We also discuss how the genome architecture of small genomes may influence the evolution of these sRNAs and their potential function. Additionally, these new studies suggest that some sRNAs are conserved within organelle and symbiont taxa and respond to changes in the environment and/or their hosts. In summary, these results suggest that organelle and symbiont sRNAs may play a role in gene regulation in addition to nuclear-encoded host mechanisms.
Collapse
Affiliation(s)
- Margaret W Thairu
- Department of Entomology, University of California, Riverside, Riverside, CA, USA
| | - Allison K Hansen
- Department of Entomology, University of California, Riverside, Riverside, CA, USA
| |
Collapse
|
13
|
Bublitz DC, Chadwick GL, Magyar JS, Sandoz KM, Brooks DM, Mesnage S, Ladinsky MS, Garber AI, Bjorkman PJ, Orphan VJ, McCutcheon JP. Peptidoglycan Production by an Insect-Bacterial Mosaic. Cell 2019; 179:703-712.e7. [PMID: 31587897 PMCID: PMC6838666 DOI: 10.1016/j.cell.2019.08.054] [Citation(s) in RCA: 61] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/06/2019] [Accepted: 08/28/2019] [Indexed: 01/19/2023]
Abstract
Peptidoglycan (PG) is a defining feature of bacteria, involved in cell division, shape, and integrity. We previously reported that several genes related to PG biosynthesis were horizontally transferred from bacteria to the nuclear genome of mealybugs. Mealybugs are notable for containing a nested bacteria-within-bacterium endosymbiotic structure in specialized insect cells, where one bacterium, Moranella, lives in the cytoplasm of another bacterium, Tremblaya. Here we show that horizontally transferred genes on the mealybug genome work together with genes retained on the Moranella genome to produce a PG layer exclusively at the Moranella cell periphery. Furthermore, we show that an insect protein encoded by a horizontally transferred gene of bacterial origin is transported into the Moranella cytoplasm. These results provide a striking parallel to the genetic and biochemical mosaicism found in organelles, and prove that multiple horizontally transferred genes can become integrated into a functional pathway distributed between animal and bacterial endosymbiont genomes. Mealybugs have two bacterial endosymbionts; one symbiont lives inside the other The mealybug genome has acquired some bacterial peptidoglycan (PG)-related genes This insect-symbiont mosaic pathway produces a PG layer at the innermost symbiont Endosymbionts and organelles have evolved similar levels of biochemical integration
Collapse
Affiliation(s)
- DeAnna C Bublitz
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Grayson L Chadwick
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - John S Magyar
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Kelsi M Sandoz
- Coxiella Pathogenesis Section, Laboratory of Bacteriology, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, NIH, Hamilton, MT 59840, USA
| | - Diane M Brooks
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Stéphane Mesnage
- Department of Molecular Biology and Biotechnology, University of Sheffield, Sheffield S10 2TN, UK
| | - Mark S Ladinsky
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Arkadiy I Garber
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA
| | - Pamela J Bjorkman
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Victoria J Orphan
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - John P McCutcheon
- Division of Biological Sciences, University of Montana, Missoula, MT 59812, USA.
| |
Collapse
|
14
|
Husnik F, Keeling PJ. The fate of obligate endosymbionts: reduction, integration, or extinction. Curr Opin Genet Dev 2019; 58-59:1-8. [DOI: 10.1016/j.gde.2019.07.014] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/16/2019] [Accepted: 07/21/2019] [Indexed: 11/29/2022]
|
15
|
Magnesium Is a Key Player in Neuronal Maturation and Neuropathology. Int J Mol Sci 2019; 20:ijms20143439. [PMID: 31336935 PMCID: PMC6678825 DOI: 10.3390/ijms20143439] [Citation(s) in RCA: 95] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2019] [Revised: 07/06/2019] [Accepted: 07/09/2019] [Indexed: 01/05/2023] Open
Abstract
Magnesium (Mg) is the second most abundant cation in mammalian cells, and it is essential for numerous cellular processes including enzymatic reactions, ion channel functions, metabolic cycles, cellular signaling, and DNA/RNA stabilities. Because of the versatile and universal nature of Mg2+, the homeostasis of intracellular Mg2+ is physiologically linked to growth, proliferation, differentiation, energy metabolism, and death of cells. On the cellular and tissue levels, maintaining Mg2+ within optimal levels according to the biological context, such as cell types, developmental stages, extracellular environments, and pathophysiological conditions, is crucial for development, normal functions, and diseases. Hence, Mg2+ is pathologically involved in cancers, diabetes, and neurodegenerative diseases, such as Parkinson's disease, Alzheimer's disease, and demyelination. In the research field regarding the roles and mechanisms of Mg2+ regulation, numerous controversies caused by its versatility and complexity still exist. As Mg2+, at least, plays critical roles in neuronal development, healthy normal functions, and diseases, appropriate Mg2+ supplementation exhibits neurotrophic effects in a majority of cases. Hence, the control of Mg2+ homeostasis can be a candidate for therapeutic targets in neuronal diseases. In this review, recent results regarding the roles of intracellular Mg2+ and its regulatory system in determining the cell phenotype, fate, and diseases in the nervous system are summarized, and an overview of the comprehensive roles of Mg2+ is provided.
Collapse
|
16
|
Cicada Endosymbionts Have tRNAs That Are Correctly Processed Despite Having Genomes That Do Not Encode All of the tRNA Processing Machinery. mBio 2019; 10:mBio.01950-18. [PMID: 31213566 PMCID: PMC6581868 DOI: 10.1128/mbio.01950-18] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The smallest bacterial genomes, in the range of about 0.1 to 0.5 million base pairs, are commonly found in the nutritional endosymbionts of insects. These tiny genomes are missing genes that encode proteins and RNAs required for the translation of mRNAs, one of the most highly conserved and important cellular processes. In this study, we found that the bacterial endosymbionts of cicadas have genomes which encode incomplete tRNA sets and lack genes required for tRNA processing. Nevertheless, we found that endosymbiont tRNAs are correctly processed at their 5′ and 3′ ends and, surprisingly, that mostly exist as tRNA halves. We hypothesize that the cicada host must supply its symbionts with these missing tRNA processing activities. Gene loss and genome reduction are defining characteristics of endosymbiotic bacteria. The most highly reduced endosymbiont genomes have lost numerous essential genes related to core cellular processes such as replication, transcription, and translation. Computational gene predictions performed for the genomes of the two bacterial symbionts of the cicada Diceroprocta semicincta, “Candidatus Hodgkinia cicadicola” (Alphaproteobacteria) and “Ca. Sulcia muelleri” (Bacteroidetes), have found only 26 and 16 tRNA genes and 15 and 10 aminoacyl tRNA synthetase genes, respectively. Furthermore, the original “Ca. Hodgkinia cicadicola” genome annotation was missing several essential genes involved in tRNA processing, such as those encoding RNase P and CCA tRNA nucleotidyltransferase as well as several RNA editing enzymes required for tRNA maturation. How these cicada endosymbionts perform basic translation-related processes remains unknown. Here, by sequencing eukaryotic mRNAs and total small RNAs, we show that the limited tRNA set predicted by computational annotation of “Ca. Sulcia muelleri” and “Ca. Hodgkinia cicadicola” is likely correct. Furthermore, we show that despite the absence of genes encoding tRNA processing activities in the symbiont genomes, symbiont tRNAs have correctly processed 5′ and 3′ ends and seem to undergo nucleotide modification. Surprisingly, we found that most “Ca. Hodgkinia cicadicola” and “Ca. Sulcia muelleri” tRNAs exist as tRNA halves. We hypothesize that “Ca. Sulcia muelleri” and “Ca. Hodgkinia cicadicola” tRNAs function in bacterial translation but require host-encoded enzymes to do so.
Collapse
|
17
|
Shapiro JA. No genome is an island: toward a 21st century agenda for evolution. Ann N Y Acad Sci 2019; 1447:21-52. [DOI: 10.1111/nyas.14044] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2018] [Revised: 01/17/2019] [Accepted: 02/02/2019] [Indexed: 12/21/2022]
Affiliation(s)
- James A. Shapiro
- Department of Biochemistry and Molecular BiologyUniversity of Chicago Chicago Illinois
| |
Collapse
|
18
|
Genes, Genomes, and DNA. Mol Biol 2019. [DOI: 10.1016/b978-0-12-813288-3.00004-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Mao M, Yang X, Bennett GM. Evolution of host support for two ancient bacterial symbionts with differentially degraded genomes in a leafhopper host. Proc Natl Acad Sci U S A 2018; 115:E11691-E11700. [PMID: 30463949 PMCID: PMC6294904 DOI: 10.1073/pnas.1811932115] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Plant sap-feeding insects (Hemiptera) rely on bacterial symbionts for nutrition absent in their diets. These bacteria experience extreme genome reduction and require genetic resources from their hosts, particularly for basic cellular processes other than nutrition synthesis. The host-derived mechanisms that complete these processes have remained poorly understood. It is also unclear how hosts meet the distinct needs of multiple bacterial partners with differentially degraded genomes. To address these questions, we investigated the cell-specific gene-expression patterns in the symbiotic organs of the aster leafhopper (ALF), Macrosteles quadrilineatus (Cicadellidae). ALF harbors two intracellular symbionts that have two of the smallest known bacterial genomes: Nasuia (112 kb) and Sulcia (190 kb). Symbionts are segregated into distinct host cell types (bacteriocytes) and vary widely in their basic cellular capabilities. ALF differentially expresses thousands of genes between the bacteriocyte types to meet the functional needs of each symbiont, including the provisioning of metabolites and support of cellular processes. For example, the host highly expresses genes in the bacteriocytes that likely complement gene losses in nucleic acid synthesis, DNA repair mechanisms, transcription, and translation. Such genes are required to function in the bacterial cytosol. Many host genes comprising these support mechanisms are derived from the evolution of novel functional traits via horizontally transferred genes, reassigned mitochondrial support genes, and gene duplications with bacteriocyte-specific expression. Comparison across other hemipteran lineages reveals that hosts generally support the incomplete symbiont cellular processes, but the origins of these support mechanisms are generally specific to the host-symbiont system.
Collapse
Affiliation(s)
- Meng Mao
- Department of Life and Environmental Sciences, University of California, Merced, CA 95343;
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI 96822
| | - Xiushuai Yang
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI 96822
| | - Gordon M Bennett
- Department of Life and Environmental Sciences, University of California, Merced, CA 95343
- Department of Plant and Environmental Protection Sciences, University of Hawaii at Manoa, Honolulu, HI 96822
| |
Collapse
|
20
|
Fournier GP, Poole AM. A Briefly Argued Case That Asgard Archaea Are Part of the Eukaryote Tree. Front Microbiol 2018; 9:1896. [PMID: 30158917 PMCID: PMC6104171 DOI: 10.3389/fmicb.2018.01896] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 07/27/2018] [Indexed: 12/13/2022] Open
Abstract
The recent discovery of the Lokiarchaeota and other members of the Asgard superphylum suggests that closer analysis of the cell biology and evolution of these groups may help shed light on the origin of the eukaryote cell. Asgard lineages often appear in molecular phylogenies as closely related to eukaryotes, and possess “Eukaryote Signature Proteins” coded by genes previously thought to be unique to eukaryotes. This phylogenetic affinity to eukaryotes has been widely interpreted as indicating that Asgard lineages are “eukaryote-like archaea,” with eukaryotes evolving from within a paraphyletic Archaea. Guided by the established principles of systematics, we examine the potential implications of the monophyly of Asgard lineages and Eukarya. We show that a helpful parallel case is that of Synapsida, a group that includes modern mammals and their more “reptile-like” ancestors, united by shared derived characters that evolved in their common ancestor. While this group contains extinct members that share many similarities with modern reptiles and their extinct relatives, they are evolutionarily distinct from Sauropsida, the group which includes modern birds, reptiles, and all other amniotes. Similarly, Asgard lineages and eukaryotes are united by shared derived characters to the exclusion of all other groups. Consequently, the Asgard group is not only highly informative for our understanding of eukaryogenesis, but may be better understood as being early diverging members of a broader group including eukaryotes, for which we propose the name “Eukaryomorpha.” Significantly, this means that the relationship between Eukarya and Asgard lineages cannot, on its own, resolve the debate over 2 vs. 3 Domains of life; instead, resolving this debate depends upon identifying the root of Archaea with respect to Bacteria.
Collapse
Affiliation(s)
- Gregory P Fournier
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, MA, United States
| | - Anthony M Poole
- Bioinformatics Institute, Te Ao Mārama - Centre for Fundamental Inquiry, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| |
Collapse
|
21
|
Roger AJ, Muñoz-Gómez SA, Kamikawa R. The Origin and Diversification of Mitochondria. Curr Biol 2018; 27:R1177-R1192. [PMID: 29112874 DOI: 10.1016/j.cub.2017.09.015] [Citation(s) in RCA: 655] [Impact Index Per Article: 93.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Mitochondria are best known for their role in the generation of ATP by aerobic respiration. Yet, research in the past half century has shown that they perform a much larger suite of functions and that these functions can vary substantially among diverse eukaryotic lineages. Despite this diversity, all mitochondria derive from a common ancestral organelle that originated from the integration of an endosymbiotic alphaproteobacterium into a host cell related to Asgard Archaea. The transition from endosymbiotic bacterium to permanent organelle entailed a massive number of evolutionary changes including the origins of hundreds of new genes and a protein import system, insertion of membrane transporters, integration of metabolism and reproduction, genome reduction, endosymbiotic gene transfer, lateral gene transfer and the retargeting of proteins. These changes occurred incrementally as the endosymbiont and the host became integrated. Although many insights into this transition have been gained, controversy persists regarding the nature of the original endosymbiont, its initial interactions with the host and the timing of its integration relative to the origin of other features of eukaryote cells. Since the establishment of the organelle, proteins have been gained, lost, transferred and retargeted as mitochondria have specialized into the spectrum of functional types seen across the eukaryotic tree of life.
Collapse
Affiliation(s)
- Andrew J Roger
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada.
| | - Sergio A Muñoz-Gómez
- Centre for Comparative Genomics and Evolutionary Bioinformatics, Department of Biochemistry and Molecular Biology, Dalhousie University, Halifax, Nova Scotia, Canada
| | - Ryoma Kamikawa
- Graduate School of Human and Environmental Studies, Graduate School of Global Environmental Studies, Kyoto University, Japan
| |
Collapse
|
22
|
Farming, slaving and enslavement: histories of endosymbioses during kinetoplastid evolution. Parasitology 2018; 145:1311-1323. [PMID: 29895336 DOI: 10.1017/s0031182018000781] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Parasitic trypanosomatids diverged from free-living kinetoplastid ancestors several hundred million years ago. These parasites are relatively well known, due in part to several unusual cell biological and molecular traits and in part to the significance of a few - pathogenic Leishmania and Trypanosoma species - as aetiological agents of serious neglected tropical diseases. However, the majority of trypanosomatid biodiversity is represented by osmotrophic monoxenous parasites of insects. In two lineages, novymonads and strigomonads, osmotrophic lifestyles are supported by cytoplasmic endosymbionts, providing hosts with macromolecular precursors and vitamins. Here we discuss the two independent origins of endosymbiosis within trypanosomatids and subsequently different evolutionary trajectories that see entrainment vs tolerance of symbiont cell divisions cycles within those of the host. With the potential to inform on the transition to obligate parasitism in the trypanosomatids, interest in the biology and ecology of free-living, phagotrophic kinetoplastids is beginning to enjoy a renaissance. Thus, we take the opportunity to additionally consider the wider relevance of endosymbiosis during kinetoplastid evolution, including the indulged lifestyle and reductive evolution of basal kinetoplastid Perkinsela.
Collapse
|
23
|
Abstract
Cicadas are dependent on the essential bacterial symbionts Sulcia and Hodgkinia. The symbiont genomes are extremely streamlined for provisioning of essential amino acids and other nutrients. In some cicada lineages, Hodgkinia genomes are fragmented into numerous minicircles, which may represent a critical stage of genomic erosion close to collapse. What would happen subsequently? Our survey of the Japanese cicada diversity revealed that while Sulcia is conserved among all species, the majority of them have lost Hodgkinia and instead harbor yeast-like fungal associates. The fungal symbionts are phylogenetically intermingled with cicada-parasitizing Ophiocordyceps fungi, indicating recurrent symbiont replacements by entomopathogens in cicadas and providing insights into the mechanisms underlying the parasitism-symbiosis evolutionary continuum, compensation of symbiont genome erosion, and diversification of host-symbiont associations. Diverse insects are associated with ancient bacterial symbionts, whose genomes have often suffered drastic reduction and degeneration. In extreme cases, such symbiont genomes seem almost unable to sustain the basic cellular functioning, which comprises an open question in the evolution of symbiosis. Here, we report an insect group wherein an ancient symbiont lineage suffering massive genome erosion has experienced recurrent extinction and replacement by host-associated pathogenic microbes. Cicadas are associated with the ancient bacterial co-obligate symbionts Sulcia and Hodgkinia, whose streamlined genomes are specialized for synthesizing essential amino acids, thereby enabling the host to live on plant sap. However, our inspection of 24 Japanese cicada species revealed that while all species possessed Sulcia, only nine species retained Hodgkinia, and their genomes exhibited substantial structural instability. The remaining 15 species lacked Hodgkinia and instead harbored yeast-like fungal symbionts. Detailed phylogenetic analyses uncovered repeated Hodgkinia-fungus and fungus-fungus replacements in cicadas. The fungal symbionts were phylogenetically intermingled with cicada-parasitizing Ophiocordyceps fungi, identifying entomopathogenic origins of the fungal symbionts. Most fungal symbionts of cicadas were uncultivable, but the fungal symbiont of Meimuna opalifera was cultivable, possibly because it is at an early stage of fungal symbiont replacement. Genome sequencing of the fungal symbiont revealed its metabolic versatility, presumably capable of synthesizing almost all amino acids, vitamins, and other metabolites, which is more than sufficient to compensate for the Hodgkinia loss. These findings highlight a straightforward ecological and evolutionary connection between parasitism and symbiosis, which may provide an evolutionary trajectory to renovate deteriorated ancient symbiosis via pathogen domestication.
Collapse
|
24
|
Coba de la Peña T, Fedorova E, Pueyo JJ, Lucas MM. The Symbiosome: Legume and Rhizobia Co-evolution toward a Nitrogen-Fixing Organelle? FRONTIERS IN PLANT SCIENCE 2018; 8:2229. [PMID: 29403508 PMCID: PMC5786577 DOI: 10.3389/fpls.2017.02229] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Accepted: 12/19/2017] [Indexed: 05/21/2023]
Abstract
In legume nodules, symbiosomes containing endosymbiotic rhizobial bacteria act as temporary plant organelles that are responsible for nitrogen fixation, these bacteria develop mutual metabolic dependence with the host legume. In most legumes, the rhizobia infect post-mitotic cells that have lost their ability to divide, although in some nodules cells do maintain their mitotic capacity after infection. Here, we review what is currently known about legume symbiosomes from an evolutionary and developmental perspective, and in the context of the different interactions between diazotroph bacteria and eukaryotes. As a result, it can be concluded that the symbiosome possesses organelle-like characteristics due to its metabolic behavior, the composite origin and differentiation of its membrane, the retargeting of host cell proteins, the control of microsymbiont proliferation and differentiation by the host legume, and the cytoskeletal dynamics and symbiosome segregation during the division of rhizobia-infected cells. Different degrees of symbiosome evolution can be defined, specifically in relation to rhizobial infection and to the different types of nodule. Thus, our current understanding of the symbiosome suggests that it might be considered a nitrogen-fixing link in organelle evolution and that the distinct types of legume symbiosomes could represent different evolutionary stages toward the generation of a nitrogen-fixing organelle.
Collapse
Affiliation(s)
- Teodoro Coba de la Peña
- Instituto de Ciencias Agrarias ICA-CSIC, Madrid, Spain
- Centro de Estudios Avanzados en Zonas Áridas (CEAZA), La Serena, Chile
| | - Elena Fedorova
- Instituto de Ciencias Agrarias ICA-CSIC, Madrid, Spain
- K. A. Timiryazev Institute of Plant Physiology, Russian Academy of Science, Moscow, Russia
| | - José J Pueyo
- Instituto de Ciencias Agrarias ICA-CSIC, Madrid, Spain
| | | |
Collapse
|
25
|
Łukasik P, Nazario K, Van Leuven JT, Campbell MA, Meyer M, Michalik A, Pessacq P, Simon C, Veloso C, McCutcheon JP. Multiple origins of interdependent endosymbiotic complexes in a genus of cicadas. Proc Natl Acad Sci U S A 2018; 115:E226-E235. [PMID: 29279407 PMCID: PMC5777040 DOI: 10.1073/pnas.1712321115] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Bacterial endosymbionts that provide nutrients to hosts often have genomes that are extremely stable in structure and gene content. In contrast, the genome of the endosymbiont Hodgkinia cicadicola has fractured into multiple distinct lineages in some species of the cicada genus Tettigades To better understand the frequency, timing, and outcomes of Hodgkinia lineage splitting throughout this cicada genus, we sampled cicadas over three field seasons in Chile and performed genomics and microscopy on representative samples. We found that a single ancestral Hodgkinia lineage has split at least six independent times in Tettigades over the last 4 million years, resulting in complexes of between two and six distinct Hodgkinia lineages per host. Individual genomes in these symbiotic complexes differ dramatically in relative abundance, genome size, organization, and gene content. Each Hodgkinia lineage retains a small set of core genes involved in genetic information processing, but the high level of gene loss experienced by all genomes suggests that extensive sharing of gene products among symbiont cells must occur. In total, Hodgkinia complexes that consist of multiple lineages encode nearly complete sets of genes present on the ancestral single lineage and presumably perform the same functions as symbionts that have not undergone splitting. However, differences in the timing of the splits, along with dissimilar gene loss patterns on the resulting genomes, have led to very different outcomes of lineage splitting in extant cicadas.
Collapse
Affiliation(s)
- Piotr Łukasik
- Division of Biological Sciences, University of Montana, Missoula, MT 59812;
| | - Katherine Nazario
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269
| | - James T Van Leuven
- Division of Biological Sciences, University of Montana, Missoula, MT 59812
| | - Matthew A Campbell
- Division of Biological Sciences, University of Montana, Missoula, MT 59812
| | - Mariah Meyer
- Division of Biological Sciences, University of Montana, Missoula, MT 59812
| | - Anna Michalik
- Institute of Zoology and Biomedical Research, Jagiellonian University, 30-387 Kraków, Poland
| | - Pablo Pessacq
- Centro de Investigaciones Esquel de Montaña y Estepa Patagónicas, 9200 Esquel, Chubut, Argentina
| | - Chris Simon
- Department of Ecology and Evolutionary Biology, University of Connecticut, Storrs, CT 06269
| | - Claudio Veloso
- Department of Ecological Sciences, Science Faculty, University of Chile, 7800003 Santiago, Chile
| | - John P McCutcheon
- Division of Biological Sciences, University of Montana, Missoula, MT 59812;
| |
Collapse
|
26
|
Ponce-de-Leon M, Tamarit D, Calle-Espinosa J, Mori M, Latorre A, Montero F, Pereto J. Determinism and Contingency Shape Metabolic Complementation in an Endosymbiotic Consortium. Front Microbiol 2017; 8:2290. [PMID: 29213256 PMCID: PMC5702781 DOI: 10.3389/fmicb.2017.02290] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2017] [Accepted: 11/06/2017] [Indexed: 01/06/2023] Open
Abstract
Bacterial endosymbionts and their insect hosts establish an intimate metabolic relationship. Bacteria offer a variety of essential nutrients to their hosts, whereas insect cells provide the necessary sources of matter and energy to their tiny metabolic allies. These nutritional complementations sustain themselves on a diversity of metabolite exchanges between the cell host and the reduced yet highly specialized bacterial metabolism—which, for instance, overproduces a small set of essential amino acids and vitamins. A well-known case of metabolic complementation is provided by the cedar aphid Cinara cedri that harbors two co-primary endosymbionts, Buchnera aphidicola BCc and Ca. Serratia symbiotica SCc, and in which some metabolic pathways are partitioned between different partners. Here we present a genome-scale metabolic network (GEM) for the bacterial consortium from the cedar aphid iBSCc. The analysis of this GEM allows us the confirmation of cases of metabolic complementation previously described by genome analysis (i.e., tryptophan and biotin biosynthesis) and the redefinition of an event of metabolic pathway sharing between the two endosymbionts, namely the biosynthesis of tetrahydrofolate. In silico knock-out experiments with iBSCc showed that the consortium metabolism is a highly integrated yet fragile network. We also have explored the evolutionary pathways leading to the emergence of metabolic complementation between reduced metabolisms starting from individual, complete networks. Our results suggest that, during the establishment of metabolic complementation in endosymbionts, adaptive evolution is significant in the case of tryptophan biosynthesis, whereas vitamin production pathways seem to adopt suboptimal solutions.
Collapse
Affiliation(s)
- Miguel Ponce-de-Leon
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Daniel Tamarit
- Science for Life Laboratory, Department of Molecular Evolution, Cell and Molecular Biology, Uppsala University, Uppsala, Sweden
| | - Jorge Calle-Espinosa
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Matteo Mori
- Department of Physics, University of California, San Diego, La Jolla, CA, United States
| | - Amparo Latorre
- Departament de Genètica, Universitat de València, València, Spain.,Institute for Integrative Systems Biology, Universitat de València-CSIC, València, Spain
| | - Francisco Montero
- Departamento de Bioquímica y Biología Molecular I, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, Madrid, Spain
| | - Juli Pereto
- Institute for Integrative Systems Biology, Universitat de València-CSIC, València, Spain.,Departament de Bioquímica i Biologia Molecular, Universitat de València, València, Spain
| |
Collapse
|
27
|
Are Thraustochytrids algae? Fungal Biol 2017; 121:835-840. [DOI: 10.1016/j.funbio.2017.07.006] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 07/25/2017] [Accepted: 07/26/2017] [Indexed: 12/30/2022]
|
28
|
Wernegreen JJ. In it for the long haul: evolutionary consequences of persistent endosymbiosis. Curr Opin Genet Dev 2017; 47:83-90. [PMID: 28934627 DOI: 10.1016/j.gde.2017.08.006] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2017] [Revised: 08/27/2017] [Accepted: 08/31/2017] [Indexed: 11/30/2022]
Abstract
Phylogenetically independent bacterial lineages have undergone a profound lifestyle shift: from a free-living to obligately host-associated existence. Among these lineages, intracellular bacterial mutualists of insects are among the most intimate, constrained symbioses known. These obligate endosymbionts exhibit severe gene loss and apparent genome deterioration. Evolutionary theory provides a basis to link their unusual genomic features with shifts in fundamental mechanisms - selection, genetic drift, mutation, and recombination. This mini-review highlights recent comparative and experimental research of processes shaping ongoing diversification within these ancient associations. Recent work supports clear contributions of stochastic processes, including genetic drift and exceptionally strong mutational pressure, toward degenerative evolution. Despite possible compensatory mechanisms, genome degradation may constrain how persistent endosymbionts (and their hosts) respond to environmental fluctuations.
Collapse
Affiliation(s)
- Jennifer J Wernegreen
- Nicholas School of the Environment, Duke University, Durham, NC, United States; Center for Genomic and Computational Biology, Duke University, Durham, NC, United States.
| |
Collapse
|
29
|
Martin WF, Tielens AGM, Mentel M, Garg SG, Gould SB. The Physiology of Phagocytosis in the Context of Mitochondrial Origin. Microbiol Mol Biol Rev 2017; 81:e00008-17. [PMID: 28615286 PMCID: PMC5584316 DOI: 10.1128/mmbr.00008-17] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
How mitochondria came to reside within the cytosol of their host has been debated for 50 years. Though current data indicate that the last eukaryote common ancestor possessed mitochondria and was a complex cell, whether mitochondria or complexity came first in eukaryotic evolution is still discussed. In autogenous models (complexity first), the origin of phagocytosis poses the limiting step at eukaryote origin, with mitochondria coming late as an undigested growth substrate. In symbiosis-based models (mitochondria first), the host was an archaeon, and the origin of mitochondria was the limiting step at eukaryote origin, with mitochondria providing bacterial genes, ATP synthesis on internalized bioenergetic membranes, and mitochondrion-derived vesicles as the seed of the eukaryote endomembrane system. Metagenomic studies are uncovering new host-related archaeal lineages that are reported as complex or phagocytosing, although images of such cells are lacking. Here we review the physiology and components of phagocytosis in eukaryotes, critically inspecting the concept of a phagotrophic host. From ATP supply and demand, a mitochondrion-lacking phagotrophic archaeal fermenter would have to ingest about 34 times its body weight in prokaryotic prey to obtain enough ATP to support one cell division. It would lack chemiosmotic ATP synthesis at the plasma membrane, because phagocytosis and chemiosmosis in the same membrane are incompatible. It would have lived from amino acid fermentations, because prokaryotes are mainly protein. Its ATP yield would have been impaired relative to typical archaeal amino acid fermentations, which involve chemiosmosis. In contrast, phagocytosis would have had great physiological benefit for a mitochondrion-bearing cell.
Collapse
Affiliation(s)
- William F Martin
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Aloysius G M Tielens
- Department of Biochemistry and Cell Biology, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- Department of Medical Microbiology and Infectious Diseases, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Marek Mentel
- Department of Biochemistry, Faculty of Natural Sciences, Comenius University in Bratislava, Bratislava, Slovakia
| | - Sriram G Garg
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sven B Gould
- Institute for Molecular Evolution, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| |
Collapse
|
30
|
Wernegreen JJ. Ancient bacterial endosymbionts of insects: Genomes as sources of insight and springboards for inquiry. Exp Cell Res 2017; 358:427-432. [DOI: 10.1016/j.yexcr.2017.04.028] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Revised: 04/24/2017] [Accepted: 04/25/2017] [Indexed: 01/20/2023]
|