1
|
Villaseca S, Leal JI, Tovar LM, Ruiz MJ, Guajardo J, Morales-Navarrete H, Mayor R, Torrejón M. Interaction of Gαi2 with EB1 controls microtubule dynamics and Rac1 activity in Xenopus neural crest cell migration. Development 2025; 152:dev204235. [PMID: 40136014 DOI: 10.1242/dev.204235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Accepted: 03/18/2025] [Indexed: 03/27/2025]
Abstract
Cell migration is crucial in embryonic development, tissue repair and cancer metastasis, driven by the actin and tubulin cytoskeletons that control cell shape, polarity, adhesion and movement in response to various cues. Although heterotrimeric G proteins are known to be involved in cell migration, the specific mechanisms, especially during development, remain elusive. This study examines the role of Gαi2, a heterotrimeric G-protein subunit, in cranial neural crest (NC) cell migration during Xenopus embryonic development. Our research reveals that Gαi2 interacts directly with the microtubule-associated protein EB1, regulating microtubule dynamics. We show that Gαi2 knockdown stabilizes microtubules, disrupts cell polarity and morphology, increases Rac1-GTP at the leading edge and cell-cell contacts, and impairs actin localization and focal adhesion disassembly. Additionally, RhoA-GTP is reduced at cell-cell contacts and concentrated at the leading edge in Gαi2 knockdown cells, providing evidence of a role for Gαi2 in polarity. Treatment with nocodazole, a microtubule-depolymerizing agent, reduces Rac1 activity, restoring cranial NC cell morphology, actin distribution and overall migration. Our findings highlight a crucial role for Gαi2 in cranial NC cell migration by modulating microtubule dynamics through EB1 and Rac1 activity.
Collapse
Affiliation(s)
- Soraya Villaseca
- Laboratory of Signaling and Development, Group for the Study of Developmental Processes, Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Universidad de Concepción, Casilla 160-C, Concepción, Chile
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
| | - Juan Ignacio Leal
- Laboratory of Signaling and Development, Group for the Study of Developmental Processes, Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Lina Mariana Tovar
- Laboratory of Signaling and Development, Group for the Study of Developmental Processes, Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - María José Ruiz
- Laboratory of Signaling and Development, Group for the Study of Developmental Processes, Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | - Jossef Guajardo
- Laboratory of Signaling and Development, Group for the Study of Developmental Processes, Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| | | | - Roberto Mayor
- Department of Cell and Developmental Biology, University College London, London WC1E 6BT, UK
- Center for Integrative Biology, Faculty of Sciences, Universidad Mayor, Santiago, Chile
| | - Marcela Torrejón
- Laboratory of Signaling and Development, Group for the Study of Developmental Processes, Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, Universidad de Concepción, Casilla 160-C, Concepción, Chile
| |
Collapse
|
2
|
Zellag RM, Poupart V, Negishi T, Labbé JC, Gerhold AR. The spatiotemporal distribution of LIN-5/NuMA regulates spindle orientation in the C. elegans germ line. Cell Rep 2025; 44:115296. [PMID: 39946234 DOI: 10.1016/j.celrep.2025.115296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 12/06/2024] [Accepted: 01/20/2025] [Indexed: 02/28/2025] Open
Abstract
Mitotic spindle orientation contributes to tissue organization and shape by setting the cell division plane. How spindle orientation is coupled to diverse tissue architectures is incompletely understood. The C. elegans gonad is a tube-shaped organ with germ cells forming a circumferential monolayer around a common cytoplasmic lumen. How this organization is maintained during development is unclear, as germ cells lack the canonical cell-cell junctions that ensure spindle orientation in other tissue types. Here, we show that the microtubule force generator dynein and its conserved regulator LIN-5/NuMA regulate germ cell spindle orientation and are required for germline tissue organization. We uncover a cyclic, polarized pattern of LIN-5/NuMA cortical localization that predicts centrosome positioning throughout the cell cycle, providing a means to align spindle orientation with the tissue plane. This work reveals a new mechanism by which oriented cell division can be achieved to maintain tissue organization during animal development.
Collapse
Affiliation(s)
- Réda M Zellag
- Institute for Research in Immunology and Cancer (IRIC), Montréal, QC H3C 3J7, Canada; Department of Pathology and Cell Biology, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, QC H3C 3J7, Canada; Department of Biology, McGill University, 1205 Avenue Docteur Penfield, Montréal, QC H2A 1B1, Canada
| | - Vincent Poupart
- Institute for Research in Immunology and Cancer (IRIC), Montréal, QC H3C 3J7, Canada
| | - Takefumi Negishi
- Multicellular Organization Laboratory, Department of Gene Function and Phenomics, National Institute of Genetics, Research Organization of Information and Systems (ROIS), Mishima, Shizuoka 411-8540, Japan; Department of Genetics, School of Life Sciences, SOKENDAI (The Graduate University for Advanced Studies), Mishima, Shizuoka 411-8540, Japan
| | - Jean-Claude Labbé
- Institute for Research in Immunology and Cancer (IRIC), Montréal, QC H3C 3J7, Canada; Department of Pathology and Cell Biology, Université de Montréal, C.P. 6128, Succ. Centre-ville, Montréal, QC H3C 3J7, Canada.
| | - Abigail R Gerhold
- Department of Biology, McGill University, 1205 Avenue Docteur Penfield, Montréal, QC H2A 1B1, Canada.
| |
Collapse
|
3
|
Liu F, Medyukhina A, Olesen KM, Shirinifard A, Jin H, Li L, Mapelli M, Khairy K, Han YG. Canonical Hedgehog Signaling Controls Astral Microtubules and Mitotic Spindle Orientation in Neural Progenitors and iPSCs. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.23.639780. [PMID: 40060449 PMCID: PMC11888381 DOI: 10.1101/2025.02.23.639780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/16/2025]
Abstract
Mitotic spindle orientation is crucial for cell fate determination and tissue organization. Although the intracellular machinery governing spindle orientation is well characterized, whether and how secreted factors, such as morphogens, regulate this process remains poorly understood. This study investigated the role of Hedgehog (HH) signaling in modulating mitotic spindle orientation in neural progenitor cells and in induced pluripotent stem cells (iPSCs). Time-lapse microscopy of cerebral organoids and iPSCs revealed that HH signaling increases the angle of the mitotic spindle relative to the apical surface, prolongs mitosis, and enhances spindle rotation. Mechanistically, HH signaling reduces both the number and the length of astral microtubules, key regulators of spindle orientation. This reduction correlates with increased spindle angle in iPSCs. Furthermore, we show that canonical HH signaling, involving GLI-dependent transcriptional regulation, contributes to these effects. RNA sequencing and gene set enrichment analysis (GSEA) revealed that HH signaling upregulates genes associated with microtubule depolymerization, suggesting a transcriptional mechanism by which HH signaling influences astral microtubule dynamics and, consequently, mitotic spindle orientation. These findings highlight a novel link between a morphogen, transcriptional regulation, and the control of mitotic spindle orientation, with implications for development and tissue homeostasis.
Collapse
Affiliation(s)
- Fengming Liu
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Anna Medyukhina
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Kris M Olesen
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Abbas Shirinifard
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Hongjian Jin
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Lei Li
- Center for Applied Bioinformatics, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Marina Mapelli
- European Institute of Oncology IRCCS, Via Adamello 16, 20139 Milan, Italy
| | - Khaled Khairy
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| | - Young-Goo Han
- Department of Developmental Neurobiology, St. Jude Children’s Research Hospital, 262 Danny Thomas Place, Memphis, TN 38105, USA
| |
Collapse
|
4
|
Salinas E, Ruano-Rivadeneira F, Leal JI, Caprile T, Torrejón M, Arriagada C. Polarity and migration of cranial and cardiac neural crest cells: underlying molecular mechanisms and disease implications. Front Cell Dev Biol 2025; 12:1457506. [PMID: 39834387 PMCID: PMC11743681 DOI: 10.3389/fcell.2024.1457506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Accepted: 12/04/2024] [Indexed: 01/22/2025] Open
Abstract
The Neural Crest cells are multipotent progenitor cells formed at the neural plate border that differentiate and give rise to a wide range of cell types and organs. Directional migration of NC cells and their correct positioning at target sites are essential during embryonic development, and defects in these processes results in congenital diseases. The NC migration begins with the epithelial-mesenchymal transition and extracellular matrix remodeling. The main cellular mechanisms that sustain this migration include contact inhibition of locomotion, co-attraction, chemotaxis and mechanical cues from the surrounding environment, all regulated by proteins that orchestrate cell polarity and motility. In this review we highlight the molecular mechanisms involved in neural crest cell migration and polarity, focusing on the role of small GTPases, Heterotrimeric G proteins and planar cell polarity complex. Here, we also discuss different congenital diseases caused by altered NC cell migration.
Collapse
Affiliation(s)
- Esteban Salinas
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Departamento de Ciencias Biológicas y Químicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| | - Francis Ruano-Rivadeneira
- Developmental Biology Laboratory 116, School of Biological Sciences, Faculty of Exact and Natural Sciences, Pontificia Universidad Católica del Ecuador, Quito, Ecuador
| | - Juan Ignacio Leal
- Laboratory of Signaling and Development (LSD), Group for the Study of Developmental Processes (GDeP), Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Teresa Caprile
- Laboratory of Axonal Guidance, Group for the Study of Developmental Processes (GDeP), Department of Cellular Biology, Faculty of Biological Sciences, Universidad de Concepción, Concepción, Chile
| | - Marcela Torrejón
- Laboratory of Signaling and Development (LSD), Group for the Study of Developmental Processes (GDeP), Department of Biochemistry and Molecular Biology, Faculty of Biological Sciences, University of Concepción, Concepción, Chile
| | - Cecilia Arriagada
- Centro de Biología Celular y Biomedicina (CEBICEM), Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
- Departamento de Ciencias Biológicas y Químicas, Facultad de Medicina y Ciencia, Universidad San Sebastián, Santiago, Chile
| |
Collapse
|
5
|
Aslan M, d'Amico EA, Cho NH, Taheri A, Zhao Y, Zhong X, Blaauw M, Carter AP, Dumont S, Yildiz A. Structural and functional insights into activation and regulation of the dynein-dynactin-NuMA complex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.26.625568. [PMID: 39651296 PMCID: PMC11623564 DOI: 10.1101/2024.11.26.625568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
During cell division, NuMA orchestrates the focusing of microtubule minus-ends in spindle poles and cortical force generation on astral microtubules by interacting with dynein motors, microtubules, and other cellular factors. Here we used in vitro reconstitution, cryo-electron microscopy, and live cell imaging to understand the mechanism and regulation of NuMA. We determined the structure of the processive dynein/dynactin/NuMA complex (DDN) and showed that the NuMA N-terminus drives dynein motility in vitro and facilitates dynein-mediated transport in live cells. The C-terminus of NuMA directly binds to and suppresses the dynamics of the microtubule minus-end. Full-length NuMA is autoinhibited, but mitotically phosphorylated NuMA activates dynein in vitro and interphase cells. Together with dynein, activated full-length NuMA focuses microtubule minus-ends into aster-like structures. The binding of the cortical protein LGN to the NuMA C-terminus results in preferential binding of NuMA to the microtubule plus-end. These results provide critical insights into the activation of NuMA and dynein for their functions in the spindle body and the cell cortex.
Collapse
|
6
|
Anjur-Dietrich MI, Gomez Hererra V, Farhadifar R, Wu H, Merta H, Bahmanyar S, Shelley MJ, Needleman DJ. Mechanics of spindle orientation in human mitotic cells is determined by pulling forces on astral microtubules and clustering of cortical dynein. Dev Cell 2024; 59:2429-2442.e4. [PMID: 38866013 DOI: 10.1016/j.devcel.2024.05.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 04/03/2024] [Accepted: 05/17/2024] [Indexed: 06/14/2024]
Abstract
The forces that orient the spindle in human cells remain poorly understood due to a lack of direct mechanical measurements in mammalian systems. We use magnetic tweezers to measure the force on human mitotic spindles. Combining the spindle's measured resistance to rotation, the speed at which it rotates after laser ablating astral microtubules, and estimates of the number of ablated microtubules reveals that each microtubule contacting the cell cortex is subject to ∼5 pN of pulling force, suggesting that each is pulled on by an individual dynein motor. We find that the concentration of dynein at the cell cortex and extent of dynein clustering are key determinants of the spindle's resistance to rotation, with little contribution from cytoplasmic viscosity, which we explain using a biophysically based mathematical model. This work reveals how pulling forces on astral microtubules determine the mechanics of spindle orientation and demonstrates the central role of cortical dynein clustering.
Collapse
Affiliation(s)
- Maya I Anjur-Dietrich
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA.
| | - Vicente Gomez Hererra
- Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
| | - Reza Farhadifar
- Center for Computational Biology, Flatiron Institute, New York, NY 10010, USA
| | - Haiyin Wu
- Department of Physics, Harvard University, Cambridge, MA 02138, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Holly Merta
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Shirin Bahmanyar
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Michael J Shelley
- Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA; Center for Computational Biology, Flatiron Institute, New York, NY 10010, USA
| | - Daniel J Needleman
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA; Center for Computational Biology, Flatiron Institute, New York, NY 10010, USA
| |
Collapse
|
7
|
Rosfelter A, de Labbey G, Chenevert J, Dumollard R, Schaub S, Machaty Z, Besnardeau L, Gonzalez Suarez D, Hebras C, Turlier H, Burgess DR, McDougall A. Reduction of cortical pulling at mitotic entry facilitates aster centration. J Cell Sci 2024; 137:jcs262037. [PMID: 38469748 DOI: 10.1242/jcs.262037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 02/23/2024] [Indexed: 03/13/2024] Open
Abstract
Equal cell division relies upon astral microtubule-based centering mechanisms, yet how the interplay between mitotic entry, cortical force generation and long astral microtubules leads to symmetric cell division is not resolved. We report that a cortically located sperm aster displaying long astral microtubules that penetrate the whole zygote does not undergo centration until mitotic entry. At mitotic entry, we find that microtubule-based cortical pulling is lost. Quantitative measurements of cortical pulling and cytoplasmic pulling together with physical simulations suggested that a wavelike loss of cortical pulling at mitotic entry leads to aster centration based on cytoplasmic pulling. Cortical actin is lost from the cortex at mitotic entry coincident with a fall in cortical tension from ∼300pN/µm to ∼100pN/µm. Following the loss of cortical force generators at mitotic entry, long microtubule-based cytoplasmic pulling is sufficient to displace the aster towards the cell center. These data reveal how mitotic aster centration is coordinated with mitotic entry in chordate zygotes.
Collapse
Affiliation(s)
- Anne Rosfelter
- Laboratoire de Biologie du Developpement de Villefranche-sur-mer, Institut de la Mer de Villefranche-sur-mer, Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France
| | - Ghislain de Labbey
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR7241 / INSERM U1050, Université PSL, 75002 Paris, France
| | - Janet Chenevert
- Laboratoire de Biologie du Developpement de Villefranche-sur-mer, Institut de la Mer de Villefranche-sur-mer, Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France
| | - Rémi Dumollard
- Laboratoire de Biologie du Developpement de Villefranche-sur-mer, Institut de la Mer de Villefranche-sur-mer, Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France
| | - Sebastien Schaub
- Laboratoire de Biologie du Developpement de Villefranche-sur-mer, Institut de la Mer de Villefranche-sur-mer, Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France
| | - Zoltan Machaty
- Laboratoire de Biologie du Developpement de Villefranche-sur-mer, Institut de la Mer de Villefranche-sur-mer, Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France
| | - Lydia Besnardeau
- Laboratoire de Biologie du Developpement de Villefranche-sur-mer, Institut de la Mer de Villefranche-sur-mer, Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France
| | - Daniel Gonzalez Suarez
- Laboratoire de Biologie du Developpement de Villefranche-sur-mer, Institut de la Mer de Villefranche-sur-mer, Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France
| | - Céline Hebras
- Laboratoire de Biologie du Developpement de Villefranche-sur-mer, Institut de la Mer de Villefranche-sur-mer, Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France
| | - Hervé Turlier
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, CNRS UMR7241 / INSERM U1050, Université PSL, 75002 Paris, France
| | - David R Burgess
- Department of Biology, Boston College, Chestnut Hill, MA 02467, USA
| | - Alex McDougall
- Laboratoire de Biologie du Developpement de Villefranche-sur-mer, Institut de la Mer de Villefranche-sur-mer, Sorbonne Université, CNRS, 06230 Villefranche-sur-mer, France
| |
Collapse
|
8
|
Carvalho C, Barbosa DJ, Celestino R, Zanin E, Xavier Carvalho A, Gassmann R. Dynein directs prophase centrosome migration to control the stem cell division axis in the developing Caenorhabditis elegans epidermis. Genetics 2024; 226:iyae005. [PMID: 38213110 PMCID: PMC11491518 DOI: 10.1093/genetics/iyae005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 11/10/2023] [Accepted: 01/02/2024] [Indexed: 01/13/2024] Open
Abstract
The microtubule motor dynein is critical for the assembly and positioning of mitotic spindles. In Caenorhabditis elegans, these dynein functions have been extensively studied in the early embryo but remain poorly explored in other developmental contexts. Here, we use a hypomorphic dynein mutant to investigate the motor's contribution to asymmetric stem cell-like divisions in the larval epidermis. Live imaging of seam cell divisions that precede formation of the seam syncytium shows that mutant cells properly assemble but frequently misorient their spindle. Misoriented divisions misplace daughter cells from the seam cell row, generate anucleate compartments due to aberrant cytokinesis, and disrupt asymmetric cell fate inheritance. Consequently, the seam becomes disorganized and populated with extra cells that have lost seam identity, leading to fatal epidermal rupture. We show that dynein orients the spindle through the cortical GOA-1Gα-LIN-5NuMA pathway by directing the migration of prophase centrosomes along the anterior-posterior axis. Spindle misorientation in the dynein mutant can be partially rescued by elongating cells, implying that dynein-dependent force generation and cell shape jointly promote correct asymmetric division of epithelial stem cells.
Collapse
Affiliation(s)
- Cátia Carvalho
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto 4200-135, Portugal
- ICBAS—Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Porto 4050-313, Portugal
| | - Daniel J Barbosa
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto 4200-135, Portugal
- 1H-Toxrun—One Health Toxicology Research Unit, University Institute of Health Sciences, CESPU, CRL, Gandra 4585-116, Portugal
| | - Ricardo Celestino
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto 4200-135, Portugal
| | - Esther Zanin
- Department Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, Erlangen 91058, Germany
| | - Ana Xavier Carvalho
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto 4200-135, Portugal
| | - Reto Gassmann
- i3S—Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto 4200-135, Portugal
- IBMC—Instituto de Biologia Molecular e Celular, Universidade do Porto, Porto 4200-135, Portugal
| |
Collapse
|
9
|
Anjur-Dietrich MI, Hererra VG, Farhadifar R, Wu H, Merta H, Bahmanyar S, Shelley MJ, Needleman DJ. Clustering of cortical dynein regulates the mechanics of spindle orientation in human mitotic cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.11.557210. [PMID: 37745442 PMCID: PMC10515834 DOI: 10.1101/2023.09.11.557210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The forces which orient the spindle in human cells remain poorly understood due to a lack of direct mechanical measurements in mammalian systems. We use magnetic tweezers to measure the force on human mitotic spindles. Combining the spindle's measured resistance to rotation, the speed it rotates after laser ablating astral microtubules, and estimates of the number of ablated microtubules reveals that each microtubule contacting the cell cortex is subject to ~1 pN of pulling force, suggesting that each is pulled on by an individual dynein motor. We find that the concentration of dynein at the cell cortex and extent of dynein clustering are key determinants of the spindle's resistance to rotation, with little contribution from cytoplasmic viscosity, which we explain using a biophysically based mathematical model. This work reveals how pulling forces on astral microtubules determine the mechanics of spindle orientation and demonstrates the central role of cortical dynein clustering.
Collapse
Affiliation(s)
- Maya I. Anjur-Dietrich
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
| | - Vicente Gomez Hererra
- Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
| | - Reza Farhadifar
- Center for Computational Biology, Flatiron Institute, New York, NY 10010, USA
| | - Haiyin Wu
- Department of Physics, Harvard University, Cambridge, MA 02138, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
| | - Holly Merta
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Shirin Bahmanyar
- Department of Molecular, Cellular, and Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Michael J. Shelley
- Courant Institute of Mathematical Sciences, New York University, New York, NY 10012, USA
- Center for Computational Biology, Flatiron Institute, New York, NY 10010, USA
| | - Daniel J. Needleman
- School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA 02138, USA
- Center for Computational Biology, Flatiron Institute, New York, NY 10010, USA
| |
Collapse
|
10
|
Muroyama A, Gong Y, Hartman KS, Bergmann D. Cortical polarity ensures its own asymmetric inheritance in the stomatal lineage to pattern the leaf surface. Science 2023; 381:54-59. [PMID: 37410832 PMCID: PMC10328556 DOI: 10.1126/science.add6162] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 05/11/2023] [Indexed: 07/08/2023]
Abstract
Asymmetric cell divisions specify differential cell fates across kingdoms. In metazoans, preferential inheritance of fate determinants into one daughter cell frequently depends on polarity-cytoskeleton interactions. Despite the prevalence of asymmetric divisions throughout plant development, evidence for analogous mechanisms that segregate fate determinants remains elusive. Here, we describe a mechanism in the Arabidopsis leaf epidermis that ensures unequal inheritance of a fate-enforcing polarity domain. By defining a cortical region depleted of stable microtubules, the polarity domain limits possible division orientations. Accordingly, uncoupling the polarity domain from microtubule organization during mitosis leads to aberrant division planes and accompanying cell identity defects. Our data highlight how a common biological module, coupling polarity to fate segregation through the cytoskeleton, can be reconfigured to accommodate unique features of plant development.
Collapse
Affiliation(s)
- Andrew Muroyama
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Division of Biological Sciences, Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Yan Gong
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Current Address: Department of Organismic & Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
| | - Kensington S. Hartman
- Division of Biological Sciences, Department of Cell and Developmental Biology, University of California San Diego, La Jolla, CA 92093, USA
| | - Dominique Bergmann
- Department of Biology, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| |
Collapse
|
11
|
Chann AS, Chen Y, Kinwel T, Humbert PO, Russell SM. Scribble and E-cadherin cooperate to control symmetric daughter cell positioning by multiple mechanisms. J Cell Sci 2023; 136:286705. [PMID: 36661138 DOI: 10.1242/jcs.260547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 11/25/2022] [Indexed: 01/21/2023] Open
Abstract
The fate of the two daughter cells is intimately connected to their positioning, which is in turn regulated by cell junction remodelling and orientation of the mitotic spindle. How multiple cues are integrated to dictate the ultimate positioning of daughters is not clear. Here, we identify novel mechanisms of regulation of daughter positioning in single MCF10A cells. The polarity protein, Scribble cooperates with E-cadherin for sequential roles in daughter positioning. First Scribble stabilises E-cadherin at the mitotic cortex as well as the retraction fibres, to mediate spindle orientation. Second, Scribble re-locates to the junction between the two daughters to allow a new E-cadherin-based-interface to form between them, influencing the width of the nascent daughter-daughter junction and subsequent cell positioning. Thus, E-cadherin and Scribble dynamically relocate to different intracellular sites during cell division to orient the mitotic spindle and control placement of the daughter cells after cell division. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Anchi S Chann
- Optical Sciences Centre, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia.,Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000Australia
| | - Ye Chen
- Optical Sciences Centre, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia.,Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000Australia
| | - Tanja Kinwel
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia
| | - Patrick O Humbert
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Melbourne, Victoria 3086, Australia.,Research Centre for Molecular Cancer Prevention, La Trobe University, Melbourne, Victoria 3086, Australia.,Department of Biochemistry & Pharmacology, University of Melbourne, Melbourne, Victoria 3010, Australia.,Department of Clinical Pathology, University of Melbourne, Melbourne, Victoria 3010, Australia
| | - Sarah M Russell
- Optical Sciences Centre, School of Science, Swinburne University of Technology, Hawthorn, Victoria 3122, Australia.,Immune Signalling Laboratory, Peter MacCallum Cancer Centre, Melbourne, Victoria 3000Australia.,Sir Peter MacCallum Department of Oncology, The University of Melbourne, Victoria 3010, Australia
| |
Collapse
|
12
|
Fankhaenel M, Hashemi FSG, Mourao L, Lucas E, Hosawi MM, Skipp P, Morin X, Scheele CLGJ, Elias S. Annexin A1 is a polarity cue that directs mitotic spindle orientation during mammalian epithelial morphogenesis. Nat Commun 2023; 14:151. [PMID: 36631478 PMCID: PMC9834401 DOI: 10.1038/s41467-023-35881-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 01/05/2023] [Indexed: 01/12/2023] Open
Abstract
Oriented cell divisions are critical for the formation and maintenance of structured epithelia. Proper mitotic spindle orientation relies on polarised anchoring of force generators to the cell cortex by the evolutionarily conserved protein complex formed by the Gαi subunit of heterotrimeric G proteins, the Leucine-Glycine-Asparagine repeat protein (LGN) and the nuclear mitotic apparatus protein. However, the polarity cues that control cortical patterning of this ternary complex remain largely unknown in mammalian epithelia. Here we identify the membrane-associated protein Annexin A1 (ANXA1) as an interactor of LGN in mammary epithelial cells. Annexin A1 acts independently of Gαi to instruct the accumulation of LGN and nuclear mitotic apparatus protein at the lateral cortex to ensure cortical anchoring of Dynein-Dynactin and astral microtubules and thereby planar alignment of the mitotic spindle. Loss of Annexin A1 randomises mitotic spindle orientation, which in turn disrupts epithelial architecture and luminogenesis in three-dimensional cultures of primary mammary epithelial cells. Our findings establish Annexin A1 as an upstream cortical cue that regulates LGN to direct planar cell divisions during mammalian epithelial morphogenesis.
Collapse
Affiliation(s)
- Maria Fankhaenel
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.,Insitute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Farahnaz S Golestan Hashemi
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.,Insitute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Larissa Mourao
- VIB-KULeuven Center for Cancer Biology, Herestraat 49, 3000, Leuven, Belgium
| | - Emily Lucas
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.,Insitute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Manal M Hosawi
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.,Insitute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK
| | - Paul Skipp
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK.,Insitute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK.,Centre for Proteomic Research, University of Southampton, Southampton, SO17 1BJ, UK
| | - Xavier Morin
- Ecole Normale Supérieure, CNRS, Inserm, Institut de Biologie de l'Ecole Normale Supérieure (IBENS), PSL Research University, Paris, France
| | | | - Salah Elias
- School of Biological Sciences, University of Southampton, Southampton, SO17 1BJ, UK. .,Insitute for Life Sciences, University of Southampton, Southampton, SO17 1BJ, UK.
| |
Collapse
|
13
|
Using Optogenetics to Spatially Control Cortical Dynein Activity in Mitotic Human Cells. Methods Mol Biol 2023; 2623:73-85. [PMID: 36602680 DOI: 10.1007/978-1-0716-2958-1_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
Several light-inducible hetero-dimerization tools have been developed to spatiotemporally control subcellular localization and activity of target proteins or their downstream signaling. In contrast to other genetic technologies, such as CRISPR-mediated genome editing, these optogenetic tools can locally control protein localization on the second timescale. In addition, these tools can be used to understand the sufficiency of target proteins' function and manipulate downstream events. In this chapter, I will present methods for locally activating cytoplasmic dynein at the mitotic cell cortex in human cells, with a focus on how to generate knock-in cell lines and set up a microscope system.
Collapse
|
14
|
Sana S, Rajeevan A, Kotak S. Membrane compartmentalization of Ect2/Cyk4/Mklp1 and NuMA/dynein regulates cleavage furrow formation. J Biophys Biochem Cytol 2022; 221:213522. [PMID: 36197340 PMCID: PMC9539458 DOI: 10.1083/jcb.202203127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/09/2022] [Accepted: 09/02/2022] [Indexed: 12/13/2022] Open
Abstract
In animal cells, spindle elongation during anaphase is temporally coupled with cleavage furrow formation. Spindle elongation during anaphase is regulated by NuMA/dynein/dynactin complexes that occupy the polar region of the cell membrane and are excluded from the equatorial membrane. How NuMA/dynein/dynactin are excluded from the equatorial membrane and the biological significance of this exclusion remains unknown. Here, we show that the centralspindlin (Cyk4/Mklp1) and its interacting partner RhoGEF Ect2 are required for NuMA/dynein/dynactin exclusion from the equatorial cell membrane. The Ect2-based (Ect2/Cyk4/Mklp1) and NuMA-based (NuMA/dynein/dynactin) complexes occupy mutually exclusive membrane surfaces during anaphase. The equatorial membrane enrichment of Ect2-based complexes is essential for NuMA/dynein/dynactin exclusion and proper spindle elongation. Conversely, NuMA-based complexes at the polar region of the cell membrane ensure spatially confined localization of Ect2-based complexes and thus RhoA. Overall, our work establishes that membrane compartmentalization of NuMA-based and Ect2-based complexes at the two distinct cell surfaces restricts dynein/dynactin and RhoA for coordinating spindle elongation with cleavage furrow formation.
Collapse
Affiliation(s)
- Shrividya Sana
- Department of Microbiology and Cell Biology (MCB), Indian Institute of Science (IISc), Bangalore, India
| | - Ashwathi Rajeevan
- Department of Microbiology and Cell Biology (MCB), Indian Institute of Science (IISc), Bangalore, India
| | - Sachin Kotak
- Department of Microbiology and Cell Biology (MCB), Indian Institute of Science (IISc), Bangalore, India,Correspondence to Sachin Kotak:
| |
Collapse
|
15
|
Zhong T, Gongye X, Wang M, Yu J. Understanding the underlying mechanisms governing spindle orientation: How far are we from there? J Cell Mol Med 2022; 26:4904-4910. [PMID: 36029193 PMCID: PMC9549511 DOI: 10.1111/jcmm.17526] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 08/03/2022] [Accepted: 08/10/2022] [Indexed: 11/30/2022] Open
Abstract
Proper spindle orientation is essential for cell fate determination and tissue morphogenesis. Recently, accumulating studies have elucidated several factors that regulate spindle orientation, including geometric, internal and external cues. Abnormality in these factors generally leads to defects in the physiological functions of various organs and the development of severe diseases. Herein, we first review models that are commonly used for studying spindle orientation. We then review a conservative heterotrimeric complex critically involved in spindle orientation regulation in different models. Finally, we summarize some cues that affect spindle orientation and explore whether we can establish a model that precisely elucidates the effects of spindle orientation without interfusing other spindle functions. We aim to summarize current models used in spindle orientation studies and discuss whether we can build a model that disturbs spindle orientation alone. This can substantially improve our understanding of how spindle orientation is regulated and provide insights to investigate this complex event.
Collapse
Affiliation(s)
- Tao Zhong
- Medical Integration and Practice Center, Cheeloo College of MedicineShandong UniversityJinanChina
- Shandong Cancer Hospital and InstituteShandong First Medical University, Shandong Academy of Medical SciencesJinanChina
| | - Xiaoxiao Gongye
- Medical Integration and Practice Center, Cheeloo College of MedicineShandong UniversityJinanChina
- Shandong Cancer Hospital and InstituteShandong First Medical University, Shandong Academy of Medical SciencesJinanChina
| | - Minglei Wang
- Shandong Cancer Hospital and InstituteShandong First Medical University, Shandong Academy of Medical SciencesJinanChina
| | - Jinming Yu
- Medical Integration and Practice Center, Cheeloo College of MedicineShandong UniversityJinanChina
- Shandong Cancer Hospital and InstituteShandong First Medical University, Shandong Academy of Medical SciencesJinanChina
| |
Collapse
|
16
|
Villaseca S, Romero G, Ruiz MJ, Pérez C, Leal JI, Tovar LM, Torrejón M. Gαi protein subunit: A step toward understanding its non-canonical mechanisms. Front Cell Dev Biol 2022; 10:941870. [PMID: 36092739 PMCID: PMC9449497 DOI: 10.3389/fcell.2022.941870] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 08/01/2022] [Indexed: 11/13/2022] Open
Abstract
The heterotrimeric G protein family plays essential roles during a varied array of cellular events; thus, its deregulation can seriously alter signaling events and the overall state of the cell. Heterotrimeric G-proteins have three subunits (α, β, γ) and are subdivided into four families, Gαi, Gα12/13, Gαq, and Gαs. These proteins cycle between an inactive Gα-GDP state and active Gα-GTP state, triggered canonically by the G-protein coupled receptor (GPCR) and by other accessory proteins receptors independent also known as AGS (Activators of G-protein Signaling). In this review, we summarize research data specific for the Gαi family. This family has the largest number of individual members, including Gαi1, Gαi2, Gαi3, Gαo, Gαt, Gαg, and Gαz, and constitutes the majority of G proteins α subunits expressed in a tissue or cell. Gαi was initially described by its inhibitory function on adenylyl cyclase activity, decreasing cAMP levels. Interestingly, today Gi family G-protein have been reported to be importantly involved in the immune system function. Here, we discuss the impact of Gαi on non-canonical effector proteins, such as c-Src, ERK1/2, phospholipase-C (PLC), and proteins from the Rho GTPase family members, all of them essential signaling pathways regulating a wide range of physiological processes.
Collapse
|
17
|
Torisawa T, Kimura A. Sequential accumulation of dynein and its regulatory proteins at the spindle region in the Caenorhabditis elegans embryo. Sci Rep 2022; 12:11740. [PMID: 35817834 PMCID: PMC9273622 DOI: 10.1038/s41598-022-15042-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 06/16/2022] [Indexed: 11/09/2022] Open
Abstract
Cytoplasmic dynein is responsible for various cellular processes during the cell cycle. The mechanism by which its activity is regulated spatially and temporarily inside the cell remains elusive. There are various regulatory proteins of dynein, including dynactin, NDEL1/NUD-2, and LIS1. Characterizing the spatiotemporal localization of regulatory proteins in vivo will aid understanding of the cellular regulation of dynein. Here, we focused on spindle formation in the Caenorhabditis elegans early embryo, wherein dynein and its regulatory proteins translocated from the cytoplasm to the spindle region upon nuclear envelope breakdown (NEBD). We found that (i) a limited set of dynein regulatory proteins accumulated in the spindle region, (ii) the spatial localization patterns were distinct among the regulators, and (iii) the regulatory proteins did not accumulate in the spindle region simultaneously but sequentially. Furthermore, the accumulation of NUD-2 was unique among the regulators. NUD-2 started to accumulate before NEBD (pre-NEBD accumulation), and exhibited the highest enrichment compared to the cytoplasmic concentration. Using a protein injection approach, we revealed that the C-terminal helix of NUD-2 was responsible for pre-NEBD accumulation. These findings suggest a fine temporal control of the subcellular localization of regulatory proteins.
Collapse
Affiliation(s)
- Takayuki Torisawa
- Cell Architecture Laboratory, National Institute of Genetics, Mishima, Japan.,Department of Genetics, The Graduate University for Advanced Studies, Sokendai, Mishima, Japan
| | - Akatsuki Kimura
- Cell Architecture Laboratory, National Institute of Genetics, Mishima, Japan. .,Department of Genetics, The Graduate University for Advanced Studies, Sokendai, Mishima, Japan.
| |
Collapse
|
18
|
Yi P, Goshima G. Division site determination during asymmetric cell division in plants. THE PLANT CELL 2022; 34:2120-2139. [PMID: 35201345 PMCID: PMC9134084 DOI: 10.1093/plcell/koac069] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 02/20/2022] [Indexed: 05/19/2023]
Abstract
During development, both animals and plants exploit asymmetric cell division (ACD) to increase tissue complexity, a process that usually generates cells dissimilar in size, morphology, and fate. Plants lack the key regulators that control ACD in animals. Instead, plants have evolved two unique cytoskeletal structures to tackle this problem: the preprophase band (PPB) and phragmoplast. The assembly of the PPB and phragmoplast and their contributions to division plane orientation have been extensively studied. However, how the division plane is positioned off the cell center during asymmetric division is poorly understood. Over the past 20 years, emerging evidence points to a critical role for polarly localized membrane proteins in this process. Although many of these proteins are species- or cell type specific, and the molecular mechanism underlying division asymmetry is not fully understood, common features such as morphological changes in cells, cytoskeletal dynamics, and nuclear positioning have been observed. In this review, we provide updates on polarity establishment and nuclear positioning during ACD in plants. Together with previous findings about symmetrically dividing cells and the emerging roles of developmental cues, we aim to offer evolutionary insight into a common framework for asymmetric division-site determination and highlight directions for future work.
Collapse
Affiliation(s)
- Peishan Yi
- Key Laboratory of Bio-Resource and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu, Sichuan 610065, China
| | - Gohta Goshima
- Sugashima Marine Biological Laboratory, Graduate School of Science, Nagoya University, Toba 517-0004, Japan
- Division of Biological Science, Graduate School of Science, Nagoya University, Nagoya Aichi 464-8602, Japan
| |
Collapse
|
19
|
Spindle motility skews division site determination during asymmetric cell division in Physcomitrella. Nat Commun 2022; 13:2488. [PMID: 35513464 PMCID: PMC9072379 DOI: 10.1038/s41467-022-30239-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Accepted: 04/21/2022] [Indexed: 01/09/2023] Open
Abstract
Asymmetric cell division (ACD) underlies the development of multicellular organisms. In animal ACD, the cell division site is determined by active spindle-positioning mechanisms. In contrast, it is considered that the division site in plants is determined prior to mitosis by the microtubule-actin belt known as the preprophase band (PPB) and that the localization of the mitotic spindle is typically static and does not govern the division plane. However, in some plant species, ACD occurs in the absence of PPB. Here, we isolate a hypomorphic mutant of the conserved microtubule-associated protein TPX2 in the moss Physcomitrium patens (Physcomitrella) and observe spindle motility during PPB-independent cell division. This defect compromises the position of the division site and produces inverted daughter cell sizes in the first ACD of gametophore (leafy shoot) development. The phenotype is rescued by restoring endogenous TPX2 function and, unexpectedly, by depolymerizing actin filaments. Thus, we identify an active spindle-positioning mechanism that, reminiscent of acentrosomal ACD in animals, involves microtubules and actin filaments, and sets the division site in plants.
Collapse
|
20
|
Dema A, van Haren J, Wittmann T. Optogenetic EB1 inactivation shortens metaphase spindles by disrupting cortical force-producing interactions with astral microtubules. Curr Biol 2022; 32:1197-1205.e4. [PMID: 35090591 PMCID: PMC8930524 DOI: 10.1016/j.cub.2022.01.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/09/2021] [Accepted: 01/07/2022] [Indexed: 10/19/2022]
Abstract
Chromosome segregation is accomplished by the mitotic spindle, a bipolar micromachine built primarily from microtubules. Different microtubule populations contribute to spindle function: kinetochore microtubules attach and transmit forces to chromosomes, antiparallel interpolar microtubules support spindle structure, and astral microtubules connect spindle poles to the cell cortex.1,2 In mammalian cells, end-binding (EB) proteins associate with all growing microtubule plus ends throughout the cell cycle and serve as adaptors for diverse +TIPs that control microtubule dynamics and interactions with other intracellular structures.3 Because binding of many +TIPs to EB1 and thus microtubule-end association is switched off by mitotic phosphorylation,4-6 the mitotic function of EBs remains poorly understood. To analyze how EB1 and associated +TIPs on different spindle microtubule populations contribute to mitotic spindle dynamics, we use a light-sensitive EB1 variant, π-EB1, that allows local, acute, and reversible inactivation of +TIP association with growing microtubule ends in live cells.7 We find that acute π-EB1 photoinactivation results in rapid and reversible metaphase spindle shortening and transient relaxation of tension across the central spindle. However, in contrast to interphase, π-EB1 photoinactivation does not inhibit microtubule growth in metaphase but instead increases astral microtubule length and number. Yet in the absence of EB1 activity, astral microtubules fail to engage the cortical dynein/dynactin machinery, and spindle poles move away from regions of π-EB1 photoinactivation. In conclusion, our optogenetic approach reveals mitotic EB1 functions that remain hidden in genetic experiments, likely due to compensatory molecular systems regulating vertebrate spindle dynamics.
Collapse
Affiliation(s)
- Alessandro Dema
- Department of Cell & Tissue Biology, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA
| | | | - Torsten Wittmann
- Department of Cell & Tissue Biology, University of California, San Francisco, 513 Parnassus Avenue, San Francisco, CA 94143, USA.
| |
Collapse
|
21
|
Kiyomitsu T, Boerner S. The Nuclear Mitotic Apparatus (NuMA) Protein: A Key Player for Nuclear Formation, Spindle Assembly, and Spindle Positioning. Front Cell Dev Biol 2021; 9:653801. [PMID: 33869212 PMCID: PMC8047419 DOI: 10.3389/fcell.2021.653801] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2021] [Accepted: 03/10/2021] [Indexed: 01/10/2023] Open
Abstract
The nuclear mitotic apparatus (NuMA) protein is well conserved in vertebrates, and dynamically changes its subcellular localization from the interphase nucleus to the mitotic/meiotic spindle poles and the mitotic cell cortex. At these locations, NuMA acts as a key structural hub in nuclear formation, spindle assembly, and mitotic spindle positioning, respectively. To achieve its variable functions, NuMA interacts with multiple factors, including DNA, microtubules, the plasma membrane, importins, and cytoplasmic dynein. The binding of NuMA to dynein via its N-terminal domain drives spindle pole focusing and spindle positioning, while multiple interactions through its C-terminal region define its subcellular localizations and functions. In addition, NuMA can self-assemble into high-ordered structures which likely contribute to spindle positioning and nuclear formation. In this review, we summarize recent advances in NuMA’s domains, functions and regulations, with a focus on human NuMA, to understand how and why vertebrate NuMA participates in these functions in comparison with invertebrate NuMA-related proteins.
Collapse
Affiliation(s)
- Tomomi Kiyomitsu
- Cell Division Dynamics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Japan
| | - Susan Boerner
- Cell Division Dynamics Unit, Okinawa Institute of Science and Technology Graduate University, Onna-son, Japan
| |
Collapse
|
22
|
Martinez P, Dixit R, Balkunde RS, Zhang A, O'Leary SE, Brakke KA, Rasmussen CG. TANGLED1 mediates microtubule interactions that may promote division plane positioning in maize. J Cell Biol 2021; 219:151878. [PMID: 32568386 PMCID: PMC7401798 DOI: 10.1083/jcb.201907184] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 12/17/2019] [Accepted: 04/27/2020] [Indexed: 12/15/2022] Open
Abstract
The microtubule cytoskeleton serves as a dynamic structural framework for mitosis in eukaryotic cells. TANGLED1 (TAN1) is a microtubule-binding protein that localizes to the division site and mitotic microtubules and plays a critical role in division plane orientation in plants. Here, in vitro experiments demonstrate that TAN1 directly binds microtubules, mediating microtubule zippering or end-on microtubule interactions, depending on their contact angle. Maize tan1 mutant cells improperly position the preprophase band (PPB), which predicts the future division site. However, cell shape–based modeling indicates that PPB positioning defects are likely a consequence of abnormal cell shapes and not due to TAN1 absence. In telophase, colocalization of growing microtubules ends from the phragmoplast with TAN1 at the division site suggests that TAN1 interacts with microtubule tips end-on. Together, our results suggest that TAN1 contributes to microtubule organization to ensure proper division plane orientation.
Collapse
Affiliation(s)
- Pablo Martinez
- Biochemistry and Molecular Biology Graduate Program, University of California, Riverside, CA
| | - Ram Dixit
- Department of Biology and Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, MO
| | - Rachappa S Balkunde
- Department of Biology and Center for Engineering Mechanobiology, Washington University in St. Louis, St. Louis, MO
| | - Antonia Zhang
- Department of Biochemistry, University of California, Riverside, CA
| | - Seán E O'Leary
- Biochemistry and Molecular Biology Graduate Program, University of California, Riverside, CA.,Department of Biochemistry, University of California, Riverside, CA
| | - Kenneth A Brakke
- Department of Mathematics, Susquehanna University, Selinsgrove, PA
| | - Carolyn G Rasmussen
- Biochemistry and Molecular Biology Graduate Program, University of California, Riverside, CA.,Department of Botany and Plant Sciences, Center for Plant Cell Biology, Institute for Integrative Genome Biology, University of California, Riverside, CA
| |
Collapse
|
23
|
Barbosa DJ, Teixeira V, Duro J, Carvalho AX, Gassmann R. Dynein-dynactin segregate meiotic chromosomes in C. elegans spermatocytes. Development 2021; 148:dev.197780. [PMID: 33462114 DOI: 10.1242/dev.197780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 01/05/2021] [Indexed: 11/20/2022]
Abstract
The microtubule motor cytoplasmic dynein 1 (dynein) and its essential activator dynactin have conserved roles in spindle assembly and positioning during female meiosis and mitosis, but their contribution to male meiosis remains poorly understood. Here, we characterize the G33S mutation in the C. elegans dynactin subunit DNC-1, which corresponds to G59S in human p150Glued that causes motor neuron disease. In spermatocytes, dnc-1(G33S) delays spindle assembly and penetrantly inhibits anaphase spindle elongation in meiosis I, which prevents the segregation of homologous chromosomes. By contrast, chromosomes segregate without errors in the early dnc-1(G33S) embryo. Deletion of the DNC-1 N-terminus shows that defective meiosis in dnc-1(G33S) spermatocytes is not due to the inability of DNC-1 to interact with microtubules. Instead, our results suggest that the DNC-1(G33S) protein, which is aggregation prone in vitro, is less stable in spermatocytes than the early embryo, resulting in different phenotypic severity in the two dividing tissues. Thus, the dnc-1(G33S) mutant reveals that dynein-dynactin drive meiotic chromosome segregation in spermatocytes and illustrates that the extent to which protein misfolding leads to loss of function can vary significantly between cell types.
Collapse
Affiliation(s)
- Daniel J Barbosa
- Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto, 4200-135 Porto, Portugal
| | - Vanessa Teixeira
- Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto, 4200-135 Porto, Portugal
| | - Joana Duro
- Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto, 4200-135 Porto, Portugal
| | - Ana X Carvalho
- Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto, 4200-135 Porto, Portugal
| | - Reto Gassmann
- Instituto de Investigação e Inovação em Saúde - i3S, Universidade do Porto, 4200-135 Porto, Portugal
| |
Collapse
|
24
|
Yukawa M, Teratani Y, Toda T. Escape from mitotic catastrophe by actin-dependent nuclear displacement in fission yeast. iScience 2021; 24:102031. [PMID: 33506191 PMCID: PMC7814194 DOI: 10.1016/j.isci.2020.102031] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 12/17/2020] [Accepted: 12/29/2020] [Indexed: 11/23/2022] Open
Abstract
Eukaryotic cells position the nucleus within the proper intracellular space, thereby safeguarding a variety of cellular processes. In fission yeast, the interphase nucleus is placed in the cell middle in a microtubule-dependent manner. By contrast, how the mitotic nucleus is positioned remains elusive. Here we show that several cell-cycle mutants that arrest in mitosis all displace the nucleus toward one end of the cell. Intriguingly, the actin cytoskeleton is responsible for nuclear movement. Time-lapse live imaging indicates that mitosis-specific F-actin cables possibly push the nucleus through direct interaction with the nuclear envelope, and subsequently actomyosin ring constriction further shifts the nucleus away from the center. This nuclear movement is beneficial, because if the nuclei were retained in the center, unseparated chromosomes would be intersected by the contractile actin ring and the septum, imposing the lethal cut phenotype. Thus, fission yeast escapes from mitotic catastrophe by means of actin-dependent nuclear movement. Actin-dependent mitotic nuclear positioning in fission yeast Actin cables and ring closure drive nuclear displacement upon mitotic arrest Nuclear displacement evades cut-mediated cell death Survivors resume cell division as diploids
Collapse
Affiliation(s)
- Masashi Yukawa
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima 739-8530, Japan.,Laboratory of Molecular and Chemical Cell Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| | - Yasuhiro Teratani
- Laboratory of Molecular and Chemical Cell Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| | - Takashi Toda
- Hiroshima Research Center for Healthy Aging (HiHA), Hiroshima University, Higashi-Hiroshima 739-8530, Japan.,Laboratory of Molecular and Chemical Cell Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima 739-8530, Japan
| |
Collapse
|
25
|
Tsuchiya K, Hayashi H, Nishina M, Okumura M, Sato Y, Kanemaki MT, Goshima G, Kiyomitsu T. Ran-GTP Is Non-essential to Activate NuMA for Mitotic Spindle-Pole Focusing but Dynamically Polarizes HURP Near Chromosomes. Curr Biol 2021; 31:115-127.e3. [DOI: 10.1016/j.cub.2020.09.091] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 08/25/2020] [Accepted: 09/30/2020] [Indexed: 12/27/2022]
|
26
|
Singh D, Schmidt N, Müller F, Bange T, Bird AW. Destabilization of Long Astral Microtubules via Cdk1-Dependent Removal of GTSE1 from Their Plus Ends Facilitates Prometaphase Spindle Orientation. Curr Biol 2020; 31:766-781.e8. [PMID: 33333009 DOI: 10.1016/j.cub.2020.11.040] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 09/25/2020] [Accepted: 11/16/2020] [Indexed: 12/19/2022]
Abstract
The precise regulation of microtubule dynamics over time and space in dividing cells is critical for several mitotic mechanisms that ultimately enable cell proliferation, tissue organization, and development. Astral microtubules, which extend from the centrosome toward the cell cortex, must be present for the mitotic spindle to properly orient, as well as for the faithful execution of anaphase and cytokinesis. However, little is understood about how the dynamic properties of astral microtubules are regulated spatiotemporally, or the contribution of astral microtubule dynamics to spindle positioning. The mitotic regulator Cdk1-CyclinB promotes destabilization of centrosomal microtubules and increased microtubule dynamics as cells enter mitosis, but how Cdk1 activity modulates astral microtubule stability, and whether it impacts spindle positioning, is unknown. Here, we uncover a mechanism revealing that Cdk1 destabilizes astral microtubules in prometaphase and thereby influences spindle reorientation. Phosphorylation of the EB1-dependent microtubule plus-end tracking protein GTSE1 by Cdk1 in early mitosis abolishes its interaction with EB1 and recruitment to microtubule plus ends. Loss of Cdk1 activity, or mutation of phosphorylation sites in GTSE1, induces recruitment of GTSE1 to growing microtubule plus ends in mitosis. This decreases the catastrophe frequency of astral microtubules and causes an increase in the number of long astral microtubules reaching the cell cortex, which restrains the ability of cells to reorient spindles along the long cellular axis in early mitosis. Astral microtubules thus must not only be present but also dynamic to allow the spindle to reorient, a state assisted by selective destabilization of long astral microtubules via Cdk1.
Collapse
Affiliation(s)
- Divya Singh
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Nadine Schmidt
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Franziska Müller
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany
| | - Tanja Bange
- Department for Systems Chronobiology, Institute of Medical Psychology, LMU Munich, Goethestrasse 31/ I, 80336 Munich, Germany
| | - Alexander W Bird
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Strasse 11, 44227 Dortmund, Germany.
| |
Collapse
|
27
|
Polverino F, Naso FD, Asteriti IA, Palmerini V, Singh D, Valente D, Bird AW, Rosa A, Mapelli M, Guarguaglini G. The Aurora-A/TPX2 Axis Directs Spindle Orientation in Adherent Human Cells by Regulating NuMA and Microtubule Stability. Curr Biol 2020; 31:658-667.e5. [PMID: 33275894 DOI: 10.1016/j.cub.2020.10.096] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 09/16/2020] [Accepted: 10/30/2020] [Indexed: 12/17/2022]
Abstract
Mitotic spindle orientation is a crucial process that defines the axis of cell division, contributing to daughter cell positioning and fate, and hence to tissue morphogenesis and homeostasis.1,2 The trimeric NuMA/LGN/Gαi complex, the major determinant of spindle orientation, exerts pulling forces on the spindle poles by anchoring astral microtubules (MTs) and dynein motors to the cell cortex.3,4 Mitotic kinases contribute to correct spindle orientation by regulating nuclear mitotic apparatus protein (NuMA) localization,5-7 among which the Aurora-A centrosomal kinase regulates NuMA targeting to the cell cortex in metaphase.8,9 Aurora-A and its activator targeting protein for Xklp2 (TPX2) are frequently overexpressed in cancer,10-12 raising the question as to whether spindle orientation is among the processes downstream the Aurora-A/TPX2 signaling axis altered under pathological conditions. Here, we investigated the role of TPX2 in the Aurora-A- and NuMA-dependent spindle orientation. We show that, in cultured adherent human cells, the interaction with TPX2 is required for Aurora-A to exert this function. We also show that Aurora-A, TPX2, and NuMA are part of a complex at spindle MTs, where TPX2 acts as a platform for Aurora-A regulation of NuMA. Interestingly, excess TPX2 does not influence NuMA localization but induces a "super-alignment" of the spindle axis with respect to the substrate, although an excess of Aurora-A induces spindle misorientation. These opposite effects are both linked to altered MT stability. Overall, our results highlight the importance of TPX2 for spindle orientation and suggest that spindle orientation is differentially sensitive to unbalanced levels of Aurora-A, TPX2, or the Aurora-A/TPX2 complex.
Collapse
Affiliation(s)
- Federica Polverino
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Department of Biology and Biotechnology, Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy; Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Via Adamello 16, 20141 Milan, Italy
| | - Francesco D Naso
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Department of Biology and Biotechnology, Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy
| | - Italia A Asteriti
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Department of Biology and Biotechnology, Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy
| | - Valentina Palmerini
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Via Adamello 16, 20141 Milan, Italy
| | - Divya Singh
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Davide Valente
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Department of Biology and Biotechnology, Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy
| | - Alexander W Bird
- Max Planck Institute of Molecular Physiology, Otto-Hahn-Str. 11, 44227 Dortmund, Germany
| | - Alessandro Rosa
- Center for Life Nano Science, Istituto Italiano di Tecnologia, Viale Regina Elena 291, 00161 Rome, Italy; Department of Biology and Biotechnology "C. Darwin," Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy
| | - Marina Mapelli
- Department of Experimental Oncology, IEO European Institute of Oncology IRCCS, Via Adamello 16, 20141 Milan, Italy.
| | - Giulia Guarguaglini
- Institute of Molecular Biology and Pathology, National Research Council of Italy, c/o Department of Biology and Biotechnology, Sapienza University of Rome, Via degli Apuli 4, 00185 Rome, Italy.
| |
Collapse
|
28
|
Roles for microtubules in the proliferative and differentiated cells of stratified epithelia. Curr Opin Cell Biol 2020; 68:98-104. [PMID: 33186891 DOI: 10.1016/j.ceb.2020.10.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Revised: 09/24/2020] [Accepted: 10/05/2020] [Indexed: 12/27/2022]
Abstract
While microtubule dynamics and organization have been extensively studied invitro, both biochemically and in cultured cells, recent work has begun to extend this into tissues ex vivo and organisms in vivo. Advances in genetic tools and imaging technology have allowed studies on the dynamics, function, and organization of microtubules in the stratified epithelia of the epidermis. Here, we discuss recent work that highlights the varied roles that microtubules play in supporting epidermal function. These findings demonstrate that studying microtubules in tissues has revealed not only novel aspects of epidermal biology but also new principles of microtubule regulation.
Collapse
|
29
|
Omer S, Brock K, Beckford J, Lee WL. Overexpression of Mdm36 reveals Num1 foci that mediate dynein-dependent microtubule sliding in budding yeast. J Cell Sci 2020; 133:jcs246363. [PMID: 32938686 PMCID: PMC7578358 DOI: 10.1242/jcs.246363] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 09/01/2020] [Indexed: 01/21/2023] Open
Abstract
The current model for spindle positioning requires attachment of the microtubule (MT) motor cytoplasmic dynein to the cell cortex, where it generates pulling force on astral MTs to effect spindle displacement. How dynein is anchored by cortical attachment machinery to generate large spindle-pulling forces remains unclear. Here, we show that cortical clustering of Num1, the yeast dynein attachment molecule, is limited by its assembly factor Mdm36. Overexpression of Mdm36 results in an overall enhancement of Num1 clustering but reveals a population of dim Num1 clusters that mediate dynein anchoring at the cell cortex. Direct imaging shows that bud-localized, dim Num1 clusters containing around only six Num1 molecules mediate dynein-dependent spindle pulling via a lateral MT sliding mechanism. Mutations affecting Num1 clustering interfere with mitochondrial tethering but do not interfere with the dynein-based spindle-pulling function of Num1. We propose that formation of small ensembles of attachment molecules is sufficient for dynein anchorage and cortical generation of large spindle-pulling forces.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Safia Omer
- Department of Biological Sciences, Dartmouth College, 78 College Street, Hanover, NH 03755, USA
| | - Katia Brock
- Department of Biological Sciences, Dartmouth College, 78 College Street, Hanover, NH 03755, USA
| | - John Beckford
- Department of Biological Sciences, Dartmouth College, 78 College Street, Hanover, NH 03755, USA
| | - Wei-Lih Lee
- Department of Biological Sciences, Dartmouth College, 78 College Street, Hanover, NH 03755, USA
| |
Collapse
|
30
|
Mechanical regulation of cell size, fate, and behavior during asymmetric cell division. Curr Opin Cell Biol 2020; 67:9-16. [PMID: 32768924 DOI: 10.1016/j.ceb.2020.07.002] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Revised: 06/15/2020] [Accepted: 07/06/2020] [Indexed: 01/03/2023]
Abstract
Asymmetric cell division (ACD) is an evolutionary conserved mechanism used by prokaryotes and eukaryotes alike to generate cell diversity. ACD can be manifested in biased segregation of macromolecules or differential partitioning of cell organelles. Cells are also constantly subject to extrinsic or intrinsic mechanical forces, influencing cell behavior and fate. During ACD, cell intrinsic forces generated through the spatiotemporal regulation of the actomyosin cytoskeleton can influence sibling cell size. External mechanical stresses are further translated by transcriptional coactivators or mechanically gated ion channels. Here, we will discuss recent literature, exploring how mechanical cues influence various aspects of ACD and stem cell behavior, and how these mechanical cues contribute to cell fate decisions.
Collapse
|
31
|
Abstract
Asymmetric cell division (ACD) is an evolutionarily conserved mechanism used by prokaryotes and eukaryotes alike to control cell fate and generate cell diversity. A detailed mechanistic understanding of ACD is therefore necessary to understand cell fate decisions in health and disease. ACD can be manifested in the biased segregation of macromolecules, the differential partitioning of cell organelles, or differences in sibling cell size or shape. These events are usually preceded by and influenced by symmetry breaking events and cell polarization. In this Review, we focus predominantly on cell intrinsic mechanisms and their contribution to cell polarization, ACD and binary cell fate decisions. We discuss examples of polarized systems and detail how polarization is established and, whenever possible, how it contributes to ACD. Established and emerging model organisms will be considered alike, illuminating both well-documented and underexplored forms of polarization and ACD.
Collapse
Affiliation(s)
- Bharath Sunchu
- Department of Biology, University of Washington, Life Science Building, Seattle, WA 98195, USA
| | - Clemens Cabernard
- Department of Biology, University of Washington, Life Science Building, Seattle, WA 98195, USA
| |
Collapse
|
32
|
Torisawa T, Kimura A. The Generation of Dynein Networks by Multi-Layered Regulation and Their Implication in Cell Division. Front Cell Dev Biol 2020; 8:22. [PMID: 32083077 PMCID: PMC7004958 DOI: 10.3389/fcell.2020.00022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2019] [Accepted: 01/13/2020] [Indexed: 12/13/2022] Open
Abstract
Cytoplasmic dynein-1 (hereafter referred to as dynein) is a major microtubule-based motor critical for cell division. Dynein is essential for the formation and positioning of the mitotic spindle as well as the transport of various cargos in the cell. A striking feature of dynein is that, despite having a wide variety of functions, the catalytic subunit is coded in a single gene. To perform various cellular activities, there seem to be different types of dynein that share a common catalytic subunit. In this review, we will refer to the different kinds of dynein as “dyneins.” This review attempts to classify the mechanisms underlying the emergence of multiple dyneins into four layers. Inside a cell, multiple dyneins generated through the multi-layered regulations interact with each other to form a network of dyneins. These dynein networks may be responsible for the accurate regulation of cellular activities, including cell division. How these networks function inside a cell, with a focus on the early embryogenesis of Caenorhabditis elegans embryos, is discussed, as well as future directions for the integration of our understanding of molecular layering to understand the totality of dynein’s function in living cells.
Collapse
Affiliation(s)
- Takayuki Torisawa
- Cell Architecture Laboratory, National Institute of Genetics, Mishima, Japan.,Department of Genetics, The Graduate University for Advanced Studies, SOKENDAI, Mishima, Japan
| | - Akatsuki Kimura
- Cell Architecture Laboratory, National Institute of Genetics, Mishima, Japan.,Department of Genetics, The Graduate University for Advanced Studies, SOKENDAI, Mishima, Japan
| |
Collapse
|
33
|
Del Castillo U, Norkett R, Gelfand VI. Unconventional Roles of Cytoskeletal Mitotic Machinery in Neurodevelopment. Trends Cell Biol 2019; 29:901-911. [PMID: 31597609 DOI: 10.1016/j.tcb.2019.08.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 08/22/2019] [Accepted: 08/23/2019] [Indexed: 12/20/2022]
Abstract
At first look, cell division and neurite formation seem to be two different, essential biological processes. However, both processes require extensive reorganization of the cytoskeleton, and especially microtubules. Remarkably, in recent years, independent work from several groups has shown that multiple cytoskeletal components previously considered specific for the mitotic machinery play important roles in neurite initiation and extension. In this review article, we describe how several cytoplasmic and mitotic microtubule motors, components of mitotic kinetochores, and cortical actin participate in reorganization of the microtubule network required to form and maintain axons and dendrites. The emerging similarities between these two biological processes will certainly generate new insights into the mechanisms generating the unique morphology of neurons.
Collapse
Affiliation(s)
- Urko Del Castillo
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | - Rosalind Norkett
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA
| | - Vladimir I Gelfand
- Department of Cell and Developmental Biology, Feinberg School of Medicine, Northwestern University, 303 East Chicago Avenue, Chicago, IL 60611, USA.
| |
Collapse
|
34
|
van Leen EV, di Pietro F, Bellaïche Y. Oriented cell divisions in epithelia: from force generation to force anisotropy by tension, shape and vertices. Curr Opin Cell Biol 2019; 62:9-16. [PMID: 31509787 DOI: 10.1016/j.ceb.2019.07.013] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 07/25/2019] [Accepted: 07/26/2019] [Indexed: 01/01/2023]
Abstract
Mitotic spindle orientation has been linked to asymmetric cell divisions, tissue morphogenesis and homeostasis. The canonical pathway to orient the mitotic spindle is composed of the cortical recruitment factor NuMA and the molecular motor dynein, which exerts pulling forces on astral microtubules to orient the spindle. Recent work has defined a novel role for NuMA as a direct contributor to force generation. In addition, the exploration of geometrical and physical cues combined with the study of classical polarity pathways has led to deeper insights into the upstream regulation of spindle orientation. Here, we focus on how cell shape, junctions and mechanical tension act to orient spindle pulling forces in epithelia, and discuss different roles for spindle orientation in epithelia.
Collapse
Affiliation(s)
- Eric Victor van Leen
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, F-75248 Paris Cedex 05, France; Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 3215, INSERM U934, F-75005, France
| | - Florencia di Pietro
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, F-75248 Paris Cedex 05, France; Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 3215, INSERM U934, F-75005, France
| | - Yohanns Bellaïche
- Institut Curie, PSL Research University, CNRS UMR 3215, INSERM U934, F-75248 Paris Cedex 05, France; Sorbonne Universités, UPMC Univ Paris 06, CNRS UMR 3215, INSERM U934, F-75005, France.
| |
Collapse
|
35
|
Chen M, Cao Y, Dong D, Zhang Z, Zhang Y, Chen J, Luo Y, Chen Q, Xiao X, Zhou J, Xie W, Li D, Xie S, Liu M. Regulation of mitotic spindle orientation by phosphorylation of end binding protein 1. Exp Cell Res 2019; 384:111618. [PMID: 31505167 DOI: 10.1016/j.yexcr.2019.111618] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2019] [Revised: 09/05/2019] [Accepted: 09/06/2019] [Indexed: 12/21/2022]
Abstract
End binding protein 1 (EB1) is a key regulator of microtubule dynamics that orchestrates hierarchical interaction networks at microtubule plus ends to control proper cell division. EB1 activity is known to be regulated by serine/threonine phosphorylation; however, how tyrosine phosphorylation affects EB1 activity remains poorly understood. In this study, we mapped the tyrosine phosphorylation pattern of EB1 in synchronized cells and identified two tyrosine phosphorylation sites (Y217 and Y247) in mitotic cells. Using phospho-deficient (Y/F) and phospho-mimic (Y/D) mutants, we revealed that Y247, but not Y217, is critical for astral microtubule stability. The Y247D mutant contributed to increased spindle angle, indicative of defects in spindle orientation. Time-lapse microscopy revealed that the Y247D mutant significantly delayed mitotic progression by increasing the duration times of prometaphase and metaphase. Structural analysis suggests that Y247 mutants lead to instability of the hydrophobic cavity in the EB homology (EBH) domain, thereby affecting its interactions with p150glued, a protein essential for Gαi/LGN/NuMA complex capture. These findings uncover a crucial role for EB1 phosphorylation in the regulation of mitotic spindle orientation and cell division.
Collapse
Affiliation(s)
- Miao Chen
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Yu Cao
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Dan Dong
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Zhenhua Zhang
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Yijun Zhang
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Jie Chen
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Youguang Luo
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Qiang Chen
- Department of Emergency, Shanxian Dongda Hospital, Shandong, 274300, China
| | - Xin Xiao
- Department of Pathology, Zaozhuang Central District People's Hospital, Shandong, 277011, China
| | - Jun Zhou
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong, 250014, China; State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Wei Xie
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong, 250014, China
| | - Dengwen Li
- State Key Laboratory of Medicinal Chemical Biology, Key Laboratory of Bioactive Materials of the Ministry of Education, Tianjin Key Laboratory of Protein Science, College of Life Sciences, Nankai University, Tianjin, 300071, China
| | - Songbo Xie
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong, 250014, China.
| | - Min Liu
- College of Life Sciences, Shandong Provincial Key Laboratory of Animal Resistance Biology, Collaborative Innovation Center of Cell Biology in Universities of Shandong, Institute of Biomedical Sciences, Shandong Normal University, Jinan, Shandong, 250014, China.
| |
Collapse
|