1
|
Kochkina EN, Kopylova EE, Rogachevskaja OA, Kovalenko NP, Kabanova NV, Kotova PD, Bystrova MF, Kolesnikov SS. Agonist-Induced Ca 2+ Signaling in HEK-293-Derived Cells Expressing a Single IP 3 Receptor Isoform. Cells 2024; 13:562. [PMID: 38607001 PMCID: PMC11011116 DOI: 10.3390/cells13070562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/13/2024] [Accepted: 03/18/2024] [Indexed: 04/13/2024] Open
Abstract
In mammals, three genes encode IP3 receptors (IP3Rs), which are involved in agonist-induced Ca2+ signaling in cells of apparently all types. Using the CRISPR/Cas9 approach for disruption of two out of three IP3R genes in HEK-293 cells, we generated three monoclonal cell lines, IP3R1-HEK, IP3R2-HEK, and IP3R3-HEK, with the single functional isoform, IP3R1, IP3R2, and IP3R3, respectively. All engineered cells responded to ACh with Ca2+ transients in an "all-or-nothing" manner, suggesting that each IP3R isotype was capable of mediating CICR. The sensitivity of cells to ACh strongly correlated with the affinity of IP3 binding to an IP3R isoform they expressed. Based on a mathematical model of intracellular Ca2+ signals induced by thapsigargin, a SERCA inhibitor, we developed an approach for estimating relative Ca2+ permeability of Ca2+ store and showed that all three IP3R isoforms contributed to Ca2+ leakage from ER. The relative Ca2+ permeabilities of Ca2+ stores in IP3R1-HEK, IP3R2-HEK, and IP3R3-HEK cells were evaluated as 1:1.75:0.45. Using the genetically encoded sensor R-CEPIA1er for monitoring Ca2+ signals in ER, engineered cells were ranged by resting levels of stored Ca2+ as IP3R3-HEK ≥ IP3R1-HEK > IP3R2-HEK. The developed cell lines could be helpful for further assaying activity, regulation, and pharmacology of individual IP3R isoforms.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Stanislav S. Kolesnikov
- Institute of Cell Biophysics, Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, 3 Institutskaya Street, 142290 Pushchino, Russia
| |
Collapse
|
2
|
Gerasimenko JV, Gerasimenko OV. The role of Ca 2+ signalling in the pathology of exocrine pancreas. Cell Calcium 2023; 112:102740. [PMID: 37058923 PMCID: PMC10840512 DOI: 10.1016/j.ceca.2023.102740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/04/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
Exocrine pancreas has been the field of many successful studies in pancreatic physiology and pathology. However, related disease - acute pancreatitis (AP) is still takes it toll with more than 100,000 related deaths worldwide per year. In spite of significant scientific progress and several human trials currently running for AP, there is still no specific treatment in the clinic. Studies of the mechanism of initiation of AP have identified two crucial conditions: sustained elevations of cytoplasmic calcium concentration (Ca2+ plateau) and significantly reduced intracellular energy (ATP depletion). These hallmarks are interdependent, i.e., Ca2+ plateau increase energy demand for its clearance while energy production is greatly affected by the pathology. Result of long standing Ca2+ plateau is destabilisation of the secretory granules and premature activation of the digestive enzymes leading to necrotic cell death. Main attempts so far to break the vicious circle of cell death have been concentrated on reduction of Ca2+ overload or reduction of ATP depletion. This review will summarise these approaches, including recent developments of potential therapies for AP.
Collapse
Affiliation(s)
- Julia V Gerasimenko
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff, Wales, CF10 3AX, United Kingdom.
| | - Oleg V Gerasimenko
- Cardiff School of Biosciences, Cardiff University, Museum Avenue, Cardiff, Wales, CF10 3AX, United Kingdom
| |
Collapse
|
3
|
Zhao Y, Ren X, Li F, Jia B, Wang D, Jia H, Jiao X, Wang L, Li J. P2Y1 receptor in the colonic submucosa of rats and its association with opioid‑induced constipation. Exp Ther Med 2022; 25:67. [PMID: 36605532 PMCID: PMC9798462 DOI: 10.3892/etm.2022.11766] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 11/03/2022] [Indexed: 12/15/2022] Open
Abstract
The aim of the present study was to explore the expression changes of P2Y purinergic receptor 1 (P2Y1) in the distal colonic submucosa of opioid-induced constipation (OIC) rats and its association with the occurrence of OIC, an OIC rat model was generated by intraperitoneal injection of loperamide hydrochloride, a selective agonist of µ-opioid receptors (MORs). At 7 days post-treatment, the model was assessed by analyzing stool scores and calculating the gastrointestinal (GI) transit ratio of rats. The distribution of P2Y1-expressing neurons in the colonic submucosal plexus was demonstrated by immunofluorescence (IF). Western blotting was performed to evaluate the expression changes of MOR, P2Y1 and ATP synthase subunit β (ATPB) proteins in the colonic submucosa, while reverse transcription-quantitative PCR (RT-qPCR) analysis was performed to determine the relative mRNA expression of MOR and P2Y1. After 7 days, the feces of OIC rats exhibited an appearance of sausage-shaped pieces and both the stool weight and GI transit ratio of OIC rats were significantly decreased. IF revealed co-expression of P2Y1 and calbindin and MOR and ATPB in the nerve cells of the distal colonic submucosal plexus. Moreover, RT-qPCR analysis showed that the MOR mRNA levels were significantly increased in the distal colonic submucosa of OIC rats, while mRNA levels of P2Y1 were decreased. WB showed that in the distal colonic submucosa of OIC rats, MOR protein expression was increased, whereas that of P2Y1 was significantly decreased. GI transit ratio analysis suggested that the P2Y agonist ATP significantly relieved constipation symptoms in rats, while the P2Y inhibitor MRS2179 aggravated these symptoms. Finally, P2Y1 expression change was shown to be associated with the occurrence of OIC, while expression of MOR and P2Y1 was associated with OIC development in rats.
Collapse
Affiliation(s)
- Yuqiong Zhao
- Department of Human Anatomy and Histoembryology, College of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750001, P.R. China
| | - Xiaojie Ren
- Department of Human Anatomy and Histoembryology, College of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750001, P.R. China
| | - Fan Li
- Department of Gastrointestinal Surgery, Xiantao First People's Hospital Affiliated to Yangtze University, Xiantao, Hubei 433000, P.R. China
| | - Binghan Jia
- Department of Human Anatomy and Histoembryology, College of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750001, P.R. China
| | - Dengke Wang
- Department of Human Anatomy and Histoembryology, College of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750001, P.R. China
| | - Hua Jia
- Department of Human Anatomy and Histoembryology, College of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750001, P.R. China
| | - Xuwen Jiao
- Department of Human Anatomy and Histoembryology, College of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750001, P.R. China
| | - Lixin Wang
- The Medical Laboratory Center of General Hospital of Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750001, P.R. China,Correspondence to: Dr Junping Li, Department of Human Anatomy and Histoembryology, College of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia Hui Autonomous Region 750001, P.R. China
| | - Junping Li
- Department of Human Anatomy and Histoembryology, College of Basic Medical Sciences, Ningxia Medical University, Yinchuan, Ningxia Hui Autonomous Region 750001, P.R. China,Correspondence to: Dr Junping Li, Department of Human Anatomy and Histoembryology, College of Basic Medical Sciences, Ningxia Medical University, 1160 Shengli Street, Yinchuan, Ningxia Hui Autonomous Region 750001, P.R. China
| |
Collapse
|
4
|
Chechekhin VI, Kulebyakin KY, Kokaev RI, Tyurin-Kuzmin PA. GPCRs in the regulation of the functional activity of multipotent mesenchymal stromal cells. Front Cell Dev Biol 2022; 10:953374. [PMID: 36046341 PMCID: PMC9421028 DOI: 10.3389/fcell.2022.953374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Accepted: 07/01/2022] [Indexed: 11/24/2022] Open
Abstract
Adipose tissue is one of the tissues in the human body that is renewed during the whole life. Dysregulation of this process leads to conditions such as obesity, metabolic syndrome, and type 2 diabetes. The key role in maintaining the healthy state of adipose tissue is played by a specific group of postnatal stem cells called multipotent mesenchymal stromal cells (MSCs). They are both precursors for new adipocytes and key paracrine regulators of adipose tissue homeostasis. The activity of MSCs is tightly adjusted to the needs of the organism. To ensure such coordination, MSCs are put under strict regulation which is realized through a wide variety of signaling mechanisms. They control aspects of MSC activity such as proliferation, differentiation, and production of signal molecules via alteration of MSC sensitivity to hormonal stimuli. In this regard, MSCs use all the main mechanisms of hormonal sensitivity regulation observed in differentiated cells, but at the same time, several unique regulatory mechanisms have been found in MSCs. In the presented review, we will cover these unique mechanisms as well as specifics of common mechanisms of regulation of hormonal sensitivity in stem cells.
Collapse
Affiliation(s)
- Vadim I. Chechekhin
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Konstantin Yu. Kulebyakin
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
| | - Romesh I. Kokaev
- Institute of Biomedical Investigations, The Affiliate of Vladikavkaz Scientific Centre of Russian Academy of Sciences, Vladikavkaz, Russia
| | - Pyotr A. Tyurin-Kuzmin
- Department of Biochemistry and Molecular Medicine, Faculty of Medicine, Lomonosov Moscow State University, Moscow, Russia
- *Correspondence: Pyotr A. Tyurin-Kuzmin,
| |
Collapse
|
5
|
Cherkashin AP, Rogachevskaja OA, Kabanova NV, Kotova PD, Bystrova MF, Kolesnikov SS. Taste Cells of the Type III Employ CASR to Maintain Steady Serotonin Exocytosis at Variable Ca 2+ in the Extracellular Medium. Cells 2022; 11:1369. [PMID: 35456048 PMCID: PMC9030112 DOI: 10.3390/cells11081369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 04/07/2022] [Accepted: 04/11/2022] [Indexed: 12/17/2022] Open
Abstract
Type III taste cells are the only taste bud cells which express voltage-gated (VG) Ca2+ channels and employ Ca2+-dependent exocytosis to release neurotransmitters, particularly serotonin. The taste bud is a tightly packed cell population, wherein extracellular Ca2+ is expected to fluctuate markedly due to the electrical activity of taste cells. It is currently unclear whether the Ca2+ entry-driven synapse in type III cells could be reliable enough at unsteady extracellular Ca2. Here we assayed depolarization-induced Ca2+ signals and associated serotonin release in isolated type III cells at varied extracellular Ca2+. It turned out that the same depolarizing stimulus elicited invariant Ca2+ signals in type III cells irrespective of bath Ca2+ varied within 0.5-5 mM. The serotonin release from type III cells was assayed with the biosensor approach by using HEK-293 cells co-expressing the recombinant 5-HT4 receptor and genetically encoded cAMP sensor Pink Flamindo. Consistently with the weak Ca2+ dependence of intracellular Ca2+ transients produced by VG Ca2+ entry, depolarization-triggered serotonin secretion varied negligibly with bath Ca2+. The evidence implicated the extracellular Ca2+-sensing receptor in mediating the negative feedback mechanism that regulates VG Ca2+ entry and levels off serotonin release in type III cells at deviating Ca2+ in the extracellular medium.
Collapse
Affiliation(s)
| | | | | | | | | | - Stanislav S. Kolesnikov
- Pushchino Scientific Center for Biological Research of the Russian Academy of Sciences, Institute of Cell Biophysics of the Russian Academy of Sciences, Pushchino 142290, Russia; (A.P.C.); (O.A.R.); (N.V.K.); (P.D.K.); (M.F.B.)
| |
Collapse
|
6
|
Faris P, Casali C, Negri S, Iengo L, Biggiogera M, Maione AS, Moccia F. Nicotinic Acid Adenine Dinucleotide Phosphate Induces Intracellular Ca2+ Signalling and Stimulates Proliferation in Human Cardiac Mesenchymal Stromal Cells. Front Cell Dev Biol 2022; 10:874043. [PMID: 35392169 PMCID: PMC8980055 DOI: 10.3389/fcell.2022.874043] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 02/24/2022] [Indexed: 12/18/2022] Open
Abstract
Nicotinic acid adenine dinucleotide phosphate (NAADP) is a newly discovered second messenger that gates two pore channels 1 (TPC1) and 2 (TPC2) to elicit endo-lysosomal (EL) Ca2+ release. NAADP-induced lysosomal Ca2+ release may be amplified by the endoplasmic reticulum (ER) through the Ca2+-induced Ca2+ release (CICR) mechanism. NAADP-induced intracellular Ca2+ signals were shown to modulate a growing number of functions in the cardiovascular system, but their occurrence and role in cardiac mesenchymal stromal cells (C-MSCs) is still unknown. Herein, we found that exogenous delivery of NAADP-AM induced a robust Ca2+ signal that was abolished by disrupting the lysosomal Ca2+ store with Gly-Phe β-naphthylamide, nigericin, and bafilomycin A1, and blocking TPC1 and TPC2, that are both expressed at protein level in C-MSCs. Furthermore, NAADP-induced EL Ca2+ release resulted in the Ca2+-dependent recruitment of ER-embedded InsP3Rs and SOCE activation. Transmission electron microscopy revealed clearly visible membrane contact sites between lysosome and ER membranes, which are predicted to provide the sub-cellular framework for lysosomal Ca2+ to recruit ER-embedded InsP3Rs through CICR. NAADP-induced EL Ca2+ mobilization via EL TPC was found to trigger the intracellular Ca2+ signals whereby Fetal Bovine Serum (FBS) induces C-MSC proliferation. Furthermore, NAADP-evoked Ca2+ release was required to mediate FBS-induced extracellular signal-regulated kinase (ERK), but not Akt, phosphorylation in C-MSCs. These finding support the notion that NAADP-induced TPC activation could be targeted to boost proliferation in C-MSCs and pave the way for future studies assessing whether aberrant NAADP signaling in C-MSCs could be involved in cardiac disorders.
Collapse
Affiliation(s)
- Pawan Faris
- Laboratory of General Physiology, Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Claudio Casali
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Sharon Negri
- Laboratory of General Physiology, Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Lara Iengo
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino, IRCCS, Milan, Italy
| | - Marco Biggiogera
- Laboratory of Cell Biology and Neurobiology, Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
| | - Angela Serena Maione
- Vascular Biology and Regenerative Medicine Unit, Centro Cardiologico Monzino, IRCCS, Milan, Italy
- *Correspondence: Angela Serena Maione, ; Francesco Moccia,
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology “Lazzaro Spallanzani”, University of Pavia, Pavia, Italy
- *Correspondence: Angela Serena Maione, ; Francesco Moccia,
| |
Collapse
|
7
|
Jacobson KA, Salmaso V, Suresh RR, Tosh DK. Expanding the repertoire of methanocarba nucleosides from purinergic signaling to diverse targets. RSC Med Chem 2021; 12:1808-1825. [PMID: 34825182 PMCID: PMC8597424 DOI: 10.1039/d1md00167a] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 07/01/2021] [Indexed: 12/11/2022] Open
Abstract
Nucleoside derivatives are well represented as pharmaceuticals due to their druglike physicochemical properties, and some nucleoside drugs are designed to act on receptors. The purinergic signaling pathways for extracellular nucleosides and nucleotides, consisting of adenosine receptors, P2Y/P2X receptors for nucleotides, and enzymes such as adenosine (ribo)kinase, have been extensively studied. A general modification, i.e. a constrained, bicyclic ring system (bicyclo[3.1.0]hexane, also called methanocarba) substituted in place of a furanose ring, can increase nucleoside/nucleotide potency and/or selectivity at purinergic and antiviral targets and in interactions at diverse and unconventional targets. Compared to other common drug discovery scaffolds containing planar rings, methanocarba nucleosides display greater sp3 character (i.e. more favorable as drug-like molecules) and can manifest as sterically-constrained North (N) or South (S) conformations. Initially weak, off-target interactions of (N)-methanocarba adenosine derivatives were detected as leads that were structurally optimized to enhance activity and selectivity toward target proteins that normally do not recognize nucleosides. By this approach, novel modulators for 5HT2 serotonin and κ-opioid receptors, dopamine (DAT) and ATP-binding cassette (ABC) transporters were found, and previously undetected antiviral activities were revealed. Thus, through methanocarba nucleoside synthesis, structure-activity relationships, and multi-target pharmacology, a robust purinergic receptor scaffold has been repurposed to satisfy the pharmacophoric requirements of various GPCRs, enzymes and transporters.
Collapse
Affiliation(s)
- Kenneth A Jacobson
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health Bethesda MD 20892-0810 USA +301 480 8422 +301 496 9024
| | - Veronica Salmaso
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health Bethesda MD 20892-0810 USA +301 480 8422 +301 496 9024
| | - R Rama Suresh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health Bethesda MD 20892-0810 USA +301 480 8422 +301 496 9024
| | - Dilip K Tosh
- Molecular Recognition Section, Laboratory of Bioorganic Chemistry, National Institute of Diabetes & Digestive & Kidney Diseases, National Institutes of Health Bethesda MD 20892-0810 USA +301 480 8422 +301 496 9024
| |
Collapse
|
8
|
Kaimachnikov NP, Kotova PD, Kochkina EN, Rogachevskaja OA, Khokhlov AA, Bystrova MF, Kolesnikov SS. Modeling of Ca2+ transients initiated by GPCR agonists in mesenchymal stromal cells. BBA ADVANCES 2021; 1:100012. [PMID: 37082025 PMCID: PMC10074909 DOI: 10.1016/j.bbadva.2021.100012] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/05/2021] [Accepted: 04/11/2021] [Indexed: 10/21/2022] Open
Abstract
The integrative study that included experimentation and mathematical modeling was carried out to analyze dynamic aspects of transient Ca2+ signaling induced by brief pulses of GPCR agonists in mesenchymal stromal cells from the human adipose tissue (AD-MSCs). The experimental findings argued for IP3/Ca2+-regulated Ca2+ release via IP3 receptors (IP3Rs) as a key mechanism mediating agonist-dependent Ca2+ transients. The consistent signaling circuit was proposed to formalize coupling of agonist binding to Ca2+ mobilization for mathematical modeling. The model properly simulated the basic phenomenology of agonist transduction in AD-MSCs, which mostly produced single Ca2+ spikes upon brief stimulation. The spike-like responses were almost invariantly shaped at different agonist doses above a threshold, while response lag markedly decreased with stimulus strength. In AD-MSCs, agonists and IP3 uncaging elicited similar Ca2+ transients but IP3 pulses released Ca2+ without pronounced delay. This suggested that IP3 production was rate-limiting in agonist transduction. In a subpopulation of AD-MSCs, brief agonist pulses elicited Ca2+ bursts crowned by damped oscillations. With properly adjusted parameters of IP3R inhibition by cytosolic Ca2+, the model reproduced such oscillatory Ca2+ responses as well. GEM-GECO1 and R-CEPIA1er, the genetically encoded sensors of cytosolic and reticular Ca2+, respectively, were co-expressed in HEK-293 cells that also responded to agonists in an "all-or-nothing" manner. The experimentally observed Ca2+ signals triggered by ACh in both compartments were properly simulated with the suggested signaling circuit. Thus, the performed modeling of the transduction process provides sufficient theoretical basis for deeper interpretation of experimental findings on agonist-induced Ca2+ signaling in AD-MSCs.
Collapse
|
9
|
Gryshchenko O, Gerasimenko JV, Petersen OH, Gerasimenko OV. Calcium Signaling in Pancreatic Immune Cells In situ. FUNCTION (OXFORD, ENGLAND) 2020; 2:zqaa026. [PMID: 35330972 PMCID: PMC8788766 DOI: 10.1093/function/zqaa026] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/05/2020] [Accepted: 10/06/2020] [Indexed: 01/06/2023]
Abstract
Immune cells were identified in intact live mouse pancreatic lobules and their Ca2+ signals, evoked by various agents, characterized and compared with the simultaneously recorded Ca2+ signals in neighboring acinar and stellate cells. Immunochemistry in the live lobules indicated that the pancreatic immune cells most likely are macrophages. In the normal pancreas the density of these cells is very low, but induction of acute pancreatitis (AP), by a combination of ethanol and fatty acids, markedly increased the number of the immune cells. The principal agent eliciting Ca2+ signals in the pancreatic immune cells was ATP, but these cells also frequently produced Ca2+ signals in response to acetylcholine and to high concentrations of bradykinin. Pharmacological studies, using specific purinergic agonists and antagonists, indicated that the ATP-elicited Ca2+ signals were mediated by both P2Y1 and P2Y13 receptors. The pancreatic immune cells were not electrically excitable and the Ca2+ signals generated by ATP were primarily due to release of Ca2+ from internal stores followed by store-operated Ca2+ entry through Ca2+ release-activated Ca2+ channels. The ATP-induced intracellular Ca2+ liberation was dependent on both IP3 generation and IP3 receptors. We propose that the ATP-elicited Ca2+ signal generation in the pancreatic immune cells is likely to play an important role in the severe inflammatory response to the primary injury of the acinar cells that occurs in AP.
Collapse
Affiliation(s)
- Oleksiy Gryshchenko
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK,Bogomoletz Institute of Physiology, Kyiv 01024, Ukraine
| | | | - Ole H Petersen
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK
| | - Oleg V Gerasimenko
- Cardiff School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK,Corresponding author. E-mail:
| |
Collapse
|
10
|
Carluccio M, Zuccarini M, Ziberi S, Giuliani P, Morabito C, Mariggiò MA, Lonardo MT, Adinolfi E, Orioli E, Di Iorio P, Caciagli F, Ciccarelli R. Involvement of P2X7 Receptors in the Osteogenic Differentiation of Mesenchymal Stromal/Stem Cells Derived from Human Subcutaneous Adipose Tissue. Stem Cell Rev Rep 2020; 15:574-589. [PMID: 30955192 DOI: 10.1007/s12015-019-09883-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
The ionotropic P2X7 receptor (P2X7R) is involved in bone homeostasis but its role in osteogenesis is controversial. Thus, we investigated the expression of P2X7R and the effects exerted by its modulation in mesenchymal stromal cells from human subcutaneous adipose tissue (S-ASCs), which have potential therapeutic application in bone regenerative medicine. We found that undifferentiated S-ASCs expressed P2X7R and its functional splice variants P2X7AR and P2X7BR. Cell stimulation by P2X7R agonist BzATP (100 μM) neither modified proliferation nor caused membrane pore opening while increasing intracellular Ca2+ levels and migration. The P2X7R antagonist A438079 reversed these effects. However, 25-100 μM BzATP, administered to S-ASCs undergoing osteogenic differentiation, dose-dependently decreased extracellular matrix mineralization and expression of osteogenic transcription factors Runx2, alkaline phosphatase and osteopontin. These effects were not coupled to cell proliferation reduction or to cell death increase, but were associated to decrease in P2X7AR and P2X7BR expression. In contrast, expression of P2X7R, especially P2X7BR isoform, significantly increased during the osteogenic process. Noteworthy, the antagonist A438079, administered alone, at first restrained cell differentiation, enhancing it later. Accordingly, A438079 reversed BzATP effects only in the second phase of S-ASCs osteogenic differentiation. Apyrase, a diphosphohydrolase converting ATP/ADP into AMP, showed a similar behavior. Altogether, findings related to A438079 or apyrase effects suggest an earlier and prevailing pro-osteogenic activity by endogenous ATP and a later one by adenosine derived from endogenous ATP metabolism. Conversely, P2X7R pharmacological stimulation by BzATP, mimicking the effects of high ATP levels occurring during tissue injuries, depressed receptor expression/activity impairing MSC osteogenic differentiation.
Collapse
Affiliation(s)
- Marzia Carluccio
- Department of Medical, Oral and Biotechnology Sciences, Section of Pharmacology, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Aging Research Center and Translational Medicine, University of Chieti-Pescara, Chieti, Italy.,StemTeCh Group, Chieti, Italy
| | - Mariachiara Zuccarini
- Department of Medical, Oral and Biotechnology Sciences, Section of Pharmacology, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Aging Research Center and Translational Medicine, University of Chieti-Pescara, Chieti, Italy
| | - Sihana Ziberi
- Department of Medical, Oral and Biotechnology Sciences, Section of Pharmacology, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Aging Research Center and Translational Medicine, University of Chieti-Pescara, Chieti, Italy.,StemTeCh Group, Chieti, Italy
| | - Patricia Giuliani
- Department of Medical, Oral and Biotechnology Sciences, Section of Pharmacology, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Aging Research Center and Translational Medicine, University of Chieti-Pescara, Chieti, Italy
| | - Caterina Morabito
- Aging Research Center and Translational Medicine, University of Chieti-Pescara, Chieti, Italy.,StemTeCh Group, Chieti, Italy.,Department of Neuroscience, Imaging and Clinical Sciences, University of Chieti-Pescara, Chieti, Italy
| | - Maria A Mariggiò
- Aging Research Center and Translational Medicine, University of Chieti-Pescara, Chieti, Italy.,StemTeCh Group, Chieti, Italy.,Department of Neuroscience, Imaging and Clinical Sciences, University of Chieti-Pescara, Chieti, Italy
| | | | - Elena Adinolfi
- Department of Morphology, Surgery end Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Elisa Orioli
- Department of Morphology, Surgery end Experimental Medicine, University of Ferrara, Ferrara, Italy
| | - Patrizia Di Iorio
- Department of Medical, Oral and Biotechnology Sciences, Section of Pharmacology, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Aging Research Center and Translational Medicine, University of Chieti-Pescara, Chieti, Italy
| | - Francesco Caciagli
- Department of Medical, Oral and Biotechnology Sciences, Section of Pharmacology, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Aging Research Center and Translational Medicine, University of Chieti-Pescara, Chieti, Italy
| | - Renata Ciccarelli
- Department of Medical, Oral and Biotechnology Sciences, Section of Pharmacology, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy. .,Aging Research Center and Translational Medicine, University of Chieti-Pescara, Chieti, Italy. .,StemTeCh Group, Chieti, Italy.
| |
Collapse
|
11
|
Functional Heterogeneity of Protein Kinase A Activation in Multipotent Stromal Cells. Int J Mol Sci 2020; 21:ijms21124442. [PMID: 32580466 PMCID: PMC7353043 DOI: 10.3390/ijms21124442] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/17/2020] [Accepted: 06/17/2020] [Indexed: 02/06/2023] Open
Abstract
Multipotent stromal cells (MSC) demonstrate remarkable functional heterogeneity; however, its molecular mechanisms remain largely obscure. In this study, we explored MSC response to hormones, which activate Gs-protein / cyclic AMP (cAMP) / protein kinase A (PKA) dependent signaling, at the single cell level using genetically encoded biosensor PKA-Spark. For the first time, we demonstrated that about half of cultured MSCs are not able to activate the cAMP/PKA pathway, possibly due to the limited availability of adenylyl cyclases. Using this approach, we showed that MSC subpopulations responding to various hormones largely overlapped, and the share of responding cells did not exceed 40%. Using clonal analysis, we showed that signaling heterogeneity of MSC could be formed de novo within 2 weeks.
Collapse
|
12
|
Carluccio M, Ziberi S, Zuccarini M, Giuliani P, Caciagli F, Di Iorio P, Ciccarelli R. Adult mesenchymal stem cells: is there a role for purine receptors in their osteogenic differentiation? Purinergic Signal 2020; 16:263-287. [PMID: 32500422 DOI: 10.1007/s11302-020-09703-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2019] [Accepted: 05/04/2020] [Indexed: 02/06/2023] Open
Abstract
The role played by mesenchymal stem cells (MSCs) in contributing to adult tissue homeostasis and damage repair thanks to their differentiation capabilities has raised a great interest, mainly in bone regenerative medicine. The growth/function of these undifferentiated cells of mesodermal origin, located in specialized structures (niches) of differentiated organs is influenced by substances present in this microenvironment. Among them, ancestral and ubiquitous molecules such as adenine-based purines, i.e., ATP and adenosine, may be included. Notably, extracellular purine concentrations greatly increase during tissue injury; thus, MSCs are exposed to effects mediated by these agents interacting with their own receptors when they act/migrate in vivo or are transplanted into a damaged tissue. Here, we reported that ATP modulates MSC osteogenic differentiation via different P2Y and P2X receptors, but data are often inconclusive/contradictory so that the ATP receptor importance for MSC physiology/differentiation into osteoblasts is yet undetermined. An exception is represented by P2X7 receptors, whose expression was shown at various differentiation stages of bone cells resulting essential for differentiation/survival of both osteoclasts and osteoblasts. As well, adenosine, usually derived from extracellular ATP metabolism, can promote osteogenesis, likely via A2B receptors, even though findings from human MSCs should be implemented and confirmed in preclinical models. Therefore, although many data have revealed possible effects caused by extracellular purines in bone healing/remodeling, further studies, hopefully performed in in vivo models, are necessary to identify defined roles for these compounds in favoring/increasing the pro-osteogenic properties of MSCs and thereby their usefulness in bone regenerative medicine.
Collapse
Affiliation(s)
- Marzia Carluccio
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100, Chieti, Italy.,StemTeCh Group, Via L. Polacchi, 66100, Chieti, Italy
| | - Sihana Ziberi
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100, Chieti, Italy.,StemTeCh Group, Via L. Polacchi, 66100, Chieti, Italy
| | - Mariachiara Zuccarini
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100, Chieti, Italy
| | - Patricia Giuliani
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100, Chieti, Italy
| | - Francesco Caciagli
- Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100, Chieti, Italy
| | - Patrizia Di Iorio
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy.,Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100, Chieti, Italy
| | - Renata Ciccarelli
- Department of Medical, Oral and Biotechnological Sciences, University of Chieti-Pescara, Via dei Vestini 29, 66100, Chieti, Italy. .,Center for Advanced Studies and Technologies (CAST), University of Chieti-Pescara, Via L. Polacchi, 66100, Chieti, Italy. .,StemTeCh Group, Via L. Polacchi, 66100, Chieti, Italy.
| |
Collapse
|
13
|
Negri S, Faris P, Pellavio G, Botta L, Orgiu M, Forcaia G, Sancini G, Laforenza U, Moccia F. Group 1 metabotropic glutamate receptors trigger glutamate-induced intracellular Ca 2+ signals and nitric oxide release in human brain microvascular endothelial cells. Cell Mol Life Sci 2020; 77:2235-2253. [PMID: 31473770 PMCID: PMC11104941 DOI: 10.1007/s00018-019-03284-1] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Revised: 08/02/2019] [Accepted: 08/16/2019] [Indexed: 12/20/2022]
Abstract
Neurovascular coupling (NVC) is the mechanism whereby an increase in neuronal activity causes an increase in local cerebral blood flow (CBF) to ensure local supply of oxygen and nutrients to the activated areas. The excitatory neurotransmitter glutamate gates post-synaptic N-methyl-D-aspartate receptors to mediate extracellular Ca2+ entry and stimulate neuronal nitric oxide (NO) synthase to release NO, thereby triggering NVC. Recent work suggested that endothelial Ca2+ signals could underpin NVC by recruiting the endothelial NO synthase. For instance, acetylcholine induced intracellular Ca2+ signals followed by NO release by activating muscarinic 5 receptors in hCMEC/D3 cells, a widely employed model of human brain microvascular endothelial cells. Herein, we sought to assess whether also glutamate elicits metabotropic Ca2+ signals and NO release in hCMEC/D3 cells. Glutamate induced a dose-dependent increase in intracellular Ca2+ concentration ([Ca2+]i) that was blocked by α-methyl-4-carboxyphenylglycine and phenocopied by trans-1-amino-1,3-cyclopentanedicarboxylic acid, which, respectively, block and activate group 1 metabotropic glutamate receptors (mGluRs). Accordingly, hCMEC/D3 expressed both mGluR1 and mGluR5 and the Ca2+ response to glutamate was inhibited by their pharmacological blockade with, respectively, CPCCOEt and MTEP hydrochloride. The Ca2+ response to glutamate was initiated by endogenous Ca2+ release from the endoplasmic reticulum and endolysosomal Ca2+ store through inositol-1,4,5-trisphosphate receptors and two-pore channels, respectively, and sustained by store-operated Ca2+ entry. In addition, glutamate induced robust NO release that was suppressed by pharmacological blockade of the accompanying increase in [Ca2+]i. These data demonstrate for the first time that glutamate may induce metabotropic Ca2+ signals in human brain microvascular endothelial cells. The Ca2+ response to glutamate is likely to support NVC during neuronal activity, thereby reinforcing the emerging role of brain microvascular endothelial cells in the regulation of CBF.
Collapse
Affiliation(s)
- Sharon Negri
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Via Forlanini 6, 27100, Pavia, Italy
| | - Pawan Faris
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Via Forlanini 6, 27100, Pavia, Italy
- Research Center, Salahaddin University, Erbil, Kurdistan-Region of Iraq, Iraq
| | - Giorgia Pellavio
- Human Physiology Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Laura Botta
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Via Forlanini 6, 27100, Pavia, Italy
| | - Matteo Orgiu
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Via Forlanini 6, 27100, Pavia, Italy
| | - Greta Forcaia
- Department of Experimental Medicine, University of Milano-Bicocca, Monza, Italy
| | - Giulio Sancini
- Department of Experimental Medicine, University of Milano-Bicocca, Monza, Italy
| | - Umberto Laforenza
- Human Physiology Unit, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Francesco Moccia
- Laboratory of General Physiology, Department of Biology and Biotechnology "Lazzaro Spallanzani", University of Pavia, Via Forlanini 6, 27100, Pavia, Italy.
| |
Collapse
|
14
|
Calcium signaling mediated by aminergic GPCRs is impaired by the PI3K inhibitor LY294002 and its analog LY303511 in a PI3K-independent manner. Eur J Pharmacol 2020; 880:173182. [PMID: 32416185 DOI: 10.1016/j.ejphar.2020.173182] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 04/17/2020] [Accepted: 05/08/2020] [Indexed: 12/23/2022]
Abstract
The phosphoinositide 3-kinase (PI3K) inhibitor LY294002 (LY294) and its much less active analog LY303511 (LY303) constitute the paired probe that is commonly used to demonstrate the involvement of PI3K in intracellular signaling. We studied effects of LY294 and LY303 on Ca2+ signaling initiated by certain GPCR agonists in cells of several lines, including CHO cells expressing the recombinant serotonin receptor 5-HT2C and mesenchymal stromal cells derived from the human adipose tissue (AD-MSCs) and umbilical cord (UD-MSCs). The LY294/LY303 pair exerted apparently specific effects on responsiveness of AD-MSCs to ATP, suggesting the involvement of PI3K in ATP transduction. Surprisingly, LY303 inhibited Ca2+ transients elicited by histamine in the same cells, while LY294 was ineffective. This observation and other findings implicated a PI3K-unrelated mechanism in mediating effects of the LY compound on AD-MSC responsiveness to histamine. With LY303 in the bath, the dose dependence of histamine responses was shifted positively at the invariable number of responsive cells, as would be the case with a competitive antagonist of histamine receptors. Moreover, LY303 and LY294 inhibited Ca2+ transients elicited by acetylcholine and serotonin in UD-MSCs and CHO/5-HT2C cells, respectively. Our overall results argued for the possibility that LY294 and LY303 could directly affect activity of aminergic GPCRs. Thus, LY303511 and LY294002 should be used cautiously in studies of PI3K as a factor of GPCR signaling.
Collapse
|
15
|
Role of UDP-Sugar Receptor P2Y 14 in Murine Osteoblasts. Int J Mol Sci 2020; 21:ijms21082747. [PMID: 32326617 PMCID: PMC7216066 DOI: 10.3390/ijms21082747] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/03/2020] [Accepted: 04/07/2020] [Indexed: 02/07/2023] Open
Abstract
The purinergic (P2) receptor P2Y14 is the only P2 receptor that is stimulated by uridine diphosphate (UDP)-sugars and its role in bone formation is unknown. We confirmed P2Y14 expression in primary murine osteoblasts (CB-Ob) and the C2C12-BMP2 osteoblastic cell line (C2-Ob). UDP-glucose (UDPG) had undiscernible effects on cAMP levels, however, induced dose-dependent elevations in the cytosolic free calcium concentration ([Ca2+]i) in CB-Ob, but not C2-Ob cells. To antagonize the P2Y14 function, we used the P2Y14 inhibitor PPTN or generated CRISPR-Cas9-mediated P2Y14 knockout C2-Ob clones (Y14KO). P2Y14 inhibition facilitated calcium signalling and altered basal cAMP levels in both models of osteoblasts. Importantly, P2Y14 inhibition augmented Ca2+ signalling in response to ATP, ADP and mechanical stimulation. P2Y14 knockout or inhibition reduced osteoblast proliferation and decreased ERK1/2 phosphorylation and increased AMPKα phosphorylation. During in vitro osteogenic differentiation, P2Y14 inhibition modulated the timing of osteogenic gene expression, collagen deposition, and mineralization, but did not significantly affect differentiation status by day 28. Of interest, while P2ry14-/- mice from the International Mouse Phenotyping Consortium were similar to wild-type controls in bone mineral density, their tibia length was significantly increased. We conclude that P2Y14 in osteoblasts reduces cell responsiveness to mechanical stimulation and mechanotransductive signalling and modulates osteoblast differentiation.
Collapse
|
16
|
Dănilă MD, Piollet M, Aburel OM, Angoulvant D, Lefort C, Chadet S, Roger S, Muntean MD, Ivanes F. Modulation of P2Y11-related purinergic signaling in inflammation and cardio-metabolic diseases. Eur J Pharmacol 2020; 876:173060. [PMID: 32142768 DOI: 10.1016/j.ejphar.2020.173060] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 02/22/2020] [Accepted: 02/28/2020] [Indexed: 12/11/2022]
Abstract
Chronic inflammation is the hallmark of cardiovascular pathologies with a major role in both disease progression and occurrence of long-term complications. The massive release of ATP during the inflammatory process activates various purinergic receptors, including P2Y11. This receptor is less studied but ubiquitously expressed in all cells relevant for cardiovascular pathology: cardiomyocytes, fibroblasts, endothelial and immune cells. While several studies suggested a potential pro-inflammatory role for P2Y11 receptors, recent literature data are supportive of an anti-inflammatory profile characterized by the immunosuppression of dendritic cells, inhibition of fibroblast proliferation and of cytokines and ATP secretion. Moreover, modulation of its activity appears to mediate the positive inotropic effect of ATP and mitigate endothelial dysfunction, thus rendering this receptor a promising therapeutic target in the cardiovascular disease armamentarium. The aim of the present review is to summarize the current available knowledge on P2Y11-related purinergic signaling in the setting of inflammation and cardio-metabolic diseases.
Collapse
Affiliation(s)
- Maria-Daniela Dănilă
- Department of Functional Sciences - Pathophysiology, "Victor Babeș" University of Medicine and Pharmacy Timișoara, Romania
| | - Marie Piollet
- EA4245 Transplantation Immunity Inflammation, Faculty of Medicine - Tours University& Loire Valley Cardiovascular Collaboration, Tours, F37000, France
| | - Oana-Maria Aburel
- Department of Functional Sciences - Pathophysiology, "Victor Babeș" University of Medicine and Pharmacy Timișoara, Romania; Center for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy Timișoara, Romania
| | - Denis Angoulvant
- EA4245 Transplantation Immunity Inflammation, Faculty of Medicine - Tours University& Loire Valley Cardiovascular Collaboration, Tours, F37000, France; Cardiology Department, Trousseau Hospital, CHRU de Tours, F37000, Tours, France
| | - Claudie Lefort
- EA4245 Transplantation Immunity Inflammation, Faculty of Medicine - Tours University& Loire Valley Cardiovascular Collaboration, Tours, F37000, France
| | - Stéphanie Chadet
- EA4245 Transplantation Immunity Inflammation, Faculty of Medicine - Tours University& Loire Valley Cardiovascular Collaboration, Tours, F37000, France
| | - Sebastien Roger
- EA4245 Transplantation Immunity Inflammation, Faculty of Medicine - Tours University& Loire Valley Cardiovascular Collaboration, Tours, F37000, France
| | - Mirela-Danina Muntean
- Department of Functional Sciences - Pathophysiology, "Victor Babeș" University of Medicine and Pharmacy Timișoara, Romania; Center for Translational Research and Systems Medicine, "Victor Babeș" University of Medicine and Pharmacy Timișoara, Romania.
| | - Fabrice Ivanes
- EA4245 Transplantation Immunity Inflammation, Faculty of Medicine - Tours University& Loire Valley Cardiovascular Collaboration, Tours, F37000, France; Cardiology Department, Trousseau Hospital, CHRU de Tours, F37000, Tours, France
| |
Collapse
|
17
|
Tarasov MV, Kotova PD, Bystrova MF, Kabanova NV, Sysoeva VY, Kolesnikov SS. Arachidonic acid hyperpolarizes mesenchymal stromal cells from the human adipose tissue by stimulating TREK1 K + channels. Channels (Austin) 2019; 13:36-47. [PMID: 30661462 PMCID: PMC6380217 DOI: 10.1080/19336950.2019.1565251] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
The current knowledge of electrogenesis in mesenchymal stromal cells (MSCs) remains scarce. Earlier, we demonstrated that in MSCs from the human adipose tissue, transduction of certain agonists involved the phosphoinositide cascade. Its pivotal effector PLC generates DAG that can regulate ion channels directly or via its derivatives, including arachidonic acid (AA). Here we showed that AA strongly hyperpolarized MSCs by stimulating instantly activating, outwardly rectifying TEA-insensitive K+ channels. Among AA-regulated K+ channels, K2P channels from the TREK subfamily appeared to be an appropriate target. The expression of K2P channels in MSCs was verified by RT-PCR, which revealed TWIK-1, TREK-1, and TASK-5 transcripts. The TREK-1 inhibitor spadin antagonized the electrogenic action of AA, which was simulated by the channel activator BL 1249. This functional evidence suggested that TREK-1 channels mediated AA-dependent hyperpolarization of MSCs. Being mostly silent at rest, TREK-1 negligibly contributed to the “background” K+ current. The dramatic stimulation of TREK-1 channels by AA indicates their involvement in AA-dependent signaling in MSCs.
Collapse
Affiliation(s)
- Michail V Tarasov
- a Department of Molecular Cell Physiology, Institute of Cell Biophysics , Russian Academy of Sciences , Pushchino , Moscow Region , Russia
| | - Polina D Kotova
- a Department of Molecular Cell Physiology, Institute of Cell Biophysics , Russian Academy of Sciences , Pushchino , Moscow Region , Russia
| | - Marina F Bystrova
- a Department of Molecular Cell Physiology, Institute of Cell Biophysics , Russian Academy of Sciences , Pushchino , Moscow Region , Russia
| | - Natalia V Kabanova
- a Department of Molecular Cell Physiology, Institute of Cell Biophysics , Russian Academy of Sciences , Pushchino , Moscow Region , Russia
| | - Veronika Yu Sysoeva
- b Department of Biochemistry and Molecular Medicine, Faculty of Basic Medicine , Lomonosov Moscow State University , Moscow , Russia
| | - Stanislav S Kolesnikov
- a Department of Molecular Cell Physiology, Institute of Cell Biophysics , Russian Academy of Sciences , Pushchino , Moscow Region , Russia
| |
Collapse
|