1
|
Peng R, Shang J, Jiang N, Chi-Jen H, Gu Y, Xing B, Hu R, Wu B, Wang D, Xu X, Lu H. Klf10 is involved in extracellular matrix calcification of chondrocytes alleviating chondrocyte senescence. J Transl Med 2024; 22:52. [PMID: 38217021 PMCID: PMC10790269 DOI: 10.1186/s12967-023-04666-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Accepted: 10/27/2023] [Indexed: 01/14/2024] Open
Abstract
Osteoarthritis (OA) is a chronic degenerative disease resulting joint disability and pain. Accumulating evidences suggest that chondrocyte extracellular matrix calcification plays an important role in the development of OA. Here, we showed that Krüppel-like factor 10 (Klf10) was involved in the regulation of chondrocyte extracellular matrix calcification by regulating the expression of Frizzled9. Knockdown of Klf10 attenuated TBHP induced calcification and reduced calcium content in chondrocytes. Restoring extracellular matrix calcification of chondrocytes could aggravate chondrocyte senescence. Destabilization of a medial meniscus (DMM) mouse model of OA, in vivo experiments revealed that knockdown Klf10 improved the calcification of articular cartilage and ameliorated articular cartilage degeneration. These findings suggested that knockdown Klf10 inhibited extracellular matrix calcification-related changes in chondrocytes and alleviated chondrocyte senescence.
Collapse
Affiliation(s)
- Rong Peng
- Department of Orthopedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Jie Shang
- Department of Orthopedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Ning Jiang
- Department of Orthopedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
- Department of Orthopedics, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, 26400, Shandong, China
| | - Hsu Chi-Jen
- Department of Orthopedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Yu Gu
- Department of Orthopedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Baizhou Xing
- Department of Orthopedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Renan Hu
- Department of Orthopedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Biao Wu
- Department of Orthopedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong, China
| | - Dawei Wang
- Department of Orthopedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China.
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong, China.
| | - Xianghe Xu
- Department of Orthopedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China.
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong, China.
| | - Huading Lu
- Department of Orthopedics, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai, 519000, Guangdong, China.
- Guangdong Provincial Key Laboratory of Biomedical Imaging, The Fifth Affiliated Hospital, Sun Yat-sen University, Zhuhai, 519000, Guangdong, China.
| |
Collapse
|
2
|
Park SJ, Lee JS, Nam YR, Lee JM, Ki DW, Yun BS, Choi SW, Van NTH, Nam JH, Kim HJ, Kim WK. Anti-Inflammatory Effects of Alphitolic Acid Isolated from Agrimonia coreana Nakai Extracts Are Mediated via the Inhibition of I CRAC Activity in T Cells. Int J Mol Sci 2023; 24:17309. [PMID: 38139137 PMCID: PMC10743429 DOI: 10.3390/ijms242417309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 11/24/2023] [Accepted: 12/07/2023] [Indexed: 12/24/2023] Open
Abstract
Agrimonia pilosa Ledeb., an important medicinal herb in traditional East Asian medicine, is primarily used to treat abdominal pain, dysentery, and hemostasis. There are ten other reported species of Agrimonia plants, including Agrimonia coreana Nakai-a naturally growing species in South Korea-and Agrimonia eupatoria Linn. Although recent studies have isolated numerous active constituents and investigated their effects, the medicinal utility of this herb is not yet fully explored. Through patch-clamp recording, a previous study reported that Agrimonia plant extracts inhibit the function of Ca2+ release-activated Ca2+ channels (CRACs). Herein, we aimed to identify and isolate the main compounds in A. coreana responsible for CRAC inhibition while assessing the anti-inflammatory effects mediated by this inhibition. We demonstrated for the first time that alphitolic acid isolated from A. coreana has a dose-dependent inhibitory effect on CRAC activity and, thus, an inhibitory effect on intracellular calcium increase. Furthermore, analysis of human CD4+ T cell proliferation via the carboxyfluorescein diacetate succinimidyl ester method revealed that alphitolic acid inhibited T cell proliferation in a concentration-dependent manner. Our findings provide a theoretical basis for the potential therapeutic use of alphitolic acid in the treatment of inflammatory diseases.
Collapse
Affiliation(s)
- Su Jin Park
- Department of Physiology, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (S.J.P.); (J.M.L.); (S.W.C.); (N.T.H.V.); (J.H.N.)
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Gyeonggi-do, Goyang 10326, Republic of Korea;
| | - Jin Seok Lee
- Department of Internal Medicine, Graduate School of Medicine, Dongguk University, 27 Dongguk-ro, Ilsan Dong-gu, Gyeonggi-do, Goyang 10326, Republic of Korea;
| | - Yu Ran Nam
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Gyeonggi-do, Goyang 10326, Republic of Korea;
- CIPA KOREA Inc. 755-27, Gobong-ro, Gyeonggi-do, Paju-si 10911, Republic of Korea
| | - Ji Min Lee
- Department of Physiology, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (S.J.P.); (J.M.L.); (S.W.C.); (N.T.H.V.); (J.H.N.)
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Gyeonggi-do, Goyang 10326, Republic of Korea;
| | - Dae-Won Ki
- Division of Biotechnology and Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Gobong-ro 79, Iksan 54596, Republic of Korea; (D.-W.K.); (B.-S.Y.)
| | - Bong-Sik Yun
- Division of Biotechnology and Advanced Institute of Environment and Bioscience, College of Environmental and Bioresource Sciences, Jeonbuk National University, Gobong-ro 79, Iksan 54596, Republic of Korea; (D.-W.K.); (B.-S.Y.)
| | - Seong Woo Choi
- Department of Physiology, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (S.J.P.); (J.M.L.); (S.W.C.); (N.T.H.V.); (J.H.N.)
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Gyeonggi-do, Goyang 10326, Republic of Korea;
| | - Nhung Thi Hong Van
- Department of Physiology, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (S.J.P.); (J.M.L.); (S.W.C.); (N.T.H.V.); (J.H.N.)
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Gyeonggi-do, Goyang 10326, Republic of Korea;
| | - Joo Hyun Nam
- Department of Physiology, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (S.J.P.); (J.M.L.); (S.W.C.); (N.T.H.V.); (J.H.N.)
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Gyeonggi-do, Goyang 10326, Republic of Korea;
| | - Hyun Jong Kim
- Department of Physiology, Dongguk University College of Medicine, 123 Dongdae-ro, Gyeongju 38066, Republic of Korea; (S.J.P.); (J.M.L.); (S.W.C.); (N.T.H.V.); (J.H.N.)
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Gyeonggi-do, Goyang 10326, Republic of Korea;
| | - Woo Kyung Kim
- Channelopathy Research Center (CRC), Dongguk University College of Medicine, 32 Dongguk-ro, Ilsan Dong-gu, Gyeonggi-do, Goyang 10326, Republic of Korea;
- Department of Internal Medicine, Graduate School of Medicine, Dongguk University, 27 Dongguk-ro, Ilsan Dong-gu, Gyeonggi-do, Goyang 10326, Republic of Korea;
| |
Collapse
|
3
|
Mao K, Luo J, Ye J, Li L, Lin F, Zhou M, Wang D, Yu L, Zhu Z, Zuo D, Ye J. 2-D-gal Targets Terminal Fucosylation to Inhibit T-cell Response in a Mouse Skin Transplant Model. Transplantation 2023; 107:1291-1301. [PMID: 36367925 DOI: 10.1097/tp.0000000000004408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
BACKGROUND Organ allograft rejection is mainly driven by T-cell response. Studies have shown that fucosylation plays essential roles in the immune cell development and function. Terminal fucosylation inhibitor, 2-deoxy-D-galactose (2-D-gal), has been reported to suppress immunoresponse of macrophages, but its effects on T-cell-mediated immune response and transplant rejection have not been fully explored. METHODS The terminal fucosylation level in T cells was detected through ulex europaeus agglutinin-I staining. The consequences of 2-D-gal on murine T-cell proliferation, activation, cytokine secretion, and cell cycle were investigated in vitro. T-cell receptor signaling cascades were examined. Last, mouse skin transplant model was utilized to evaluate the regulatory effects of 2-D-gal on T-cell response in vivo. RESULTS The expression of fucosyltransferase1 was upregulated in CD3/CD28-activated T cells along with an elevation of α(1,2)-fucosylation level as seen by ulex europaeus agglutinin-I staining. Furthermore, 2-D-gal suppressed T-cell activation and proliferation, decrease cytokines production, arrest cell cycle, and prevent the activation of T-cell receptor signaling cascades. In vivo experiments showed that 2-D-gal limited T-cell proliferation to prolong skin allograft in mice. This was accompanied by lower level of inflammatory cytokines, and were comparable to those treated with Cyclosporin A. CONCLUSIONS Terminal fucosylation appears to play a role in T-cell activation and proliferation, and its inhibitor, 2-D-gal, can suppress T-cell activation and proliferation both in vitro and in vivo. In a therapeutic context, inhibiting terminal fucosylation may be a potential strategy to prevent allogeneic transplant rejection.
Collapse
Affiliation(s)
- Kaifeng Mao
- Department of Kidney Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Jialiang Luo
- Department of Dermatology, the Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Junli Ye
- Department of Physiology and Pathophysiology, School of Basic Medicine, Medical College, Qingdao University, Qingdao, China
| | - Lei Li
- Department of Dermatology, the Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Fenwang Lin
- Department of Kidney Transplantation, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Minjie Zhou
- Department of Kidney Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Di Wang
- Department of Dermatology, Dermatology Hospital of Southern Medical University, Southern Medical University, Guangzhou, Guangdong, China
| | - Lu Yu
- Department of Dermatology, the Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Zhengyumeng Zhu
- Department of Dermatology, the Fifth Affiliated Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Daming Zuo
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, Guangdong, China
| | - Junsheng Ye
- Department of Kidney Transplantation, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Department of Kidney Transplantation, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
4
|
Benson JC, Trebak M. Too much of a good thing: The case of SOCE in cellular apoptosis. Cell Calcium 2023; 111:102716. [PMID: 36931194 PMCID: PMC10481469 DOI: 10.1016/j.ceca.2023.102716] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/13/2023]
Abstract
Intracellular calcium (Ca2+) is an essential second messenger in eukaryotic cells regulating numerous cellular functions such as contraction, secretion, immunity, growth, and metabolism. Ca2+ signaling is also a key signal transducer in the intrinsic apoptosis pathway. The store-operated Ca2+ entry pathway (SOCE) is ubiquitously expressed in eukaryotic cells, and is the primary Ca2+ influx pathway in non-excitable cells. SOCE is mediated by the endoplasmic reticulum Ca2+ sensing STIM proteins, and the plasma membrane Ca2+-selective Orai channels. A growing number of studies have implicated SOCE in regulating cell death primarily via the intrinsic apoptotic pathway in a variety of tissues and in response to physiological stressors such as traumatic brain injury, ischemia reperfusion injury, sepsis, and alcohol toxicity. Notably, the literature points to excessive cytosolic Ca2+ influx through SOCE in vulnerable cells as a key factor tipping the balance towards cellular apoptosis. While the literature primarily addresses the functions of STIM1 and Orai1, STIM2, Orai2 and Orai3 are also emerging as potential regulators of cell death. Here, we review the functions of STIM and Orai proteins in regulating cell death and the implications of this regulation to human pathologies.
Collapse
Affiliation(s)
- J Cory Benson
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 1526, USA; Vascular Medicine Institute, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 1526, USA; Department of Cellular and Molecular Physiology, Graduate Program, The Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Mohamed Trebak
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 1526, USA; Vascular Medicine Institute, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 1526, USA; UPMC Hillman Cancer Center, University of Pittsburgh School of Medicine, 200 Lothrop Street, Pittsburgh, PA 1526, USA.
| |
Collapse
|
5
|
Slowik EJ, Stankoska K, Bui NN, Pasieka B, Conrad D, Zapp J, Hoth M, Bogeski I, Kappl R. The calcium channel modulator 2-APB hydrolyzes in physiological buffers and acts as an effective radical scavenger and inhibitor of the NADPH oxidase 2. Redox Biol 2023; 61:102654. [PMID: 36889081 PMCID: PMC10009725 DOI: 10.1016/j.redox.2023.102654] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 02/20/2023] [Accepted: 03/02/2023] [Indexed: 03/06/2023] Open
Abstract
2-aminoethoxydiphenyl borate (2-APB) is commonly used as a tool to modulate calcium signaling in physiological studies. 2-APB has a complex pharmacology and acts as activator or inhibitor of a variety of Ca2+ channels and transporters. While unspecific, 2-APB is one of the most-used agents to modulate store-operated calcium entry (SOCE) mediated by the STIM-gated Orai channels. Due to its boron core structure, 2-APB tends to readily hydrolyze in aqueous environment, a property that results in a complex physicochemical behavior. Here, we quantified the degree of hydrolysis in physiological conditions and identified the hydrolysis products diphenylborinic acid and 2-aminoethanol by NMR. Notably, we detected a high sensitivity of 2-APB/diphenylborinic acid towards decomposition by hydrogen peroxide to compounds such as phenylboronic acid, phenol, and boric acid, which were, in contrast to 2-APB itself and diphenylborinic acid, insufficient to affect SOCE in physiological experiments. Consequently, the efficacy of 2-APB as a Ca2+ signal modulator strongly depends on the reactive oxygen species (ROS) production within the experimental system. The antioxidant behavior of 2-APB towards ROS and its resulting decomposition are inversely correlated to its potency to modulate Ca2+ signaling as shown by electron spin resonance spectroscopy (ESR) and Ca2+ imaging. Finally, we observed a strong inhibitory effect of 2-APB, i.e., its hydrolysis product diphenylborinic acid, on NADPH oxidase (NOX2) activity in human monocytes. These new 2-APB properties are highly relevant for Ca2+ and redox signaling studies and for pharmacological application of 2-APB and related boron compounds.
Collapse
Affiliation(s)
- Ewa Jasmin Slowik
- Department of Biophysics, Faculty of Medicine, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421, Homburg, Germany
| | - Katerina Stankoska
- Department of Biophysics, Faculty of Medicine, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421, Homburg, Germany
| | - Nhat Nguyen Bui
- Department of Biophysics, Faculty of Medicine, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421, Homburg, Germany
| | - Bastian Pasieka
- Department of Biophysics, Faculty of Medicine, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421, Homburg, Germany
| | - David Conrad
- Department of Biophysics, Faculty of Medicine, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421, Homburg, Germany; Department of Anaesthesiology, Intensive Care and Pain Therapy, Saarland University Medical Center, Saarland University Faculty of Medicine, 66421, Homburg, Germany
| | - Josef Zapp
- Department of Pharmaceutical Biology, Saarland University, 66123, Saarbrücken, Germany
| | - Markus Hoth
- Department of Biophysics, Faculty of Medicine, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421, Homburg, Germany
| | - Ivan Bogeski
- Molecular Physiology, Department of Cardiovascular Physiology, UMG, 37073, Göttingen, Germany
| | - Reinhard Kappl
- Department of Biophysics, Faculty of Medicine, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421, Homburg, Germany.
| |
Collapse
|
6
|
Erdogmus S, Concepcion AR, Yamashita M, Sidhu I, Tao AY, Li W, Rocha PP, Huang B, Garippa R, Lee B, Lee A, Hell JW, Lewis RS, Prakriya M, Feske S. Cavβ1 regulates T cell expansion and apoptosis independently of voltage-gated Ca 2+ channel function. Nat Commun 2022; 13:2033. [PMID: 35440113 PMCID: PMC9018955 DOI: 10.1038/s41467-022-29725-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 03/22/2022] [Indexed: 12/11/2022] Open
Abstract
TCR stimulation triggers Ca2+ signals that are critical for T cell function and immunity. Several pore-forming α and auxiliary β subunits of voltage-gated Ca2+ channels (VGCC) were reported in T cells, but their mechanism of activation remains elusive and their contribution to Ca2+ signaling in T cells is controversial. We here identify CaVβ1, encoded by Cacnb1, as a regulator of T cell function. Cacnb1 deletion enhances apoptosis and impairs the clonal expansion of T cells after lymphocytic choriomeningitis virus (LCMV) infection. By contrast, Cacnb1 is dispensable for T cell proliferation, cytokine production and Ca2+ signaling. Using patch clamp electrophysiology and Ca2+ recordings, we are unable to detect voltage-gated Ca2+ currents or Ca2+ influx in human and mouse T cells upon depolarization with or without prior TCR stimulation. mRNAs of several VGCC α1 subunits are detectable in human (CaV3.3, CaV3.2) and mouse (CaV2.1) T cells, but they lack transcription of many 5' exons, likely resulting in N-terminally truncated and non-functional proteins. Our findings demonstrate that although CaVβ1 regulates T cell function, these effects are independent of VGCC channel activity.
Collapse
Affiliation(s)
- Serap Erdogmus
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Axel R Concepcion
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Megumi Yamashita
- Department of Pharmacology, Northwestern University, Chicago, IL, USA
| | - Ikjot Sidhu
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Anthony Y Tao
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Wenyi Li
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA
| | - Pedro P Rocha
- Unit on Genome Structure and Regulation, National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD, USA
- National Cancer Institute, NIH, Bethesda, MD, USA
| | - Bonnie Huang
- National Institute of Allergy and Infectious Disease, Bethesda, MD, USA
- National Human Genome Research Institute, Bethesda, MD, USA
| | - Ralph Garippa
- Department of Cancer Biology & Genetics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Boram Lee
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Amy Lee
- Department of Neuroscience, University of Texas-Austin, Austin, TX, USA
| | - Johannes W Hell
- Department of Pharmacology, University of California, Davis, CA, USA
| | - Richard S Lewis
- Department of Molecular and Cellular Physiology, Stanford University, Stanford, CA, USA
| | - Murali Prakriya
- Department of Pharmacology, Northwestern University, Chicago, IL, USA.
| | - Stefan Feske
- Department of Pathology, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
7
|
El-sonbaty SM, Moawed FSM, Kandil EI, M Tamamm A. Antitumor and Antibacterial Efficacy of Gallium Nanoparticles Coated by Ellagic Acid. Dose Response 2022; 20:15593258211068998. [PMID: 35173563 PMCID: PMC8841935 DOI: 10.1177/15593258211068998] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Accepted: 12/06/2021] [Indexed: 12/24/2022] Open
Abstract
Cancer is a mortality contributor worldwide, and breast cancer is the most common among women. Despite the numerous breast cancer therapeutic strategies, they either have limitations or sometimes are resisted by cancer, so new approaches are needed to tackle those restrictions. Nanotechnology offers exciting leaps in the diagnosis and treatment of cancer, especially breast cancer. The main objective of this study was to investigate the effect of the newly synthesized gallium nanoparticles coated by Ellagic acid (EA-GaNPs) on the induced mammary gland carcinogenesis in female rats and their antibacterial activities comparison with standard antibiotics (Ketoconazole (100 μg/ml) and Gentamycin (4 μg/ml)) by disc diffusion method using eight different microbial species. The antitumor efficacy of EA-GaNPs was conducted both in vitro and in in vivo. The result of antimicrobial activity of EA-Ga NPs (1 mg/1 mL) revealed moderate toxicity behavior against Gram-positive {Staphylococcus aureus, Bacillus subtilis, Bacillus cereus) and Gram-negative pathogenic bacteria {Escherichia coli, Proteus vulgarfs) also, antifungal activity was detected against {Aspergillus terreus). In vitro study showed that EA-GaNPs inhibited human breast cancer cell line (MCF-7) proliferation with IC50 of 2.86 μg/ml. Although in vivo; the administration of EA-GaNPs to DMBA-treated rats ameliorated the hyperplastic state of mammary gland carcinogenesis induced by DMBA. Additionally, EA-GaNPs administration significantly modulated the activities of ALT and AST, as well as the levels of urea and creatinine in serum. Also, EA-GaNPs administration improved the antioxidant state by increasing Superoxide dismutase activity and GSH content, and decreasing malondialdehyde content in the mammary tissue, besides enhancing the apoptotic activity through elevating the levels of caspase-3 and decreasing the protein intensities of protein kinase B & phosphatidyl inositide 3-kinases. Furthermore, a significant decrease in serum Total iron-binding capacity accompanied by a significant increase in the level of calcium was noted. So, it can be concluded that the newly synthesized nanoparticles EA-GaNPs have an efficient antitumor activity that was manifested by reduction of the viability on the human breast cancer cell line (MCF-7) in vitro. Also, in vivo against the chemically induced mammary gland carcinogenesis in a female rat model. Histopathological findings were in harmony with biochemical and molecular results showing the effectiveness of EA-GaNPs against mammary carcinogenesis. Therefore, EA-GaNPs could be a promising, potent anti-cancer compound.
Collapse
Affiliation(s)
- Sawsan M El-sonbaty
- Radiation Microbiology Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Fatma SM Moawed
- Health Radiation Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Eman I Kandil
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| | - Amira M Tamamm
- Biochemistry Department, Faculty of Science, Ain Shams University, Cairo, Egypt
| |
Collapse
|
8
|
Eaton-Fitch N, Cabanas H, du Preez S, Staines D, Marshall-Gradisnik S. The effect of IL-2 stimulation and treatment of TRPM3 on channel co-localisation with PIP 2 and NK cell function in myalgic encephalomyelitis/chronic fatigue syndrome patients. J Transl Med 2021; 19:306. [PMID: 34266470 PMCID: PMC8281618 DOI: 10.1186/s12967-021-02974-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Accepted: 07/01/2021] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a serious multifactorial disorder. The origin remains ambiguous, however reduced natural killer (NK) cell cytotoxicity is a consistent immunological feature of ME/CFS. Impaired transient receptor potential melastatin 3 (TRPM3), a phosphatidylinositol dependent channel, and impaired calcium mobilisation have been implicated in ME/CFS pathology. This investigation aimed to examine the localisation of TRPM3 at the NK cell plasma membrane and co-localisation with phosphatidylinositol 4,5-bisphosphate (PIP2). The effect of IL-2 priming and treatment using pregnenolone sulfate (PregS) and ononetin on TRPM3 co-localisation and NK cell cytotoxicity in ME/CFS patients and healthy controls (HC) was also investigated. METHODS NK cells were isolated from 15 ME/CFS patients and 15 age- and sex-matched HC. Immunofluorescent technique was used to determine co-localisation of TRPM3 with the NK cell membrane and with PIP2 of ME/CFS patients and HC. Flow cytometry was used to determine NK cell cytotoxicity. Following IL-2 stimulation and treatment with PregS and ononetin changes in co-localisation and NK cell cytotoxicity were measured. RESULTS Overnight treatment of NK cells with PregS and ononetin resulted in reduced co-localisation of TRPM3 with PIP2 and actin in HC. Co-localisation of TRPM3 with PIP2 in NK cells was significantly reduced in ME/CFS patients compared with HC following priming with IL-2. A significant increase in co-localisation of TRPM3 with PIP2 was reported following overnight treatment with ononetin within ME/CFS patients and between groups. Baseline NK cell cytotoxicity was significantly reduced in ME/CFS patients; however, no changes were observed following overnight incubation with IL-2, PregS and ononetin between HC and ME/CFS patients. IL-2 stimulation significantly enhanced NK cell cytotoxicity in HC and ME/CFS patients. CONCLUSION Significant changes in co-localisation suggest PIP2-dependent TRPM3 function may be impaired in ME/CFS patients. Stimulation of NK cells with IL-2 significantly enhanced cytotoxic function in ME/CFS patients demonstrating normal function compared with HC. A crosstalk exists between IL-2 and TRPM3 intracellular signalling pathways which are dependent on Ca2+ influx and PIP2. While IL-2R responds to IL-2 binding in vitro, Ca2+ dysregulation and impaired intracellular signalling pathways impede NK cell function in ME/CFS patients.
Collapse
Affiliation(s)
- Natalie Eaton-Fitch
- School of Medical Sciences, Griffith University, Gold Coast, Australia. .,National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia. .,Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast, Australia.
| | - Hélène Cabanas
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.,Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast, Australia
| | - Stanley du Preez
- School of Medical Sciences, Griffith University, Gold Coast, Australia.,National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.,Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast, Australia
| | - Donald Staines
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.,Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast, Australia
| | - Sonya Marshall-Gradisnik
- National Centre for Neuroimmunology and Emerging Diseases, Menzies Health Institute Queensland, Griffith University, Gold Coast, Australia.,Consortium Health International for Myalgic Encephalomyelitis, Griffith University, Gold Coast, Australia
| |
Collapse
|
9
|
Meng X, Wu X, Zheng Y, Shang K, Jing R, Jiao P, Zhou C, Zhou J, Sun J. Exploiting Ca 2+ signaling in T cells to advance cancer immunotherapy. Semin Immunol 2020; 49:101434. [PMID: 33272900 DOI: 10.1016/j.smim.2020.101434] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 11/10/2020] [Accepted: 11/18/2020] [Indexed: 12/17/2022]
Abstract
Decades of basic research has established the importance of Ca2+ to various T cell functions, such as cytotoxicity, proliferation, differentiation and cytokine secretion. We now have a good understanding of how proximal TCR signaling initiates Ca2+ influx and how this influx subsequently changes transcriptional activities in T cells. As chimeric antigen receptor (CAR)-T therapy has achieved great clinical success, is it possible to harness Ca2+ signaling to further advance CAR-T research? How is CAR signaling different from TCR signaling? How can functional CARs be identified in a high-throughput way? Quantification of various Ca2+ signals downstream of CAR/TCR activation might help answer these questions. Here we first summarized recent studies that used Ca2+ dye, genetically-encoded Ca2+ indicators (GECI) or transcriptional activity reporters to understand CAR activation in vitro and in vivo. We next reviewed several proof-of-concept reports that manipulate Ca2+ signaling by light or ultrasound to achieve precise spatiotemporal control of T cell functions. These efforts, though preliminary, opened up new avenues to solve the on-target/off-tumor problem of therapeutic T cells. Other modalities to regulate Ca2+ signaling, such as radio wave and electrical pulse, were also discussed. Thus, monitoring or manipulating Ca2+ signaling in T cells provides us many opportunities to advance cancer immunotherapy.
Collapse
Affiliation(s)
- Xianhui Meng
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Department of Cell Biology, Zhejiang University School of Medicine, Zhejiang, China
| | - Xiaoyan Wu
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Department of Cell Biology, Zhejiang University School of Medicine, Zhejiang, China
| | - Yuyuan Zheng
- School of Public Health, and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Kai Shang
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Department of Cell Biology, Zhejiang University School of Medicine, Zhejiang, China; Institute of Hematology, Zhejiang University, Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Zhejiang, China; Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, Zhejiang, China
| | - Ruirui Jing
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Department of Cell Biology, Zhejiang University School of Medicine, Zhejiang, China; Institute of Hematology, Zhejiang University, Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Zhejiang, China; Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, Zhejiang, China
| | - Peng Jiao
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Department of Cell Biology, Zhejiang University School of Medicine, Zhejiang, China; Institute of Hematology, Zhejiang University, Zhejiang Engineering Laboratory for Stem Cell and Immunotherapy, Zhejiang, China; Zhejiang Laboratory for Systems and Precision Medicine, Zhejiang University Medical Center, Zhejiang, China
| | - Chun Zhou
- School of Public Health, and Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Zhejiang, China
| | - Jing Zhou
- Department of Breast and Thyroid Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hubei, China.
| | - Jie Sun
- Bone Marrow Transplantation Center of the First Affiliated Hospital, Department of Cell Biology, Zhejiang University School of Medicine, Zhejiang, China.
| |
Collapse
|
10
|
Zhu R, Yang G, Cao Z, Shen K, Zheng L, Xiao J, You L, Zhang T. The prospect of serum and glucocorticoid-inducible kinase 1 (SGK1) in cancer therapy: a rising star. Ther Adv Med Oncol 2020; 12:1758835920940946. [PMID: 32728395 PMCID: PMC7364809 DOI: 10.1177/1758835920940946] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 06/16/2020] [Indexed: 12/21/2022] Open
Abstract
Serum and glucocorticoid-inducible kinase 1 (SGK1) is an AGC kinase that has been reported to be involved in a variety of physiological and pathological processes. Recent evidence has accumulated that SGK1 acts as an essential Akt-independent mediator of phosphatidylinositol 3-kinase (PI3K)/mammalian target of rapamycin (mTOR) signaling pathway in cancer. SGK1 is overexpressed in several tumors, including prostate cancer, colorectal carcinoma, glioblastoma, breast cancer, and endometrial cancer. The functions of SGK1 include regulating tumor growth, survival, metastasis, autophagy, immunoregulation, calcium (Ca2+) signaling, cancer stem cells, cell cycle, and therapeutic resistance. In this review, we introduce the pleiotropic role of SGK1 in the development and progression of tumors, summarize its downstream targets, and integrate the knowledge provided by preclinical studies that the prospect of SGK1 inhibition as a potential therapeutic approach.
Collapse
Affiliation(s)
- Ruizhe Zhu
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Gang Yang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhe Cao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Kexin Shen
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lianfang Zheng
- Department of Nuclear Medicine, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jianchun Xiao
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lei You
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Taiping Zhang
- Department of General Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1 Shuaifuyuan, Wangfujing Street, Beijing 100730, China
| |
Collapse
|
11
|
Angenendt A, Steiner R, Knörck A, Schwär G, Konrad M, Krause E, Lis A. Orai, STIM, and PMCA contribute to reduced calcium signal generation in CD8 + T cells of elderly mice. Aging (Albany NY) 2020; 12:3266-3286. [PMID: 32062611 PMCID: PMC7066920 DOI: 10.18632/aging.102809] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 01/24/2020] [Indexed: 12/22/2022]
Abstract
Ca2+ is a crucial second messenger for proper T cell function. Considering the relevance of Ca2+ signals for T cell functionality it is surprising that no mechanistic insights into T cell Ca2+ signals from elderly individuals are reported. The main Ca2+ entry mechanism in T cells are STIM-activated Orai channels. Their role during lymphocyte aging is completely unknown. Here, we report not only reduced Ca2+ signals in untouched and stimulated, but also in central and effector memory CD8+ T cells from elderly (18-24 months) compared to adult (3-6 months) mice. Two mechanisms contribute to the overall reduction in Ca2+ signals of CD8+ T cells of elderly mice: 1) Reduced Ca2+ currents through Orai channels due to decreased expressions of STIMs and Orais. 2) A faster extrusion of Ca2+ owing to an increased expression of PMCA4. The reduced Ca2+ signals correlated with a resistance of the cytotoxic efficiency of CD8+ T cells to varying free [Ca2+]ext with age. In summary, reduced STIM/Orai expression and increased Ca2+ clearing rates following enhanced PMCA4 expression contribute to reduced Ca2+ signals in CD8+ T cells of elderly mice. These changes are apparently relevant to immune function as they reduce the Ca2+ dependency of CTL cytotoxicity.
Collapse
Affiliation(s)
- Adrian Angenendt
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg 66421, Germany
| | - Romy Steiner
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg 66421, Germany.,Present address: Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna 1090, Austria
| | - Arne Knörck
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg 66421, Germany
| | - Gertrud Schwär
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg 66421, Germany
| | - Maik Konrad
- Molecular Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg 66421, Germany
| | - Elmar Krause
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg 66421, Germany
| | - Annette Lis
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg 66421, Germany
| |
Collapse
|
12
|
Coelomic Fluid of Lumbricus rubellus Synergistically Enhances Cytotoxic Effect of 5-Fluorouracil through Modulation of Focal Adhesion Kinase and p21 in HT-29 Cancer Cell Line. ScientificWorldJournal 2019; 2019:5632859. [PMID: 31097925 PMCID: PMC6487099 DOI: 10.1155/2019/5632859] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 12/13/2018] [Accepted: 02/07/2019] [Indexed: 01/28/2023] Open
Abstract
Coelomic fluid of Lumbricus rubellus (CFL) has attracted interest due to its pharmacological properties, including antitumor effect. Furthermore, it is necessary to evaluate the response to treatment with new cancer therapeutic agents. This study aims to investigate whether the combination of CFL and 5-fluorouracil could reduce FAK protein level and iCa2+ and enhance p21 level. Furthermore, it is necessary to evaluate the response to treatment with new cancer therapeutic agents. After 24 hours of treatment, it was necessary to assess the percentage of apoptosis, FAK, and p21 protein expression by flow cytometry. iCa2+ concentration was measured using immunofluorescence. The combination therapy of CFL with 5-fluorouracil potently suppressed six treatment groups were included in this study. HT-29 cell lines were cultured and divided into six groups: group 1 was treated with vehicle (negative control), groups 2-5 were treated with 5-fluorouracil, groups 3-5 were treated with either CFL 5, 10, or 20 µg/ml immediately after 5-fluorouracil, and group 6 was treated with CFL 20 µg/ml, the progression of colorectal cancer. Combination of CFL and 5-fluorouracil significantly decreased FAK expression (p<0.05), iCa2+ (p<0.05), and increased p21 expression (p<0.05) in HT-29 cells. Our results suggest that CFL has an anticancer potential in colorectal cancer when combined with 5-fluorouracil.
Collapse
|
13
|
Abdelazeem KNM, Droppova B, Sukkar B, Al-Maghout T, Pelzl L, Zacharopoulou N, Ali Hassan NH, Abdel-Fattah KI, Stournaras C, Lang F. Upregulation of Orai1 and STIM1 expression as well as store-operated Ca 2+ entry in ovary carcinoma cells by placental growth factor. Biochem Biophys Res Commun 2019; 512:467-472. [PMID: 30902388 DOI: 10.1016/j.bbrc.2019.03.025] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 03/05/2019] [Indexed: 12/15/2022]
Abstract
Placental growth factor (PlGF) is produced by tumor cells and stimulates tumor growth and metastasis in part by upregulation of hypoxia inducible factor HIF1α. Orchestration of tumor cell proliferation and migration involves oscillations of cytosolic Ca2+ activity ([Ca2+]i). The [Ca2+]i oscillations could be accomplished by triggering of intracellular Ca2+ release followed by store-operated Ca2+-entry (SOCE). Mechanisms accomplishing SOCE include the pore-forming ion channel unit Orai1 and its regulator STIM1. The present study explored whether PlGF influences the expression of Orai1 and STIM1, as well as SOCE and whether this effect impacts on HIF1α expression. To this end, ovary carcinoma cells were cultured for 24 h without and with PlGF (10 ng/ml). Orai1, STIM1 and HIF1α transcript levels were quantified utilizing RT-PCR and Orai1, STIM1 and HIF1α protein levels by Western blotting. [Ca2+]i was estimated from Fura-2-fluorescence and SOCE from increase of [Ca2+]i following Ca2+ re-addition after Ca2+-store depletion with extracellular Ca2+ removal and sarcoendoplasmatic Ca2+-ATPase (SERCA) inhibitor thapsigargin (1 μM). As a result, exposure of ovary carcinoma cells to PlGF was followed by a significant increase of Orai1 as well as STIM1 transcript and protein levels. PlGF significantly increased store-operated Ca2+-entry following re-addition of extracellular Ca2+, an effect virtually abrogated by Orai1 inhibitor MRS1845 (10 μM). PlGF further increased HIF1α transcript and protein levels, an effect again significantly blunted by MRS1845 (10 μM). In conclusion, PlGF upregulates expression of both, Orai1 and STIM1 thus enhancing store-operated Ca2+-entry with subsequent upregulation of HIF1α.
Collapse
Affiliation(s)
- Khalid N M Abdelazeem
- Department of Internal Medicine III, Eberhard Karls,University, Tübingen, Germany; Radiation Biology Research Department, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Barbora Droppova
- Department of Internal Medicine III, Eberhard Karls,University, Tübingen, Germany
| | - Basma Sukkar
- Department of Internal Medicine III, Eberhard Karls,University, Tübingen, Germany
| | - Tamer Al-Maghout
- Department of Internal Medicine III, Eberhard Karls,University, Tübingen, Germany
| | - Lisann Pelzl
- Department of Internal Medicine III, Eberhard Karls,University, Tübingen, Germany
| | - Nefeli Zacharopoulou
- Department of Biochemistry, University of Crete Medical School, Heraklion, Greece
| | | | - Kamal I Abdel-Fattah
- Radiation Biology Research Department, National Center for Radiation Research and Technology, Atomic Energy Authority, Cairo, Egypt
| | - Christos Stournaras
- Department of Biochemistry, University of Crete Medical School, Heraklion, Greece
| | - Florian Lang
- Department of Internal Medicine III, Eberhard Karls,University, Tübingen, Germany.
| |
Collapse
|
14
|
Lang F, Pelzl L, Hauser S, Hermann A, Stournaras C, Schöls L. To die or not to die SGK1-sensitive ORAI/STIM in cell survival. Cell Calcium 2018; 74:29-34. [PMID: 29807219 DOI: 10.1016/j.ceca.2018.05.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Revised: 05/02/2018] [Accepted: 05/02/2018] [Indexed: 12/31/2022]
Abstract
The pore forming Ca2+ release activated Ca2+ channel (CRAC) isoforms ORAI1-3 and their regulators STIM1,2 accomplish store operated Ca2+ entry (SOCE). Activation of SOCE may lead to cytosolic Ca2+ oscillations, which in turn support cell proliferation and cell survival. ORAI/STIM and thus SOCE are upregulated by the serum and glucocorticoid inducible kinase SGK1, a kinase under powerful genomic regulation and activated by phosphorylation via the phosphoinositol-3-phosphate pathway. SGK1 enhances ORAI1 abundance partially by phosphorylation of Nedd4-2, an ubiquitin ligase priming the channel protein for degradation. The SGK1-phosphorylated Nedd4-2 binds to the protein 14-3-3 and is thus unable to ubiquinate ORAI1. SGK1 further increases the ORAI1 and STIM1 protein abundance by activating nuclear factor kappa B (NF-κB), a transcription factor upregulating the expression of STIM1 and ORAI1. SGK1-sensitive upregulation of ORAI/STIM and thus SOCE is triggered by a wide variety of hormones and growth factors, as well as several cell stressors including ischemia, radiation, and cell shrinkage. SGK1 dependent upregulation of ORAI/STIM confers survival of tumor cells and thus impacts on growth and therapy resistance of cancer. On the other hand, SGK1-dependent upregulation of ORAI1 and STIM1 may support survival of neurons and impairment of SGK1-dependent ORAI/STIM activity may foster neurodegeneration. Clearly, further experimental effort is needed to define the mechanisms linking SGK1-dependent upregulation of ORAI1 and STIM1 to cell survival and to define the impact of SGK1-dependent upregulation of ORAI1 and STIM1 on malignancy and neurodegenerative disease.
Collapse
Affiliation(s)
- Florian Lang
- Department of Vegetative Physiology, Eberhad Karls University, Wilhelmstr. 56, D-72074 Tübingen, Germany.
| | - Lisann Pelzl
- Department of Vegetative Physiology, Eberhad Karls University, Wilhelmstr. 56, D-72074 Tübingen, Germany
| | - Stefan Hauser
- German Center for Neurodegenerative Diseases, Research Site Tübingen, Germany; Department of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| | - Andreas Hermann
- Department of Neurology and Center for Regenerative Therapies Dresden (CRTD), Technische Universität Dresden, Germany & DZNE, German Center for Neurodegenerative Diseases, Research Site Dresden, Germany
| | - Christos Stournaras
- Department of Biochemistry, University of Crete Medical School, Heraklion, Greece
| | - Ludger Schöls
- German Center for Neurodegenerative Diseases, Research Site Tübingen, Germany; Department of Neurology and Hertie Institute for Clinical Brain Research, University of Tübingen, Germany
| |
Collapse
|
15
|
Profiling calcium signals of in vitro polarized human effector CD4 + T cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1865:932-943. [PMID: 29626493 DOI: 10.1016/j.bbamcr.2018.04.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2017] [Revised: 03/29/2018] [Accepted: 04/03/2018] [Indexed: 12/21/2022]
Abstract
Differentiation of naïve CD4+ T cells into effector subtypes with distinct cytokine profiles and physiological roles is a tightly regulated process, the imbalance of which can lead to an inadequate immune response or autoimmune disease. The crucial role of Ca2+ signals, mainly mediated by the store operated Ca2+ entry (SOCE) in shaping the immune response is well described. However, it is unclear if human effector CD4+ T cell subsets show differential Ca2+ signatures in response to different stimulation methods. Herein, we provide optimized in vitro culture conditions for polarization of human CD4+ effector T cells and characterize their SOCE following both pharmacological store depletion and direct T-cell receptor (TCR) activation. Moreover, we measured whole cell Ca2+ release activated Ca2+ currents (ICRAC) and investigated whether the observed differences correlate to the expression of CRAC genes. Our results show that Ca2+ profiles of helper CD4+ Th1, Th2 and Th17 are distinct and in part shaped by the intensity of stimulation. Regulatory T cells (Treg) are unique being the subtype with the most prominent SOCE response. Analysis of in vivo differentiated Treg unraveled the role of differential expression of ORAI2 in fine-tuning signals in Treg vs. conventional CD4+ T cells.
Collapse
|
16
|
LEFTY2 inhibits endometrial receptivity by downregulating Orai1 expression and store-operated Ca 2+ entry. J Mol Med (Berl) 2017; 96:173-182. [PMID: 29230527 PMCID: PMC5778154 DOI: 10.1007/s00109-017-1610-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Revised: 10/16/2017] [Accepted: 11/02/2017] [Indexed: 12/16/2022]
Abstract
Abstract Early embryo development and endometrial differentiation are initially independent processes, and synchronization, imposed by a limited window of implantation, is critical for reproductive success. A putative negative regulator of endometrial receptivity is LEFTY2, a member of the transforming growth factor (TGF)-β family. LEFTY2 is highly expressed in decidualizing human endometrial stromal cells (HESCs) during the late luteal phase of the menstrual cycle, coinciding with the closure of the window of implantation. Here, we show that flushing of the uterine lumen in mice with recombinant LEFTY2 inhibits the expression of key receptivity genes, including Cox2, Bmp2, and Wnt4, and blocks embryo implantation. In Ishikawa cells, a human endometrial epithelial cell line, LEFTY2 downregulated the expression of calcium release-activated calcium channel protein 1, encoded by ORAI1, and inhibited store-operated Ca2+ entry (SOCE). Furthermore, LEFTY2 and the Orai1 blockers 2-APB, MRS-1845, as well as YM-58483, inhibited, whereas the Ca2+ ionophore, ionomycin, strongly upregulated COX2, BMP2 and WNT4 expression in decidualizing HESCs. These findings suggest that LEFTY2 closes the implantation window, at least in part, by downregulating Orai1, which in turn limits SOCE and antagonizes expression of Ca2+-sensitive receptivity genes. Key messages •Endometrial receptivity is negatively regulated by LEFTY2. •LEFTY2 inhibits the expression of key murine receptivity genes, including Cox2, Bmp2and Wnt4, and blocks embryo implantation. •LEFTY2 downregulates the expression of Orai1 and inhibits SOCE. •LEFTY2 and the Orai1 blockers 2-APB, MRS-1845, and YM-58483 inhibit COX2, BMP2, and WNT4 expression in endometrial cells. •Targeting LEFTY2 and Orai1 may represent a novel approach for treating unexplained infertility. Electronic supplementary material The online version of this article (10.1007/s00109-017-1610-9) contains supplementary material, which is available to authorized users.
Collapse
|
17
|
Lithium Sensitive ORAI1 Expression, Store Operated Ca 2+ Entry and Suicidal Death of Neurons in Chorea-Acanthocytosis. Sci Rep 2017; 7:6457. [PMID: 28743945 PMCID: PMC5526875 DOI: 10.1038/s41598-017-06451-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 06/13/2017] [Indexed: 12/11/2022] Open
Abstract
Chorea-Acanthocytosis (ChAc), a neurodegenerative disorder, results from loss-of-function-mutations of chorein-encoding gene VPS13A. In tumour cells chorein up-regulates ORAI1, a Ca2+-channel accomplishing store operated Ca2+-entry (SOCE) upon stimulation by STIM1. Furthermore SOCE could be up-regulated by lithium. The present study explored whether SOCE impacts on neuron apoptosis. Cortical neurons were differentiated from induced pluripotent stem cells generated from fibroblasts of ChAc patients and healthy volunteers. ORAI1 and STIM1 transcript levels and protein abundance were estimated from qRT-PCR and Western blotting, respectively, cytosolic Ca2+-activity ([Ca2+]i) from Fura-2-fluorescence, as well as apoptosis from annexin-V-binding and propidium-iodide uptake determined by flow cytometry. As a result, ORAI1 and STIM1 transcript levels and protein abundance and SOCE were significantly smaller and the percentage apoptotic cells significantly higher in ChAc neurons than in control neurons. Lithium treatment (2 mM, 24 hours) increased significantly ORAI1 and STIM1 transcript levels and protein abundance, an effect reversed by inhibition of Serum & Glucocorticoid inducible Kinase 1. ORAI1 blocker 2-APB (50 µM, 24 hours) significantly decreased SOCE, markedly increased apoptosis and abrogated the anti-apoptotic effect of lithium. In conclusion, enhanced neuronal apoptosis in ChAc at least partially results from decreased ORAI1 expression and SOCE, which could be reversed by lithium treatment.
Collapse
|
18
|
Abstract
Calcium (Ca2+) signaling plays a critical role in regulating plethora of cellular functions including cell survival, proliferation and migration. The perturbations in cellular Ca2+ homeostasis can lead to cell death either by activating autophagic pathways or through induction of apoptosis. Endoplasmic reticulum (ER) is the major storehouse of Ca2+ within cells and a number of physiological agonists mediate ER Ca2+ release by activating IP3 receptors (IP3R). This decrease in ER Ca2+ levels is sensed by STIM, which physically interacts and activates plasma membrane Ca2+ selective Orai channels. Emerging literature implicates a key role for STIM1, STIM2, Orai1 and Orai3 in regulating both cell survival and death pathways. In this review, we will retrospect the work highlighting the role of STIM and Orai homologs in regulating cell death signaling. We will further discuss the rationales that could explain the dual role of STIM and Orai proteins in regulating cell fate decisions.
Collapse
|
19
|
Petrou T, Olsen HL, Thrasivoulou C, Masters JR, Ashmore JF, Ahmed A. Intracellular Calcium Mobilization in Response to Ion Channel Regulators via a Calcium-Induced Calcium Release Mechanism. J Pharmacol Exp Ther 2017; 360:378-387. [PMID: 27980039 PMCID: PMC5267512 DOI: 10.1124/jpet.116.236695] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2016] [Accepted: 11/14/2016] [Indexed: 01/19/2023] Open
Abstract
Free intracellular calcium ([Ca2+]i), in addition to being an important second messenger, is a key regulator of many cellular processes including cell membrane potential, proliferation, and apoptosis. In many cases, the mobilization of [Ca2+]i is controlled by intracellular store activation and calcium influx. We have investigated the effect of several ion channel modulators, which have been used to treat a range of human diseases, on [Ca2+]i release, by ratiometric calcium imaging. We show that six such modulators [amiodarone (Ami), dofetilide, furosemide (Fur), minoxidil (Min), loxapine (Lox), and Nicorandil] initiate release of [Ca2+]i in prostate and breast cancer cell lines, PC3 and MCF7, respectively. Whole-cell currents in PC3 cells were inhibited by the compounds tested in patch-clamp experiments in a concentration-dependent manner. In all cases [Ca2+]i was increased by modulator concentrations comparable to those used clinically. The increase in [Ca2+]i in response to Ami, Fur, Lox, and Min was reduced significantly (P < 0.01) when the external calcium was reduced to nM concentration by chelation with EGTA. The data suggest that many ion channel regulators mobilize [Ca2+]i We suggest a mechanism whereby calcium-induced calcium release is implicated; such a mechanism may be important for understanding the action of these compounds.
Collapse
Affiliation(s)
- Terry Petrou
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, United Kingdom (T.P., A.A.); Sophion Bioscience A/S, Biolin Scientific, Ballerup, Denmark (H.L.O.); Research Department of Cell and Developmental Biology, The Centre for Cell and Molecular Dynamics (C.T.), Division of Surgery (J.R.M.), and Ear Institute, (J.F.A.), University College London, London, United Kingdom
| | - Hervør L Olsen
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, United Kingdom (T.P., A.A.); Sophion Bioscience A/S, Biolin Scientific, Ballerup, Denmark (H.L.O.); Research Department of Cell and Developmental Biology, The Centre for Cell and Molecular Dynamics (C.T.), Division of Surgery (J.R.M.), and Ear Institute, (J.F.A.), University College London, London, United Kingdom
| | - Christopher Thrasivoulou
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, United Kingdom (T.P., A.A.); Sophion Bioscience A/S, Biolin Scientific, Ballerup, Denmark (H.L.O.); Research Department of Cell and Developmental Biology, The Centre for Cell and Molecular Dynamics (C.T.), Division of Surgery (J.R.M.), and Ear Institute, (J.F.A.), University College London, London, United Kingdom
| | - John R Masters
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, United Kingdom (T.P., A.A.); Sophion Bioscience A/S, Biolin Scientific, Ballerup, Denmark (H.L.O.); Research Department of Cell and Developmental Biology, The Centre for Cell and Molecular Dynamics (C.T.), Division of Surgery (J.R.M.), and Ear Institute, (J.F.A.), University College London, London, United Kingdom
| | - Jonathan F Ashmore
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, United Kingdom (T.P., A.A.); Sophion Bioscience A/S, Biolin Scientific, Ballerup, Denmark (H.L.O.); Research Department of Cell and Developmental Biology, The Centre for Cell and Molecular Dynamics (C.T.), Division of Surgery (J.R.M.), and Ear Institute, (J.F.A.), University College London, London, United Kingdom
| | - Aamir Ahmed
- Centre for Stem Cells and Regenerative Medicine, King's College London, London, United Kingdom (T.P., A.A.); Sophion Bioscience A/S, Biolin Scientific, Ballerup, Denmark (H.L.O.); Research Department of Cell and Developmental Biology, The Centre for Cell and Molecular Dynamics (C.T.), Division of Surgery (J.R.M.), and Ear Institute, (J.F.A.), University College London, London, United Kingdom
| |
Collapse
|
20
|
Hablützel PI, Brown M, Friberg IM, Jackson JA. Changing expression of vertebrate immunity genes in an anthropogenic environment: a controlled experiment. BMC Evol Biol 2016; 16:175. [PMID: 27586387 PMCID: PMC5009682 DOI: 10.1186/s12862-016-0751-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Accepted: 08/23/2016] [Indexed: 12/01/2022] Open
Abstract
Background The effect of anthropogenic environments on the function of the vertebrate immune system is a problem of general importance. For example, it relates to the increasing rates of immunologically-based disease in modern human populations and to the desirability of identifying optimal immune function in domesticated animals. Despite this importance, our present understanding is compromised by a deficit of experimental studies that make adequately matched comparisons between wild and captive vertebrates. Results We transferred post-larval fishes (three-spined sticklebacks), collected in the wild, to an anthropogenic (captive) environment. We then monitored, over 11 months, how the systemic expression of immunity genes changed in comparison to cohort-matched wild individuals in the originator population (total n = 299). We found that a range of innate (lyz, defbl2, il1r-like, tbk1) and adaptive (cd8a, igmh) immunity genes were up-regulated in captivity, accompanied by an increase in expression of the antioxidant enzyme, gpx4a. For some genes previously known to show seasonality in the wild, this appeared to be reduced in captive fishes. Captive fishes tended to express immunity genes, including igzh, foxp3b, lyz, defbl2, and il1r-like, more variably. Furthermore, although gene co-expression patterns (analyzed through gene-by-gene correlations and mutual information theory based networks) shared common structure in wild and captive fishes, there was also significant divergence. For one gene in particular, defbl2, high expression was associated with adverse health outcomes in captive fishes. Conclusion Taken together, these results demonstrate widespread regulatory changes in the immune system in captive populations, and that the expression of immunity genes is more constrained in the wild. An increase in constitutive systemic immune activity, such as we observed here, may alter the risk of immunopathology and contribute to variance in health in vertebrate populations exposed to anthropogenic environments. Electronic supplementary material The online version of this article (doi:10.1186/s12862-016-0751-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Martha Brown
- IBERS, Aberystwyth University, Aberystwyth, SY23 3DA, UK
| | - Ida M Friberg
- School of Life and Environmental Sciences, University of Salford, Salford, M5 4WT, UK
| | - Joseph A Jackson
- School of Life and Environmental Sciences, University of Salford, Salford, M5 4WT, UK.
| |
Collapse
|
21
|
Steroid hormone 20-hydroxyecdysone promotes higher calcium mobilization to induce apoptosis. Cell Calcium 2016; 60:1-12. [DOI: 10.1016/j.ceca.2016.05.003] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2016] [Revised: 04/11/2016] [Accepted: 05/04/2016] [Indexed: 12/31/2022]
|
22
|
Stanisz H, Vultur A, Herlyn M, Roesch A, Bogeski I. The role of Orai-STIM calcium channels in melanocytes and melanoma. J Physiol 2016; 594:2825-35. [PMID: 26864956 DOI: 10.1113/jp271141] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2015] [Accepted: 02/04/2016] [Indexed: 12/12/2022] Open
Abstract
Calcium signalling within normal and cancer cells regulates many important cellular functions such as migration, proliferation, differentiation and cytokine secretion. Store operated Ca(2+) entry (SOCE) via the Ca(2+) release activated Ca(2+) (CRAC) channels, which are composed of the plasma membrane based Orai channels and the endoplasmic reticulum stromal interaction molecules (STIMs), is a major Ca(2+) entry route in many cell types. Orai and STIM have been implicated in the growth and metastasis of multiple cancers; however, while their involvement in cancer is presently indisputable, how Orai-STIM-controlled Ca(2+) signals affect malignant transformation, tumour growth and invasion is not fully understood. Here, we review recent studies linking Orai-STIM Ca(2+) channels with cancer, with a particular focus on melanoma. We highlight and examine key molecular players and the signalling pathways regulated by Orai and STIM in normal and malignant cells, we expose discrepancies, and we reflect on the potential of Orai-STIMs as anticancer drug targets. Finally, we discuss the functional implications of future discoveries in the field of Ca(2+) signalling.
Collapse
Affiliation(s)
- Hedwig Stanisz
- Department of Dermatology, Venerology and Allergology, University Hospital of the Saarland, Homburg, Germany
| | - Adina Vultur
- Program of Cellular and Molecular Oncogenesis, Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| | - Meenhard Herlyn
- Program of Cellular and Molecular Oncogenesis, Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA
| | - Alexander Roesch
- Department of Dermatology, University Hospital Essen, Hufelandstraße 55, D-45122, Essen, Germany
| | - Ivan Bogeski
- Department of Biophysics, CIPMM, School of Medicine, Saarland University, 66421, Homburg, Germany
| |
Collapse
|
23
|
Liang SJ, Zeng DY, Mai XY, Shang JY, Wu QQ, Yuan JN, Yu BX, Zhou P, Zhang FR, Liu YY, Lv XF, Liu J, Ou JS, Qian JS, Zhou JG. Inhibition of Orai1 Store-Operated Calcium Channel Prevents Foam Cell Formation and Atherosclerosis. Arterioscler Thromb Vasc Biol 2016; 36:618-28. [PMID: 26916730 DOI: 10.1161/atvbaha.116.307344] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 02/14/2016] [Indexed: 02/04/2023]
Abstract
OBJECTIVE To determine the role of orai1 store-operated Ca(2+) entry in foam cell formation and atherogenesis. APPROACH AND RESULTS Acute administration of oxidized low-density lipoprotein (oxLDL) activates an orai1-dependent Ca(2+) entry in macrophages. Chelation of intracellular Ca(2+), inhibition of orai1 store-operated Ca(2+) entry, or knockdown of orai1 dramatically inhibited oxLDL-induced upregulation of scavenger receptor A, uptake of modified LDL, and foam cell formation. Orai1-dependent Ca(2+) entry induces scavenger receptor A expression and foam cell formation through activation of calcineurin but not calmodulin kinase II. Activation of nuclear factor of activated T cells is not involved in calcineurin signaling to foam cell formation. However, oxLDL dephosohorylates and activates apoptosis signal-regulating kinase 1 in macrophages. Orai1 knockdown prevents oxLDL-induced apoptosis signal-regulating kinase 1 activation. Knockdown of apoptosis signal-regulating kinase 1, or inhibition of its downstream effectors, JNK and p38 mitogen-activated protein kinase, reduces scavenger receptor A expression and foam cell formation. Notably, orai1 expression is increased in atherosclerotic plaques of apolipoprotein E(-/-) mice fed with high-cholesterol diet. Knockdown of orai1 with adenovirus harboring orai1 siRNA or inhibition of orai1 Ca(2+) entry with SKF96365 for 4 weeks dramatically inhibits atherosclerotic plaque development in high-cholesterol diet feeding apolipoprotein E(-/-) mice. In addition, inhibition of orai1 Ca(2+) entry prevents macrophage apoptosis in atherosclerotic plaque. Moreover, the expression of inflammatory genes in atherosclerotic lesions and the infiltration of myeloid cells into the aortic sinus plaques are decreased after blocking orai1 signaling. CONCLUSIONS Orai1-dependent Ca(2+) entry promotes atherogenesis possibly by promoting foam cell formation and vascular inflammation, rendering orai1 Ca(2+) channel a potential therapeutic target against atherosclerosis.
Collapse
Affiliation(s)
- Si-Jia Liang
- From the Department of Pharmacology, Cardiac and Cerebrovascular Research Center (S.-J.L., D.-Y.Z., X.-Y.M., J.-Y.S., Q.-Q.W., J.-N.Y., B.-X.Y., F.-R.Z., Y.-Y.L., X.-F.L., J.L., J.-G.Z.) and Guangdong Province Key Laboratory of Brain Function and Disease (J.-G.Z.), Zhongshan School of Medicine, Division of Cardiac Surgery, The Key Laboratory of Assisted Circulation, Ministry of Health, The First Affiliated Hospital (J.-S.O.), and Department of Radiology, Intervention Radiology Institute, The Third Affiliated Hospital (J.-S.Q.), Sun Yat-Sen University, Guangzhou, China; and Department of Physiology and Pathophysiology, Dali University, Dali, China (P.Z.)
| | - De-Yi Zeng
- From the Department of Pharmacology, Cardiac and Cerebrovascular Research Center (S.-J.L., D.-Y.Z., X.-Y.M., J.-Y.S., Q.-Q.W., J.-N.Y., B.-X.Y., F.-R.Z., Y.-Y.L., X.-F.L., J.L., J.-G.Z.) and Guangdong Province Key Laboratory of Brain Function and Disease (J.-G.Z.), Zhongshan School of Medicine, Division of Cardiac Surgery, The Key Laboratory of Assisted Circulation, Ministry of Health, The First Affiliated Hospital (J.-S.O.), and Department of Radiology, Intervention Radiology Institute, The Third Affiliated Hospital (J.-S.Q.), Sun Yat-Sen University, Guangzhou, China; and Department of Physiology and Pathophysiology, Dali University, Dali, China (P.Z.)
| | - Xiao-Yi Mai
- From the Department of Pharmacology, Cardiac and Cerebrovascular Research Center (S.-J.L., D.-Y.Z., X.-Y.M., J.-Y.S., Q.-Q.W., J.-N.Y., B.-X.Y., F.-R.Z., Y.-Y.L., X.-F.L., J.L., J.-G.Z.) and Guangdong Province Key Laboratory of Brain Function and Disease (J.-G.Z.), Zhongshan School of Medicine, Division of Cardiac Surgery, The Key Laboratory of Assisted Circulation, Ministry of Health, The First Affiliated Hospital (J.-S.O.), and Department of Radiology, Intervention Radiology Institute, The Third Affiliated Hospital (J.-S.Q.), Sun Yat-Sen University, Guangzhou, China; and Department of Physiology and Pathophysiology, Dali University, Dali, China (P.Z.)
| | - Jin-Yan Shang
- From the Department of Pharmacology, Cardiac and Cerebrovascular Research Center (S.-J.L., D.-Y.Z., X.-Y.M., J.-Y.S., Q.-Q.W., J.-N.Y., B.-X.Y., F.-R.Z., Y.-Y.L., X.-F.L., J.L., J.-G.Z.) and Guangdong Province Key Laboratory of Brain Function and Disease (J.-G.Z.), Zhongshan School of Medicine, Division of Cardiac Surgery, The Key Laboratory of Assisted Circulation, Ministry of Health, The First Affiliated Hospital (J.-S.O.), and Department of Radiology, Intervention Radiology Institute, The Third Affiliated Hospital (J.-S.Q.), Sun Yat-Sen University, Guangzhou, China; and Department of Physiology and Pathophysiology, Dali University, Dali, China (P.Z.)
| | - Qian-Qian Wu
- From the Department of Pharmacology, Cardiac and Cerebrovascular Research Center (S.-J.L., D.-Y.Z., X.-Y.M., J.-Y.S., Q.-Q.W., J.-N.Y., B.-X.Y., F.-R.Z., Y.-Y.L., X.-F.L., J.L., J.-G.Z.) and Guangdong Province Key Laboratory of Brain Function and Disease (J.-G.Z.), Zhongshan School of Medicine, Division of Cardiac Surgery, The Key Laboratory of Assisted Circulation, Ministry of Health, The First Affiliated Hospital (J.-S.O.), and Department of Radiology, Intervention Radiology Institute, The Third Affiliated Hospital (J.-S.Q.), Sun Yat-Sen University, Guangzhou, China; and Department of Physiology and Pathophysiology, Dali University, Dali, China (P.Z.)
| | - Jia-Ni Yuan
- From the Department of Pharmacology, Cardiac and Cerebrovascular Research Center (S.-J.L., D.-Y.Z., X.-Y.M., J.-Y.S., Q.-Q.W., J.-N.Y., B.-X.Y., F.-R.Z., Y.-Y.L., X.-F.L., J.L., J.-G.Z.) and Guangdong Province Key Laboratory of Brain Function and Disease (J.-G.Z.), Zhongshan School of Medicine, Division of Cardiac Surgery, The Key Laboratory of Assisted Circulation, Ministry of Health, The First Affiliated Hospital (J.-S.O.), and Department of Radiology, Intervention Radiology Institute, The Third Affiliated Hospital (J.-S.Q.), Sun Yat-Sen University, Guangzhou, China; and Department of Physiology and Pathophysiology, Dali University, Dali, China (P.Z.)
| | - Bei-Xin Yu
- From the Department of Pharmacology, Cardiac and Cerebrovascular Research Center (S.-J.L., D.-Y.Z., X.-Y.M., J.-Y.S., Q.-Q.W., J.-N.Y., B.-X.Y., F.-R.Z., Y.-Y.L., X.-F.L., J.L., J.-G.Z.) and Guangdong Province Key Laboratory of Brain Function and Disease (J.-G.Z.), Zhongshan School of Medicine, Division of Cardiac Surgery, The Key Laboratory of Assisted Circulation, Ministry of Health, The First Affiliated Hospital (J.-S.O.), and Department of Radiology, Intervention Radiology Institute, The Third Affiliated Hospital (J.-S.Q.), Sun Yat-Sen University, Guangzhou, China; and Department of Physiology and Pathophysiology, Dali University, Dali, China (P.Z.)
| | - Ping Zhou
- From the Department of Pharmacology, Cardiac and Cerebrovascular Research Center (S.-J.L., D.-Y.Z., X.-Y.M., J.-Y.S., Q.-Q.W., J.-N.Y., B.-X.Y., F.-R.Z., Y.-Y.L., X.-F.L., J.L., J.-G.Z.) and Guangdong Province Key Laboratory of Brain Function and Disease (J.-G.Z.), Zhongshan School of Medicine, Division of Cardiac Surgery, The Key Laboratory of Assisted Circulation, Ministry of Health, The First Affiliated Hospital (J.-S.O.), and Department of Radiology, Intervention Radiology Institute, The Third Affiliated Hospital (J.-S.Q.), Sun Yat-Sen University, Guangzhou, China; and Department of Physiology and Pathophysiology, Dali University, Dali, China (P.Z.)
| | - Fei-Ran Zhang
- From the Department of Pharmacology, Cardiac and Cerebrovascular Research Center (S.-J.L., D.-Y.Z., X.-Y.M., J.-Y.S., Q.-Q.W., J.-N.Y., B.-X.Y., F.-R.Z., Y.-Y.L., X.-F.L., J.L., J.-G.Z.) and Guangdong Province Key Laboratory of Brain Function and Disease (J.-G.Z.), Zhongshan School of Medicine, Division of Cardiac Surgery, The Key Laboratory of Assisted Circulation, Ministry of Health, The First Affiliated Hospital (J.-S.O.), and Department of Radiology, Intervention Radiology Institute, The Third Affiliated Hospital (J.-S.Q.), Sun Yat-Sen University, Guangzhou, China; and Department of Physiology and Pathophysiology, Dali University, Dali, China (P.Z.)
| | - Ying-Ying Liu
- From the Department of Pharmacology, Cardiac and Cerebrovascular Research Center (S.-J.L., D.-Y.Z., X.-Y.M., J.-Y.S., Q.-Q.W., J.-N.Y., B.-X.Y., F.-R.Z., Y.-Y.L., X.-F.L., J.L., J.-G.Z.) and Guangdong Province Key Laboratory of Brain Function and Disease (J.-G.Z.), Zhongshan School of Medicine, Division of Cardiac Surgery, The Key Laboratory of Assisted Circulation, Ministry of Health, The First Affiliated Hospital (J.-S.O.), and Department of Radiology, Intervention Radiology Institute, The Third Affiliated Hospital (J.-S.Q.), Sun Yat-Sen University, Guangzhou, China; and Department of Physiology and Pathophysiology, Dali University, Dali, China (P.Z.)
| | - Xiao-Fei Lv
- From the Department of Pharmacology, Cardiac and Cerebrovascular Research Center (S.-J.L., D.-Y.Z., X.-Y.M., J.-Y.S., Q.-Q.W., J.-N.Y., B.-X.Y., F.-R.Z., Y.-Y.L., X.-F.L., J.L., J.-G.Z.) and Guangdong Province Key Laboratory of Brain Function and Disease (J.-G.Z.), Zhongshan School of Medicine, Division of Cardiac Surgery, The Key Laboratory of Assisted Circulation, Ministry of Health, The First Affiliated Hospital (J.-S.O.), and Department of Radiology, Intervention Radiology Institute, The Third Affiliated Hospital (J.-S.Q.), Sun Yat-Sen University, Guangzhou, China; and Department of Physiology and Pathophysiology, Dali University, Dali, China (P.Z.)
| | - Jie Liu
- From the Department of Pharmacology, Cardiac and Cerebrovascular Research Center (S.-J.L., D.-Y.Z., X.-Y.M., J.-Y.S., Q.-Q.W., J.-N.Y., B.-X.Y., F.-R.Z., Y.-Y.L., X.-F.L., J.L., J.-G.Z.) and Guangdong Province Key Laboratory of Brain Function and Disease (J.-G.Z.), Zhongshan School of Medicine, Division of Cardiac Surgery, The Key Laboratory of Assisted Circulation, Ministry of Health, The First Affiliated Hospital (J.-S.O.), and Department of Radiology, Intervention Radiology Institute, The Third Affiliated Hospital (J.-S.Q.), Sun Yat-Sen University, Guangzhou, China; and Department of Physiology and Pathophysiology, Dali University, Dali, China (P.Z.)
| | - Jing-Song Ou
- From the Department of Pharmacology, Cardiac and Cerebrovascular Research Center (S.-J.L., D.-Y.Z., X.-Y.M., J.-Y.S., Q.-Q.W., J.-N.Y., B.-X.Y., F.-R.Z., Y.-Y.L., X.-F.L., J.L., J.-G.Z.) and Guangdong Province Key Laboratory of Brain Function and Disease (J.-G.Z.), Zhongshan School of Medicine, Division of Cardiac Surgery, The Key Laboratory of Assisted Circulation, Ministry of Health, The First Affiliated Hospital (J.-S.O.), and Department of Radiology, Intervention Radiology Institute, The Third Affiliated Hospital (J.-S.Q.), Sun Yat-Sen University, Guangzhou, China; and Department of Physiology and Pathophysiology, Dali University, Dali, China (P.Z.)
| | - Jie-Sheng Qian
- From the Department of Pharmacology, Cardiac and Cerebrovascular Research Center (S.-J.L., D.-Y.Z., X.-Y.M., J.-Y.S., Q.-Q.W., J.-N.Y., B.-X.Y., F.-R.Z., Y.-Y.L., X.-F.L., J.L., J.-G.Z.) and Guangdong Province Key Laboratory of Brain Function and Disease (J.-G.Z.), Zhongshan School of Medicine, Division of Cardiac Surgery, The Key Laboratory of Assisted Circulation, Ministry of Health, The First Affiliated Hospital (J.-S.O.), and Department of Radiology, Intervention Radiology Institute, The Third Affiliated Hospital (J.-S.Q.), Sun Yat-Sen University, Guangzhou, China; and Department of Physiology and Pathophysiology, Dali University, Dali, China (P.Z.).
| | - Jia-Guo Zhou
- From the Department of Pharmacology, Cardiac and Cerebrovascular Research Center (S.-J.L., D.-Y.Z., X.-Y.M., J.-Y.S., Q.-Q.W., J.-N.Y., B.-X.Y., F.-R.Z., Y.-Y.L., X.-F.L., J.L., J.-G.Z.) and Guangdong Province Key Laboratory of Brain Function and Disease (J.-G.Z.), Zhongshan School of Medicine, Division of Cardiac Surgery, The Key Laboratory of Assisted Circulation, Ministry of Health, The First Affiliated Hospital (J.-S.O.), and Department of Radiology, Intervention Radiology Institute, The Third Affiliated Hospital (J.-S.Q.), Sun Yat-Sen University, Guangzhou, China; and Department of Physiology and Pathophysiology, Dali University, Dali, China (P.Z.).
| |
Collapse
|
24
|
Lange I, Moschny J, Tamanyan K, Khutsishvili M, Atha D, Borris RP, Koomoa DL. Scrophularia orientalis extract induces calcium signaling and apoptosis in neuroblastoma cells. Int J Oncol 2016; 48:1608-16. [PMID: 26848085 PMCID: PMC4777595 DOI: 10.3892/ijo.2016.3373] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Accepted: 12/15/2015] [Indexed: 12/26/2022] Open
Abstract
Effective neuroblastoma (NB) treatments are still limited despite treatment options available today. Therefore, this study attempted to identify novel plant extracts that have anticancer effects. Cytotoxicity and increased intracellular calcium levels were determined using the Sulforhodamine B (SRB) assay and Fluo4-AM (acetoxymethyl) staining and fluorescence microscopy in NB cells in order to screen a library of plant extracts. The current study examined the anticancer effects of a dichloromethane extract from Scrophularia orientalis L. (Scrophulariaceae), a plant that has been used in Traditional Chinese Medicine. This extract contained highly potent agents that significantly reduced cell survival and increased calcium levels in NB cells. Further analysis revealed that cell death induced by this extract was associated with intracellular calcium release, opening of the MPTP, caspase 3- and PARP-cleavage suggesting that this extract induced aberrant calcium signaling that resulted in apoptosis via the mitochondrial pathway. Therefore, agents from Scrophularia orientalis may have the potential to lead to new chemo therapeutic anticancer drugs. Furthermore, targeting intracellular calcium signaling may be a novel strategy to develop more effective treatments for NB.
Collapse
Affiliation(s)
- Ingo Lange
- Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, HI, USA
| | - Julia Moschny
- Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, HI, USA
| | - Kamilla Tamanyan
- Institute of Botany, National Academy of Sciences, Yerevan, Armenia
| | - Manana Khutsishvili
- National Herbarium of Georgia, Institute of Botany, Ilia State University, Tbilisi, Georgia
| | - Daniel Atha
- The New York Botanical Garden, Bronx, NY, USA
| | - Robert P Borris
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin, P.R. China
| | - Dana-Lynn Koomoa
- Daniel K. Inouye College of Pharmacy, University of Hawaii at Hilo, Hilo, HI, USA
| |
Collapse
|
25
|
Péntek A, Pászty K, Apáti Á. Analysis of Intracellular Calcium Signaling in Human Embryonic Stem Cells. Methods Mol Biol 2016; 1307:141-147. [PMID: 24482125 DOI: 10.1007/7651_2014_68] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Measurement of changes in intracellular calcium concentration is one of the most common and useful tools for studying signal transduction pathways or cellular responses in basic research and drug screening purposes as well. Increasing number of such applications using human pluripotent stem cells and their derivatives requires development of calcium signal measurements for this special cell type. Here we describe a modified protocol for analysis of calcium signaling events in human embryonic stem cells, which can be used for other pluripotent cell types (such as iPSC) or their differentiated offspring as well.
Collapse
Affiliation(s)
- Adrienn Péntek
- Institute of Molecular Pharmacology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Diószegi 64, 1113, Budapest, Hungary
| | | | | |
Collapse
|
26
|
Liu G, Honisch S, Liu G, Schmidt S, Alkahtani S, AlKahtane AA, Stournaras C, Lang F. Up-regulation of Orai1 expression and store operated Ca(2+) entry following activation of membrane androgen receptors in MCF-7 breast tumor cells. BMC Cancer 2015; 15:995. [PMID: 26690689 PMCID: PMC4687293 DOI: 10.1186/s12885-015-2014-2] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2015] [Accepted: 12/15/2015] [Indexed: 12/20/2022] Open
Abstract
Background Membrane androgen receptors (mAR) are functionally expressed in a variety of tumor-cells including the breast tumor-cell line MCF-7. They are specifically activated by testosterone albumin conjugates (TAC). The mAR sensitive signaling includes activation of Ras-related C3 botulinum toxin substrate 1 (Rac1) and reorganization of the actin filament network. Signaling of tumor-cells may further involve up-regulation of pore forming Ca2+ channel protein Orai1, which accomplishes store operated Ca2+ entry (SOCE). This study explored the regulation of Orai1 abundance and SOCE by mAR. Methods Actin filaments were visualized utilizing confocal microscopy, Rac1 activity using GST-GBD assay, Orai1 transcript levels by RT-PCR and total protein abundance by western blotting, Orai1 abundance at the cell surface by confocal microscopy and FACS-analysis, cytosolic Ca2+ activity ([Ca2+]i) utilizing Fura-2-fluorescence, and SOCE from increase of [Ca2+]i following readdition of Ca2+ after store depletion with thapsigargin (1 μM). Results TAC treatment of MCF-7 cells was followed by Rac1 activation, actin polymerization, transient increase of Orai1transcript levels and protein abundance, and transient increase of SOCE. The transient increase of Orai1 protein abundance was abrogated by Rac1 inhibitor NSC23766 (50 μM) and by prevention of actin reorganization with cytochalasin B (1 μM). Conclusions mAR sensitive Rac1 activation and actin reorganization contribute to the regulation of Orai1 protein abundance and SOCE.
Collapse
Affiliation(s)
- Guilai Liu
- Department of Physiology, University of Tuebingen, Tuebingen, Germany.
| | - Sabina Honisch
- Department of Physiology, University of Tuebingen, Tuebingen, Germany.
| | - Guoxing Liu
- Department of Physiology, University of Tuebingen, Tuebingen, Germany.
| | - Sebastian Schmidt
- Department of Physiology, University of Tuebingen, Tuebingen, Germany.
| | - Saad Alkahtani
- Department of Biochemistry, University of Crete Medical School, Heraklion, Crete, Greece. .,Department of Zoology, Science College, King Saud University, Riyadh, Saudi Arabia.
| | - Abdullah A AlKahtane
- Department of Zoology, Science College, King Saud University, Riyadh, Saudi Arabia.
| | - Christos Stournaras
- Department of Physiology, University of Tuebingen, Tuebingen, Germany. .,Department of Biochemistry, University of Crete Medical School, Heraklion, Crete, Greece.
| | - Florian Lang
- Department of Physiology, University of Tuebingen, Tuebingen, Germany. .,Physiologisches Institut, der Universität Tübingen, Gmelinstr. 5, D-72076, Tübingen, Germany.
| |
Collapse
|
27
|
Hoth M. CRAC channels, calcium, and cancer in light of the driver and passenger concept. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:1408-17. [PMID: 26705695 DOI: 10.1016/j.bbamcr.2015.12.009] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2015] [Revised: 12/09/2015] [Accepted: 12/15/2015] [Indexed: 01/18/2023]
Abstract
Advances in next-generation sequencing allow very comprehensive analyses of large numbers of cancer genomes leading to an increasingly better characterization and classification of cancers. Comparing genomic data predicts candidate genes driving development, growth, or metastasis of cancer. Cancer driver genes are defined as genes whose mutations are causally implicated in oncogenesis whereas passenger mutations are defined as not being oncogenic. Currently, a list of several hundred cancer driver mutations is discussed including prominent members like TP53, BRAF, NRAS, or NF1. According to the vast literature on Ca(2+) and cancer, Ca(2+) signals and the underlying Ca(2+) channels and transporters certainly influence the development, growth, and metastasis of many cancers. In this review, I focus on the calcium release-activated calcium (CRAC) channel genes STIM and Orai and their role for cancer development, growth, and metastasis. STIM and Orai genes are being discussed in the context of current cancer concepts with a focus on the driver-passenger hypothesis. One result of this discussion is the hypothesis that a driver analysis of Ca(2+) homeostasis-related genes should not be carried out by looking at isolated genes. Rather a pool of “Ca(2+) genes” might be considered to act as one potential cancer driver. This article is part of a Special Issue entitled: Calcium and Cell Fate. Guest Editors: Jacques Haiech, Claus Heizmann, Joachim Krebs, Thierry Capiod and Olivier Mignen.
Collapse
Affiliation(s)
- Markus Hoth
- Department of Biophysics, Center for Integrative Physiology and Molecular Medicine, Medical Faculty, Building 48, Saarland University, D-66421 Homburg, Germany.
| |
Collapse
|
28
|
Temporal protein expression pattern in intracellular signalling cascade during T-cell activation: a computational study. J Biosci 2015; 40:769-89. [PMID: 26564978 DOI: 10.1007/s12038-015-9561-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Various T-cell co-receptor molecules and calcium channel CRAC play a pivotal role in the maintenance of cell's functional responses by regulating the production of effector molecules (mostly cytokines) that aids in immune clearance and also maintaining the cell in a functionally active state. Any defect in these co-receptor signalling pathways may lead to an altered expression pattern of the effector molecules. To study the propagation of such defects with time and their effect on the intracellular protein expression patterns, a comprehensive and largest pathway map of T-cell activation network is reconstructed manually. The entire pathway reactions are then translated using logical equations and simulated using the published time series microarray expression data as inputs. After validating the model, the effect of in silico knock down of co-receptor molecules on the expression patterns of their downstream proteins is studied and simultaneously the changes in the phenotypic behaviours of the T-cell population are predicted, which shows significant variations among the proteins expression and the signalling routes through which the response is propagated in the cytoplasm. This integrative computational approach serves as a valuable technique to study the changes in protein expression patterns and helps to predict variations in the cellular behaviour.
Collapse
|
29
|
Lin W, Suo Y, Deng Y, Fan Z, Zheng Y, Wei X, Chu Y. Morphological change of CD4(+) T cell during contact with DC modulates T-cell activation by accumulation of F-actin in the immunology synapse. BMC Immunol 2015; 16:49. [PMID: 26306899 PMCID: PMC4549951 DOI: 10.1186/s12865-015-0108-x] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Accepted: 07/09/2015] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The changes in T-cell morphology during immunological synapse (IS) formation are essential for T-cell activation. Previous researches have shown that T cell changed from spherical to elongated and/or flattened during in contact with B cell. As most powerful antigen presenting cell, dendritic cell (DC) has a strong ability to activate T cells. However, the morphological change of T cell which contacts DC and the relationship between morphological change and T-cell activation are not very clear. Thus, we studied the morphological change of CD4(+) T cell during contact with DC. RESULTS Using live-cell imaging, we discovered diversity in the T-cell morphological changes during contact with DCs. The elongation-flattening of CD4(+) T cells correlated with a low-level Ca(2+) response and a loss of T-cell receptor (TCR) signalling molecules in the IS, including zeta-chain associated protein kinase 70 (ZAP-70), phospholipase C-γ (PLC-γ) and protein kinase C-θ (PKC-θ), whereas rounding-flattening correlated with sufficient CD4(+) T-cell activation. Different morphological changes were correlated with the different amount of accumulated filamentous actin (F-actin) in the IS. Disruption of F-actin by cytochalasin D impaired the morphological change and the localisation of calcium microdomains in the IS and decreased the calcium response in CD4(+) T cells. CONCLUSION Our study discovered the diversity in morphological change of T cells during contacted with DCs. During this process, the different morphological changes of T cells modulate T-cell activation by the different amount of F-actin accumulation in the IS, which controls the distribution of calcium microdomains to affect T-cell activation.
Collapse
Affiliation(s)
- Wei Lin
- Department of Immunology and Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.,Biotherapy Research Centre, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Yuanzhen Suo
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Yuting Deng
- Department of Immunology and Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.,Biotherapy Research Centre, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Zhichao Fan
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China
| | - Yijie Zheng
- Department of Immunology and Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China.,Biotherapy Research Centre, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China
| | - Xunbin Wei
- Med-X Research Institute and School of Biomedical Engineering, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.
| | - Yiwei Chu
- Department of Immunology and Key Laboratory of Medical Molecular Virology of MOE/MOH, School of Basic Medical Sciences, Fudan University, Shanghai, 200032, China. .,Biotherapy Research Centre, Fudan University, 138 Yixueyuan Road, Shanghai, 200032, China.
| |
Collapse
|
30
|
Schmidt S, Liu G, Liu G, Yang W, Honisch S, Pantelakos S, Stournaras C, Hönig A, Lang F. Enhanced Orai1 and STIM1 expression as well as store operated Ca2+ entry in therapy resistant ovary carcinoma cells. Oncotarget 2015; 5:4799-810. [PMID: 25015419 PMCID: PMC4148100 DOI: 10.18632/oncotarget.2035] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Mechanisms underlying therapy resistance of tumor cells include protein kinase Akt. Putative Akt targets include store-operated Ca2+-entry (SOCE) accomplished by pore forming ion channel unit Orai1 and its regulator STIM1. We explored whether therapy resistant (A2780cis) differ from therapy sensitive (A2780) ovary carcinoma cells in Akt, Orai1, and STIM1 expression, Ca2+-signaling and cell survival following cisplatin (100μM) treatment. Transcript levels were quantified with RT-PCR, protein abundance with Western blotting, cytosolic Ca2+-activity ([Ca2+]i) with Fura-2-fluorescence, SOCE from increase of [Ca2+]i following Ca2+-readdition after Ca2+-store depletion, and apoptosis utilizing flow cytometry. Transcript levels of Orai1 and STIM1, protein expression of Orai1, STIM1, and phosphorylated Akt, as well as SOCE were significantly higher in A2780cis than A2780 cells. SOCE was decreased by Akt inhibitor III (SH-6, 10μM) in A2780cis but not A2780 cells and decreased in both cell lines by Orai1 inhibitor 2-aminoethoxydiphenyl borate (2-ABP, 50μM). Phosphatidylserine exposure and late apoptosis following cisplatin treatment were significantly lower in A2780cis than A2780 cells, a difference virtually abolished by SH-6 or 2-ABP. In conclusion, Orai1/STIM1 expression and function are increased in therapy resistant ovary carcinoma cells, a property at least in part due to enhanced Akt activity and contributing to therapy resistance in those cells.
Collapse
Affiliation(s)
- Sebastian Schmidt
- Department of Physiology, University of Tübingen, D72076 Tübingen, Germany
| | | | | | | | | | | | | | | | - Florian Lang
- Department of Physiology, University of Tübingen, D72076 Tübingen, Germany
| |
Collapse
|
31
|
Vargas-Martínez F, Uvnäs-Moberg K, Petersson M, Olausson HA, Jiménez-Estrada I. Neuropeptides as neuroprotective agents: Oxytocin a forefront developmental player in the mammalian brain. Prog Neurobiol 2014; 123:37-78. [DOI: 10.1016/j.pneurobio.2014.10.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2014] [Accepted: 10/06/2014] [Indexed: 02/07/2023]
|
32
|
Liu S, Kiyoi T, Takemasa E, Maeyama K. Systemic Lentivirus-Mediated Delivery of Short Hairpin RNA Targeting Calcium Release–Activated Calcium Channel 3 as Gene Therapy for Collagen-Induced Arthritis. THE JOURNAL OF IMMUNOLOGY 2014; 194:76-83. [DOI: 10.4049/jimmunol.1401976] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
33
|
The bullseye synapse formed between CD4+ T-cell and staphylococcal enterotoxin B-pulsed dendritic cell is a suppressive synapse in T-cell response. Immunol Cell Biol 2014; 93:99-110. [PMID: 25287444 DOI: 10.1038/icb.2014.76] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2014] [Revised: 08/15/2014] [Accepted: 08/18/2014] [Indexed: 01/05/2023]
Abstract
The immunological synapse (IS) is a supermolecular activation cluster formed between T cells and antigen-presenting cells. Although diverse IS structures have been reported, the function of the IS in T-cell activation remains unclear. Here, we found that the bullseye IS, one of IS types at the interface of CD4(+) T cells and staphylococcal enterotoxin B-pulsed dendritic cells, suppressed CD4(+) T-cell activation, whereas multifocal IS, another synapse type, stimulated CD4(+) T-cell activation. Consistent with these results, bullseye IS formation was accompanied by a low-level calcium response in T cells and a loss of T-cell receptor signalling molecules from the synapse, whereas multifocal IS exhibited the opposite. Furthermore, we found that CD4(+)CD25(+) regulatory T cells (T(regs)) more efficiently formed bullseye IS and promoted bullseye IS formation in CD4(+) CD25(-) T cells. Cytotoxic T-lymphocyte antigen-4 (CTLA-4), an inhibitory molecule expressed continuously on T(regs), was localised in bullseye IS. Moreover, blocking CTLA-4 reduced the percentage of bullseye IS formation and promoted T-cell activation. Our data thus indicate that bullseye IS formation is mediated by CTLA-4, and may negatively control T-cell activation as a suppressive synapse.
Collapse
|
34
|
Upregulation of store‐operated Ca
2+
entry in the naïve CD4
+
T cells with aberrant cytokine releasing in active rheumatoid arthritis. Immunol Cell Biol 2014; 92:752-60. [DOI: 10.1038/icb.2014.45] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2013] [Revised: 05/11/2014] [Accepted: 05/12/2014] [Indexed: 02/01/2023]
|
35
|
Alansary D, Kilch T, Holzmann C, Peinelt C, Hoth M, Lis A. Patch-clamp measurement of ICRAC and ORAI channel activity. Cold Spring Harb Protoc 2014; 2014:602-7. [PMID: 24890214 DOI: 10.1101/pdb.top066795] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Depletion of internal Ca(2+) stores activates store-operated Ca(2+) channels. The most prominent members of this class of channels are Ca(2+) release-activated Ca(2+) (CRAC) channels, which are present in a variety of cell types including immune cells. CRAC channels are composed of ORAI proteins, which are activated by endoplasmic reticulum-bound STIM proteins on Ca(2+) store depletion. The underlying Ca(2+) current is called ICRAC, which is required for many cellular functions including T-cell activation, mast cell activation, Ca(2+)-dependent gene expression, and refilling of internal Ca(2+) stores. To analyze ICRAC or the Ca(2+) current through heterologously expressed ORAI channels, whole-cell patch clamp is the technique of choice. It allows the direct analysis of ion currents through CRAC/ORAI channels. The patch-clamp technique has been used to determine selectivity, permeability, rectification, inactivation, and several other biophysical and pharmacological properties of the channels, and is the most direct and reliable technique to analyze ICRAC.
Collapse
Affiliation(s)
- Dalia Alansary
- Department of Biophysics, Saarland University, Homburg, Germany
| | - Tatiana Kilch
- Department of Biophysics, Saarland University, Homburg, Germany
| | | | | | - Markus Hoth
- Department of Biophysics, Saarland University, Homburg, Germany
| | - Annette Lis
- Department of Biophysics, Saarland University, Homburg, Germany
| |
Collapse
|
36
|
Luo R, Wang X, Dong Y, Wang L, Tian C. Activation of protease-activated receptor 2 reduces glioblastoma cell apoptosis. J Biomed Sci 2014; 21:25. [PMID: 24670244 PMCID: PMC3974186 DOI: 10.1186/1423-0127-21-25] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2013] [Accepted: 03/19/2014] [Indexed: 11/13/2022] Open
Abstract
Background The pathogenesis of glioma is unclear. The disturbance of the apoptosis process plays a critical role in glioma growth. Factors regulating the apoptosis process are to be further understood. This study aims to investigate the role of protease activated receptor-2 (PAR2) in regulation the apoptosis process in glioma cells. Results The results showed that U87 cells and human glioma tissue expressed PAR2. Exposure to tryptase, or the PAR2 active peptide, increased STAT3 phosphorylation in the radiated U87 cells, reduced U87 cell apoptosis, suppressed the expression of p53 in U87 cells. Conclusions Activation of PAR2 can reduce the radiated U87 cell apoptosis via modulating the expression of p53. The results implicate that PAR2 may be a novel therapeutic target in the treatment of glioma.
Collapse
Affiliation(s)
| | - Xiongwei Wang
- Department of Neurosurgery, Institute of Neurosurgery, Yichang Central People's Hospital & The First Clinical Medical College of Three Gorges University, Yichang, Hubei 443003, P,R, China.
| | | | | | | |
Collapse
|
37
|
Stanisz H, Saul S, Müller CSL, Kappl R, Niemeyer BA, Vogt T, Hoth M, Roesch A, Bogeski I. Inverse regulation of melanoma growth and migration by Orai1/STIM2-dependent calcium entry. Pigment Cell Melanoma Res 2014; 27:442-53. [PMID: 24472175 DOI: 10.1111/pcmr.12222] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2013] [Accepted: 01/24/2014] [Indexed: 12/29/2022]
Abstract
Spontaneous melanoma phenotype switching is controlled by unknown environmental factors and may determine melanoma outcome and responsiveness to anticancer therapy. We show that Orai1 and STIM2 are highly expressed and control store-operated Ca(2+) entry in human melanoma. Lower extracellular Ca(2+) or silencing of Orai1/STIM2 caused a decrease in intracellular Ca(2+) , which correlated with enhanced proliferation and increased expression of microphthalmia-associated transcription factor, a marker for proliferative melanoma phenotype. In contrast, the invasive and migratory potential of melanoma cells was reduced upon silencing of Orai1 and/or STIM2. Accordingly, markers for a non-proliferative, tumor-maintaining phenotype such as JARID1B and Brn2 decreased. Immunohistochemical staining of primary melanomas and lymph node metastases revealed a heterogeneous distribution of Orai1 and STIM2 with elevated expression in the invasive rim of the tumor. In summary, our results support a dynamic model in which Orai1 and STIM2 inversely control melanoma growth and invasion. Pharmacological tuning of Orai1 and particularly STIM2 might thus prevent metastatic spread and render melanomas more susceptible to conventional therapy.
Collapse
Affiliation(s)
- Hedwig Stanisz
- Department of Dermatology, Venereology and Allergology, University Hospital of the Saarland, Homburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
38
|
Hoth M, Niemeyer BA. The neglected CRAC proteins: Orai2, Orai3, and STIM2. CURRENT TOPICS IN MEMBRANES 2014; 71:237-71. [PMID: 23890118 DOI: 10.1016/b978-0-12-407870-3.00010-x] [Citation(s) in RCA: 115] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Plasma-membrane-localized Orai1 ion channel subunits interacting with ER-localized STIM1 molecules comprise the major subunit composition responsible for calcium release-activated calcium channels. STIM1 "translates" the Ca(2+) store content into Orai1 activity, making it a store-operated channel. Surprisingly, in addition to being the physical activator, STIM1 also modulates Orai1 properties, including its inactivation and permeation (see Chapter 1). STIM1 is thus more than a pure Orai1 activator. Within the past 7 years following the discovery of STIM and Orai proteins, the molecular mechanisms of STIM1/Orai1 activity and their functional importance have been studied in great detail. Much less is currently known about the other isoforms STIM2, Orai2, and Orai3. In this chapter, we summarize the current knowledge about STIM2, Orai2, and Orai3 properties and function. Are these homologues mainly modulators of predominantly STIM1/Orai1-mediated complexes or do store-dependent or -independent functions such as regulation of basal Ca(2+) concentration and activation of Orai3-containing complexes by arachidonic acid or by estrogen receptors point toward their "true" physiological function? Is Orai2 the Orai1 of neurons? A major focus of the review is on the functional relevance of STIM2, Orai2, and Orai3, some of which still remains speculative.
Collapse
Affiliation(s)
- Markus Hoth
- Department of Biophysics, Saarland University, Homburg, Germany
| | | |
Collapse
|
39
|
Protein kinase C-dependent activation of CaV1.2 channels selectively controls human TH2-lymphocyte functions. J Allergy Clin Immunol 2013; 133:1175-83. [PMID: 24365142 DOI: 10.1016/j.jaci.2013.10.038] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2013] [Revised: 10/02/2013] [Accepted: 10/28/2013] [Indexed: 02/02/2023]
Abstract
BACKGROUND In addition to calcium release-activated calcium channel/ORAI calcium channels, the role of voltage-gated calcium (Cav1) channels in T-cell calcium signaling is emerging. Cav1 channels are formed by α1 (CaV1.1 to CaV1.4) and auxiliary subunits. We previously demonstrated that mouse TH2 cells selectively overexpressed CaV1.2 and CaV1.3 channels. Knocking down these channels with Cav1 antisense (AS) oligonucleotides inhibited TH2 functions and experimental asthma. OBJECTIVE We investigated the expression profile and role of Cav1 channels in human T-cell subsets, with a focus on TH2 cells. METHODS We compared the profile of CaV1 channel subunit expression in T-cell subsets isolated ex vivo from the blood of healthy donors, as well as in vitro-polarized T-cell subsets, and tested the effect of the Cav1 inhibitors nicardipine and Cav1.2AS on their functions. RESULTS CaV1.4 expression was detectable in CD4(+) T cells, ex vivo TH1 cells, and TH17 cells, whereas Cav1.2 channels predominated in TH2 cells only. T-cell activation resulted in Cav1.4 downregulation, whereas Cav1.2 expression was selectively maintained in polarized TH2 cells and absent in TH1 or TH9 cells. Nicardipine and CaV1.2AS decreased Ca(2+) and cytokine responses in TH2, but not TH1, cells. Protein kinase C (PKC) α/β inhibition decreased Ca(2+) and cytokine responses, whereas both calcium and cytokine responses induced by PKC activation were inhibited by nicardipine or Cav1.2AS in TH2 cells. CONCLUSION This study highlights the selective expression of Cav1.2 channels in human TH2 cells and the role of PKC-dependent Cav1.2 channel activation in TH2 cell function. Blocking PKC or Cav1.2 channel activation in TH2 cells might represent new strategies to treat allergic diseases in human subjects.
Collapse
|
40
|
CRAC channel inhibition produces greater anti-inflammatory effects than glucocorticoids in CD8 cells from COPD patients. Clin Sci (Lond) 2013; 126:223-32. [PMID: 23905758 DOI: 10.1042/cs20130152] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There are increased numbers of pulmonary CD8 lymphocytes in COPD (chronic obstructive pulmonary disease). CRAC (calcium release-activation calcium) channels play a central role in lymphocyte activation though the regulation of the transcription factor NFAT (nuclear factor of activated T-cells). We studied the expression of NFAT in lungs from COPD patients compared with controls, and evaluated the effects of CRAC channel inhibition compared with corticosteroids on NFAT activation and cytokine production in CD8 cells from COPD patients. The effects of the corticosteroid dexamethasone, the calcineurin inhibitor cyclosporin and the CRAC channel inhibitor Synta 66 were studied on cytokine production and NFAT activation using peripheral blood and isolated pulmonary CD8 cells. NFAT1 and CD8 co-expression in the lungs was compared in COPD patients and controls using combined immunohistochemistry and immunofluorescence. NFAT inhibition with either cyclosporin or Synta 66 resulted in significantly greater maximal inhibition of cytokines than dexamethasone in both peripheral blood and pulmonary CD8 cells [e.g. >95% inhibition of IFNγ (interferon γ) production from pulmonary CD8 cells using cyclosporin and Synta 66 compared with <50% using dexamethasone]. The absolute number of pulmonary CD8 cells co-expressing NFAT1 was significantly raised in lungs from COPD patients compared with controls, but the percentage of CD8 cells co-expressing NFAT1 was similar between COPD patients and controls (80.7% compared with 78.5% respectively, P=0.3). Inhibition of NFAT using the CRAC channel Synta 66 produces greater anti-inflammatory effects on CD8 cells from COPD patients than corticosteroids. NFAT is expressed at a high level in pulmonary CD8 cells in COPD.
Collapse
|
41
|
Saul S, Stanisz H, Backes CS, Schwarz EC, Hoth M. How ORAI and TRP channels interfere with each other: interaction models and examples from the immune system and the skin. Eur J Pharmacol 2013; 739:49-59. [PMID: 24291108 DOI: 10.1016/j.ejphar.2013.10.071] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2013] [Revised: 10/08/2013] [Accepted: 10/17/2013] [Indexed: 11/16/2022]
Abstract
Four types of Ca(2+) selective ion channels are known, ten voltage gated Ca(2+) (CaV) channels, four CatSper channels, three store operated CRAC channels (ORAI channels) and at least two members of the TRPV subfamily (TRPV5, TRPV6). Some of the other TRP channels also show some Ca(2+) selectivity like certain splice variants of TRPM3. In addition to Ca(2+) selective channels, various cation channels play an important role for Ca(2+) entry and furthermore, they may also regulate Ca(2+) entry through other channels by modulating the membrane potential or other means as outlined in this review. Of the different types of cation channels, TRP channels form one of the most prominent families of non-selective cation channels with functional relevance in electrically non-excitable and electrically excitable cell types. Among these, the seven channels of the TRPC subfamily are rather non-selective with very modest Ca(2+) selectivity, whereas in the other subfamilies, cation selectivity ranges from monovalent selectivity (i.e. TRPM4, TRPM5) to divalent selectivity (i.e. TRPM6, TRPM7) or Ca(2+) selectivity (i.e. TRPV5, TRPV6). Rather than discussing the heavily reviewed individual functions of ORAI or TRP channels, we summarize data and present models how TRP and ORAI may functionally interact to guide cellular functions. We focus on T lymphocytes representing a more ORAI-dominated tissue and skin as model system in which both ORAI and TRP channel have been reported to control relevant functions. We present several interaction models how ORAI and TRP may interfere with each other's function.
Collapse
Affiliation(s)
- Stephanie Saul
- Department of Biophysics, School of Medicine, Saarland University, Homburg, Germany
| | - Hedwig Stanisz
- Department of Dermatology, School of Medicine, Saarland University, Homburg, Germany
| | - Christian S Backes
- Department of Biophysics, School of Medicine, Saarland University, Homburg, Germany
| | - Eva C Schwarz
- Department of Biophysics, School of Medicine, Saarland University, Homburg, Germany
| | - Markus Hoth
- Department of Biophysics, School of Medicine, Saarland University, Homburg, Germany.
| |
Collapse
|
42
|
Salles A, Billaudeau C, Sergé A, Bernard AM, Phélipot MC, Bertaux N, Fallet M, Grenot P, Marguet D, He HT, Hamon Y. Barcoding T cell calcium response diversity with methods for automated and accurate analysis of cell signals (MAAACS). PLoS Comput Biol 2013; 9:e1003245. [PMID: 24086124 PMCID: PMC3784497 DOI: 10.1371/journal.pcbi.1003245] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 08/15/2013] [Indexed: 01/24/2023] Open
Abstract
We introduce a series of experimental procedures enabling sensitive calcium monitoring in T cell populations by confocal video-microscopy. Tracking and post-acquisition analysis was performed using Methods for Automated and Accurate Analysis of Cell Signals (MAAACS), a fully customized program that associates a high throughput tracking algorithm, an intuitive reconnection routine and a statistical platform to provide, at a glance, the calcium barcode of a population of individual T-cells. Combined with a sensitive calcium probe, this method allowed us to unravel the heterogeneity in shape and intensity of the calcium response in T cell populations and especially in naive T cells, which display intracellular calcium oscillations upon stimulation by antigen presenting cells. The adaptive immune response to pathogen invasion requires the stimulation of lymphocytes by antigen-presenting cells. We hypothesized that investigating the dynamics of the T lymphocyte activation by monitoring intracellular calcium fluctuations might help explain the high specificity and selectivity of this phenomenon. However, the quantitative and exhaustive analysis of calcium fluctuations by video microscopy in the context of cell-to-cell contact is a tough challenge. To tackle this, we developed a complete solution named MAAACS (Methods for Automated and Accurate Analysis of Cell Signals), in order to automate the detection, cell tracking, raw data ordering and analysis of calcium signals. Our algorithm revealed that, when in contact with antigen-presenting cells, T lymphocytes generate oscillating calcium signals and not a massive and sustained calcium response as was originally thought. We anticipate our approach providing many more new insights into the molecular mechanisms triggering adaptive immunity.
Collapse
Affiliation(s)
- Audrey Salles
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS) UMR7280, Marseille, France
| | - Cyrille Billaudeau
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS) UMR7280, Marseille, France
| | - Arnauld Sergé
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS) UMR7280, Marseille, France
- * E-mail: (AS); (YH)
| | - Anne-Marie Bernard
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS) UMR7280, Marseille, France
| | - Marie-Claire Phélipot
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS) UMR7280, Marseille, France
| | - Nicolas Bertaux
- Institut Fresnel, Centre National de la Recherche Scientifique (CNRS) UMR7249, Marseille, France
- École Centrale Marseille, Technopôle de Château-Gombert, Marseille, France
| | - Mathieu Fallet
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS) UMR7280, Marseille, France
| | - Pierre Grenot
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS) UMR7280, Marseille, France
| | - Didier Marguet
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS) UMR7280, Marseille, France
| | - Hai-Tao He
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS) UMR7280, Marseille, France
| | - Yannick Hamon
- Centre d'Immunologie de Marseille-Luminy (CIML), Aix-Marseille University, UM2, Marseille, France
- Institut National de la Santé et de la Recherche Médicale (Inserm), U1104, Marseille, France
- Centre National de la Recherche Scientifique (CNRS) UMR7280, Marseille, France
- * E-mail: (AS); (YH)
| |
Collapse
|
43
|
Schmidt S, Schneider S, Yang W, Liu G, Schmidt EM, Schmid E, Mia S, Brucker S, Stournaras C, Wallwiener D, Brosens JJ, Lang F. TGFβ1 and SGK1-sensitive store-operated Ca2+ entry and Orai1 expression in endometrial Ishikawa cells. Mol Hum Reprod 2013; 20:139-47. [PMID: 24043696 DOI: 10.1093/molehr/gat066] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The serum-and-glucocorticoid-inducible-kinase-1 (SGK1) is ubiquitously expressed and under genomic control by cell stress, hormones and further mediators. A most powerful stimulator of SGK1 expression is transforming growth factor TGFβ1. SGK1 is activated by insulin and growth factors via phosphatidylinositol-3-kinase and the 3-phosphoinositide-dependent kinase PDK1. As shown recently, SGK1 increases the store-operated Ca(2+) entry (SOCE), which is accomplished by the pore-forming ion channel unit Orai. Most recent observations further revealed that SGK1 plays a critical role in the regulation of fertility. SGK1 is up-regulated in the luminal epithelium of women with unexplained infertility but down-regulated in decidualizing stromal cells of patients with recurrent pregnancy loss. The present study explored whether Orai1 is expressed in endometrium and sensitive to regulation by SGK1 and/or TGFβ1. To this end, Orai1 protein abundance was determined by western blotting and SOCE by fura-2 fluorescence. As a result, Orai1 was expressed in human endometrium and in human endometrial Ishikawa cells. Orai1 expression and SOCE in Ishikawa cells were increased by transfection with constitutively active (S422D)SGK1 but not by transfection with inactive (K127N)SGK1. The difference of SOCE between (S422D)SGK1 and (K127N)SGK1-transfected cells was virtually abrogated in the presence of Orai1 inhibitor 2-aminoethoxydiphenyl borate (2-APB, 50 µM). Similar to (S422D)SGK1 transfection TGFβ1 treatment up-regulated both Orai1 protein abundance and SOCE. In conclusion, Orai1 is expressed in the human endometrium and is up-regulated by SGK1 and TGFβ1. The present observations thus uncover a novel element in SGK1-sensitive regulation of endometrial cells.
Collapse
Affiliation(s)
- S Schmidt
- Department of Physiology, University of Tübingen, D72076 Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
44
|
Chen YT, Chen YF, Chiu WT, Liu KY, Liu YL, Chang JY, Chang HC, Shen MR. Microtubule-Associated Histone Deacetylase 6 Supports the Calcium Store Sensor STIM1 in Mediating Malignant Cell Behaviors. Cancer Res 2013; 73:4500-9. [DOI: 10.1158/0008-5472.can-12-4127] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
Miyamoto A, Bannai H, Michikawa T, Mikoshiba K. Optimal microscopic systems for long-term imaging of intracellular calcium using a ratiometric genetically-encoded calcium indicator. Biochem Biophys Res Commun 2013; 434:252-7. [DOI: 10.1016/j.bbrc.2013.02.112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2013] [Accepted: 02/17/2013] [Indexed: 01/11/2023]
|
46
|
Srikanth S, Gwack Y. Orai1-NFAT signalling pathway triggered by T cell receptor stimulation. Mol Cells 2013; 35:182-94. [PMID: 23483280 PMCID: PMC3887911 DOI: 10.1007/s10059-013-0073-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2013] [Accepted: 03/03/2013] [Indexed: 10/27/2022] Open
Abstract
T cell receptor (TCR) stimulation plays a crucial role in development, homeostasis, proliferation, cell death, cytokine production, and differentiation of T cells. Thus, in depth understanding of TCR signalling is crucial for development of therapy targeting inflammatory diseases, improvement of vaccination efficiency, and cancer therapy utilizing T cell-based strategies. TCR activation turns on various signalling pathways, one of the important one being the Ca(2+)-calcineurin-nuclear factor of activated T cells (NFAT) signalling pathway. Stimulation of TCRs triggers depletion of intracellular Ca(2+) store and in turn, initiates store-operated Ca(2+) entry (SOCE), one of the major mechanisms to raise the intracellular Ca(2+) concentrations in T cells. Ca(2+)-release-activated-Ca(2+) (CRAC) channels are a prototype of store-operated Ca(2+) (SOC) channels in immune cells that are very well characterized. Recent identification of STIM1 as the endoplasmic reticulum (ER) Ca(2+) sensor and Orai1 as the pore subunit has dramatically advanced the understanding of CRAC channels and provides a molecular tool to investigate the physiological outcomes of Ca(2+) signalling during immune responses. In this review, we focus on our current understanding of CRAC channel activation, regulation, and downstream calcineurin-NFAT signaling pathway.
Collapse
Affiliation(s)
- Sonal Srikanth
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095,
USA
| | - Yousang Gwack
- Department of Physiology, David Geffen School of Medicine at UCLA, Los Angeles, CA 90095,
USA
| |
Collapse
|
47
|
Chen YT, Chen YF, Chiu WT, Wang YK, Chang HC, Shen MR. The ER Ca²⁺ sensor STIM1 regulates actomyosin contractility of migratory cells. J Cell Sci 2013; 126:1260-7. [PMID: 23378028 DOI: 10.1242/jcs.121129] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Stromal interaction molecule 1 (STIM1) is an endoplasmic reticulum (ER) Ca(2+) sensor that triggers the store-operated Ca(2+) entry (SOCE). The clinical relevance of STIM1 has been highlighted in breast and cervical cancer, but the molecular mechanism by which STIM1 promotes cancer progression remains unclear. This study explores the regulatory mechanisms by which STIM1-dependent Ca(2+) signaling controls cancer cell migration. Three different SOCE inhibitors, SKF96365, 2-APB and YM-58483, significantly inhibited cervical cancer cell migration to a similar extent to that of STIM1 silencing. In contrast, STIM1 overexpression significantly enhanced cervical cancer cell migration. Live cell confocal images and three-dimensional tomograms showed that STIM1 formed aggregates and translocated towards the plasma membranes of migratory cells, and this was accompanied by increasing cytosolic Ca(2+) spikes. STIM1 silencing also inhibited the recruitment and association of active focal adhesion kinase (pTyr397-FAK) and talin at focal adhesions, indicating the blockade of force transduction from integrin signaling. Epidermal growth factor-induced phosphorylation of myosin II regulatory light chains was abolished by STIM1 knockdown and SOCE inhibition. Dual immunostaining of activated myosin II (pSer19-MLC) and actin revealed that actomyosin formation depended on STIM1-mediated Ca(2+) entry. Most importantly, STIM1 expression levels as well as SOCE activity controlled the generation of cell contractile force, as measured by the microfabricated post-array-detector system. These results highlight the unique role of STIM1-dependent Ca(2+) signaling in controlling cell migration by the regulation of actomyosin reorganization in conjunction with enhanced contractile forces.
Collapse
Affiliation(s)
- Ying-Ting Chen
- Department of Biomedical Engineering, College of Egineering, National Cheng Kung University, Tainan 701, Taiwan
| | | | | | | | | | | |
Collapse
|
48
|
Kilch T, Alansary D, Peglow M, Dörr K, Rychkov G, Rieger H, Peinelt C, Niemeyer BA. Mutations of the Ca2+-sensing stromal interaction molecule STIM1 regulate Ca2+ influx by altered oligomerization of STIM1 and by destabilization of the Ca2+ channel Orai1. J Biol Chem 2012; 288:1653-64. [PMID: 23212906 DOI: 10.1074/jbc.m112.417246] [Citation(s) in RCA: 55] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
A drop of endoplasmic reticulum Ca(2+) concentration triggers its Ca(2+) ssensor protein stromal interaction molecule 1 (STIM1) to oligomerize and accumulate within endoplasmic reticulum-plasma membrane junctions where it activates Orai1 channels, providing store-operated Ca(2+) entry. To elucidate the functional significance of N-glycosylation sites of STIM1, we created different mutations of asparagine-131 and asparagine-171. STIM1 NN/DQ resulted in a strong gain of function. Patch clamp, Total Internal Reflection Fluorescent (TIRF) microscopy, and fluorescence recovery after photobleaching (FRAP) analyses revealed that expression of STIM1 DQ mutants increases the number of active Orai1 channels and the rate of STIM1 translocation to endoplasmic reticulum-plasma membrane junctions with a decrease in current latency. Surprisingly, co-expression of STIM1 DQ decreased Orai1 protein, altering the STIM1:Orai1 stoichiometry. We describe a novel mathematical tool to delineate the effects of altered STIM1 or Orai1 diffusion parameters from stoichiometrical changes. The mutant uncovers a novel mechanism whereby "superactive" STIM1 DQ leads to altered oligomerization rate constants and to degradation of Orai1 with a change in stoichiometry of activator (STIM1) to effector (Orai1) ratio leading to altered Ca(2+) homeostasis.
Collapse
Affiliation(s)
- Tatiana Kilch
- Department of Biophysics, Saarland University, D-66421 Homburg, Germany
| | | | | | | | | | | | | | | |
Collapse
|
49
|
Schwarz EC, Qu B, Hoth M. Calcium, cancer and killing: the role of calcium in killing cancer cells by cytotoxic T lymphocytes and natural killer cells. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1833:1603-11. [PMID: 23220009 DOI: 10.1016/j.bbamcr.2012.11.016] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2012] [Revised: 11/16/2012] [Accepted: 11/18/2012] [Indexed: 01/13/2023]
Abstract
Killing cancer cells by cytotoxic T lymphocytes (CTL) and by natural killer (NK) cells is of vital importance. Cancer cell proliferation and apoptosis depend on the intracellular Ca(2+) concentration, and the expression of numerous ion channels with the ability to control intracellular Ca(2+) concentrations has been correlated with cancer. A rise of intracellular Ca(2+) concentrations is also required for efficient CTL and NK cell function and thus for killing their targets, in this case cancer cells. Here, we review the data on Ca(2+)-dependent killing of cancer cells by CTL and NK cells. In addition, we discuss emerging ideas and present a model how Ca(2+) may be used by CTL and NK cells to optimize their cancer cell killing efficiency. This article is part of a Special Issue entitled: 12th European Symposium on Calcium.
Collapse
Affiliation(s)
- Eva C Schwarz
- Department of Biophysics, Saarland University, Homburg, Germany
| | | | | |
Collapse
|
50
|
Míguez MJ, Burbano-Levy X, Carmona T, Quiros C, Thompson M, Lewis JE, Asthana D, Rodríguez A, Valiathan R, Malow R. Hypocalcaemia, alcohol drinking and viroimmune responses in ART recipients. Alcohol 2012; 46:763-8. [PMID: 22857856 PMCID: PMC4117399 DOI: 10.1016/j.alcohol.2012.07.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 06/24/2012] [Accepted: 07/16/2012] [Indexed: 12/16/2022]
Abstract
Metabolic perturbations associated with HIV and antiretroviral therapies are widespread. Unfortunately, research has predominantly focused in cardiometabolic problems, neglecting other important areas. In fact, the immune-calcium-skeletal interface has been understudied despite its potential relevance in people living with HIV (PLWH). Using a case-control methodology, 200 PLWH receiving medical care were enrolled and stratified according to hazardous vs. non-hazardous alcohol intake (HAU vs. non-HAU) and calcium (Ca) levels by analyzing baseline data. The group was chosen to represent relatively "pure" HAU with minimal drug use and no psychiatric diagnoses. With these narrow parameters in place, we found evidence that HAU significantly increases TNF-α levels compared to Non-HAU (2.8 ± 0.6 vs. 1.9 ± 0.3 pg/ml, p = 0.05) and decreases blood Ca levels (9 ± 0.6 vs. 9.4 ± 0.5, p = 0.03). Our analyses also suggest that chronic inflammation, as indicated by increased TNF-α levels, is associated with hypocalcemia (hypoCa <8.6). Despite the limited prevalence of hypoCa, these findings are clinically significant given that hypoCA PLWH exhibited decreased CD4 (253 ± 224 vs. 417.7 ± 281, p = 0.02), B cells (147 ± 58 vs. 248 ± 151, p = 0.03) and NK cells (146.8 ± 90 vs. 229 ± 148, p = 0.008) and elevated CD8 (902.5 ± 438 vs. 699 ± 510, p = 0.09) compared to those with normal calcium. Furthermore, calcium effects on viral load were also evident with hypoCA exhibiting the highest loads (140,187 ± 111 vs. 35,622 ± 7770 HIV copies, p = 0.01). Multivariate analyses confirmed the significance of hypoCa in predicting viroimmune parameters. This paper provides the first evidence that hypoCa accounts for some of the variation in viroimmune measures in HAART recipients and suggests that hypoCa may be mediating alcohol's deleterious effects.
Collapse
Affiliation(s)
- María José Míguez
- School of Integrated Science and Humanity, Florida International University, 11200 SW 8th Street DM 445B, Miami, FL 33199, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|