1
|
Kaiser J, Risteska A, Muller AG, Sun H, Lei B, Nay K, Means AR, Cousin MA, Drewry DH, Oakhill JS, Kemp BE, Hannan AJ, Berk M, Febbraio MA, Gundlach AL, Hill-Yardin EL, Scott JW. Convergence on CaMK4: A Key Modulator of Autism-Associated Signaling Pathways in Neurons. Biol Psychiatry 2025; 97:439-449. [PMID: 39442785 DOI: 10.1016/j.biopsych.2024.10.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 09/03/2024] [Accepted: 10/15/2024] [Indexed: 10/25/2024]
Abstract
Although the precise underlying cause(s) of autism spectrum disorder remain unclear, more than 1000 rare genetic variations are associated with the condition. For many people living with profound autism, this genetic heterogeneity has impeded the identification of common biological targets for therapy development for core and comorbid traits that include significant impairments in social communication and repetitive and restricted behaviors. A substantial number of genes associated with autism encode proteins involved in signal transduction and synaptic transmission that are critical for brain development and function. CAMK4 is an emerging risk gene for autism spectrum disorder that encodes the CaMK4 (calcium/calmodulin-dependent protein kinase 4) enzyme. CaMK4 is a key component of a Ca2+-activated signaling pathway that regulates neurodevelopment and synaptic plasticity. In this review, we discuss 3 genetic variants of CAMK4 found in individuals with hyperkinetic movement disorder and comorbid neurological symptoms including autism spectrum disorder that are likely pathogenic with monogenic effect. We also comment on 4 other genetic variations in CAMK4 that show associations with autism spectrum disorder, as well as 12 examples of autism-associated variations in other genes that impact CaMK4 signaling pathways. Finally, we highlight 3 environmental risk factors that impact CaMK4 signaling based on studies of preclinical models of autism and/or clinical cohorts. Overall, we review molecular, genetic, physiological, and environmental evidence that suggest that defects in the CaMK4 signaling pathway may play an important role in a common autism pathogenesis network across numerous patient groups, and we propose CaMK4 as a potential therapeutic target.
Collapse
Affiliation(s)
- Jacqueline Kaiser
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Melbourne, Victoria, Australia; St. Vincent's Institute of Medical Research, Melbourne, Victoria, Australia; Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | - Alana Risteska
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Melbourne, Victoria, Australia
| | - Abbey G Muller
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Melbourne, Victoria, Australia; Medicinal Chemistry, Monash Institute of Pharmaceutical Sciences, Melbourne, Victoria, Australia
| | - Haoxiong Sun
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Melbourne, Victoria, Australia
| | - Bethany Lei
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Melbourne, Victoria, Australia
| | - Kevin Nay
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Melbourne, Victoria, Australia
| | - Anthony R Means
- Molecular and Cellular Biology, Baylor College of Medicine, Houston, Texas
| | - Margot A Cousin
- Center for Individualized Medicine, College of Medicine, Mayo Clinic, Rochester, Minnesota
| | - David H Drewry
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, the University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Jonathan S Oakhill
- St. Vincent's Institute of Medical Research, Melbourne, Victoria, Australia; Mary McKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | - Bruce E Kemp
- St. Vincent's Institute of Medical Research, Melbourne, Victoria, Australia
| | - Anthony J Hannan
- Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia; Department of Anatomy and Physiology, the University of Melbourne, Melbourne, Victoria, Australia
| | - Michael Berk
- Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia; The Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Deakin University, Geelong, Victoria, Australia; Orygen, The National Centre of Excellence in Youth Mental Health, Parkville, Melbourne, Australia
| | - Mark A Febbraio
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Melbourne, Victoria, Australia
| | - Andrew L Gundlach
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Melbourne, Victoria, Australia; St. Vincent's Institute of Medical Research, Melbourne, Victoria, Australia; Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia; Department of Anatomy and Physiology, the University of Melbourne, Melbourne, Victoria, Australia
| | - Elisa L Hill-Yardin
- Department of Anatomy and Physiology, the University of Melbourne, Melbourne, Victoria, Australia; School of Health and Biomedical Sciences, STEM College, RMIT University, Melbourne, Victoria, Australia.
| | - John W Scott
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Melbourne, Victoria, Australia; St. Vincent's Institute of Medical Research, Melbourne, Victoria, Australia; Florey Institute of Neuroscience and Mental Health, Melbourne, Victoria, Australia.
| |
Collapse
|
2
|
Fu C, Weng S, Liu D, Guo R, Chen M, Shi B, Weng J. Review on the Role of Mitochondrial Dysfunction in Septic Encephalopathy. Cell Biochem Biophys 2025; 83:135-145. [PMID: 39212823 DOI: 10.1007/s12013-024-01493-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/21/2024] [Indexed: 09/04/2024]
Abstract
Septic Encephalopathy (SE) is a frequent and severe complication of sepsis, characterized by a range of neurocognitive impairments from mild confusion to deep coma. The underlying pathophysiology of SE involves systemic inflammation, neuroinflammation, blood-brain barrier (BBB) disruption, and mitochondrial dysfunction. Among these factors, mitochondrial dysfunction plays a pivotal role, contributing to impaired ATP production, increased reactive oxygen species (ROS) generation, and activation of apoptotic pathways, all of which exacerbate neuronal damage and cognitive deficits. Diagnosis of SE relies on clinical evaluation, neuroimaging, electroencephalography (EEG), and laboratory tests, though specific diagnostic markers are still lacking. Epidemiological data show SE is prevalent in intensive care unit (ICU) patients, especially those with severe sepsis or septic shock, with incidence rates varying widely depending on the population and diagnostic criteria used. Recent research highlights the importance of mitochondrial dynamics, including biogenesis, fission, and fusion, in the development of SE. Mitophagy, a selective form of autophagy that degrades damaged mitochondria, plays a critical role in maintaining mitochondrial health and protecting against dysfunction. Targeting mitochondrial pathways and enhancing mitophagy offers a promising therapeutic strategy to mitigate the effects of SE, reduce oxidative stress, prevent apoptosis, and support the resolution of neuroinflammation. Further research is essential to elucidate the mechanisms of mitochondrial dysfunction and mitophagy in SE and develop effective interventions to improve patient outcomes.
Collapse
Affiliation(s)
- Chunjin Fu
- Department of Critical Care Medicine, the Affiliated Hospital of Putian University, Putian, 351100, China
| | - Shuoyun Weng
- School of Optometry and Ophthalmology, Wenzhou Medical University, Wenzhou, 325035, China
| | - Danjuan Liu
- Department of Critical Care Medicine, the Affiliated Hospital of Putian University, Putian, 351100, China
| | - Rongjie Guo
- Department of Critical Care Medicine, the Affiliated Hospital of Putian University, Putian, 351100, China
| | - Min Chen
- Department of Critical Care Medicine, the Affiliated Hospital of Putian University, Putian, 351100, China
| | - Bingbing Shi
- Department of Critical Care Medicine, the Affiliated Hospital of Putian University, Putian, 351100, China
| | - Junting Weng
- Department of Critical Care Medicine, the Affiliated Hospital of Putian University, Putian, 351100, China.
| |
Collapse
|
3
|
Liu X, Li T, Tu X, Xu M, Wang J. Mitochondrial fission and fusion in neurodegenerative diseases:Ca 2+ signalling. Mol Cell Neurosci 2025; 132:103992. [PMID: 39863029 DOI: 10.1016/j.mcn.2025.103992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 01/27/2025] Open
Abstract
Neurodegenerative diseases (NDs) are a group of disorders characterized by the progressive loss of neuronal structure and function. The pathogenesis is intricate and involves a network of interactions among multiple causes and systems. Mitochondria and Ca2+ signaling have long been considered to play important roles in the development of various NDs. Mitochondrial fission and fusion dynamics are important processes of mitochondrial quality control, ensuring the stability of mitochondrial structure and function. Mitochondrial fission and fusion imbalance and Ca2+ signaling disorders can aggravate the disease progression of NDs. In this review, we explore the relationship between mitochondrial dynamics and Ca2+ signaling in AD, PD, ALS, and HD, focusing on the roles of key regulatory proteins (Drp1, Fis1, Mfn1/2, and Opa1) and the association structures between mitochondria and the endoplasmic reticulum (MERCs/MAMs). We provide a detailed analysis of their involvement in the pathogenesis of these four NDs. By integrating these mechanisms, we aim to clarify their contributions to disease progression and offer insights into the development of therapeutic strategies that target mitochondrial dynamics and Ca2+ signaling. We also examine the progress in drug research targeting these pathways, highlighting their potential as therapeutic targets in the treatment of NDs.
Collapse
Affiliation(s)
- Xuan Liu
- Xiangya School of Public Health, Central South University, Changsha, Hunan Province, PR China.
| | - Tianjiao Li
- Xiangya School of Public Health, Central South University, Changsha, Hunan Province, PR China.
| | - Xinya Tu
- Xiangya School of Public Health, Central South University, Changsha, Hunan Province, PR China.
| | - Mengying Xu
- Xiangya School of Public Health, Central South University, Changsha, Hunan Province, PR China.
| | - Jianwu Wang
- Xiangya School of Public Health, Central South University, Changsha, Hunan Province, PR China.
| |
Collapse
|
4
|
Lu H, Jiang J, Min J, Huang X, McLeod P, Liu W, Haig A, Gunaratnam L, Jevnikar AM, Zhang ZX. The CaMK Family Differentially Promotes Necroptosis and Mouse Cardiac Graft Injury and Rejection. Int J Mol Sci 2024; 25:4428. [PMID: 38674016 PMCID: PMC11050252 DOI: 10.3390/ijms25084428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/27/2024] [Accepted: 04/12/2024] [Indexed: 04/28/2024] Open
Abstract
Organ transplantation is associated with various forms of programmed cell death which can accelerate transplant injury and rejection. Targeting cell death in donor organs may represent a novel strategy for preventing allograft injury. We have previously demonstrated that necroptosis plays a key role in promoting transplant injury. Recently, we have found that mitochondria function is linked to necroptosis. However, it remains unknown how necroptosis signaling pathways regulate mitochondrial function during necroptosis. In this study, we investigated the receptor-interacting protein kinase 3 (RIPK3) mediated mitochondrial dysfunction and necroptosis. We demonstrate that the calmodulin-dependent protein kinase (CaMK) family members CaMK1, 2, and 4 form a complex with RIPK3 in mouse cardiac endothelial cells, to promote trans-phosphorylation during necroptosis. CaMK1 and 4 directly activated the dynamin-related protein-1 (Drp1), while CaMK2 indirectly activated Drp1 via the phosphoglycerate mutase 5 (PGAM5). The inhibition of CaMKs restored mitochondrial function and effectively prevented endothelial cell death. CaMKs inhibition inhibited activation of CaMKs and Drp1, and cell death and heart tissue injury (n = 6/group, p < 0.01) in a murine model of cardiac transplantation. Importantly, the inhibition of CaMKs greatly prolonged heart graft survival (n = 8/group, p < 0.01). In conclusion, CaMK family members orchestrate cell death in two different pathways and may be potential therapeutic targets in preventing cell death and transplant injury.
Collapse
Affiliation(s)
- Haitao Lu
- Matthew Mailing Centre for Translational Transplantation Studies, London Health Sciences Centre, London, ON N6A 5A5, Canada; (H.L.); (A.M.J.)
- Department of Pathology, Western University, London, ON N6A 3K7, Canada
| | - Jifu Jiang
- Matthew Mailing Centre for Translational Transplantation Studies, London Health Sciences Centre, London, ON N6A 5A5, Canada; (H.L.); (A.M.J.)
| | - Jeffery Min
- Matthew Mailing Centre for Translational Transplantation Studies, London Health Sciences Centre, London, ON N6A 5A5, Canada; (H.L.); (A.M.J.)
| | - Xuyan Huang
- Matthew Mailing Centre for Translational Transplantation Studies, London Health Sciences Centre, London, ON N6A 5A5, Canada; (H.L.); (A.M.J.)
| | - Patrick McLeod
- Matthew Mailing Centre for Translational Transplantation Studies, London Health Sciences Centre, London, ON N6A 5A5, Canada; (H.L.); (A.M.J.)
| | - Weihua Liu
- Department of Pathology, Western University, London, ON N6A 3K7, Canada
| | - Aaron Haig
- Department of Pathology, Western University, London, ON N6A 3K7, Canada
| | - Lakshman Gunaratnam
- Matthew Mailing Centre for Translational Transplantation Studies, London Health Sciences Centre, London, ON N6A 5A5, Canada; (H.L.); (A.M.J.)
- Department of Microbiology and Immunology, Western University, London, ON N6A 3K7, Canada
- Multi-Organ Transplant Program, London Health Sciences Centre, London, ON N6A 5A5, Canada
- Division of Nephrology, Department of Medicine, Western University, London, ON N6A 3K7, Canada
| | - Anthony M. Jevnikar
- Matthew Mailing Centre for Translational Transplantation Studies, London Health Sciences Centre, London, ON N6A 5A5, Canada; (H.L.); (A.M.J.)
- Department of Microbiology and Immunology, Western University, London, ON N6A 3K7, Canada
- Multi-Organ Transplant Program, London Health Sciences Centre, London, ON N6A 5A5, Canada
- Division of Nephrology, Department of Medicine, Western University, London, ON N6A 3K7, Canada
| | - Zhu-Xu Zhang
- Matthew Mailing Centre for Translational Transplantation Studies, London Health Sciences Centre, London, ON N6A 5A5, Canada; (H.L.); (A.M.J.)
- Department of Pathology, Western University, London, ON N6A 3K7, Canada
- Multi-Organ Transplant Program, London Health Sciences Centre, London, ON N6A 5A5, Canada
- Division of Nephrology, Department of Medicine, Western University, London, ON N6A 3K7, Canada
| |
Collapse
|
5
|
Liu W, Liu T, Zheng Y, Xia Z. Metabolic Reprogramming and Its Regulatory Mechanism in Sepsis-Mediated Inflammation. J Inflamm Res 2023; 16:1195-1207. [PMID: 36968575 PMCID: PMC10038208 DOI: 10.2147/jir.s403778] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 03/08/2023] [Indexed: 03/22/2023] Open
Abstract
Sepsis is a systemic inflammatory disease caused by an infection that can lead to multiple organ failure. Sepsis alters energy metabolism, leading to metabolic reprogramming of immune cells, which consequently disrupts innate and adaptive immune responses, triggering hyperinflammation and immunosuppression. This review summarizes metabolic reprogramming and its regulatory mechanism in sepsis-induced hyperinflammation and immunosuppression, highlights the significance and intricacies of immune cell metabolic reprogramming, and emphasizes the pivotal role of mitochondria in metabolic regulation and treatment of sepsis. This review provides an up-to-date overview of the relevant literature to inform future research directions in understanding the regulation of sepsis immunometabolism. Metabolic reprogramming has great promise as a new target for sepsis treatment in the future.
Collapse
Affiliation(s)
- Wenzhang Liu
- Department of Burn Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, People’s Republic of China
| | - Tianyi Liu
- Department of Burn Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, People’s Republic of China
| | - Yongjun Zheng
- Department of Burn Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, People’s Republic of China
- Correspondence: Yongjun Zheng; Zhaofan Xia, Email ;
| | - Zhaofan Xia
- Department of Burn Surgery, Changhai Hospital, Naval Medical University, Shanghai, 200433, People’s Republic of China
- Research Unit of Key Techniques for Treatment of burns and Combined Burns and Trauma Injury, Chinese Academy of Medical Sciences, Shanghai, 200433, People’s Republic of China
| |
Collapse
|
6
|
Scherlinger M, Pan W, Hisada R, Boulougoura A, Yoshida N, Vukelic M, Umeda M, Krishfield S, Tsokos MG, Tsokos GC. Phosphofructokinase P fine-tunes T regulatory cell metabolism, function, and stability in systemic autoimmunity. SCIENCE ADVANCES 2022; 8:eadc9657. [PMID: 36449620 PMCID: PMC9710877 DOI: 10.1126/sciadv.adc9657] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/12/2022] [Indexed: 05/21/2023]
Abstract
Systemic lupus erythematosus (SLE) is an autoimmune disease characterized by defective regulatory T (Treg) cells. Here, we demonstrate that a T cell-specific deletion of calcium/calmodulin-dependent protein kinase 4 (CaMK4) improves disease in B6.lpr lupus-prone mice and expands Treg cells. Mechanistically, CaMK4 phosphorylates the glycolysis rate-limiting enzyme 6-phosphofructokinase, platelet type (PFKP) and promotes aerobic glycolysis, while its end product fructose-1,6-biphosphate suppresses oxidative metabolism. In Treg cells, a CRISPR-Cas9-enabled Pfkp deletion recapitulated the metabolism of Camk4-/- Treg cells and improved their function and stability in vitro and in vivo. In SLE CD4+ T cells, PFKP enzymatic activity correlated with SLE disease activity and pharmacologic inhibition of CaMK4-normalized PFKP activity, leading to enhanced Treg cell function. In conclusion, we provide molecular insights in the defective metabolism and function of Treg cells in SLE and identify PFKP as a target to fine-tune Treg cell metabolism and thereby restore their function.
Collapse
Affiliation(s)
- Marc Scherlinger
- Department of Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02115, USA
- Rheumatology Department, Strasbourg University Hospital of Hautepierre, 1 Avenue Molière, 67200 Strasbourg, France
| | - Wenliang Pan
- Department of Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02115, USA
| | - Ryo Hisada
- Department of Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02115, USA
| | - Afroditi Boulougoura
- Department of Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02115, USA
| | - Nobuya Yoshida
- Department of Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02115, USA
| | - Milena Vukelic
- Department of Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02115, USA
| | - Masataka Umeda
- Department of Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02115, USA
| | - Suzanne Krishfield
- Department of Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02115, USA
| | - Maria G. Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02115, USA
| | - George C. Tsokos
- Department of Medicine, Beth Israel Deaconess Medical Center, 330 Brookline Avenue, Boston, MA 02115, USA
| |
Collapse
|
7
|
Liu J, Zhou G, Wang X, Liu D. Metabolic reprogramming consequences of sepsis: adaptations and contradictions. Cell Mol Life Sci 2022; 79:456. [PMID: 35904600 PMCID: PMC9336160 DOI: 10.1007/s00018-022-04490-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 12/19/2022]
Abstract
During sepsis, the importance of alterations in cell metabolism is underappreciated. The cellular metabolism, which has a variable metabolic profile in different cells and disease stages, is largely responsible for the immune imbalance and organ failure associated with sepsis. Metabolic reprogramming, in which glycolysis replaces OXPHOS as the main energy-producing pathway, is both a requirement for immune cell activation and a cause of immunosuppression. Meanwhile, the metabolites produced by OXPHOS and glycolysis can act as signaling molecules to control the immune response during sepsis. Sepsis-induced "energy shortage" leads to stagnated cell function and even organ dysfunction. Metabolic reprogramming can alleviate the energy crisis to some extent, enhance host tolerance to maintain cell survival functions, and ultimately increase the adaptation of cells during sepsis. However, a switch from glycolysis to OXPHOS is essential for restoring cell function. This review summarized the crosstalk between metabolic reprogramming and immune cell activity as well as organ function during sepsis, discussed the benefits and drawbacks of metabolic reprogramming to show the contradictions of metabolic reprogramming during sepsis, and assessed the feasibility of treating sepsis through targeted metabolism. Using metabolic reprogramming to achieve metabolic homeostasis could be a viable therapy option for sepsis.
Collapse
Affiliation(s)
- Jingjing Liu
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, 1# Shuai Fu Yuan, Dong Cheng District, Beijing, 100730 China
| | - Gaosheng Zhou
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, 1# Shuai Fu Yuan, Dong Cheng District, Beijing, 100730 China
| | - Xiaoting Wang
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, 1# Shuai Fu Yuan, Dong Cheng District, Beijing, 100730 China
| | - Dawei Liu
- Department of Critical Care Medicine, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, 1# Shuai Fu Yuan, Dong Cheng District, Beijing, 100730 China
| |
Collapse
|
8
|
Zhang R, Gao Y, Li Y, Geng D, Liang Y, He Q, Wang L, Cui H. Nrf2 improves hippocampal synaptic plasticity, learning and memory through the circ-Vps41/miR-26a-5p/CaMKIV regulatory network. Exp Neurol 2022; 351:113998. [PMID: 35143833 DOI: 10.1016/j.expneurol.2022.113998] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 01/21/2022] [Accepted: 02/01/2022] [Indexed: 12/24/2022]
Abstract
Antioxidant response transcription factor nuclear factor erythroid-2-related factor 2 (Nrf2/Nfe2l2) is a neuroprotective agent in learning and memory impairment. This study provides a new perspective to explore the regulatory mechanisms of Nrf2. Here, we found that Nrf2 regulated circular RNA circ-Vps41 to increase hippocampal synaptic plasticity; Nrf2 bound the Vps41 promoter to activate transcription of the Vps41 gene and promote expression of circ-Vps41; circ-Vps41 positively correlated with Nrf2, synaptic plasticity, and learning and memory but negatively correlated with reactive oxygen species; and Nrf2 promoted CaMKIV expression by increasing levels of circ-Vps41, which can absorb miR-26a-5p that targets CaMKIV. Our findings revealed a new circRNA-based regulatory network regulated by Nrf2 and provided novel insights into the potential mechanism involved in the improvement of learning and memory impairment.
Collapse
Affiliation(s)
- Runjiao Zhang
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China; Institute of Medicine and Health, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China
| | - Yanjing Gao
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China; Institute of Medicine and Health, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China
| | - Yibo Li
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China; Institute of Medicine and Health, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China
| | - Dandan Geng
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China; Institute of Medicine and Health, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China; The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China
| | - Yuxiang Liang
- School of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China
| | - Qingwen He
- School of Basic Medicine, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China
| | - Lei Wang
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China; Institute of Medicine and Health, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China; The Key Laboratory of Neural and Vascular Biology, Ministry of Education, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China.
| | - Huixian Cui
- Department of Human Anatomy, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China; Institute of Medicine and Health, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China; National University of Ireland Galway Stem Cell Research Center, Hebei Medical University, Shijiazhuang, Hebei 050017, PR China.
| |
Collapse
|
9
|
Mai C, Qiu L, Zeng Y, Tan X. Lactobacillus casei Strain Shirota Enhances the Ability of Geniposide to Activate SIRT1 and Decrease Inflammation and Oxidative Stress in Septic Mice. Front Physiol 2021; 12:678838. [PMID: 34616305 PMCID: PMC8488262 DOI: 10.3389/fphys.2021.678838] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2021] [Accepted: 08/19/2021] [Indexed: 11/13/2022] Open
Abstract
Gardenia jasminoides Ellis is rich in geniposide, which can be transformed into the anti-oxidant and anti-inflammatory agent genipin. Genipin exhibits greater efficacy than geniposide, but it is unstable and difficult to preserve. In this study, a mouse model for sepsis was established by cecal ligation and puncture, and then we explored the effects and mechanism of Lactobacillus casei strain Shirota (LcS) on the enhancement of the ability of geniposide to reduce sepsis and decrease inflammatory and oxidative levels in mice by the regulation of sirtuin type 1 (SIRT1). The mice were evaluated and analyzed by the open field test, Morris water maze test, flow cytometry, kit assay, qPCR, and western blot. The LcS + geniposide increased the survival rate in mice with sepsis, and increased the total travel distance, number of times the mice stood up, amount of time the mice spent grooming their fur, duration in the target quadrant, and crossing area number. The testing of mouse nerve cells showed that LcS + geniposide reduced the rate of nerve cell apoptosis caused by sepsis. LcS + geniposide also decreased the amount of inflammatory-related indicators of TNF-α, IL-6, and IL-1β, and the oxidation-related levels of malondialdehyde (MDA) in the hippocampi of septic mice, and it increased the oxidase activities of superoxide dismutase (SOD) and catalase (CAT). Additionally, LcS + geniposide increased the SOD1, SOD2, and CAT mRNA expression in the hippocampi of mice with sepsis and decreased the expression of TNF-α, IL-1β, NF-κB, and p53 mRNA. LcS+geniposide also increased the SIRT1 protein expression and decreased the Ac-FOXO1, Ac-NF-κB, and Ac-p53 protein expression in the hippocampi of mice with sepsis. We also observed that LcS + geniposide decreased the inflammatory and oxidative damage in the mice with sepsis. The effect of LcS + geniposide was similar to that of the drug dexamethasone and stronger than the effect of geniposide utilized alone. LcS also enhanced the ability of geniposide to activate SIRT1 and decrease the inflammation and oxidative stress in the septic mice, and it achieved an effect same with that obtained by the use of the drug dexamethasone.
Collapse
Affiliation(s)
- Chao Mai
- Department of Emergency, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Li Qiu
- Department of Emergency, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yong Zeng
- Department of Emergency, The Second Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xingqin Tan
- Department of Anesthesiology Children's Hospital of Chongqing Medical University, National Clinical Research Center for Child Health and Disorders, Ministry of Education Key Laboratory of Child Development and Disorders, Chongqing Key Laboratory of Pediatrics, Chongqing, China
| |
Collapse
|
10
|
Song N, Zhu H, Xu R, Liu J, Fang Y, Zhang J, Ding J, Hu G, Lu M. Induced Expression of kir6.2 in A1 Astrocytes Propagates Inflammatory Neurodegeneration via Drp1-dependent Mitochondrial Fission. Front Pharmacol 2021; 11:618992. [PMID: 33584303 PMCID: PMC7876245 DOI: 10.3389/fphar.2020.618992] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/24/2020] [Indexed: 12/20/2022] Open
Abstract
Glia-mediated inflammatory processes are crucial in the pathogenesis of Parkinson’s disease (PD). As the most abundant cells of the brain and active participants in neuroinflammatory responses, astrocytes largely propagate inflammatory signals and amplify neuronal loss. Hence, intensive control of astrocytic activation is necessary to prevent neurodegeneration. In this study, we report that the astrocytic kir6.2, as a abnormal response after inflammatory stimuli, promotes the reactivity of A1 neurotoxic astrocytes. Using kir6.2 knockout (KO) mice, we find reversal effects of kir6.2 deficiency on A1-like astrocyte activation and death of dopaminergic neurons in lipopolysaccharide (LPS)-induced mouse models for PD. Further in vitro experiments show that aberrant kir6.2 expression induced by inflammatory irritants in astrocytes mediates the dynamin-related protein 1 (Drp1)-dependent excessive mitochondrial fragmentation and results in mitochondrial malfunctions. By deleting kir6.2, astrocytic activation is reduced and astrocytes-derived neuronal injury is prevented. We therefore conclude that astrocytic kir6.2 can potentially elucidate the pathology of PD and promote the development of therapeutic strategies for PD.
Collapse
Affiliation(s)
- Nanshan Song
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Hong Zhu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Rong Xu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Jiaqi Liu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Yinquan Fang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Jing Zhang
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Jianhua Ding
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| | - Gang Hu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China.,Department of Pharmacology, Nanjing University of Chinese Medicine, Nanjing, China
| | - Ming Lu
- Jiangsu Key Laboratory of Neurodegeneration, Department of Pharmacology, Nanjing Medical University, Nanjing, China.,Neuroprotective Drug Discovery Key Laboratory, Department of Pharmacology, Nanjing Medical University, Nanjing, China
| |
Collapse
|