1
|
Meza-Resillas J, O'Hara F, Kaushik S, Stobart MJ, Ahmadpour N, Kantroo M, Del Rosario J, Rodriguez MC, Koval D, Glück C, Weber B, Stobart JL. Systemic nimodipine affects pericyte calcium signaling, resting hemodynamics and neurovascular coupling in healthy mouse brain. Neurotherapeutics 2025:e00614. [PMID: 40404520 DOI: 10.1016/j.neurot.2025.e00614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 04/28/2025] [Accepted: 05/13/2025] [Indexed: 05/24/2025] Open
Abstract
Nimodipine is a L-type voltage gated calcium channel blocker commonly given to patients after a sub-arachnoid hemorrhage. It is known to dilate cerebral arteries and affect brain pericytes that express voltage gated calcium channels. Here, we systemically administered nimodipine (1 mg/kg; i.p.) and measured brain pericyte calcium transients and single-vessel hemodynamics in the brains of mice by two-photon microscopy. We find that nimodipine reduces calcium transients in all types of pericytes, from ensheathing to thin-strand cells, at different locations in the vascular network. This induces local vasodilation of vessels closer to penetrating arterioles but decreases blood cell velocity. These vascular consequences are due to systemic nimodipine effects because direct brain application of nimodipine caused blood cell velocity to increase. Nimodipine treatment also reduced further dilation during neurovascular coupling throughout the vascular network. Overall, this suggests that nimodipine can change cerebrovascular hemodynamics by altering pericyte physiology and these are important considerations for the clinical use of this drug.
Collapse
Affiliation(s)
- Jessica Meza-Resillas
- College of Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada; Centre on Aging, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Finnegan O'Hara
- College of Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Syed Kaushik
- College of Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Michael J Stobart
- College of Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Noushin Ahmadpour
- College of Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Meher Kantroo
- College of Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada
| | - John Del Rosario
- College of Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Megan C Rodriguez
- College of Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Dmytro Koval
- College of Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Chaim Glück
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Jillian L Stobart
- College of Pharmacy, University of Manitoba, Winnipeg, Manitoba, Canada; Centre on Aging, University of Manitoba, Winnipeg, Manitoba, Canada.
| |
Collapse
|
2
|
Ly AT, Freites JA, Bertaccini GA, Evans EL, Dickinson GD, Tobias DJ, Pathak MM. Single-particle tracking reveals heterogeneous PIEZO1 diffusion. Biophys J 2025:S0006-3495(25)00023-2. [PMID: 39844465 DOI: 10.1016/j.bpj.2025.01.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2024] [Revised: 12/21/2024] [Accepted: 01/16/2025] [Indexed: 01/24/2025] Open
Abstract
The mechanically activated ion channel PIEZO1 is critical to numerous physiological processes, and is activated by diverse mechanical cues. The channel is gated by membrane tension and has been found to be mobile in the plasma membrane. We employed single-particle tracking (SPT) of endogenous, tdTomato-tagged PIEZO1 using total internal reflection fluorescence microscopy in live cells. Application of SPT unveiled a surprising heterogeneity of diffusing PIEZO1 subpopulations, which we labeled "mobile" and "immobile." We sorted these trajectories into the two aforementioned categories using trajectory spread. To evaluate the effects of the plasma membrane composition on PIEZO1 diffusion, we manipulated membrane composition by depleting or supplementing cholesterol, or by adding margaric acid to stiffen the membrane. To examine effects of channel activation on PIEZO1 mobility, we treated cells with Yoda1, a PIEZO1 agonist, and GsMTx-4, a channel inhibitor. We collected thousands of trajectories for each condition, and found that cholesterol removal and Yoda1 incubation increased the channel's propensity for mobility. Conversely, we found that GsMTx-4 incubation and cholesterol supplementation resulted in a lower chance of mobile trajectories, whereas margaric acid incubation did not have a significant effect on PIEZO1 mobility. The mobile trajectories were analyzed further by fitting the time-averaged mean-squared displacement as a function of lag time to a power law model, revealing that mobile PIEZO1 puncta exhibit anomalous subdiffusion. These studies illuminate the fundamental properties governing PIEZO1 diffusion in the plasma membrane and set the stage to determine how cellular processes and interactions may influence channel activity and mobility.
Collapse
Affiliation(s)
- Alan T Ly
- Department of Physiology & Biophysics, UC Irvine, Irvine, California; Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, California
| | | | - Gabriella A Bertaccini
- Department of Physiology & Biophysics, UC Irvine, Irvine, California; Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, California
| | - Elizabeth L Evans
- Department of Physiology & Biophysics, UC Irvine, Irvine, California; Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, California
| | - George D Dickinson
- Department of Physiology & Biophysics, UC Irvine, Irvine, California; Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, California
| | - Douglas J Tobias
- Department of Chemistry, UC Irvine, Irvine, California; Center for Complex Biological Systems, UC Irvine, Irvine, California.
| | - Medha M Pathak
- Department of Physiology & Biophysics, UC Irvine, Irvine, California; Department of Biomedical Engineering, UC Irvine, Irvine, California; Center for Complex Biological Systems, UC Irvine, Irvine, California; Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, California.
| |
Collapse
|
3
|
Ivanova A, Atakpa-Adaji P, Rao S, Marti-Solano M, Taylor CW. Dual regulation of IP 3 receptors by IP 3 and PIP 2 controls the transition from local to global Ca 2+ signals. Mol Cell 2024; 84:3997-4015.e7. [PMID: 39366376 DOI: 10.1016/j.molcel.2024.09.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 07/11/2024] [Accepted: 09/08/2024] [Indexed: 10/06/2024]
Abstract
The spatial organization of inositol 1,4,5-trisphosphate (IP3)-evoked Ca2+ signals underlies their versatility. Low stimulus intensities evoke Ca2+ puffs, localized Ca2+ signals arising from a few IP3 receptors (IP3Rs) within a cluster tethered beneath the plasma membrane. More intense stimulation evokes global Ca2+ signals. Ca2+ signals propagate regeneratively as the Ca2+ released stimulates more IP3Rs. How is this potentially explosive mechanism constrained to allow local Ca2+ signaling? We developed methods that allow IP3 produced after G-protein coupled receptor (GPCR) activation to be intercepted and replaced by flash photolysis of a caged analog of IP3. We find that phosphatidylinositol 4,5-bisphosphate (PIP2) primes IP3Rs to respond by partially occupying their IP3-binding sites. As GPCRs stimulate IP3 formation, they also deplete PIP2, relieving the priming stimulus. Loss of PIP2 resets IP3R sensitivity and delays the transition from local to global Ca2+ signals. Dual regulation of IP3Rs by PIP2 and IP3 through GPCRs controls the transition from local to global Ca2+ signals.
Collapse
Affiliation(s)
- Adelina Ivanova
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK.
| | - Peace Atakpa-Adaji
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK
| | - Shanlin Rao
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK
| | - Maria Marti-Solano
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK
| | - Colin W Taylor
- Department of Pharmacology, University of Cambridge, Cambridge CB2 1PD, UK
| |
Collapse
|
4
|
Herwerth M, Wyss MT, Schmid NB, Condrau J, Ravotto L, Mateos Melero JM, Kaech A, Bredell G, Thomas C, Stadelmann C, Misgeld T, Bennett JL, Saab AS, Jessberger S, Weber B. Astrocytes adopt a progenitor-like migratory strategy for regeneration in adult brain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.18.594292. [PMID: 38798654 PMCID: PMC11118580 DOI: 10.1101/2024.05.18.594292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Mature astrocytes become activated upon non-specific tissue damage and contribute to glial scar formation. Proliferation and migration of adult reactive astrocytes after injury is considered very limited. However, the regenerative behavior of individual astrocytes following selective astroglial loss, as seen in astrocytopathies, such as neuromyelitis optica spectrum disorder, remains unexplored. Here, we performed longitudinal in vivo imaging of cortical astrocytes after focal astrocyte ablation in mice. We discovered that perilesional astrocytes develop a remarkable plasticity for efficient lesion repopulation. A subset of mature astrocytes transforms into reactive progenitor-like (REPL) astrocytes that not only undergo multiple asymmetric divisions but also remain in a multinucleated interstage. This regenerative response facilitates efficient migration of newly formed daughter cell nuclei towards unoccupied astrocyte territories. Our findings define the cellular principles of astrocyte plasticity upon focal lesion, unravelling the REPL phenotype as a fundamental regenerative strategy of mature astrocytes to restore astrocytic networks in the adult mammalian brain. Promoting this regenerative phenotype bears therapeutic potential for neurological conditions involving glial dysfunction.
Collapse
|
5
|
Yuan Y, Arige V, Saito R, Mu Q, Brailoiu GC, Pereira GJS, Bolsover SR, Keller M, Bracher F, Grimm C, Brailoiu E, Marchant JS, Yule DI, Patel S. Two-pore channel-2 and inositol trisphosphate receptors coordinate Ca 2+ signals between lysosomes and the endoplasmic reticulum. Cell Rep 2024; 43:113628. [PMID: 38160394 PMCID: PMC10931537 DOI: 10.1016/j.celrep.2023.113628] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Revised: 11/13/2023] [Accepted: 12/11/2023] [Indexed: 01/03/2024] Open
Abstract
Lysosomes and the endoplasmic reticulum (ER) are Ca2+ stores mobilized by the second messengers NAADP and IP3, respectively. Here, we establish Ca2+ signals between the two sources as fundamental building blocks that couple local release to global changes in Ca2+. Cell-wide Ca2+ signals evoked by activation of endogenous NAADP-sensitive channels on lysosomes comprise both local and global components and exhibit a major dependence on ER Ca2+ despite their lysosomal origin. Knockout of ER IP3 receptor channels delays these signals, whereas expression of lysosomal TPC2 channels accelerates them. High-resolution Ca2+ imaging reveals elementary events upon TPC2 opening and signals coupled to IP3 receptors. Biasing TPC2 activation to a Ca2+-permeable state sensitizes local Ca2+ signals to IP3. This increases the potency of a physiological agonist to evoke global Ca2+ signals and activate a downstream target. Our data provide a conceptual framework to understand how Ca2+ release from physically separated stores is coordinated.
Collapse
Affiliation(s)
- Yu Yuan
- Department of Cell and Developmental Biology, University College London, Gower Street, WC1E 6BT London, UK
| | - Vikas Arige
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Ryo Saito
- Department of Cell and Developmental Biology, University College London, Gower Street, WC1E 6BT London, UK; Department of Dermatology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima 734-8553, Japan
| | - Qianru Mu
- Department of Cell and Developmental Biology, University College London, Gower Street, WC1E 6BT London, UK
| | - Gabriela C Brailoiu
- Department of Pharmaceutical Sciences, Jefferson College of Pharmacy, Thomas Jefferson University, 901 Walnut Street, Philadelphia, PA 19107, USA
| | - Gustavo J S Pereira
- Department of Cell and Developmental Biology, University College London, Gower Street, WC1E 6BT London, UK; Department of Pharmacology, Federal University of São Paulo (UNIFESP), São Paulo 04044-020, Brazil
| | - Stephen R Bolsover
- Department of Cell and Developmental Biology, University College London, Gower Street, WC1E 6BT London, UK
| | - Marco Keller
- Department of Pharmacy-Center for Drug Research, Ludwig-Maximilian University, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Franz Bracher
- Department of Pharmacy-Center for Drug Research, Ludwig-Maximilian University, Butenandtstrasse 5-13, 81377 Munich, Germany
| | - Christian Grimm
- Walther Straub Institute of Pharmacology and Toxicology, Faculty of Medicine, Ludwig-Maximilian University, Nussbaumstrasse 26, 80336 Munich, Germany; Immunology, Infection and Pandemic Research IIP, Fraunhofer Institute for Translational Medicine and Pharmacology ITMP, 60596 Frankfurt, Germany
| | - Eugen Brailoiu
- Department of Neural Sciences and Center for Substance Abuse Research, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Jonathan S Marchant
- Department of Cell Biology, Neurobiology & Anatomy, Medical College of Wisconsin, 8701 Watertown Plank Road, Milwaukee, WI 53226, USA
| | - David I Yule
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA.
| | - Sandip Patel
- Department of Cell and Developmental Biology, University College London, Gower Street, WC1E 6BT London, UK.
| |
Collapse
|
6
|
Stopper G, Caudal LC, Rieder P, Gobbo D, Stopper L, Felix L, Everaerts K, Bai X, Rose CR, Scheller A, Kirchhoff F. Novel algorithms for improved detection and analysis of fluorescent signal fluctuations. Pflugers Arch 2023; 475:1283-1300. [PMID: 37700120 PMCID: PMC10567899 DOI: 10.1007/s00424-023-02855-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/02/2023] [Accepted: 08/26/2023] [Indexed: 09/14/2023]
Abstract
Fluorescent dyes and genetically encoded fluorescence indicators (GEFI) are common tools for visualizing concentration changes of specific ions and messenger molecules during intra- as well as intercellular communication. Using advanced imaging technologies, fluorescence indicators are a prerequisite for the analysis of physiological molecular signaling. Automated detection and analysis of fluorescence signals require to overcome several challenges, including correct estimation of fluorescence fluctuations at basal concentrations of messenger molecules, detection, and extraction of events themselves as well as proper segmentation of neighboring events. Moreover, event detection algorithms need to be sensitive enough to accurately capture localized and low amplitude events exhibiting a limited spatial extent. Here, we present two algorithms (PBasE and CoRoDe) for accurate baseline estimation and automated detection and segmentation of fluorescence fluctuations.
Collapse
Affiliation(s)
- Gebhard Stopper
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Building 48, 66421, Homburg, Germany
| | - Laura C Caudal
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Building 48, 66421, Homburg, Germany
| | - Phillip Rieder
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Building 48, 66421, Homburg, Germany
| | - Davide Gobbo
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Building 48, 66421, Homburg, Germany
| | - Laura Stopper
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Building 48, 66421, Homburg, Germany
| | - Lisa Felix
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Katharina Everaerts
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Xianshu Bai
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Building 48, 66421, Homburg, Germany
| | - Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| | - Anja Scheller
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Building 48, 66421, Homburg, Germany
| | - Frank Kirchhoff
- Department of Molecular Physiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), University of Saarland, Building 48, 66421, Homburg, Germany.
| |
Collapse
|
7
|
Smith HA, Taylor CW. Dissociation of inositol 1,4,5-trisphosphate from IP 3 receptors contributes to termination of Ca 2+ puffs. J Biol Chem 2023; 299:102871. [PMID: 36621623 PMCID: PMC9971896 DOI: 10.1016/j.jbc.2023.102871] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 01/07/2023] Open
Abstract
Ca2+ puffs are brief, localized Ca2+ signals evoked by physiological stimuli that arise from the coordinated opening of a few clustered inositol 1,4,5-trisphosphate receptors (IP3Rs). However, the mechanisms that control the amplitude and termination of Ca2+ puffs are unresolved. To address these issues, we expressed SNAP-tagged IP3R3 in HEK cells without endogenous IP3Rs and used total internal reflection fluorescence microscopy to visualize the subcellular distribution of IP3Rs and the Ca2+ puffs that they evoke. We first confirmed that SNAP-IP3R3 were reliably identified and that they evoked normal Ca2+ puffs after photolysis of a caged analog of IP3. We show that increased IP3R expression caused cells to assemble more IP3R clusters, each of which contained more IP3Rs, but the mean amplitude of Ca2+ puffs (indicative of the number of open IP3Rs) was unaltered. We thus suggest that functional interactions between IP3Rs constrain the number of active IP3Rs within a cluster. Furthermore, Ca2+ puffs evoked by IP3R with reduced affinity for IP3 had undiminished amplitude, but the puffs decayed more quickly. The selective effect of reducing IP3 affinity on the decay times of Ca2+ puffs was not mimicked by exposing normal IP3R to a lower concentration of IP3. We conclude that distinct mechanisms constrain recruitment of IP3Rs during the rising phase of a Ca2+ puff and closure of IP3Rs during the falling phase, and that only the latter is affected by the rate of IP3 dissociation.
Collapse
Affiliation(s)
- Holly A Smith
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom
| | - Colin W Taylor
- Department of Pharmacology, University of Cambridge, Cambridge, United Kingdom.
| |
Collapse
|
8
|
Knighten JM, Aziz T, Pleshinger DJ, Annamdevula N, Rich TC, Taylor MS, Andrews JF, Macarilla CT, Francis CM. Algorithm for biological second messenger analysis with dynamic regions of interest. PLoS One 2023; 18:e0284394. [PMID: 37167308 PMCID: PMC10174521 DOI: 10.1371/journal.pone.0284394] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 03/29/2023] [Indexed: 05/13/2023] Open
Abstract
Physiological function is regulated through cellular communication that is facilitated by multiple signaling molecules such as second messengers. Analysis of signal dynamics obtained from cell and tissue imaging is difficult because of intricate spatially and temporally distinct signals. Signal analysis tools based on static region of interest analysis may under- or overestimate signals in relation to region of interest size and location. Therefore, we developed an algorithm for biological signal detection and analysis based on dynamic regions of interest, where time-dependent polygonal regions of interest are automatically assigned to the changing perimeter of detected and segmented signals. This approach allows signal profiles to be rigorously and precisely tracked over time, eliminating the signal distortion observed with static methods. Integration of our approach with state-of-the-art image processing and particle tracking pipelines enabled the isolation of dynamic cellular signaling events and characterization of biological signaling patterns with distinct combinations of parameters including amplitude, duration, and spatial spread. Our algorithm was validated using synthetically generated datasets and compared with other available methods. Application of the algorithm to volumetric time-lapse hyperspectral images of cyclic adenosine monophosphate measurements in rat microvascular endothelial cells revealed distinct signal heterogeneity with respect to cell depth, confirming the utility of our approach for analysis of 5-dimensional data. In human tibial arteries, our approach allowed the identification of distinct calcium signal patterns associated with atherosclerosis. Our algorithm for automated detection and analysis of second messenger signals enables the decoding of signaling patterns in diverse tissues and identification of pathologic cellular responses.
Collapse
Affiliation(s)
- Jennifer M Knighten
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, Alabama, United States of America
| | - Takreem Aziz
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, Alabama, United States of America
| | - Donald J Pleshinger
- Department of Pharmacology, University of South Alabama College of Medicine, Mobile, Alabama, United States of America
| | - Naga Annamdevula
- Department of Pharmacology, University of South Alabama College of Medicine, Mobile, Alabama, United States of America
| | - Thomas C Rich
- Department of Pharmacology, University of South Alabama College of Medicine, Mobile, Alabama, United States of America
- Center for Lung Biology, University of South Alabama College of Medicine, Mobile, Alabama, United States of America
| | - Mark S Taylor
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, Alabama, United States of America
| | - Joel F Andrews
- Bioimaging Core Facility, University of South Alabama College of Medicine, Mobile, Alabama, United States of America
| | - Christian T Macarilla
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, Alabama, United States of America
| | - C Michael Francis
- Department of Physiology and Cell Biology, University of South Alabama College of Medicine, Mobile, Alabama, United States of America
- Center for Lung Biology, University of South Alabama College of Medicine, Mobile, Alabama, United States of America
| |
Collapse
|
9
|
Terry LE, Arige V, Neumann J, Wahl AM, Knebel TR, Chaffer JW, Malik S, Liston A, Humblet-Baron S, Bultynck G, Yule DI. Missense mutations in inositol 1,4,5-trisphosphate receptor type 3 result in leaky Ca 2+ channels and activation of store-operated Ca 2+ entry. iScience 2022; 25:105523. [PMID: 36444295 PMCID: PMC9700043 DOI: 10.1016/j.isci.2022.105523] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2022] [Revised: 10/10/2022] [Accepted: 11/04/2022] [Indexed: 11/09/2022] Open
Abstract
Mutations in all subtypes of the inositol 1,4,5-trisphosphate receptor Ca2+ release channel are associated with human diseases. In this report, we investigated the functionality of three neuropathy-associated missense mutations in IP3R3 (V615M, T1424M, and R2524C). The mutants only exhibited function when highly over-expressed compared to endogenous hIP3R3. All variants resulted in elevated basal cytosolic Ca2+ levels, decreased endoplasmic reticulum Ca2+ store content, and constitutive store-operated Ca2+ entry in the absence of any stimuli, consistent with a leaky IP3R channel pore. These variants differed in channel function; when stably over-expressed the R2524C mutant was essentially dead, V615M was poorly functional, and T1424M exhibited activity greater than that of the corresponding wild-type following threshold stimulation. These results demonstrate that a common feature of these mutations is decreased IP3R3 function. In addition, these mutations exhibit a novel phenotype manifested as a constitutively open channel, which inappropriately gates SOCE in the absence of stimulation.
Collapse
Affiliation(s)
- Lara E. Terry
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642, USA
| | - Vikas Arige
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642, USA
| | - Julika Neumann
- KU Leuven, Department of Microbiology and Immunology, Leuven, Belgium
| | - Amanda M. Wahl
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642, USA
| | - Taylor R. Knebel
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642, USA
| | - James W. Chaffer
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642, USA
| | - Sundeep Malik
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642, USA
| | - Adrian Liston
- KU Leuven, Department of Microbiology and Immunology, Leuven, Belgium
| | | | - Geert Bultynck
- KU Leuven, Laboratory of Molecular and Cellular Signaling, Department of Cellular and Molecular Medicine, Leuven, Belgium
| | - David I. Yule
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
10
|
Arige V, Terry LE, Wagner LE, Malik S, Baker MR, Fan G, Joseph SK, Serysheva II, Yule DI. Functional determination of calcium-binding sites required for the activation of inositol 1,4,5-trisphosphate receptors. Proc Natl Acad Sci U S A 2022; 119:e2209267119. [PMID: 36122240 PMCID: PMC9522344 DOI: 10.1073/pnas.2209267119] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Accepted: 08/23/2022] [Indexed: 01/25/2023] Open
Abstract
Inositol 1,4,5-trisphosphate receptors (IP3Rs) initiate a diverse array of physiological responses by carefully orchestrating intracellular calcium (Ca2+) signals in response to various external cues. Notably, IP3R channel activity is determined by several obligatory factors, including IP3, Ca2+, and ATP. The critical basic amino acid residues in the N-terminal IP3-binding core (IBC) region that facilitate IP3 binding are well characterized. In contrast, the residues conferring regulation by Ca2+ have yet to be ascertained. Using comparative structural analysis of Ca2+-binding sites identified in two main families of intracellular Ca2+-release channels, ryanodine receptors (RyRs) and IP3Rs, we identified putative acidic residues coordinating Ca2+ in the cytosolic calcium sensor region in IP3Rs. We determined the consequences of substituting putative Ca2+ binding, acidic residues in IP3R family members. We show that the agonist-induced Ca2+ release, single-channel open probability (P0), and Ca2+ sensitivities are markedly altered when the negative charge on the conserved acidic side chain residues is neutralized. Remarkably, neutralizing the negatively charged side chain on two of the residues individually in the putative Ca2+-binding pocket shifted the Ca2+ required to activate IP3R to higher concentrations, indicating that these residues likely are a component of the Ca2+ activation site in IP3R. Taken together, our findings indicate that Ca2+ binding to a well-conserved activation site is a common underlying mechanism resulting in increased channel activity shared by IP3Rs and RyRs.
Collapse
Affiliation(s)
- Vikas Arige
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642
| | - Lara E. Terry
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642
| | - Larry E. Wagner
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642
| | - Sundeep Malik
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642
| | - Mariah R. Baker
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Guizhen Fan
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - Suresh K. Joseph
- Department of Pathology, Anatomy, and Cell Biology, Thomas Jefferson University, Philadelphia, PA 19107
| | - Irina I. Serysheva
- Department of Biochemistry and Molecular Biology, Structural Biology Imaging Center, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030
| | - David I. Yule
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642
| |
Collapse
|
11
|
Vorontsova I, Lock JT, Parker I. KRAP is required for diffuse and punctate IP 3-mediated Ca 2+ liberation and determines the number of functional IP 3R channels within clusters. Cell Calcium 2022; 107:102638. [PMID: 36030740 DOI: 10.1016/j.ceca.2022.102638] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Revised: 08/03/2022] [Accepted: 08/11/2022] [Indexed: 11/02/2022]
Abstract
KRas-induced actin-interacting protein (KRAP) has been identified as crucial for the appropriate localization and functioning of the inositol trisphosphate receptors (IP3Rs) that mediate Ca2+ release from the endoplasmic reticulum. Here, we used siRNA knockdown of KRAP expression in HeLa and HEK293 cells to examine the roles of KRAP in the generation of IP3-mediated local Ca2+ puffs and global, cell-wide Ca2+ signals. High resolution Ca2+ imaging revealed that the mean amplitude of puffs was strongly reduced by KRAP knockdown, whereas the Ca2+ flux during openings of individual IP3R channels was little affected. In both control and KRAP knockdown cells the numbers of functional channels in the clusters underlying puff sites were stochastically distributed following a Poisson relationship, but the mean number of functional channels per site was reduced by about two thirds by KRAP knockdown. We conclude that KRAP is required for activity of IP3R channels at puff sites and stochastically 'licenses' the function of individual channels on a one-to-one basis, rather than determining the functioning of the puff site as a whole. In addition to puff activity ('punctate' Ca2+ release), global, cell-wide Ca2+ signals evoked by higher levels of IP3 are further composed from a discrete 'diffuse' mode of Ca2+ release. By applying fluctuation analysis to isolate the punctate component during global Ca2+ signals, we find that KRAP knockdown suppresses to similar extents punctate and diffuse Ca2+ release in wild-type cells and in HEK293 cells exclusively expressing type 1 and type 3 IP3Rs. Thus, KRAP appears essential for the functioning of the IP3Rs involved in diffuse Ca2+ release as well as the clustered IP3Rs that generate local Ca2+ puffs.
Collapse
Affiliation(s)
- Irene Vorontsova
- Department of Neurobiology & Behavior, UC Irvine, Irvine, CA, United States
| | - Jeffrey T Lock
- Department of Neurobiology & Behavior, UC Irvine, Irvine, CA, United States
| | - Ian Parker
- Department of Neurobiology & Behavior, UC Irvine, Irvine, CA, United States; Department of Physiology & Biophysics, UC Irvine, Irvine, CA, United States.
| |
Collapse
|
12
|
Segregated cation flux by TPC2 biases Ca 2+ signaling through lysosomes. Nat Commun 2022; 13:4481. [PMID: 35918320 PMCID: PMC9346130 DOI: 10.1038/s41467-022-31959-0] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 07/12/2022] [Indexed: 12/19/2022] Open
Abstract
Two-pore channels are endo-lysosomal cation channels with malleable selectivity filters that drive endocytic ion flux and membrane traffic. Here we show that TPC2 can differentially regulate its cation permeability when co-activated by its endogenous ligands, NAADP and PI(3,5)P2. Whereas NAADP rendered the channel Ca2+-permeable and PI(3,5)P2 rendered the channel Na+-selective, a combination of the two increased Ca2+ but not Na+ flux. Mechanistically, this was due to an increase in Ca2+ permeability independent of changes in ion selectivity. Functionally, we show that cell permeable NAADP and PI(3,5)P2 mimetics synergistically activate native TPC2 channels in live cells, globalizing cytosolic Ca2+ signals and regulating lysosomal pH and motility. Our data reveal that flux of different ions through the same pore can be independently controlled and identify TPC2 as a likely coincidence detector that optimizes lysosomal Ca2+ signaling. TPC2 is a lysosomal ion channel permeable to both calcium and sodium ions. Here, the authors show that TPC2 can selectively increase its calcium permeability when simultaneously challenged by both its natural activators- NAADP and PI(3,5)P2.
Collapse
|
13
|
Computational Methods for Neuron Segmentation in Two-Photon Calcium Imaging Data: A Survey. APPLIED SCIENCES-BASEL 2022. [DOI: 10.3390/app12146876] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Calcium imaging has rapidly become a methodology of choice for real-time in vivo neuron analysis. Its application to large sets of data requires automated tools to annotate and segment cells, allowing scalable image segmentation under reproducible criteria. In this paper, we review and summarize the most recent methods for computational segmentation of calcium imaging. The contributions of the paper are three-fold: we provide an overview of the main algorithms taxonomized in three categories (signal processing, matrix factorization and machine learning-based approaches), we highlight the main advantages and disadvantages of each category and we provide a summary of the performance of the methods that have been tested on public benchmarks (with links to the public code when available).
Collapse
|
14
|
Hösli L, Binini N, Ferrari KD, Thieren L, Looser ZJ, Zuend M, Zanker HS, Berry S, Holub M, Möbius W, Ruhwedel T, Nave KA, Giaume C, Weber B, Saab AS. Decoupling astrocytes in adult mice impairs synaptic plasticity and spatial learning. Cell Rep 2022; 38:110484. [PMID: 35263595 DOI: 10.1016/j.celrep.2022.110484] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 11/20/2021] [Accepted: 02/14/2022] [Indexed: 12/16/2022] Open
Abstract
The mechanisms by which astrocytes modulate neural homeostasis, synaptic plasticity, and memory are still poorly explored. Astrocytes form large intercellular networks by gap junction coupling, mainly composed of two gap junction channel proteins, connexin 30 (Cx30) and connexin 43 (Cx43). To circumvent developmental perturbations and to test whether astrocytic gap junction coupling is required for hippocampal neural circuit function and behavior, we generate and study inducible, astrocyte-specific Cx30 and Cx43 double knockouts. Surprisingly, disrupting astrocytic coupling in adult mice results in broad activation of astrocytes and microglia, without obvious signs of pathology. We show that hippocampal CA1 neuron excitability, excitatory synaptic transmission, and long-term potentiation are significantly affected. Moreover, behavioral inspection reveals deficits in sensorimotor performance and a complete lack of spatial learning and memory. Together, our findings establish that astrocytic connexins and an intact astroglial network in the adult brain are vital for neural homeostasis, plasticity, and spatial cognition.
Collapse
Affiliation(s)
- Ladina Hösli
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, 8057 Zurich, Switzerland
| | - Noemi Binini
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, 8057 Zurich, Switzerland
| | - Kim David Ferrari
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, 8057 Zurich, Switzerland
| | - Laetitia Thieren
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, 8057 Zurich, Switzerland
| | - Zoe J Looser
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, 8057 Zurich, Switzerland
| | - Marc Zuend
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, 8057 Zurich, Switzerland
| | - Henri S Zanker
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, 8057 Zurich, Switzerland
| | - Stewart Berry
- Brain Research Institute, University of Zurich, 8057 Zurich, Switzerland
| | - Martin Holub
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, 8057 Zurich, Switzerland
| | - Wiebke Möbius
- Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Torben Ruhwedel
- Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Klaus-Armin Nave
- Max Planck Institute of Experimental Medicine, 37075 Göttingen, Germany
| | - Christian Giaume
- Center for Interdisciplinary Research in Biology (CIRB), Collège de France, 75231 Paris Cedex 05, France
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, 8057 Zurich, Switzerland.
| | - Aiman S Saab
- Institute of Pharmacology and Toxicology, University of Zurich, 8057 Zurich, Switzerland; Neuroscience Center Zurich, University and ETH Zurich, 8057 Zurich, Switzerland.
| |
Collapse
|
15
|
Jairaman A, McQuade A, Granzotto A, Kang YJ, Chadarevian JP, Gandhi S, Parker I, Smith I, Cho H, Sensi SL, Othy S, Blurton-Jones M, Cahalan MD. TREM2 regulates purinergic receptor-mediated calcium signaling and motility in human iPSC-derived microglia. eLife 2022; 11:e73021. [PMID: 35191835 PMCID: PMC8906810 DOI: 10.7554/elife.73021] [Citation(s) in RCA: 37] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 02/18/2022] [Indexed: 01/07/2023] Open
Abstract
The membrane protein TREM2 (Triggering Receptor Expressed on Myeloid cells 2) regulates key microglial functions including phagocytosis and chemotaxis. Loss-of-function variants of TREM2 are associated with increased risk of Alzheimer's disease (AD). Because abnormalities in Ca2+ signaling have been observed in several AD models, we investigated TREM2 regulation of Ca2+ signaling in human induced pluripotent stem cell-derived microglia (iPSC-microglia) with genetic deletion of TREM2. We found that iPSC-microglia lacking TREM2 (TREM2 KO) show exaggerated Ca2+ signals in response to purinergic agonists, such as ADP, that shape microglial injury responses. This ADP hypersensitivity, driven by increased expression of P2Y12 and P2Y13 receptors, results in greater release of Ca2+ from the endoplasmic reticulum stores, which triggers sustained Ca2+ influx through Orai channels and alters cell motility in TREM2 KO microglia. Using iPSC-microglia expressing the genetically encoded Ca2+ probe, Salsa6f, we found that cytosolic Ca2+ tunes motility to a greater extent in TREM2 KO microglia. Despite showing greater overall displacement, TREM2 KO microglia exhibit reduced directional chemotaxis along ADP gradients. Accordingly, the chemotactic defect in TREM2 KO microglia was rescued by reducing cytosolic Ca2+ using a P2Y12 receptor antagonist. Our results show that loss of TREM2 confers a defect in microglial Ca2+ response to purinergic signals, suggesting a window of Ca2+ signaling for optimal microglial motility.
Collapse
Affiliation(s)
- Amit Jairaman
- Department of Physiology and Biophysics, University of California, IrvineIrvineUnited States
| | - Amanda McQuade
- Department of Neurobiology and Behavior, University of California, IrvineIrvineUnited States
- Sue and Bill Gross Stem Cell Research Center, University of California, IrvineIrvineUnited States
- UCI Institute for Memory Impairments and Neurological Disorders, University of CaliforniaIrvineUnited States
- Institute for Neurodegenerative Diseases, University of California, San FranciscoSan FranciscoUnited States
| | - Alberto Granzotto
- Department of Neurobiology and Behavior, University of California, IrvineIrvineUnited States
- Center for Advanced Sciences and Technology (CAST), University "G. d'Annunzio" of Chieti-PescaraChietiItaly
- Department of Neuroscience, Imaging and Clinical Sciences, University G d'Annunzio of Chieti-PescaraChietiItaly
| | - You Jung Kang
- Department of Mechanical Engineering and Engineering Science, University of North CarolinaCharlotteUnited States
| | - Jean Paul Chadarevian
- Department of Neurobiology and Behavior, University of California, IrvineIrvineUnited States
| | - Sunil Gandhi
- Department of Neurobiology and Behavior, University of California, IrvineIrvineUnited States
| | - Ian Parker
- Department of Physiology and Biophysics, University of California, IrvineIrvineUnited States
- Department of Neurobiology and Behavior, University of California, IrvineIrvineUnited States
| | - Ian Smith
- Department of Neurobiology and Behavior, University of California, IrvineIrvineUnited States
| | - Hansang Cho
- Institute of Quantum Biophysics, Department of Biophysics, Dept of Intelligent Precision Healthcare Convergence, Sungkyunkwan UniversityGyeonggi-doRepublic of Korea
| | - Stefano L Sensi
- Center for Advanced Sciences and Technology (CAST), University "G. d'Annunzio" of Chieti-PescaraChietiItaly
- Department of Neuroscience, Imaging and Clinical Sciences, University G d'Annunzio of Chieti-PescaraChietiItaly
| | - Shivashankar Othy
- Department of Physiology and Biophysics, University of California, IrvineIrvineUnited States
- Institute for Immunology, University of California, IrvineIrvineUnited States
| | - Mathew Blurton-Jones
- Department of Neurobiology and Behavior, University of California, IrvineIrvineUnited States
- Sue and Bill Gross Stem Cell Research Center, University of California, IrvineIrvineUnited States
- UCI Institute for Memory Impairments and Neurological Disorders, University of CaliforniaIrvineUnited States
- Institute for Immunology, University of California, IrvineIrvineUnited States
| | - Michael D Cahalan
- Department of Physiology and Biophysics, University of California, IrvineIrvineUnited States
- Institute for Immunology, University of California, IrvineIrvineUnited States
| |
Collapse
|
16
|
Distinct movement patterns generate stages of spider web building. Curr Biol 2021; 31:4983-4997.e5. [PMID: 34619095 DOI: 10.1016/j.cub.2021.09.030] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/05/2021] [Accepted: 09/14/2021] [Indexed: 11/20/2022]
Abstract
The geometric complexity and stereotypy of spider webs have long generated interest in their algorithmic origin. Like other examples of animal architecture, web construction is the result of several assembly phases that are driven by distinct behavioral stages coordinated to build a successful structure. Manual observations have revealed a range of sensory cues and movement patterns used during web construction, but methods to systematically quantify the dynamics of these sensorimotor patterns are lacking. Here, we apply an analytical pipeline to quantify web-making behavior of the orb-weaver Uloborus diversus. Position tracking revealed stereotyped stages of construction that could occur in typical or atypical progressions across individuals. Using an unsupervised clustering approach, we identified general and stage-specific leg movements. A hierarchical hidden Markov model revealed that web-building stages are characterized by stereotyped sequences of actions largely shared across individuals, regardless of whether these stages progress in a typical or an atypical fashion. Web stages could be predicted based on action sequences alone, revealing that web-stage geometries are a physical manifestation of behavioral transition regimes.
Collapse
|
17
|
Termination of Ca 2+ puffs during IP 3-evoked global Ca 2+ signals. Cell Calcium 2021; 100:102494. [PMID: 34736161 DOI: 10.1016/j.ceca.2021.102494] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/12/2021] [Accepted: 10/13/2021] [Indexed: 12/22/2022]
Abstract
We previously described that cell-wide cytosolic Ca2+ transients evoked by inositol trisphosphate (IP3) are generated by two modes of Ca2+ liberation from the ER; 'punctate' release via an initial flurry of transient Ca2+ puffs from local clusters of IP3 receptors, succeeded by a spatially and temporally 'diffuse' Ca2+ liberation. Those findings were derived using statistical fluctuation analysis to monitor puff activity which is otherwise masked as global Ca2+ levels rise. Here, we devised imaging approaches to resolve individual puffs during global Ca2+ elevations to better investigate the mechanisms terminating the puff flurry. We find that puffs contribute about 40% (∼90 attomoles) of the total Ca2+ liberation, largely while the global Ca2+ signal rises halfway to its peak. The major factor terminating punctate Ca2+ release is an abrupt decline in puff frequency. Although the amplitudes of large puffs fall during the flurry, the amplitudes of more numerous small puffs remain steady, so overall puff amplitudes decline only modestly (∼30%). The Ca2+ flux through individual IP3 receptor/channels does not measurably decline during the flurry, or when puff activity is depressed by pharmacological lowering of Ca2+ levels in the ER lumen, indicating that the termination of punctate release is not a simple consequence of reduced driving force for Ca2+ liberation. We propose instead that the gating of IP3 receptors at puff sites is modulated such that their openings become suppressed as the bulk [Ca2+] in the ER lumen falls during global Ca2+ signals.
Collapse
|
18
|
Arige V, Terry LE, Malik S, Knebel TR, Wagner II LE, Yule DI. CREB regulates the expression of type 1 inositol 1,4,5-trisphosphate receptors. J Cell Sci 2021; 134:jcs258875. [PMID: 34533188 PMCID: PMC8601716 DOI: 10.1242/jcs.258875] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Accepted: 09/13/2021] [Indexed: 12/16/2022] Open
Abstract
Inositol 1,4,5-trisphosphate (IP3) receptors (IP3Rs) play a central role in regulating intracellular Ca2+ signals in response to a variety of internal and external cues. Dysregulation of IP3R signaling is the underlying cause for numerous pathological conditions. It is well established that the activities of IP3Rs are governed by several post-translational modifications, including phosphorylation by protein kinase A (PKA). However, the long-term effects of PKA activation on expression of IP3R subtypes remains largely unexplored. In this report, we investigate the effects of chronic stimulation and tonic activity of PKA on the expression of IP3R subtypes. We demonstrate that expression of the type 1 IP3R (IP3R1) is augmented upon prolonged activation of PKA or upon ectopic overexpression of cyclic AMP-response element-binding protein (CREB) without altering IP3R2 and IP3R3 abundance. By contrast, inhibition of PKA or blocking CREB diminished IP3R1 expression. We also demonstrate that agonist-induced Ca2+-release mediated by IP3R1 is significantly attenuated upon blocking of CREB. Moreover, CREB - by regulating the expression of KRAS-induced actin-interacting protein (KRAP) - ensures correct localization and licensing of IP3R1. Overall, we report a crucial role for CREB in governing both the expression and correct localization of IP3R1. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
| | | | | | | | | | - David I. Yule
- Department of Pharmacology and Physiology, University of Rochester, Rochester, NY 14642, USA
| |
Collapse
|
19
|
Arige V, Emrich SM, Yoast RE, Trebak M, Yule DI. A protocol for detecting elemental calcium signals (Ca 2+ puffs) in mammalian cells using total internal reflection fluorescence microscopy. STAR Protoc 2021; 2:100618. [PMID: 34195673 PMCID: PMC8225975 DOI: 10.1016/j.xpro.2021.100618] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
This protocol outlines steps to visualize and detect Ca2+ puffs following photo-liberation of caged inositol-1,4,5-trisphosphate (IP3) from HEK-293 cells expressing only the native IP3R type 1 receptor using total internal reflection fluorescence (TIRF) microscopy. TIRF microscopy offers high axial resolution and allows imaging at high speed, with a higher signal-to-background ratio. Additionally, we shed light on commonly encountered pitfalls, which should be considered while recording Ca2+ puffs using TIRF microscopy. For complete details on the use and execution of this protocol, please refer to Emrich et al. (2021) and Lock et al. (2015a).
Collapse
Affiliation(s)
- Vikas Arige
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Scott M. Emrich
- Department of Cellular and Molecular Physiology, the Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Ryan E. Yoast
- Department of Cellular and Molecular Physiology, the Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology, the Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - David I. Yule
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| |
Collapse
|
20
|
Yoast RE, Emrich SM, Zhang X, Xin P, Arige V, Pathak T, Benson JC, Johnson MT, Abdelnaby AE, Lakomski N, Hempel N, Han JM, Dupont G, Yule DI, Sneyd J, Trebak M. The Mitochondrial Ca 2+ uniporter is a central regulator of interorganellar Ca 2+ transfer and NFAT activation. J Biol Chem 2021; 297:101174. [PMID: 34499925 PMCID: PMC8496184 DOI: 10.1016/j.jbc.2021.101174] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Revised: 08/31/2021] [Accepted: 09/03/2021] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial Ca2+ uptake tailors the strength of stimulation of plasma membrane phospholipase C–coupled receptors to that of cellular bioenergetics. However, how Ca2+ uptake by the mitochondrial Ca2+ uniporter (MCU) shapes receptor-evoked interorganellar Ca2+ signaling is unknown. Here, we used CRISPR/Cas9 gene knockout, subcellular Ca2+ imaging, and mathematical modeling to show that MCU is a universal regulator of intracellular Ca2+ signaling across mammalian cell types. MCU activity sustains cytosolic Ca2+ signaling by preventing Ca2+-dependent inactivation of store-operated Ca2+ release–activated Ca2+ channels and by inhibiting Ca2+ extrusion. Paradoxically, MCU knockout (MCU-KO) enhanced cytosolic Ca2+ responses to store depletion. Physiological agonist stimulation in MCU-KO cells led to enhanced frequency of cytosolic Ca2+ oscillations, endoplasmic reticulum Ca2+ refilling, nuclear translocation of nuclear factor for activated T cells transcription factors, and cell proliferation, without altering inositol-1,4,5-trisphosphate receptor activity. Our data show that MCU has dual counterbalancing functions at the cytosol–mitochondria interface, whereby the cell-specific MCU-dependent cytosolic Ca2+ clearance and buffering capacity of mitochondria reciprocally regulate interorganellar Ca2+ transfer and nuclear factor for activated T cells nuclear translocation during receptor-evoked signaling. These findings highlight the critical dual function of the MCU not only in the acute Ca2+ buffering by mitochondria but also in shaping endoplasmic reticulum and cytosolic Ca2+ signals that regulate cellular transcription and function.
Collapse
Affiliation(s)
- Ryan E Yoast
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Scott M Emrich
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Xuexin Zhang
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Ping Xin
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Vikas Arige
- Department of Pharmacology and Physiology, University of Rochester, Rochester, New York, USA
| | - Trayambak Pathak
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - J Cory Benson
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Martin T Johnson
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Ahmed Emam Abdelnaby
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Natalia Lakomski
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Nadine Hempel
- Department of Pharmacology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA
| | - Jung Min Han
- Laboratory of Biological Modeling, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Geneviève Dupont
- Unité de Chronobiologie Théorique, Université Libre de Bruxelles, Brussels, Belgium
| | - David I Yule
- Department of Pharmacology and Physiology, University of Rochester, Rochester, New York, USA
| | - James Sneyd
- Department of Mathematics, The University of Auckland, Auckland, New Zealand
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology, The Pennsylvania State University College of Medicine, Hershey, Pennsylvania, USA; Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA; Vascular Medicine Institute, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| |
Collapse
|
21
|
KRAP tethers IP 3 receptors to actin and licenses them to evoke cytosolic Ca 2+ signals. Nat Commun 2021; 12:4514. [PMID: 34301929 PMCID: PMC8302619 DOI: 10.1038/s41467-021-24739-9] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 07/01/2021] [Indexed: 02/06/2023] Open
Abstract
Regulation of IP3 receptors (IP3Rs) by IP3 and Ca2+ allows regenerative Ca2+ signals, the smallest being Ca2+ puffs, which arise from coordinated openings of a few clustered IP3Rs. Cells express thousands of mostly mobile IP3Rs, yet Ca2+ puffs occur at a few immobile IP3R clusters. By imaging cells with endogenous IP3Rs tagged with EGFP, we show that KRas-induced actin-interacting protein (KRAP) tethers IP3Rs to actin beneath the plasma membrane. Loss of KRAP abolishes Ca2+ puffs and the global increases in cytosolic Ca2+ concentration evoked by more intense stimulation. Over-expressing KRAP immobilizes additional IP3R clusters and results in more Ca2+ puffs and larger global Ca2+ signals. Endogenous KRAP determines which IP3Rs will respond: it tethers IP3R clusters to actin alongside sites where store-operated Ca2+ entry occurs, licenses IP3Rs to evoke Ca2+ puffs and global cytosolic Ca2+ signals, implicates the actin cytoskeleton in IP3R regulation and may allow local activation of Ca2+ entry.
Collapse
|
22
|
Glück C, Ferrari KD, Binini N, Keller A, Saab AS, Stobart JL, Weber B. Distinct signatures of calcium activity in brain mural cells. eLife 2021; 10:e70591. [PMID: 34227466 PMCID: PMC8294852 DOI: 10.7554/elife.70591] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/15/2021] [Indexed: 12/15/2022] Open
Abstract
Pericytes have been implicated in various neuropathologies, yet little is known about their function and signaling pathways in health. Here, we characterized calcium dynamics of cortical mural cells in anesthetized or awake Pdgfrb-CreERT2;Rosa26< LSL-GCaMP6s > mice and in acute brain slices. Smooth muscle cells (SMCs) and ensheathing pericytes (EPs), also named as terminal vascular SMCs, revealed similar calcium dynamics in vivo. In contrast, calcium signals in capillary pericytes (CPs) were irregular, higher in frequency, and occurred in cellular microdomains. In the absence of the vessel constricting agent U46619 in acute slices, SMCs and EPs revealed only sparse calcium signals, whereas CPs retained their spontaneous calcium activity. Interestingly, chemogenetic activation of neurons in vivo and acute elevations of extracellular potassium in brain slices strongly decreased calcium activity in CPs. We propose that neuronal activation and an extracellular increase in potassium suppress calcium activity in CPs, likely mediated by Kir2.2 and KATP channels.
Collapse
Affiliation(s)
- Chaim Glück
- Institute of Pharmacology and Toxicology, University of ZurichZürichSwitzerland
- Neuroscience Center Zurich, University and ETH ZurichZurichSwitzerland
| | - Kim David Ferrari
- Institute of Pharmacology and Toxicology, University of ZurichZürichSwitzerland
- Neuroscience Center Zurich, University and ETH ZurichZurichSwitzerland
| | - Noemi Binini
- Institute of Pharmacology and Toxicology, University of ZurichZürichSwitzerland
- Neuroscience Center Zurich, University and ETH ZurichZurichSwitzerland
| | - Annika Keller
- Neuroscience Center Zurich, University and ETH ZurichZurichSwitzerland
- Department of Neurosurgery, University of ZurichSchlierenSwitzerland
| | - Aiman S Saab
- Institute of Pharmacology and Toxicology, University of ZurichZürichSwitzerland
- Neuroscience Center Zurich, University and ETH ZurichZurichSwitzerland
| | - Jillian L Stobart
- Institute of Pharmacology and Toxicology, University of ZurichZürichSwitzerland
- Rady Faculty of Health Sciences, College of PharmacyWinnipegCanada
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of ZurichZürichSwitzerland
- Neuroscience Center Zurich, University and ETH ZurichZurichSwitzerland
| |
Collapse
|
23
|
Glucose and NAADP trigger elementary intracellular β-cell Ca 2+ signals. Sci Rep 2021; 11:10714. [PMID: 34021189 PMCID: PMC8140081 DOI: 10.1038/s41598-021-88906-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 04/15/2021] [Indexed: 11/12/2022] Open
Abstract
Pancreatic β-cells release insulin upon a rise in blood glucose. The precise mechanisms of stimulus-secretion coupling, and its failure in Diabetes Mellitus Type 2, remain to be elucidated. The consensus model, as well as a class of currently prescribed anti-diabetic drugs, are based around the observation that glucose-evoked ATP production in β-cells leads to closure of cell membrane ATP-gated potassium (KATP) channels, plasma membrane depolarisation, Ca2+ influx, and finally the exocytosis of insulin granules. However, it has been demonstrated by the inactivation of this pathway using genetic and pharmacological means that closure of the KATP channel alone may not be sufficient to explain all β-cell responses to glucose elevation. We have previously proposed that NAADP-evoked Ca2+ release is an important step in stimulus-secretion coupling in pancreatic β-cells. Here we show using total internal reflection fluorescence (TIRF) microscopy that glucose as well as the Ca2+ mobilising messenger nicotinic acid adenine dinucleotide phosphate (NAADP), known to operate in β-cells, lead to highly localised elementary intracellular Ca2+ signals. These were found to be obscured by measurements of global Ca2+ signals and the action of powerful SERCA-based sequestration mechanisms at the endoplasmic reticulum (ER). Building on our previous work demonstrating that NAADP-evoked Ca2+ release is an important step in stimulus-secretion coupling in pancreatic β-cells, we provide here the first demonstration of elementary Ca2+ signals in response to NAADP, whose occurrence was previously suspected. Optical quantal analysis of these events reveals a unitary event amplitude equivalent to that of known elementary Ca2+ signalling events, inositol trisphosphate (IP3) receptor mediated blips, and ryanodine receptor mediated quarks. We propose that a mechanism based on these highly localised intracellular Ca2+ signalling events mediated by NAADP may initially operate in β-cells when they respond to elevations in blood glucose.
Collapse
|
24
|
Neugornet A, O'Donovan B, Ortinski PI. Comparative Effects of Event Detection Methods on the Analysis and Interpretation of Ca 2+ Imaging Data. Front Neurosci 2021; 15:620869. [PMID: 33841076 PMCID: PMC8032960 DOI: 10.3389/fnins.2021.620869] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Accepted: 01/25/2021] [Indexed: 01/04/2023] Open
Abstract
Calcium imaging has gained substantial popularity as a tool to profile the activity of multiple simultaneously active cells at high spatiotemporal resolution. Among the diverse approaches to processing of Ca2+ imaging data is an often subjective decision of how to quantify baseline fluorescence or F 0. We examine the effect of popular F 0 determination methods on the interpretation of neuronal and astrocyte activity in a single dataset of rats trained to self-administer intravenous infusions of cocaine and compare them with an F 0-independent wavelet ridgewalking event detection approach. We find that the choice of the processing method has a profound impact on the interpretation of widefield imaging results. All of the dF/F 0 thresholding methods tended to introduce spurious events and fragment individual transients, leading to smaller calculated event durations and larger event frequencies. Analysis of simulated datasets confirmed these observations and indicated substantial intermethod variability as to the events classified as significant. Additionally, most dF/F 0 methods on their own were unable to adequately account for bleaching of fluorescence, although the F 0 smooth approach and the wavelet ridgewalking algorithm both did so. In general, the choice of the processing method led to dramatically different quantitative and sometimes opposing qualitative interpretations of the effects of cocaine self-administration both at the level of individual cells and at the level of cell networks. Significantly different distributions of event duration, amplitude, frequency, and network measures were found across the majority of dF/F 0 approaches. The wavelet ridgewalking algorithm broadly outperformed dF/F 0-based methods for both neuron and astrocyte recordings. These results indicate the need for heightened awareness of the limitations and tendencies associated with decisions to use particular Ca2+ image processing pipelines. Both quantification and interpretation of the effects of experimental manipulations are strongly sensitive to such decisions.
Collapse
Affiliation(s)
- Austin Neugornet
- Department of Neuroscience, School of Medicine, University of Kentucky, Lexington, KY, United States
| | - Bernadette O'Donovan
- Department of Pharmacology, Physiology and Neuroscience, University of South Carolina School of Medicine, Columbia, SC, United States
| | - Pavel Ivanovich Ortinski
- Department of Neuroscience, School of Medicine, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
25
|
Emrich SM, Yoast RE, Xin P, Arige V, Wagner LE, Hempel N, Gill DL, Sneyd J, Yule DI, Trebak M. Omnitemporal choreographies of all five STIM/Orai and IP 3Rs underlie the complexity of mammalian Ca 2+ signaling. Cell Rep 2021; 34:108760. [PMID: 33657364 PMCID: PMC7968378 DOI: 10.1016/j.celrep.2021.108760] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 12/16/2020] [Accepted: 01/26/2021] [Indexed: 12/12/2022] Open
Abstract
Stromal-interaction molecules (STIM1/2) sense endoplasmic reticulum (ER) Ca2+ depletion and activate Orai channels. However, the choreography of interactions between native STIM/Orai proteins under physiological agonist stimulation is unknown. We show that the five STIM1/2 and Orai1/2/3 proteins are non-redundant and function together to ensure the graded diversity of mammalian Ca2+ signaling. Physiological Ca2+ signaling requires functional interactions between STIM1/2, Orai1/2/3, and IP3Rs, ensuring that receptor-mediated Ca2+ release is tailored to Ca2+ entry and nuclear factor of activated T cells (NFAT) activation. The N-terminal Ca2+-binding ER-luminal domains of unactivated STIM1/2 inhibit IP3R-evoked Ca2+ release. A gradual increase in agonist intensity and STIM1/2 activation relieves IP3R inhibition. Concomitantly, activated STIM1/2 C termini differentially interact with Orai1/2/3 as agonist intensity increases. Thus, coordinated and omnitemporal functions of all five STIM/Orai and IP3Rs translate the strength of agonist stimulation to precise levels of Ca2+ signaling and NFAT induction, ensuring the fidelity of complex mammalian Ca2+ signaling.
Collapse
Affiliation(s)
- Scott M Emrich
- Department of Cellular and Molecular Physiology, the Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Ryan E Yoast
- Department of Cellular and Molecular Physiology, the Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Ping Xin
- Department of Cellular and Molecular Physiology, the Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Vikas Arige
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Larry E Wagner
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Nadine Hempel
- Department of Pharmacology, the Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA; Penn State Cancer Institute, the Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - Donald L Gill
- Department of Cellular and Molecular Physiology, the Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA
| | - James Sneyd
- Department of Mathematics, The University of Auckland, 38 Princes Street, Auckland 1010, New Zealand
| | - David I Yule
- Department of Pharmacology and Physiology, University of Rochester, 601 Elmwood Avenue, Rochester, NY 14642, USA
| | - Mohamed Trebak
- Department of Cellular and Molecular Physiology, the Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA; Penn State Cancer Institute, the Pennsylvania State University College of Medicine, 500 University Drive, Hershey, PA 17033, USA.
| |
Collapse
|
26
|
Vais H, Wang M, Mallilankaraman K, Payne R, McKennan C, Lock JT, Spruce LA, Fiest C, Chan MYL, Parker I, Seeholzer SH, Foskett JK, Mak DOD. ER-luminal [Ca 2+] regulation of InsP 3 receptor gating mediated by an ER-luminal peripheral Ca 2+-binding protein. eLife 2020; 9:e53531. [PMID: 32420875 PMCID: PMC7259957 DOI: 10.7554/elife.53531] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2019] [Accepted: 05/15/2020] [Indexed: 12/17/2022] Open
Abstract
Modulating cytoplasmic Ca2+ concentration ([Ca2+]i) by endoplasmic reticulum (ER)-localized inositol 1,4,5-trisphosphate receptor (InsP3R) Ca2+-release channels is a universal signaling pathway that regulates numerous cell-physiological processes. Whereas much is known regarding regulation of InsP3R activity by cytoplasmic ligands and processes, its regulation by ER-luminal Ca2+ concentration ([Ca2+]ER) is poorly understood and controversial. We discovered that the InsP3R is regulated by a peripheral membrane-associated ER-luminal protein that strongly inhibits the channel in the presence of high, physiological [Ca2+]ER. The widely-expressed Ca2+-binding protein annexin A1 (ANXA1) is present in the nuclear envelope lumen and, through interaction with a luminal region of the channel, can modify high-[Ca2+]ER inhibition of InsP3R activity. Genetic knockdown of ANXA1 expression enhanced global and local elementary InsP3-mediated Ca2+ signaling events. Thus, [Ca2+]ER is a major regulator of InsP3R channel activity and InsP3R-mediated [Ca2+]i signaling in cells by controlling an interaction of the channel with a peripheral membrane-associated Ca2+-binding protein, likely ANXA1.
Collapse
Affiliation(s)
- Horia Vais
- Department of Physiology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Min Wang
- Department of Physiology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Karthik Mallilankaraman
- Department of Physiology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Riley Payne
- Department of Physiology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Chris McKennan
- Department of Statistics, University of PittsburghPittsburghUnited States
| | - Jeffrey T Lock
- Department of Neurobiology and Behavior, University of CaliforniaIrvineUnited States
| | - Lynn A Spruce
- Proteomics Core Facility, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - Carly Fiest
- Department of Physiology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Matthew Yan-lok Chan
- Department of Physiology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Ian Parker
- Department of Neurobiology and Behavior, University of CaliforniaIrvineUnited States
- Department of Physiology and Biophysics, University of CaliforniaIrvineUnited States
| | - Steven H Seeholzer
- Proteomics Core Facility, The Children’s Hospital of PhiladelphiaPhiladelphiaUnited States
| | - J Kevin Foskett
- Department of Physiology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| | - Don-On Daniel Mak
- Department of Physiology, Perelman School of Medicine, University of PennsylvaniaPhiladelphiaUnited States
| |
Collapse
|
27
|
Lock JT, Parker I. IP 3 mediated global Ca 2+ signals arise through two temporally and spatially distinct modes of Ca 2+ release. eLife 2020; 9:e55008. [PMID: 32396066 PMCID: PMC7253181 DOI: 10.7554/elife.55008] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Accepted: 05/12/2020] [Indexed: 12/13/2022] Open
Abstract
The 'building-block' model of inositol trisphosphate (IP3)-mediated Ca2+ liberation posits that cell-wide cytosolic Ca2+ signals arise through coordinated activation of localized Ca2+ puffs generated by stationary clusters of IP3 receptors (IP3Rs). Here, we revise this hypothesis, applying fluctuation analysis to resolve Ca2+ signals otherwise obscured during large Ca2+ elevations. We find the rising phase of global Ca2+ signals is punctuated by a flurry of puffs, which terminate before the peak by a mechanism involving partial ER Ca2+ depletion. The continuing rise in Ca2+, and persistence of global signals even when puffs are absent, reveal a second mode of spatiotemporally diffuse Ca2+ signaling. Puffs make only small, transient contributions to global Ca2+ signals, which are sustained by diffuse release of Ca2+ through a functionally distinct process. These two modes of IP3-mediated Ca2+ liberation have important implications for downstream signaling, imparting spatial and kinetic specificity to Ca2+-dependent effector functions and Ca2+ transport.
Collapse
Affiliation(s)
- Jeffrey T Lock
- Department of Neurobiology & Behavior, UC IrvineIrvineUnited States
| | - Ian Parker
- Department of Neurobiology & Behavior, UC IrvineIrvineUnited States
- Department of Physiology & Biophysics, UC IrvineIrvineUnited States
| |
Collapse
|
28
|
Swaminathan D, Dickinson GD, Demuro A, Parker I. Noise analysis of cytosolic calcium image data. Cell Calcium 2019; 86:102152. [PMID: 31918030 DOI: 10.1016/j.ceca.2019.102152] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 12/15/2019] [Accepted: 12/16/2019] [Indexed: 11/28/2022]
Abstract
Cellular Ca2+ signals are often constrained to cytosolic micro- or nano-domains where stochastic openings of Ca2+ channels cause large fluctuations in local Ca2+ concentration (Ca2+ 'noise'). With the advent of TIRF microscopy to image the fluorescence of Ca2+-sensitive probes from attoliter volumes it has become possible to directly monitor these signals, which closely track the gating of plasmalemmal and ER Ca2+-permeable channels. Nevertheless, it is likely that many physiologically important Ca2+ signals are too small to resolve as discrete events in fluorescence recordings. By analogy with noise analysis of electrophysiological data, we explore here the use of statistical approaches to detect and analyze such Ca2+ noise in images obtained using Ca2+-sensitive indicator dyes. We describe two techniques - power spectrum analysis and spatio-temporal correlation - and demonstrate that both effectively identify discrete, spatially localized calcium release events (Ca2+ puffs). Moreover, we show they are able to detect localized noise fluctuations in a case where discrete events cannot directly be resolved.
Collapse
Affiliation(s)
- Divya Swaminathan
- Department of Neurobiology & Behavior, University of California, Irvine, CA92697, USA.
| | - George D Dickinson
- Department of Neurobiology & Behavior, University of California, Irvine, CA92697, USA
| | - Angelo Demuro
- Department of Neurobiology & Behavior, University of California, Irvine, CA92697, USA
| | - Ian Parker
- Department of Neurobiology & Behavior, University of California, Irvine, CA92697, USA; Department of Physiology & Biophysics, University of California, Irvine, CA92697, USA
| |
Collapse
|
29
|
Kastenschmidt JM, Ellefsen KL, Mannaa AH, Giebel JJ, Yahia R, Ayer RE, Pham P, Rios R, Vetrone SA, Mozaffar T, Villalta SA. QuantiMus: A Machine Learning-Based Approach for High Precision Analysis of Skeletal Muscle Morphology. Front Physiol 2019; 10:1416. [PMID: 31849692 PMCID: PMC6895564 DOI: 10.3389/fphys.2019.01416] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 10/31/2019] [Indexed: 01/05/2023] Open
Abstract
Skeletal muscle injury provokes a regenerative response, characterized by the de novo generation of myofibers that are distinguished by central nucleation and re-expression of developmentally restricted genes. In addition to these characteristics, myofiber cross-sectional area (CSA) is widely used to evaluate muscle hypertrophic and regenerative responses. Here, we introduce QuantiMus, a free software program that uses machine learning algorithms to quantify muscle morphology and molecular features with high precision and quick processing-time. The ability of QuantiMus to define and measure myofibers was compared to manual measurement or other automated software programs. QuantiMus rapidly and accurately defined total myofibers and measured CSA with comparable performance but quantified the CSA of centrally-nucleated fibers (CNFs) with greater precision compared to other software. It additionally quantified the fluorescence intensity of individual myofibers of human and mouse muscle, which was used to assess the distribution of myofiber type, based on the myosin heavy chain isoform that was expressed. Furthermore, analysis of entire quadriceps cross-sections of healthy and mdx mice showed that dystrophic muscle had an increased frequency of Evans blue dye+ injured myofibers. QuantiMus also revealed that the proportion of centrally nucleated, regenerating myofibers that express embryonic myosin heavy chain (eMyHC) or neural cell adhesion molecule (NCAM) were increased in dystrophic mice. Our findings reveal that QuantiMus has several advantages over existing software. The unique self-learning capacity of the machine learning algorithms provides superior accuracy and the ability to rapidly interrogate the complete muscle section. These qualities increase rigor and reproducibility by avoiding methods that rely on the sampling of representative areas of a section. This is of particular importance for the analysis of dystrophic muscle given the "patchy" distribution of muscle pathology. QuantiMus is an open source tool, allowing customization to meet investigator-specific needs and provides novel analytical approaches for quantifying muscle morphology.
Collapse
Affiliation(s)
- Jenna M. Kastenschmidt
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States
- Institute for Immunology, University of California, Irvine, Irvine, CA, United States
| | - Kyle L. Ellefsen
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA, United States
| | - Ali H. Mannaa
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Jesse J. Giebel
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Rayan Yahia
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Rachel E. Ayer
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Phillip Pham
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Rodolfo Rios
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States
| | - Sylvia A. Vetrone
- Department of Biology, Whittier College, Whittier, CA, United States
| | - Tahseen Mozaffar
- Department of Neurology, University of California, Irvine, Irvine, CA, United States
- Department of Orthopaedic Surgery, University of California, Irvine, Irvine, CA, United States
- Department of Pathology and Laboratory Medicine, University of California, Irvine, Irvine, CA, United States
| | - S. Armando Villalta
- Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA, United States
- Institute for Immunology, University of California, Irvine, Irvine, CA, United States
| |
Collapse
|
30
|
Wilson C, Zhang X, Buckley C, Heathcote HR, Lee MD, McCarron JG. Increased Vascular Contractility in Hypertension Results From Impaired Endothelial Calcium Signaling. Hypertension 2019; 74:1200-1214. [PMID: 31542964 PMCID: PMC6791503 DOI: 10.1161/hypertensionaha.119.13791] [Citation(s) in RCA: 57] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Supplemental Digital Content is available in the text. Endothelial cells line all blood vessels and are critical regulators of vascular tone. In hypertension, disruption of endothelial function alters the release of endothelial-derived vasoactive factors and results in increased vascular tone. Although the release of endothelial-derived vasodilators occurs in a Ca2+-dependent manner, little is known on how Ca2+ signaling is altered in hypertension. A key element to endothelial control of vascular tone is Ca2+ signals at specialized regions (myoendothelial projections) that connect endothelial cells and smooth muscle cells. This work describes disruption in the operation of this key Ca2+ signaling pathway in hypertension. We show that vascular reactivity to phenylephrine is increased in hypertensive (spontaneously hypertensive rat) when compared with normotensive (Wistar Kyoto) rats. Basal endothelial Ca2+ activity limits vascular contraction, but that Ca2+-dependent control is impaired in hypertension. When changes in endothelial Ca2+ levels are buffered, vascular contraction to phenylephrine increased, resulting in similar responses in normotension and hypertension. Local endothelial IP3(inositol trisphosphate)-mediated Ca2+ signals are smaller in amplitude, shorter in duration, occur less frequently, and arise from fewer sites in hypertension. Spatial control of endothelial Ca2+ signaling is also disrupted in hypertension: local Ca2+ signals occur further from myoendothelial projections in hypertension. The results demonstrate that the organization of local Ca2+ signaling circuits occurring at myoendothelial projections is disrupted in hypertension, giving rise to increased contractile responses.
Collapse
Affiliation(s)
- Calum Wilson
- From the Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Xun Zhang
- From the Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Charlotte Buckley
- From the Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Helen R Heathcote
- From the Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - Matthew D Lee
- From the Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| | - John G McCarron
- From the Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, United Kingdom
| |
Collapse
|
31
|
Shah SI, Demuro A, Mak DOD, Parker I, Pearson JE, Ullah G. TraceSpecks: A Software for Automated Idealization of Noisy Patch-Clamp and Imaging Data. Biophys J 2019; 115:9-21. [PMID: 29972815 DOI: 10.1016/j.bpj.2018.06.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2018] [Revised: 05/15/2018] [Accepted: 06/04/2018] [Indexed: 10/28/2022] Open
Abstract
Experimental records of single molecules or ion channels from fluorescence microscopy and patch-clamp electrophysiology often include high-frequency noise and baseline fluctuations that are not generated by the system under investigation and have to be removed. Moreover, multiple channels or conductance levels can be present at a time in the data that need to be quantified to accurately understand the behavior of the system. Manual procedures for removing these fluctuations and extracting conducting states or multiple channels are laborious, prone to subjective bias, and likely to hinder the processing of often very large data sets. We introduce a maximal likelihood formalism for separating signal from a noisy and drifting background such as fluorescence traces from imaging of elementary Ca2+ release events called puffs arising from clusters of channels, and patch-clamp recordings of ion channels. Parameters such as the number of open channels or conducting states, noise level, and background signal can all be optimized using the expectation-maximization algorithm. We implement our algorithm following the Baum-Welch approach to expectation-maximization in the portable Java language with a user-friendly graphical interface and test the algorithm on both synthetic and experimental data from the patch-clamp electrophysiology of Ca2+ channels and fluorescence microscopy of a cluster of Ca2+ channels and Ca2+ channels with multiple conductance levels. The resulting software is accurate, fast, and provides detailed information usually not available through manual analysis. Options for visual inspection of the raw and processed data with key parameters are provided, in addition to a range of statistics such as the mean open probabilities, mean open times, mean close times, dwell-time distributions for different number of channels open or conductance levels, amplitude distribution of all opening events, and number of transitions between different number of open channels or conducting levels in asci format with a single click.
Collapse
Affiliation(s)
| | - Angelo Demuro
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California
| | - Don-On Daniel Mak
- Department of Physiology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ian Parker
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, California; Department of Physiology and Biophysics, University of California, Irvine, Irvine, California
| | - John E Pearson
- Theoretical Biology and Biophysics, Los Alamos National Laboratory, Los Alamos, New Mexico
| | - Ghanim Ullah
- Department of Physics, University of South Florida, Tampa, Florida.
| |
Collapse
|
32
|
Ellefsen KL, Holt JR, Chang AC, Nourse JL, Arulmoli J, Mekhdjian AH, Abuwarda H, Tombola F, Flanagan LA, Dunn AR, Parker I, Pathak MM. Myosin-II mediated traction forces evoke localized Piezo1-dependent Ca 2+ flickers. Commun Biol 2019; 2:298. [PMID: 31396578 PMCID: PMC6685976 DOI: 10.1038/s42003-019-0514-3] [Citation(s) in RCA: 145] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 06/18/2019] [Indexed: 02/05/2023] Open
Abstract
Piezo channels transduce mechanical stimuli into electrical and chemical signals to powerfully influence development, tissue homeostasis, and regeneration. Studies on Piezo1 have largely focused on transduction of "outside-in" mechanical forces, and its response to internal, cell-generated forces remains poorly understood. Here, using measurements of endogenous Piezo1 activity and traction forces in native cellular conditions, we show that cellular traction forces generate spatially-restricted Piezo1-mediated Ca2+ flickers in the absence of externally-applied mechanical forces. Although Piezo1 channels diffuse readily in the plasma membrane and are widely distributed across the cell, their flicker activity is enriched near force-producing adhesions. The mechanical force that activates Piezo1 arises from Myosin II phosphorylation by Myosin Light Chain Kinase. We propose that Piezo1 Ca2+ flickers allow spatial segregation of mechanotransduction events, and that mobility allows Piezo1 channels to explore a large number of mechanical microdomains and thus respond to a greater diversity of mechanical cues.
Collapse
Affiliation(s)
- Kyle L. Ellefsen
- Department of Neurobiology & Behavior, UC Irvine, Irvine, CA 92697 USA
| | - Jesse R. Holt
- Department of Physiology & Biophysics, UC Irvine, Irvine, CA 92697 USA
- Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, CA 92697 USA
- Center for Complex Biological Systems, UC Irvine, Irvine, CA 92697 USA
| | - Alice C. Chang
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305 USA
| | - Jamison L. Nourse
- Department of Physiology & Biophysics, UC Irvine, Irvine, CA 92697 USA
- Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, CA 92697 USA
| | - Janahan Arulmoli
- Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, CA 92697 USA
- Department of Biomedical Engineering, UC Irvine, Irvine, CA 92697 USA
| | - Armen H. Mekhdjian
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305 USA
| | - Hamid Abuwarda
- Department of Physiology & Biophysics, UC Irvine, Irvine, CA 92697 USA
- Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, CA 92697 USA
| | - Francesco Tombola
- Department of Physiology & Biophysics, UC Irvine, Irvine, CA 92697 USA
| | - Lisa A. Flanagan
- Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, CA 92697 USA
- Department of Biomedical Engineering, UC Irvine, Irvine, CA 92697 USA
- Department of Neurology, UC Irvine, Irvine, CA 92697 USA
| | - Alexander R. Dunn
- Department of Chemical Engineering, Stanford University, Stanford, CA 94305 USA
- Stanford Cardiovascular Institute, Stanford School of Medicine, Stanford, CA 94305 USA
| | - Ian Parker
- Department of Neurobiology & Behavior, UC Irvine, Irvine, CA 92697 USA
- Department of Physiology & Biophysics, UC Irvine, Irvine, CA 92697 USA
| | - Medha M. Pathak
- Department of Physiology & Biophysics, UC Irvine, Irvine, CA 92697 USA
- Sue and Bill Gross Stem Cell Research Center, UC Irvine, Irvine, CA 92697 USA
- Center for Complex Biological Systems, UC Irvine, Irvine, CA 92697 USA
- Department of Biomedical Engineering, UC Irvine, Irvine, CA 92697 USA
| |
Collapse
|
33
|
Lock JT, Smith IF, Parker I. Spatial-temporal patterning of Ca 2+ signals by the subcellular distribution of IP 3 and IP 3 receptors. Semin Cell Dev Biol 2019; 94:3-10. [PMID: 30703557 DOI: 10.1016/j.semcdb.2019.01.012] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 01/17/2019] [Accepted: 01/22/2019] [Indexed: 12/25/2022]
Abstract
The patterning of cytosolic Ca2+ signals in space and time underlies their ubiquitous ability to specifically regulate numerous cellular processes. Signals mediated by liberation of Ca2+ sequestered in the endoplasmic reticulum (ER) through inositol trisphosphate receptor (IP3R) channels constitute a hierarchy of events; ranging from openings of individual IP3 channels, through the concerted openings of several clustered IP3Rs to generate local Ca2+ puffs, to global Ca2+ waves and oscillations that engulf the entire cell. Here, we review recent progress in elucidating how this hierarchy is shaped by an interplay between the functional gating properties of IP3Rs and their spatial distribution within the cell. We focus in particular on the subset of IP3Rs that are organized in stationary clusters and are endowed with the ability to preferentially liberate Ca2+.
Collapse
Affiliation(s)
- Jeffrey T Lock
- Department of Neurobiology & Behavior, UC Irvine, Irvine, CA, USA.
| | - Ian F Smith
- Department of Neurobiology & Behavior, UC Irvine, Irvine, CA, USA
| | - Ian Parker
- Department of Neurobiology & Behavior, UC Irvine, Irvine, CA, USA; Department of Physiology & Biophysics, UC Irvine, Irvine, CA, USA
| |
Collapse
|
34
|
Lock JT, Alzayady KJ, Yule DI, Parker I. All three IP 3 receptor isoforms generate Ca 2+ puffs that display similar characteristics. Sci Signal 2018; 11:11/561/eaau0344. [PMID: 30563861 DOI: 10.1126/scisignal.aau0344] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Inositol 1,4,5-trisphosphate (IP3) evokes Ca2+ release through IP3 receptors (IP3Rs) to generate both local Ca2+ puffs arising from concerted openings of clustered IP3Rs and cell-wide Ca2+ waves. Imaging Ca2+ puffs with single-channel resolution yields information on the localization and properties of native IP3Rs in intact cells, but interpretation has been complicated because cells express varying proportions of three structurally and functionally distinct isoforms of IP3Rs. Here, we used TIRF and light-sheet microscopy to image Ca2+ puffs in HEK-293 cell lines generated by CRISPR-Cas9 technology to express exclusively IP3R type 1, 2, or 3. Photorelease of the IP3 analog i-IP3 in all three cell lines evoked puffs with largely similar mean amplitudes, temporal characteristics, and spatial extents. Moreover, the single-channel Ca2+ flux was similar among isoforms, indicating that clusters of different IP3R isoforms contain comparable numbers of active channels. Our results show that all three IP3R isoforms cluster to generate local Ca2+ puffs and, contrary to findings of divergent properties from in vitro electrophysiological studies, display similar conductances and gating kinetics in intact cells.
Collapse
Affiliation(s)
- Jeffrey T Lock
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA.
| | - Kamil J Alzayady
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester Medical Center, 601 Elmwood Avenue, Box 711, Rochester, NY 14642, USA
| | - David I Yule
- Department of Pharmacology and Physiology, School of Medicine and Dentistry, University of Rochester Medical Center, 601 Elmwood Avenue, Box 711, Rochester, NY 14642, USA
| | - Ian Parker
- Department of Neurobiology and Behavior, University of California, Irvine, Irvine, CA 92697, USA.,Department of Physiology and Biophysics, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
35
|
Shah SI, Smith M, Swaminathan D, Parker I, Ullah G, Demuro A. CellSpecks: A Software for Automated Detection and Analysis of Calcium Channels in Live Cells. Biophys J 2018; 115:2141-2151. [PMID: 30447989 DOI: 10.1016/j.bpj.2018.10.015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2018] [Revised: 09/27/2018] [Accepted: 10/22/2018] [Indexed: 02/01/2023] Open
Abstract
To couple the fidelity of patch-clamp recording with a more high-throughput screening capability, we pioneered a, to our knowledge, novel approach to single-channel recording that we named "optical patch clamp." By using highly sensitive fluorescent Ca2+ indicator dyes in conjunction with total internal fluorescence microscopy techniques, we monitor Ca2+ flux through individual Ca2+-permeable channels. This approach provides information about channel gating analogous to patch-clamp recording at a time resolution of ∼2 ms with the additional advantage of being massively parallel, providing simultaneous and independent recording from thousands of channels in the native environment. However, manual analysis of the data generated by this technique presents severe challenges because a video recording can include many thousands of frames. To overcome this bottleneck, we developed an image processing and analysis framework called CellSpecks capable of detecting and fully analyzing the kinetics of ion channels within a video sequence. By using randomly generated synthetic data, we tested the ability of CellSpecks to rapidly and efficiently detect and analyze the activity of thousands of ion channels, including openings for a few milliseconds. Here, we report the use of CellSpecks for the analysis of experimental data acquired by imaging muscle nicotinic acetylcholine receptors and the Alzheimer's disease-associated amyloid β pores with multiconductance levels in the plasma membrane of Xenopus laevis oocytes. We show that CellSpecks can accurately and efficiently generate location maps and create raw and processed fluorescence time traces; histograms of mean open times, mean close times, open probabilities, durations, and maximal amplitudes; and a "channel chip" showing the activity of all channels as a function of time. Although we specifically illustrate the application of CellSpecks for analyzing data from Ca2+ channels, it can be easily customized to analyze other spatially and temporally localized signals.
Collapse
Affiliation(s)
| | | | - Divya Swaminathan
- Department of Neurobiology and Behavior,University of California Irvine, Irvine, California
| | - Ian Parker
- Department of Neurobiology and Behavior,University of California Irvine, Irvine, California; Department of Physiology and Biophysics, University of California Irvine, Irvine, California
| | - Ghanim Ullah
- Department of Physics, University of South Florida, Tampa, Florida.
| | - Angelo Demuro
- Department of Neurobiology and Behavior,University of California Irvine, Irvine, California.
| |
Collapse
|
36
|
Lee YH, Zhang S, Mitchell CK, Lin YP, O’Brien J. Calcium Imaging with Super-Resolution Radial Fluctuations. BIOSCIENCE AND BIOENGINEERING (BOSTON, MASS.) 2018; 4:78-84. [PMID: 33005746 PMCID: PMC7526954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Calcium signals act as a ubiquitous secondary messenger in regulating many body functions. The detection of calcium microdomain signals is greatly facilitated by the existence of biomarker-targeted fluorescent probes. In this study, SRRF (super-resolution radial fluctuations) algorithm were used to compare the loci and the intensity of fluorescent probes before and after SRRF analysis. The implementation of SRRF algorithm was aimed for automatically resolving delicate and small calcium signals (to avoid the overlapped loci) on original images. For assessing the spatial accuracy of image intensity, immunofluorescence staining of retina cryostat slice for connexin 36 (Cx36) was microscopically imaged with or without the successive SRRF reconstruction. For characterizing the temporal association between SRRF and non-SRRF images, the changes of Cx36-GCaMP calcium indicator were recorded from transfected HeLa cells in response to the transient puffing of ionomycin. Image processing and analyses were conducted with Image J and Matlab. Through this study, SRRF reconstruction was found to confer an accurate measure for the identification of subcellular molecules, such as gap junctions. Compared with the conventional imaging, SRRF reconstruction generated better image resolution for the precise registration of individual signals. Temporally, the ratios of change in fluorescence intensity between SRRF and non-SRRF images were significantly correlated in the presence or absence of the subtraction of high background intensity. Quantitatively, the ratios of change in fluorescence intensity between SRRF and non-SRRF images with or without background subtraction were also significantly correlated. The merit of SRRF application on calcium live imaging was validated with the reporter gene system we worked on.
Collapse
Affiliation(s)
- Yuan-Hao Lee
- Department of Ophthalmology and Visual Science, University of Texas Health Science Center at Houston, Houston, USA,Corresponding author: (Yuan-Hao Lee)
| | - Shuo Zhang
- Department of Ophthalmology, Emory University, School of Medicine, Atlanta, USA,Department of Ophthalmology, Xiangya Hospital, Central South University, Changsha, P. R. of China
| | - Cheryl Kyles Mitchell
- Department of Ophthalmology and Visual Science, University of Texas Health Science Center at Houston, Houston, USA
| | - Ya-Ping Lin
- Department of Ophthalmology and Visual Science, University of Texas Health Science Center at Houston, Houston, USA
| | - John O’Brien
- Department of Ophthalmology and Visual Science, University of Texas Health Science Center at Houston, Houston, USA,The MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, USA
| |
Collapse
|
37
|
Applications of FLIKA, a Python-based image processing and analysis platform, for studying local events of cellular calcium signaling. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2018; 1866:1171-1179. [PMID: 30500432 DOI: 10.1016/j.bbamcr.2018.11.012] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2018] [Revised: 11/20/2018] [Accepted: 11/22/2018] [Indexed: 11/21/2022]
Abstract
The patterning of cytosolic Ca2+ signals underlies their ubiquitous ability to specifically regulate numerous cellular processes. Advances in fluorescence microscopy have made it possible to image these signals with unprecedented temporal and spatial resolution. However, this is a double-edged sword, as the resulting enormous data sets necessitate development of software to automate image processing and analysis. Here, we describe Flika, an open source, graphical user interface program written in the Python environment that contains a suite of built-in image processing tools to enable intuitive visualization of image data and analysis. We illustrate the utility and power of Flika by three applications for studying cellular Ca2+ signaling: a script for measuring single-cell global Ca2+ signals; a plugin for the detection, localization and analysis of subcellular Ca2+ puffs; and a script that implements a novel approach for fluctuation analysis of transient, local Ca2+ fluorescence signals. This article is part of a Special Issue entitled: ECS Meeting edited by Claus Heizmann, Joachim Krebs and Jacques Haiech.
Collapse
|
38
|
SICT: automated detection and supervised inspection of fast Ca 2+ transients. Sci Rep 2018; 8:15523. [PMID: 30341397 PMCID: PMC6195629 DOI: 10.1038/s41598-018-33847-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 10/05/2018] [Indexed: 02/06/2023] Open
Abstract
Recent advances in live Ca2+ imaging with increasing spatial and temporal resolution offer unprecedented opportunities, but also generate an unmet need for data processing. Here we developed SICT, a MATLAB program that automatically identifies rapid Ca2+ rises in time-lapse movies with low signal-to-noise ratios, using fluorescent indicators. A graphical user interface allows visual inspection of automatically detected events, reducing manual labour to less than 10% while maintaining quality control. The detection performance was tested using synthetic data with various signal-to-noise ratios. The event inspection phase was evaluated by four human observers. Reliability of the method was demonstrated in a direct comparison between manual and SICT-aided analysis. As a test case in cultured neurons, SICT detected an increase in frequency and duration of spontaneous Ca2+ transients in the presence of caffeine. This new method speeds up the analysis of elementary Ca2+ transients.
Collapse
|
39
|
Mataragka S, Taylor CW. All three IP 3 receptor subtypes generate Ca 2+ puffs, the universal building blocks of IP 3-evoked Ca 2+ signals. J Cell Sci 2018; 131:jcs.220848. [PMID: 30097556 PMCID: PMC6127726 DOI: 10.1242/jcs.220848] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Accepted: 07/27/2018] [Indexed: 12/19/2022] Open
Abstract
All three subtypes of inositol 1,4,5-trisphosphate receptor (IP3R) are intracellular Ca2+ channels that are co-regulated by IP3 and Ca2+. This allows IP3Rs to evoke regenerative Ca2+ signals, the smallest of which are Ca2+ puffs that reflect the coordinated opening of a few clustered IP3Rs. We use total internal reflection microscopy (TIRF) microscopy to record Ca2+ signals in HEK cells expressing all three IP3R subtypes or a single native subtype. Ca2+ puffs are less frequent in cells expressing one IP3R subtype, commensurate with them expressing fewer IP3Rs than wild-type cells. However, all three IP3R subtypes generate broadly similar Ca2+ puffs with similar numbers of IP3Rs contributing to each. This suggests that IP3R clusters may be assembled by conserved mechanisms that generate similarly sized clusters across different IP3R expression levels. The Ca2+ puffs evoked by IP3R2 had slower kinetics and more prolonged durations, which may be due to IP3 binding with greater affinity to IP3R2. We conclude that Ca2+ puffs are the building blocks for the Ca2+ signals evoked by all IP3Rs. Summary: All IP3 receptor subtypes can generate Ca2+ puffs, suggesting that these coordinated openings of clustered IP3Rs are the building blocks of all IP3-evoked Ca2+ signals.
Collapse
Affiliation(s)
- Stefania Mataragka
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Colin W Taylor
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| |
Collapse
|
40
|
Stobart JL, Ferrari KD, Barrett MJP, Stobart MJ, Looser ZJ, Saab AS, Weber B. Long-term In Vivo Calcium Imaging of Astrocytes Reveals Distinct Cellular Compartment Responses to Sensory Stimulation. Cereb Cortex 2018; 28:184-198. [PMID: 28968832 DOI: 10.1093/cercor/bhw366] [Citation(s) in RCA: 71] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 11/02/2016] [Indexed: 01/28/2023] Open
Abstract
Localized, heterogeneous calcium transients occur throughout astrocytes, but the characteristics and long-term stability of these signals, particularly in response to sensory stimulation, remain unknown. Here, we used a genetically encoded calcium indicator and an activity-based image analysis scheme to monitor astrocyte calcium activity in vivo. We found that different subcellular compartments (processes, somata, and endfeet) displayed distinct signaling characteristics. Closer examination of individual signals showed that sensory stimulation elevated the number of specific types of calcium peaks within astrocyte processes and somata, in a cortical layer-dependent manner, and that the signals became more synchronous upon sensory stimulation. Although mice genetically lacking astrocytic IP3R-dependent calcium signaling (Ip3r2-/-) had fewer signal peaks, the response to sensory stimulation was sustained, suggesting other calcium pathways are also involved. Long-term imaging of astrocyte populations revealed that all compartments reliably responded to stimulation over several months, but that the location of the response within processes may vary. These previously unknown characteristics of subcellular astrocyte calcium signals provide new insights into how astrocytes may encode local neuronal circuit activity.
Collapse
Affiliation(s)
- Jillian L Stobart
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland.,Neuroscience Center, University and ETH Zurich, CH-8057 Zurich, Switzerland
| | - Kim David Ferrari
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland.,Neuroscience Center, University and ETH Zurich, CH-8057 Zurich, Switzerland
| | - Matthew J P Barrett
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland.,Neuroscience Center, University and ETH Zurich, CH-8057 Zurich, Switzerland
| | - Michael J Stobart
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland.,Neuroscience Center, University and ETH Zurich, CH-8057 Zurich, Switzerland
| | - Zoe J Looser
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland.,Neuroscience Center, University and ETH Zurich, CH-8057 Zurich, Switzerland
| | - Aiman S Saab
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland.,Neuroscience Center, University and ETH Zurich, CH-8057 Zurich, Switzerland
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zurich, CH-8057 Zurich, Switzerland.,Neuroscience Center, University and ETH Zurich, CH-8057 Zurich, Switzerland
| |
Collapse
|
41
|
Stobart JL, Ferrari KD, Barrett MJP, Glück C, Stobart MJ, Zuend M, Weber B. Cortical Circuit Activity Evokes Rapid Astrocyte Calcium Signals on a Similar Timescale to Neurons. Neuron 2018; 98:726-735.e4. [PMID: 29706581 DOI: 10.1016/j.neuron.2018.03.050] [Citation(s) in RCA: 156] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Revised: 02/12/2018] [Accepted: 03/30/2018] [Indexed: 12/22/2022]
Abstract
Sensory stimulation evokes intracellular calcium signals in astrocytes; however, the timing of these signals is disputed. Here, we used novel combinations of genetically encoded calcium indicators for concurrent two-photon imaging of cortical astrocytes and neurons in awake mice during whisker deflection. We identified calcium responses in both astrocyte processes and endfeet that rapidly followed neuronal events (∼120 ms after). These fast astrocyte responses were largely independent of IP3R2-mediated signaling and known neuromodulator activity (acetylcholine, serotonin, and norepinephrine), suggesting that they are evoked by local synaptic activity. The existence of such rapid signals implies that astrocytes are fast enough to play a role in synaptic modulation and neurovascular coupling. VIDEO ABSTRACT.
Collapse
Affiliation(s)
- Jillian L Stobart
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Neuroscience Center, University and ETH Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| | - Kim David Ferrari
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Neuroscience Center, University and ETH Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Matthew J P Barrett
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Neuroscience Center, University and ETH Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Chaim Glück
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Neuroscience Center, University and ETH Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Michael J Stobart
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Neuroscience Center, University and ETH Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Marc Zuend
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Neuroscience Center, University and ETH Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland
| | - Bruno Weber
- Institute of Pharmacology and Toxicology, University of Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland; Neuroscience Center, University and ETH Zurich, Winterthurerstrasse 190, CH-8057 Zurich, Switzerland.
| |
Collapse
|
42
|
Prada J, Sasi M, Martin C, Jablonka S, Dandekar T, Blum R. An open source tool for automatic spatiotemporal assessment of calcium transients and local 'signal-close-to-noise' activity in calcium imaging data. PLoS Comput Biol 2018; 14:e1006054. [PMID: 29601577 PMCID: PMC5895056 DOI: 10.1371/journal.pcbi.1006054] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2017] [Revised: 04/11/2018] [Accepted: 02/22/2018] [Indexed: 01/06/2023] Open
Abstract
Local and spontaneous calcium signals play important roles in neurons and neuronal networks. Spontaneous or cell-autonomous calcium signals may be difficult to assess because they appear in an unpredictable spatiotemporal pattern and in very small neuronal loci of axons or dendrites. We developed an open source bioinformatics tool for an unbiased assessment of calcium signals in x,y-t imaging series. The tool bases its algorithm on a continuous wavelet transform-guided peak detection to identify calcium signal candidates. The highly sensitive calcium event definition is based on identification of peaks in 1D data through analysis of a 2D wavelet transform surface. For spatial analysis, the tool uses a grid to separate the x,y-image field in independently analyzed grid windows. A document containing a graphical summary of the data is automatically created and displays the loci of activity for a wide range of signal intensities. Furthermore, the number of activity events is summed up to create an estimated total activity value, which can be used to compare different experimental situations, such as calcium activity before or after an experimental treatment. All traces and data of active loci become documented. The tool can also compute the signal variance in a sliding window to visualize activity-dependent signal fluctuations. We applied the calcium signal detector to monitor activity states of cultured mouse neurons. Our data show that both the total activity value and the variance area created by a sliding window can distinguish experimental manipulations of neuronal activity states. Notably, the tool is powerful enough to compute local calcium events and ‘signal-close-to-noise’ activity in small loci of distal neurites of neurons, which remain during pharmacological blockade of neuronal activity with inhibitors such as tetrodotoxin, to block action potential firing, or inhibitors of ionotropic glutamate receptors. The tool can also offer information about local homeostatic calcium activity events in neurites. Calcium imaging has become a standard tool to investigate local, spontaneous, or cell-autonomous calcium signals in neurons. Some of these calcium signals are fast and ‘small’, thus making it difficult to identify real signaling events due to an unavoidable signal noise. Therefore, it is difficult to assess the spatiotemporal activity footprint of individual neurons or a neuronal network. We developed this open source tool to automatically extract, count, and localize calcium signals from the whole x,y-t image series. As demonstrated here, the tool is useful for an unbiased comparison of activity states of neurons, helps to assess local calcium transients, and even visualizes local homeostatic calcium activity. The tool is powerful enough to visualize signal-close-to-noise calcium activity.
Collapse
Affiliation(s)
- Juan Prada
- Department of Bioinformatics, University of Würzburg, Würzburg, Germany
| | - Manju Sasi
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Corinna Martin
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Sibylle Jablonka
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
| | - Thomas Dandekar
- Department of Bioinformatics, University of Würzburg, Würzburg, Germany
- * E-mail: (TD); (RB)
| | - Robert Blum
- Institute of Clinical Neurobiology, University Hospital Würzburg, Würzburg, Germany
- * E-mail: (TD); (RB)
| |
Collapse
|
43
|
Dynamic Ca 2+ imaging with a simplified lattice light-sheet microscope: A sideways view of subcellular Ca 2+ puffs. Cell Calcium 2017; 71:34-44. [PMID: 29604962 DOI: 10.1016/j.ceca.2017.11.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 11/29/2017] [Accepted: 11/30/2017] [Indexed: 11/24/2022]
Abstract
We describe the construction of a simplified, inexpensive lattice light-sheet microscope, and illustrate its use for imaging subcellular Ca2+ puffs evoked by photoreleased i-IP3 in cultured SH-SY5Y neuroblastoma cells loaded with the Ca2+ probe Cal520. The microscope provides sub-micron spatial resolution and enables recording of local Ca2+ transients in single-slice mode with a signal-to-noise ratio and temporal resolution (2ms) at least as good as confocal or total internal reflection microscopy. Signals arising from openings of individual IP3R channels are clearly resolved, as are stepwise changes in fluorescence reflecting openings and closings of individual channels during puffs. Moreover, by stepping the specimen through the light-sheet, the entire volume of a cell can be scanned within a few hundred ms. The ability to directly visualize a sideways (axial) section through cells directly reveals that IP3-evoked Ca2+ puffs originate at sites in very close (≤a few hundred nm) to the plasma membrane, suggesting they play a specific role in signaling to the membrane.
Collapse
|
44
|
Keebler MV, Taylor CW. Endogenous signalling pathways and caged IP 3 evoke Ca 2+ puffs at the same abundant immobile intracellular sites. J Cell Sci 2017; 130:3728-3739. [PMID: 28893841 PMCID: PMC5702060 DOI: 10.1242/jcs.208520] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 09/04/2017] [Indexed: 12/18/2022] Open
Abstract
The building blocks of intracellular Ca2+ signals evoked by inositol 1,4,5-trisphosphate receptors (IP3Rs) are Ca2+ puffs, transient focal increases in Ca2+ concentration that reflect the opening of small clusters of IP3Rs. We use total internal reflection fluorescence microscopy and automated analyses to detect Ca2+ puffs evoked by photolysis of caged IP3 or activation of endogenous muscarinic receptors with carbachol in human embryonic kidney 293 cells. Ca2+ puffs evoked by carbachol initiated at an estimated 65±7 sites/cell, and the sites remained immobile for many minutes. Photolysis of caged IP3 evoked Ca2+ puffs at a similar number of sites (100±35). Increasing the carbachol concentration increased the frequency of Ca2+ puffs without unmasking additional Ca2+ release sites. By measuring responses to sequential stimulation with carbachol or photolysed caged IP3, we established that the two stimuli evoked Ca2+ puffs at the same sites. We conclude that IP3-evoked Ca2+ puffs initiate at numerous immobile sites and the sites become more likely to fire as the IP3 concentration increases; there is no evidence that endogenous signalling pathways selectively deliver IP3 to specific sites. Summary: Ca2+ puffs are the building blocks for IP3-evoked Ca2+ signals. Ca2+ puffs evoked by caged IP3 or via endogenous signalling pathways initiate at the same fixed intracellular sites.
Collapse
Affiliation(s)
- Michael V Keebler
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| | - Colin W Taylor
- Department of Pharmacology, University of Cambridge, Tennis Court Road, Cambridge CB2 1PD, UK
| |
Collapse
|
45
|
Parker I, Evans KT, Ellefsen K, Lawson DA, Smith IF. Lattice light sheet imaging of membrane nanotubes between human breast cancer cells in culture and in brain metastases. Sci Rep 2017; 7:11029. [PMID: 28887508 PMCID: PMC5591308 DOI: 10.1038/s41598-017-11223-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 08/17/2017] [Indexed: 01/15/2023] Open
Abstract
Membrane nanotubes are cytosolic protrusions with diameters <1 µm that extend between cells separated by tens of µm. They mediate several forms of intercellular communication and are upregulated in diverse diseases. Difficulties in visualizing and studying nanotubes within intact tissues have, however, prompted skepticism regarding their in vivo relevance, and most studies have been confined to cell culture systems. Here, we introduce lattice-light sheet imaging of MDA-MB-231 human breast cancer cells genetically engineered to brightly express membrane-targeted GFP as a promising approach to visualize membrane nanotubes in vitro and in situ. We demonstrate that cultured cells form multiple nanotubes that mediate intercellular communication of Ca2+ signals and actively traffic GFP-tagged membrane vesicles along their length. Furthermore, we directly visualize nanotubes in situ, interconnecting breast cancer cells in live acute brain slices from an experimental mouse model of breast cancer brain metastasis. This amenable experimental system should facilitate the transition of the study of intercellular communication by membrane nanotubes from cell culture to the whole animal.
Collapse
Affiliation(s)
- Ian Parker
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA.,Department of Physiology and Biophysics, University of California, Irvine, CA, USA
| | - Katrina T Evans
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA
| | - Kyle Ellefsen
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA
| | - Devon A Lawson
- Department of Physiology and Biophysics, University of California, Irvine, CA, USA
| | - Ian F Smith
- Department of Neurobiology and Behavior, University of California, Irvine, CA, USA.
| |
Collapse
|
46
|
Maltsev AV, Maltsev VA, Stern MD. Stabilization of diastolic calcium signal via calcium pump regulation of complex local calcium releases and transient decay in a computational model of cardiac pacemaker cell with individual release channels. PLoS Comput Biol 2017; 13:e1005675. [PMID: 28792496 PMCID: PMC5562330 DOI: 10.1371/journal.pcbi.1005675] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Revised: 08/18/2017] [Accepted: 07/06/2017] [Indexed: 11/18/2022] Open
Abstract
Intracellular Local Ca releases (LCRs) from sarcoplasmic reticulum (SR) regulate cardiac pacemaker cell function by activation of electrogenic Na/Ca exchanger (NCX) during diastole. Prior studies demonstrated the existence of powerful compensatory mechanisms of LCR regulation via a complex local cross-talk of Ca pump, release and NCX. One major obstacle to study these mechanisms is that LCR exhibit complex Ca release propagation patterns (including merges and separations) that have not been characterized. Here we developed new terminology, classification, and computer algorithms for automatic detection of numerically simulated LCRs and examined LCR regulation by SR Ca pumping rate (Pup) that provides a major contribution to fight-or-flight response. In our simulations the faster SR Ca pumping accelerates action potential-induced Ca transient decay and quickly clears Ca under the cell membrane in diastole, preventing premature releases. Then the SR generates an earlier, more synchronized, and stronger diastolic LCR signal activating an earlier and larger inward NCX current. LCRs at higher Pup exhibit larger amplitudes and faster propagation with more collisions to each other. The LCRs overlap with Ca transient decay, causing an elevation of the average diastolic [Ca] nadir to ~200 nM (at Pup = 24 mM/s). Background Ca (in locations lacking LCRs) quickly decays to resting Ca levels (<100 nM) at high Pup, but remained elevated during slower decay at low Pup. Release propagation is facilitated at higher Pup by a larger LCR amplitude, whereas at low Pup by higher background Ca. While at low Pup LCRs show smaller amplitudes, their larger durations and sizes combined with longer transient decay stabilize integrals of diastolic Ca and NCX current signals. Thus, the local interplay of SR Ca pump and release channels regulates LCRs and Ca transient decay to insure fail-safe pacemaker cell operation within a wide range of rates.
Collapse
Affiliation(s)
- Alexander V. Maltsev
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, NIH, 251 Bayview Blvd., Baltimore, MD, United States of America
| | - Victor A. Maltsev
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, NIH, 251 Bayview Blvd., Baltimore, MD, United States of America
| | - Michael D. Stern
- Laboratory of Cardiovascular Science, Intramural Research Program, National Institute on Aging, NIH, 251 Bayview Blvd., Baltimore, MD, United States of America
- * E-mail:
| |
Collapse
|
47
|
Lock JT, Smith IF, Parker I. Comparison of Ca 2+ puffs evoked by extracellular agonists and photoreleased IP 3. Cell Calcium 2017; 63:43-47. [PMID: 28108028 PMCID: PMC5459673 DOI: 10.1016/j.ceca.2016.11.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Revised: 11/29/2016] [Accepted: 11/30/2016] [Indexed: 11/19/2022]
Abstract
The inositol trisphosphate (IP3) signaling pathway evokes local Ca2+ signals (Ca2+ puffs) that arise from the concerted openings of clustered IP3 receptor/channels in the ER membrane. Physiological activation is triggered by binding of agonists to G-protein-coupled receptors (GPCRs) on the cell surface, leading to cleavage of phosphatidyl inositol bisphosphate and release of IP3 into the cytosol. Photorelease of IP3 from a caged precursor provides a convenient and widely employed means to study the final stage of IP3-mediated Ca2+ liberation, bypassing upstream signaling events to enable more precise control of the timing and relative concentration of cytosolic IP3. Here, we address whether Ca2+ puffs evoked by photoreleased IP3 fully replicate those arising from physiological agonist stimulation. We imaged puffs in individual SH-SY5Y neuroblastoma cells that were sequentially stimulated by picospritzing extracellular agonist (carbachol, CCH or bradykinin, BK) followed by photorelease of a poorly-metabolized IP3 analog, i-IP3. The centroid localizations of fluorescence signals during puffs evoked in the same cells by agonists and photorelease substantially overlapped (within ∼1μm), suggesting that IP3 from both sources accesses the same, or closely co-localized clusters of IP3Rs. Moreover, the time course and spatial spread of puffs evoked by agonists and photorelease matched closely. Because photolysis generates IP3 uniformly throughout the cytoplasm, our results imply that IP3 generated in SH-SY5Y cells by activation of receptors to CCH and BK also exerts broadly distributed actions, rather than specifically activating a subpopulation of IP3Rs that are scaffolded in close proximity to cell surface receptors to form a signaling nanodomain.
Collapse
Affiliation(s)
- Jeffrey T Lock
- Department of Neurobiology and Behavior, University of California, Irvine, CA, 92697, United States.
| | - Ian F Smith
- Department of Neurobiology and Behavior, University of California, Irvine, CA, 92697, United States.
| | - Ian Parker
- Department of Neurobiology and Behavior, University of California, Irvine, CA, 92697, United States; Department of Physiology and Biophysics, University of California, Irvine, CA, 92697, United States.
| |
Collapse
|
48
|
Davoodi M, Segal S, Kirschner Peretz N, Kamoun D, Yaniv Y. Semi-automated program for analysis of local Ca 2+ spark release with application for classification of heart cell type. Cell Calcium 2017; 64:83-90. [PMID: 28216082 DOI: 10.1016/j.ceca.2017.02.003] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2017] [Revised: 02/07/2017] [Accepted: 02/07/2017] [Indexed: 01/30/2023]
Abstract
Local Ca2+ spark releases are essential to the Ca2+ cycling process. Thus, they play an important role in ventricular and atrial cell contraction, as well as in sinoatrial cell automaticity. Characterizing their properties in healthy cells from different regions in the heart can reveal the basic biophysical differences among these regions. We designed a semi-automatic Matlab Graphical User Interface (called Sparkalyzer) to characterize parameters of Ca2+ spark release from any major cardiac tissue, as recorded in line-scan mode with a confocal laser-scanning microscope. We validated the algorithm on experimental images from rabbit sinoatrial, atrial, and ventricular cells loaded with Fluo-4 AM. The program characterizes general image parameters of Ca2+ transients and sparks: spark duration, which indicates for how long the spark provides Ca2+ to the closed intracellular mechanisms (typical value: 25±1, 23±1, 26±1ms for sinoatrial, atrial, and ventricular cells, respectively); spark amplitude, which indicates the amount of Ca2+ released by a single spark (1.6±0.1, 1.6±0.2, 1.4±0.1F/F0 for sinoatrial, atrial, and ventricular cells, respectively); spark length, which is the length of the Ca2+ wavelets fired out of a row of ryanodine receptors (5±0.1, 5±0.2, 3.4±0.3μm for sinoatrial, atrial, or ventricular cells, respectively) and number of sparks (0.14±0.02, 0.025±0.01, 0.02±0.01 for 1μm in 1s for sinoatrial, atrial, and ventricular cells, respectively). This method is reliable for Ca2+ spark analysis of sinoatrial, atrial, or ventricular cells. Moreover, by examining the average value of Ca2+ spark characteristics and their scattering around the mean, atrial, ventricular and sinoatrial cells can be differentiated.
Collapse
Affiliation(s)
- Moran Davoodi
- Biomedical Engineering Faculty, Technion-IIT, Haifa, Israel
| | - Sofia Segal
- Biomedical Engineering Faculty, Technion-IIT, Haifa, Israel
| | | | - David Kamoun
- Biomedical Engineering Faculty, Technion-IIT, Haifa, Israel
| | - Yael Yaniv
- Biomedical Engineering Faculty, Technion-IIT, Haifa, Israel.
| |
Collapse
|
49
|
Wilson C, Lee MD, McCarron JG. Acetylcholine released by endothelial cells facilitates flow-mediated dilatation. J Physiol 2016; 594:7267-7307. [PMID: 27730645 PMCID: PMC5157078 DOI: 10.1113/jp272927] [Citation(s) in RCA: 93] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2016] [Accepted: 10/03/2016] [Indexed: 01/24/2023] Open
Abstract
KEY POINTS The endothelium plays a pivotal role in the vascular response to chemical and mechanical stimuli. The endothelium is exquisitely sensitive to ACh, although the physiological significance of ACh-induced activation of the endothelium is unknown. In the present study, we investigated the mechanisms of flow-mediated endothelial calcium signalling. Our data establish that flow-mediated endothelial calcium responses arise from the autocrine action of non-neuronal ACh released by the endothelium. ABSTRACT Circulating blood generates frictional forces (shear stress) on the walls of blood vessels. These frictional forces critically regulate vascular function. The endothelium senses these frictional forces and, in response, releases various vasodilators that relax smooth muscle cells in a process termed flow-mediated dilatation. Although some elements of the signalling mechanisms have been identified, precisely how flow is sensed and transduced to cause the release of relaxing factors is poorly understood. By imaging signalling in large areas of the endothelium of intact arteries, we show that the endothelium responds to flow by releasing ACh. Once liberated, ACh acts to trigger calcium release from the internal store in endothelial cells, nitric oxide production and artery relaxation. Flow-activated release of ACh from the endothelium is non-vesicular and occurs via organic cation transporters. ACh is generated following mitochondrial production of acetylCoA. Thus, we show ACh is an autocrine signalling molecule released from endothelial cells, and identify a new role for the classical neurotransmitter in endothelial mechanotransduction.
Collapse
Affiliation(s)
- Calum Wilson
- Strathclyde Institute of Pharmacy and Biomedical SciencesUniversity of StrathclydeSIPBS BuildingGlasgowUK
| | - Matthew D. Lee
- Strathclyde Institute of Pharmacy and Biomedical SciencesUniversity of StrathclydeSIPBS BuildingGlasgowUK
| | - John G. McCarron
- Strathclyde Institute of Pharmacy and Biomedical SciencesUniversity of StrathclydeSIPBS BuildingGlasgowUK
| |
Collapse
|
50
|
Mackay L, Mikolajewicz N, Komarova SV, Khadra A. Systematic Characterization of Dynamic Parameters of Intracellular Calcium Signals. Front Physiol 2016; 7:525. [PMID: 27891096 PMCID: PMC5102910 DOI: 10.3389/fphys.2016.00525] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2016] [Accepted: 10/24/2016] [Indexed: 12/14/2022] Open
Abstract
Dynamic processes, such as intracellular calcium signaling, are hallmark of cellular biology. As real-time imaging modalities become widespread, a need for analytical tools to reliably characterize time-series data without prior knowledge of the nature of the recordings becomes more pressing. The goal of this study is to develop a signal-processing algorithm for MATLAB that autonomously computes the parameters characterizing prominent single transient responses (TR) and/or multi-peaks responses (MPR). The algorithm corrects for signal contamination and decomposes experimental recordings into contributions from drift, TRs, and MPRs. It subsequently provides numerical estimates for the following parameters: time of onset after stimulus application, activation time (time for signal to increase from 10 to 90% of peak), and amplitude of response. It also provides characterization of the (i) TRs by quantifying their area under the curve (AUC), response duration (time between 1/2 amplitude on ascent and descent of the transient), and decay constant of the exponential decay region of the deactivation phase of the response, and (ii) MPRs by quantifying the number of peaks, mean peak magnitude, mean periodicity, standard deviation of periodicity, oscillatory persistence (time between first and last discernable peak), and duty cycle (fraction of period during which system is active) for all the peaks in the signal, as well as coherent oscillations (i.e., deterministic spikes). We demonstrate that the signal detection performance of this algorithm is in agreement with user-mediated detection and that parameter estimates obtained manually and algorithmically are correlated. We then apply this algorithm to study how metabolic acidosis affects purinergic (P2) receptor-mediated calcium signaling in osteoclast precursor cells. Our results reveal that acidosis significantly attenuates the amplitude and AUC calcium responses at high ATP concentrations. Collectively, our data validated this algorithm as a general framework for comprehensively analyzing dynamic time-series.
Collapse
Affiliation(s)
- Laurent Mackay
- Department of Physiology, McGill University Montreal, QC, Canada
| | - Nicholas Mikolajewicz
- Faculty of Dentistry, McGill UniversityMontreal, QC, Canada; Shriners Hospital for Children-CanadaMontreal, QC, Canada
| | - Svetlana V Komarova
- Faculty of Dentistry, McGill UniversityMontreal, QC, Canada; Shriners Hospital for Children-CanadaMontreal, QC, Canada
| | - Anmar Khadra
- Department of Physiology, McGill University Montreal, QC, Canada
| |
Collapse
|