1
|
Nader N, Assaf L, Zarif L, Halama A, Yadav S, Dib M, Attarwala N, Chen Q, Suhre K, Gross S, Machaca K. Progesterone induces meiosis through two obligate co-receptors with PLA2 activity. eLife 2025; 13:RP92635. [PMID: 39873665 PMCID: PMC11774516 DOI: 10.7554/elife.92635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2025] Open
Abstract
The steroid hormone progesterone (P4) regulates multiple aspects of reproductive and metabolic physiology. Classical P4 signaling operates through nuclear receptors that regulate transcription. In addition, P4 signals through membrane P4 receptors (mPRs) in a rapid nongenomic modality. Despite the established physiological importance of P4 nongenomic signaling, the details of its signal transduction cascade remain elusive. Here, using Xenopus oocyte maturation as a well-established physiological readout of nongenomic P4 signaling, we identify the lipid hydrolase ABHD2 (α/β hydrolase domain-containing protein 2) as an essential mPRβ co-receptor to trigger meiosis. We show using functional assays coupled to unbiased and targeted cell-based lipidomics that ABHD2 possesses a phospholipase A2 (PLA2) activity that requires mPRβ. This PLA2 activity bifurcates P4 signaling by inducing clathrin-dependent endocytosis of mPRβ, resulting in the production of lipid messengers that are G-protein coupled receptor agonists. Therefore, P4 drives meiosis by inducing an ABHD2 PLA2 activity that requires both mPRβ and ABHD2 as obligate co-receptors.
Collapse
Affiliation(s)
- Nancy Nader
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar FoundationDohaQatar
- Department of Physiology and Biophysics, Weill Cornell MedicineNew YorkUnited States
| | - Lama Assaf
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar FoundationDohaQatar
- College of Health and Life Science, Hamad bin Khalifa UniversityDohaQatar
| | - Lubna Zarif
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar FoundationDohaQatar
| | - Anna Halama
- Department of Physiology and Biophysics, Weill Cornell MedicineNew YorkUnited States
- Research Department, Weill Cornell Medicine Qatar, Education City, Qatar FoundationDohaQatar
| | - Sharan Yadav
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar FoundationDohaQatar
- Medical program, Weill Cornell Medicine Qatar, Education City, Qatar FoundationDohaQatar
| | - Maya Dib
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar FoundationDohaQatar
| | - Nabeel Attarwala
- Department of Pharmacology, Weill Cornell MedicineNew YorkUnited States
- Biological Sciences division, University of ChicagoChicagoUnited States
| | - Qiuying Chen
- Department of Pharmacology, Weill Cornell MedicineNew YorkUnited States
| | - Karsten Suhre
- Department of Physiology and Biophysics, Weill Cornell MedicineNew YorkUnited States
- Research Department, Weill Cornell Medicine Qatar, Education City, Qatar FoundationDohaQatar
| | - Steven Gross
- Department of Pharmacology, Weill Cornell MedicineNew YorkUnited States
| | - Khaled Machaca
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar FoundationDohaQatar
- Department of Physiology and Biophysics, Weill Cornell MedicineNew YorkUnited States
| |
Collapse
|
2
|
Yu F, Machaca K. Remodeling of ER Membrane Contact Sites During Cell Division. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2025; 8:25152564241309207. [PMID: 39881950 PMCID: PMC11775993 DOI: 10.1177/25152564241309207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 12/03/2024] [Accepted: 12/04/2024] [Indexed: 01/31/2025]
Abstract
Membrane contact sites (MCS) provide specialized conduits for inter-organelle communications to maintain cellular homeostasis. Most organelles are interconnected, which supports their coordination and function. M-phase (mitosis or meiosis) is associated with dramatic cellular remodeling to support cell division, including the equal distribution of organelles to the two daughter cells. However, the fate of MCS in M-phase is poorly understood. Here we review recent advances arguing for differential remodeling of endoplasmic reticulum (ER) MCS with the plasma membrane (PM, ERPMCS) and the mitochondria (MERCS) during cell division.
Collapse
Affiliation(s)
- Fang Yu
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Khaled Machaca
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
3
|
Nader N, Assaf L, Zarif L, Halama A, Yadav S, Dib M, Attarwala N, Chen Q, Suhre K, Gross SS, Machaca K. Progesterone induces meiosis through two obligate co-receptors with PLA2 activity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.09.556646. [PMID: 37905030 PMCID: PMC10614741 DOI: 10.1101/2023.09.09.556646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2023]
Abstract
The steroid hormone progesterone (P4) regulates multiple aspects of reproductive and metabolic physiology. Classical P4 signaling operates through nuclear receptors that regulate transcription. In addition, P4 signals through membrane P4 receptors (mPRs) in a rapid nongenomic modality. Despite the established physiological importance of P4 nongenomic signaling, the details of its signal transduction cascade remain elusive. Here, using Xenopus oocyte maturation as a well-established physiological readout of nongenomic P4 signaling, we identify the lipid hydrolase ABHD2 (α/β hydrolase domain-containing protein 2) as an essential mPRβ co-receptor to trigger meiosis. We show using functional assays coupled to unbiased and targeted cell-based lipidomics that ABHD2 possesses a phospholipase A2 (PLA2) activity that requires mPRβ. This PLA2 activity bifurcates P4 signaling by inducing clathrin-dependent endocytosis of mPRβ, resulting in the production of lipid messengers that are G-protein coupled receptors agonists. Therefore, P4 drives meiosis by inducing an ABHD2 PLA2 activity that requires both mPRβ and ABHD2 as obligate co-receptors.
Collapse
Affiliation(s)
- Nancy Nader
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| | - Lama Assaf
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- College of Health and Life Science, Hamad bin Khalifa University, Doha, Qatar
| | - Lubna Zarif
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Anna Halama
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Sharan Yadav
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- Medical program, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Maya Dib
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Nabeel Attarwala
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
- Biological Sciences division, University of Chicago, Chicago, IL, USA
| | - Qiuying Chen
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Karsten Suhre
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
- Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Steven S. Gross
- Department of Pharmacology, Weill Cornell Medicine, New York, NY, USA
| | - Khaled Machaca
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, USA
| |
Collapse
|
4
|
Chen C, Huang Z, Dong S, Ding M, Li J, Wang M, Zeng X, Zhang X, Sun X. Calcium signaling in oocyte quality and functionality and its application. Front Endocrinol (Lausanne) 2024; 15:1411000. [PMID: 39220364 PMCID: PMC11361953 DOI: 10.3389/fendo.2024.1411000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Accepted: 07/29/2024] [Indexed: 09/04/2024] Open
Abstract
Calcium (Ca2+) is a second messenger for many signal pathways, and changes in intracellular Ca2+ concentration ([Ca2+]i) are an important signaling mechanism in the oocyte maturation, activation, fertilization, function regulation of granulosa and cumulus cells and offspring development. Ca2+ oscillations occur during oocyte maturation and fertilization, which are maintained by Ca2+ stores and extracellular Ca2+ ([Ca2+]e). Abnormalities in Ca2+ signaling can affect the release of the first polar body, the first meiotic division, and chromosome and spindle morphology. Well-studied aspects of Ca2+ signaling in the oocyte are oocyte activation and fertilization. Oocyte activation, driven by sperm-specific phospholipase PLCζ, is initiated by concerted intracellular patterns of Ca2+ release, termed Ca2+ oscillations. Ca2+ oscillations persist for a long time during fertilization and are coordinately engaged by a variety of Ca2+ channels, pumps, regulatory proteins and their partners. Calcium signaling also regulates granulosa and cumulus cells' function, which further affects oocyte maturation and fertilization outcome. Clinically, there are several physical and chemical options for treating fertilization failure through oocyte activation. Additionally, various exogenous compounds or drugs can cause ovarian dysfunction and female infertility by inducing abnormal Ca2+ signaling or Ca2+ dyshomeostasis in oocytes and granulosa cells. Therefore, the reproductive health risks caused by adverse stresses should arouse our attention. This review will systematically summarize the latest research progress on the aforementioned aspects and propose further research directions on calcium signaling in female reproduction.
Collapse
Affiliation(s)
- Chen Chen
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Zefan Huang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Shijue Dong
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Mengqian Ding
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Jinran Li
- Center for Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Miaomiao Wang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Xuhui Zeng
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Xiaoning Zhang
- Institute of Reproductive Medicine, Medical School, Nantong University, Nantong, China
| | - Xiaoli Sun
- Center for Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| |
Collapse
|
5
|
Cheng J, Wang X, Luo C, Mao X, Qin J, Chi Y, He B, Hao Y, Niu X, Huang B, Liu L. Effects of intracellular Ca 2+ on developmental potential and ultrastructure of cryopreserved-warmed oocyte in mouse. Cryobiology 2024; 114:104834. [PMID: 38065230 DOI: 10.1016/j.cryobiol.2023.104834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 10/15/2023] [Accepted: 12/01/2023] [Indexed: 03/22/2024]
Abstract
Maintaining appropriate intracellular calcium of oocytes is necessary to prevent ultrastructure and organelle damage caused by freezing and cryoprotectants. The present study aimed to investigate whether cryoprotectant-induced changes in the calcium concentrations of oocytes can be regulated to reduce damage to developmental potential and ultrastructure. A total of 33 mice and 1381 oocytes were used to explore the effects of intracellular calcium on the development and ultrastructures of oocytes subjected to 2-aminoethoxydiphenyl borate (2-APB) inhibition or thapsigargin (TG) stimulation. Results suggested that high levels intracellular calcium interfered with TG compromised oocyte survival (84.4 % vs. 93.4 %, p < 0.01) and blastocyst formation in fresh and cryopreservation oocytes (78.1 % vs. 86.4 %, and 60.5 % vs. 72.5 %, p < 0.05) compared with that of 2-APB pretreated oocytes in which Ca2+ was stabilized even though no differences in fertilization and cleavage was detected (p > 0.05). Examination by transmission electron microscopy indicated that the microvilli decreased and shortened, cortical granules considerably decreased in the cortex area, mitochondrial vesicles and vacuoles increased, and the proportion of vacuole mitochondria increased after oocytes were exposed to cryoprotectants. The cryopreservation-warming process deteriorated the negative effects on organelles of survival oocytes. By contrast, a low level of intracellular calcium mediated with 2-APB was supposed to contribute to the protection of organelles. These findings suggested oocyte injuries induced by cryoprotectants and low temperatures can be alleviated. More studies are necessary to confirm the relationship among Ca2+ concentration of the cytoplasm, ultrastructural injuries, and disrupted developmental potential in oocytes subjected to cryopreservation and warming.
Collapse
Affiliation(s)
- Junping Cheng
- Reproductive Medical and Genetic Center, Academy of Medical Sciences of Guangxi Autonomous Region, People's Hospital of Guangxi Autonomous Region, Nanning, 530021, China; College of Animal Science and Technology of Guangxi University, Nanning, 530005, China.
| | - Xiaoli Wang
- College of Animal Science and Technology of Guangxi University, Nanning, 530005, China
| | - Chan Luo
- College of Animal Science and Technology of Guangxi University, Nanning, 530005, China
| | - Xianbao Mao
- Reproductive Medical and Genetic Center, Academy of Medical Sciences of Guangxi Autonomous Region, People's Hospital of Guangxi Autonomous Region, Nanning, 530021, China
| | - Jie Qin
- Reproductive Medical and Genetic Center, Academy of Medical Sciences of Guangxi Autonomous Region, People's Hospital of Guangxi Autonomous Region, Nanning, 530021, China
| | - Yan Chi
- Reproductive Medical and Genetic Center, Academy of Medical Sciences of Guangxi Autonomous Region, People's Hospital of Guangxi Autonomous Region, Nanning, 530021, China
| | - Bing He
- Reproductive Medical and Genetic Center, Academy of Medical Sciences of Guangxi Autonomous Region, People's Hospital of Guangxi Autonomous Region, Nanning, 530021, China
| | - Yanrong Hao
- Reproductive Medical and Genetic Center, Academy of Medical Sciences of Guangxi Autonomous Region, People's Hospital of Guangxi Autonomous Region, Nanning, 530021, China
| | - Xiangli Niu
- Reproductive Hospital of Guangxi Zhuang Autonomous Region, Nanning, Guangxi, 530021, China
| | - Ben Huang
- Reproductive Medical and Genetic Center, Academy of Medical Sciences of Guangxi Autonomous Region, People's Hospital of Guangxi Autonomous Region, Nanning, 530021, China; College of Animal Science and Technology of Guangxi University, Nanning, 530005, China
| | - Liling Liu
- Reproductive Medical and Genetic Center, Academy of Medical Sciences of Guangxi Autonomous Region, People's Hospital of Guangxi Autonomous Region, Nanning, 530021, China.
| |
Collapse
|
6
|
Deng D, Xie J, Tian Y, Zhu L, Liu X, Liu J, Huang G, Li J. Effects of meiotic stage-specific oocyte vitrification on mouse oocyte quality and developmental competence. Front Endocrinol (Lausanne) 2023; 14:1200051. [PMID: 37455899 PMCID: PMC10338221 DOI: 10.3389/fendo.2023.1200051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Introduction Acquisition of germinal vesicle (GV) stage oocytes for fertility preservation (FP) offers several benefits over in vivo matured oocyte cryopreservation following ovarian stimulation, particularly for cancer patients necessitating immediate treatment. Two FP approaches for GV oocytes are available: vitrification before in vitro maturation (IVM) at the GV stage (GV-VI) or post-IVM at the metaphase II (MII) stage (MII-VI). The optimal method remains to be determined. Methods In this study, mouse oocytes were collected without hormonal stimulation and vitrified either at the GV stage or the MII stage following IVM; non-vitrified in vitro matured MII oocytes served as the control (CON). The oocyte quality and developmental competence were assessed to obtain a better method for immediate FP. Results No significant differences in IVM and survival rates were observed among the three groups. Nevertheless, GV-VI oocytes exhibited inferior quality, including abnormal spindle arrangement, mitochondrial dysfunction, and early apoptosis, compared to MII-VI and CON oocytes. Oocyte vitrification at the GV stage impacted maternal mRNA degradation during IVM. In addition, the GV-VI group demonstrated significantly lower embryonic developmental competence relative to the MII-VI group. RNA sequencing of 2-cell stage embryos revealed abnormal minor zygotic genome activation in the GV-VI group. Conclusion Vitrification at the GV stage compromised oocyte quality and reduced developmental competence. Consequently, compared to the GV stage, oocyte vitrification at the MII stage after IVM is more suitable for patients who require immediate FP.
Collapse
Affiliation(s)
- Dongmei Deng
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Center for Reproductive Medicine, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Juan Xie
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Center for Reproductive Medicine, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Yin Tian
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Center for Reproductive Medicine, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Ling Zhu
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Center for Reproductive Medicine, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Xuemei Liu
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Center for Reproductive Medicine, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Junxia Liu
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Center for Reproductive Medicine, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Guoning Huang
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Center for Reproductive Medicine, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| | - Jingyu Li
- Chongqing Key Laboratory of Human Embryo Engineering, Center for Reproductive Medicine, Chongqing Health Center for Women and Children, Chongqing, China
- Chongqing Clinical Research Center for Reproductive Medicine, Center for Reproductive Medicine, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
7
|
Alhajeri MM, Alkhanjari RR, Hodeify R, Khraibi A, Hamdan H. Neurotransmitters, neuropeptides and calcium in oocyte maturation and early development. Front Cell Dev Biol 2022; 10:980219. [PMID: 36211465 PMCID: PMC9537470 DOI: 10.3389/fcell.2022.980219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
A primary reason behind the high level of complexity we embody as multicellular organisms is a highly complex intracellular and intercellular communication system. As a result, the activities of multiple cell types and tissues can be modulated resulting in a specific physiological function. One of the key players in this communication process is extracellular signaling molecules that can act in autocrine, paracrine, and endocrine fashion to regulate distinct physiological responses. Neurotransmitters and neuropeptides are signaling molecules that renders long-range communication possible. In normal conditions, neurotransmitters are involved in normal responses such as development and normal physiological aspects; however, the dysregulation of neurotransmitters mediated signaling has been associated with several pathologies such as neurodegenerative, neurological, psychiatric disorders, and other pathologies. One of the interesting topics that is not yet fully explored is the connection between neuronal signaling and physiological changes during oocyte maturation and fertilization. Knowing the importance of Ca2+ signaling in these reproductive processes, our objective in this review is to highlight the link between the neuronal signals and the intracellular changes in calcium during oocyte maturation and embryogenesis. Calcium (Ca2+) is a ubiquitous intracellular mediator involved in various cellular functions such as releasing neurotransmitters from neurons, contraction of muscle cells, fertilization, and cell differentiation and morphogenesis. The multiple roles played by this ion in mediating signals can be primarily explained by its spatiotemporal dynamics that are kept tightly checked by mechanisms that control its entry through plasma membrane and its storage on intracellular stores. Given the large electrochemical gradient of the ion across the plasma membrane and intracellular stores, signals that can modulate Ca2+ entry channels or Ca2+ receptors in the stores will cause Ca2+ to be elevated in the cytosol and consequently activating downstream Ca2+-responsive proteins resulting in specific cellular responses. This review aims to provide an overview of the reported neurotransmitters and neuropeptides that participate in early stages of development and their association with Ca2+ signaling.
Collapse
Affiliation(s)
- Maitha M. Alhajeri
- Department of Physiology and Immunology, College of Medicine and Health Sciences and Biotechnology Center, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Rayyah R. Alkhanjari
- Department of Physiology and Immunology, College of Medicine and Health Sciences and Biotechnology Center, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Rawad Hodeify
- Department of Biotechnology, School of Arts and Sciences, American University of Ras Al Khaimah, Ras Al Khaimah, United Arab Emirates
| | - Ali Khraibi
- Department of Physiology and Immunology, College of Medicine and Health Sciences and Biotechnology Center, Khalifa University, Abu Dhabi, United Arab Emirates
| | - Hamdan Hamdan
- Department of Physiology and Immunology, College of Medicine and Health Sciences and Biotechnology Center, Khalifa University, Abu Dhabi, United Arab Emirates
- *Correspondence: Hamdan Hamdan,
| |
Collapse
|
8
|
Mostafa S, Nader N, Machaca K. Lipid Signaling During Gamete Maturation. Front Cell Dev Biol 2022; 10:814876. [PMID: 36204680 PMCID: PMC9531329 DOI: 10.3389/fcell.2022.814876] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Accepted: 05/30/2022] [Indexed: 01/24/2023] Open
Abstract
Cell lipids are differentially distributed in distinct organelles and within the leaflets of the bilayer. They can further form laterally defined sub-domains within membranes with important signaling functions. This molecular and spatial complexity offers optimal platforms for signaling with the associated challenge of dissecting these pathways especially that lipid metabolism tends to be highly interconnected. Lipid signaling has historically been implicated in gamete function, however the detailed signaling pathways involved remain obscure. In this review we focus on oocyte and sperm maturation in an effort to consolidate current knowledge of the role of lipid signaling and set the stage for future directions.
Collapse
Affiliation(s)
- Sherif Mostafa
- Medical Program, WCMQ, Education City, Qatar Foundation, Doha, Qatar
| | - Nancy Nader
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar (WCMQ), Education City, Qatar Foundation, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States
| | - Khaled Machaca
- Calcium Signaling Group, Research Department, Weill Cornell Medicine Qatar (WCMQ), Education City, Qatar Foundation, Doha, Qatar
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, NY, United States
- *Correspondence: Khaled Machaca,
| |
Collapse
|
9
|
Yu F, Machaca K. The STIM1 Phosphorylation Saga. Cell Calcium 2022; 103:102551. [DOI: 10.1016/j.ceca.2022.102551] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 01/11/2023]
|
10
|
Noble A, Guille M, Cobley JN. ALISA: A microplate assay to measure protein thiol redox state. Free Radic Biol Med 2021; 174:272-280. [PMID: 34418513 DOI: 10.1016/j.freeradbiomed.2021.08.018] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 08/11/2021] [Accepted: 08/17/2021] [Indexed: 12/12/2022]
Abstract
Measuring protein thiol redox state is central to understanding redox signalling in health and disease. The lack of a microplate assay to measure target specific protein thiol redox state rate-limits progress on accessibility grounds: redox proteomics is inaccessible to most. Developing a microplate assay is important for accelerating discovery by widening access to protein thiol redox biology. Beyond accessibility, enabling high throughput time- and cost-efficient microplate analysis is important. To meet the pressing need for a microplate assay to measure protein thiol redox state, we present the Antibody-Linked Oxi-State Assay (ALISA). ALISA uses a covalently bound capture antibody to bind a thiol-reactive fluorescent conjugated maleimide (F-MAL) decorated target. The capture antibody-target complex is labelled with an amine-reactive fluorescent N-hydroxysuccinimide ester (F-NHS) to report total protein. The covalent bonds that immobilise the capture antibody to the epoxy group functionalised microplate enable one to selectively elute the target. Target specific redox state is ratiometrically calculated as: F-MAL (i.e., reversible thiol oxidation)/F-NHS (i.e., total protein). After validating the assay principle (i.e., increased target specific reversible thiol oxidation increases the ratio), we used ALISA to determine whether fertilisation-a fundamental biological process-changes Akt, a serine/threonine protein kinase, specific reversible thiol oxidation. Fertilisation significantly decreases Akt specific reversible thiol oxidation in Xenopus laevis 2-cell zygotes compared to unfertilised eggs. ALISA is an accessible microplate assay to advance knowledge of protein thiol redox biology in health and disease.
Collapse
Affiliation(s)
- Anna Noble
- European Xenopus Resource Centre, Portsmouth University, Portsmouth, PO1 2DY, UK
| | - Matthew Guille
- European Xenopus Resource Centre, Portsmouth University, Portsmouth, PO1 2DY, UK
| | | |
Collapse
|
11
|
Nader N, Dib M, Hodeify R, Courjaret R, Elmi A, Hammad AS, Dey R, Huang XY, Machaca K. Membrane progesterone receptor induces meiosis in Xenopus oocytes through endocytosis into signaling endosomes and interaction with APPL1 and Akt2. PLoS Biol 2020; 18:e3000901. [PMID: 33137110 PMCID: PMC7660923 DOI: 10.1371/journal.pbio.3000901] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 11/12/2020] [Accepted: 09/18/2020] [Indexed: 12/13/2022] Open
Abstract
The steroid hormone progesterone (P4) mediates many physiological processes through either nuclear receptors that modulate gene expression or membrane P4 receptors (mPRs) that mediate nongenomic signaling. mPR signaling remains poorly understood. Here we show that the topology of mPRβ is similar to adiponectin receptors and opposite to that of G-protein-coupled receptors (GPCRs). Using Xenopus oocyte meiosis as a well-established physiological readout of nongenomic P4 signaling, we demonstrate that mPRβ signaling requires the adaptor protein APPL1 and the kinase Akt2. We further show that P4 induces clathrin-dependent endocytosis of mPRβ into signaling endosome, where mPR interacts transiently with APPL1 and Akt2 to induce meiosis. Our findings outline the early steps involved in mPR signaling and expand the spectrum of mPR signaling through the multitude of pathways involving APPL1. The steroid hormone progesterone mediates many physiological processes through either nuclear receptors that modulate gene expression, or membrane progesterone receptors (mPRs) that mediate non-genomic signaling. This study shows that non-genomic mPRβ signaling progresses through clathrin-dependent endocytosis into signaling endosomes where it interacts with and activates APPL1 and Akt2 to induce oocyte meiosis.
Collapse
Affiliation(s)
- Nancy Nader
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- Calcium Signaling Group, Weill Cornell Medicine Qatar
| | - Maya Dib
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- Calcium Signaling Group, Weill Cornell Medicine Qatar
| | - Rawad Hodeify
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- Calcium Signaling Group, Weill Cornell Medicine Qatar
| | - Raphael Courjaret
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- Calcium Signaling Group, Weill Cornell Medicine Qatar
| | - Asha Elmi
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- Calcium Signaling Group, Weill Cornell Medicine Qatar
- College of Health and Life Science, Hamad bin Khalifa University, Doha, Qatar
| | - Ayat S. Hammad
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- Calcium Signaling Group, Weill Cornell Medicine Qatar
- College of Health and Life Science, Hamad bin Khalifa University, Doha, Qatar
| | - Raja Dey
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, United States of America
| | - Xin-Yun Huang
- Department of Physiology and Biophysics, Weill Cornell Medicine, New York, United States of America
| | - Khaled Machaca
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Education City, Qatar Foundation, Doha, Qatar
- Calcium Signaling Group, Weill Cornell Medicine Qatar
- * E-mail:
| |
Collapse
|
12
|
|
13
|
Kashir J. Increasing associations between defects in phospholipase C zeta and conditions of male infertility: not just ICSI failure? J Assist Reprod Genet 2020; 37:1273-1293. [PMID: 32285298 PMCID: PMC7311621 DOI: 10.1007/s10815-020-01748-z] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Accepted: 03/12/2020] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Oocyte activation is a fundamental event at mammalian fertilization. In mammals, this process is initiated by a series of characteristic calcium (Ca2+) oscillations, induced by a sperm-specific phospholipase C (PLC) termed PLCzeta (PLCζ). Dysfunction/reduction/deletion of PLCζ is associated with forms of male infertility where the sperm is unable to initiate Ca2+ oscillations and oocyte activation, specifically in cases of fertilization failure. This review article aims to systematically summarize recent advancements and controversies in the field to update expanding clinical associations between PLCζ and various male factor conditions. This article also discusses how such associations may potentially underlie defective embryogenesis and recurrent implantation failure following fertility treatments, alongside potential diagnostic and therapeutic PLCζ approaches, aiming to direct future research efforts to utilize such knowledge clinically. METHODS An extensive literature search was performed using literature databases (PubMed/MEDLINE/Web of Knowledge) focusing on phospholipase C zeta (PLCzeta; PLCζ), oocyte activation, and calcium oscillations, as well as specific male factor conditions. RESULTS AND DISCUSSION Defective PLCζ or PLCζ-induced Ca2+ release can be linked to multiple forms of male infertility including abnormal sperm parameters and morphology, sperm DNA fragmentation and oxidation, and abnormal embryogenesis/pregnancies. Such sperm exhibit absent/reduced levels, and abnormal localization patterns of PLCζ within the sperm head. CONCLUSIONS Defective PLCζ and abnormal patterns of Ca2+ release are increasingly suspected a significant causative factor underlying abnormalities or insufficiencies in Ca2+ oscillation-driven early embryogenic events. Such cases could potentially strongly benefit from relevant therapeutic and diagnostic applications of PLCζ, or even alternative mechanisms, following further focused research efforts.
Collapse
Affiliation(s)
- Junaid Kashir
- College of Medicine, Alfaisal University, Riyadh, Kingdom of Saudi Arabia. .,School of Biosciences, Cardiff University, Cardiff, UK. .,Department of Comparative Medicine, King Faisal Specialist Hospital and Research Center, Riyadh, Kingdom of Saudi Arabia.
| |
Collapse
|
14
|
Remodeling of ER-plasma membrane contact sites but not STIM1 phosphorylation inhibits Ca 2+ influx in mitosis. Proc Natl Acad Sci U S A 2019; 116:10392-10401. [PMID: 31064875 PMCID: PMC6535005 DOI: 10.1073/pnas.1821399116] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
The mechanisms blocking Ca2+ influx in mitosis are complex and involve a decrease in stable endoplasmic reticulum (ER)–plasma membrane (PM) contact sites and degradation of the ER Ca2+ sensor stromal interaction molecule 1 (STIM1) but not its phosphorylation. This challenges the current view that STIM1 phosphorylation is essential for mitotic store-operated Ca2+ entry inhibition and sheds light on the dynamics of ER–PM contact sites and of Ca2+ influx in mitosis. Store-operated Ca2+ entry (SOCE), mediated by the endoplasmic reticulum (ER) Ca2+ sensor stromal interaction molecule 1 (STIM1) and the plasma membrane (PM) channel Orai1, is inhibited during mitosis. STIM1 phosphorylation has been suggested to mediate this inhibition, but it is unclear whether additional pathways are involved. Here, we demonstrate using various approaches, including a nonphosphorylatable STIM1 knock-in mouse, that STIM1 phosphorylation is not required for SOCE inhibition in mitosis. Rather, multiple pathways converge to inhibit Ca2+ influx in mitosis. STIM1 interacts with the cochaperone BAG3 and localizes to autophagosomes in mitosis, and STIM1 protein levels are reduced. The density of ER–PM contact sites (CSs) is also dramatically reduced in mitosis, thus physically preventing STIM1 and Orai1 from interacting to activate SOCE. Our findings provide insights into ER–PM CS remodeling during mitosis and a mechanistic explanation of the inhibition of Ca2+ influx that is required for cell cycle progression.
Collapse
|
15
|
Domínguez A, Salazar Z, Betancourt M, Ducolomb Y, Casas E, Fernández F, Bahena I, Salomón A, Teteltitla M, Martínez R, Chaparro A, Cuapio P, Salazar-López C, Bonilla E. Effect of perfluorodecanoic acid on pig oocyte viability, intracellular calcium levels and gap junction intercellular communication during oocyte maturation in vitro. Toxicol In Vitro 2019; 58:224-229. [PMID: 30946969 DOI: 10.1016/j.tiv.2019.03.041] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 03/05/2019] [Accepted: 03/30/2019] [Indexed: 02/07/2023]
Abstract
Perfluorodecanoic acid (PFDA) is a synthetic perfluorinated compound, which has been reported to exert adverse effects on somatic cells. However, its effects on germ cells have not been studied to date. The aim of the present study was to analyze the effects of PFDA on the viability, intracellular calcium levels and gap junction intercellular communication (GJIC) during porcine oocyte maturation in vitro. PFDA negatively impacted oocyte viability (medium lethal concentration, LC50 = 7.8 μM) and maturation (medium inhibition of maturation, IM50 = 3.8 μM). Oocytes exposed to 3.8 μM PFDA showed higher levels of intracellular calcium relative to control oocytes. In addition, GJIC among the cumulus cells and the oocyte was disrupted. The effects of PFDA on oocyte calcium homeostasis and intercellular communication seem to be responsible for the inhibition of oocyte maturation and oocyte death. In addition, since the deleterious effects of PFDA on oocyte viability, maturation and GJIC are significantly stronger than the previously reported effects of another widely used perfluorinated compound (Perfluorooctane sulfonate) in the same model, the use of PFDA in consumer products is questioned.
Collapse
Affiliation(s)
- A Domínguez
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, CP 09340 CDMX, Mexico; Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, CP 09340 CDMX, Mexico
| | - Z Salazar
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, CP 09340 CDMX, Mexico
| | - M Betancourt
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, CP 09340 CDMX, Mexico
| | - Y Ducolomb
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, CP 09340 CDMX, Mexico
| | - E Casas
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, CP 09340 CDMX, Mexico
| | - F Fernández
- Departamento de Producción Agrícola y Animal, Universidad Autónoma Metropolitana-Xochimilco, Calzada del hueso 1100, CP 04960 CDMX, Mexico
| | - I Bahena
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, CP 09340 CDMX, Mexico
| | - A Salomón
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, CP 09340 CDMX, Mexico; Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, CP 09340 CDMX, Mexico
| | - M Teteltitla
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, CP 09340 CDMX, Mexico; Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, CP 09340 CDMX, Mexico
| | - R Martínez
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, CP 09340 CDMX, Mexico; Doctorado en Ciencias Biológicas y de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, CP 09340 CDMX, Mexico
| | - A Chaparro
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, CP 09340 CDMX, Mexico
| | - P Cuapio
- Clínica de Reproducción Asistida "HISPAREP", Hospital Español, Avenida Ejército Nacional 613, 11520 CDMX, Mexico
| | - C Salazar-López
- Clínica de Reproducción Asistida "HISPAREP", Hospital Español, Avenida Ejército Nacional 613, 11520 CDMX, Mexico
| | - E Bonilla
- Departamento de Ciencias de la Salud, Universidad Autónoma Metropolitana-Iztapalapa, Av. San Rafael Atlixco 186, CP 09340 CDMX, Mexico.
| |
Collapse
|
16
|
Han Y, Ishibashi S, Iglesias-Gonzalez J, Chen Y, Love NR, Amaya E. Ca 2+-Induced Mitochondrial ROS Regulate the Early Embryonic Cell Cycle. Cell Rep 2019; 22:218-231. [PMID: 29298423 PMCID: PMC5770342 DOI: 10.1016/j.celrep.2017.12.042] [Citation(s) in RCA: 79] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2017] [Revised: 11/29/2017] [Accepted: 12/11/2017] [Indexed: 11/17/2022] Open
Abstract
While it is appreciated that reactive oxygen species (ROS) can act as second messengers in both homeostastic and stress response signaling pathways, potential roles for ROS during early vertebrate development have remained largely unexplored. Here, we show that fertilization in Xenopus embryos triggers a rapid increase in ROS levels, which oscillate with each cell division. Furthermore, we show that the fertilization-induced Ca2+ wave is necessary and sufficient to induce ROS production in activated or fertilized eggs. Using chemical inhibitors, we identified mitochondria as the major source of fertilization-induced ROS production. Inhibition of mitochondrial ROS production in early embryos results in cell-cycle arrest, in part, via ROS-dependent regulation of Cdc25C activity. This study reveals a role for oscillating ROS levels in early cell cycle regulation in Xenopus embryos.
Collapse
Affiliation(s)
- Yue Han
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK; Institute of Stem Cell and Regenerative Medicine, Medical College, Xiamen University, Xiamen, Fujian 361102, China
| | - Shoko Ishibashi
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Javier Iglesias-Gonzalez
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Yaoyao Chen
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Nick R Love
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK
| | - Enrique Amaya
- Division of Cell Matrix Biology & Regenerative Medicine, School of Biological Sciences, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PT, UK.
| |
Collapse
|
17
|
Carvacho I, Piesche M, Maier TJ, Machaca K. Ion Channel Function During Oocyte Maturation and Fertilization. Front Cell Dev Biol 2018; 6:63. [PMID: 29998105 PMCID: PMC6028574 DOI: 10.3389/fcell.2018.00063] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2018] [Accepted: 06/04/2018] [Indexed: 12/20/2022] Open
Abstract
The proper maturation of both male and female gametes is essential for supporting fertilization and the early embryonic divisions. In the ovary, immature fully-grown oocytes that are arrested in prophase I of meiosis I are not able to support fertilization. Acquiring fertilization competence requires resumption of meiosis which encompasses the remodeling of multiple signaling pathways and the reorganization of cellular organelles. Collectively, this differentiation endows the egg with the ability to activate at fertilization and to promote the egg-to-embryo transition. Oocyte maturation is associated with changes in the electrical properties of the plasma membrane and alterations in the function and distribution of ion channels. Therefore, variations on the pattern of expression, distribution, and function of ion channels and transporters during oocyte maturation are fundamental to reproductive success. Ion channels and transporters are important in regulating membrane potential, but also in the case of calcium (Ca2+), they play a critical role in modulating intracellular signaling pathways. In the context of fertilization, Ca2+ has been shown to be the universal activator of development at fertilization, playing a central role in early events associated with egg activation and the egg-to-embryo transition. These early events include the block of polyspermy, the completion of meiosis and the transition to the embryonic mitotic divisions. In this review, we discuss the role of ion channels during oocyte maturation, fertilization and early embryonic development. We will describe how ion channel studies in Xenopus oocytes, an extensively studied model of oocyte maturation, translate into a greater understanding of the role of ion channels in mammalian oocyte physiology.
Collapse
Affiliation(s)
- Ingrid Carvacho
- Department of Biology and Chemistry, Faculty of Basic Sciences, Universidad Católica del Maule, Talca, Chile
| | - Matthias Piesche
- Biomedical Research Laboratories, Medicine Faculty, Universidad Católica del Maule, Talca, Chile
| | - Thorsten J. Maier
- Department of Anesthesiology, Intensive Care Medicine and Pain Therapy, Goethe-University Hospital, Frankfurt, Germany
| | - Khaled Machaca
- Department of Physiology and Biophysics, Weill Cornell-Medicine-Qatar, Education City, Qatar Foundation, Doha, Qatar
| |
Collapse
|
18
|
Nader N, Dib M, Courjaret R, Hodeify R, Machaca R, Graumann J, Machaca K. VLDL receptor regulates membrane progesterone receptor trafficking and non-genomic signaling. J Cell Sci 2018; 131:jcs.212522. [DOI: 10.1242/jcs.212522] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2017] [Accepted: 04/17/2018] [Indexed: 11/20/2022] Open
Abstract
Progesterone mediates its physiological functions through activation of both transcription-coupled nuclear receptors and 7-transmembrane progesterone receptors (mPRs) that transduce progesterone's rapid non-genomic actions by coupling to various signaling modules. However, the immediate mechanisms of action downstream of mPRs remain in question. Herein we use an untargeted quantitative proteomics approach to identify mPR interactors to better define progesterone non-genomic signaling. Surprisingly, we identify the VLDL Receptor (VLDLR) as an mPR partner required for its plasma membrane localization. Knocking down VLDLR abolishes non-genomic progesterone signaling, a phenotype that is rescued by overexpressing VLDLR. Mechanistically, we show that the VLDLR is required for mPR trafficking from the ER to the Golgi. Taken together, our data define a novel function for the VLDLR as a trafficking chaperone required for the mPR subcellular localization and as such non-genomic progesterone-dependent signaling.
Collapse
Affiliation(s)
- Nancy Nader
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Education City – Qatar Foundation, Doha, Qatar
| | - Maya Dib
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Education City – Qatar Foundation, Doha, Qatar
| | - Raphael Courjaret
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Education City – Qatar Foundation, Doha, Qatar
| | - Rawad Hodeify
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Education City – Qatar Foundation, Doha, Qatar
| | - Raya Machaca
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Education City – Qatar Foundation, Doha, Qatar
| | - Johannes Graumann
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Education City – Qatar Foundation, Doha, Qatar
| | - Khaled Machaca
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Education City – Qatar Foundation, Doha, Qatar
| |
Collapse
|
19
|
Kashir J, Nomikos M, Lai FA. Phospholipase C zeta and calcium oscillations at fertilisation: The evidence, applications, and further questions. Adv Biol Regul 2017; 67:148-162. [PMID: 29108881 DOI: 10.1016/j.jbior.2017.10.012] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 10/25/2017] [Accepted: 10/25/2017] [Indexed: 12/26/2022]
Abstract
Oocyte activation is a fundamental event at mammalian fertilisation, initiated by a series of characteristic calcium (Ca2+) oscillations in mammals. This characteristic pattern of Ca2+ release is induced in a species-specific manner by a sperm-specific enzyme termed phospholipase C zeta (PLCζ). Reduction or absence of functional PLCζ within sperm underlies male factor infertility in humans, due to mutational inactivation or abrogation of PLCζ protein expression. Underlying such clinical implications, a significant body of evidence has now been accumulated that has characterised the unique biochemical and biophysical properties of this enzyme, further aiding the unique clinical opportunities presented. Herein, we present and discuss evidence accrued over the past decade and a half that serves to support the identity of PLCζ as the mammalian sperm factor. Furthermore, we also discuss the potential novel avenues that have yet to be examined regarding PLCζ mechanism of action in both the oocyte, and the sperm. Finally, we discuss the advances that have been made regarding the clinical therapeutic and diagnostic applications of PLCζ in potentially treating male infertility as a result of oocyte activation deficiency (OAD), and also possibly more general cases of male subfertility.
Collapse
Affiliation(s)
- Junaid Kashir
- College of Biomedical & Life Sciences, School of Biosciences, Cardiff University, Cardiff, UK; Alfaisal University, College of Medicine, Riyadh, Saudi Arabia; King Faisal Specialist Hospital & Research Center, Department of Comparative Medicine, Riyadh, Saudi Arabia.
| | - Michail Nomikos
- College of Medicine, Member of QU Health, Qatar University, PO Box 2713, Doha, Qatar
| | - F Anthony Lai
- College of Biomedical & Life Sciences, School of Biosciences, Cardiff University, Cardiff, UK; College of Medicine, Member of QU Health, Qatar University, PO Box 2713, Doha, Qatar.
| |
Collapse
|
20
|
Schaefer-Ramadan S, Hubrack S, Machaca K. Transition metal dependent regulation of the signal transduction cascade driving oocyte meiosis. J Cell Physiol 2017; 233:3164-3175. [DOI: 10.1002/jcp.26157] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Accepted: 08/14/2017] [Indexed: 12/19/2022]
Affiliation(s)
| | - Satanay Hubrack
- Department of Physiology and Biophysics; Weill Cornell Medicine-Qatar; Doha Qatar
| | - Khaled Machaca
- Department of Physiology and Biophysics; Weill Cornell Medicine-Qatar; Doha Qatar
| |
Collapse
|
21
|
Tiwari M, Prasad S, Shrivastav TG, Chaube SK. Calcium Signaling During Meiotic Cell Cycle Regulation and Apoptosis in Mammalian Oocytes. J Cell Physiol 2016; 232:976-981. [PMID: 27791263 DOI: 10.1002/jcp.25670] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 10/27/2016] [Indexed: 01/07/2023]
Abstract
Calcium (Ca++ ) is one of the major signal molecules that regulate various aspects of cell functions including cell cycle progression, arrest, and apoptosis in wide variety of cells. This review summarizes current knowledge on the differential roles of Ca++ in meiotic cell cycle resumption, arrest, and apoptosis in mammalian oocytes. Release of Ca++ from internal stores and/or Ca++ influx from extracellular medium causes moderate increase of intracellular Ca++ ([Ca++ ]i) level and reactive oxygen species (ROS). Increase of Ca++ as well as ROS levels under physiological range trigger maturation promoting factor (MPF) destabilization, thereby meiotic resumption from diplotene as well as metaphase-II (M-II) arrest in oocytes. A sustained increase of [Ca++ ]i level beyond physiological range induces generation of ROS sufficient enough to cause oxidative stress (OS) in aging oocytes. The increased [Ca++ ]i triggers Fas ligand-mediated oocyte apoptosis. Further, OS triggers mitochondria-mediated oocyte apoptosis in several mammalian species. Thus, Ca++ exerts differential roles on oocyte physiology depending upon its intracellular concentration. A moderate increase of [Ca++ ]i as well as ROS mediate spontaneous resumption of meiosis from diplotene as well as M-II arrest, while their high levels cause meiotic cell cycle arrest and apoptosis by operating both mitochondria- as well as Fas ligand-mediated apoptotic pathways. Indeed, Ca++ regulates cellular physiology by modulating meiotic cell cycle and apoptosis in mammalian oocytes. J. Cell. Physiol. 232: 976-981, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Meenakshi Tiwari
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Shilpa Prasad
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| | - Tulsidas G Shrivastav
- Department of Reproductive Biomedicine, National Institute of Health and Family Welfare, Munirka, New Delhi, India
| | - Shail K Chaube
- Cell Physiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, Uttar Pradesh, India
| |
Collapse
|
22
|
Freeze/thaw stress induces organelle remodeling and membrane recycling in cryopreserved human mature oocytes. J Assist Reprod Genet 2016; 33:1559-1570. [PMID: 27586998 DOI: 10.1007/s10815-016-0798-x] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2016] [Accepted: 08/16/2016] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Our aim was to evaluate the ultrastructure of human metaphase II oocytes subjected to slow freezing and fixed after thawing at different intervals during post-thaw rehydration. METHODS Samples were studied by light and transmission electron microscopy. RESULTS We found that vacuolization was present in all cryopreserved oocytes, reaching a maximum in the intermediate stage of rehydration. Mitochondria-smooth endoplasmic reticulum (M-SER) aggregates decreased following thawing, particularly in the first and intermediate stages of rehydration, whereas mitochondria-vesicle (MV) complexes augmented in the same stages. At the end of rehydration, vacuoles and MV complexes both diminished and M-SER aggregates increased again. Cortical granules (CGs) were scarce in all cryopreserved oocytes, gradually diminishing as rehydration progressed. CONCLUSIONS This study also shows that such a membrane remodeling is mainly represented by a dynamic process of transition between M-SER aggregates and MV complexes, both able of transforming into each other. Vacuoles and CG membranes may take part in the membrane recycling mechanism.
Collapse
|
23
|
Courjaret R, Hodeify R, Hubrack S, Ibrahim A, Dib M, Daas S, Machaca K. The Ca2+-activated Cl- channel Ano1 controls microvilli length and membrane surface area in the oocyte. J Cell Sci 2016; 129:2548-58. [PMID: 27173493 DOI: 10.1242/jcs.188367] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2016] [Accepted: 05/02/2016] [Indexed: 12/12/2022] Open
Abstract
Ca(2+)-activated Cl(-) channels (CaCCs) play important physiological functions in epithelia and other tissues. In frog oocytes the CaCC Ano1 regulates resting membrane potential and the block to polyspermy. Here, we show that Ano1 expression increases the oocyte surface, revealing a novel function for Ano1 in regulating cell morphology. Confocal imaging shows that Ano1 increases microvilli length, which requires ERM-protein-dependent linkage to the cytoskeleton. A dominant-negative form of the ERM protein moesin precludes the Ano1-dependent increase in membrane area. Furthermore, both full-length and the truncated dominant-negative forms of moesin co-localize with Ano1 to the microvilli, and the two proteins co-immunoprecipitate. The Ano1-moesin interaction limits Ano1 lateral membrane mobility and contributes to microvilli scaffolding, therefore stabilizing larger membrane structures. Collectively, these results reveal a newly identified role for Ano1 in shaping the plasma membrane during oogenesis, with broad implications for the regulation of microvilli in epithelia.
Collapse
Affiliation(s)
- Raphael Courjaret
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, Education City - Qatar Foundation, Luqta Street, PO Box 24144, Doha 24144, Qatar
| | - Rawad Hodeify
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, Education City - Qatar Foundation, Luqta Street, PO Box 24144, Doha 24144, Qatar
| | - Satanay Hubrack
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, Education City - Qatar Foundation, Luqta Street, PO Box 24144, Doha 24144, Qatar
| | - Awab Ibrahim
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, Education City - Qatar Foundation, Luqta Street, PO Box 24144, Doha 24144, Qatar
| | - Maya Dib
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, Education City - Qatar Foundation, Luqta Street, PO Box 24144, Doha 24144, Qatar
| | - Sahar Daas
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, Education City - Qatar Foundation, Luqta Street, PO Box 24144, Doha 24144, Qatar
| | - Khaled Machaca
- Department of Physiology and Biophysics, Weill Cornell Medical College in Qatar, Education City - Qatar Foundation, Luqta Street, PO Box 24144, Doha 24144, Qatar
| |
Collapse
|
24
|
Nader N, Courjaret R, Dib M, Kulkarni RP, Machaca K. Release from Xenopus oocyte prophase I meiotic arrest is independent of a decrease in cAMP levels or PKA activity. Development 2016; 143:1926-36. [PMID: 27122173 DOI: 10.1242/dev.136168] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 04/07/2016] [Indexed: 12/13/2022]
Abstract
Vertebrate oocytes arrest at prophase of meiosis I as a result of high levels of cyclic adenosine monophosphate (cAMP) and protein kinase A (PKA) activity. In Xenopus, progesterone is believed to release meiotic arrest by inhibiting adenylate cyclase, lowering cAMP levels and repressing PKA. However, the exact timing and extent of the cAMP decrease is unclear, with conflicting reports in the literature. Using various in vivo reporters for cAMP and PKA at the single-cell level in real time, we fail to detect any significant changes in cAMP or PKA in response to progesterone. More interestingly, there was no correlation between the levels of PKA inhibition and the release of meiotic arrest. Furthermore, we devised conditions whereby meiotic arrest could be released in the presence of sustained high levels of cAMP. Consistently, lowering endogenous cAMP levels by >65% for prolonged time periods failed to induce spontaneous maturation. These results argue that the release of oocyte meiotic arrest in Xenopus is independent of a reduction in either cAMP levels or PKA activity, but rather proceeds through a parallel cAMP/PKA-independent pathway.
Collapse
Affiliation(s)
- Nancy Nader
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Education City - Qatar Foundation, Doha, Qatar 24144
| | - Raphael Courjaret
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Education City - Qatar Foundation, Doha, Qatar 24144
| | - Maya Dib
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Education City - Qatar Foundation, Doha, Qatar 24144
| | - Rashmi P Kulkarni
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Education City - Qatar Foundation, Doha, Qatar 24144
| | - Khaled Machaca
- Department of Physiology and Biophysics, Weill Cornell Medicine Qatar, Education City - Qatar Foundation, Doha, Qatar 24144
| |
Collapse
|
25
|
Lee HC, Yoon SY, Lykke-Hartmann K, Fissore RA, Carvacho I. TRPV3 channels mediate Ca2+ influx induced by 2-APB in mouse eggs. Cell Calcium 2016; 59:21-31. [DOI: 10.1016/j.ceca.2015.12.001] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Revised: 12/09/2015] [Accepted: 12/11/2015] [Indexed: 11/29/2022]
|
26
|
Stith BJ. Phospholipase C and D regulation of Src, calcium release and membrane fusion during Xenopus laevis development. Dev Biol 2015; 401:188-205. [PMID: 25748412 DOI: 10.1016/j.ydbio.2015.02.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2015] [Revised: 02/15/2015] [Accepted: 02/24/2015] [Indexed: 11/28/2022]
Abstract
This review emphasizes how lipids regulate membrane fusion and the proteins involved in three developmental stages: oocyte maturation to the fertilizable egg, fertilization and during first cleavage. Decades of work show that phosphatidic acid (PA) releases intracellular calcium, and recent work shows that the lipid can activate Src tyrosine kinase or phospholipase C during Xenopus fertilization. Numerous reports are summarized to show three levels of increase in lipid second messengers inositol 1,4,5-trisphosphate and sn 1,2-diacylglycerol (DAG) during the three different developmental stages. In addition, possible roles for PA, ceramide, lysophosphatidylcholine, plasmalogens, phosphatidylinositol 4-phosphate, phosphatidylinositol 5-phosphate, phosphatidylinositol 4,5-bisphosphate, membrane microdomains (rafts) and phosphatidylinositol 3,4,5-trisphosphate in regulation of membrane fusion (acrosome reaction, sperm-egg fusion, cortical granule exocytosis), inositol 1,4,5-trisphosphate receptors, and calcium release are discussed. The role of six lipases involved in generating putative lipid second messengers during fertilization is also discussed: phospholipase D, autotaxin, lipin1, sphingomyelinase, phospholipase C, and phospholipase A2. More specifically, proteins involved in developmental events and their regulation through lipid binding to SH3, SH4, PH, PX, or C2 protein domains is emphasized. New models are presented for PA activation of Src (through SH3, SH4 and a unique domain), that this may be why the SH2 domain of PLCγ is not required for Xenopus fertilization, PA activation of phospholipase C, a role for PA during the calcium wave after fertilization, and that calcium/calmodulin may be responsible for the loss of Src from rafts after fertilization. Also discussed is that the large DAG increase during fertilization derives from phospholipase D production of PA and lipin dephosphorylation to DAG.
Collapse
Affiliation(s)
- Bradley J Stith
- University of Colorado Denver, Department of Integrative Biology, Campus Box 171, PO Box 173364, Denver, CO 80217-3364, United States.
| |
Collapse
|
27
|
Stricker SA. Calcium signaling and endoplasmic reticulum dynamics during fertilization in marine protostome worms belonging to the phylum Nemertea. Biochem Biophys Res Commun 2014; 450:1182-7. [DOI: 10.1016/j.bbrc.2014.03.156] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2014] [Accepted: 03/31/2014] [Indexed: 10/25/2022]
|
28
|
Bates RC, Fees CP, Holland WL, Winger CC, Batbayar K, Ancar R, Bergren T, Petcoff D, Stith BJ. Activation of Src and release of intracellular calcium by phosphatidic acid during Xenopus laevis fertilization. Dev Biol 2013; 386:165-80. [PMID: 24269904 DOI: 10.1016/j.ydbio.2013.11.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2013] [Revised: 10/24/2013] [Accepted: 11/08/2013] [Indexed: 01/03/2023]
Abstract
We report a new step in the fertilization in Xenopus laevis which has been found to involve activation of Src tyrosine kinase to stimulate phospholipase C-γ (PLC-γ) which increases inositol 1,4,5-trisphosphate (IP3) to release intracellular calcium ([Ca](i)). Molecular species analysis and mass measurements suggested that sperm activate phospholipase D (PLD) to elevate phosphatidic acid (PA). We now report that PA mass increased 2.7 fold by 1 min after insemination and inhibition of PA production by two methods inhibited activation of Src and PLCγ, increased [Ca](i) and other fertilization events. As compared to 14 other lipids, PA specifically bound Xenopus Src but not PLCγ. Addition of synthetic PA activated egg Src (an action requiring intact lipid rafts) and PLCγ as well as doubling the amount of PLCγ in rafts. In the absence of elevated [Ca](i), PA addition elevated IP3 mass to levels equivalent to that induced by sperm (but twice that achieved by calcium ionophore). Finally, PA induced [Ca](i) release that was blocked by an IP3 receptor inhibitor. As only PLD1b message was detected, and Western blotting did not detect PLD2, we suggest that sperm activate PLD1b to elevate PA which then binds to and activates Src leading to PLCγ stimulation, IP3 elevation and [Ca](i) release. Due to these and other studies, PA may also play a role in membrane fusion events such as sperm-egg fusion, cortical granule exocytosis, the elevation of phosphatidylinositol 4,5-bisphosphate and the large, late increase in sn 1,2-diacylglycerol in fertilization.
Collapse
Key Words
- 1,2-dicapryloyl-sn-glycero-3-phosphate
- 1,2-dioctanoyl-sn-glycero-3-[phospho-l-serine]
- 5-fluoro-2-indolyl des-chlorohalopemide
- DAG
- ELSD
- Exocytosis
- FIPI
- IP3
- LPA
- LPC
- Membrane fusion
- Membrane rafts
- PA
- PC
- PE
- PI
- PI3
- PI345P3
- PI34P2
- PI35P2
- PI4
- PI45P2
- PI5
- PKC
- PLC
- PLCγ
- PLD
- PS
- Phospholipase Cγ
- Phospholipase D
- RT-PCR
- S1P
- [Ca](i)
- dPA
- dPS
- evaporative light scattering detector
- inositol 1,4,5-trisphosphate
- intracellular calcium
- lysophosphatidic acid
- lysophosphatidylcholine
- phosphatidic acid
- phosphatidylcholine
- phosphatidylethanolamine
- phosphatidylinositol
- phosphatidylinositol 3,4,5-trisphosphate
- phosphatidylinositol 3,4-bisphosphate
- phosphatidylinositol 3,5-bisphosphate
- phosphatidylinositol 3-phosphate
- phosphatidylinositol 4,5-bisphosphate
- phosphatidylinositol 4-phosphate
- phosphatidylinositol 5-phosphate
- phosphatidylserine
- phospholipase C
- phospholipase C-γ
- phospholipase D
- protein kinase C
- reverse transcriptase polymerase chain reaction
- sn 1,2-diacylglycerol
- sphingosine-1-phosphate
Collapse
Affiliation(s)
- Ryan C Bates
- University of Colorado Denver, Denver, CO 80217-3364, USA
| | - Colby P Fees
- University of Colorado Denver, Denver, CO 80217-3364, USA
| | | | | | | | - Rachel Ancar
- University of Colorado Denver, Denver, CO 80217-3364, USA
| | | | | | | |
Collapse
|
29
|
Kashir J, Deguchi R, Jones C, Coward K, Stricker SA. Comparative biology of sperm factors and fertilization-induced calcium signals across the animal kingdom. Mol Reprod Dev 2013; 80:787-815. [PMID: 23900730 DOI: 10.1002/mrd.22222] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Accepted: 07/23/2013] [Indexed: 11/08/2022]
Abstract
Fertilization causes mature oocytes or eggs to increase their concentrations of intracellular calcium ions (Ca²⁺) in all animals that have been examined, and such Ca²⁺ elevations, in turn, provide key activating signals that are required for non-parthenogenetic development. Several lines of evidence indicate that the Ca²⁺ transients produced during fertilization in mammals and other taxa are triggered by soluble factors that sperm deliver into oocytes after gamete fusion. Thus, for a broad-based analysis of Ca²⁺ dynamics during fertilization in animals, this article begins by summarizing data on soluble sperm factors in non-mammalian species, and subsequently reviews various topics related to a sperm-specific phospholipase C, called PLCζ, which is believed to be the predominant activator of mammalian oocytes. After characterizing initiation processes that involve sperm factors or alternative triggering mechanisms, the spatiotemporal patterns of Ca²⁺ signals in fertilized oocytes or eggs are compared in a taxon-by-taxon manner, and broadly classified as either a single major transient or a series of repetitive oscillations. Both solitary and oscillatory types of fertilization-induced Ca²⁺ signals are typically propagated as global waves that depend on Ca²⁺ release from the endoplasmic reticulum in response to increased concentrations of inositol 1,4,5-trisphosphate (IP₃). Thus, for taxa where relevant data are available, upstream pathways that elevate intraoocytic IP3 levels during fertilization are described, while other less-common modes of producing Ca²⁺ transients are also examined. In addition, the importance of fertilization-induced Ca²⁺ signals for activating development is underscored by noting some major downstream effects of these signals in various animals.
Collapse
Affiliation(s)
- Junaid Kashir
- Nuffield Department of Obstetrics and Gynaecology, University of Oxford, Level 3, Women's Centre, John Radcliffe Hospital, Headington, Oxford, UK
| | | | | | | | | |
Collapse
|