1
|
Chen JK, Liu T, Cai S, Ruan W, Ng CT, Shi J, Surana U, Gan L. Nanoscale analysis of human G1 and metaphase chromatin in situ. EMBO J 2025; 44:2658-2694. [PMID: 40097852 PMCID: PMC12048539 DOI: 10.1038/s44318-025-00407-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Revised: 02/11/2025] [Accepted: 02/21/2025] [Indexed: 03/19/2025] Open
Abstract
The structure of chromatin at the nucleosome level inside cells is still incompletely understood. Here we present in situ electron cryotomography analyses of chromatin in both G1 and metaphase RPE-1 cells. G1 nucleosomes are concentrated in globular chromatin domains, and metaphase nucleosomes are concentrated in the chromatids. Classification analysis reveals that canonical mononucleosomes, and in some conditions ordered stacked dinucleosomes and mononucleosomes with a disordered gyre-proximal density, are abundant in both cell-cycle states. We do not detect class averages that have more than two stacked nucleosomes or side-by-side dinucleosomes, suggesting that groups of more than two nucleosomes are heterogeneous. Large multi-megadalton structures are abundant in G1 nucleoplasm, but not found in G1 chromatin domains and metaphase chromatin. The macromolecular phenotypes studied here represent a starting point for the comparative analysis of compaction in normal vs. unhealthy human cells, in other cell-cycle states, other organisms, and in vitro chromatin assemblies.
Collapse
Affiliation(s)
- Jon Ken Chen
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore, 117543, Singapore
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22903, USA
| | - Tingsheng Liu
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Shujun Cai
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Weimei Ruan
- Institute of Molecular and Cell Biology and Agency for Science Technology and Research, 61 Biopolis Drive, Singapore, 138673, Singapore
| | - Cai Tong Ng
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Jian Shi
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore, 117543, Singapore
| | - Uttam Surana
- Institute of Molecular and Cell Biology and Agency for Science Technology and Research, 61 Biopolis Drive, Singapore, 138673, Singapore
- Department of Pharmacology, National University of Singapore, Singapore, 117543, Singapore
| | - Lu Gan
- Department of Biological Sciences and Centre for BioImaging Sciences, National University of Singapore, Singapore, 117543, Singapore.
- Department of Molecular Physiology and Biological Physics, University of Virginia, Charlottesville, VA, 22903, USA.
| |
Collapse
|
2
|
Niedner-Boblenz A, Monecke T, Hennig J, Klostermann M, Hofweber M, Davydova E, Gerber AP, Anosova I, Mayer W, Müller M, Heym RG, Janowski R, Paillart JC, Dormann D, Zarnack K, Sattler M, Niessing D. Intrinsically disordered RNA-binding motifs cooperate to catalyze RNA folding and drive phase separation. Nucleic Acids Res 2024; 52:14205-14228. [PMID: 39558160 DOI: 10.1093/nar/gkae1107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 10/15/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024] Open
Abstract
RNA-binding proteins are essential for gene regulation and the spatial organization of cells. Here, we report that the yeast ribosome biogenesis factor Loc1p is an intrinsically disordered RNA-binding protein with eight repeating positively charged, unstructured nucleic acid binding (PUN) motifs. While a single of these previously undefined motifs stabilizes folded RNAs, multiple copies strongly cooperate to catalyze RNA folding. In the presence of RNA, these multivalent PUN motifs drive phase separation. Proteome-wide searches in pro- and eukaryotes for proteins with similar arrays of PUN motifs reveal a strong enrichment in RNA-mediated processes and DNA remodeling. Thus, PUN motifs are potentially involved in a large variety of RNA- and DNA-related processes by concentrating them in membraneless organelles. The general function and wide distribution of PUN motifs across species suggest that in an ancient 'RNA world' PUN-like motifs may have supported the correct folding of early ribozymes.
Collapse
Affiliation(s)
- Annika Niedner-Boblenz
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Munich, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
- Department of Anatomy and Cell Biology, Biomedical Center of the Ludwig-Maximilians University München, Großhaderner Str. 9, 82152 Planegg-Martinsried, Germany
| | - Thomas Monecke
- Institute of Pharmaceutical Biotechnology, Ulm University, James-Franck-Ring N27, 89081 Ulm, Germany
| | - Janosch Hennig
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Munich, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
- Department of Bioscience and Bavarian NMR Center, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, 85747 Garching, Germany
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Meyerhofstr. 1, 69117 Heidelberg, Germany
- Department of Biochemistry IV-Biophysical Chemistry, University of Bayreuth, Universitätsstraße 30 / BGI, 95447 Bayreuth, Germany
| | - Melina Klostermann
- Buchmann Institute for Molecular Life Sciences (BMLS) and Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt, Germany
- Theodor-Boveri-Institut für Biowissenschaften, Lehrstuhl für Bioinformatik, Biozentrum, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Mario Hofweber
- Department of Anatomy and Cell Biology, Biomedical Center of the Ludwig-Maximilians University München, Großhaderner Str. 9, 82152 Planegg-Martinsried, Germany
| | - Elena Davydova
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Munich, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - André P Gerber
- Department of Microbial Sciences, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Stag Hill Campus, 10AX01, Guildford GU2 7XH, UK
| | - Irina Anosova
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Munich, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
- Department of Bioscience and Bavarian NMR Center, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Wieland Mayer
- Institute of Pharmaceutical Biotechnology, Ulm University, James-Franck-Ring N27, 89081 Ulm, Germany
| | - Marisa Müller
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Munich, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
- Department of Molecular Biology, Biomedical Center of the Ludwig-Maximilians University München,Großhaderner Str. 9, 82152 Planegg-Martinsried, Germany
| | - Roland Gerhard Heym
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Munich, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Robert Janowski
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Munich, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
| | - Jean-Christophe Paillart
- IBMC, Architecture et Réactivité de l'ARN, Université de Strasbourg, CNRS, 2 allée Konrad Roentgen, 67000 Strasbourg, France
| | - Dorothee Dormann
- Department of Anatomy and Cell Biology, Biomedical Center of the Ludwig-Maximilians University München, Großhaderner Str. 9, 82152 Planegg-Martinsried, Germany
- Biocenter, Institute of Molecular Physiology, Johannes Gutenberg-Universität (JGU), Hanns-Hüsch-Weg 17, 55128Mainz, Germany
- Institute of Molecular Biology (IMB), Ackermannweg 4, 55128 Mainz, Germany
| | - Kathi Zarnack
- Buchmann Institute for Molecular Life Sciences (BMLS) and Institute of Molecular Biosciences, Goethe University Frankfurt, Max-von-Laue-Str. 15, 60438 Frankfurt, Germany
- Theodor-Boveri-Institut für Biowissenschaften, Lehrstuhl für Bioinformatik, Biozentrum, Julius-Maximilians-Universität Würzburg, Am Hubland, 97074 Würzburg, Germany
| | - Michael Sattler
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Munich, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
- Department of Bioscience and Bavarian NMR Center, TUM School of Natural Sciences, Technical University of Munich, Lichtenbergstrasse 4, 85747 Garching, Germany
| | - Dierk Niessing
- Institute of Structural Biology, Molecular Targets and Therapeutics Center, Helmholtz Munich, Ingolstädter Landstrasse 1, 85764 Neuherberg, Germany
- Department of Anatomy and Cell Biology, Biomedical Center of the Ludwig-Maximilians University München, Großhaderner Str. 9, 82152 Planegg-Martinsried, Germany
- Institute of Pharmaceutical Biotechnology, Ulm University, James-Franck-Ring N27, 89081 Ulm, Germany
| |
Collapse
|
3
|
El Osmani N, Prévostel C, Picque Lasorsa L, El Harakeh M, Radwan Z, Mawlawi H, El Sabban M, Shirinian M, Dassouki Z. Vitamin C enhances co-localization of novel TET1 nuclear bodies with both Cajal and PML bodies in colorectal cancer cells. Epigenetics 2024; 19:2337142. [PMID: 38583183 PMCID: PMC11000620 DOI: 10.1080/15592294.2024.2337142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 03/26/2024] [Indexed: 04/09/2024] Open
Abstract
Deregulation of ten-eleven Translocation protein 1 (TET1) is commonly reported to induce imbalances in gene expression and subsequently to colorectal cancer development (CRC). On the other hand, vitamin C (VitC) improves the prognosis of colorectal cancer by reprogramming the cancer epigenome and limiting chemotherapeutic drug resistance events. In this study, we aimed to characterize TET1-specific subcellular compartments and evaluate the effect of VitC on TET1 compartmentalization in colonic tumour cells. We demonstrated that TET1 is concentrated in coarse nuclear bodies (NB) and 5-hydroxymethylcytosine (5hmC) in foci in colorectal cancer cells (HCT116, Caco-2, and HT-29). To our knowledge, this is the first report of a novel intracellular localization profile of TET1 and its demethylation marker, 5hmC, in CRC cells. Interestingly, we found that TET1-NBs frequently interacted with Cajal bodies, but not with promyelocytic leukaemia (PML) bodies. In addition, we report that VitC treatment of HCT116 cells induces 5hmC foci biogenesis and triggers 5hmC marks to form active complexes with nuclear body components, including both Cajal and PML proteins. Our data highlight novel NB-concentrating TET1 in CRC cells and demonstrate that VitC modulates TET1-NBs' interactions with other nuclear structures. These findings reveal novel TET1-dependent cellular functions and potentially provide new insights for CRC management.
Collapse
Affiliation(s)
- Nour El Osmani
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- Université de Montpellier, Montpellier, France
- Laboratory of Applied Biotechnology (LBA3B), AZM Center for Research in Biotechnology and its Applications, Doctoral School for Sciences and Technology, Tripoli, Lebanon
| | - Corinne Prévostel
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- Université de Montpellier, Montpellier, France
- INSERM, Montpellier, France
- ICM, Institut régional du Cancer de Montpellier, Montpellier, France
| | - Laurence Picque Lasorsa
- IRCM, Institut de Recherche en Cancérologie de Montpellier, Montpellier, France
- Université de Montpellier, Montpellier, France
- INSERM, Montpellier, France
- ICM, Institut régional du Cancer de Montpellier, Montpellier, France
| | - Mohammad El Harakeh
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Zeina Radwan
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Hiba Mawlawi
- Laboratory of Applied Biotechnology (LBA3B), AZM Center for Research in Biotechnology and its Applications, Doctoral School for Sciences and Technology, Tripoli, Lebanon
- Faculty of Public Health, Lebanese University, Tripoli, Lebanon
| | - Marwan El Sabban
- Department of Anatomy, Cell Biology, and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Margret Shirinian
- Department of Experiment Pathology, Immunology, and Microbiology, American University of Beirut, Faculty of Medicine, Beirut, Lebanon
| | - Zeina Dassouki
- Laboratory of Applied Biotechnology (LBA3B), AZM Center for Research in Biotechnology and its Applications, Doctoral School for Sciences and Technology, Tripoli, Lebanon
- Department of Medical Laboratory Sciences, University of Balamand, Faculty of Health Sciences, Tripoli, Lebanon
| |
Collapse
|
4
|
Sharma N, Coticchio G, Borini A, Tachibana K, Nasmyth KA, Schuh M. Changes in DNA repair compartments and cohesin loss promote DNA damage accumulation in aged oocytes. Curr Biol 2024; 34:5131-5148.e6. [PMID: 39437784 DOI: 10.1016/j.cub.2024.09.040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 07/20/2024] [Accepted: 09/16/2024] [Indexed: 10/25/2024]
Abstract
Oocyte loss, a natural process that accelerates as women approach their mid-30s, poses a significant challenge to female reproduction. Recent studies have identified DNA damage as a primary contributor to oocyte loss, but the mechanisms underlying DNA damage accumulation remain unclear. Here, we show that aged oocytes have a lower DNA repair capacity and reduced mobility of DNA damage sites compared to young oocytes. Incomplete DNA repair in aged oocytes results in defective chromosome integrity and partitioning, thereby compromising oocyte quality. We found that DNA repair proteins are arranged in spatially distinct DNA repair compartments that form during the late stages of oocyte growth, accompanied by changes in the activity of DNA repair pathways. We demonstrate alterations in these compartments with age, including substantial changes in the levels of key DNA repair proteins and a shift toward error-prone DNA repair pathways. In addition, we show that reduced cohesin levels make aged oocytes more vulnerable to persistent DNA damage and cause changes in DNA repair compartments. Our study links DNA damage accumulation in aged oocytes, a leading cause of oocyte loss, to cohesin deterioration and changes in the organization, abundance, and response of DNA repair machinery.
Collapse
Affiliation(s)
- Ninadini Sharma
- Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany
| | | | - Andrea Borini
- IVIRMA Global Research Alliance, 9.baby, Bologna 40125, Italy
| | - Kikuë Tachibana
- Department of Totipotency, Max Planck Institute of Biochemistry, Am Klopferspitz 18, Martinsried, Munich 82152, Germany
| | - Kim A Nasmyth
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Melina Schuh
- Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, Göttingen 37077, Germany.
| |
Collapse
|
5
|
Hanafiah A, Geng Z, Liu T, Tai YT, Cai W, Wang Q, Christensen N, Liu Y, Yue F, Gao Z. PRC1 and CTCF-Mediated Transition from Poised to Active Chromatin Loops Drives Bivalent Gene Activation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.13.623456. [PMID: 39605346 PMCID: PMC11601310 DOI: 10.1101/2024.11.13.623456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Polycomb Repressive Complex 1 (PRC1) and CCCTC-binding factor (CTCF) are critical regulators of 3D chromatin architecture that influence cellular transcriptional programs. Spatial chromatin structures comprise conserved compartments, topologically associating domains (TADs), and dynamic, cell-type-specific chromatin loops. Although the role of CTCF in chromatin organization is well-known, the involvement of PRC1 is less understood. In this study, we identified an unexpected, essential role for the canonical Pcgf2-containing PRC1 complex (cPRC1.2), a known transcriptional repressor, in activating bivalent genes during differentiation. Our Hi-C analysis revealed that cPRC1.2 forms chromatin loops at bivalent promoters, rendering them silent yet poised for activation. Using mouse embryonic stem cells (ESCs) with CRISPR/Cas9-mediated gene editing, we found that the loss of Pcgf2, though not affecting the global level of H2AK119ub1, disrupts these cPRC1.2 loops in ESCs and impairs the transcriptional induction of crucial target genes necessary for neuronal differentiation. Furthermore, we identified CTCF enrichment at cPRC1.2 loop anchors and at Polycomb group (PcG) bodies, nuclear foci with concentrated PRC1 and its tethered chromatin domains, suggesting that PRC1 and CTCF cooperatively shape chromatin loop structures. Through virtual 4C and other genomic analyses, we discovered that establishing neuronal progenitor cell (NPC) identity involves a switch from cPRC1.2-mediated chromatin loops to CTCF-mediated active loops, enabling the expression of critical lineage-specific factors. This study uncovers a novel mechanism by which pre-formed PRC1 and CTCF loops at lineage-specific genes maintain a poised state for subsequent gene activation, advancing our understanding of the role of chromatin architecture in controlling cell fate transitions.
Collapse
Affiliation(s)
- Aflah Hanafiah
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033
- Penn State Hershey Cancer Institute, Hershey, PA 17033
| | - Zhuangzhuang Geng
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033
- Penn State Hershey Cancer Institute, Hershey, PA 17033
| | - Tingting Liu
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL 60611
- Center for Cancer Genomics, Feinberg School of Medicine Northwestern University, Chicago, IL 60611
| | - Yen Teng Tai
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033
- Penn State Hershey Cancer Institute, Hershey, PA 17033
| | - Wenjie Cai
- Department of Medicine, Feinberg School of Medicine Northwestern University, Chicago, IL 60611
| | - Qiang Wang
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033
- Penn State Hershey Cancer Institute, Hershey, PA 17033
| | - Neil Christensen
- Department of Pathology and Laboratory Medicine, Penn State College of Medicine, Hershey, PA 17033
| | - Yan Liu
- Center for Cancer Genomics, Feinberg School of Medicine Northwestern University, Chicago, IL 60611
- Department of Medicine, Feinberg School of Medicine Northwestern University, Chicago, IL 60611
| | - Feng Yue
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine Northwestern University, Chicago, IL 60611
- Center for Cancer Genomics, Feinberg School of Medicine Northwestern University, Chicago, IL 60611
| | - Zhonghua Gao
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033
- Penn State Hershey Cancer Institute, Hershey, PA 17033
| |
Collapse
|
6
|
Kilgas S, Swift ML, Chowdhury D. 53BP1-the 'Pandora's box' of genome integrity. DNA Repair (Amst) 2024; 144:103779. [PMID: 39476547 DOI: 10.1016/j.dnarep.2024.103779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2024] [Revised: 10/16/2024] [Accepted: 10/22/2024] [Indexed: 11/03/2024]
Abstract
53BP1 has several functions in the maintenance of genome integrity. It functions as a key mediator involved in double-strand break (DSB) repair, which functions to maintain a balance in the repair pathway choices and in preserving genomic stability. While its DSB repair functions are relatively well-characterized, its role in DNA replication and replication fork protection is less understood. In response to replication stress, 53BP1 contributes to fork protection by regulating fork reversal and restart. It helps maintain replication fork stability and speed, with 53BP1 loss leading to defective fork progression and increased sensitivity to replication stress agents. However, 53BP1's precise role in fork protection remains debated, as some studies have not observed protective effects. Therefore, it is critical to determine the role of 53BP1 in replication to better understand when it promotes replication fork protection, and the underlying mechanisms involved. Moreover, 53BP1's function in replication stress extends beyond its activity at active replication forks; it also forms specialized nuclear bodies (NBs) which protect stretches of under-replicated DNA (UR-DNA) transmitted from a previous cell cycle to daughter cells through mitosis. The mechanism of 53BP1 NBs in the coordination of replication and repair events at UR-DNA loci is not fully understood and warrants further investigation. The present review article focuses on elucidating 53BP1's functions in replication stress (RS), its role in replication fork protection, and the significance of 53BP1 NBs in this context to provide a more comprehensive understanding of its less well-established role in DNA replication.
Collapse
Affiliation(s)
- Susan Kilgas
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Michelle L Swift
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA
| | - Dipanjan Chowdhury
- Division of Radiation and Genome Stability, Department of Radiation Oncology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA 02215, USA; Broad Institute of Harvard and MIT, Cambridge, MA 02142, USA; Department of Biological Chemistry & Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
7
|
Maki K, Fukute J, Adachi T. Super-resolution imaging reveals nucleolar encapsulation by single-stranded DNA. J Cell Sci 2024; 137:jcs262039. [PMID: 39206638 PMCID: PMC11463959 DOI: 10.1242/jcs.262039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Accepted: 08/15/2024] [Indexed: 09/04/2024] Open
Abstract
In eukaryotic cell nuclei, specific sets of proteins gather in nuclear bodies and facilitate distinct genomic processes. The nucleolus, a nuclear body, functions as a factory for ribosome biogenesis by accumulating constitutive proteins, such as RNA polymerase I and nucleophosmin 1 (NPM1). Although in vitro assays have suggested the importance of liquid-liquid phase separation (LLPS) of constitutive proteins in nucleolar formation, how the nucleolus is structurally maintained with the intranuclear architecture remains unknown. This study revealed that the nucleolus is encapsulated by a single-stranded (ss)DNA-based molecular complex inside the cell nucleus. Super-resolution lattice-structured illumination microscopy (lattice-SIM) showed that there was a high abundance of ssDNA beyond the 'outer shell' of the nucleolus. Nucleolar disruption and the release of NPM1 were caused by in situ digestion of ssDNA, suggesting that ssDNA has a structural role in nucleolar encapsulation. Furthermore, we identified that ssDNA forms a molecular complex with histone H1 for nucleolar encapsulation. Thus, this study illustrates how an ssDNA-based molecular complex upholds the structural integrity of nuclear bodies to coordinate genomic processes such as gene transcription and replication.
Collapse
Affiliation(s)
- Koichiro Maki
- Laboratory of Biomechanics, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara, Sakyo, Kyoto 606-8507, Japan
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, 53 Shogoin-Kawahara, Sakyo, Kyoto 606-8507, Japan
- Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, 53 Shogoin-Kawahara, Sakyo, Kyoto 606-8507, Japan
- Department of Medicine and Medical Science, Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawahara, Sakyo, Kyoto 606-8507, Japan
| | - Jumpei Fukute
- Laboratory of Biomechanics, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara, Sakyo, Kyoto 606-8507, Japan
- Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, 53 Shogoin-Kawahara, Sakyo, Kyoto 606-8507, Japan
| | - Taiji Adachi
- Laboratory of Biomechanics, Institute for Life and Medical Sciences, Kyoto University, 53 Shogoin-Kawahara, Sakyo, Kyoto 606-8507, Japan
- Department of Micro Engineering, Graduate School of Engineering, Kyoto University, 53 Shogoin-Kawahara, Sakyo, Kyoto 606-8507, Japan
- Department of Mammalian Regulatory Network, Graduate School of Biostudies, Kyoto University, 53 Shogoin-Kawahara, Sakyo, Kyoto 606-8507, Japan
- Department of Medicine and Medical Science, Graduate School of Medicine, Kyoto University, 53 Shogoin-Kawahara, Sakyo, Kyoto 606-8507, Japan
| |
Collapse
|
8
|
Guo Y, Zhang X. Unveiling intracellular phase separation: advances in optical imaging of biomolecular condensates. Trends Biochem Sci 2024; 49:901-915. [PMID: 39034215 DOI: 10.1016/j.tibs.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 06/20/2024] [Accepted: 06/25/2024] [Indexed: 07/23/2024]
Abstract
Intracellular biomolecular condensates, which form via phase separation, display a highly organized ultrastructure and complex properties. Recent advances in optical imaging techniques, including super-resolution microscopy and innovative microscopic methods that leverage the intrinsic properties of the molecules observed, have transcended the limitations of conventional microscopies. These advances facilitate the exploration of condensates at finer scales and in greater detail. The deployment of these emerging but sophisticated imaging tools allows for precise observations of the multiphasic organization and physicochemical properties of these condensates, shedding light on their functions in cellular processes. In this review, we highlight recent progress in methodological innovations and their profound implications for understanding the organization and dynamics of intracellular biomolecular condensates.
Collapse
Affiliation(s)
- Yinfeng Guo
- Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, PR China
| | - Xin Zhang
- Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, Hangzhou 310030, PR China; Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou 310024, PR China.
| |
Collapse
|
9
|
Ulloa-Aguilar JM, Herrera Moro Huitron L, Benítez-Zeferino RY, Cerna-Cortes JF, García-Cordero J, León-Reyes G, Guzman-Bautista ER, Farfan-Morales CN, Reyes-Ruiz JM, Miranda-Labra RU, De Jesús-González LA, León-Juárez M. The Nucleolus and Its Interactions with Viral Proteins Required for Successful Infection. Cells 2024; 13:1591. [PMID: 39329772 PMCID: PMC11430610 DOI: 10.3390/cells13181591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 09/16/2024] [Accepted: 09/17/2024] [Indexed: 09/28/2024] Open
Abstract
Nuclear bodies are structures in eukaryotic cells that lack a plasma membrane and are considered protein condensates, DNA, or RNA molecules. Known nuclear bodies include the nucleolus, Cajal bodies, and promyelocytic leukemia nuclear bodies. These bodies are involved in the concentration, exclusion, sequestration, assembly, modification, and recycling of specific components involved in the regulation of ribosome biogenesis, RNA transcription, and RNA processing. Additionally, nuclear bodies have been shown to participate in cellular processes such as the regulation of transcription of the cell cycle, mitosis, apoptosis, and the cellular stress response. The dynamics and functions of these bodies depend on the state of the cell. It is now known that both DNA and RNA viruses can direct their proteins to nuclear bodies, causing alterations in their composition, dynamics, and functions. Although many of these mechanisms are still under investigation, it is well known that the interaction between viral and nuclear body proteins is necessary for the success of the viral infection cycle. In this review, we concisely describe the interaction between viral and nuclear body proteins. Furthermore, we focus on the role of the nucleolus in RNA virus infections. Finally, we discuss the possible implications of the interaction of viral proteins on cellular transcription and the formation/degradation of non-coding RNAs.
Collapse
Affiliation(s)
- José Manuel Ulloa-Aguilar
- Laboratorio de Virología Perinatal y Diseño Molecular de Antígenos y Biomarcadores, Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Mexico City 11000, Mexico; (J.M.U.-A.); (L.H.M.H.); (R.Y.B.-Z.); (E.R.G.-B.)
- Posgrado en Biología Experimental, Departamento de Ciencias Biológicas y de la Salud (DCBS), Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09310, Mexico
| | - Luis Herrera Moro Huitron
- Laboratorio de Virología Perinatal y Diseño Molecular de Antígenos y Biomarcadores, Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Mexico City 11000, Mexico; (J.M.U.-A.); (L.H.M.H.); (R.Y.B.-Z.); (E.R.G.-B.)
- Laboratorio de Microbiología Molecular, Departamento de Microbiología, Escuela Nacional de Ciencias Biologícas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Rocío Yazmin Benítez-Zeferino
- Laboratorio de Virología Perinatal y Diseño Molecular de Antígenos y Biomarcadores, Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Mexico City 11000, Mexico; (J.M.U.-A.); (L.H.M.H.); (R.Y.B.-Z.); (E.R.G.-B.)
- Laboratorio de Microbiología Molecular, Departamento de Microbiología, Escuela Nacional de Ciencias Biologícas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Jorge Francisco Cerna-Cortes
- Laboratorio de Microbiología Molecular, Departamento de Microbiología, Escuela Nacional de Ciencias Biologícas, Instituto Politécnico Nacional, Mexico City 11340, Mexico;
| | - Julio García-Cordero
- Departamento de Biomedicina Molecular, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional (CINVESTAV-IPN), Mexico City 07360, Mexico;
| | - Guadalupe León-Reyes
- Laboratorio de Nutrigenética y Nutrigenómica, Instituto Nacional de Medicina Genómica (INMEGEN), Mexico City 14610, Mexico;
| | - Edgar Rodrigo Guzman-Bautista
- Laboratorio de Virología Perinatal y Diseño Molecular de Antígenos y Biomarcadores, Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Mexico City 11000, Mexico; (J.M.U.-A.); (L.H.M.H.); (R.Y.B.-Z.); (E.R.G.-B.)
| | - Carlos Noe Farfan-Morales
- Departamento de Ciencias Naturales, Universidad Autonoma Metropolitana (UAM), Unidad Cuajimalpa, Mexico City 05348, Mexico;
| | - José Manuel Reyes-Ruiz
- Centro Médico Nacional “Adolfo Ruiz Cortines”, Instituto Mexicano del Seguro Social (IMSS), Veracruz 91897, Mexico;
| | - Roxana U. Miranda-Labra
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Mexico City 09310, Mexico;
| | | | - Moises León-Juárez
- Laboratorio de Virología Perinatal y Diseño Molecular de Antígenos y Biomarcadores, Departamento de Inmunobioquímica, Instituto Nacional de Perinatología, Mexico City 11000, Mexico; (J.M.U.-A.); (L.H.M.H.); (R.Y.B.-Z.); (E.R.G.-B.)
| |
Collapse
|
10
|
Lang R, Hodgson RE, Shelkovnikova TA. TDP-43 in nuclear condensates: where, how, and why. Biochem Soc Trans 2024; 52:1809-1825. [PMID: 38958608 PMCID: PMC11668305 DOI: 10.1042/bst20231447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 06/12/2024] [Accepted: 06/17/2024] [Indexed: 07/04/2024]
Abstract
TDP-43 is an abundant and ubiquitously expressed nuclear protein that becomes dysfunctional in a spectrum of neurodegenerative diseases. TDP-43's ability to phase separate and form/enter biomolecular condensates of varying size and composition is critical for its functionality. Despite the high density of phase-separated assemblies in the nucleus and the nuclear abundance of TDP-43, our understanding of the condensate-TDP-43 relationship in this cellular compartment is only emerging. Recent studies have also suggested that misregulation of nuclear TDP-43 condensation is an early event in the neurodegenerative disease amyotrophic lateral sclerosis. This review aims to draw attention to the nuclear facet of functional and aberrant TDP-43 condensation. We will summarise the current knowledge on how TDP-43 containing nuclear condensates form and function and how their homeostasis is affected in disease.
Collapse
Affiliation(s)
- Ruaridh Lang
- Sheffield Institute for Translational Neuroscience (SITraN) and Neuroscience Institute, University of Sheffield, Sheffield, U.K
| | - Rachel E. Hodgson
- Sheffield Institute for Translational Neuroscience (SITraN) and Neuroscience Institute, University of Sheffield, Sheffield, U.K
| | - Tatyana A. Shelkovnikova
- Sheffield Institute for Translational Neuroscience (SITraN) and Neuroscience Institute, University of Sheffield, Sheffield, U.K
| |
Collapse
|
11
|
Hong M, Zhou X, Zeng C, Xu D, Xu T, Liao S, Wang K, Zhu C, Shan G, Huang X, Chen X, Feng X, Guang S. Nucleolar stress induces nucleolar stress body formation via the NOSR-1/NUMR-1 axis in Caenorhabditis elegans. Nat Commun 2024; 15:7256. [PMID: 39179648 PMCID: PMC11343841 DOI: 10.1038/s41467-024-51693-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 08/13/2024] [Indexed: 08/26/2024] Open
Abstract
Environmental stimuli not only alter gene expression profiles but also induce structural changes in cells. How distinct nuclear bodies respond to cellular stress is poorly understood. Here, we identify a subnuclear organelle named the nucleolar stress body (NoSB), the formation of which is induced by the inhibition of rRNA transcription or inactivation of rRNA processing and maturation in C. elegans. NoSB does not colocalize with other previously described subnuclear organelles. We conduct forward genetic screening and identify a bZIP transcription factor, named nucleolar stress response-1 (NOSR-1), that is required for NoSB formation. The inhibition of rRNA transcription or inactivation of rRNA processing and maturation increases nosr-1 expression. By using transcriptome analysis of wild-type animals subjected to different nucleolar stress conditions and nosr-1 mutants, we identify that the SR-like protein NUMR-1 (nuclear localized metal responsive) is the target of NOSR-1. Interestingly, NUMR-1 is a component of NoSB and itself per se is required for the formation of NoSB. We conclude that the NOSR-1/NUMR-1 axis likely responds to nucleolar stress and mediates downstream stress-responsive transcription programs and subnuclear morphology alterations in C. elegans.
Collapse
Affiliation(s)
- Minjie Hong
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Xiaotian Zhou
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Chenming Zeng
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Demin Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Ting Xu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Shimiao Liao
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Ke Wang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Chengming Zhu
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Ge Shan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China
| | - Xinya Huang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China.
| | - Xiangyang Chen
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China.
| | - Xuezhu Feng
- School of Basic Medical Sciences, Anhui Medical University, Hefei, China.
| | - Shouhong Guang
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, The USTC RNA Institute, Ministry of Education Key Laboratory for Membraneless Organelles & Cellular Dynamics, Hefei National Research Center for Physical Sciences at the Microscale, Center for Advanced Interdisciplinary Science and Biomedicine of IHM, School of Life Sciences, Division of Life Sciences and Medicine, Biomedical Sciences and Health Laboratory of Anhui Province, University of Science and Technology of China, Hefei, Anhui, 230027, China.
| |
Collapse
|
12
|
Huang WP, Ellis BCS, Hodgson RE, Sanchez Avila A, Kumar V, Rayment J, Moll T, Shelkovnikova TA. Stress-induced TDP-43 nuclear condensation causes splicing loss of function and STMN2 depletion. Cell Rep 2024; 43:114421. [PMID: 38941189 DOI: 10.1016/j.celrep.2024.114421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/04/2024] [Accepted: 06/14/2024] [Indexed: 06/30/2024] Open
Abstract
TDP-43 protein is dysregulated in several neurodegenerative diseases, which often have a multifactorial nature and may have extrinsic stressors as a "second hit." TDP-43 undergoes reversible nuclear condensation in stressed cells including neurons. Here, we demonstrate that stress-inducible nuclear TDP-43 condensates are RNA-depleted, non-liquid assemblies distinct from the known nuclear bodies. Their formation requires TDP-43 oligomerization and ATP and is inhibited by RNA. Using a confocal nanoscanning assay, we find that amyotrophic lateral sclerosis (ALS)-linked mutations alter stress-induced TDP-43 condensation by changing its affinity to liquid-like ribonucleoprotein assemblies. Stress-induced nuclear condensation transiently inactivates TDP-43, leading to loss of interaction with its protein binding partners and loss of function in splicing. Splicing changes are especially prominent and persisting for STMN2 RNA, and STMN2 protein becomes rapidly depleted early during stress. Our results point to early pathological changes to TDP-43 in the nucleus and support therapeutic modulation of stress response in ALS.
Collapse
Affiliation(s)
- Wan-Ping Huang
- Sheffield Institute for Translational Neuroscience and Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Brittany C S Ellis
- Sheffield Institute for Translational Neuroscience and Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Rachel E Hodgson
- Sheffield Institute for Translational Neuroscience and Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Anna Sanchez Avila
- Sheffield Institute for Translational Neuroscience and Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Vedanth Kumar
- Sheffield Institute for Translational Neuroscience and Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Jessica Rayment
- Sheffield Institute for Translational Neuroscience and Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Tobias Moll
- Sheffield Institute for Translational Neuroscience and Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Tatyana A Shelkovnikova
- Sheffield Institute for Translational Neuroscience and Neuroscience Institute, University of Sheffield, Sheffield, UK.
| |
Collapse
|
13
|
Shelkovnikova TA, Hautbergue GM. RNP granules in ALS and neurodegeneration: From multifunctional membraneless organelles to therapeutic opportunities. INTERNATIONAL REVIEW OF NEUROBIOLOGY 2024; 176:455-479. [PMID: 38802180 DOI: 10.1016/bs.irn.2024.04.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Amyotrophic lateral sclerosis (ALS) and related neurodegenerative diseases are characterised by dysfunction of a host of RNA-binding proteins (RBPs) and a severely disrupted RNA metabolism. Recently, RBP-harbouring phase-separated complexes, ribonucleoprotein (RNP) granules, have come into the limelight as "crucibles" of neuronal pathology in ALS. RNP granules are indispensable for the multitude of regulatory processes underlying cellular RNA metabolism and serve as critical organisers of cellular biochemistry. Neurons, highly specialised cells, heavily rely on RNP granules for efficient trafficking, signalling and stress responses. Multiple RNP granule components, primarily RBPs such as TDP-43 and FUS, are affected by ALS mutations. However, even in the absence of mutations, RBP proteinopathies represent pathophysiological hallmarks of ALS. Given the high local concentrations of RBPs and RNAs, their weakened or enhanced interactions within RNP granules disrupt their homeostasis. Thus, the physiological process of phase separation and RNP granule formation, vital for maintaining the high-functioning state of neuronal cells, becomes their Achilles heel. Here, we will review the recent literature on the causes and consequences of abnormal RNP granule functioning in ALS and related disorders. In particular, we will summarise the evidence for the network-level dysfunction of RNP granules in these conditions and discuss considerations for therapeutic interventions to target RBPs, RNP granules and their network as a whole.
Collapse
Affiliation(s)
- Tatyana A Shelkovnikova
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom; Neuroscience Institute, University of Sheffield, Firth Court, Western Bank, Sheffield, United Kingdom.
| | - Guillaume M Hautbergue
- Sheffield Institute for Translational Neuroscience (SITraN), University of Sheffield, Sheffield, United Kingdom; Neuroscience Institute, University of Sheffield, Firth Court, Western Bank, Sheffield, United Kingdom; Healthy Lifespan Institute (HELSI), University of Sheffield, Firth Court, Western Bank, Sheffield, United Kingdom.
| |
Collapse
|
14
|
Liu J, Yu W, Dong C, Huang X, Ren J. Objective scanning-based fluorescence cross-correlation spectroscopy (Scan-FCCS) for studying the fusion dynamics of protein phase separation. Analyst 2024; 149:2719-2727. [PMID: 38525957 DOI: 10.1039/d4an00264d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/26/2024]
Abstract
Protein phase separation plays a very important role in many biological processes and is closely related to the occurrence and development of some serious diseases. So far, the fluorescence imaging method and fluorescence correlation spectroscopy (FCS) have been frequently used to study the phase separation behavior of proteins. Due to the wide size distribution of protein condensates in phase separation from nano-scale to micro-scale in solution and living cells, it is difficult for the fluorescence imaging method and conventional FCS to fully reflect the real state of protein phase separation in the solution due to the low spatio-temporal resolution of the conventional fluorescence imaging method and the limited detection area of FCS. Here, we proposed a novel method for studying the protein phase separation process by objective scanning-based fluorescence cross-correlation spectroscopy (Scan-FCCS). In this study, CRDBP proteins were used as a model and respectively fused with fluorescent proteins (EGFP and mCherry). We first compared conventional FCS and Scan-FCS methods for characterizing the CRDBP protein phase separation behaviors and found that the reproducibility of Scan-FCS is significantly improved by the scanning mode. We studied the self-fusion process of mCherry-CRDBP and EGFP-CRDBP and observed that the phase change concentration of CRDBP was 25 nM and the fusion of mCherry-CRDBP and EGFP-CRDBP at 500 nM was completed within 70 min. We studied the effects of salt concentration and molecular crowding agents on the phase separation of CRDBP and found that salt can prevent the self-fusion of CRDBP and molecular crowding agents can improve the self-fusion of CRDBP. Furthermore, we found the recruitment behavior of CRDBP to β-catenin proteins and studied their recruitment dynamics. Compared to conventional FCS, Scan-FCCS can significantly improve the reproducibility of measurements due to the dramatic increase of detection zone, and more importantly, this method can provide information about self-fusion and recruitment dynamics in protein phase separation.
Collapse
Affiliation(s)
- Jian Liu
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Wenxin Yu
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Chaoqing Dong
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Xiangyi Huang
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| | - Jicun Ren
- School of Chemistry & Chemical Engineering, State Key Laboratory of Metal Matrix Composites, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai, 200240, P. R. China
| |
Collapse
|
15
|
Park J, Kim JJ, Ryu JK. Mechanism of phase condensation for chromosome architecture and function. Exp Mol Med 2024; 56:809-819. [PMID: 38658703 PMCID: PMC11059216 DOI: 10.1038/s12276-024-01226-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/23/2024] [Accepted: 02/28/2024] [Indexed: 04/26/2024] Open
Abstract
Chromosomal phase separation is involved in a broad spectrum of chromosome organization and functional processes. Nonetheless, the intricacy of this process has left its molecular mechanism unclear. Here, we introduce the principles governing phase separation and its connections to physiological roles in this context. Our primary focus is contrasting two phase separation mechanisms: self-association-induced phase separation (SIPS) and bridging-induced phase separation (BIPS). We provide a comprehensive discussion of the distinct features characterizing these mechanisms and offer illustrative examples that suggest their broad applicability. With a detailed understanding of these mechanisms, we explore their associations with nucleosomes and chromosomal biological functions. This comprehensive review contributes to the exploration of uncharted territory in the intricate interplay between chromosome architecture and function.
Collapse
Affiliation(s)
- Jeongveen Park
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, South Korea
| | - Jeong-Jun Kim
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, South Korea
| | - Je-Kyung Ryu
- Department of Physics and Astronomy, Seoul National University, Seoul, 08826, South Korea.
- Institute of Applied Physics of Seoul National University, Seoul, 08826, South Korea.
- Institute of Molecular Biology and Genetics, Seoul National University, Seoul, 08826, South Korea.
- Department of Biological Sciences, Seoul National University, Seoul, 08826, South Korea.
- Interdisciplinary Program in Neuroscience, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
16
|
Zou T, Zhang K, Zhang J, Liu S, Liang J, Liu J, Zhu J, Liang Y, Wang S, Deng Q, Liu H, Jin J, Li P, Li S. DWARF AND LOW-TILLERING 2 functions in brassinosteroid signaling and controls plant architecture and grain size in rice. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2023; 116:1766-1783. [PMID: 37699038 DOI: 10.1111/tpj.16464] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/22/2023] [Accepted: 09/01/2023] [Indexed: 09/14/2023]
Abstract
Brassinosteroids (BRs) are a class of steroid phytohormones that control various aspects of plant growth and development. Several transcriptional factors (TFs) have been suggested to play roles in BR signaling. However, their possible relationship remains largely unknown. Here, we identified a rice mutant dwarf and low-tillering 2 (dlt2) with altered plant architecture, increased grain width, and reduced BR sensitivity. DLT2 encodes a GIBBERELLIN INSENSITIVE (GAI)-REPRESSOR OF GAI (RGA)-SCARECROW (GRAS) TF that is mainly localized in the nucleus and has weak transcriptional activity. Our further genetic and biochemical analyses indicate that DLT2 interacts with two BR-signaling-related TFs, DLT and BRASSINAZOLE-RESISTANT 1, and probably modulates their transcriptional activity. These findings imply that DLT2 is implicated in a potentially transcriptional complex that mediates BR signaling and rice development and suggests that DLT2 could be a potential target for improving rice architecture and grain morphology. This work also sheds light on the role of rice GRAS members in regulating numerous developmental processes.
Collapse
Affiliation(s)
- Ting Zou
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Kaixuan Zhang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jing Zhang
- Technical Center of Chengdu Customs, Chengdu, 610041, Sichuan, China
| | - Sijing Liu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jing Liang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jiaxu Liu
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jun Zhu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Yueyang Liang
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shiquan Wang
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Qiming Deng
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Huainian Liu
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Jinghua Jin
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Ping Li
- Rice Research Institute, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| | - Shuangcheng Li
- State Key Laboratory of Crop Gene Exploration and Utilization in Southwest China, Sichuan Agricultural University, Chengdu, 611130, Sichuan, China
| |
Collapse
|
17
|
Abstract
The nucleus of higher eukaryotes contains a number of structures that concentrate specific biomolecules and play distinct roles in nuclear metabolism. In recent years, the molecular mechanisms controlling their formation have been intensively studied. In this brief review, I focus on coilin and Cajal bodies. Coilin is a key scaffolding protein of Cajal bodies that is evolutionarily conserved in metazoans. Cajal bodies are thought to be one of the archetypal nuclear structures involved in the metabolism of several short non-coding nuclear RNAs. Yet surprisingly little is known about the structure and function of coilin, and a comprehensive model to explain the origin of Cajal bodies is also lacking. Here, I summarize recent results on Cajal bodies and coilin and discuss them in the context of the last three decades of research in this field.
Collapse
Affiliation(s)
- David Staněk
- Laboratory of RNA Biology, Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
18
|
Belli V, Maiello D, Di Lorenzo C, Furia M, Vicidomini R, Turano M. New Insights into Dyskerin-CypA Interaction: Implications for X-Linked Dyskeratosis Congenita and Beyond. Genes (Basel) 2023; 14:1766. [PMID: 37761906 PMCID: PMC10531313 DOI: 10.3390/genes14091766] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/27/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
The highly conserved family of cyclophilins comprises multifunctional chaperones that interact with proteins and RNAs, facilitating the dynamic assembly of multimolecular complexes involved in various cellular processes. Cyclophilin A (CypA), the predominant member of this family, exhibits peptidyl-prolyl cis-trans isomerase activity. This enzymatic function aids with the folding and activation of protein structures and often serves as a molecular regulatory switch for large multimolecular complexes, ensuring appropriate inter- and intra-molecular interactions. Here, we investigated the involvement of CypA in the nucleus, where it plays a crucial role in supporting the assembly and trafficking of heterogeneous ribonucleoproteins (RNPs). We reveal that CypA is enriched in the nucleolus, where it colocalizes with the pseudouridine synthase dyskerin, the catalytic component of the multifunctional H/ACA RNPs involved in the modification of cellular RNAs and telomere stability. We show that dyskerin, whose mutations cause the X-linked dyskeratosis (X-DC) and the Hoyeraal-Hreidarsson congenital ribosomopathies, can directly interact with CypA. These findings, together with the remark that substitution of four dyskerin prolines are known to cause X-DC pathogenic mutations, lead us to indicate this protein as a CypA client. The data presented here suggest that this chaperone can modulate dyskerin activity influencing all its partecipated RNPs.
Collapse
Affiliation(s)
- Valentina Belli
- Istituto Nazionale Tumori—IRCSS—Fondazione G. Pascale, 80131 Naples, Italy;
| | - Daniela Maiello
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (D.M.); (C.D.L.); (M.F.)
| | - Concetta Di Lorenzo
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (D.M.); (C.D.L.); (M.F.)
- Department of Advanced Medical and Surgical Sciences, University of Campania “Luigi Vanvitelli”, 80138 Naples, Italy
| | - Maria Furia
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (D.M.); (C.D.L.); (M.F.)
| | - Rosario Vicidomini
- Section on Cellular Communication, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD), National Institutes of Health (NIH), Bethesda, MD 20892, USA
| | - Mimmo Turano
- Department of Biology, University of Naples Federico II, 80126 Naples, Italy; (D.M.); (C.D.L.); (M.F.)
| |
Collapse
|
19
|
Jung KH, Sun J, Hsiung CH, Lance Lian X, Liu Y, Zhang X. Nuclear bodies protect phase separated proteins from degradation in stressed proteome. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.19.537522. [PMID: 37131610 PMCID: PMC10153235 DOI: 10.1101/2023.04.19.537522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
RNA-binding proteins (RBPs) containing intrinsically disordered domains undergo liquid-liquid phase separation to form nuclear bodies under stress conditions. This process is also connected to the misfolding and aggregation of RBPs, which are associated with a series of neurodegenerative diseases. However, it remains elusive how folding states of RBPs changes upon the formation and maturation of nuclear bodies. Here, we describe SNAP-tag based imaging methods to visualize the folding states of RBPs in live cells via time-resolved quantitative microscopic analyses of their micropolarity and microviscosity. Using these imaging methods in conjunction with immunofluorescence imaging, we demonstrate that RBPs, represented by TDP-43, initially enters the PML nuclear bodies in its native state upon transient proteostasis stress, albeit it begins to misfolded during prolonged stress. Furthermore, we show that heat shock protein 70 co-enters the PML nuclear bodies to prevent the degradation of TDP-43 from the proteotoxic stress, thus revealing a previously unappreciated protective role of the PML nuclear bodies in the prevention of stress-induced degradation of TDP-43. In summary, our imaging methods described in the manuscript, for the first time, reveal the folding states of RBPs, which were previously challenging to study with conventional methods in nuclear bodies of live cells. This study uncovers the mechanistic correlations between the folding states of a protein and functions of nuclear bodies, in particular PML bodies. We envision that the imaging methods can be generally applied to elucidating the structural aspects of other proteins that exhibit granular structures under biological stimulus.
Collapse
Affiliation(s)
- Kwan Ho Jung
- Department of Chemistry, Department of Biochemistry and Molecular Biology, The Huck Institute of Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, 16802, United States
| | - Jiarui Sun
- Department of Chemistry, Department of Biochemistry and Molecular Biology, The Huck Institute of Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, 16802, United States
| | - Chia-Heng Hsiung
- Department of Chemistry, Department of Biochemistry and Molecular Biology, The Huck Institute of Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, 16802, United States
- Present address: Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China; Westlake Laboratory of Life Sciences and Biomedicine; 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Department of Biomedical Engineering, The Huck Institute of Life Sciences, Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, 16802, United States
| | - Xiaojun Lance Lian
- Department of Biomedical Engineering, The Huck Institute of Life Sciences, Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, 16802, United States
| | - Yu Liu
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning, 116023, China
| | - Xin Zhang
- Department of Chemistry, Department of Biochemistry and Molecular Biology, The Huck Institute of Life Sciences, The Pennsylvania State University, University Park, Pennsylvania, 16802, United States
- Present address: Department of Chemistry, School of Science and Research Center for Industries of the Future, Westlake University, 600 Dunyu Road, Hangzhou 310030, Zhejiang Province, China; Westlake Laboratory of Life Sciences and Biomedicine; 18 Shilongshan Road, Hangzhou 310024, Zhejiang Province, China
- Department of Biomedical Engineering, The Huck Institute of Life Sciences, Department of Biology, The Pennsylvania State University, University Park, Pennsylvania, 16802, United States
| |
Collapse
|
20
|
Li X, An Z, Zhang W, Li F. Phase Separation: Direct and Indirect Driving Force for High-Order Chromatin Organization. Genes (Basel) 2023; 14:499. [PMID: 36833426 PMCID: PMC9956262 DOI: 10.3390/genes14020499] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 02/09/2023] [Accepted: 02/14/2023] [Indexed: 02/18/2023] Open
Abstract
The multi-level spatial chromatin organization in the nucleus is closely related to chromatin activity. The mechanism of chromatin organization and remodeling attract much attention. Phase separation describes the biomolecular condensation which is the basis for membraneless compartments in cells. Recent research shows that phase separation is a key aspect to drive high-order chromatin structure and remodeling. In addition, chromatin functional compartmentalization in the nucleus which is formed by phase separation also plays an important role in overall chromatin structure. In this review, we summarized the latest work about the role of phase separation in spatial chromatin organization, focusing on direct and indirect effects of phase separation on 3D chromatin organization and its impact on transcription regulation.
Collapse
Affiliation(s)
- Xiaoli Li
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, China
- Department of Cell Biology and Genetics, Core Facility of Developmental Biology, Chongqing Medical University, Chongqing 400016, China
| | - Ziyang An
- State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510275, China
| | - Wenqing Zhang
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, China
| | - Feifei Li
- Division of Cell, Developmental and Integrative Biology, School of Medicine, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
21
|
Pourpre R, Lakisic G, Desgranges E, Cossart P, Pagliuso A, Bierne H. A bacterial virulence factor interacts with the splicing factor RBM5 and stimulates formation of nuclear RBM5 granules. Sci Rep 2022; 12:21961. [PMID: 36535993 PMCID: PMC9763339 DOI: 10.1038/s41598-022-26037-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 12/08/2022] [Indexed: 12/23/2022] Open
Abstract
L. monocytogenes causes listeriosis, a foodborne disease that is particularly dangerous for immunocompromised individuals and fetuses. Several virulence factors of this bacterial pathogen belong to a family of leucine-rich repeat (LRR)-containing proteins called internalins. Among these, InlP is known for its role in placental infection. We report here a function of InlP in mammalian cell nucleus organization. We demonstrate that bacteria do not produce InlP under in vitro culture conditions. When ectopically expressed in human cells, InlP translocates into the nucleus and changes the morphology of nuclear speckles, which are membrane-less organelles storing splicing factors. Using yeast two-hybrid screen, immunoprecipitation and pull-down experiments, we identify the tumor suppressor and splicing factor RBM5 as a major nuclear target of InlP. InlP inhibits RBM5-induced cell death and stimulate the formation of RBM5-induced nuclear granules, where the SC35 speckle protein redistributes. Taken together, these results suggest that InlP acts as a nucleomodulin controlling compartmentalization and function of RBM5 in the nucleus and that L. monocytogenes has developed a mechanism to target the host cell splicing machinery.
Collapse
Affiliation(s)
- Renaud Pourpre
- grid.462293.80000 0004 0522 0627Université Paris-Saclay, INRAE, Micalis Institute, EpiMic Lab, Jouy-en-Josas, AgroParisTech France
| | - Goran Lakisic
- grid.462293.80000 0004 0522 0627Université Paris-Saclay, INRAE, Micalis Institute, EpiMic Lab, Jouy-en-Josas, AgroParisTech France
| | - Emma Desgranges
- grid.462293.80000 0004 0522 0627Université Paris-Saclay, INRAE, Micalis Institute, EpiMic Lab, Jouy-en-Josas, AgroParisTech France
| | - Pascale Cossart
- grid.428999.70000 0001 2353 6535Institut Pasteur, Paris, France
| | - Alessandro Pagliuso
- grid.462293.80000 0004 0522 0627Université Paris-Saclay, INRAE, Micalis Institute, EpiMic Lab, Jouy-en-Josas, AgroParisTech France
| | - Hélène Bierne
- grid.462293.80000 0004 0522 0627Université Paris-Saclay, INRAE, Micalis Institute, EpiMic Lab, Jouy-en-Josas, AgroParisTech France
| |
Collapse
|
22
|
Randall RS, Jourdain C, Nowicka A, Kaduchová K, Kubová M, Ayoub MA, Schubert V, Tatout C, Colas I, Kalyanikrishna, Desset S, Mermet S, Boulaflous-Stevens A, Kubalová I, Mandáková T, Heckmann S, Lysak MA, Panatta M, Santoro R, Schubert D, Pecinka A, Routh D, Baroux C. Image analysis workflows to reveal the spatial organization of cell nuclei and chromosomes. Nucleus 2022; 13:277-299. [PMID: 36447428 PMCID: PMC9754023 DOI: 10.1080/19491034.2022.2144013] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
Nucleus, chromatin, and chromosome organization studies heavily rely on fluorescence microscopy imaging to elucidate the distribution and abundance of structural and regulatory components. Three-dimensional (3D) image stacks are a source of quantitative data on signal intensity level and distribution and on the type and shape of distribution patterns in space. Their analysis can lead to novel insights that are otherwise missed in qualitative-only analyses. Quantitative image analysis requires specific software and workflows for image rendering, processing, segmentation, setting measurement points and reference frames and exporting target data before further numerical processing and plotting. These tasks often call for the development of customized computational scripts and require an expertise that is not broadly available to the community of experimental biologists. Yet, the increasing accessibility of high- and super-resolution imaging methods fuels the demand for user-friendly image analysis workflows. Here, we provide a compendium of strategies developed by participants of a training school from the COST action INDEPTH to analyze the spatial distribution of nuclear and chromosomal signals from 3D image stacks, acquired by diffraction-limited confocal microscopy and super-resolution microscopy methods (SIM and STED). While the examples make use of one specific commercial software package, the workflows can easily be adapted to concurrent commercial and open-source software. The aim is to encourage biologists lacking custom-script-based expertise to venture into quantitative image analysis and to better exploit the discovery potential of their images.Abbreviations: 3D FISH: three-dimensional fluorescence in situ hybridization; 3D: three-dimensional; ASY1: ASYNAPTIC 1; CC: chromocenters; CO: Crossover; DAPI: 4',6-diamidino-2-phenylindole; DMC1: DNA MEIOTIC RECOMBINASE 1; DSB: Double-Strand Break; FISH: fluorescence in situ hybridization; GFP: GREEN FLUORESCENT PROTEIN; HEI10: HUMAN ENHANCER OF INVASION 10; NCO: Non-Crossover; NE: Nuclear Envelope; Oligo-FISH: oligonucleotide fluorescence in situ hybridization; RNPII: RNA Polymerase II; SC: Synaptonemal Complex; SIM: structured illumination microscopy; ZMM (ZIP: MSH4: MSH5 and MER3 proteins); ZYP1: ZIPPER-LIKE PROTEIN 1.
Collapse
Affiliation(s)
- Ricardo S Randall
- Department of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| | | | - Anna Nowicka
- Centre of the Region Haná for Biotechnological and Agricultural Research (CRH), Institute of Experimental Botany, v. v. i. (IEB), Olomouc, Czech Republic
| | - Kateřina Kaduchová
- Centre of the Region Haná for Biotechnological and Agricultural Research (CRH), Institute of Experimental Botany, v. v. i. (IEB), Olomouc, Czech Republic
| | - Michaela Kubová
- Central European Institute of Technology (CEITEC) and Department of Experimental Biology, Masaryk University, Brno, Czech Republic
| | - Mohammad A. Ayoub
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, D-06466Seeland, Germany
| | - Veit Schubert
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, D-06466Seeland, Germany
| | - Christophe Tatout
- Institut Génétique, Reproduction et Développement (GReD), Université Clermont Auvergne, CNRS, INSERM, 63001Clermont-Ferrand, France
| | - Isabelle Colas
- The James Hutton Institute, Errol Road, Invergowrie, DD2 5DA, Scotland UK
| | | | - Sophie Desset
- Institut Génétique, Reproduction et Développement (GReD), Université Clermont Auvergne, CNRS, INSERM, 63001Clermont-Ferrand, France
| | - Sarah Mermet
- Institut Génétique, Reproduction et Développement (GReD), Université Clermont Auvergne, CNRS, INSERM, 63001Clermont-Ferrand, France
| | - Aurélia Boulaflous-Stevens
- Institut Génétique, Reproduction et Développement (GReD), Université Clermont Auvergne, CNRS, INSERM, 63001Clermont-Ferrand, France
| | - Ivona Kubalová
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, D-06466Seeland, Germany
| | - Terezie Mandáková
- Central European Institute of Technology (CEITEC) and Department of Experimental Biology, Masaryk University, Brno, Czech Republic
| | - Stefan Heckmann
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, D-06466Seeland, Germany
| | - Martin A. Lysak
- Central European Institute of Technology (CEITEC) and National Centre for Biomolecular Research, Masaryk University, Brno, Czech Republic
| | - Martina Panatta
- Department of Molecular Mechanisms of Disease, DMMD, University of Zürich, Zürich, Switzerland
| | - Raffaella Santoro
- Department of Molecular Mechanisms of Disease, DMMD, University of Zürich, Zürich, Switzerland
| | | | - Ales Pecinka
- Centre of the Region Haná for Biotechnological and Agricultural Research (CRH), Institute of Experimental Botany, v. v. i. (IEB), Olomouc, Czech Republic
| | - Devin Routh
- Service and Support for Science IT (S3IT), Universität Zürich, Zürich, Switzerland
| | - Célia Baroux
- Department of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland,CONTACT Célia Baroux Department of Plant and Microbial Biology, Zürich-Basel Plant Science Center, University of Zürich, Zürich, Switzerland
| |
Collapse
|
23
|
Vester K, Preußner M, Holton N, Feng S, Schultz C, Heyd F, Wahl MC. Recruitment of a splicing factor to the nuclear lamina for its inactivation. Commun Biol 2022; 5:736. [PMID: 35869234 PMCID: PMC9307855 DOI: 10.1038/s42003-022-03689-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Accepted: 07/08/2022] [Indexed: 11/10/2022] Open
Abstract
Precursor messenger RNA splicing is a highly regulated process, mediated by a complex RNA-protein machinery, the spliceosome, that encompasses several hundred proteins and five small nuclear RNAs in humans. Emerging evidence suggests that the spatial organization of splicing factors and their spatio-temporal dynamics participate in the regulation of splicing. So far, methods to manipulate the spatial distribution of splicing factors in a temporally defined manner in living cells are missing. Here, we describe such an approach that takes advantage of a reversible chemical dimerizer, and outline the requirements for efficient, reversible re-localization of splicing factors to selected sub-nuclear compartments. In a proof-of-principle study, the partial re-localization of the PRPF38A protein to the nuclear lamina in HEK293T cells induced a moderate increase in intron retention. Our approach allows fast and reversible re-localization of splicing factors, has few side effects and can be applied to many splicing factors by fusion of a protein tag through genome engineering. Apart from the systematic analysis of the spatio-temporal aspects of splicing regulation, the approach has a large potential for the fast induction and reversal of splicing switches and can reveal mechanisms of splicing regulation in native nuclear environments. Through the use of a reversible chemical dimerizer, the splicing factor PRPF38A is re-localized to the nuclear lamina, paving the way for a systematic analysis of spatio-temporal splicing regulation.
Collapse
|
24
|
Ma X, Li P, Ge L. Targeting of biomolecular condensates to the autophagy pathway. Trends Cell Biol 2022; 33:505-516. [PMID: 36150962 DOI: 10.1016/j.tcb.2022.08.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/29/2022] [Accepted: 08/29/2022] [Indexed: 10/14/2022]
Abstract
Biomolecular condensates are membraneless compartments formed by liquid-liquid phase separation. They can phase transit into gel-like and solid states. The amount and state of biomolecular condensates must be tightly regulated to maintain normal cellular function. Autophagy targets biomolecular condensates to the lysosome for degradation or other purposes, which we term biocondensophagy. In biocondensophagy, autophagy receptors recognize biomolecular condensates and target them to the autophagosome, the vesicle carrier of autophagy. Multiple types of autophagy receptors have been identified and they are specifically involved in targeting biomolecular condensates with different phase transition states. The receptors also organize the phase transition of biomolecular condensate to facilitate biocondensophagy. Here, we briefly discuss the latest discoveries regarding how biomolecular condensates are recognized by autophagy receptors.
Collapse
Affiliation(s)
- Xinyu Ma
- State Key Laboratory of Membrane Biology, Beijing, 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China; School of Life Sciences, Tsinghua University, Beijing, 100084, China
| | - Pilong Li
- Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China; School of Life Sciences, Tsinghua University, Beijing, 100084, China; Beijing Advanced Innovation Center for Structural Biology and Frontier Research Center for Biological Structure, Beijing, 100084, China
| | - Liang Ge
- State Key Laboratory of Membrane Biology, Beijing, 100084, China; Tsinghua-Peking Center for Life Sciences, Beijing, 100084, China; School of Life Sciences, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
25
|
Hobani YH, Almars AI, Alelwani W, Toraih EA, Nemr NA, Shaalan AAM, Fawzy MS, Attallah SM. Genetic Variation in DEAD-Box Helicase 20 as a Putative Marker of Recurrence in Propensity-Matched Colon Cancer Patients. Genes (Basel) 2022; 13:1404. [PMID: 36011315 PMCID: PMC9407271 DOI: 10.3390/genes13081404] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 07/21/2022] [Accepted: 08/02/2022] [Indexed: 12/04/2022] Open
Abstract
Variants of the DEAD-Box Helicase 20 (DDX20), one of the microRNAs (miRNAs) machinery genes, can modulate miRNA/target gene expressions and, hence, influence cancer susceptibility and prognosis. Here, we aimed to unravel the association of DDX20 rs197412 T/C variant with colon cancer risk and/or prognosis in paired samples of 122 colon cancer and non-cancer tissue specimens by TaqMan allelic discrimination analysis. Structural/functional bioinformatic analyses were carried out, followed by a meta-analysis. We found that the T allele was more frequent in cancer tissues compared to control tissues (60.2% vs. 35.7%, p < 0.001). Furthermore, the T variant was highly frequent in primary tumors with evidence of recurrence (73% vs. 47.5%, p < 0.001). Genetic association models, adjusted by age and sex, revealed that the T allele was associated with a higher risk of developing colon cancer under heterozygote (T/C vs. C/C: OR = 2.35, 95%CI = 1.25−4.44, p < 0.001), homozygote (T/T vs. C/C: OR = 7.6, 95%CI = 3.5−16.8, p < 0.001), dominant (T/C-T/T vs. C/C: OR = 3.4, 95%CI = 1.87−8.5, p < 0.001), and recessive (T/T vs. C/C-T/C: OR = 4.42, 95%CI = 2.29−8.54, p = 0.001) models. Kaplan−Meier survival curves showed the shift in the C > T allele to be associated with poor disease-free survival. After adjusting covariates using a multivariate cox regression model, patients harboring C > T somatic mutation were 3.5 times more likely to develop a recurrence (p < 0.001). A meta-analysis of nine studies (including ours) showed a higher risk of CRC (81%) in subjects harboring the T/T genotype than in T/C + C/C genotypes, supporting the potential clinical utility of the specified study variant as a biomarker for risk stratification in CRC cases. However, results were not significant in non-colorectal cancers. In conclusion, the DDX20 rs197412 variant is associated with increased colon cancer risk and a higher likelihood of recurrence in the study population.
Collapse
Affiliation(s)
- Yahya H. Hobani
- Medical Laboratory Technology, College of Applied Medical Sciences, Jazan University, Jazan 82911, Saudi Arabia
| | - Amany I. Almars
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah 21589, Saudi Arabia
| | - Walla Alelwani
- Department of Biochemistry, College of Science, University of Jeddah, Jeddah 80203, Saudi Arabia
| | - Eman A. Toraih
- Division of Endocrine and Oncologic Surgery, Department of Surgery, Tulane University School of Medicine, New Orleans, LA 70112, USA
- Genetics Unit, Department of Histology and Cell Biology, Suez Canal University, Ismailia 41522, Egypt
| | - Nader A. Nemr
- Endemic and Infectious Diseases Department, Suez Canal University, Ismailia 41522, Egypt
| | - Aly A. M. Shaalan
- Department of Anatomy, Faculty of Medicine, Jazan University, Jazan 45142, Saudi Arabia
- Department of Histology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Manal S. Fawzy
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Suez Canal University, Ismailia 41522, Egypt
- Department of Biochemistry, Faculty of Medicine, Northern Border University, Arar 1321, Saudi Arabia
| | - Samy M. Attallah
- Department of Clinical Pathology, Faculty of Medicine, Mansoura University, Mansoura 35516, Egypt
- Clinical Pathology Department, King Fahad Armed Forces Hospital, Jeddah 23311, Saudi Arabia
| |
Collapse
|
26
|
Hasenson SE, Alkalay E, Atrash MK, Boocholez A, Gershbaum J, Hochberg-Laufer H, Shav-Tal Y. The Association of MEG3 lncRNA with Nuclear Speckles in Living Cells. Cells 2022; 11:1942. [PMID: 35741072 PMCID: PMC9221825 DOI: 10.3390/cells11121942] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/12/2022] [Accepted: 06/13/2022] [Indexed: 02/04/2023] Open
Abstract
Nuclear speckles are nuclear bodies containing RNA-binding proteins as well as RNAs including long non-coding RNAs (lncRNAs). Maternally expressed gene 3 (MEG3) is a nuclear retained lncRNA found to associate with nuclear speckles. To understand the association dynamics of MEG3 lncRNA with nuclear speckles in living cells, we generated a fluorescently tagged MEG3 transcript that could be detected in real time. Under regular conditions, transient association of MEG3 with nuclear speckles was observed, including a nucleoplasmic fraction. Transcription or splicing inactivation conditions, known to affect nuclear speckle structure, showed prominent and increased association of MEG3 lncRNA with the nuclear speckles, specifically forming a ring-like structure around the nuclear speckles. This contrasted with metastasis-associated lung adenocarcinoma (MALAT1) lncRNA that is normally highly associated with nuclear speckles, which was released and dispersed in the nucleoplasm. Under normal conditions, MEG3 dynamically associated with the periphery of the nuclear speckles, but under transcription or splicing inhibition, MEG3 could also enter the center of the nuclear speckle. Altogether, using live-cell imaging approaches, we find that MEG3 lncRNA is a transient resident of nuclear speckles and that its association with this nuclear body is modulated by the levels of transcription and splicing activities in the cell.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Yaron Shav-Tal
- The Mina & Everard Goodman Faculty of Life Sciences and The Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, Ramat Gan 5290002, Israel; (S.E.H.); (E.A.); (M.K.A.); (A.B.); (J.G.); (H.H.-L.)
| |
Collapse
|
27
|
Gulyurtlu S, Magon MS, Guest P, Papavasiliou PP, Morrison KD, Prescott AR, Sleeman JE. Condensation properties of stress granules and processing bodies are compromised in Myotonic Dystrophy Type 1. Dis Model Mech 2022; 15:276177. [PMID: 35642886 PMCID: PMC9366894 DOI: 10.1242/dmm.049294] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 05/23/2022] [Indexed: 11/26/2022] Open
Abstract
RNA regulation in mammalian cells requires complex physical compartmentalisation, using structures thought to be formed by liquid-liquid phase separation. Disruption of these structures is implicated in numerous degenerative diseases. Myotonic dystrophy type 1 (DM1) is a multi-systemic trinucleotide repeat disorder resulting from an expansion of nucleotides CTG (CTGexp) in the DNA encoding DM1 protein kinase (DMPK). The cellular hallmark of DM1 is the formation of nuclear foci that contain expanded DMPK RNA (CUGexp) (with thymine instead of uracil). We report here the deregulation of stress granules (SGs) and processing bodies (P-bodies), two cytoplasmic structures key for mRNA regulation, in cell culture models of DM1. Alterations to the rates of formation and dispersal of SGs suggest an altered ability of cells to respond to stress associated with DM1, while changes to the structure and dynamics of SGs and P-bodies suggest that a widespread alteration to the biophysical properties of cellular structures is a consequence of the presence of CUGexp RNA. Summary: Validation of an inducible model of myotonic dystrophy type 1 that shows altered cellular stress responses. These involve phase-separated cellular structures also implicated in other degenerative conditions.
Collapse
Affiliation(s)
- Selma Gulyurtlu
- Biomolecular Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, UK
| | - Monika S Magon
- Biomolecular Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, UK
| | - Patrick Guest
- Biomolecular Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, UK
| | - Panagiotis P Papavasiliou
- Biomolecular Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, UK
| | - Kim D Morrison
- Biomolecular Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, UK
| | - Alan R Prescott
- School of Life Science, University of Dundee, Dundee, DD1 5EH, UK
| | - Judith E Sleeman
- Biomolecular Sciences Research Complex, University of St Andrews, North Haugh, St Andrews, Fife, KY16 9ST, UK
| |
Collapse
|
28
|
Systematic mapping of nuclear domain-associated transcripts reveals speckles and lamina as hubs of functionally distinct retained introns. Mol Cell 2022; 82:1035-1052.e9. [PMID: 35182477 DOI: 10.1016/j.molcel.2021.12.010] [Citation(s) in RCA: 48] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 12/10/2021] [Accepted: 12/11/2021] [Indexed: 12/22/2022]
Abstract
The nucleus is highly compartmentalized through the formation of distinct classes of membraneless domains. However, the composition and function of many of these structures are not well understood. Using APEX2-mediated proximity labeling and RNA sequencing, we surveyed human transcripts associated with nuclear speckles, several additional domains, and the lamina. Remarkably, speckles and lamina are associated with distinct classes of retained introns enriched in genes that function in RNA processing, translation, and the cell cycle, among other processes. In contrast to the lamina-proximal introns, retained introns associated with speckles are relatively short, GC-rich, and enriched for functional sites of RNA-binding proteins that are concentrated in these domains. They are also highly differentially regulated across diverse cellular contexts, including the cell cycle. Thus, our study provides a resource of nuclear domain-associated transcripts and further reveals speckles and lamina as hubs of distinct populations of retained introns linked to gene regulation and cell cycle progression.
Collapse
|
29
|
van Lente JJ, Lindhoud S. Extraction of Lysozyme from Chicken Albumen Using Polyelectrolyte Complexes. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2105147. [PMID: 34877780 DOI: 10.1002/smll.202105147] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 10/18/2021] [Indexed: 06/13/2023]
Abstract
Cells use droplet-like membrane-less organelles (MLOs) to compartmentalize and selectively take-up molecules, such as proteins, from their internal environment. These membraneless organelles can be mimicked by polyelectrolyte complexes (PECs) consisting of oppositely charged polyelectrolytes. Previous research has demonstrated that protein uptake strongly depends on the PEC composition. This suggests that PECs can be used to selectively extract proteins from a multi-protein mixture. With this in mind, the partitioning of the protein lysozyme in four PEC systems consisting of different weak and strong polyelectrolyte combinations is investigated. All systems show similar trends in lysozyme partitioning as a function of the complex composition. The release of lysozyme from complexes at their optimal lysozyme uptake composition is investigated by increasing the salt concentration to 500 mm NaCl or lowering the pH from 7 to 4. Complexes of poly(allylamine hydrochloride) and poly(acrylic acid) have the best uptake and release properties. These are used for selective extraction of lysozyme from a hen-egg white protein matrix. The (back)-extracted lysozyme retains its enzymatic activity, showing the capability of PECs to function as extraction media for proteins.
Collapse
Affiliation(s)
- Jéré J van Lente
- Department of Molecules & Materials, Membrane Science & Technology cluster, Nanobiophysics Group and MESA+ Institute for Nanotechnology, University of Twente, Drienerlolaan 5, Enschede, 7522 NB, The Netherlands
| | - Saskia Lindhoud
- Department of Molecules & Materials nd MESA+ Institute for Nanotechnology, University of Twente, Drienerlolaan 5, Enschede, 7522 NB, The Netherlands
| |
Collapse
|
30
|
Guillemin A, Kumar A, Wencker M, Ricci EP. Shaping the Innate Immune Response Through Post-Transcriptional Regulation of Gene Expression Mediated by RNA-Binding Proteins. Front Immunol 2022; 12:796012. [PMID: 35087521 PMCID: PMC8787094 DOI: 10.3389/fimmu.2021.796012] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Accepted: 12/13/2021] [Indexed: 12/20/2022] Open
Abstract
Innate immunity is the frontline of defense against infections and tissue damage. It is a fast and semi-specific response involving a myriad of processes essential for protecting the organism. These reactions promote the clearance of danger by activating, among others, an inflammatory response, the complement cascade and by recruiting the adaptive immunity. Any disequilibrium in this functional balance can lead to either inflammation-mediated tissue damage or defense inefficiency. A dynamic and coordinated gene expression program lies at the heart of the innate immune response. This expression program varies depending on the cell-type and the specific danger signal encountered by the cell and involves multiple layers of regulation. While these are achieved mainly via transcriptional control of gene expression, numerous post-transcriptional regulatory pathways involving RNA-binding proteins (RBPs) and other effectors play a critical role in its fine-tuning. Alternative splicing, translational control and mRNA stability have been shown to be tightly regulated during the innate immune response and participate in modulating gene expression in a global or gene specific manner. More recently, microRNAs assisting RBPs and post-transcriptional modification of RNA bases are also emerging as essential players of the innate immune process. In this review, we highlight the numerous roles played by specific RNA-binding effectors in mediating post-transcriptional control of gene expression to shape innate immunity.
Collapse
Affiliation(s)
- Anissa Guillemin
- LBMC, Laboratoire de Biologie et Modelisation de la Cellule, Université de Lyon, ENS de Lyon, Universite Claude Bernard Lyon 1, CNRS, UMR 5239, INSERM, U1293, Lyon, France
| | - Anuj Kumar
- CRCL, Centre de Recherche en Cancérologie de Lyon, INSERM U1052, CNRS UMR 5286, Lyon, France
| | - Mélanie Wencker
- LBMC, Laboratoire de Biologie et Modelisation de la Cellule, Université de Lyon, ENS de Lyon, Universite Claude Bernard Lyon 1, CNRS, UMR 5239, INSERM, U1293, Lyon, France
- CIRI, Centre International de Recherche en Infectiologie, Université de Lyon, ENS de Lyon, CNRS, UMR 5308, INSERM, Lyon, France
| | - Emiliano P. Ricci
- LBMC, Laboratoire de Biologie et Modelisation de la Cellule, Université de Lyon, ENS de Lyon, Universite Claude Bernard Lyon 1, CNRS, UMR 5239, INSERM, U1293, Lyon, France
| |
Collapse
|
31
|
Batnasan E, Koivukoski S, Kärkkäinen M, Latonen L. Nuclear Organization in Response to Stress: A Special Focus on Nucleoli. Results Probl Cell Differ 2022; 70:469-494. [PMID: 36348119 DOI: 10.1007/978-3-031-06573-6_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
In this chapter, we discuss the nuclear organization and how it responds to different types of stress. A key component in these responses is molecular traffic between the different sub-nucleolar compartments, such as nucleoplasm, chromatin, nucleoli, and various speckle and body compartments. This allows specific repair and response activities in locations where they normally are not active and serve to halt sensitive functions until the stress insult passes and inflicted damage has been repaired. We focus on mammalian cells and their nuclear organization, especially describing the central role of the nucleolus in nuclear stress responses. We describe events after multiple stress types, including DNA damage, various drugs, and toxic compounds, and discuss the involvement of macromolecular traffic between dynamic, phase-separated nuclear organelles and foci. We delineate the key proteins and non-coding RNA in the formation of stress-responsive, non-membranous nuclear organelles, many of which are relevant to the formation of and utilization in cancer treatment.
Collapse
Affiliation(s)
- Enkhzaya Batnasan
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Sonja Koivukoski
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Minttu Kärkkäinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Leena Latonen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland.
- Foundation for the Finnish Cancer Institute, Helsinki, Finland.
| |
Collapse
|
32
|
Bridger JM, Pereira RT, Pina C, Tosi S, Lewis A. Alterations to Genome Organisation in Stem Cells, Their Differentiation and Associated Diseases. Results Probl Cell Differ 2022; 70:71-102. [PMID: 36348105 DOI: 10.1007/978-3-031-06573-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
The organisation of the genome in its home, the cell nucleus, is reliant on a number of different aspects to establish, maintain and alter its functional non-random positioning. The genome is dispersed throughout a cell nucleus in specific chromosome territories which are further divided into topologically associated domains (TADs), where regions of the genome from different and the same chromosomes come together. This organisation is both controlled by DNA and chromatin epigenetic modification and the association of the genome with nuclear structures such as the nuclear lamina, the nucleolus and nuclear bodies and speckles. Indeed, sequences that are associated with the first two structures mentioned are termed lamina-associated domains (LADs) and nucleolar-associated domains (NADs), respectively. The modifications and nuclear structures that regulate genome function are altered through a cell's life from stem cell to differentiated cell through to reversible quiescence and irreversible senescence, and hence impacting on genome organisation, altering it to silence specific genes and permit others to be expressed in a controlled way in different cell types and cell cycle statuses. The structures and enzymes and thus the organisation of the genome can also be deleteriously affected, leading to disease and/or premature ageing.
Collapse
Affiliation(s)
- Joanna M Bridger
- Division of Biosciences, Department of Life Sciences, Centre for Genome Engineering and Maintenance (cenGEM), College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK.
| | - Rita Torres Pereira
- Division of Biosciences, Department of Life Sciences, Centre for Genome Engineering and Maintenance (cenGEM), College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK
| | - Cristina Pina
- Division of Biosciences, Department of Life Sciences, Centre for Genome Engineering and Maintenance (cenGEM), College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK
| | - Sabrina Tosi
- Division of Biosciences, Department of Life Sciences, Centre for Genome Engineering and Maintenance (cenGEM), College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK
| | - Annabelle Lewis
- Division of Biosciences, Department of Life Sciences, Centre for Genome Engineering and Maintenance (cenGEM), College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge, UK
| |
Collapse
|
33
|
Pluripotency transcription factors at the focus: the phase separation paradigm in stem cells. Biochem Soc Trans 2021; 49:2871-2878. [PMID: 34812855 DOI: 10.1042/bst20210856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 12/13/2022]
Abstract
The transcription factors (TFs) OCT4, SOX2 and NANOG are key players of the gene regulatory network of pluripotent stem cells. Evidence accumulated in recent years shows that even small imbalances in the expression levels or relative concentrations of these TFs affect both, the maintenance of pluripotency and cell fate decisions. In addition, many components of the transcriptional machinery including RNA polymerases, cofactors and TFs such as those required for pluripotency, do not distribute homogeneously in the nucleus but concentrate in multiple foci influencing the delivery of these molecules to their DNA-targets. How cells control strict levels of available pluripotency TFs in this heterogeneous space and the biological role of these foci remain elusive. In recent years, a wealth of evidence led to propose that many of the nuclear compartments are formed through a liquid-liquid phase separation process. This new paradigm early penetrated the stem cells field since many key players of the pluripotency circuitry seem to phase-separate. Overall, the formation of liquid compartments may modulate the kinetics of biochemical reactions and consequently regulate many nuclear processes. Here, we review the state-of-the-art knowledge of compartmentalization in the cell nucleus and the relevance of this process for transcriptional regulation, particularly in pluripotent stem cells. We also highlight the recent advances and new ideas in the field showing how compartmentalization may affect pluripotency preservation and cell fate decisions.
Collapse
|
34
|
Xu X, Zheng C, Lu D, Song CP, Zhang L. Phase separation in plants: New insights into cellular compartmentalization. JOURNAL OF INTEGRATIVE PLANT BIOLOGY 2021; 63:1835-1855. [PMID: 34314106 DOI: 10.1111/jipb.13152] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2021] [Accepted: 07/16/2021] [Indexed: 05/16/2023]
Abstract
A fundamental challenge for cells is how to coordinate various biochemical reactions in space and time. To achieve spatiotemporal control, cells have developed organelles that are surrounded by lipid bilayer membranes. Further, membraneless compartmentalization, a process induced by dynamic physical association of biomolecules through phase transition offers another efficient mechanism for intracellular organization. While our understanding of phase separation was predominantly dependent on yeast and animal models, recent findings have provided compelling evidence for emerging roles of phase separation in plants. In this review, we first provide an overview of the current knowledge of phase separation, including its definition, biophysical principles, molecular features and regulatory mechanisms. Then we summarize plant-specific phase separation phenomena and describe their functions in plant biological processes in great detail. Moreover, we propose that phase separation is an evolutionarily conserved and efficient mechanism for cellular compartmentalization which allows for distinct metabolic processes and signaling pathways, and is especially beneficial for the sessile lifestyle of plants to quickly and efficiently respond to the changing environment.
Collapse
Affiliation(s)
- Xiumei Xu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Canhui Zheng
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Dandan Lu
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Chun-Peng Song
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| | - Lixin Zhang
- State Key Laboratory of Crop Stress Adaptation and Improvement, School of Life Sciences, Henan University, Kaifeng, 475004, China
| |
Collapse
|
35
|
Mannen T, Goto M, Yoshizawa T, Yamashita A, Hirose T, Hayano T. Distinct RNA polymerase transcripts direct the assembly of phase-separated DBC1 nuclear bodies in different cell lines. Mol Biol Cell 2021; 32:ar33. [PMID: 34495685 PMCID: PMC8693952 DOI: 10.1091/mbc.e21-02-0081] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
The mammalian cell nucleus is a highly organized organelle that contains membrane-less structures referred to as nuclear bodies (NBs). Some NBs carry specific RNA types that play architectural roles in their formation. Here, we show two types of RNase-sensitive DBC1-containing NBs, DBC1 nuclear body (DNB) in HCT116 cells and Sam68 nuclear body (SNB) in HeLa cells, that exhibit phase-separated features and are constructed using RNA polymerase I or II transcripts in a cell type–specific manner. We identified additional protein components present in DNB by immunoprecipitation–mass spectrometry, some of which (DBC1 and heterogeneous nuclear ribonucleoprotein L [HNRNPL]) are required for DNB formation. The rescue experiment using the truncated HNRNPL mutants revealed that two RNA-binding domains and intrinsically disordered regions of HNRNPL play significant roles in DNB formation. All these domains of HNRNPL promote in vitro droplet formation, suggesting the need for multivalent interactions between HNRNPL and RNA as well as proteins in DNB formation.
Collapse
Affiliation(s)
- Taro Mannen
- College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Masato Goto
- College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Takuya Yoshizawa
- College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| | - Akio Yamashita
- Graduate School of Medicine, University of the Ryukyus, Nishihara-cho 903-0215, Japan
| | - Tetsuro Hirose
- Graduate School of Frontier Biosciences, Osaka University, Suita 565-0871, Japan
| | - Toshiya Hayano
- College of Life Sciences, Ritsumeikan University, Kusatsu 525-8577, Japan
| |
Collapse
|
36
|
Hansen JC, Maeshima K, Hendzel MJ. The solid and liquid states of chromatin. Epigenetics Chromatin 2021; 14:50. [PMID: 34717733 PMCID: PMC8557566 DOI: 10.1186/s13072-021-00424-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 10/22/2021] [Indexed: 12/14/2022] Open
Abstract
The review begins with a concise description of the principles of phase separation. This is followed by a comprehensive section on phase separation of chromatin, in which we recount the 60 years history of chromatin aggregation studies, discuss the evidence that chromatin aggregation intrinsically is a physiologically relevant liquid-solid phase separation (LSPS) process driven by chromatin self-interaction, and highlight the recent findings that under specific solution conditions chromatin can undergo liquid-liquid phase separation (LLPS) rather than LSPS. In the next section of the review, we discuss how certain chromatin-associated proteins undergo LLPS in vitro and in vivo. Some chromatin-binding proteins undergo LLPS in purified form in near-physiological ionic strength buffers while others will do so only in the presence of DNA, nucleosomes, or chromatin. The final section of the review evaluates the solid and liquid states of chromatin in the nucleus. While chromatin behaves as an immobile solid on the mesoscale, nucleosomes are mobile on the nanoscale. We discuss how this dual nature of chromatin, which fits well the concept of viscoelasticity, contributes to genome structure, emphasizing the dominant role of chromatin self-interaction.
Collapse
Affiliation(s)
- Jeffrey C Hansen
- Department of Biochemistry and Molecular Biology, Colorado State University, Fort Collins, CO, 80523, USA.
| | - Kazuhiro Maeshima
- Genome Dynamics Laboratory, National Institute of Genetics, and Department of Genetics, Sokendai (Graduate University for Advanced Studies), Mishima, Shizuoka, 411-8540, Japan.
| | - Michael J Hendzel
- Department of Cell Biology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
- Department of Oncology, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
37
|
Silencing of the ER and Integrative Stress Responses in the Liver of Mice with Error-Prone Translation. Cells 2021; 10:cells10112856. [PMID: 34831079 PMCID: PMC8616113 DOI: 10.3390/cells10112856] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/14/2021] [Accepted: 10/20/2021] [Indexed: 12/13/2022] Open
Abstract
Translational errors frequently arise during protein synthesis, producing misfolded and dysfunctional proteins. Chronic stress resulting from translation errors may be particularly relevant in tissues that must synthesize and secrete large amounts of secretory proteins. Here, we studied the proteostasis networks in the liver of mice that express the Rps2-A226Y ribosomal ambiguity (ram) mutation to increase the translation error rate across all proteins. We found that Rps2-A226Y mice lack activation of the eIF2 kinase/ATF4 pathway, the main component of the integrated stress response (ISR), as well as the IRE1 and ATF6 pathways of the ER unfolded protein response (ER-UPR). Instead, we found downregulation of chronic ER stress responses, as indicated by reduced gene expression for lipogenic pathways and acute phase proteins, possibly via upregulation of Sirtuin-1. In parallel, we observed activation of alternative proteostasis responses, including the proteasome and the formation of stress granules. Together, our results point to a concerted response to error-prone translation to alleviate ER stress in favor of activating alternative proteostasis mechanisms, most likely to avoid cell damage and apoptotic pathways, which would result from persistent activation of the ER and integrated stress responses.
Collapse
|
38
|
Ryu JK, Hwang DE, Choi JM. Current Understanding of Molecular Phase Separation in Chromosomes. Int J Mol Sci 2021; 22:10736. [PMID: 34639077 PMCID: PMC8509192 DOI: 10.3390/ijms221910736] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/28/2021] [Accepted: 09/29/2021] [Indexed: 12/12/2022] Open
Abstract
Biomolecular phase separation denotes the demixing of a specific set of intracellular components without membrane encapsulation. Recent studies have found that biomolecular phase separation is involved in a wide range of cellular processes. In particular, phase separation is involved in the formation and regulation of chromosome structures at various levels. Here, we review the current understanding of biomolecular phase separation related to chromosomes. First, we discuss the fundamental principles of phase separation and introduce several examples of nuclear/chromosomal biomolecular assemblies formed by phase separation. We also briefly explain the experimental and computational methods used to study phase separation in chromosomes. Finally, we discuss a recent phase separation model, termed bridging-induced phase separation (BIPS), which can explain the formation of local chromosome structures.
Collapse
Affiliation(s)
- Je-Kyung Ryu
- Department of Biological Sciences, KAIST, Daejeon 34141, Korea
| | - Da-Eun Hwang
- Department of Chemistry, Pusan National University, Busan 46241, Korea;
| | - Jeong-Mo Choi
- Department of Chemistry, Pusan National University, Busan 46241, Korea;
| |
Collapse
|
39
|
Wang LY, Xiao SJ, Kunimoto H, Tokunaga K, Kojima H, Kimura M, Yamamoto T, Yamamoto N, Zhao H, Nishio K, Tani T, Nakajima K, Sunami K, Inoue A. Sequestration of RBM10 in Nuclear Bodies: Targeting Sequences and Biological Significance. Int J Mol Sci 2021; 22:ijms221910526. [PMID: 34638866 PMCID: PMC8508765 DOI: 10.3390/ijms221910526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 09/20/2021] [Accepted: 09/24/2021] [Indexed: 11/26/2022] Open
Abstract
RBM10 is an RNA-binding protein that regulates alternative splicing (AS). It localizes to the extra-nucleolar nucleoplasm and S1-1 nuclear bodies (NBs) in the nucleus. We investigated the biological significance of this localization in relation to its molecular function. Our analyses, employing deletion mutants, revealed that RBM10 possesses two S1-1 NB-targeting sequences (NBTSs), one in the KEKE motif region and another in the C2H2 Zn finger (ZnF). These NBTSs act synergistically to localize RBM10 to S1-1 NBs. The C2H2 ZnF not only acts as an NBTS, but is also essential for AS regulation by RBM10. Moreover, RBM10 does not participate in S1-1 NB formation, and without alterations of RBM10 protein levels, its NB-localization changes, increasing as cellular transcriptional activity declines, and vice versa. These results indicate that RBM10 is a transient component of S1-1 NBs and is sequestered in NBs via its NBTSs when cellular transcription decreases. We propose that the C2H2 ZnF exerts its NB-targeting activity when RBM10 is unbound by pre-mRNAs, and that NB-localization of RBM10 is a mechanism to control its AS activity in the nucleus.
Collapse
Affiliation(s)
- Ling-Yu Wang
- Department of Immunology, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan; (L.-Y.W.); (S.-J.X.); (H.K.); (H.K.); (H.Z.); (K.N.)
- Department of Human Genetics, Guilin Medical University, Guilin 541004, China
| | - Sheng-Jun Xiao
- Department of Immunology, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan; (L.-Y.W.); (S.-J.X.); (H.K.); (H.K.); (H.Z.); (K.N.)
- Department of Pathology, Guilin Medical University, Guilin 541004, China
| | - Hiroyuki Kunimoto
- Department of Immunology, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan; (L.-Y.W.); (S.-J.X.); (H.K.); (H.K.); (H.Z.); (K.N.)
| | - Kazuaki Tokunaga
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan; (K.T.); (T.T.)
| | - Hirotada Kojima
- Department of Immunology, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan; (L.-Y.W.); (S.-J.X.); (H.K.); (H.K.); (H.Z.); (K.N.)
| | - Masatsugu Kimura
- Radioisotope Center, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan;
| | - Takahiro Yamamoto
- Graduate School of Life Science, Hokkaido University, Sapporo 060-0808, Japan;
| | - Naoki Yamamoto
- Center for Basic Medical Research, and Graduate School of Pharmaceutical Sciences, International University of Health and Welfare, Ohtawara 324-8501, Japan;
- Laboratory of Neurobiology, Graduate School of Sciences, Tokyo Metropolitan University, Tokyo 192-0397, Japan
| | - Hong Zhao
- Department of Immunology, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan; (L.-Y.W.); (S.-J.X.); (H.K.); (H.K.); (H.Z.); (K.N.)
| | - Koji Nishio
- Department of Anatomy and Neurosciences, Graduate School of Medicine, Nagoya University, Nagoya 466-8550, Japan;
| | - Tokio Tani
- Department of Biological Sciences, Graduate School of Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan; (K.T.); (T.T.)
| | - Koichi Nakajima
- Department of Immunology, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan; (L.-Y.W.); (S.-J.X.); (H.K.); (H.K.); (H.Z.); (K.N.)
| | - Kishiko Sunami
- Department of Otolaryngology, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan;
| | - Akira Inoue
- Department of Immunology, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan; (L.-Y.W.); (S.-J.X.); (H.K.); (H.K.); (H.Z.); (K.N.)
- Department of Otolaryngology, Graduate School of Medicine, Osaka City University, Osaka 545-8585, Japan;
- Correspondence:
| |
Collapse
|
40
|
Sundaria N, Upadhyay A, Prasad A, Prajapati VK, Poluri KM, Mishra A. Neurodegeneration & imperfect ageing: Technological limitations and challenges? Mech Ageing Dev 2021; 200:111574. [PMID: 34562507 DOI: 10.1016/j.mad.2021.111574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Revised: 08/29/2021] [Accepted: 09/21/2021] [Indexed: 11/18/2022]
Abstract
Cellular homeostasis is regulated by the protein quality control (PQC) machinery, comprising multiple chaperones and enzymes. Studies suggest that the loss of the PQC mechanisms in neurons may lead to the formation of abnormal inclusions that may lead to neurological disorders and defective aging. The questions could be raised how protein aggregate formation precisely engenders multifactorial molecular pathomechanism in neuronal cells and affects different brain regions? Such questions await thorough investigation that may help us understand how aberrant proteinaceous bodies lead to neurodegeneration and imperfect aging. However, these studies face multiple technological challenges in utilizing available tools for detailed characterizations of the protein aggregates or amyloids and developing new techniques to understand the biology and pathology of proteopathies. The lack of detection and analysis methods has decelerated the pace of the research in amyloid biology. Here, we address the significance of aggregation and inclusion formation, followed by exploring the evolutionary contribution of these structures. We also provide a detailed overview of current state-of-the-art techniques and advances in studying amyloids in the diseased brain. A comprehensive understanding of the structural, pathological, and clinical characteristics of different types of aggregates (inclusions, fibrils, plaques, etc.) will aid in developing future therapies.
Collapse
Affiliation(s)
- Naveen Sundaria
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology, Jodhpur, Rajasthan, 342037, India
| | - Arun Upadhyay
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology, Jodhpur, Rajasthan, 342037, India
| | - Amit Prasad
- School of Basic Sciences, Indian Institute of Technology Mandi, Mandi, India
| | - Vijay Kumar Prajapati
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, NH‑8 Bandarsindri, Ajmer, Rajasthan, 305817, India
| | - Krishna Mohan Poluri
- Department of Biotechnology, Indian Institute of Technology Roorkee, Roorkee, 247667, Uttarakhand, India
| | - Amit Mishra
- Cellular and Molecular Neurobiology Unit, Indian Institute of Technology, Jodhpur, Rajasthan, 342037, India.
| |
Collapse
|
41
|
Auboeuf D. The Physics-Biology continuum challenges darwinism: Evolution is directed by the homeostasis-dependent bidirectional relation between genome and phenotype. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2021; 167:121-139. [PMID: 34097984 DOI: 10.1016/j.pbiomolbio.2021.05.008] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 05/19/2021] [Accepted: 05/31/2021] [Indexed: 10/21/2022]
Abstract
The physics-biology continuum relies on the fact that life emerged from prebiotic molecules. Here, I argue that life emerged from the coupling between nucleic acid and protein synthesis during which proteins (or proto-phenotypes) maintained the physicochemical parameter equilibria (or proto-homeostasis) in the proximity of their encoding nucleic acids (or proto-genomes). This protected the proto-genome physicochemical integrity (i.e., atomic composition) from environmental physicochemical constraints, and therefore increased the probability of reproducing the proto-genome without variation. From there, genomes evolved depending on the biological activities they generated in response to environmental fluctuations. Thus, a genome maintaining homeostasis (i.e., internal physicochemical parameter equilibria), despite and in response to environmental fluctuations, maintains its physicochemical integrity and has therefore a higher probability to be reproduced without variation. Consequently, descendants have a higher probability to share the same phenotype than their parents. Otherwise, the genome is modified during replication as a consequence of the imbalance of the internal physicochemical parameters it generates, until new mutation-deriving biological activities maintain homeostasis in offspring. In summary, evolution depends on feedforward and feedback loops between genome and phenotype, as the internal physicochemical conditions that a genome generates ─ through its derived phenotype in response to environmental fluctuations ─ in turn either guarantee its stability or direct its variation. Evolution may not be explained by the Darwinism-derived, unidirectional principle (random mutations-phenotypes-natural selection) but rather by the bidirectional relationship between genome and phenotype, in which the phenotype in interaction with the environment directs the evolution of the genome it derives from.
Collapse
Affiliation(s)
- Didier Auboeuf
- ENS de Lyon, Univ Claude Bernard, CNRS UMR 5239, INSERM U1210, Laboratory of Biology and Modelling of the Cell, 46 Allée D'Italie, Site Jacques Monod, F-69007, Lyon, France.
| |
Collapse
|
42
|
Yao RW, Luan PF, Chen LL. An optimized fixation method containing glyoxal and paraformaldehyde for imaging nuclear bodies. RNA (NEW YORK, N.Y.) 2021; 27:725-733. [PMID: 33846273 PMCID: PMC8127994 DOI: 10.1261/rna.078671.120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Accepted: 04/08/2021] [Indexed: 05/26/2023]
Abstract
The mammalian cell nucleus contains different types of membrane-less nuclear bodies (NBs) consisting of proteins and RNAs. Microscopic imaging has been widely applied to study the organization and structure of NBs. However, current fixation methods are not optimized for such imaging: When a fixation method is chosen to maximize the quality of the RNA fluorescence in situ hybridization (FISH), it often limits the labeling efficiency of proteins or affects the ultrastructure of NBs. Here, we report that addition of glyoxal (GO) into the classical paraformaldehyde (PFA) fixation step not only improves FISH signals for RNAs in NBs via augmented permeability of the fixed nucleus and enhanced accessibility of probes, but also largely preserves protein fluorescent signals during fixation and immunostaining. We also show that GO/PFA fixation enables the covisualization of different types of nuclear bodies with minimal impact on their ultrastructures under super-resolution microscopy.
Collapse
Affiliation(s)
- Run-Wen Yao
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Peng-Fei Luan
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
| | - Ling-Ling Chen
- State Key Laboratory of Molecular Biology, Shanghai Key Laboratory of Molecular Andrology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai 200031, China
- School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
- School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou 330106, China
| |
Collapse
|
43
|
Mahbod A, Schaefer G, Löw C, Dorffner G, Ecker R, Ellinger I. Investigating the Impact of the Bit Depth of Fluorescence-Stained Images on the Performance of Deep Learning-Based Nuclei Instance Segmentation. Diagnostics (Basel) 2021; 11:967. [PMID: 34072131 PMCID: PMC8230326 DOI: 10.3390/diagnostics11060967] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/05/2021] [Accepted: 05/25/2021] [Indexed: 11/25/2022] Open
Abstract
Nuclei instance segmentation can be considered as a key point in the computer-mediated analysis of histological fluorescence-stained (FS) images. Many computer-assisted approaches have been proposed for this task, and among them, supervised deep learning (DL) methods deliver the best performances. An important criterion that can affect the DL-based nuclei instance segmentation performance of FS images is the utilised image bit depth, but to our knowledge, no study has been conducted so far to investigate this impact. In this work, we released a fully annotated FS histological image dataset of nuclei at different image magnifications and from five different mouse organs. Moreover, by different pre-processing techniques and using one of the state-of-the-art DL-based methods, we investigated the impact of image bit depth (i.e., eight bits vs. sixteen bits) on the nuclei instance segmentation performance. The results obtained from our dataset and another publicly available dataset showed very competitive nuclei instance segmentation performances for the models trained with 8 bit and 16 bit images. This suggested that processing 8 bit images is sufficient for nuclei instance segmentation of FS images in most cases. The dataset including the raw image patches, as well as the corresponding segmentation masks is publicly available in the published GitHub repository.
Collapse
Affiliation(s)
- Amirreza Mahbod
- Institute for Pathophysiology and Allergy Research, Medical University of Vienna, A-1090 Vienna, Austria; (C.L.); (I.E.)
| | - Gerald Schaefer
- Department of Computer Science, Loughborough University, Loughborough LE11 3TT, UK;
| | - Christine Löw
- Institute for Pathophysiology and Allergy Research, Medical University of Vienna, A-1090 Vienna, Austria; (C.L.); (I.E.)
| | - Georg Dorffner
- Section for Artificial Intelligence and Decision Support, Medical University of Vienna, 1090 Vienna, Austria;
| | - Rupert Ecker
- Department of Research and Development, TissueGnostics GmbH, 1020 Vienna, Austria;
| | - Isabella Ellinger
- Institute for Pathophysiology and Allergy Research, Medical University of Vienna, A-1090 Vienna, Austria; (C.L.); (I.E.)
| |
Collapse
|
44
|
Connecting the "dots": RNP granule network in health and disease. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2021; 1868:119058. [PMID: 33989700 DOI: 10.1016/j.bbamcr.2021.119058] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Revised: 05/01/2021] [Accepted: 05/07/2021] [Indexed: 12/26/2022]
Abstract
All cells contain ribonucleoprotein (RNP) granules - large membraneless structures composed of RNA and proteins. Recent breakthroughs in RNP granule research have brought a new appreciation of their crucial role in organising virtually all cellular processes. Cells widely exploit the flexible, dynamic nature of RNP granules to adapt to a variety of functional states and the ever-changing environment. Constant exchange of molecules between the different RNP granules connects them into a network. This network controls basal cellular activities and is remodelled to enable efficient stress response. Alterations in RNP granule structure and regulation have been found to lead to fatal human diseases. The interconnectedness of RNP granules suggests that the RNP granule network as a whole becomes affected in disease states such as a representative neurodegenerative disease amyotrophic lateral sclerosis (ALS). In this review, we summarize available evidence on the communication between different RNP granules and on the RNP granule network disruption as a primary ALS pathomechanism.
Collapse
|
45
|
Pathak RU, Soujanya M, Mishra RK. Deterioration of nuclear morphology and architecture: A hallmark of senescence and aging. Ageing Res Rev 2021; 67:101264. [PMID: 33540043 DOI: 10.1016/j.arr.2021.101264] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Revised: 01/04/2021] [Accepted: 01/26/2021] [Indexed: 12/15/2022]
Abstract
The metazoan nucleus is a highly structured organelle containing several well-defined sub-organelles. It is the largest organelle inside a cell taking up from one tenth to half of entire cell volume. This makes it one of the easiest organelles to identify and study under the microscope. Abnormalities in the nuclear morphology and architecture are commonly observed in an aged and senescent cell. For example, the nuclei enlarge, loose their shape, appear lobulated, harbour nuclear membrane invaginations, carry enlarged/fragmented nucleolus, loose heterochromatin, etc. In this review we discuss about the age-related changes in nuclear features and elaborate upon the molecular reasons driving the change. Many of these changes can be easily imaged under a microscope and analysed in silico. Thus, computational image analysis of nuclear features appears to be a promising tool to evaluate physiological age of a cell and offers to be a legitimate biomarker. It can be used to examine progression of age-related diseases and evaluate therapies.
Collapse
Affiliation(s)
| | - Mamilla Soujanya
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, Telangana, India
| | - Rakesh Kumar Mishra
- CSIR-Centre for Cellular and Molecular Biology, Hyderabad, 500007, Telangana, India.
| |
Collapse
|
46
|
Asakawa K, Handa H, Kawakami K. Multi-phaseted problems of TDP-43 in selective neuronal vulnerability in ALS. Cell Mol Life Sci 2021; 78:4453-4465. [PMID: 33709256 PMCID: PMC8195926 DOI: 10.1007/s00018-021-03792-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Revised: 02/03/2021] [Accepted: 02/18/2021] [Indexed: 10/28/2022]
Abstract
Transactive response DNA-binding protein 43 kDa (TDP-43) encoded by the TARDBP gene is an evolutionarily conserved heterogeneous nuclear ribonucleoprotein (hnRNP) that regulates multiple steps of RNA metabolism, and its cytoplasmic aggregation characterizes degenerating motor neurons in amyotrophic lateral sclerosis (ALS). In most ALS cases, cytoplasmic TDP-43 aggregation occurs in the absence of mutations in the coding sequence of TARDBP. Thus, a major challenge in ALS research is to understand the nature of pathological changes occurring in wild-type TDP-43 and to explore upstream events in intracellular and extracellular milieu that promote the pathological transition of TDP-43. Despite the inherent obstacles to analyzing TDP-43 dynamics in in vivo motor neurons due to their anatomical complexity and inaccessibility, recent studies using cellular and animal models have provided important mechanistic insights into potential links between TDP-43 and motor neuron vulnerability in ALS. This review is intended to provide an overview of the current literature on the function and regulation of TDP-43-containing RNP granules or membraneless organelles, as revealed by various models, and to discuss the potential mechanisms by which TDP-43 can cause selective vulnerability of motor neurons in ALS.
Collapse
Affiliation(s)
- Kazuhide Asakawa
- Department of Chemical Biology, Tokyo Medical University, Shinjuku-ku, Tokyo, 160-8402, Japan.
- Division of Molecular and Developmental Biology, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan.
- Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), 1111 Yata, Mishima, Shizuoka, 411-8540, Japan.
| | - Hiroshi Handa
- Department of Chemical Biology, Tokyo Medical University, Shinjuku-ku, Tokyo, 160-8402, Japan
| | - Koichi Kawakami
- Division of Molecular and Developmental Biology, National Institute of Genetics, 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
- Department of Genetics, Graduate University for Advanced Studies (SOKENDAI), 1111 Yata, Mishima, Shizuoka, 411-8540, Japan
| |
Collapse
|
47
|
Escalante LE, Gasch AP. The role of stress-activated RNA-protein granules in surviving adversity. RNA (NEW YORK, N.Y.) 2021; 27:rna.078738.121. [PMID: 33931500 PMCID: PMC8208049 DOI: 10.1261/rna.078738.121] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Accepted: 04/28/2021] [Indexed: 05/17/2023]
Abstract
Severe environmental stress can trigger a plethora of physiological changes and, in the process, significant cytoplasmic reorganization. Stress-activated RNA-protein granules have been implicated in this cellular overhaul by sequestering pre-existing mRNAs and influencing their fates during and after stress acclimation. While the composition and dynamics of stress-activated granule formation has been well studied, their function and impact on RNA-cargo has remained murky. Several recent studies challenge the view that these granules degrade and silence mRNAs present at the onset of stress and instead suggest new roles for these structures in mRNA storage, transit, and inheritance. Here we discuss recent evidence for revised models of stress-activated granule functions and the role of these granules in stress survival and recovery.
Collapse
|
48
|
G-patch domain-containing protein 4 localizes to both the nucleoli and Cajal bodies and regulates cell growth and nucleolar structure. Biochem Biophys Res Commun 2021; 559:99-105. [PMID: 33933995 DOI: 10.1016/j.bbrc.2021.04.026] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Accepted: 04/08/2021] [Indexed: 11/20/2022]
Abstract
Ribosome formation occurs in the nucleolus through interaction with various trans-acting factors. Therefore, hundreds of nucleolar proteins have a function in ribosome formation, although the precise function of each nucleolar protein in ribosome formation is largely unclear. We have previously identified an uncharacterized protein, G-patch domain-containing protein 4 (GPATCH4 or G4), as a component of the pre-ribosomes purified with either nucleolin (NCL) or NPM1. In this present study, we sought to clarify the localization and function of G4. We identified that G4 localizes to both the nucleolus and the Cajal body. Although knockdown of G4 did not have a significant effect on pre-ribosomal RNA processing, cell growth did decrease. Interestingly, G4 knockdown also decreased the number of fibrillar center and dense fibrillar component regions inside the nucleolus. This data has identified G4 as a novel nucleolar protein involved in the regulation of cell growth and nucleolar structure.
Collapse
|
49
|
Kemp JP, Yang XC, Dominski Z, Marzluff WF, Duronio RJ. Superresolution light microscopy of the Drosophila histone locus body reveals a core-shell organization associated with expression of replication-dependent histone genes. Mol Biol Cell 2021; 32:942-955. [PMID: 33788585 PMCID: PMC8108526 DOI: 10.1091/mbc.e20-10-0645] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The histone locus body (HLB) is an evolutionarily conserved nuclear body that regulates the transcription and processing of replication-dependent (RD) histone mRNAs, which are the only eukaryotic mRNAs lacking a poly-A tail. Many nuclear bodies contain distinct domains, but how internal organization is related to nuclear body function is not fully understood. Here, we demonstrate using structured illumination microscopy that Drosophila HLBs have a “core–shell” organization in which the internal core contains transcriptionally active RD histone genes. The N-terminus of Mxc, which contains a domain required for Mxc oligomerization, HLB assembly, and RD histone gene expression, is enriched in the HLB core. In contrast, the C-terminus of Mxc is enriched in the HLB outer shell as is FLASH, a component of the active U7 snRNP that cotranscriptionally cleaves RD histone pre-mRNA. Consistent with these results, we show biochemically that FLASH binds directly to the Mxc C-terminal region. In the rapid S-M nuclear cycles of syncytial blastoderm Drosophila embryos, the HLB disassembles at mitosis and reassembles the core–shell arrangement as histone gene transcription is activated immediately after mitosis. Thus, the core–shell organization is coupled to zygotic histone gene transcription, revealing a link between HLB internal organization and RD histone gene expression.
Collapse
Affiliation(s)
- James P Kemp
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Xiao-Cui Yang
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Zbigniew Dominski
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - William F Marzluff
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| | - Robert J Duronio
- Integrative Program for Biological and Genome Sciences, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Department of Biology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599.,Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599
| |
Collapse
|
50
|
Sas-Nowosielska H, Magalska A. Long Noncoding RNAs-Crucial Players Organizing the Landscape of the Neuronal Nucleus. Int J Mol Sci 2021; 22:ijms22073478. [PMID: 33801737 PMCID: PMC8037058 DOI: 10.3390/ijms22073478] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/22/2021] [Accepted: 03/24/2021] [Indexed: 12/25/2022] Open
Abstract
The ability to regulate chromatin organization is particularly important in neurons, which dynamically respond to external stimuli. Accumulating evidence shows that lncRNAs play important architectural roles in organizing different nuclear domains like inactive chromosome X, splicing speckles, paraspeckles, and Gomafu nuclear bodies. LncRNAs are abundantly expressed in the nervous system where they may play important roles in compartmentalization of the cell nucleus. In this review we will describe the architectural role of lncRNAs in the nuclei of neuronal cells.
Collapse
|