1
|
Wang D, Xie A, Luo J, Li L, Zhang Z, Deng W, Yang B, Chang Y, Liang Y. Thiotaurine inhibits melanoma progression by enhancing Ca 2+ overload-induced cellular apoptosis. J Dermatol Sci 2025; 118:29-37. [PMID: 40189970 DOI: 10.1016/j.jdermsci.2025.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/26/2025] [Accepted: 03/11/2025] [Indexed: 04/20/2025]
Abstract
BACKGROUND Melanoma is the most dangerous type of skin cancer with poor therapy outcomes. Since malignant cells are more susceptible to Ca2+ overload than normal cells, activating Ca2+ overload-mediated apoptosis may be a promising strategy to inhibit melanoma progression. Hydrogen sulfide (H2S) donors can regulate Ca2+ channels, but their effects on melanoma cells remain unclear. OBJECTIVE To explore the effects of Thiotaurine (TTAU), an H2S donor, on melanoma cells and its underlying mechanisms. METHODS We tested the effect of TTAU by culturing melanoma cells in vitro and establishing the xenograft model of mice in vivo. Cell proliferation and apoptosis were assessed using the CCK-8 test and flow cytometry. Molecules involved in apoptosis or Ca2+-related signal transduction were analyzed by western blotting. Immunofluorescence was used to measure Ca2+ levels, mitochondrial damage, and reactive oxygen species (ROS). RESULTS TTAU significantly reduced melanoma cell viability and induced apoptosis both in vitro and in vivo. Mechanistically, TTAU increased intracellular Ca2+, upregulated transient receptor potential vanilloid 1(TRPV1), and decreased activating transcription factor 3(ATF3) by nuclear factor of activated T cell cytoplasmic 1(NFATc1). TTAU also caused mitochondrial damage and ROS overproduction, which also promoted apoptosis. CONCLUSION We first elucidate that TTAU inhibits melanoma progression by activating Ca2+ influx-NFATc1-ATF3 signaling and aggravating mitochondrial oxidative stress, in which TRPV1 may act as an amplifier for Ca2+ influx. Our research is expected to provide new ideas for the treatment of tumors such as melanoma, as well as the clinical application of reactive sulfur species-based drugs.
Collapse
Affiliation(s)
- Di Wang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Ansheng Xie
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Jialiang Luo
- Department of Medical Laboratory, School of Laboratory Medicine and Biotechnology, Southern Medical University, Guangzhou, China
| | - Lei Li
- Department of Clinical Laboratory, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Zhiwen Zhang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Weiwei Deng
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Bin Yang
- Dermatology Hospital, Southern Medical University, Guangzhou, China
| | - Yuan Chang
- Department of Neurology, Nanfang Hospital, Southern Medical University, Guangzhou, China.
| | - Yunsheng Liang
- Dermatology Hospital, Southern Medical University, Guangzhou, China.
| |
Collapse
|
2
|
Munteanu C, Galaction AI, Onose G, Turnea M, Rotariu M. Hydrogen Sulfide (H 2S- or H 2S n-Polysulfides) in Synaptic Plasticity: Modulation of NMDA Receptors and Neurotransmitter Release in Learning and Memory. Int J Mol Sci 2025; 26:3131. [PMID: 40243915 PMCID: PMC11988931 DOI: 10.3390/ijms26073131] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2025] [Revised: 03/21/2025] [Accepted: 03/26/2025] [Indexed: 04/18/2025] Open
Abstract
Hydrogen sulfide (H2S) has emerged as a pivotal gaseous transmitter in the central nervous system, influencing synaptic plasticity, learning, and memory by modulating various molecular pathways. This review examines recent evidence regarding how H2S regulates NMDA receptor function and neurotransmitter release in neuronal circuits. By synthesizing findings from animal and cellular models, we investigate the impacts of enzymatic H2S production and exogenous H2S on excitatory synaptic currents, long-term potentiation, and intracellular calcium signaling. Data suggest that H2S interacts directly with NMDA receptor subunits, altering receptor function and modulating neuronal excitability. Simultaneously, H2S promotes the release of neurotransmitters such as glutamate and GABA, shaping synaptic dynamics and plasticity. Furthermore, reports indicate that disruptions in H2S metabolism contribute to cognitive impairments and neurodegenerative disorders, underscoring the potential therapeutic value of targeting H2S-mediated pathways. Although the precise mechanisms of H2S-induced changes in synaptic strength remain elusive, a growing body of evidence positions H2S as a significant regulator of memory formation processes. This review calls for more rigorous exploration into the molecular underpinnings of H2S in synaptic plasticity, paving the way for novel pharmacological interventions in cognitive dysfunction.
Collapse
Affiliation(s)
- Constantin Munteanu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (A.I.G.); (M.R.)
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania;
| | - Anca Irina Galaction
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (A.I.G.); (M.R.)
| | - Gelu Onose
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania;
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania
| | - Marius Turnea
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (A.I.G.); (M.R.)
| | - Mariana Rotariu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa”, 700454 Iasi, Romania; (A.I.G.); (M.R.)
| |
Collapse
|
3
|
Munteanu C, Popescu C, Vlădulescu-Trandafir AI, Onose G. Signaling Paradigms of H 2S-Induced Vasodilation: A Comprehensive Review. Antioxidants (Basel) 2024; 13:1158. [PMID: 39456412 PMCID: PMC11505308 DOI: 10.3390/antiox13101158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 10/28/2024] Open
Abstract
Hydrogen sulfide (H2S), a gas traditionally considered toxic, is now recognized as a vital endogenous signaling molecule with a complex physiology. This comprehensive study encompasses a systematic literature review that explores the intricate mechanisms underlying H2S-induced vasodilation. The vasodilatory effects of H2S are primarily mediated by activating ATP-sensitive potassium (K_ATP) channels, leading to membrane hyperpolarization and subsequent relaxation of vascular smooth muscle cells (VSMCs). Additionally, H2S inhibits L-type calcium channels, reducing calcium influx and diminishing VSMC contraction. Beyond ion channel modulation, H2S profoundly impacts cyclic nucleotide signaling pathways. It stimulates soluble guanylyl cyclase (sGC), increasing the production of cyclic guanosine monophosphate (cGMP). Elevated cGMP levels activate protein kinase G (PKG), which phosphorylates downstream targets like vasodilator-stimulated phosphoprotein (VASP) and promotes smooth muscle relaxation. The synergy between H2S and nitric oxide (NO) signaling further amplifies vasodilation. H2S enhances NO bioavailability by inhibiting its degradation and stimulating endothelial nitric oxide synthase (eNOS) activity, increasing cGMP levels and potent vasodilatory responses. Protein sulfhydration, a post-translational modification, plays a crucial role in cell signaling. H2S S-sulfurates oxidized cysteine residues, while polysulfides (H2Sn) are responsible for S-sulfurating reduced cysteine residues. Sulfhydration of key proteins like K_ATP channels and sGC enhances their activity, contributing to the overall vasodilatory effect. Furthermore, H2S interaction with endothelium-derived hyperpolarizing factor (EDHF) pathways adds another layer to its vasodilatory mechanism. By enhancing EDHF activity, H2S facilitates the hyperpolarization and relaxation of VSMCs through gap junctions between endothelial cells and VSMCs. Recent findings suggest that H2S can also modulate transient receptor potential (TRP) channels, particularly TRPV4 channels, in endothelial cells. Activating these channels by H2S promotes calcium entry, stimulating the production of vasodilatory agents like NO and prostacyclin, thereby regulating vascular tone. The comprehensive understanding of H2S-induced vasodilation mechanisms highlights its therapeutic potential. The multifaceted approach of H2S in modulating vascular tone presents a promising strategy for developing novel treatments for hypertension, ischemic conditions, and other vascular disorders. The interaction of H2S with ion channels, cyclic nucleotide signaling, NO pathways, ROS (Reactive Oxygen Species) scavenging, protein sulfhydration, and EDHF underscores its complexity and therapeutic relevance. In conclusion, the intricate signaling paradigms of H2S-induced vasodilation offer valuable insights into its physiological role and therapeutic potential, promising innovative approaches for managing various vascular diseases through the modulation of vascular tone.
Collapse
Affiliation(s)
- Constantin Munteanu
- Department of Biomedical Sciences, Faculty of Medical Bioengineering, University of Medicine and Pharmacy “Grigore T. Popa” Iași, 700454 Iași, Romania
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (A.-I.V.-T.); (G.O.)
| | - Cristina Popescu
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (A.-I.V.-T.); (G.O.)
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania
| | - Andreea-Iulia Vlădulescu-Trandafir
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (A.-I.V.-T.); (G.O.)
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania
| | - Gelu Onose
- Neuromuscular Rehabilitation Clinic Division, Clinical Emergency Hospital “Bagdasar-Arseni”, 041915 Bucharest, Romania; (A.-I.V.-T.); (G.O.)
- Faculty of Medicine, University of Medicine and Pharmacy “Carol Davila”, 020022 Bucharest, Romania
| |
Collapse
|
4
|
Arrigo E, Comità S, Pagliaro P, Penna C, Mancardi D. Clinical Applications for Gasotransmitters in the Cardiovascular System: Are We There Yet? Int J Mol Sci 2023; 24:12480. [PMID: 37569855 PMCID: PMC10419417 DOI: 10.3390/ijms241512480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/28/2023] [Accepted: 08/03/2023] [Indexed: 08/13/2023] Open
Abstract
Ischemia is the underlying mechanism in a wide variety of acute and persistent pathologies. As such, understanding the fine intracellular events occurring during (and after) the restriction of blood supply is pivotal to improving the outcomes in clinical settings. Among others, gaseous signaling molecules constitutively produced by mammalian cells (gasotransmitters) have been shown to be of potential interest for clinical treatment of ischemia/reperfusion injury. Nitric oxide (NO and its sibling, HNO), hydrogen sulfide (H2S), and carbon monoxide (CO) have long been proven to be cytoprotective in basic science experiments, and they are now awaiting confirmation with clinical trials. The aim of this work is to review the literature and the clinical trials database to address the state of development of potential therapeutic applications for NO, H2S, and CO and the clinical scenarios where they are more promising.
Collapse
|
5
|
Rodkin S, Nwosu C, Sannikov A, Raevskaya M, Tushev A, Vasilieva I, Gasanov M. The Role of Hydrogen Sulfide in Regulation of Cell Death following Neurotrauma and Related Neurodegenerative and Psychiatric Diseases. Int J Mol Sci 2023; 24:10742. [PMID: 37445920 DOI: 10.3390/ijms241310742] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/15/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Injuries of the central (CNS) and peripheral nervous system (PNS) are a serious problem of the modern healthcare system. The situation is complicated by the lack of clinically effective neuroprotective drugs that can protect damaged neurons and glial cells from death. In addition, people who have undergone neurotrauma often develop mental disorders and neurodegenerative diseases that worsen the quality of life up to severe disability and death. Hydrogen sulfide (H2S) is a gaseous signaling molecule that performs various cellular functions in normal and pathological conditions. However, the role of H2S in neurotrauma and mental disorders remains unexplored and sometimes controversial. In this large-scale review study, we examined the various biological effects of H2S associated with survival and cell death in trauma to the brain, spinal cord, and PNS, and the signaling mechanisms underlying the pathogenesis of mental illnesses, such as cognitive impairment, encephalopathy, depression and anxiety disorders, epilepsy and chronic pain. We also studied the role of H2S in the pathogenesis of neurodegenerative diseases: Alzheimer's disease (AD) and Parkinson's disease (PD). In addition, we reviewed the current state of the art study of H2S donors as neuroprotectors and the possibility of their therapeutic uses in medicine. Our study showed that H2S has great neuroprotective potential. H2S reduces oxidative stress, lipid peroxidation, and neuroinflammation; inhibits processes associated with apoptosis, autophagy, ferroptosis and pyroptosis; prevents the destruction of the blood-brain barrier; increases the expression of neurotrophic factors; and models the activity of Ca2+ channels in neurotrauma. In addition, H2S activates neuroprotective signaling pathways in psychiatric and neurodegenerative diseases. However, high levels of H2S can cause cytotoxic effects. Thus, the development of H2S-associated neuroprotectors seems to be especially relevant. However, so far, all H2S modulators are at the stage of preclinical trials. Nevertheless, many of them show a high neuroprotective effect in various animal models of neurotrauma and related disorders. Despite the fact that our review is very extensive and detailed, it is well structured right down to the conclusions, which will allow researchers to quickly find the proper information they are interested in.
Collapse
Affiliation(s)
- Stanislav Rodkin
- Department of Bioengineering, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Chizaram Nwosu
- Department of Bioengineering, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Alexander Sannikov
- Department of Psychiatry, Rostov State Medical University, 344022 Rostov-on-Don, Russia
| | - Margarita Raevskaya
- Department of Bioengineering, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Alexander Tushev
- Neurosurgical Department, Rostov State Medical University Clinic, 344022 Rostov-on-Don, Russia
| | - Inna Vasilieva
- N.V. Sklifosovsky Institute of Clinical Medicine, Department of Polyclinic Therapy, I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Mitkhat Gasanov
- Department of Internal Diseases #1, Rostov State Medical University, 344022 Rostov-on-Don, Russia
| |
Collapse
|
6
|
Moccia F, Montagna D. Transient Receptor Potential Ankyrin 1 (TRPA1) Channel as a Sensor of Oxidative Stress in Cancer Cells. Cells 2023; 12:cells12091261. [PMID: 37174661 PMCID: PMC10177399 DOI: 10.3390/cells12091261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/20/2023] [Accepted: 04/20/2023] [Indexed: 05/15/2023] Open
Abstract
Moderate levels of reactive oxygen species (ROS), such as hydrogen peroxide (H2O2), fuel tumor metastasis and invasion in a variety of cancer types. Conversely, excessive ROS levels can impair tumor growth and metastasis by triggering cancer cell death. In order to cope with the oxidative stress imposed by the tumor microenvironment, malignant cells exploit a sophisticated network of antioxidant defense mechanisms. Targeting the antioxidant capacity of cancer cells or enhancing their sensitivity to ROS-dependent cell death represent a promising strategy for alternative anticancer treatments. Transient Receptor Potential Ankyrin 1 (TRPA1) is a redox-sensitive non-selective cation channel that mediates extracellular Ca2+ entry upon an increase in intracellular ROS levels. The ensuing increase in intracellular Ca2+ concentration can in turn engage a non-canonical antioxidant defense program or induce mitochondrial Ca2+ dysfunction and apoptotic cell death depending on the cancer type. Herein, we sought to describe the opposing effects of ROS-dependent TRPA1 activation on cancer cell fate and propose the pharmacological manipulation of TRPA1 as an alternative therapeutic strategy to enhance cancer cell sensitivity to oxidative stress.
Collapse
Affiliation(s)
- Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "L. Spallanzani", University of Pavia, 27100 Pavia, Italy
| | - Daniela Montagna
- Department of Sciences Clinic-Surgical, Diagnostic and Pediatric, University of Pavia, 27100 Pavia, Italy
- Pediatric Clinic, Foundation IRCCS Policlinico San Matteo, 27100 Pavia, Italy
| |
Collapse
|
7
|
Rodkin S, Nwosu C, Sannikov A, Tyurin A, Chulkov VS, Raevskaya M, Ermakov A, Kirichenko E, Gasanov M. The Role of Gasotransmitter-Dependent Signaling Mechanisms in Apoptotic Cell Death in Cardiovascular, Rheumatic, Kidney, and Neurodegenerative Diseases and Mental Disorders. Int J Mol Sci 2023; 24:ijms24076014. [PMID: 37046987 PMCID: PMC10094524 DOI: 10.3390/ijms24076014] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/17/2023] [Accepted: 03/19/2023] [Indexed: 04/14/2023] Open
Abstract
Cardiovascular, rheumatic, kidney, and neurodegenerative diseases and mental disorders are a common cause of deterioration in the quality of life up to severe disability and death worldwide. Many pathological conditions, including this group of diseases, are based on increased cell death through apoptosis. It is known that this process is associated with signaling pathways controlled by a group of gaseous signaling molecules called gasotransmitters. They are unique messengers that can control the process of apoptosis at different stages of its implementation. However, their role in the regulation of apoptotic signaling in these pathological conditions is often controversial and not completely clear. This review analyzes the role of nitric oxide (NO), carbon monoxide (CO), hydrogen sulfide (H2S), and sulfur dioxide (SO2) in apoptotic cell death in cardiovascular, rheumatic, kidney, and neurodegenerative diseases. The signaling processes involved in apoptosis in schizophrenia, bipolar, depressive, and anxiety disorders are also considered. The role of gasotransmitters in apoptosis in these diseases is largely determined by cell specificity and concentration. NO has the greatest dualism; scales are more prone to apoptosis. At the same time, CO, H2S, and SO2 are more involved in cytoprotective processes.
Collapse
Affiliation(s)
- Stanislav Rodkin
- Faculty of Bioengineering and Veterinary Medicine, Department of Bioengineering, Don State Technical University, Rostov-on-Don 344000, Russia
| | - Chizaram Nwosu
- Faculty of Bioengineering and Veterinary Medicine, Department of Bioengineering, Don State Technical University, Rostov-on-Don 344000, Russia
| | - Alexander Sannikov
- Department of Psychiatry, Rostov State Medical University, Rostov-on-Don 344022, Russia
| | - Anton Tyurin
- Internal Medicine Department, Bashkir State Medical University, Ufa 450008, Russia
| | | | - Margarita Raevskaya
- Faculty of Bioengineering and Veterinary Medicine, Department of Bioengineering, Don State Technical University, Rostov-on-Don 344000, Russia
| | - Alexey Ermakov
- Faculty of Bioengineering and Veterinary Medicine, Department of Bioengineering, Don State Technical University, Rostov-on-Don 344000, Russia
| | - Evgeniya Kirichenko
- Faculty of Bioengineering and Veterinary Medicine, Department of Bioengineering, Don State Technical University, Rostov-on-Don 344000, Russia
| | - Mitkhat Gasanov
- Department of Internal Diseases #1, Rostov State Medical University, Rostov-on-Don 344022, Russia
| |
Collapse
|
8
|
Kolluru GK, Shackelford RE, Shen X, Dominic P, Kevil CG. Sulfide regulation of cardiovascular function in health and disease. Nat Rev Cardiol 2023; 20:109-125. [PMID: 35931887 PMCID: PMC9362470 DOI: 10.1038/s41569-022-00741-6] [Citation(s) in RCA: 88] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 06/21/2022] [Indexed: 01/21/2023]
Abstract
Hydrogen sulfide (H2S) has emerged as a gaseous signalling molecule with crucial implications for cardiovascular health. H2S is involved in many biological functions, including interactions with nitric oxide, activation of molecular signalling cascades, post-translational modifications and redox regulation. Various preclinical and clinical studies have shown that H2S and its synthesizing enzymes - cystathionine γ-lyase, cystathionine β-synthase and 3-mercaptosulfotransferase - can protect against cardiovascular pathologies, including arrhythmias, atherosclerosis, heart failure, myocardial infarction and ischaemia-reperfusion injury. The bioavailability of H2S and its metabolites, such as hydropersulfides and polysulfides, is substantially reduced in cardiovascular disease and has been associated with single-nucleotide polymorphisms in H2S synthesis enzymes. In this Review, we highlight the role of H2S, its synthesizing enzymes and metabolites, their roles in the cardiovascular system, and their involvement in cardiovascular disease and associated pathologies. We also discuss the latest clinical findings from the field and outline areas for future study.
Collapse
Affiliation(s)
- Gopi K Kolluru
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
- Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Rodney E Shackelford
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Xinggui Shen
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
- Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Paari Dominic
- Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center, Shreveport, LA, USA
- Department of Medicine, Louisiana State University Health Sciences Center, Shreveport, LA, USA
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA
| | - Christopher G Kevil
- Department of Pathology, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
- Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
- Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
- Cellular Biology and Anatomy, Louisiana State University Health Sciences Center, Shreveport, LA, USA.
| |
Collapse
|
9
|
Trummer M, Galardon E, Mayer B, Steiner G, Stamm T, Kloesch B. Polysulfides derived from the hydrogen sulfide and persulfide donor P* inhibit IL-1β-mediated inducible nitric oxide synthase signaling in ATDC5 cells: are CCAAT/enhancer-binding proteins β and δ involved in the anti-inflammatory effects of hydrogen sulfide and polysulfides? Nitric Oxide 2022; 129:41-52. [DOI: 10.1016/j.niox.2022.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/14/2022] [Accepted: 09/27/2022] [Indexed: 11/05/2022]
|
10
|
Lin C, Huang C, Shi Z, Ou M, Sun S, Yu M, Chen T, Yi Y, Ji X, Lv F, Wu M, Mei L. Biodegradable calcium sulfide-based nanomodulators for H 2S-boosted Ca 2+-involved synergistic cascade cancer therapy. Acta Pharm Sin B 2022; 12:4472-4485. [PMID: 36561996 PMCID: PMC9764068 DOI: 10.1016/j.apsb.2022.08.008] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 07/01/2022] [Accepted: 07/18/2022] [Indexed: 12/25/2022] Open
Abstract
Hydrogen sulfide (H2S) is the most recently discovered gasotransmitter molecule that activates multiple intracellular signaling pathways and exerts concentration-dependent antitumor effect by interfering with mitochondrial respiration and inhibiting cellular ATP generation. Inspired by the fact that H2S can also serve as a promoter for intracellular Ca2+ influx, tumor-specific nanomodulators (I-CaS@PP) have been constructed by encapsulating calcium sulfide (CaS) and indocyanine green (ICG) into methoxy poly (ethylene glycol)-b-poly (lactide-co-glycolide) (PLGA-PEG). I-CaS@PP can achieve tumor-specific biodegradability with high biocompatibility and pH-responsive H2S release. The released H2S can effectively suppress the catalase (CAT) activity and synergize with released Ca2+ to facilitate abnormal Ca2+ retention in cells, thus leading to mitochondria destruction and amplification of oxidative stress. Mitochondrial dysfunction further contributes to blocking ATP synthesis and downregulating heat shock proteins (HSPs) expression, which is beneficial to overcome the heat endurance of tumor cells and strengthen ICG-induced photothermal performance. Such a H2S-boosted Ca2+-involved tumor-specific therapy exhibits highly effective tumor inhibition effect with almost complete elimination within 14-day treatment, indicating the great prospect of CaS-based nanomodulators as antitumor therapeutics.
Collapse
Affiliation(s)
- Chuchu Lin
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Chenyi Huang
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Zhaoqing Shi
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Meitong Ou
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Shengjie Sun
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Mian Yu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Ting Chen
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Yunfei Yi
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China
| | - Xiaoyuan Ji
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China,Academy of Medical Engineering and Translational Medicine, Medical College, Tianjin University, Tianjin 300072, China
| | - Feng Lv
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China
| | - Meiying Wu
- School of Pharmaceutical Sciences (Shenzhen), Shenzhen Campus of Sun Yat-sen University, Shenzhen 518107, China,Corresponding author. Tel./fax: +18665387360.
| | - Lin Mei
- Tianjin Key Laboratory of Biomedical Materials, Key Laboratory of Biomaterials and Nanotechnology for Cancer Immunotherapy, Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin 300192, China,Corresponding author. Tel./fax: +18665387360.
| |
Collapse
|
11
|
Hydrogen Sulfide Regulates Irisin and Glucose Metabolism in Myotubes and Muscle of HFD-Fed Diabetic Mice. Antioxidants (Basel) 2022; 11:antiox11071369. [PMID: 35883859 PMCID: PMC9311985 DOI: 10.3390/antiox11071369] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/04/2022] [Accepted: 07/13/2022] [Indexed: 12/26/2022] Open
Abstract
Irisin, a novel myokine, is secreted by the muscle following proteolytic cleavage of fibronectin type III domain containing 5 (FNDC5) and is considered a novel regulator of glucose homeostasis. Cystathionine γ-lyase (CSE) produces hydrogen sulfide (H2S) and is involved in glucose homeostasis. We examined the hypothesis that H2S deficiency leads to decreased FNDC5 and irisin secretion, and thereby alters glucose metabolism. High-fat diet-fed mice exhibited elevated blood glucose and significantly reduced levels of CSE, H2S, and PGC-1α, with decreased FNDC5/irisin levels and increased oxidative stress in the muscle compared with those of normal diet-fed mice (control). High glucose or palmitate decreases CSE/PGC-1α/FNDC5 levels and glucose uptake in myotubes. Inhibitors (propargylglycine and aminooxyacetate) of H2S producing enzymes or CSE siRNA significantly decreased levels of H2S and FNDC5 along with PGC-1α; similar H2S-deficient conditions also resulted in decreased GLUT4 and glucose uptake. The levels of H2S, PGC-1α, and FNDC5 and glucose uptake were significantly upregulated after treatment with l-cysteine or an H2S donor. Myoblast differentiation showed upregulation of PGC-1α and FNDC5, which was consistent with the increased expression of CSE/H2S. These findings suggest that the upregulation of H2S levels can have beneficial effects on glucose homeostasis via activation of the PGC-1α/FNDC5/irisin signaling pathway.
Collapse
|
12
|
Chen HJ, Qian L, Li K, Qin YZ, Zhou JJ, Ji XY, Wu DD. Hydrogen sulfide-induced post-translational modification as a potential drug target. Genes Dis 2022. [PMID: 37492730 PMCID: PMC10363594 DOI: 10.1016/j.gendis.2022.03.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Hydrogen sulfide (H2S) is one of the three known gas signal transducers, and since its potential physiological role was reported, the literature on H2S has been increasing. H2S is involved in processes such as vasodilation, neurotransmission, angiogenesis, inflammation, and the prevention of ischemia-reperfusion injury, and its mechanism remains to be further studied. At present, the role of post-translational processing of proteins has been considered as a possible mechanism for the involvement of H2S in a variety of physiological processes. Current studies have shown that H2S is involved in S-sulfhydration, phosphorylation, and S-nitrosylation of proteins, etc. This paper focuses on the effects of protein modification involving H2S on physiological and pathological processes, looking forward to providing guidance for subsequent research.
Collapse
|
13
|
Pozzi G, Gobbi G, Masselli E, Carubbi C, Presta V, Ambrosini L, Vitale M, Mirandola P. Buffering Adaptive Immunity by Hydrogen Sulfide. Cells 2022; 11:cells11030325. [PMID: 35159135 PMCID: PMC8834412 DOI: 10.3390/cells11030325] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 01/14/2022] [Accepted: 01/16/2022] [Indexed: 02/06/2023] Open
Abstract
T cell-mediated adaptive immunity is designed to respond to non-self antigens and pathogens through the activation and proliferation of various T cell populations. T helper 1 (Th1), Th2, Th17 and Treg cells finely orchestrate cellular responses through a plethora of paracrine and autocrine stimuli that include cytokines, autacoids, and hormones. Hydrogen sulfide (H2S) is one of these mediators able to induce/inhibit immunological responses, playing a role in inflammatory and autoimmune diseases, neurological disorders, asthma, acute pancreatitis, and sepsis. Both endogenous and exogenous H2S modulate numerous important cell signaling pathways. In monocytes, polymorphonuclear, and T cells H2S impacts on activation, survival, proliferation, polarization, adhesion pathways, and modulates cytokine production and sensitivity to chemokines. Here, we offer a comprehensive review on the role of H2S as a natural buffer able to maintain over time a functional balance between Th1, Th2, Th17 and Treg immunological responses.
Collapse
Affiliation(s)
- Giulia Pozzi
- Anatomy Unit, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.P.); (G.G.); (C.C.); (V.P.); (L.A.); (M.V.)
| | - Giuliana Gobbi
- Anatomy Unit, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.P.); (G.G.); (C.C.); (V.P.); (L.A.); (M.V.)
| | - Elena Masselli
- Anatomy Unit, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.P.); (G.G.); (C.C.); (V.P.); (L.A.); (M.V.)
- University Hospital of Parma, AOU-PR, Via Gramsci 14, 43126 Parma, Italy
- Correspondence: (E.M.); (P.M.)
| | - Cecilia Carubbi
- Anatomy Unit, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.P.); (G.G.); (C.C.); (V.P.); (L.A.); (M.V.)
| | - Valentina Presta
- Anatomy Unit, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.P.); (G.G.); (C.C.); (V.P.); (L.A.); (M.V.)
| | - Luca Ambrosini
- Anatomy Unit, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.P.); (G.G.); (C.C.); (V.P.); (L.A.); (M.V.)
| | - Marco Vitale
- Anatomy Unit, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.P.); (G.G.); (C.C.); (V.P.); (L.A.); (M.V.)
- University Hospital of Parma, AOU-PR, Via Gramsci 14, 43126 Parma, Italy
- Italian Foundation for the Research in Balneology, Via Po 22, 00198 Rome, Italy
| | - Prisco Mirandola
- Anatomy Unit, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy; (G.P.); (G.G.); (C.C.); (V.P.); (L.A.); (M.V.)
- Correspondence: (E.M.); (P.M.)
| |
Collapse
|
14
|
Lee J, Jeong Y, Park S, Suh M, Lee Y. Development of an Electrochemical Dual H 2S/Ca 2+ Microsensor and Its In Vivo Application to a Rat Seizure Model. ACS Sens 2021; 6:4089-4097. [PMID: 34648260 DOI: 10.1021/acssensors.1c01612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
A dual electrochemical microsensor was fabricated for concurrent monitoring of hydrogen sulfide (H2S) and calcium ions (Ca2+), which are closely linked important signaling species involved in various physiological processes. The dual sensor was prepared using a dual recessed electrode consisting of two platinum (Pt) microdisks (50 μm in diameter). Each electrode was individually optimized for the best sensing ability toward a target analyte. One electrode (WE1, amperometric H2S sensor) was modified with electrodeposition of Au and electropolymerized polyaniline coating. The other electrode (WE2, all-solid-state Ca2+-selective electrode) was composed of Ag/AgCl onto the recessed Pt disk formed via electrodeposition/chloridation, followed by silanization and Ca2+-selective membrane loading. The current of WE1 and the potential of WE2 in a dual sensor responded linearly to H2S concentration and logarithm of Ca2+ concentration, respectively, without a crosstalk between the sensing signals. Both WE1 and WE2 presented excellent sensitivity, selectivity (logKH2S,iAmp≤-3.5, i = CO, NO, O2, NO2-, AP, AA, DA, and GABA; and logKCa2+,jPot≤-3.2, j = Na+, K+, and Mg2+), and fast response time with reasonable stability (during ca. 6 h in vivo experiment). Particularly, WE2 prepared using a mixture of two ionophores (ETH1001 and ETH129) and two plasticizers (2-nitrophenyl octyl ether and bis(2-ethylhexyl) sebacate) showed a very shortened response time (tR to attain the ΔE/Δt slope of 0.6 mV/min = 3.0 ± 0.2 s, n ≥ 10), a critically required factor for real-time analysis. The developed sensor was utilized for simultaneous real-time monitoring of H2S and Ca2+ changes at the brain cortex surface of a living rat during spontaneous epileptic seizures induced by a cortical 4-aminopyridine injection. The dynamic changes of H2S and Ca2+ were clearly observed in an intimate correlation with the electrophysiological recording of seizures, demonstrating the sensor feasibility of in vivo and real-time simultaneous measurements of H2S and Ca2+.
Collapse
Affiliation(s)
- Jaeyoung Lee
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Yoonyi Jeong
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Subin Park
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| | - Minah Suh
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon 16419, Republic of Korea
| | - Youngmi Lee
- Department of Chemistry & Nanoscience, Ewha Womans University, Seoul 03760, Republic of Korea
| |
Collapse
|
15
|
Petrovic D, Kouroussis E, Vignane T, Filipovic MR. The Role of Protein Persulfidation in Brain Aging and Neurodegeneration. Front Aging Neurosci 2021; 13:674135. [PMID: 34248604 PMCID: PMC8261153 DOI: 10.3389/fnagi.2021.674135] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Accepted: 05/24/2021] [Indexed: 01/01/2023] Open
Abstract
Hydrogen sulfide (H2S), originally considered a toxic gas, is now a recognized gasotransmitter. Numerous studies have revealed the role of H2S as a redox signaling molecule that controls important physiological/pathophysiological functions. The underlying mechanism postulated to serve as an explanation of these effects is protein persulfidation (P-SSH, also known as S-sulfhydration), an oxidative posttranslational modification of cysteine thiols. Protein persulfidation has remained understudied due to its instability and chemical reactivity similar to other cysteine modifications, making it very difficult to selectively label. Recent developments of persulfide labeling techniques have started unraveling the role of this modification in (patho)physiology. PSSH levels are important for the cellular defense against oxidative injury, albeit they decrease with aging, leaving proteins vulnerable to oxidative damage. Aging is one of the main risk factors for many neurodegenerative diseases. Persulfidation has been shown to be dysregulated in Parkinson's, Alzheimer's, Huntington's disease, and Spinocerebellar ataxia 3. This article reviews the latest discoveries that link protein persulfidation, aging and neurodegeneration, and provides future directions for this research field that could result in development of targeted drug design.
Collapse
Affiliation(s)
- Dunja Petrovic
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Emilia Kouroussis
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Thibaut Vignane
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| | - Milos R Filipovic
- Leibniz-Institut für Analytische Wissenschaften - ISAS - e.V., Dortmund, Germany
| |
Collapse
|
16
|
Watts M, Kolluru GK, Dherange P, Pardue S, Si M, Shen X, Trosclair K, Glawe J, Al-Yafeai Z, Iqbal M, Pearson BH, Hamilton KA, Orr AW, Glasscock E, Kevil CG, Dominic P. Decreased bioavailability of hydrogen sulfide links vascular endothelium and atrial remodeling in atrial fibrillation. Redox Biol 2020; 38:101817. [PMID: 33310503 PMCID: PMC7732878 DOI: 10.1016/j.redox.2020.101817] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Revised: 11/23/2020] [Accepted: 11/24/2020] [Indexed: 11/25/2022] Open
Abstract
Oxidative stress drives the pathogenesis of atrial fibrillation (AF), the most common arrhythmia. In the cardiovascular system, cystathionine γ-lyase (CSE) serves as the primary enzyme producing hydrogen sulfide (H2S), a mammalian gasotransmitter that reduces oxidative stress. Using a case control study design in patients with and without AF and a mouse model of CSE knockout (CSE-KO), we evaluated the role of H2S in the etiology of AF. Patients with AF (n = 51) had significantly reduced plasma acid labile sulfide levels compared to patients without AF (n = 65). In addition, patients with persistent AF (n = 25) showed lower plasma free sulfide levels compared to patients with paroxysmal AF (n = 26). Consistent with an important role for H2S in AF, CSE-KO mice had decreased atrial sulfide levels, increased atrial superoxide levels, and enhanced propensity for induced persistent AF compared to wild type (WT) mice. Rescuing H2S signaling in CSE-KO mice by Diallyl trisulfide (DATS) supplementation or reconstitution with endothelial cell specific CSE over-expression significantly reduced atrial superoxide, increased sulfide levels, and lowered AF inducibility. Lastly, low H2S levels in CSE KO mice was associated with atrial electrical remodeling including longer effective refractory periods, slower conduction velocity, increased myocyte calcium sparks, and increased myocyte action potential duration that were reversed by DATS supplementation or endothelial CSE overexpression. Our findings demonstrate an important role of CSE and H2S bioavailability in regulating electrical remodeling and susceptibility to AF.
Collapse
Affiliation(s)
- Megan Watts
- The Departments of Medicine, And Molecular and Cellular Physiology and Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center-Shreveport, Louisiana, United States
| | - Gopi K Kolluru
- The Departments of Pathology, Molecular and Cellular Physiology, Cellular Biology and Anatomy And Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center-Shreveport, Louisiana, United States
| | - Parinita Dherange
- The Departments of Medicine, And Molecular and Cellular Physiology and Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center-Shreveport, Louisiana, United States
| | - Sibile Pardue
- The Departments of Pathology, Molecular and Cellular Physiology, Cellular Biology and Anatomy And Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center-Shreveport, Louisiana, United States
| | - Man Si
- The Departments of Cellular Biology and Anatomy and Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center-Shreveport, Louisiana, United States; The Department of Biological Sciences, Southern Methodist University, Dallas, TX, USA
| | - Xinggui Shen
- The Departments of Pathology, Molecular and Cellular Physiology, Cellular Biology and Anatomy And Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center-Shreveport, Louisiana, United States
| | - Krystle Trosclair
- The Departments of Cellular Biology and Anatomy and Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center-Shreveport, Louisiana, United States; The Department of Neurosurgery and Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center-Shreveport, Louisiana, United States
| | - John Glawe
- The Departments of Pathology, Molecular and Cellular Physiology, Cellular Biology and Anatomy And Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center-Shreveport, Louisiana, United States
| | - Zaki Al-Yafeai
- The Departments of Pathology, Molecular and Cellular Physiology, Cellular Biology and Anatomy And Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center-Shreveport, Louisiana, United States
| | - Mazen Iqbal
- The Departments of Medicine, And Molecular and Cellular Physiology and Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center-Shreveport, Louisiana, United States
| | - Brenna H Pearson
- The Departments of Pathology, Molecular and Cellular Physiology, Cellular Biology and Anatomy And Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center-Shreveport, Louisiana, United States
| | - Kathryn A Hamilton
- The Departments of Cellular Biology and Anatomy and Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center-Shreveport, Louisiana, United States
| | - A Wayne Orr
- The Departments of Pathology, Molecular and Cellular Physiology, Cellular Biology and Anatomy And Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center-Shreveport, Louisiana, United States
| | - Edward Glasscock
- The Departments of Cellular Biology and Anatomy and Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center-Shreveport, Louisiana, United States; The Department of Biological Sciences, Southern Methodist University, Dallas, TX, USA
| | - Christopher G Kevil
- The Departments of Pathology, Molecular and Cellular Physiology, Cellular Biology and Anatomy And Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center-Shreveport, Louisiana, United States
| | - Paari Dominic
- The Departments of Medicine, And Molecular and Cellular Physiology and Center of Excellence for Cardiovascular Diseases & Sciences, Louisiana State University Health Sciences Center-Shreveport, Louisiana, United States.
| |
Collapse
|
17
|
Faris P, Ferulli F, Vismara M, Tanzi M, Negri S, Rumolo A, Lefkimmiatis K, Maestri M, Shekha M, Pedrazzoli P, Guidetti GF, Montagna D, Moccia F. Hydrogen Sulfide-Evoked Intracellular Ca 2+ Signals in Primary Cultures of Metastatic Colorectal Cancer Cells. Cancers (Basel) 2020; 12:cancers12113338. [PMID: 33187307 PMCID: PMC7696676 DOI: 10.3390/cancers12113338] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 11/05/2020] [Accepted: 11/06/2020] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Colorectal cancer (CRC) is the most common type of gastrointestinal cancer and the third most predominant cancer in the world. CRC is potentially curable with surgical resection of the primary tumor. The clinical problem of colorectal cancer, however, is the spread and outgrowth of metastases, which are difficult to eradicate and lead to a patient’s death. The failure of conventional treatment to significantly improved outcomes in mCRC has prompted the search for alternative molecular targets with the goal of ameliorating the prognosis of these patients. The present investigation revealed that exogenous delivery of hydrogen sulfide (H2S) suppresses proliferation in metastatic colorectal cancer cells by inducing an increase in intracellular Ca2+ concentration. H2S was effective on metastatic, but not normal, cells. Therefore, we propose that exogenous administration of H2S to patients affected by metastatic colorectal carcinoma could represent a promising therapeutic alternative. Abstract Exogenous administration of hydrogen sulfide (H2S) is emerging as an alternative anticancer treatment. H2S-releasing compounds have been shown to exert a strong anticancer effect by suppressing proliferation and/or inducing apoptosis in several cancer cell types, including colorectal carcinoma (CRC). The mechanism whereby exogenous H2S affects CRC cell proliferation is yet to be clearly elucidated, but it could involve an increase in intracellular Ca2+ concentration ([Ca2+]i). Herein, we sought to assess for the first time whether (and how) sodium hydrosulfide (NaHS), one of the most widely employed H2S donors, induced intracellular Ca2+ signals in primary cultures of human metastatic CRC (mCRC) cells. We provided the evidence that NaHS induced extracellular Ca2+ entry in mCRC cells by activating the Ca2+-permeable channel Transient Receptor Potential Vanilloid 1 (TRPV1) followed by the Na+-dependent recruitment of the reverse-mode of the Na+/Ca2+ (NCX) exchanger. In agreement with these observations, TRPV1 protein was expressed and capsaicin, a selective TRPV1 agonist, induced Ca2+ influx by engaging both TRPV1 and NCX in mCRC cells. Finally, NaHS reduced mCRC cell proliferation, but did not promote apoptosis or aberrant mitochondrial depolarization. These data support the notion that exogenous administration of H2S may prevent mCRC cell proliferation through an increase in [Ca2+]i, which is triggered by TRPV1.
Collapse
Affiliation(s)
- Pawan Faris
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (P.F.); (S.N.)
- Department of Biology, Cihan University-Erbil, 44001 Erbil, Iraq
| | - Federica Ferulli
- Laboratory of Immunology Transplantation, Foundation IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (F.F.); (M.T.); (A.R.)
| | - Mauro Vismara
- Laboratory of Biochemistry, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (M.V.); (G.F.G.)
| | - Matteo Tanzi
- Laboratory of Immunology Transplantation, Foundation IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (F.F.); (M.T.); (A.R.)
| | - Sharon Negri
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (P.F.); (S.N.)
| | - Agnese Rumolo
- Laboratory of Immunology Transplantation, Foundation IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (F.F.); (M.T.); (A.R.)
| | - Kostantinos Lefkimmiatis
- Department of Molecular Medicine, University of Pavia, 27100 Pavia, Italy;
- Veneto Institute of Molecular Medicine, Foundation for Advanced Biomedical Research, 35131 Padua, Italy
| | - Marcello Maestri
- Medical Surgery, Foundation IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Mudhir Shekha
- Faculty of Science, Department of Medical Analysis, Tishk International University-Erbil, 44001 Erbil, Iraq;
| | - Paolo Pedrazzoli
- Medical Oncology, Foundation IRCCS Policlinico San Matteo, 27100 Pavia, Italy;
| | - Gianni Francesco Guidetti
- Laboratory of Biochemistry, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (M.V.); (G.F.G.)
| | - Daniela Montagna
- Laboratory of Immunology Transplantation, Foundation IRCCS Policlinico San Matteo, 27100 Pavia, Italy; (F.F.); (M.T.); (A.R.)
- Diagnostic and Pediatric, Department of Sciences Clinic-Surgical, University of Pavia, 27100 Pavia, Italy
- Correspondence: (D.M.); (F.M.); Tel.: +39-382-987-619 (F.M.)
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology “L. Spallanzani”, University of Pavia, 27100 Pavia, Italy; (P.F.); (S.N.)
- Correspondence: (D.M.); (F.M.); Tel.: +39-382-987-619 (F.M.)
| |
Collapse
|
18
|
Coburn RF. Coronary and cerebral metabolism-blood flow coupling and pulmonary alveolar ventilation-blood flow coupling may be disabled during acute carbon monoxide poisoning. J Appl Physiol (1985) 2020; 129:1039-1050. [PMID: 32853110 DOI: 10.1152/japplphysiol.00172.2020] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Current evidence indicates that the toxicity of carbon monoxide (CO) poisoning results from increases in reactive oxygen species (ROS) generation plus tissue hypoxia resulting from decreases in capillary Po2 evoked by effects of increases in blood [carboxyhemoglobin] on the oxyhemoglobin dissociation curve. There has not been consideration of how increases in Pco could influence metabolism-blood flow coupling, a physiological mechanism that regulates the uniformity of tissue Po2, and alveolar ventilation-blood flow coupling, a mechanism that increases the efficiency of pulmonary O2 uptake. Using published data, I consider hypotheses that these coupling mechanisms, triggered by O2 and CO sensors located in arterial and arteriolar vessels in the coronary and cerebral circulations and in lung intralobar arteries, are disrupted during acute CO poisoning. These hypotheses are supported by calculations that show that the Pco in these vessels can reach levels during CO poisoning that would exert effects on signal transduction molecules involved in these coupling mechanisms.NEW & NOTEWORTHY This article introduces and supports a postulate that the tissue hypoxia component of carbon monoxide poisoning results in part from impairment of physiological adaptation mechanisms whereby tissues can match regional blood flow to O2 uptake, and the lung can match regional blood flow to alveolar ventilation.
Collapse
Affiliation(s)
- Ronald F Coburn
- Department of Physiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
19
|
Kiss F, Pohóczky K, Szállási A, Helyes Z. Transient Receptor Potential (TRP) Channels in Head-and-Neck Squamous Cell Carcinomas: Diagnostic, Prognostic, and Therapeutic Potentials. Int J Mol Sci 2020; 21:E6374. [PMID: 32887395 PMCID: PMC7569891 DOI: 10.3390/ijms21176374] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Revised: 08/27/2020] [Accepted: 08/29/2020] [Indexed: 12/24/2022] Open
Abstract
Head-and-neck squamous cell carcinomas (HNSCC) remain a leading cause of cancer morbidity and mortality worldwide. This is a largely preventable disease with smoking, alcohol abuse, and human papilloma virus (HPV) being the main risk factors. Yet, many patients are diagnosed with advanced disease, and no survival improvement has been seen for oral SCC in the past decade. Clearly, new diagnostic and prognostic markers are needed for early diagnosis and to guide therapy. Gene expression studies implied the involvement of transient receptor potential (TRP) channels in the pathogenesis of HNSCC. TRPs are expressed in normal epithelium where they play a key role in proliferation and differentiation. There is increasing evidence that the expression of TRP channels may change in HNSCC with important implications for diagnosis, prognosis, and therapy. In this review, we propose that TRP channel expression may afford a novel opportunity for early diagnosis of HNSCC and targeted molecular treatment.
Collapse
Affiliation(s)
- Fruzsina Kiss
- Somogy County Kaposi Mór Teaching Hospital, H-7400 Kaposvár, Hungary;
| | - Krisztina Pohóczky
- Department of Pharmacology, Faculty of Pharmacy, University of Pécs, H-7624 Pécs, Hungary
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, H-7624 Pécs, Hungary;
- János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
| | - Arpad Szállási
- 1st Department of Pathology and Experimental Cancer Research, Semmelweis University, H-1085 Budapest, Hungary;
| | - Zsuzsanna Helyes
- Department of Pharmacology and Pharmacotherapy, Medical School, University of Pécs, H-7624 Pécs, Hungary;
- János Szentágothai Research Centre, Centre for Neuroscience, University of Pécs, H-7624 Pécs, Hungary
- PharmInVivo Ltd., H-7629 Pécs, Hungary
| |
Collapse
|
20
|
Zhang J, Zhou M, Ge Z, Shen J, Zhou C, Gotor C, Romero LC, Duan X, Liu X, Wu D, Yin X, Xie Y. Abscisic acid-triggered guard cell l-cysteine desulfhydrase function and in situ hydrogen sulfide production contributes to heme oxygenase-modulated stomatal closure. PLANT, CELL & ENVIRONMENT 2020; 43:624-636. [PMID: 31734942 DOI: 10.1111/pce.13685] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/13/2019] [Accepted: 11/13/2019] [Indexed: 05/25/2023]
Abstract
Recent studies have demonstrated that hydrogen sulfide (H2 S) produced through the activity of l-cysteine desulfhydrase (DES1) is an important gaseous signaling molecule in plants that could participate in abscisic acid (ABA)-induced stomatal closure. However, the coupling of the DES1/H2 S signaling pathways to guard cell movement has not been thoroughly elucidated. The results presented here provide genetic evidence for a physiologically relevant signaling pathway that governs guard cell in situ DES1/H2 S function in stomatal closure. We discovered that ABA-activated DES1 produces H2 S in guard cells. The impaired guard cell ABA phenotype of the des1 mutant can be fully complemented when DES1/H2 S function has been specifically rescued in guard cells and epidermal cells, but not mesophyll cells. This research further characterized DES1/H2 S function in the regulation of LONG HYPOCOTYL1 (HY1, a member of the heme oxygenase family) signaling. ABA-induced DES1 expression and H2 S production are hyper-activated in the hy1 mutant, both of which can be fully abolished by the addition of H2 S scavenger. Impaired guard cell ABA phenotype of des1/hy1 can be restored by H2 S donors. Taken together, this research indicated that guard cell in situ DES1 function is involved in ABA-induced stomatal closure, which also acts as a pivotal hub in regulating HY1 signaling.
Collapse
Affiliation(s)
- Jing Zhang
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Mingjian Zhou
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Zhenglin Ge
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Jie Shen
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Can Zhou
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Cecilia Gotor
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Seville, Spain
| | - Luis C Romero
- Instituto de Bioquímica Vegetal y Fotosíntesis, Consejo Superior de Investigaciones Científicas and Universidad de Sevilla, Seville, Spain
| | - Xingliang Duan
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
| | - Xin Liu
- Key Laboratory of Plant Biotechnology in Universities of Shandong Province, Life Science College, Qingdao Agricultural University, Qingdao, People's Republic of China
| | - Deliang Wu
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, People's Republic of China
- Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs, Nanjing, People's Republic of China
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
| | - Xianchao Yin
- Jiangsu Key Laboratory for Food Quality and Safety-State Key Laboratory Cultivation Base, Ministry of Science and Technology, Nanjing, People's Republic of China
- Key Laboratory for Control Technology and Standard for Agro-product Safety and Quality, Ministry of Agriculture and Rural Affairs, Nanjing, People's Republic of China
- Institute of Food Safety and Nutrition, Jiangsu Academy of Agricultural Sciences, Nanjing, People's Republic of China
| | - Yanjie Xie
- Laboratory Center of Life Sciences, College of Life Sciences, Nanjing Agricultural University, Nanjing, People's Republic of China
| |
Collapse
|
21
|
Tabassum R, Jeong NY. Potential for therapeutic use of hydrogen sulfide in oxidative stress-induced neurodegenerative diseases. Int J Med Sci 2019; 16:1386-1396. [PMID: 31692944 PMCID: PMC6818192 DOI: 10.7150/ijms.36516] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Accepted: 07/23/2019] [Indexed: 12/17/2022] Open
Abstract
Oxidative phosphorylation is a source of energy production by which many cells satisfy their energy requirements. Endogenous reactive oxygen species (ROS) are by-products of oxidative phosphorylation. ROS are formed due to the inefficiency of oxidative phosphorylation, and lead to oxidative stress that affects mitochondrial metabolism. Chronic oxidative stress contributes to the onset of neurodegenerative diseases, such as Alzheimer's disease (AD), Parkinson's disease (PD), Huntington's disease (HD), and amyotrophic lateral sclerosis (ALS). The immediate consequences of oxidative stress include lipid peroxidation, protein oxidation, and mitochondrial deoxyribonucleic acid (mtDNA) mutation, which induce neuronal cell death. Mitochondrial binding of amyloid-β (Aβ) protein has been identified as a contributing factor in AD. In PD and HD, respectively, α-synuclein (α-syn) and huntingtin (Htt) gene mutations have been reported to exacerbate the effects of oxidative stress. Similarly, abnormalities in mitochondrial dynamics and the respiratory chain occur in ALS due to dysregulation of mitochondrial complexes II and IV. However, oxidative stress-induced dysfunctions in neurodegenerative diseases can be mitigated by the antioxidant function of hydrogen sulfide (H2S), which also acts through the potassium (KATP/K+) ion channel and calcium (Ca2+) ion channels to increase glutathione (GSH) levels. The pharmacological activity of H2S is exerted by both inorganic and organic compounds. GSH, glutathione peroxidase (Gpx), and superoxide dismutase (SOD) neutralize H2O2-induced oxidative damage in mitochondria. The main purpose of this review is to discuss specific causes and effects of mitochondrial oxidative stress in neurodegenerative diseases, and how these are impacted by the antioxidant functions of H2S to support the development of advancements in neurodegenerative disease treatment.
Collapse
Affiliation(s)
- Rubaiya Tabassum
- Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, 32, Daesingongwon-ro, Seo-gu, Busan, 49201, Korea
- Department of Medicine, Graduate School, Dong-A University, 32, Daesingongwon-ro, Seo-gu, Busan, 49201, Korea
| | - Na Young Jeong
- Department of Anatomy and Cell Biology, College of Medicine, Dong-A University, 32, Daesingongwon-ro, Seo-gu, Busan, 49201, Korea
- Department of Medicine, Graduate School, Dong-A University, 32, Daesingongwon-ro, Seo-gu, Busan, 49201, Korea
| |
Collapse
|
22
|
Endothelial Ca 2+ Signaling, Angiogenesis and Vasculogenesis: just What It Takes to Make a Blood Vessel. Int J Mol Sci 2019; 20:ijms20163962. [PMID: 31416282 PMCID: PMC6721072 DOI: 10.3390/ijms20163962] [Citation(s) in RCA: 107] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2019] [Revised: 08/09/2019] [Accepted: 08/13/2019] [Indexed: 12/13/2022] Open
Abstract
It has long been known that endothelial Ca2+ signals drive angiogenesis by recruiting multiple Ca2+-sensitive decoders in response to pro-angiogenic cues, such as vascular endothelial growth factor, basic fibroblast growth factor, stromal derived factor-1α and angiopoietins. Recently, it was shown that intracellular Ca2+ signaling also drives vasculogenesis by stimulation proliferation, tube formation and neovessel formation in endothelial progenitor cells. Herein, we survey how growth factors, chemokines and angiogenic modulators use endothelial Ca2+ signaling to regulate angiogenesis and vasculogenesis. The endothelial Ca2+ response to pro-angiogenic cues may adopt different waveforms, ranging from Ca2+ transients or biphasic Ca2+ signals to repetitive Ca2+ oscillations, and is mainly driven by endogenous Ca2+ release through inositol-1,4,5-trisphosphate receptors and by store-operated Ca2+ entry through Orai1 channels. Lysosomal Ca2+ release through nicotinic acid adenine dinucleotide phosphate-gated two-pore channels is, however, emerging as a crucial pro-angiogenic pathway, which sustains intracellular Ca2+ mobilization. Understanding how endothelial Ca2+ signaling regulates angiogenesis and vasculogenesis could shed light on alternative strategies to induce therapeutic angiogenesis or interfere with the aberrant vascularization featuring cancer and intraocular disorders.
Collapse
|
23
|
Hydrogen sulfide inhibited L-type calcium channels (CaV1.2) via up-regulation of the channel sulfhydration in vascular smooth muscle cells. Eur J Pharmacol 2019; 858:172455. [PMID: 31202801 DOI: 10.1016/j.ejphar.2019.172455] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 12/22/2022]
Abstract
Hydrogen sulfide (H2S) exerts different effects on the cardiovascular system by modulating ion channels. The present study was to ascertain whether H2S affects L-type calcium (Ca2+) channels in vascular smooth muscle cells (VSMCs) and the subsequent signaling pathways. Here, CaV1.2 L-type Ca2+ currents (ICa, L) were inhibited by sodium hydrosulfide (NaHS, an H2S donor) in A7r5 cell lines using the whole-cell patch-clamp technique. Then NaHS significantly reduced intracellular Ca2+ concentration ([Ca2+]i) in Bayk8644-stimulated CaV1.2-HEK293 cells by using flow cytometry. However, NaHS did not affect the ryanodine-induced elevation of [Ca2+]i by means of confocal microscopy, ruling out its influence on the intracellular Ca2+ release. In the following, the sulfhydration of L-type Ca2+ channels was determined by Ellman's Test. The results showed that NaHS decreased the number of free sulfhydryls, which was further strengthened by the oxidant sulfhydryl modifier diamide (DM) and significantly counteracted by the reductant sulfhydryl modifier dithiothreitol (DTT). DTT also partly reversed the NaHS-reduced [Ca2+]i in CaV1.2-HEK293 cells. Additionally, NaHS did not change CaV1.2 expression. Furthermore, NaHS increased phosphorylation of PKC and ERK in both a concentration- and a time-dependent manner in VSMCs. Isradipine, L-type Ca2+ channel specific blocker, further increased H2S-induced phosphorylation of PKC and ERK, showing an additive effect with H2S. Therefore, our results suggest that H2S reduced ICa, L & [Ca2+]i and hence influenced the downstream PKC/ERK pathway, which was likely through regulating the sulfhydration of L-type Ca2+ channels in VSMCs.
Collapse
|
24
|
Aydinoglu F, Adıbelli EÖ, Yılmaz-Oral D, Ogulener N. Involvement of RhoA/Rho-kinase in l-cysteine/H2S pathway-induced inhibition of agonist-mediated corpus cavernosal smooth muscle contraction. Nitric Oxide 2019; 85:54-60. [DOI: 10.1016/j.niox.2019.02.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 01/09/2019] [Accepted: 02/12/2019] [Indexed: 12/11/2022]
|
25
|
Xu X, Li S, Shi Y, Tang Y, Lu W, Han T, Xue B, Li J, Liu C. Hydrogen sulfide downregulates colonic afferent sensitivity by a nitric oxide synthase-dependent mechanism in mice. Neurogastroenterol Motil 2019; 31:e13471. [PMID: 30230133 DOI: 10.1111/nmo.13471] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2018] [Revised: 08/04/2018] [Accepted: 08/24/2018] [Indexed: 02/01/2023]
Abstract
BACKGROUND The effect of hydrogen sulfide (H2 S) on visceral nociception is elusive. The conflicting evidence of its pro- and antinociceptive effects raises a series of questions with respect to the effect of H2 S on colonic afferent activity and the underlying mechanism, which was further elucidated in this study. METHODS Colonic mesenteric afferent nerve spikes of normal male C57BL/6J mice, Cbs+/- mice, and Wistar rats were recorded in vitro. The abdominal withdrawal reflex (AWR) induced by colorectal distension (CRD) was evaluated in Cbs+/- mice and WT littermates. KEY RESULTS Sodium hydrosulfide (NaHS) significantly decreased colonic afferent spontaneous discharge, chemosensitivity to bradykinin, mechanosensitivity to ramp distention, and intraluminal pressure in mice. Reducing the relaxant action of NaHS on intestinal smooth muscle using the nonspecific K+ channel blocker TEA (10 mmol/L) did not block the inhibition of NaHS on afferent nerve activity. The inhibitory effects of NaHS (0.5 mmol/L) on colonic afferent sensitivity were largely eliminated by the pretreatment with nonspecific NOS inhibitor NG -Methyl-l-arginine acetate salt (1 mmol/L), the specific nNOS inhibitor NPLA (1 μmol/L), or N-type Ca2+ channel blocker ω-conotoxin GVIA (1 μmol/L). Compared with WT mice, Cbs+/- mice showed increased mesenteric afferent sensitivity to colonic distention and enhanced hyperalgesic response to CRD. Intraperitoneal administration of NaHS (60 μmol/kg) alleviated the nociception response to CRD in both Cbs+/- and WT mice. CONCLUSIONS AND INFERENCES H2 S downregulates colonic mesenteric afferent sensitivity by a nNOS-dependent mechanism in mice. Our findings may demonstrate a new mechanism for the antinociceptive effect of H2 S in colon.
Collapse
Affiliation(s)
- Xiaomeng Xu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University Cheeloo Medical College, Shandong, China
| | - Shuang Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University Cheeloo Medical College, Shandong, China
| | - Yao Shi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University Cheeloo Medical College, Shandong, China
| | - Yan Tang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University Cheeloo Medical College, Shandong, China
| | - Wen Lu
- College of Agricultural and Biological Engineering, Heze University, Shandong, China
| | - Ting Han
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University Cheeloo Medical College, Shandong, China
| | - Bing Xue
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University Cheeloo Medical College, Shandong, China
| | - Jingxin Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University Cheeloo Medical College, Shandong, China
| | - Chuanyong Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shandong University Cheeloo Medical College, Shandong, China.,Provincial Key Lab of Mental Disorder, School of Basic Medical Sciences, Shandong University Cheeloo Medical College, Shandong, China
| |
Collapse
|
26
|
Abstract
In several animal and human studies, the contribution of the endothelium, nitric oxide/soluble guanosine monophosphate (NO/cGMP) pathway, adenylyl cyclase, phosphodiesterase (PDE), potassium (K+) channels, L-type calcium channels, Na+-K+-ATPase, muscarinic acetylcholine receptors, RhoA/Rho-kinase pathway, and cyclooxygenase (COX)/arachidonic acid cascade on the relaxant mechanism of L-cysteine/H2S pathway in corpus cavernosum has been investigated. In this chapter the relaxant mechanisms of H2S in corpus cavernosum is discussed with data available in the current relevant literature. Also, in vitro experimental procedure for mice corpus cavernosum which used to investigate the relaxant effect of H2S is given in detail.
Collapse
|
27
|
Yang R, Liu Y, Yu T, Liu D, Shi S, Zhou Y, Zhou Y. Hydrogen sulfide maintains dental pulp stem cell function via TRPV1-mediated calcium influx. Cell Death Discov 2018; 4:1. [PMID: 30062050 PMCID: PMC6060166 DOI: 10.1038/s41420-018-0071-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2017] [Revised: 02/17/2018] [Accepted: 02/20/2018] [Indexed: 12/21/2022] Open
Abstract
Hydrogen sulfide (H2S), an endogenous gasotransmitter, mediated a variety of biological processes through multiple signaling pathways, and aberrant H2S metabolism has been associated with mesenchymal stem cell (MSC) dysfunction. Here we employed the small interfering RNA treatment for cystathionine β-synthase (CBS), cystathionine γ-lyase, the main enzymes to synthesize H2S, and CBS-knockout mice to analyze the effect of H2S on dental pulp homeostasis. We showed that H2S deficiency attenuated dental pulp stem cell (DPSC) osteogenic/dentinogenic differentiation in vitro and in vivo with enhanced cell proliferation. Mechanically, H2S facilitated the transient receptor potential action channel subfamily V member 1-mediated calcium (Ca2+) influx, which subsequently activated the β-catenin pathway. While H2S deficiency decreased Ca2+, resulting in glycogen synthase kinase-3β-mediated β-catenin degradation, which controls proliferation and differentiation of DPSCs. Consistently, H2S-deficient mice displayed disturbed pattern of dental pulp and less dentin formation. In this study, we identified a previously unknown mechanism by which H2S regulates DPSC lineage determination and dental pulp homeostasis.
Collapse
Affiliation(s)
- Ruili Yang
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 100081 Beijing, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, 100081 Beijing, China
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Yi Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, 100050 Beijing, China
| | - Tingting Yu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 100081 Beijing, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, 100081 Beijing, China
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Dawei Liu
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 100081 Beijing, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, 100081 Beijing, China
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Songtao Shi
- Department of Anatomy and Cell Biology, School of Dental Medicine, University of Pennsylvania, Philadelphia, PA 19104 USA
| | - Yongsheng Zhou
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, 100081 Beijing, China
- Department of Prosthodontics, Peking University School and Hospital of Stomatology, 100081 Beijing, China
| | - Yanheng Zhou
- Department of Orthodontics, Peking University School and Hospital of Stomatology, 100081 Beijing, China
- National Engineering Laboratory for Digital and Material Technology of Stomatology, Beijing Key Laboratory of Digital Stomatology, 100081 Beijing, China
| |
Collapse
|
28
|
Meng G, Zhao S, Xie L, Han Y, Ji Y. Protein S-sulfhydration by hydrogen sulfide in cardiovascular system. Br J Pharmacol 2018; 175:1146-1156. [PMID: 28432761 PMCID: PMC5866969 DOI: 10.1111/bph.13825] [Citation(s) in RCA: 87] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 03/13/2017] [Accepted: 04/12/2017] [Indexed: 12/23/2022] Open
Abstract
Hydrogen sulfide (H2 S), independently of any specific transporters, has a number of biological effects on the cardiovascular system. However, until now, the detailed mechanism of H2 S was not clear. Recently, a novel post-translational modification induced by H2 S, named S-sulfhydration, has been proposed. S-sulfhydration is the chemical modification of specific cysteine residues of target proteins by H2 S. There are several methods for detecting S-sulfhydration, such as the modified biotin switch assay, maleimide assay with fluorescent thiol modifying regents, tag-switch method and mass spectrometry. H2 S induces S-sulfhydration on enzymes or receptors (such as p66Shc, phospholamban, protein tyrosine phosphatase 1B, mitogen-activated extracellular signal-regulated kinase 1 and ATP synthase subunit α), transcription factors (such as specific protein-1, kelch-like ECH-associating protein 1, NF-κB and interferon regulatory factor-1), and ion channels (such as voltage-activated Ca2+ channels, transient receptor potential channels and ATP-sensitive K+ channels) in the cardiovascular system. Although significant progress has been achieved in delineating the role of protein S-sulfhydration by H2 S in the cardiovascular system, more proteins with detailed cysteine sites of S-sulfhydration as well as physiological function need to be investigated in further studies. This review mainly summarizes the role and possible mechanism of S-sulfhydration in the cardiovascular system. The S-sulfhydrated proteins may be potential novel targets for therapeutic intervention and drug design in the cardiovascular system, which may accelerate the development and application of H2 S-related drugs in the future. LINKED ARTICLES This article is part of a themed section on Spotlight on Small Molecules in Cardiovascular Diseases. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v175.8/issuetoc.
Collapse
Affiliation(s)
- Guoliang Meng
- Department of Pharmacology, School of PharmacyNantong UniversityNantongChina
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of PharmacyNanjing Medical UniversityNanjingChina
| | - Shuang Zhao
- Key Laboratory of Cardiovascular Disease and Molecular InterventionNanjing Medical UniversityNanjingChina
| | - Liping Xie
- Key Laboratory of Cardiovascular Disease and Molecular InterventionNanjing Medical UniversityNanjingChina
| | - Yi Han
- Department of GeriatricsFirst Affiliated Hospital of Nanjing Medical UniversityNanjingChina
| | - Yong Ji
- Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of PharmacyNanjing Medical UniversityNanjingChina
- Key Laboratory of Cardiovascular Disease and Molecular InterventionNanjing Medical UniversityNanjingChina
| |
Collapse
|
29
|
Bankhele P, Salvi A, Jamil J, Njie-Mbye F, Ohia S, Opere CA. Comparative Effects of Hydrogen Sulfide-Releasing Compounds on [ 3H]D-Aspartate Release from Bovine Isolated Retinae. Neurochem Res 2018; 43:692-701. [PMID: 29353375 DOI: 10.1007/s11064-018-2471-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Revised: 12/20/2017] [Accepted: 01/08/2018] [Indexed: 12/31/2022]
Abstract
We investigated the pharmacological actions of a slow-releasing H2S donor, GYY 4137; a substrate for the biosynthesis of H2S, L-cysteine and its precursor, N-acetylcysteine on potassium (K+; 50 mM)-evoked [3H]D-aspartate release from bovine isolated retinae using the Superfusion Method. GYY 4137 (10 nM-10 µM), L-cysteine (100 nM-10 µM) and N-acetylcysteine (10 µM-1 mM) elicited a concentration-dependent decrease in K+-evoked [3H]D-aspartate release from isolated bovine retinae without affecting basal tritium efflux. At equimolar concentration of 10 µM, the rank order of activity was as follows: L-cysteine > GYY 4137 > N-acetylcysteine. A dual inhibitor of the biosynthetic enzymes for H2S, cystathionine β-synthase (CBS) and cystathionine γ-lyase (CSE), amino-oxyacetic acid (AOA; 3 mM) reversed the inhibitory responses caused by GYY 4137, L-cysteine and N-acetylcysteine on K+-evoked [3H]D-aspartate release. Glibenclamide (300 µM), an inhibitor of KATP channels blocked the inhibitory action of GYY 4137 and L-cysteine but not that elicited by N-acetylcysteine on K+-induced [3H]D-aspartate release. The inhibitory effect of GYY 4137 and L-cysteine on K+-evoked [3H]D-aspartate release was reversed by the non-specific inhibitor of nitric oxide synthase (NOS), L-NAME (300 µM). Furthermore, a specific inhibitor of inducible NOS (iNOS), aminoguanidine (10 µM) blocked the inhibitory action of L-cysteine on K+-evoked [3H]D-aspartate release. We conclude that both donors and substrates for H2S production can inhibit amino acid neurotransmission in bovine isolated retinae, an effect that is dependent, at least in part, upon the intramural biosynthesis of this gas, and on the activity of KATP channels and NO synthase.
Collapse
Affiliation(s)
- Pratik Bankhele
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, 2500 California Plaza, Omaha, NE, 68178, USA
| | - Ankita Salvi
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, 2500 California Plaza, Omaha, NE, 68178, USA
| | - Jamal Jamil
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, 2500 California Plaza, Omaha, NE, 68178, USA
| | - Fatou Njie-Mbye
- Department of Pharmaceutical & Environmental Health Sciences, College of Pharmacy & Health Sciences, Texas Southern University, 3100 Cleburne Street, Houston, TX, 77004, USA
| | - Sunny Ohia
- Department of Pharmaceutical & Environmental Health Sciences, College of Pharmacy & Health Sciences, Texas Southern University, 3100 Cleburne Street, Houston, TX, 77004, USA
| | - Catherine A Opere
- Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University, 2500 California Plaza, Omaha, NE, 68178, USA.
| |
Collapse
|
30
|
Endothelial Ca 2+ Signaling and the Resistance to Anticancer Treatments: Partners in Crime. Int J Mol Sci 2018; 19:ijms19010217. [PMID: 29324706 PMCID: PMC5796166 DOI: 10.3390/ijms19010217] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2017] [Revised: 01/08/2018] [Accepted: 01/10/2018] [Indexed: 02/06/2023] Open
Abstract
Intracellular Ca2+ signaling drives angiogenesis and vasculogenesis by stimulating proliferation, migration, and tube formation in both vascular endothelial cells and endothelial colony forming cells (ECFCs), which represent the only endothelial precursor truly belonging to the endothelial phenotype. In addition, local Ca2+ signals at the endoplasmic reticulum (ER)-mitochondria interface regulate endothelial cell fate by stimulating survival or apoptosis depending on the extent of the mitochondrial Ca2+ increase. The present article aims at describing how remodeling of the endothelial Ca2+ toolkit contributes to establish intrinsic or acquired resistance to standard anti-cancer therapies. The endothelial Ca2+ toolkit undergoes a major alteration in tumor endothelial cells and tumor-associated ECFCs. These include changes in TRPV4 expression and increase in the expression of P2X7 receptors, Piezo2, Stim1, Orai1, TRPC1, TRPC5, Connexin 40 and dysregulation of the ER Ca2+ handling machinery. Additionally, remodeling of the endothelial Ca2+ toolkit could involve nicotinic acetylcholine receptors, gasotransmitters-gated channels, two-pore channels and Na⁺/H⁺ exchanger. Targeting the endothelial Ca2+ toolkit could represent an alternative adjuvant therapy to circumvent patients' resistance to current anti-cancer treatments.
Collapse
|
31
|
Ohia SE, Robinson J, Mitchell L, Ngele KK, Heruye S, Opere CA, Njie-Mbye YF. Regulation of Aqueous Humor Dynamics by Hydrogen Sulfide: Potential Role in Glaucoma Pharmacotherapy. J Ocul Pharmacol Ther 2017; 34:61-69. [PMID: 29215951 DOI: 10.1089/jop.2017.0077] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Hydrogen sulfide (H2S) is a gaseous transmitter with well-known biological actions in a wide variety of tissues and organs. The potential involvement of this gas in physiological and pathological processes in the eye has led to several in vitro, ex vivo, and in vivo studies to understand its pharmacological role in some mammalian species. Evidence from literature demonstrates that 4 enzymes responsible for the biosynthesis of this gas (cystathionine β-synthase, CBS; cystathionine γ-lyase, CSE; 3-mercaptopyruvate sulfurtransferase, 3MST; and d-amino acid oxidase) are present in the cornea, iris, ciliary body, lens, and retina. Studies of the pharmacological actions of H2S (using several compounds as fast- and slow-releasing gas donors) on anterior uveal tissues reveal an effect on sympathetic neurotransmission and the ability of the gas to relax precontracted iris and ocular vascular smooth muscles, responses that were blocked by inhibitors of CSE, CBS, and KATP channels. In the retina, there is evidence that H2S can inhibit excitatory amino acid neurotransmission and can also protect this tissue from a wide variety of insults. Furthermore, exogenous application of H2S-releasing compounds was reported to increase aqueous humor outflow facility in an ex vivo model of the porcine ocular anterior segment and lowered intraocular pressure (IOP) in both normotensive and glaucomatous rabbits. Taken together, the finding that H2S-releasing compounds can lower IOP and can serve a neuroprotective role in the retina suggests that H2S prodrugs could be used as tools or therapeutic agents in diseases such as glaucoma.
Collapse
Affiliation(s)
- Sunny E Ohia
- 1 Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health Sciences, Texas Southern University , Houston, Texas
| | - Jenaye Robinson
- 1 Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health Sciences, Texas Southern University , Houston, Texas
| | - Leah Mitchell
- 1 Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health Sciences, Texas Southern University , Houston, Texas
| | - Kalu K Ngele
- 2 Department of Biology/Microbiology/Biotechnology, Federal University Ndufu Alike Ikwo , Abakaliki, Nigeria
| | - Segewkal Heruye
- 3 Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University , Omaha, Nebraska
| | - Catherine A Opere
- 3 Department of Pharmacy Sciences, School of Pharmacy and Health Professions, Creighton University , Omaha, Nebraska
| | - Ya Fatou Njie-Mbye
- 1 Department of Pharmaceutical and Environmental Health Sciences, College of Pharmacy and Health Sciences, Texas Southern University , Houston, Texas
| |
Collapse
|
32
|
Malone Rubright SL, Pearce LL, Peterson J. Environmental toxicology of hydrogen sulfide. Nitric Oxide 2017; 71:1-13. [PMID: 29017846 PMCID: PMC5777517 DOI: 10.1016/j.niox.2017.09.011] [Citation(s) in RCA: 128] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2017] [Revised: 08/23/2017] [Accepted: 09/27/2017] [Indexed: 11/24/2022]
Affiliation(s)
- Samantha L Malone Rubright
- University of Pittsburgh Graduate School of Public Health, Department of Environmental Health, 100 Technology Drive, Pittsburgh PA 15219, United States
| | - Linda L Pearce
- University of Pittsburgh Graduate School of Public Health, Department of Environmental Health, 100 Technology Drive, Pittsburgh PA 15219, United States.
| | - Jim Peterson
- University of Pittsburgh Graduate School of Public Health, Department of Environmental Health, 100 Technology Drive, Pittsburgh PA 15219, United States.
| |
Collapse
|
33
|
Perridon BW, Leuvenink HGD, Hillebrands JL, van Goor H, Bos EM. The role of hydrogen sulfide in aging and age-related pathologies. Aging (Albany NY) 2017; 8:2264-2289. [PMID: 27683311 PMCID: PMC5115888 DOI: 10.18632/aging.101026] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Accepted: 09/13/2016] [Indexed: 12/14/2022]
Abstract
When humans grow older, they experience inevitable and progressive loss of physiological function, ultimately leading to death. Research on aging largely focuses on the identification of mechanisms involved in the aging process. Several proposed aging theories were recently combined as the 'hallmarks of aging'. These hallmarks describe (patho-)physiological processes that together, when disrupted, determine the aging phenotype. Sustaining evidence shows a potential role for hydrogen sulfide (H2S) in the regulation of aging. Nowadays, H2S is acknowledged as an endogenously produced signaling molecule with various (patho-) physiological effects. H2S is involved in several diseases including pathologies related to aging. In this review, the known, assumed and hypothetical effects of hydrogen sulfide on the aging process will be discussed by reviewing its actions on the hallmarks of aging and on several age-related pathologies.
Collapse
Affiliation(s)
- Bernard W Perridon
- Department of Pathology and Medical Biology, University Medical Center Groningen, the Netherlands
| | | | - Jan-Luuk Hillebrands
- Department of Pathology and Medical Biology, University Medical Center Groningen, the Netherlands
| | - Harry van Goor
- Department of Pathology and Medical Biology, University Medical Center Groningen, the Netherlands
| | - Eelke M Bos
- Department of Pathology and Medical Biology, University Medical Center Groningen, the Netherlands.,Department of Neurosurgery, Erasmus Medical Center Rotterdam, the Netherlands
| |
Collapse
|
34
|
Tang Q, Quan X, Yan L, Ren H, Chen W, Xia H, Luo H. Mechanism of sodium hydrosulfide modulation of L-type calcium channels in rat colonic smooth muscle cells. Eur J Pharmacol 2017; 818:356-363. [PMID: 29104047 DOI: 10.1016/j.ejphar.2017.11.002] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 10/24/2017] [Accepted: 11/01/2017] [Indexed: 02/07/2023]
Abstract
Hydrogen sulfide (H2S) can exert different effects on the gastrointestinal tract by modulating ion channels. Previously, we found that H2S donor sodium hydrosulfide (NaHS) regulates colonic motility through L-type calcium channels, but the molecular mechanism remains unknown. The present study was designed to investigate possible mechanisms underlying the modulation of L-type calcium channels by NaHS in rat colonic smooth muscle cells. L-type calcium currents in colonic smooth muscle cells were recorded using the whole-cell patch-clamp technique. Spontaneous contractions of mid-colonic smooth muscle strips were measured in an organ bath system and a biological signal acquisition system. NaHS evoked a significant rightward shift in the steady-state activation curve of L-type calcium channels, changed the shape of the current-voltage (I-V) curve, and decreased the peak current density at 0mV, although it significantly increased with higher stimulatory voltage. The sulfhydryl-modifying reagent DL-dithiothreitol (DTT) enhanced the effects of NaHS on L-type calcium channels, while diamide (DM) and reduced L-glutathione (GSH) alleviated the effects of NaHS. Additionally, NaHS inhibited the spontaneous high-amplitude contractions of both longitudinal and circular smooth muscle strips in a dose-dependent manner. The inhibitory effects were reversible. DTT and GSH enhanced the effects of NaHS, while DM attenuated the effects of NaHS. In conclusion, NaHS modulates L-type calcium channels in rat colonic smooth muscle cells and regulates the contractile activity of colonic smooth muscle, potentially by modifying the free sulfhydryl groups of L-type calcium channels.
Collapse
Affiliation(s)
- Qincai Tang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 430060 Wuhan, Hubei Province, China
| | - Xiaojing Quan
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University, 200080 Shanghai, China
| | - Lin Yan
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 430060 Wuhan, Hubei Province, China
| | - Haixia Ren
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 430060 Wuhan, Hubei Province, China
| | - Wei Chen
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 430060 Wuhan, Hubei Province, China; Key Laboratory of Hubei Province for Digestive System Diseases, 430060 Wuhan, Hubei Province, China
| | - Hong Xia
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 430060 Wuhan, Hubei Province, China; Key Laboratory of Hubei Province for Digestive System Diseases, 430060 Wuhan, Hubei Province, China
| | - Hesheng Luo
- Department of Gastroenterology, Renmin Hospital of Wuhan University, 430060 Wuhan, Hubei Province, China; Key Laboratory of Hubei Province for Digestive System Diseases, 430060 Wuhan, Hubei Province, China.
| |
Collapse
|
35
|
Ye XF, Xue Y, Ling T, Wang Y, Yu XN, Cheng C, Feng G, Hu L, Shi Z, Chen J. Cinnamaldehyde Ameliorates Cadmium-Inhibited Root Elongation in Tobacco Seedlings via Decreasing Endogenous Hydrogen Sulfide Production. Molecules 2016; 22:E15. [PMID: 28029133 PMCID: PMC6155710 DOI: 10.3390/molecules22010015] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/13/2016] [Accepted: 12/22/2016] [Indexed: 12/22/2022] Open
Abstract
Cinnamaldehyde (CA) is natural plant-derived compound that has been highly appreciated for its medicinal properties. However, little information is known about the regulation of plant intrinsic physiology by CA. To address these gaps, physiological, histochemical, and biochemical approaches were applied to investigate CA-facilitated cadmium (Cd) tolerance in the roots of tobacco (Nicotiana tabacum) seedlings. Treatment with CdCl₂ at 20 μM for 72 h resulted in the significant decrease in root elongation by 40.39% as compared to control. CA alleviated Cd-inhibited root elongation in dose- and time-dependent manners. The addition of CA at 20 μM induced significant increase in root elongation by 42.58% as compared to Cd treatment alone. CA abolished Cd-induced ROS (reactive oxygen species) accumulation, lipid peroxidation, loss of membrane integrity, cell death, and free Cd2+ accumulation in roots. CA blocked the Cd-induced increase in the endogenous H₂S level through the down-regulation of d-cysteine desulfhydrase (DCD) expression. H₂S scavenger hypotaurine (HT) or potent H₂S-biosynthetic inhibitor dl-propargylglicine (PAG) were able mimic the action of CA on the blockade of Cd-induced H₂S accumulation, cell death, and growth inhibition. Enhancement of the endogenous H₂S level with NaHS (H₂S donor) abrogated all the beneficial capabilities of CA, HT, and PAG. Collectively, these results suggest that CA has great potential to confer plant tolerance against Cd stress, which is closely associated with its capability to inhibit Cd-induced H₂S production. This study not only provides evidences for the regulation of plant physiology by CA but also sheds new light on the cross-talk between CA and H₂S in physiological modulations.
Collapse
Affiliation(s)
- Xie-Feng Ye
- Tobacco Science College/National Tobacco Cultivation and Physiology and Biochemistry Research Centre/Key Laboratory for Tobacco Cultivation of Tobacco Industry, Henan Agricultural University, Zhengzhou 450002, China.
| | - Yanfeng Xue
- Nanjing Yangzi Modern Agriculture Investment and Development Co. Ltd., Nanjing 211899, China.
| | - Tianxiao Ling
- Tobacco Science College/National Tobacco Cultivation and Physiology and Biochemistry Research Centre/Key Laboratory for Tobacco Cultivation of Tobacco Industry, Henan Agricultural University, Zhengzhou 450002, China.
| | - Yong Wang
- Chongqing Tobacco Corporation, Chongqing 400023, China.
| | - Xiao-Na Yu
- Tobacco Science College/National Tobacco Cultivation and Physiology and Biochemistry Research Centre/Key Laboratory for Tobacco Cultivation of Tobacco Industry, Henan Agricultural University, Zhengzhou 450002, China.
| | - Changxin Cheng
- Hongyun Honghe Tobacco Group Co. Ltd., Kunming 650231, China.
| | - Guosheng Feng
- Henan Tobacco Corporation Queshan Branch, Queshan 463200, China.
| | - Liangbin Hu
- Department of Food Science, Henan Institute of Science and Technology, Xinxiang 453003, China.
| | - Zhiqi Shi
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Nanjing 210014, China.
| | - Jian Chen
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, Nanjing 210014, China.
- Key Lab of Food Quality and Safety of Jiangsu Province-State Key Laboratory Breeding Base, Nanjing 210014, China.
| |
Collapse
|
36
|
Yang R, Liu Y, Shi S. Hydrogen Sulfide Regulates Homeostasis of Mesenchymal Stem Cells and Regulatory T Cells. J Dent Res 2016; 95:1445-1451. [PMID: 27432317 PMCID: PMC5119679 DOI: 10.1177/0022034516659041] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Hydrogen sulfide (H2S) has long been known as a toxic gas. However, recently accumulated evidence suggests that H2S contributes to a variety of physiologic and pathologic processes. Endogenous H2S production is regulated by multiple enzymes that are differentially expressed in the cardiovascular, neuronal, immune, renal, respiratory, gastrointestinal, reproductive, liver, and endocrine systems. Alteration of H2S metabolism may affect multiple signaling pathways and tissue homeostasis. The growing number of diverse targets for which H2S serves as a gasotransmitter has been extensively reviewed elsewhere. In this review, the authors discuss current emerging evidence that H2S regulates mesenchymal stem cell and T-cell functions.
Collapse
Affiliation(s)
- R Yang
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, USA
- Department of Orthodontics, Peking University School and Hospital of Stomatology, Beijing, China
| | - Y Liu
- Laboratory of Tissue Regeneration and Immunology and Department of Periodontics, Beijing Key Laboratory of Tooth Regeneration and Function Reconstruction, Capital Medical University School of Stomatology, Beijing, China
| | - S Shi
- Department of Anatomy and Cell Biology, University of Pennsylvania, School of Dental Medicine, Philadelphia, PA, USA
| |
Collapse
|
37
|
Wu Y, He MY, Ye JK, Ma SY, Huang W, Wei YY, Kong H, Wang H, Zeng XN, Xie WP. Activation of ATP-sensitive potassium channels facilitates the function of human endothelial colony-forming cells via Ca 2+ /Akt/eNOS pathway. J Cell Mol Med 2016; 21:609-620. [PMID: 27709781 PMCID: PMC5323860 DOI: 10.1111/jcmm.13006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2016] [Accepted: 09/05/2016] [Indexed: 12/17/2022] Open
Abstract
Accumulating data, including those from our laboratory, have shown that the opening of ATP‐sensitive potassium channels (KATP) plays a protective role in pulmonary vascular diseases (PVD). As maintainers of the endothelial framework, endothelial colony‐forming cells (ECFCs) are considered excellent candidates for vascular regeneration in cases of PVD. Although KATP openers (KCOs) have been demonstrated to have beneficial effects on endothelial cells, the impact of KATP on ECFC function remains unclear. Herein, this study investigated whether there is a distribution of KATP in ECFCs and what role KATP play in ECFC modulation. By human ECFCs isolated from adult peripheral blood, KATP were confirmed for the first time to express in ECFCs, comprised subunits of Kir (Kir6.1, Kir6.2) and SUR2b. KCOs such as the classical agent nicorandil (Nico) and the novel agent iptakalim (Ipt) notably improved the function of ECFCs, promoting cell proliferation, migration and angiogenesis, which were abolished by a non‐selective KATP blocker glibenclamide (Gli). To determine the underlying mechanisms, we investigated the impacts of KCOs on CaMKII, Akt and endothelial nitric oxide synthase pathways. Enhanced levels were detected by western blotting, which were abrogated by Gli. This suggested an involvement of Ca2+ signalling in the regulation of ECFCs by KATP. Our findings demonstrated for the first time that there is a distribution of KATP in ECFCs and KATP play a vital role in ECFC function. The present work highlighted a novel profile of KATP as a potential target for ECFC modulation, which may hold the key to the treatment of PVD.
Collapse
Affiliation(s)
- Yan Wu
- Department of Respiratory Medicine, WuXi People's Hospital Affiliated to Nanjing Medical University, Wuxi, Jiangsu, China
| | - Meng-Yu He
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jian-Kui Ye
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shu-Ying Ma
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wen Huang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yong-Yue Wei
- Department of Biostatistics, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hui Kong
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hong Wang
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiao-Ning Zeng
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei-Ping Xie
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
38
|
Velmurugan GV, Huang H, Sun H, Candela J, Jaiswal MK, Beaman KD, Yamashita M, Prakriya M, White C. Depletion of H2S during obesity enhances store-operated Ca2+ entry in adipose tissue macrophages to increase cytokine production. Sci Signal 2015; 8:ra128. [PMID: 26671149 DOI: 10.1126/scisignal.aac7135] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The increased production of proinflammatory cytokines by adipose tissue macrophages (ATMs) contributes to chronic, low-level inflammation during obesity. We found that obesity in mice reduced the bioavailability of the gaseous signaling molecule hydrogen sulfide (H2S). Steady-state, intracellular concentrations of H2S were lower in ATMs isolated from mice with diet-induced obesity than in ATMs from lean mice. In addition, the intracellular concentration of H2S in the macrophage cell line RAW264.7 was reduced during an acute inflammatory response evoked by the microbial product lipopolysaccharide (LPS). Reduced intracellular concentrations of H2S led to increased Ca(2+) influx through the store-operated Ca(2+) entry (SOCE) pathway, which was prevented by the exogenous H2S donor GYY4137. Furthermore, GYY4137 inhibited the Orai3 channel, a key component of the SOCE machinery. The enhanced production of proinflammatory cytokines by RAW264.7 cells and ATMs from obese mice was reduced by exogenous H2S or by inhibition of SOCE. Together, these data suggest that the depletion of macrophage H2S that occurs during acute (LPS-induced) or chronic (obesity) inflammation increases SOCE through disinhibition of Orai3 and promotes the production of proinflammatory cytokines.
Collapse
Affiliation(s)
- Gopal V Velmurugan
- Department of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Huiya Huang
- Department of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Hongbin Sun
- Department of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Joseph Candela
- Department of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Mukesh K Jaiswal
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Kenneth D Beaman
- Department of Microbiology and Immunology, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA
| | - Megumi Yamashita
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Murali Prakriya
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL 60611, USA
| | - Carl White
- Department of Physiology and Biophysics, Chicago Medical School, Rosalind Franklin University of Medicine and Science, North Chicago, IL 60064, USA.
| |
Collapse
|
39
|
Gur S, Kadowitz PJ, Sikka SC, Peak TC, Hellstrom WJ. Overview of potential molecular targets for hydrogen sulfide: A new strategy for treating erectile dysfunction. Nitric Oxide 2015; 50:65-78. [DOI: 10.1016/j.niox.2015.08.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 08/05/2015] [Accepted: 08/22/2015] [Indexed: 01/04/2023]
|
40
|
Endogenous and Exogenous Calcium Involved in the Betulin Production from Submerged Culture of Phellinus linteus Induced by Hydrogen Sulfide. Appl Biochem Biotechnol 2015; 178:594-603. [PMID: 26472674 DOI: 10.1007/s12010-015-1896-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2015] [Accepted: 10/09/2015] [Indexed: 10/22/2022]
Abstract
Using pharmacological and biochemical approaches, Ca(2+) involved in the betulin production in mycelia of Phellinus linteus induced by hydrogen sulfide (H2S) were investigated. The results showed that 2 mM H2S donor NaHS or 10 mM CaCl2 was found to enhance the betulin content in the mycelia of Phellinus to the maximum, which were 112.43 and 93.24% higher than that in the control, respectively. Further, NaHS and CaCl2 co-treatment also showed positive outcome, which were 128.95 or 24.52% higher than that in the control or NaHS treatment. At the same time, NaHS also enhanced the content of Ca(2+) and CaM. But, the above positive inductive effects for Ca(2+), CaM, and betulin production can be blocked with either Ca(2+) channel blocker (LaCl3, 2-aminoethoxydiphenyl borate) or Ca(2+) chelator (ethylenediaminetetraacetic acid (EDTA)). Among of them, betulin content was reduced 35.06% by NaHS and EGTA to the minimum, and this reduction could be reversed by the application of CaCl2 (NaHS + EGTA + CaCl2). From above results, it can be concluded that endogenous and exogenous calcium involved in the betulin production from submerged culture of P. linteus induced by hydrogen sulfide.
Collapse
|
41
|
Kloesch B, Steiner G, Mayer B, Schmidt K. Hydrogen sulfide inhibits endothelial nitric oxide formation and receptor ligand-mediated Ca(2+) release in endothelial and smooth muscle cells. Pharmacol Rep 2015; 68:37-43. [PMID: 26721349 DOI: 10.1016/j.pharep.2015.05.026] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 05/26/2015] [Accepted: 05/27/2015] [Indexed: 01/15/2023]
Abstract
BACKGROUND In the vascular system, ATP-sensitive K(+)-channels are a target for H2S. Recent evidence suggests that H2S may also modulate Na(+)- and Ca(2+)-permeable channels and intracellular Ca(2+) stores, but the influence of H2S on endothelial Ca(2+) dynamics and Ca(2+)-dependent activation of endothelial nitric oxide synthase (eNOS) is unclear. In this study, we investigated the effects of H2S on Ca(2+) signaling in endothelial and smooth muscle cells with special emphasis given to the role of H2S in modulating endothelial NO formation. METHODS Experiments were performed with endothelial cells from porcine aorta, the human endothelial cell line HMEC-1, and smooth muscle cells from rat aorta and trachea. Mobilization of intracellular Ca(2+) and Ca(2+) entry was monitored with Fura-2. Activity of eNOS was determined as conversion of incorporated l-[(3)H]arginine into l-[(3)H]citrulline. RESULTS Incubation of endothelial cells with the H2S donors sodium hydrogen sulfide (NaHS) and GYY4137 blocked activation of eNOS by the receptor agonist ATP but not by the Ca(2+) ionophore A23187. Data revealed that H2S inhibited ATP-induced release of Ca(2+) from intracellular stores indicating that H2S attenuates eNOS activity by blocking capacitative Ca(2+) entry. A similar inhibitory effect of H2S on ATP-induced Ca(2+) release and Ca(2+) entry was also observed in human microvascular endothelial cells and smooth muscle cells. CONCLUSIONS H2S antagonized Ca(2+) mobilization by receptor agonists and store-operated Ca(2+) entry thereby limiting eNOS activation and NO formation. The effect of H2S on Ca(2+) stores was not restricted to endothelial cells but was also observed in vascular and tracheal smooth muscle cells.
Collapse
Affiliation(s)
- Burkhard Kloesch
- Ludwig Boltzmann Institute for Rheumatology and Balneology, Cluster Rheumatology, Balneology and Rehabilitation, Vienna, Austria.
| | - Guenter Steiner
- Ludwig Boltzmann Institute for Rheumatology and Balneology, Cluster Rheumatology, Balneology and Rehabilitation, Vienna, Austria; Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Bernd Mayer
- Department of Pharmacology and Toxicology, Karl-Franzens-University Graz, Graz, Austria
| | - Kurt Schmidt
- Department of Pharmacology and Toxicology, Karl-Franzens-University Graz, Graz, Austria
| |
Collapse
|
42
|
Sonobe T, Haouzi P. H2S induced coma and cardiogenic shock in the rat: Effects of phenothiazinium chromophores. Clin Toxicol (Phila) 2015; 53:525-39. [PMID: 25965774 DOI: 10.3109/15563650.2015.1043440] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
CONTEXT Hydrogen sulfide (H2S) intoxication produces an acute depression in cardiac contractility-induced circulatory failure, which has been shown to be one of the major contributors to the lethality of H2S intoxication or to the neurological sequelae in surviving animals. Methylene blue (MB), a phenothiazinium dye, can antagonize the effects of the inhibition of mitochondrial electron transport chain, a major effect of H2S toxicity. OBJECTIVES We investigated whether MB could affect the immediate outcome of H2S-induced coma in un-anesthetized animals. Second, we sought to characterize the acute cardiovascular effects of MB and two of its demethylated metabolites-azure B and thionine-in anesthetized rats during lethal infusion of H2S. MATERIALS AND METHODS First, MB (4 mg/kg, intravenous [IV]) was administered in non-sedated rats during the phase of agonal breathing, following NaHS (20 mg/kg, IP)-induced coma. Second, in 4 groups of urethane-anesthetized rats, NaHS was infused at a rate lethal within 10 min (0.8 mg/min, IV). Whenever cardiac output (CO) reached 40% of its baseline volume, MB, azure B, thionine, or saline were injected, while sulfide infusion was maintained until cardiac arrest occurred. RESULTS Seventy-five percent of the comatose rats that received saline (n = 8) died within 7 min, while all the 7 rats that were given MB survived (p = 0.007). In the anesthetized rats, arterial, left ventricular pressures and CO decreased during NaHS infusion, leading to a pulseless electrical activity within 530 s. MB produced a significant increase in CO and dP/dtmax for about 2 min. A similar effect was produced when MB was also injected in the pre-mortem phase of sulfide exposure, significantly increasing survival time. Azure B produced an even larger increase in blood pressure than MB, while thionine had no effect. CONCLUSION MB can counteract NaHS-induced acute cardiogenic shock; this effect is also produced by azure B, but not by thionine, suggesting that the presence of methyl groups is a prerequisite for producing this protective effect.
Collapse
Affiliation(s)
- Takashi Sonobe
- Department of Medicine, Division of Pulmonary and Critical Care Medicine, Pennsylvania State University, College of Medicine , Hershey, PA , USA
| | | |
Collapse
|
43
|
Interaction of H2S with Calcium Permeable Channels and Transporters. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2015; 2015:323269. [PMID: 26078804 PMCID: PMC4442308 DOI: 10.1155/2015/323269] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2014] [Revised: 10/14/2014] [Accepted: 11/12/2014] [Indexed: 01/13/2023]
Abstract
A growing amount of evidence has suggested that hydrogen sulfide (H2S), as a gasotransmitter, is involved in intensive physiological and pathological processes. More and more research groups have found that H2S mediates diverse cellular biological functions related to regulating intracellular calcium concentration. These groups have demonstrated the reciprocal interaction between H2S and calcium ion channels and transporters, such as L-type calcium channels (LTCC), T-type calcium channels (TTCC), sodium/calcium exchangers (NCX), transient receptor potential (TRP) channels, β-adrenergic receptors, and N-methyl-D-aspartate receptors (NMDAR) in different cells. However, the understanding of the molecular targets and mechanisms is incomplete. Recently, some research groups demonstrated that H2S modulates the activity of calcium ion channels through protein S-sulfhydration and polysulfide reactions. In this review, we elucidate that H2S controls intracellular calcium homeostasis and the underlying mechanisms.
Collapse
|
44
|
Hydrogen sulfide and neuronal differentiation: focus on Ca2+ channels. Nitric Oxide 2015; 46:50-4. [PMID: 25660006 DOI: 10.1016/j.niox.2015.02.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Revised: 01/26/2015] [Accepted: 02/02/2015] [Indexed: 02/07/2023]
Abstract
Hydrogen sulfide (H2S) is considered the third gasotransmitter following nitric oxide (NO) and carbon monoxide (CO) in the mammalian body including the brain, heart, blood vessels, liver, kidney, pancreas, lung, gastrointestinal tract and reproductive organs. H2S is formed endogenously from L-cysteine by multiple enzymes, such as cystathionine-γ-lyase, cystathionine-β-synthase and 3-mercaptopyruvate sulfurtransferase in combination with cysteine aminotransferase, and participates in a variety of biological events through a number of target molecules. Exogenous and/or endogenous H2S enhances the activity of T-type Ca(2+) channels in NG108-15 cells and isolated dorsal root ganglion neurons that abundantly express Cav3.2, and in Cav3.2-transfected HEK293 cells. Cav3.2 mediates not only the H2S-induced enhancement of pain signals in nociceptor neurons, but also neuronal differentiation characterized by neuritogenesis and functional upregulation of high voltage-activated Ca(2+) channels in NG108-15 cells. In this review, we focus on the functional modulation by H2S of primarily Cav3.2 T-type Ca(2+) channels and the molecular mechanisms underlying the H2S-induced neuronal differentiation.
Collapse
|
45
|
Abstract
In this chapter the role played by H2S in the physiopathology of urogenital tract revising animal and human data available in the current relevant literature is discussed. H2S pathway has been demonstrated to be involved in the mechanism underlying penile erection in human and experimental animal. Both cystathionine-β synthase (CBS) and cystathionine-γ lyase (CSE) are expressed in the human corpus cavernosum and exogenous H2S relaxes isolated human corpus cavernosum strips in an endothelium-independent manner. Hydrogen sulfide pathway also accounts for the direct vasodilatory effect operated by testosterone on isolated vessels. Convincing evidence suggests that H2S can influence the cGMP pathway by inhibiting the phosphodiesterase 5 (PDE-5) activity. All these findings taken together suggest an important role for the H2S pathway in human corpus cavernosum homeostasis. However, H2S effect is not confined to human corpus cavernosum but also plays an important role in human bladder. Human bladder expresses mainly CBS and generates in vitro detectable amount of H2S. In addition the bladder relaxant effect of the PDE-5 inhibitor sildenafil involves H2S as mediator. In conclusion the H2S pathway is not only involved in penile erection but also plays a role in bladder homeostasis. In addition the finding that it involved in the mechanism of action of PDE-5 inhibitors strongly suggests that modulation of this pathway can represent a therapeutic target for the treatment of erectile dysfunction and bladder diseases.
Collapse
|
46
|
May the remodeling of the Ca²⁺ toolkit in endothelial progenitor cells derived from cancer patients suggest alternative targets for anti-angiogenic treatment? BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2014; 1853:1958-73. [PMID: 25447551 DOI: 10.1016/j.bbamcr.2014.10.024] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 08/25/2014] [Revised: 10/16/2014] [Accepted: 10/28/2014] [Indexed: 01/10/2023]
Abstract
Endothelial progenitor cells (EPCs) may be recruited from bone marrow to sustain the metastatic switch in a number of solid cancers, including breast cancer (BC) and renal cellular carcinoma (RCC). Preventing EPC mobilization causes tumor shrinkage. Novel anti-angiogenic treatments have been introduced in therapy to inhibit VEGFR-2 signaling; unfortunately, these drugs blocked tumor angiogenesis in pre-clinical murine models, but resulted far less effective in human patients. Understanding the molecular mechanisms driving EPC proliferation and tubulogenesis in cancer patients could outline novel targets for alternative anti-angiogenic treatments. Store-operated Ca²⁺ entry (SOCE) regulates the growth of human EPCs, and it is mediated by the interaction between the endoplasmic reticulum Ca²⁺-sensor, Stim1, and the plasmalemmal Ca²⁺ channels, Orai1 and TRPC1. EPCs do not belong to the neoplastic clone: thus, unlike tumor endothelium and neoplastic cells, they should not remodel their Ca²⁺ toolkit in response to tumor microenvironment. However, our recent work demonstrated that EPCs isolated from naïve RCC patients (RCC-EPCs) undergo a dramatic remodeling of their Ca²⁺ toolkit by displaying a remarkable drop in the endoplasmic reticulum Ca²⁺ content, by down-regulating the expression of inositol-1,4,5-receptors (InsP3Rs), and by up-regulating Stim1, Orai1 and TRPC1. Moreover, EPCs are dramatically less sensitive to VEGF stimulation both in terms of Ca²⁺ signaling and of gene expression when isolated from tumor patients. Conversely, the pharmacological abolition of SOCE suppresses proliferation in these cells. These results question the suitability of VEGFR-2 as a therapeutically relevant target for anti-angiogenic treatments and hint at Orai1 and TRPC1 as more promising alternatives. This article is part of a Special Issue entitled: 13th European Symposium on Calcium.
Collapse
|
47
|
Potenza DM, Guerra G, Avanzato D, Poletto V, Pareek S, Guido D, Gallanti A, Rosti V, Munaron L, Tanzi F, Moccia F. Hydrogen sulphide triggers VEGF-induced intracellular Ca²⁺ signals in human endothelial cells but not in their immature progenitors. Cell Calcium 2014; 56:225-34. [PMID: 25113159 DOI: 10.1016/j.ceca.2014.07.010] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2014] [Revised: 07/09/2014] [Accepted: 07/18/2014] [Indexed: 10/25/2022]
Abstract
Hydrogen sulphide (H2S) is a newly discovered gasotransmitter that regulates multiple steps in VEGF-induced angiogenesis. An increase in intracellular Ca(2+) concentration ([Ca(2+)]i) is central to endothelial proliferation and may be triggered by both VEGF and H2S. Albeit VEGFR-2 might serve as H2S receptor, the mechanistic relationship between VEGF- and H2S-induced Ca(2+) signals in endothelial cells is unclear. The present study aimed at assessing whether and how NaHS, a widely employed H2S donor, stimulates pro-angiogenic Ca(2+) signals in Ea.hy926 cells, a suitable surrogate for mature endothelial cells, and human endothelial progenitor cells (EPCs). We found that NaHS induced a dose-dependent increase in [Ca(2+)]i in Ea.hy926 cells. NaHS-induced Ca(2+) signals in Ea.hy926 cells did not require extracellular Ca(2+) entry, while they were inhibited upon pharmacological blockade of the phospholipase C/inositol-1,4,5-trisphosphate (InsP3) signalling pathway. Moreover, the Ca(2+) response to NaHS was prevented by genistein, but not by SU5416, which selectively inhibits VEGFR-2. However, VEGF-induced Ca(2+) signals were suppressed by dl-propargylglycine (PAG), which blocks the H2S-producing enzyme, cystathionine γ-lyase. Consistent with these data, VEGF-induced proliferation and migration were inhibited by PAG in Ea.hy926 cells, albeit NaHS alone did not influence these processes. Conversely, NaHS elevated [Ca(2+)]i only in a modest fraction of circulating EPCs, whereas neither VEGF-induced Ca(2+) oscillations nor VEGF-dependent proliferation were affected by PAG. Therefore, H2S-evoked elevation in [Ca(2+)]i is essential to trigger the pro-angiogenic Ca(2+) response to VEGF in mature endothelial cells, but not in their immature progenitors.
Collapse
Affiliation(s)
- Duilio Michele Potenza
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
| | - Germano Guerra
- Department of Health Sciences, University of Molise, Via F. De Santis, 86100 Campobasso, Italy
| | - Daniele Avanzato
- Department of Life Sciences and Systems Biology, Centre for Nanostructured Interfaces and Surfaces, Centre for Complex Systems in Molecular Biology and Medicine, University of Torino, 10123 Torino, Italy
| | - Valentina Poletto
- Center for the Study of Myelofibrosis, Research Laboratory of Biotechnology, IRCCS Policlinico San Matteo Foundation, Piazzale Golgi 19, 27100 Pavia, Italy
| | - Sumedha Pareek
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
| | - Daniele Guido
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
| | - Angelo Gallanti
- Department of Molecular Medicine, University of Pavia, Via Taramelli 10, 27100 Pavia, Italy
| | - Vittorio Rosti
- Center for the Study of Myelofibrosis, Research Laboratory of Biotechnology, IRCCS Policlinico San Matteo Foundation, Piazzale Golgi 19, 27100 Pavia, Italy
| | - Luca Munaron
- Department of Life Sciences and Systems Biology, Centre for Nanostructured Interfaces and Surfaces, Centre for Complex Systems in Molecular Biology and Medicine, University of Torino, 10123 Torino, Italy
| | - Franco Tanzi
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Via Forlanini 6, 27100 Pavia, Italy
| | - Francesco Moccia
- Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Via Forlanini 6, 27100 Pavia, Italy.
| |
Collapse
|
48
|
Yamane S, Kanno T, Nakamura H, Fujino H, Murayama T. Hydrogen sulfide-mediated regulation of contractility in the mouse ileum with electrical stimulation: roles of L-cysteine, cystathionine β-synthase, and K+ channels. Eur J Pharmacol 2014; 740:112-20. [PMID: 25008073 DOI: 10.1016/j.ejphar.2014.06.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 06/25/2014] [Accepted: 06/27/2014] [Indexed: 01/20/2023]
Abstract
Hydrogen sulfide (H2S) is considered to be a signaling molecule. The precise mechanisms underlying H2S-related events, including the producing enzymes and target molecules in gastrointestinal tissues, have not been elucidated in detail. We herein examined the involvement of H2S in contractions induced by repeated electrical stimulations (ES). ES-induced contractions were neurotoxin-sensitive and increased by aminooxyacetic acid, an inhibitor of cystathionine β-synthase (CBS) and cystathionine γ-lyase, but not by D,L-propargylglycine, a selective inhibitor of cystathionine γ-lyase, in an ES trial-dependent manner. ES-induced contractions were markedly decreased in the presence of L-cysteine. This response was inhibited by aminooxyacetic acid and an antioxidant, and accelerated by L-methionine, an activator of CBS. The existence of CBS was confirmed. NaHS transiently inhibited ES- and acetylcholine-induced contractions, and sustainably decreased basal tone for at least 20 min after its addition. The treatment with glibenclamide, an ATP-sensitive K+ channel blocker, reduced both the L-cysteine response and NaHS-induced inhibition of contractions. The NaHS-induced decrease in basal tone was inhibited by apamin, a small conductance Ca2+-activated K+ channel blocker. These results suggest that H2S may be endogenously produced via CBS in ES-activated enteric neurons, and regulates contractility via multiple K+ channels in the ileum.
Collapse
Affiliation(s)
- Satoshi Yamane
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675, Japan
| | - Toshio Kanno
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675, Japan
| | - Hiroyuki Nakamura
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675, Japan
| | - Hiromichi Fujino
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675, Japan
| | - Toshihiko Murayama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, Chiba University, Inohana 1-8-1, Chuo-ku, Chiba 260-8675, Japan.
| |
Collapse
|
49
|
Moccia F, Dragoni S, Cinelli M, Montagnani S, Amato B, Rosti V, Guerra G, Tanzi F. How to utilize Ca²⁺ signals to rejuvenate the repairative phenotype of senescent endothelial progenitor cells in elderly patients affected by cardiovascular diseases: a useful therapeutic support of surgical approach? BMC Surg 2013; 13 Suppl 2:S46. [PMID: 24267290 PMCID: PMC3851045 DOI: 10.1186/1471-2482-13-s2-s46] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Endothelial dysfunction or loss is the early event that leads to a host of severe cardiovascular diseases, such as atherosclerosis, hypertension, brain stroke, myocardial infarction, and peripheral artery disease. Ageing is regarded among the most detrimental risk factor for vascular endothelium and predisposes the subject to atheroscleorosis and inflammatory states even in absence of traditional comorbid conditions. Standard treatment to restore blood perfusion through stenotic arteries are surgical or endovascular revascularization. Unfortunately, ageing patients are not the most amenable candidates for such interventions, due to high operative risk or unfavourable vascular involvement. It has recently been suggested that the transplantation of autologous bone marrow-derived endothelial progenitor cells (EPCs) might constitute an alternative and viable therapeutic option for these individuals. Albeit pre-clinical studies demonstrated the feasibility of EPC-based therapy to recapitulate the diseased vasculature of young and healthy animals, clinical studies provided less impressive results in old ischemic human patients. One hurdle associated to this kind of approach is the senescence of autologous EPCs, which are less abundant in peripheral blood and display a reduced pro-angiogenic activity. Conversely, umbilical cord blood (UCB)-derived EPCs are more suitable for cellular therapeutics due to their higher frequency and sensitivity to growth factors, such as vascular endothelial growth factor (VEGF). An increase in intracellular Ca2+ concentration is central to EPC activation by VEGF. We have recently demonstrated that the Ca2+ signalling machinery driving the oscillatory Ca2+ response to this important growth factor is different in UCB-derived EPCs as compared to their peripheral counterparts. In particular, we focussed on the so-called endothelial colony forming cells (ECFCs), which are the only EPC population belonging to the endothelial lineage and able to form capillary-like structures in vitro and stably integrate with host vasculature in vivo. The present review provides a brief description of how exploiting the Ca2+ toolkit of juvenile EPCs to restore the repairative phenotype of senescent EPCs to enhance their regenerative outcome in therapeutic settings.
Collapse
|
50
|
Lu C, Kavalier A, Lukyanov E, Gross SS. S-sulfhydration/desulfhydration and S-nitrosylation/denitrosylation: a common paradigm for gasotransmitter signaling by H2S and NO. Methods 2013; 62:177-81. [PMID: 23811297 DOI: 10.1016/j.ymeth.2013.05.020] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Accepted: 05/28/2013] [Indexed: 12/20/2022] Open
Abstract
Sulfhydryl groups on protein Cys residues undergo an array of oxidative reactions and modifications, giving rise to a virtual redox zip code with physiological and pathophysiological relevance for modulation of protein structure and functions. While over two decades of studies have established NO-dependent S-nitrosylation as ubiquitous and fundamental for the regulation of diverse protein activities, proteomic methods for studying H2S-dependent S-sulfhydration have only recently been described and now suggest that this is also an abundant modification with potential for global physiological importance. Notably, protein S-sulfhydration and S-nitrosylation bear striking similarities in terms of their chemical and biological determinants, as well as reversal of these modifications via group-transfer to glutathione, followed by the removal from glutathione by enzymes that have apparently evolved to selectively catalyze denitrosylation and desulfhydration. Here we review determinants of protein and low-molecular-weight thiol S-sulfhydration/desulfhydration, similarities with S-nitrosylation/denitrosylation, and methods that are being employed to investigate and quantify these gasotransmitter-mediated cell signaling systems.
Collapse
Affiliation(s)
- Changyuan Lu
- Department of Pharmacology, Weill Cornell College of Medicine, 1300 York Avenue, New York, NY, USA
| | | | | | | |
Collapse
|