1
|
Karthikeyan A, Tabassum N, Jeong GJ, Javaid A, Mani AK, Kim TH, Kim YM, Jung WK, Khan F. Alleviation of mycobacterial infection by impairing motility and biofilm formation via natural and synthetic molecules. World J Microbiol Biotechnol 2025; 41:113. [PMID: 40148661 DOI: 10.1007/s11274-025-04322-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2025] [Accepted: 03/10/2025] [Indexed: 03/29/2025]
Abstract
Mycobacterium species show distinctive characteristics with significant medical implications. Mycobacteria, including Mycobacterium tuberculosis and non-tuberculous mycobacteria, can form biofilms that facilitate their survival in hostile environments and contribute to development of antibiotic resistance and responses by the host immune system. Mycobacterial biofilm development is a complex process involving multiple genetic determinants, notably mmpL genes, which regulate lipid transport and support cell wall integrity, and the groEL gene, which is essential for biofilm maturation. Sliding motility, a passive form of surface movement observed across various mycobacterial species, is closely associated with biofilm formation and colony morphology. The unique sliding motility and biofilm-forming capabilities of Mycobacterium spp. are pivotal for their pathogenicity and persistence in diverse environments. A comprehensive understanding of the regulatory mechanisms governing these processes is crucial for the development of novel therapeutic strategies against mycobacterial infections. This review provides a detailed examination of our current knowledge regarding mycobacterial biofilm formation and motility, with a focus on regulation of these processes, their impact on pathogenicity, and potential avenues for therapeutic intervention. To this end, the potential of natural and synthetic compounds, including nanomaterials, in combating mycobacterial biofilms and inhibiting sliding motility are discussed as well. These compounds offer new avenues for the treatment of drug-resistant mycobacterial infections.
Collapse
Affiliation(s)
- Abirami Karthikeyan
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan, 48513, Republic of Korea
| | - Nazia Tabassum
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Geum-Jae Jeong
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Aqib Javaid
- Interdisciplinary Program of Marine and Fisheries Sciences and Convergent Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Arun Kumar Mani
- Department of Chemistry and Biosciences, Srinivasa Ramanujan Centre, SASTRA Deemed University, Tamil Nadu, Kumbakonam, 612001, India
| | - Tae-Hee Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Young-Mog Kim
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Department of Food Science and Technology, Pukyong National University, Busan, 48513, Republic of Korea
| | - Won-Kyo Jung
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence and New-Senior Healthcare Innovation Center (BK21 Plus), Pukyong National University, Busan, 48513, Republic of Korea
| | - Fazlurrahman Khan
- Marine Integrated Biomedical Technology Center, The National Key Research Institutes in Universities, Pukyong National University, Busan, 48513, Republic of Korea.
- Research Center for Marine Integrated Bionics Technology, Pukyong National University, Busan, 48513, Republic of Korea.
- Interdisciplinary Program of Marine and Fisheries Sciences and Convergent Technology, Pukyong National University, Busan, 48513, Republic of Korea.
- Ocean and Fisheries Development International Cooperation Institute, Pukyong National University, Busan, 48513, Republic of Korea.
- International Graduate Program of Fisheries Science, Pukyong National University, Busan, 48513, Republic of Korea.
| |
Collapse
|
2
|
Albano C, Nabawy A, Tran WC, Prithviraj M, Kado T, Hassan MA, Makabenta JMV, Rotello VM, Morita YS. Effective killing of Mycobacterium abscessus biofilm by nanoemulsion delivery of plant phytochemicals. Microbiol Spectr 2025; 13:e0216624. [PMID: 39873503 PMCID: PMC11878076 DOI: 10.1128/spectrum.02166-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Accepted: 12/06/2024] [Indexed: 01/30/2025] Open
Abstract
Mycobacterium is an acid-fast, aerobic, non-motile, and biofilm-forming bacterium. The increasing prevalence of mycobacterial infections makes it necessary to find new methods to combat the resistance of bacteria to conventional antibiotics. Mycobacterium abscessus is an emerging pathogen that is intrinsically drug resistant due to several factors, including an impermeable cell envelope, drug efflux pumps, target-modifying enzymes, and the ability to form thick, robust biofilms. Phytochemicals are promising antimicrobials; however, their poor solubility in water and their inability to penetrate biofilms render them inefficient in killing bacterial biofilms. In this study, we demonstrate the efficacy of polymer-stabilized phytochemical nanoemulsions in killing M. abscessus biofilms. These nanoemulsions improve the solubility and stability of the phytochemicals and enable biofilm penetration and eradication. We show that the phytochemical emulsions effectively eliminated M. abscessus in an in vitro biofilm model and killed non-replicating persister cells in the Wayne hypoxia model. These nanoemulsions were also effective in vivo in a wound infection model. These findings demonstrate the potential of polymer-stabilized phytochemical nanoemulsions as a promising alternative to conventional antibiotics for the treatment of mycobacterial infections. IMPORTANCE Mycobacterium abscessus is among the opportunistic bacterial pathogens that cause nontuberculous mycobacterial diseases. The infection caused by M. abscessus is difficult to treat because the bacterium is resistant to many of the currently available antibiotics, limiting chemotherapeutic strategies. Furthermore, it forms biofilms in clinically relevant settings, making the infection difficult to treat. Many phytochemicals have potent antimicrobial activities, but their hydrophobicity limits clinical applications. In this study, we tested a new drug delivery strategy where hydrophobic plant phytochemicals were emulsified with a biodegradable nanosponge. We show that the emulsification makes phytochemicals such as carvacrol and eugenol more effective against M. abscessus biofilms. We further demonstrate that nanoemulsified phytochemicals can kill hypoxia-induced dormant M. abscessus and effectively improve skin wound infection in mice. Our data pave the way to use phytochemical nanosponge as a platform to create synergy by combining other antimycobacterial drugs.
Collapse
Affiliation(s)
- Casey Albano
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Ahmed Nabawy
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts, USA
| | - Wyatt C. Tran
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Malavika Prithviraj
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | - Takehiro Kado
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| | | | | | - Vincent M. Rotello
- Department of Chemistry, University of Massachusetts, Amherst, Massachusetts, USA
| | - Yasu S. Morita
- Department of Microbiology, University of Massachusetts, Amherst, Massachusetts, USA
| |
Collapse
|
3
|
Suleiman IM, Yu H, Xu J, Zhen J, Xu H, Abudukadier A, Hafiza AR, Xie J. Mycobacterium smegmatis MraZ Regulates Multiple Genes within and Outside of the dcw Operon during Hypoxia. ACS Infect Dis 2024; 10:4301-4313. [PMID: 39556327 DOI: 10.1021/acsinfecdis.4c00665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Mycobacterium tuberculosis is the most ancient human tuberculosis pathogen and has been the leading cause of death from bacterial infectious diseases throughout human history. According to the World Health Organization Global Tuberculosis Report, in 2022, 7.5 million new tuberculosis cases were identified, marking the highest number of cases since the World Health Organization initiated its worldwide tuberculosis surveillance program in 1995. The 2019 peak was 7.1 million cases, with 5.8 million cases in 2020 and 6.4 million in 2021. The increase in 2022, which may be attributed to the COVID-19 pandemic complicating tuberculosis case tracing, has raised concerns. To better understand the regulation spectrum of Mycobacterium smegmatis mraZ under hypoxia, we performed a transcriptome analysis of M. smegmatis mutant and wild-type strains using Illumina Agilent 5300 sequencing. The study identified 6898 differentially expressed genes, which were annotated with NCBI nonredundant protein sequences, a manually annotated and reviewed protein sequence database, Pfam, Clusters of Orthologous Groups of Proteins, Gene Ontology, and Kyoto Encyclopedia of Genes and Genomes. Several mycobacteria transcriptional regulators, virulence genes, membrane transporters, and cell wall biosynthesis genes were annotated. These data serve as a valuable resource for future investigations and may offer insight into the development of drugs to combat M. tuberculosis infection.
Collapse
Affiliation(s)
- Ismail Mohamed Suleiman
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
- Department of Science and Laboratory Technology, Dar-es-Salaam Institute of Technology, Bibititi and Morogoro Rd Junction, P.O. Box 2958, Dar-es-salaam 11101, Tanzania
| | - Huang Yu
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Junqi Xu
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Junfeng Zhen
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Hongxiang Xu
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Abulimiti Abudukadier
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Amina Rafique Hafiza
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, State Key Laboratory Breeding Base of Eco-Environment and Bio-Resource of the Three Gorges Area, Key Laboratory of Eco-Environments in Three Gorges Reservoir Region, Ministry of Education, School of Life Sciences, Southwest University, Beibei, Chongqing 400715, China
| |
Collapse
|
4
|
Teng JLL, Tang Y, Wong SSY, Yeung ML, Cai JP, Chen C, Chan E, Fong JYH, Au-Yeung RKH, Xiong L, Lau TCK, Lau SKP, Woo PCY. Mycolyltransferase is important for biofilm formation and pathogenesis of Tsukamurella keratitis. Emerg Microbes Infect 2024; 13:2373317. [PMID: 38934251 PMCID: PMC11229725 DOI: 10.1080/22221751.2024.2373317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 06/22/2024] [Indexed: 06/28/2024]
Abstract
Tsukamurella, a group of multi-drug resistant, Gram-positive, aerobic, and partially acid-fast bacteria, are emerging causes of bacterial conjunctivitis and keratitis. However, the pathogenesis of Tsukamurella keratitis is largely unknown. To address this, we used New Zealand White rabbits to develop the first eye infection model and conducted in vitro tests to study the pathogenesis mechanisms of Tsukamurella. There is increasing evidence that biofilms play a significant role in ocular infections, leading us to hypothesize that biofilm formation is crucial for effective Tsukamurella infection. In order to look for potential candidate genes which are important in biofilm formation and Tsukamurella keratitis. We performed genome sequencing of two ocular isolates, T. pulmonis-PW1004 and T. tyrosinosolvens-PW899, to identify potential virulence factors. Through in vitro and in vivo studies, we characterized their biological roles in mediating Tsukamurella keratitis. Our findings confirmed that Tsukamurella is an ocular pathogen by fulfilling Koch's postulates, and using genome sequence data, we identified tmytC, encoding a mycolyltransferase, as a crucial gene in biofilm formation and causing Tsukamurella keratitis in the rabbit model. This is the first report demonstrating the novel role of mycolyltransferase in causing ocular infections. Overall, our findings contribute to a better understanding of Tsukamurella pathogenesis and provide a potential target for treatment. Specific inhibitors targeting TmytC could serve as an effective treatment option for Tsukamurella infections.
Collapse
Affiliation(s)
- Jade Lee-Lee Teng
- Faculty of Dentistry, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, People’s Republic of China
| | - Ying Tang
- Faculty of Dentistry, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, People’s Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, People’s Republic of China
| | - Samson Sai-Yin Wong
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, People’s Republic of China
| | - Man Lung Yeung
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, People’s Republic of China
- State Key Laboratory of Emerging Infectious Diseases, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, People’s Republic of China
- Department of Clinical Microbiology and Infection Control, The University of Hong Kong-Shenzhen Hospital, Shenzhen, People’s Republic of China
- Carol Yu Centre for Infection, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, People’s Republic of China
- Centre for Virology, Vaccinology and Therapeutics, Hong Kong Science and Technology Park, Hong Kong Special Administrative Region, Hong Kong, People’s Republic of China
| | - Jian-Pao Cai
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, People’s Republic of China
| | - Chen Chen
- Beijing Ditan Hospital, Capital Medical University, Beijing Key Laboratory of Emerging infectious Diseases, Beijing, People’s Republic of China
| | - Elaine Chan
- Faculty of Dentistry, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, People’s Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, People’s Republic of China
| | - Jordan Yik-Hei Fong
- Faculty of Dentistry, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, People’s Republic of China
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, People’s Republic of China
| | - Rex Kwok-Him Au-Yeung
- Department of Pathology, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, People’s Republic of China
| | - Lifeng Xiong
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, People’s Republic of China
| | - Terrence Chi-Kong Lau
- Department of Biomedical Sciences, Jockey Club College of Veterinary Medicine and Life Sciences, City University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, People’s Republic of China
| | - Susanna Kar-Pui Lau
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, People’s Republic of China
| | - Patrick Chiu-Yat Woo
- Department of Microbiology, School of Clinical Medicine, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong Special Administrative Region, Hong Kong, People’s Republic of China
- Doctoral Program in Translational Medicine and Department of Life Sciences, National Chung Hsing University, Taichung, Taiwan
- The iEGG and Animal Biotechnology Research Center, National Chung Hsing University, Taichung, Taiwan
| |
Collapse
|
5
|
Li P, Huang Q, Xie Y, Zhu Z, Zhan S, Meng J, Liu H. JIB-04, an inhibitor of Jumonji histone demethylase as a potent antitubercular agent against Mycobacterium tuberculosis. Arch Microbiol 2024; 206:470. [PMID: 39560788 DOI: 10.1007/s00203-024-04197-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/20/2024]
Abstract
The increasing drug resistance of Mycobacterium tuberculosis (Mtb), coupled with the limited availability of effective anti-tuberculosis medications, poses significant challenges for the management and treatment of tuberculosis (TB). Globally, non-tuberculous mycobacteria (NTM) infections are increasing, with Mycobacterium avium complex and Mycobacterium abscessus (Mab) being the most common in labs and having few treatment options. There's an urgent need for innovative therapies against Mtb and NTM that are effective and have minimal side effects. The study evaluated the in vitro efficacy of JIB-04, a Jumonji histone demethylase inhibitor, against Mtb, Mab, and multidrug-resistant (MDR) clinical isolates using the minimum inhibitory concentration (MIC) assay. We also determined the minimum bactericidal concentrations (MBCs) of JIB-04 against the H37Rv and H37Ra strains. A time-kill assay was performed to assess the comparative efficacy of JIB-04 and rifampicin against H37Ra. Additionally, the study investigated the impact of JIB-04 on biofilm formation and the persistence of H37Ra over extended periods. Our findings demonstrated a substantial inhibitory effect of JIB-04 on the growth of Mab, Mtb, and MDR clinical isolates. JIB-04 showed bactericidal effects at twice the MIC, outperforming rifampicin in reducing viable cell counts over 8 days. It showed moderate cytotoxicity to mammalian cells but effectively inhibited biofilm formation. In our anoxia model, JIB-04 induced a significant, concentration-dependent reduction in bacterial load. JIB-04 is a promising candidate for the treatment of MDR tuberculosis.
Collapse
Affiliation(s)
- Pei Li
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, No. 29, Bulan Road, Longgang District, Shenzhen, 518112, China
| | - Qiwen Huang
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, No. 29, Bulan Road, Longgang District, Shenzhen, 518112, China
| | - Yanling Xie
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, No. 29, Bulan Road, Longgang District, Shenzhen, 518112, China
| | - Zhu Zhu
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, No. 29, Bulan Road, Longgang District, Shenzhen, 518112, China
| | - Senlin Zhan
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, No. 29, Bulan Road, Longgang District, Shenzhen, 518112, China
| | - Jianzhou Meng
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, No. 29, Bulan Road, Longgang District, Shenzhen, 518112, China.
- Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, 200433, China.
| | - Han Liu
- National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital, The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, No. 29, Bulan Road, Longgang District, Shenzhen, 518112, China.
| |
Collapse
|
6
|
Leestemaker-Palmer A, Bermudez LE. Mycobacteroides abscessus ability to interact with the host mucosal cells plays an important role in pathogenesis of the infection. Crit Rev Microbiol 2024:1-13. [PMID: 39460453 DOI: 10.1080/1040841x.2024.2418130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 10/08/2024] [Accepted: 10/13/2024] [Indexed: 10/28/2024]
Abstract
Non-tuberculous mycobacteria (NTM) are opportunistic pathogens ubiquitous in the environment. Mycobacteroides abscessus is a relatively new pathogen associated with underlying lung chronic pathologies, accounting for most of the pulmonary infections linked to the rapidly growing mycobacteria group. This includes chronic obstructive pulmonary disease, bronchiectasis, or cystic fibrosis. Patient outcomes from M. abscessus infections are poor due to complicated treatments and other factors. Intrinsic drug resistance plays an important role. The M. abscessus toolbox of resistance is varied leading to complex strategies for treatment. Mechanisms include waxy cell walls, drug export mechanisms, and acquired resistance. Many studies have also shown the impact of extracellular DNA found in the biofilm matrix during early infection and its possible advantage in pathogenicity. In this review, we discuss the current knowledge of early infection focusing on biofilm formation, an environmental strategy, and which treatments prevent its formation improving current antibiotic treatment outcomes in preliminary studies.
Collapse
Affiliation(s)
- Amy Leestemaker-Palmer
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Corvallis, OR, USA
| | - Luiz E Bermudez
- Department of Biomedical Sciences, Carlson College of Veterinary Medicine, Corvallis, OR, USA
- Department of Microbiology, College of Sciences, Oregon State University, Corvallis, OR, USA
| |
Collapse
|
7
|
Cano-Fernández M, Esteban J. New antibiofilm strategies for the management of nontuberculous mycobacteria diseases. Expert Opin Pharmacother 2024; 25:2035-2046. [PMID: 39365052 DOI: 10.1080/14656566.2024.2412250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/20/2024] [Accepted: 09/30/2024] [Indexed: 10/05/2024]
Abstract
INTRODUCTION Nontuberculous mycobacteria (NTM) represent a group of microorganisms comprising more than 190 species. NTM infections have increased recently, and their treatment is a major challenge because to their resistance to conventional treatments. This review focuses on innovative strategies aimed at eradicating NTM biofilms, a critical factor in their resistance. Important areas addressed include biofilm formation mechanisms, current therapeutic challenges, and novel treatment approaches. The main objective is to compile and analyze information on these emerging strategies, identifying pivotal research directions and recent advancements. AREAS COVERED A review of the scientific literature was conducted to identify emerging novel therapies for the treatment of NTM infections and to explore potential synergies with existing treatments. EXPERT OPINION Experts highlights a limited understanding of optimal treatment regimens, often supported by insufficient scientific evidence. Current therapies are typically prolonged, involve multiple antibiotics with adverse effects, and frequently do not achieve patient cure. Certain species are even considered virtually impossible to eradicate. A thorough understanding of these new approaches is imperative for improving patients outcomes. This review provides a robust foundation for developing of more effective antibacterial strategies, which are essential because of the increasing incidence of NTM infections and the limitations of existing therapies.
Collapse
Affiliation(s)
- María Cano-Fernández
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain
| | - Jaime Esteban
- Department of Clinical Microbiology, IIS-Fundación Jiménez Díaz, UAM, Madrid, Spain
- CIBERINFEC-CIBER de Enfermedades Infecciosas, Madrid, Spain
| |
Collapse
|
8
|
Patel RR, Arun PP, Singh SK, Singh M. Mycobacterial biofilms: Understanding the genetic factors playing significant role in pathogenesis, resistance and diagnosis. Life Sci 2024; 351:122778. [PMID: 38879157 DOI: 10.1016/j.lfs.2024.122778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/25/2024] [Accepted: 06/04/2024] [Indexed: 07/03/2024]
Abstract
Even though the genus Mycobacterium is a diverse group consisting of a majority of environmental bacteria known as non-tuberculous mycobacteria (NTM), it also contains some of the deadliest pathogens (Mycobacterium tuberculosis) in history associated with chronic disease called tuberculosis (TB). Formation of biofilm is one of the unique strategies employed by mycobacteria to enhance their ability to survive in hostile conditions. Biofilm formation by Mycobacterium species is an emerging area of research with significant implications for understanding its pathogenesis and treatment of related infections, specifically TB. This review provides an overview of the biofilm-forming abilities of different species of Mycobacterium and the genetic factors influencing biofilm formation with a detailed focus on M. tuberculosis. Biofilm-mediated resistance is a significant challenge as it can limit antibiotic penetration and promote the survival of dormant mycobacterial cells. Key genetic factors promoting biofilm formation have been explored such as the mmpL genes involved in lipid transport and cell wall integrity as well as the groEL gene essential for mature biofilm formation. Additionally, biofilm-mediated antibiotic resistance and pathogenesis highlighting the specific niches, sites of infection along with the possible mechanisms of biofilm dissemination have been discussed. Furthermore, drug targets within mycobacterial biofilm and their role as potential biomarkers in the development of rapid diagnostic tools have been highlighted. The review summarises the current understanding of the complex nature of Mycobacterium biofilm and its clinical implications, paving the way for advancements in the field of disease diagnosis, management and treatment against its multi-drug resistant species.
Collapse
Affiliation(s)
- Ritu Raj Patel
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Pandey Priya Arun
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Sudhir Kumar Singh
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India
| | - Meenakshi Singh
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi 221005, India.
| |
Collapse
|
9
|
Liu X, Hu J, Wang W, Yang H, Tao E, Ma Y, Sha S. Mycobacterial Biofilm: Mechanisms, Clinical Problems, and Treatments. Int J Mol Sci 2024; 25:7771. [PMID: 39063012 PMCID: PMC11277187 DOI: 10.3390/ijms25147771] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 07/12/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024] Open
Abstract
Tuberculosis (TB) remains a threat to human health worldwide. Mycobacterium tuberculosis (Mtb) and other nontuberculous mycobacteria (NTM) can form biofilms, and in vitro and animal experiments have shown that biofilms cause serious drug resistance and mycobacterial persistence. Deeper investigations into the mechanisms of mycobacterial biofilm formation and, consequently, the exploration of appropriate antibiofilm treatments to improve the efficiency of current anti-TB drugs will be useful for curing TB. In this review, the genes and molecules that have been recently reported to be involved in mycobacterial biofilm development, such as ABC transporter, Pks1, PpiB, GroEL1, MprB, (p)ppGpp, poly(P), and c-di-GMP, are summarized. Biofilm-induced clinical problems, including biofilm-related infections and enhanced virulence, as well as their possible mechanisms, are also discussed in detail. Moreover, we also illustrate newly synthesized anti-TB agents that target mycobacterial biofilm, as well as some assistant methods with high efficiency in reducing biofilms in hosts, such as the use of nanoparticles.
Collapse
Affiliation(s)
- Xining Liu
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (X.L.); (J.H.); (W.W.); (E.T.)
| | - Junxing Hu
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (X.L.); (J.H.); (W.W.); (E.T.)
| | - Wenzhen Wang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (X.L.); (J.H.); (W.W.); (E.T.)
| | - Hanyu Yang
- The Queen’s University of Belfast Joint College, China Medical University, Shenyang 110122, China;
| | - Erning Tao
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (X.L.); (J.H.); (W.W.); (E.T.)
| | - Yufang Ma
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (X.L.); (J.H.); (W.W.); (E.T.)
| | - Shanshan Sha
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (X.L.); (J.H.); (W.W.); (E.T.)
| |
Collapse
|
10
|
Kim Y, Kim H, Kim J, Han JH, Chung EJ, Nam SW, Shin M, Kwak W. The Description and Analysis of the Complete Genome of Dermacoccus barathri FBCC-B549 Strain. Microorganisms 2024; 12:1227. [PMID: 38930609 PMCID: PMC11206071 DOI: 10.3390/microorganisms12061227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/14/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
Dermacoccus barathri is the first reported pathogen within the Dermacoccus genus to cause a catheter-related bloodstream infection, which occurred in 2015. In this study, the complete genome assembly of Dermacoccus barathri was constructed, and the complete genome of Dermacoccus barathri FBCC-B549 consists of a single chromosome (3,137,745 bp) without plasmids. The constructed genome of D. barathri was compared with those of two closely related species within the Dermacoccus genus. D. barathri exhibited a pattern similar to Dermacoccus abyssi in terms of gene clusters and synteny analysis. Contrary to previous studies, biosynthetic gene cluster (BGC) analysis for predicting secondary metabolites revealed the presence of the LAP biosynthesis pathway in the complete genome of D. barathri, predicting the potential synthesis of the secondary metabolite plantazolicin. Furthermore, an analysis to investigate the potential pathogenicity of D. barathri did not reveal any antibiotic resistance genes; however, nine virulence factors were identified in the Virulence Factor Database (VFDB). According to these matching results in the VFDB, despite identifying a few factors involved in biofilm formation, further research is required to determine the actual impact of D. barathri on pathogenicity. The complete genome of D. barathri is expected to serve as a valuable resource for future studies on D. barathri, which currently lack sufficient genomic sequence information.
Collapse
Affiliation(s)
- Yeha Kim
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Hyaekang Kim
- Bio-Resources Bank Division, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea
| | - Jina Kim
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Ji-Hye Han
- Performance Innovation Division, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea
| | - Eu Jin Chung
- Bio-Resources Bank Division, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea
| | - Seung Won Nam
- Bio-Resources Bank Division, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea
| | - Miyoung Shin
- Department of Pathology, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Woori Kwak
- Department of Medical and Biological Sciences, The Catholic University of Korea, Bucheon 14662, Republic of Korea
- Department of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| |
Collapse
|
11
|
Sarangi A, Singh SP, Das BS, Rajput S, Fatima S, Bhattacharya D. Mycobacterial biofilms: A therapeutic target against bacterial persistence and generation of antibiotic resistance. Heliyon 2024; 10:e32003. [PMID: 38882302 PMCID: PMC11176842 DOI: 10.1016/j.heliyon.2024.e32003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 06/18/2024] Open
Abstract
Mycobacterium tuberculosis (M. tb) is the causative agent of Tuberculosis, one of the deadliest infectious diseases. According to the WHO Report 2023, in 2022, approximately 10.6 million people got infected with TB, and 1.6 million died. It has multiple antibiotics for treatment, but the major drawback of anti-tuberculosis therapy (ATT) is, its prolonged treatment duration. The major contributors to the lengthy treatment period are mycobacterial persistence and drug tolerance. Persistent M. tb is phenotypically drug tolerant and metabolically slow down which makes it difficult to be eliminated during ATT. These persisting bacteria are a huge reservoir of impending disease, waiting to get reactivated upon the onset of an immune compromising state. Directly Observed Treatment Short-course, although effective against replicating bacteria; fails to eliminate the drug-tolerant persisters making TB still the second-highest killer globally. There are different mechanisms for the development of drug-tolerant mycobacterial populations being investigated. Recently, the role of biofilms in the survival and host-evasion mechanism of persisters has come to light. Therefore, it is crucial to understand the mechanism of adaptation, survival and attainment of drug tolerance by persisting M. tb-populations, in order to design better immune responses and therapeutics for the effective elimination of these bacteria by reducing the duration of treatment and also circumvent the generation of drug-resistance to achieve the goal of global eradication of TB. This review summarizes the drug-tolerance mechanism and biofilms' role in providing a niche to dormant-M.tb. We also discuss methods of targeting biofilms to achieve sterile eradication of the mycobacteria and prevent its reactivation by achieving adequate immune responses.
Collapse
Affiliation(s)
- Ashirbad Sarangi
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Shashi Prakash Singh
- Vaccine and Gene Therapy Institute (VGTI) Oregon National Primate Research Centre (ONPRC) Oregon Health and Science University (OHSU) Beaverton, Oregon, USA
| | - Bhabani Shankar Das
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
| | - Sristi Rajput
- Departmental of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh, India
| | - Samreen Fatima
- UMass Chan Medical School, University of Massachusetts, Worcester, MA, USA
| | - Debapriya Bhattacharya
- Centre for Biotechnology, School of Pharmaceutical Sciences, Siksha 'O' Anusandhan (Deemed to be University), Bhubaneswar, Odisha, India
- Departmental of Biological Sciences, Indian Institute of Science Education and Research (IISER), Bhopal, Madhya Pradesh, India
| |
Collapse
|
12
|
Park HE, Kim KM, Shin JI, Choi JG, An WJ, Trinh MP, Kang KM, Yoo JW, Byun JH, Jung MH, Lee KH, Kang HL, Baik SC, Lee WK, Shin MK. Prominent transcriptomic changes in Mycobacterium intracellulare under acidic and oxidative stress. BMC Genomics 2024; 25:376. [PMID: 38632539 PMCID: PMC11022373 DOI: 10.1186/s12864-024-10292-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 04/09/2024] [Indexed: 04/19/2024] Open
Abstract
BACKGROUND Mycobacterium avium complex (MAC), including Mycobacterium intracellulare is a member of slow-growing mycobacteria and contributes to a substantial proportion of nontuberculous mycobacterial lung disease in humans affecting immunocompromised and elderly populations. Adaptation of pathogens in hostile environments is crucial in establishing infection and persistence within the host. However, the sophisticated cellular and molecular mechanisms of stress response in M. intracellulare still need to be fully explored. We aimed to elucidate the transcriptional response of M. intracellulare under acidic and oxidative stress conditions. RESULTS At the transcriptome level, 80 genes were shown [FC] ≥ 2.0 and p < 0.05 under oxidative stress with 10 mM hydrogen peroxide. Specifically, 77 genes were upregulated, while 3 genes were downregulated. In functional analysis, oxidative stress conditions activate DNA replication, nucleotide excision repair, mismatch repair, homologous recombination, and tuberculosis pathways. Additionally, our results demonstrate that DNA replication and repair system genes, such as dnaB, dinG, urvB, uvrD2, and recA, are indispensable for resistance to oxidative stress. On the contrary, 878 genes were shown [FC] ≥ 2.0 and p < 0.05 under acidic stress with pH 4.5. Among these genes, 339 were upregulated, while 539 were downregulated. Functional analysis highlighted nitrogen and sulfur metabolism pathways as the primary responses to acidic stress. Our findings provide evidence of the critical role played by nitrogen and sulfur metabolism genes in the response to acidic stress, including narGHIJ, nirBD, narU, narK3, cysND, cysC, cysH, ferredoxin 1 and 2, and formate dehydrogenase. CONCLUSION Our results suggest the activation of several pathways potentially critical for the survival of M. intracellulare under a hostile microenvironment within the host. This study indicates the importance of stress responses in M. intracellulare infection and identifies promising therapeutic targets.
Collapse
Affiliation(s)
- Hyun-Eui Park
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
| | - Kyu-Min Kim
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
- Department of Convergence of Medical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Jeong-Ih Shin
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
- Department of Convergence of Medical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Jeong-Gyu Choi
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
- Department of Convergence of Medical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Won-Jun An
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
- Department of Convergence of Medical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Minh Phuong Trinh
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
- Department of Convergence of Medical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Kyeong-Min Kang
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
- Department of Convergence of Medical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Jung-Wan Yoo
- Department of Internal Medicine, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Jung-Hyun Byun
- Department of Laboratory Medicine, Gyeongsang National University Hospital, Jinju, Republic of Korea
| | - Myung Hwan Jung
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
- Department of Convergence of Medical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Kon-Ho Lee
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
- Department of Convergence of Medical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Hyung-Lyun Kang
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
- Department of Convergence of Medical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Seung Cheol Baik
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
- Department of Convergence of Medical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Woo-Kon Lee
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea
- Department of Convergence of Medical Science, Gyeongsang National University, Jinju, Republic of Korea
| | - Min-Kyoung Shin
- Department of Microbiology, College of Medicine, Gyeongsang National University, Jinju, 52727, Republic of Korea.
- Department of Convergence of Medical Science, Gyeongsang National University, Jinju, Republic of Korea.
| |
Collapse
|
13
|
Shanmugasundaram S, Nayak N, Puzhankara L, Kedlaya MN, Rajagopal A, Karmakar S. Bacteriophages: the dawn of a new era in periodontal microbiology? Crit Rev Microbiol 2024; 50:212-223. [PMID: 36883683 DOI: 10.1080/1040841x.2023.2182667] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 01/02/2023] [Accepted: 02/15/2023] [Indexed: 03/09/2023]
Abstract
The oral microbiome, populated by a diverse range of species, plays a critical role in the initiation and progression of periodontal disease. The most dominant yet little-discussed players in the microbiome, the bacteriophages, influence the health and disease of the host in various ways. They, not only contribute to periodontal health by preventing the colonization of pathogens and disrupting biofilms but also play a role in periodontal disease by upregulating the virulence of periodontal pathogens through the transfer of antibiotic resistance and virulence factors. Since bacteriophages selectively infect only bacterial cells, they have an enormous scope to be used as a therapeutic strategy; recently, phage therapy has been successfully used to treat antibiotic-resistant systemic infections. Their ability to disrupt biofilms widens the scope against periodontal pathogens and dental plaque biofilms in periodontitis. Future research focussing on the oral phageome and phage therapy's effectiveness and safety could pave way for new avenues in periodontal therapy. This review explores our current understanding of bacteriophages, their interactions in the oral microbiome, and their therapeutic potential in periodontal disease.
Collapse
Affiliation(s)
- Shashikiran Shanmugasundaram
- Department of Periodontology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Namratha Nayak
- Department of Periodontology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Lakshmi Puzhankara
- Department of Periodontology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Madhurya N Kedlaya
- Department of Periodontology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Anjale Rajagopal
- Department of Periodontology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Shaswata Karmakar
- Department of Periodontology, Manipal College of Dental Sciences, Manipal Academy of Higher Education, Manipal, Karnataka, India
| |
Collapse
|
14
|
Kim HW, Lee JW, Yu AR, Yoon HS, Kang M, Lee BS, Park HW, Lee SK, Whang J, Kim JS. Isoegomaketone exhibits potential as a new Mycobacterium abscessus inhibitor. Front Microbiol 2024; 15:1344914. [PMID: 38585695 PMCID: PMC10996855 DOI: 10.3389/fmicb.2024.1344914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Accepted: 02/15/2024] [Indexed: 04/09/2024] Open
Abstract
Although the incidence of Mycobacterium abscessus infection has recently increased significantly, treatment is difficult because this bacterium is resistant to most anti-tuberculosis drugs. In particular, M. abscessus is often resistant to available macrolide antibiotics, so therapeutic options are extremely limited. Hence, there is a pressing demand to create effective drugs or therapeutic regimens for M. abscessus infections. The aim of the investigation was to assess the capability of isoegomaketone (iEMK) as a therapeutic option for treating M. abscessus infections. We determined the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of iEMK for both reference and clinically isolated M. abscessus strains. In addition to time-kill and biofilm formation assays, we evaluated iEMK's capability to inhibit M. abscessus growth in macrophages using an intracellular colony counting assay. iEMK inhibited the growth of reference and clinically isolated M. abscessus strains in macrophages and demonstrated effectiveness at lower concentrations against macrophage-infected M. abscessus than when used to treat the bacteria directly. Importantly, iEMK also exhibited anti-biofilm properties and the potential to mitigate macrolide-inducible resistance, underscoring its promise as a standalone or adjunctive therapeutic agent. Overall, our results suggest that further development of iEMK as a clinical drug candidate is promising for inhibiting M. abscessus growth, especially considering its dual action against both planktonic bacteria and biofilms.
Collapse
Affiliation(s)
- Ho Won Kim
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Ji Won Lee
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - A-Reum Yu
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Hoe Sun Yoon
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, Republic of Korea
| | - Minji Kang
- Korea Mycobacterium Resource Center (KMRC), Department of Research and Development, The Korean Institute of Tuberculosis, Osong, Republic of Korea
| | - Byung Soo Lee
- Department of Obstetrics and Gynecology, Konyang University Hospital, Daejeon, Republic of Korea
| | - Hwan-Woo Park
- Department of Cell Biology, Konyang University College of Medicine, Daejeon, Republic of Korea
| | - Sung Ki Lee
- Department of Obstetrics and Gynecology, Konyang University Hospital, Daejeon, Republic of Korea
| | - Jake Whang
- Korea Mycobacterium Resource Center (KMRC), Department of Research and Development, The Korean Institute of Tuberculosis, Osong, Republic of Korea
| | - Jong-Seok Kim
- Myunggok Medical Research Institute, College of Medicine, Konyang University, Daejeon, Republic of Korea
| |
Collapse
|
15
|
Juárez-Cepeda J, Valenzuela O, Garibay-Valdez E, Velazquez C, Garibay-Escobar A. Gene expression during the development of Mycobacterium smegmatis biofilms on hydroxyapatite surfaces. Int Microbiol 2024; 27:257-263. [PMID: 37311924 DOI: 10.1007/s10123-023-00385-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/19/2023] [Accepted: 05/31/2023] [Indexed: 06/15/2023]
Abstract
Bacterial biofilms are a consortium of bacteria that are strongly bound to each other and the surface on which they developed irreversibly. Bacteria can survive adverse environmental conditions and undergo changes when transitioning from a planktonic form to community cells. The process of mycobacteria adhesion is complex, involving characteristics and properties of bacteria, surfaces, and environmental factors; therefore, the formation of different biofilms is possible. Cell wall-, lipid-, and lipid transporter-related genes (glycopeptidolipids, GroEL1, protein kinase) are important in mycobacterial biofilm development. We investigated gene expression during in vitro development of Mycobacterium smegmatis biofilms on a hydroxyapatite (HAP) surface. Biofilm formation by M. smegmatis cells was induced for 1, 2, 3, and 5 days on the HAP surface. Mycobacteria on polystyrene generated an air-liquid interface biofilm, and on the fifth day, it increased by 35% in the presence of HAP. Six genes with key roles in biofilm formation were analyzed by real-time RT‒qPCR during the biofilm formation of M. smegmatis on both abiotic surfaces. The expression of groEL1, lsr2, mmpL11, mps, pknF, and rpoZ genes during biofilm formation on the HAP surface did not exhibit significant changes compared to the polystyrene surface. These genes involved in biofilm formation are not affected by HAP.
Collapse
Affiliation(s)
- Jacqueline Juárez-Cepeda
- Departmento de Ciencias Químico Biológicas, Universidad de Sonora, Rosales y Luis Encinas S/N, 83000, Hermosillo, Sonora, México
| | - Olivia Valenzuela
- Departmento de Ciencias Químico Biológicas, Universidad de Sonora, Rosales y Luis Encinas S/N, 83000, Hermosillo, Sonora, México
| | - Estefanía Garibay-Valdez
- Centro de Investigación en Alimentación y Desarrollo, A. C. Km 0.6 Carretera a La Victoria, Hermosillo, Sonora, México
| | - Carlos Velazquez
- Departmento de Ciencias Químico Biológicas, Universidad de Sonora, Rosales y Luis Encinas S/N, 83000, Hermosillo, Sonora, México
| | - Adriana Garibay-Escobar
- Departmento de Ciencias Químico Biológicas, Universidad de Sonora, Rosales y Luis Encinas S/N, 83000, Hermosillo, Sonora, México.
| |
Collapse
|
16
|
Ling X, Liu X, Wang K, Guo M, Ou Y, Li D, Xiang Y, Zheng J, Hu L, Zhang H, Li W. Lsr2 acts as a cyclic di-GMP receptor that promotes keto-mycolic acid synthesis and biofilm formation in mycobacteria. Nat Commun 2024; 15:695. [PMID: 38267428 PMCID: PMC10808224 DOI: 10.1038/s41467-024-44774-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 01/03/2024] [Indexed: 01/26/2024] Open
Abstract
Cyclic di-GMP (c-di-GMP) is a second messenger that promotes biofilm formation in several bacterial species, but the mechanisms are often unclear. Here, we report that c-di-GMP promotes biofilm formation in mycobacteria in a manner dependent on the nucleoid-associated protein Lsr2. We show that c-di-GMP specifically binds to Lsr2 at a ratio of 1:1. Lsr2 upregulates the expression of HadD, a (3R)-hydroxyacyl-ACP dehydratase, thus promoting the synthesis of keto-mycolic acid and biofilm formation. Thus, Lsr2 acts as a c-di-GMP receptor that links the second messenger's function to lipid synthesis and biofilm formation in mycobacteria.
Collapse
Affiliation(s)
- Xiaocui Ling
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Xiao Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Kun Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Minhao Guo
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Yanzhe Ou
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Danting Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Yulin Xiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Jiachen Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Lihua Hu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Hongyun Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China
| | - Weihui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, College of Life Science and Technology, Guangxi University, Nanning, 530004, China.
| |
Collapse
|
17
|
Zhang J, Liu Y, Hu J, Leng G, Liu X, Cui Z, Wang W, Ma Y, Sha S. Cellulase Promotes Mycobacterial Biofilm Dispersal in Response to a Decrease in the Bacterial Metabolite Gamma-Aminobutyric Acid. Int J Mol Sci 2024; 25:1051. [PMID: 38256125 PMCID: PMC10816823 DOI: 10.3390/ijms25021051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/08/2024] [Accepted: 01/13/2024] [Indexed: 01/24/2024] Open
Abstract
Biofilm dispersal contributes to bacterial spread and disease transmission. However, its exact mechanism, especially that in the pathogen Mycobacterium tuberculosis, is unclear. In this study, the cellulase activity of the M. tuberculosis Rv0062 protein was characterized, and its effect on mycobacterial biofilm dispersal was analyzed by observation of the structure and components of Rv0062-treated biofilm in vitro. Meanwhile, the metabolite factors that induced cellulase-related biofilm dispersal were also explored with metabolome analysis and further validations. The results showed that Rv0062 protein had a cellulase activity with a similar optimum pH (6.0) and lower optimum temperature (30 °C) compared to the cellulases from other bacteria. It promoted mycobacterial biofilm dispersal by hydrolyzing cellulose, the main component of extracellular polymeric substrates of mycobacterial biofilm. A metabolome analysis revealed that 107 metabolites were significantly altered at different stages of M. smegmatis biofilm development. Among them, a decrease in gamma-aminobutyric acid (GABA) promoted cellulase-related biofilm dispersal, and this effect was realized with the down-regulation of the bacterial signal molecule c-di-GMP. All these findings suggested that cellulase promotes mycobacterial biofilm dispersal and that this process is closely associated with biofilm metabolite alterations.
Collapse
Affiliation(s)
- Jiaqi Zhang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (J.Z.); (Y.L.); (J.H.); (G.L.); (X.L.); (Z.C.); (W.W.)
| | - Yingying Liu
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (J.Z.); (Y.L.); (J.H.); (G.L.); (X.L.); (Z.C.); (W.W.)
| | - Junxing Hu
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (J.Z.); (Y.L.); (J.H.); (G.L.); (X.L.); (Z.C.); (W.W.)
| | - Guangxian Leng
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (J.Z.); (Y.L.); (J.H.); (G.L.); (X.L.); (Z.C.); (W.W.)
| | - Xining Liu
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (J.Z.); (Y.L.); (J.H.); (G.L.); (X.L.); (Z.C.); (W.W.)
| | - Zailin Cui
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (J.Z.); (Y.L.); (J.H.); (G.L.); (X.L.); (Z.C.); (W.W.)
| | - Wenzhen Wang
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (J.Z.); (Y.L.); (J.H.); (G.L.); (X.L.); (Z.C.); (W.W.)
| | - Yufang Ma
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (J.Z.); (Y.L.); (J.H.); (G.L.); (X.L.); (Z.C.); (W.W.)
- Department of Microbiology, Dalian Medical University, Dalian 116044, China
| | - Shanshan Sha
- Department of Biochemistry and Molecular Biology, Dalian Medical University, Dalian 116044, China; (J.Z.); (Y.L.); (J.H.); (G.L.); (X.L.); (Z.C.); (W.W.)
| |
Collapse
|
18
|
McManus WR, Schorey JS. Comparison of Ultrastructure, Extracellular Matrix, and Drug Susceptibility in M. avium subs. hominissuis Biofilms. Pathogens 2023; 12:1427. [PMID: 38133310 PMCID: PMC10747021 DOI: 10.3390/pathogens12121427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 11/28/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
Pulmonary infections with Mycobacterium avium occur in susceptible individuals following exposure to the bacterium in the environment, where it often persists in biofilms. Many methods have been used to generate biofilms of M. avium, and it is unknown whether different approaches generate similar structures and cell phenotypes. To make a parallel comparison of in vitro biofilm ultrastructure, extracellular matrix (ECM) composition, and the drug susceptibility of biofilm resident bacteria, we used two published methods to generate M. avium biofilms: four-week incubation in M63 medium or 24 h exposure to dithiothreitol (DTT). Scanning electron microscopy revealed differences in the biofilm ultrastructure between the two methods, including variation in the appearance of ECM materials and morphology of resident cells, while light microscopy and staining with calcofluor white indicated that both biofilms contained polysaccharides characteristic of cellulose. Measuring the susceptibility of biofilms to degradation by enzymes suggested differences in structurally important ECM molecules, with DTT biofilms having important protein and, to a lesser extent, cellulose components, and M63 biofilms having moderate protein, cellulose, and DNA components. Both biofilms conferred resistance to the bactericidal effects of amikacin and clarithromycin, with resident cells being killed at greater than 10-fold lower rates than planktonic cells at almost all concentrations. These comparisons indicate differences in biofilm responses by M. avium under differing conditions, but also suggest common features of biofilm formation, including cellulose production and antimicrobial resistance.
Collapse
Affiliation(s)
| | - Jeffrey S. Schorey
- Department of Biological Sciences, Galvin Life Science Center, University of Notre Dame, Notre Dame, IN 46556, USA;
| |
Collapse
|
19
|
Nisbett LM, Previti ML, Seeliger JC. A Loss of Function in LprG-Rv1410c Homologues Attenuates Growth during Biofilm Formation in Mycobacterium smegmatis. Pathogens 2023; 12:1375. [PMID: 38133260 PMCID: PMC10745849 DOI: 10.3390/pathogens12121375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/11/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023] Open
Abstract
MmpL (mycobacterial membrane protein large) proteins are integral membrane proteins that have been implicated in the biosynthesis and/or transport of mycobacterial cell wall lipids. Given the cellular location of these proteins, however, it is unclear how cell wall lipids are transported beyond the inner membrane. Moreover, given that mycobacteria grow at the poles, we also do not understand how new cell wall is added in a highly localized and presumably coordinated manner. Here, we examine the relationship between two lipid transport pathways associated with the proteins MmpL11 and LprG-Rv1410c. The lipoprotein LprG has been shown to interact with proteins involved in cell wall processes including MmpL11, which is required in biofilms for the surface localization of certain lipids. Here we report that deletion of mmpL11 (MSMEG_0241) or the lprG-rv1410c operon homologues MSMEG_3070-3069 in Mycobacterium smegmatis produced similar biofilm defects that were distinct from that of the previously reported mmpL11 transposon insertion mutant. Analysis of pellicle biofilms, bacterial growth, lipid profiles, and gene expression revealed that the biofilm phenotypes could not be directly explained by changes in the synthesis or localization of biofilm-related lipids or the expression of biofilm-related genes. Instead, the shared biofilm phenotype between ΔMSMEG_3070-3069 and ΔmmpL11 may be related to their modest growth defect, while the origins of the distinct mmpL11::Tn biofilm defect remain unclear. Our findings suggest that the mechanisms that drive pellicle biofilm formation in M. smegmatis are not connected to crosstalk between the LprG-Rv1410c and MmpL11 pathways and that any functional interaction between these proteins does not relate directly to their lipid transport function.
Collapse
Affiliation(s)
- Lisa-Marie Nisbett
- Department of Pharmacological Sciences, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA
| | | | - Jessica C. Seeliger
- Department of Pharmacological Sciences, Stony Brook University, 100 Nicolls Road, Stony Brook, NY 11794, USA
| |
Collapse
|
20
|
Niño-Padilla EI, Espitia C, Velazquez C, Alday E, Silva-Campa E, Burgara-Estrella A, Enciso-Moreno JA, Valenzuela O, Astiazarán-García H, Garibay-Escobar A. Antimycobacterial Precatorin A Flavonoid Displays Antibiofilm Activity against Mycobacterium bovis BCG. ACS OMEGA 2023; 8:40665-40676. [PMID: 37929145 PMCID: PMC10621015 DOI: 10.1021/acsomega.3c05703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 10/10/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023]
Abstract
The aim of this study was to evaluate the potential antibiofilm activity of Rhynchosia precatoria (R. precatoria) compounds over Mycobacterium bovis BCG (M. bovis BCG) as a model for Mycobacterium tuberculosis (Mtb). We evaluated the antibiofilm activity as the ability to both inhibit biofilm formation and disrupt preformed biofilms (bactericidal) of R. precatoria compounds, which have been previously described as being antimycobacterials against Mtb. M. bovis BCG developed air-liquid interface biofilms with surface attachment ability and drug tolerance. Of the R. precatoria extracts and compounds that were tested, precatorin A (PreA) displayed the best biofilm inhibitory activity, as evaluated by biofilm biomass quantification, viable cell count, and confocal and atomic force microscopy procedures. Furthermore, its combination with isoniazid at subinhibitory concentrations inhibited M. bovis BCG biofilm formation. Nonetheless, neither PreA nor the extract showed bactericidal effects. PreA is the R. precatoria compound responsible for biofilm inhibitory activity against M. bovis BCG.
Collapse
Affiliation(s)
- Esmeralda Ivonne Niño-Padilla
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Rosales y Luis Encinas s/n, Hermosillo 83000, Sonora, México
| | - Clara Espitia
- Departamento de Inmunología, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Coyoacán 04510, Ciudad de México, México
| | - Carlos Velazquez
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Rosales y Luis Encinas s/n, Hermosillo 83000, Sonora, México
| | - Efrain Alday
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Rosales y Luis Encinas s/n, Hermosillo 83000, Sonora, México
| | - Erika Silva-Campa
- Departamento de Investigación en Física, Universidad de Sonora, Rosales y Luis Encinas s/n, Hermosillo 83000, Sonora, México
| | - Alexel Burgara-Estrella
- Departamento de Investigación en Física, Universidad de Sonora, Rosales y Luis Encinas s/n, Hermosillo 83000, Sonora, México
| | - José Antonio Enciso-Moreno
- Facultad de Química, Universidad Autónoma de Querétaro, Centro Universitario s/n, Cerro de las Campanas, Santiago de Querétaro 76010, Querétaro, México
| | - Olivia Valenzuela
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Rosales y Luis Encinas s/n, Hermosillo 83000, Sonora, México
| | - Humberto Astiazarán-García
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Rosales y Luis Encinas s/n, Hermosillo 83000, Sonora, México
| | - Adriana Garibay-Escobar
- Departamento de Ciencias Químico Biológicas, Universidad de Sonora, Rosales y Luis Encinas s/n, Hermosillo 83000, Sonora, México
| |
Collapse
|
21
|
Feizi S, Cooksley CM, Ramezanpour M, Nepal R, Psaltis AJ, Wormald PJ, Vreugde S. Colloidal silver against macrophage infections and biofilms of atypical mycobacteria. Biometals 2023; 36:913-925. [PMID: 36729280 PMCID: PMC10393856 DOI: 10.1007/s10534-023-00494-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 01/20/2023] [Indexed: 02/03/2023]
Abstract
Skin and soft tissue infection (SSTI) caused by atypical mycobacteria such as Mycobacterium abscessus and Mycobacterium avium intracellulare complex (MAIC) have increased in recent years. Current therapeutic options are limited, and hence new and better therapies are urgently required. Colloidal Silver (CS) has been identified for its widespread antibacterial properties and silver-impregnated dressings have been used for SSTIs caused by various pathogens. The efficacy of Green Synthesized Colloidal Silver (GSCS) was investigated for bacterial growth inhibition (BGI) using a microdilution method and minimum biofilm eradication concentration (MBEC) using resazurin assay and confocal scanning laser microscopy (CSLM) of M. abscessus (n = 5) and MAIC (n = 5). The antibacterial effect of GSCS against M. abscessus infected macrophages was also evaluated. The in vitro cytotoxicity of GSCS on a human keratinocyte cell line (HaCaT) and neonatal foreskin fibroblasts was analyzed by the crystal violet proliferation assay. Average BGI and MBEC of GSCS varied between 0.7 and 22 ppm for M. abscessus and MAIC. The concentration of 3 ppm reduced M. abscessus-infection in macrophages significantly. GSCS was not cytotoxic to HaCaT and neonatal foreskin fibroblast cells at concentrations < 3 ppm up to 2 h exposure time. GSCS therefore, has the potential for topical application against atypical mycobacterial SSTI.
Collapse
Affiliation(s)
- Sholeh Feizi
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, Australia
- The University of Adelaide, Adelaide, Australia
| | - Clare M Cooksley
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, Australia
- The University of Adelaide, Adelaide, Australia
| | - Mahnaz Ramezanpour
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, Australia
- The University of Adelaide, Adelaide, Australia
| | - Roshan Nepal
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, Australia
- The University of Adelaide, Adelaide, Australia
| | - Alkis J Psaltis
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, Australia
- The University of Adelaide, Adelaide, Australia
| | - Peter-John Wormald
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, Australia
- The University of Adelaide, Adelaide, Australia
| | - Sarah Vreugde
- Department of Surgery-Otolaryngology Head and Neck Surgery, Basil Hetzel Institute for Translational Health Research, Central Adelaide Local Health Network, Woodville South, Australia.
- The University of Adelaide, Adelaide, Australia.
| |
Collapse
|
22
|
Gangwal A, Kumar N, Sangwan N, Dhasmana N, Dhawan U, Sajid A, Arora G, Singh Y. Giving a signal: how protein phosphorylation helps Bacillus navigate through different life stages. FEMS Microbiol Rev 2023; 47:fuad044. [PMID: 37533212 PMCID: PMC10465088 DOI: 10.1093/femsre/fuad044] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 07/30/2023] [Accepted: 08/01/2023] [Indexed: 08/04/2023] Open
Abstract
Protein phosphorylation is a universal mechanism regulating a wide range of cellular responses across all domains of life. The antagonistic activities of kinases and phosphatases can orchestrate the life cycle of an organism. The availability of bacterial genome sequences, particularly Bacillus species, followed by proteomics and functional studies have aided in the identification of putative protein kinases and protein phosphatases, and their downstream substrates. Several studies have established the role of phosphorylation in different physiological states of Bacillus species as they pass through various life stages such as sporulation, germination, and biofilm formation. The most common phosphorylation sites in Bacillus proteins are histidine, aspartate, tyrosine, serine, threonine, and arginine residues. Protein phosphorylation can alter protein activity, structural conformation, and protein-protein interactions, ultimately affecting the downstream pathways. In this review, we summarize the knowledge available in the field of Bacillus signaling, with a focus on the role of protein phosphorylation in its physiological processes.
Collapse
Affiliation(s)
- Aakriti Gangwal
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
| | - Nishant Kumar
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
| | - Nitika Sangwan
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
- Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi-110075, India
| | - Neha Dhasmana
- School of Medicine, New York University, 550 First Avenue New York-10016, New York, United States
| | - Uma Dhawan
- Department of Biomedical Science, Bhaskaracharya College of Applied Sciences, University of Delhi, New Delhi-110075, India
| | - Andaleeb Sajid
- 300 Cedar St, Yale School of Medicine, Yale University, New Haven, Connecticut 06520, New Haven CT, United States
| | - Gunjan Arora
- 300 Cedar St, Yale School of Medicine, Yale University, New Haven, Connecticut 06520, New Haven CT, United States
| | - Yogendra Singh
- Department of Zoology, University of Delhi, Faculty of Science, Delhi- 110007, India
- Delhi School of Public Health, Institution of Eminence, University of Delhi, Delhi-110007, India
| |
Collapse
|
23
|
Hammarén MM, Luukinen H, Sillanpää A, Remans K, Lapouge K, Custódio T, Löw C, Myllymäki H, Montonen T, Seeger M, Robertson J, Nyman TA, Savijoki K, Parikka M. In vitro and ex vivo proteomics of Mycobacterium marinum biofilms and the development of biofilm-binding synthetic nanobodies. mSystems 2023:e0107322. [PMID: 37184670 DOI: 10.1128/msystems.01073-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/16/2023] Open
Abstract
The antibiotic-tolerant biofilms present in tuberculous granulomas add an additional layer of complexity when treating mycobacterial infections, including tuberculosis (TB). For a more efficient treatment of TB, the biofilm forms of mycobacteria warrant specific attention. Here, we used Mycobacterium marinum (Mmr) as a biofilm-forming model to identify the abundant proteins covering the biofilm surface. We used biotinylation/streptavidin-based proteomics on the proteins exposed at the Mmr biofilm matrices in vitro to identify 448 proteins and ex vivo proteomics to detect 91 Mmr proteins from the mycobacterial granulomas isolated from adult zebrafish. In vitro and ex vivo proteomics data are available via ProteomeXchange with identifier PXD033425 and PXD039416, respectively. Data comparisons pinpointed the molecular chaperone GroEL2 as the most abundant Mmr protein within the in vitro and ex vivo proteomes, while its paralog, GroEL1, with a known role in biofilm formation, was detected with slightly lower intensity values. To validate the surface exposure of these targets, we created in-house synthetic nanobodies (sybodies) against the two chaperones and identified sybodies that bind the mycobacterial biofilms in vitro and those present in ex vivo granulomas. Taken together, the present study reports a proof-of-concept showing that surface proteomics in vitro and ex vivo proteomics combined are a valuable strategy to identify surface-exposed proteins on the mycobacterial biofilm. Biofilm-surface-binding nanobodies could be eventually used as homing agents to deliver biofilm-targeting treatments to the sites of persistent biofilm infection.
Collapse
Affiliation(s)
- Milka Marjut Hammarén
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Hanna Luukinen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Alina Sillanpää
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Kim Remans
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Karine Lapouge
- European Molecular Biology Laboratory, Heidelberg, Germany
| | - Tânia Custódio
- Centre for Structural Systems Biology, Hamburg, Germany
- Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
- European Molecular Biology Laboratory, Hamburg, Germany
| | - Christian Löw
- Centre for Structural Systems Biology, Hamburg, Germany
- Deutsches Elektronen-Synchrotron (DESY), Hamburg, Germany
- European Molecular Biology Laboratory, Hamburg, Germany
| | - Henna Myllymäki
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Toni Montonen
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| | - Markus Seeger
- Institute for Medical Microbiology, University of Zurich, Zurich, Switzerland
| | - Joseph Robertson
- Department of Immunology, University of Oslo, Oslo, Norway
- Oslo University Hospital, Oslo, Norway
| | - Tuula A Nyman
- Department of Immunology, University of Oslo, Oslo, Norway
- Oslo University Hospital, Oslo, Norway
| | - Kirsi Savijoki
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
- Faculty of Agriculture and Forestry, University of Helsinki, Helsinki, Finland
| | - Mataleena Parikka
- Faculty of Medicine and Health Technology, Tampere University, Tampere, Finland
| |
Collapse
|
24
|
Mavi PS, Singh S, Kumar A. Media component bovine serum albumin facilitates the formation of mycobacterial biofilms in response to reductive stress. BMC Microbiol 2023; 23:111. [PMID: 37081437 PMCID: PMC10116703 DOI: 10.1186/s12866-023-02853-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2022] [Accepted: 04/05/2023] [Indexed: 04/22/2023] Open
Abstract
BACKGROUND Mycobacterium tuberculosis (Mtb) forms physiologically relevant biofilms harboring drug-tolerant bacteria. This observation has brought the study of mycobacterial biofilms to the forefront of tuberculosis research. We established earlier that dithiothreitol (DTT) mediated reductive stress induces cellulose-rich biofilm formation in Mtb cultures. The molecular events associated with the DTT-induced biofilm formation are not known. Furthermore, there are only limited tools for monitoring the presence of cellulose in biofilms. RESULTS To decipher the molecular events associated with DTT-induced biofilm formation, we used Mtb and non-pathogenic, fast-growing Mycobacterium smegmatis (Msm). We observed that DTT induces biofilm formation in Msm cultures. We explored whether media components facilitate biofilm formation in mycobacteria upon exposure to DTT. We observed that media component bovine serum albumin promotes mycobacterial biofilm formation in response to DTT. Furthermore, we analyzed the composition of extracellular polymeric substances of Msm biofilms. We found that, like Mtb biofilms, Msm biofilms are also rich in polysaccharides and proteins. We also developed a novel protein-based molecular probe for imaging cellulose by utilizing the cellulose-binding domain of cellulase CenA from Cellulomonas fimi and fusing it to fluorescent reporter mCherry. Characterization of this new probe revealed that it has a high affinity for cellulose and could be used for visualizing cellulose biosynthesis during the development of Agrobacterium biofilms. Furthermore, we have demonstrated that biological macromolecule cellulose is present in the extracellular polymeric substances of Msm biofilms using this novel probe. CONCLUSIONS This study indicates that DTT-mediated reduction of media component BSA leads to the formation of nucleating foci. These nucleating foci are critical for subsequent attachment of bacterial cells and induction of EPS production. Furthermore, this new tool, IMT-CBD-mC, could be used for monitoring cellulose incorporation in plant cells, understanding cellulose biosynthesis dynamics during biofilm formation, etc.
Collapse
Affiliation(s)
- Parminder Singh Mavi
- Institute of Microbial Technology, Council of Scientific and Industrial Research, Room No 508, Sector 39 A, Chandigarh, India, 160036
| | - Shweta Singh
- Institute of Microbial Technology, Council of Scientific and Industrial Research, Room No 508, Sector 39 A, Chandigarh, India, 160036
| | - Ashwani Kumar
- Institute of Microbial Technology, Council of Scientific and Industrial Research, Room No 508, Sector 39 A, Chandigarh, India, 160036.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, India, 201002.
| |
Collapse
|
25
|
Wang K, Cui X, Ling X, Chen J, Zheng J, Xiang Y, Li W. D-Xylose Blocks the Broad Negative Regulation of XylR on Lipid Metabolism and Affects Multiple Physiological Characteristics in Mycobacteria. Int J Mol Sci 2023; 24:ijms24087086. [PMID: 37108247 PMCID: PMC10138657 DOI: 10.3390/ijms24087086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 04/01/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
D-xylose is the most abundant fermentable pentose, which usually represents an architectural component of the bacterial cell wall. However, its regulatory function and the involved signaling pathway in bacteria remain largely unclear. Here, we show that D-xylose can act as a signaling molecule to regulate the lipid metabolism and affect multiple physiological characteristics in mycobacteria. D-xylose directly interacts with XylR and inhibits its DNA-binding ability, thus blocking XylR-mediated repression. The xylose inhibitor, XylR, plays a global regulatory role and affects the expression of 166 mycobacterial genes that are involved in lipid synthesis and metabolism. Furthermore, we show that the xylose-dependent gene regulation of XylR affects the multiple physiological characteristics of Mycobacterium smegmatis, including bacterial size, colony phenotype, biofilm formation, cell aggregation, and antibiotic resistance. Finally, we found that XylR inhibited the survival of Mycobacterium bovis BCG in the host. Our findings provide novel insights into the molecular mechanism of lipid metabolism regulation and its correlation with bacterial physiological phenotypes.
Collapse
Affiliation(s)
- Kun Wang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Xujie Cui
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Xiaocui Ling
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Jiarui Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Jiachen Zheng
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Yuling Xiang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| | - Weihui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Life Science and Technology, Guangxi University, Nanning 530004, China
| |
Collapse
|
26
|
Sparks IL, Nijjer J, Yan J, Morita YS. Lipoarabinomannan regulates septation in Mycobacterium smegmatis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.26.534150. [PMID: 36993273 PMCID: PMC10055410 DOI: 10.1101/2023.03.26.534150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The growth and division of mycobacteria, which include several clinically relevant pathogens, deviate significantly from that of canonical bacterial models. Despite their Gram-positive ancestry, mycobacteria synthesize and elongate a diderm envelope asymmetrically from the poles, with the old pole elongating more robustly than the new pole. In addition to being structurally distinct, the molecular components of the mycobacterial envelope are also evolutionarily unique, including the phosphatidylinositol-anchored lipoglycans lipomannan (LM) and lipoarabinomannan (LAM). LM and LAM modulate host immunity during infection, but their role outside of intracellular survival remains poorly understood, despite their widespread conservation among non-pathogenic and opportunistically pathogenic mycobacteria. Previously, Mycobacterium smegmatis and Mycobacterium tuberculosis mutants producing structurally altered LM and LAM were shown to grow slowly under certain conditions and to be more sensitive to antibiotics, suggesting that mycobacterial lipoglycans may support cellular integrity or growth. To test this, we constructed multiple biosynthetic lipoglycan mutants of M. smegmatis and determined the effect of each mutation on cell wall biosynthesis, envelope integrity, and division. We found that mutants deficient in LAM, but not LM, fail to maintain cell wall integrity in a medium-dependent manner, with envelope deformations specifically associated with septa and new poles. Conversely, a mutant producing abnormally large LAM formed multiseptated cells in way distinct from that observed in a septal hydrolase mutant. These results show that LAM plays critical and distinct roles at subcellular locations associated with division in mycobacteria, including maintenance of local cell envelope integrity and septal placement.
Collapse
Affiliation(s)
- Ian L. Sparks
- Department of Microbiology, University of Massachusetts, Amherst, MA, USA
| | - Japinder Nijjer
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven CT, USA
- Quantitative Biology Institute, Yale University, New Haven, CT, USA
| | - Jing Yan
- Department of Molecular, Cellular and Developmental Biology, Yale University, New Haven CT, USA
- Quantitative Biology Institute, Yale University, New Haven, CT, USA
| | - Yasu S. Morita
- Department of Microbiology, University of Massachusetts, Amherst, MA, USA
| |
Collapse
|
27
|
He C, Li B, Gong Z, Huang S, Liu X, Wang J, Xie J, Shi T. Polyphosphate kinase 1 is involved in formation, the morphology and ultramicrostructure of biofilm of Mycobacterium smegmatis and its survivability in macrophage. Heliyon 2023; 9:e14513. [PMID: 36967885 PMCID: PMC10034464 DOI: 10.1016/j.heliyon.2023.e14513] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 03/06/2023] [Accepted: 03/09/2023] [Indexed: 03/17/2023] Open
Abstract
The most unique characteristic of Mycobacterium tuberculosis is persistence in the human host, and the biofilm formation is related to the persistance. Polyphosphate (polyP) kinase 1 (PPK1) is conserved in Mycobacteria and is responsible for polyP synthesis. polyP is a chain molecule linked by high-energy phosphate bonds, which is considered to play a very important role in bacterial persistence. However, the relationship of PPK1 and mycobacterial biofilm formation is still adequately unclear. In current study, ppk1-deficient mutant (MT), ppk1-complemented (CT) and wild-type strains of M. smegmatis mc2 155 were used to investigate the formation, morphology and ultramicrostructure of the biofilm and to analyze the lipid levels and susceptibility to vancomycin antibiotic. And then WT, MT and CT strains were used to infect macrophages and to analyze the expression levels of various inflammatory factors, respectively. We found that PPK1 was required for M. smegmatis polyP production in vivo and polyP deficiency not only attenuated the biofilm formation, but also altered the phenotype and ultramicrostructure of the biofilm and reduced the cell lipid composition (except for C16.1 and C17.1, most of the fatty acid components from C8-C24). Moreover, the ppk1-deficient mutant was also significantly more sensitive to vancomycin which targets the cell wall, and its ability to survive in macrophages was decreased, which was related to the change of the expression level of inflammatory factors in macrophage. This study demonstrates that the PPK1 can affect the biofilm structure through affecting the content of short chain fatty acid and promote intracellular survival of M. smegmatis by altering the expression of inflammatory factors. These findings establish a basis for investigating the role of PPK1 in the persistence of M. tuberculosis, and provide clues for treating latent infection of M. tuberculosis with PPK1 as a potential drug target.
Collapse
Affiliation(s)
- Cailin He
- Medical School of Hubei Minzu University, Enshi, 445000, China
| | - Bo Li
- Medical School of Hubei Minzu University, Enshi, 445000, China
| | - Zhen Gong
- Institute of Modern Biopharmaceuticals, School of Life Sciences, Southwest University, Chongqing, 400715, China
| | - Sheng Huang
- Medical School of Hubei Minzu University, Enshi, 445000, China
- Institute of Selenium Science and Industry of Hubei Minzu University, Enshi, 445000, China
| | - Xu Liu
- Medical School of Hubei Minzu University, Enshi, 445000, China
- Institute of Selenium Science and Industry of Hubei Minzu University, Enshi, 445000, China
| | - Jiajun Wang
- Medical School of Hubei Minzu University, Enshi, 445000, China
| | - Jianping Xie
- Institute of Modern Biopharmaceuticals, School of Life Sciences, Southwest University, Chongqing, 400715, China
- Corresponding author. Institute of Modern Biopharmaceuticals, School of Life Sciences, Southwest University, Chongqing, 400715, China.
| | - Tingyu Shi
- Medical School of Hubei Minzu University, Enshi, 445000, China
- Hubei Key Laboratory of Biological Resources Protection and Utilization, Enshi, 445000, China
- Institute of Selenium Science and Industry of Hubei Minzu University, Enshi, 445000, China
- Corresponding author. Medical School of Hubei Minzu University, Enshi, 445000, China.
| |
Collapse
|
28
|
Shivaram KB, Bhatt P, Applegate B, Simsek H. Bacteriophage-based biocontrol technology to enhance the efficiency of wastewater treatment and reduce targeted bacterial biofilms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 862:160723. [PMID: 36496019 DOI: 10.1016/j.scitotenv.2022.160723] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 11/13/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Wastewater treatment is an essential process for public health and a sustainable ecosystem. Inadequate wastewater treatment can lead to the release of organic and inorganic pollutants and pathogenic bacteria into the receiving waters which could be further utilized for recreation purposes. The interaction between bacteriophage and bacteria in a wastewater treatment plant plays a major role in maintaining the treatment process. Phage therapy has been proposed as an alternative to conventional treatment methods as bacteriophages can be used on specific targets and leave useful bacteria unharmed. The bacterial species, which are responsible for bulking, foaming, and biofilm formation in a wastewater treatment plant (WWTP) have been identified and their respective phages are isolated to control their growth. Phages with lytic life cycles are preferred to lysogenic. Lytic phages can kill the specific target as they lyse the cell, infect most of the hosts, and have an immediate effect on controlling problems caused by bacteria in a WWTP. The bacteriophages such as T7, SPI1, GTE7, PhaxI, MAG1, MAG2, ϕPh_Se01, ϕPh_Se02, and Bxb1 have been investigated for the removal of bacterial biofilms from wastewater. Novel experimental setups have improved the efficiency of phage therapy in small-scale and pilot-scale experiments. Much more in-depth knowledge of the microbial community and their interaction would help promote the usage of phage therapy in large-scale wastewater treatments. This paper has covered the recent advancements in phage therapy as an effective biocontrol of pathogenic bacteria in the wastewater treatment process and has looked at certain shortcomings that have to be improved.
Collapse
Affiliation(s)
- Karthik Basthi Shivaram
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Pankaj Bhatt
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN 47906, USA
| | - Bruce Applegate
- Department of Food Science, Purdue University, West Lafayette, IN 47906, USA
| | - Halis Simsek
- Department of Agricultural & Biological Engineering, Purdue University, West Lafayette, IN 47906, USA.
| |
Collapse
|
29
|
Rao KU, Li P, Welinder C, Tenland E, Gourdon P, Sturegård E, Ho JCS, Godaly G. Mechanisms of a Mycobacterium tuberculosis Active Peptide. Pharmaceutics 2023; 15:pharmaceutics15020540. [PMID: 36839864 PMCID: PMC9958537 DOI: 10.3390/pharmaceutics15020540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 01/31/2023] [Accepted: 02/02/2023] [Indexed: 02/10/2023] Open
Abstract
Multidrug-resistant tuberculosis (MDR) continues to pose a threat to public health. Previously, we identified a cationic host defense peptide with activity against Mycobacterium tuberculosis in vivo and with a bactericidal effect against MDR M. tuberculosis at therapeutic concentrations. To understand the mechanisms of this peptide, we investigated its interactions with live M. tuberculosis and liposomes as a model. Peptide interactions with M. tuberculosis inner membranes induced tube-shaped membranous structures and massive vesicle formation, thus leading to bubbling cell death and ghost cell formation. Liposomal studies revealed that peptide insertion into inner membranes induced changes in the peptides' secondary structure and that the membranes were pulled such that they aggregated without permeabilization, suggesting that the peptide has a strong inner membrane affinity. Finally, the peptide targeted essential proteins in M. tuberculosis, such as 60 kDa chaperonins and elongation factor Tu, that are involved in mycolic acid synthesis and protein folding, which had an impact on bacterial proliferation. The observed multifaceted targeting provides additional support for the therapeutic potential of this peptide.
Collapse
Affiliation(s)
- Komal Umashankar Rao
- Department of Microbiology, Immunology and Glycobiology, Institution of Laboratory Medicine, Lund University, SE-22362 Lund, Sweden
| | - Ping Li
- Department of Experimental Medical Science, Lund University, SE-22362 Lund, Sweden
| | - Charlotte Welinder
- Swedish National Infrastructure for Biological Mass Spectrometry, Lund University, SE-22362 Lund, Sweden
| | - Erik Tenland
- Department of Microbiology, Immunology and Glycobiology, Institution of Laboratory Medicine, Lund University, SE-22362 Lund, Sweden
| | - Pontus Gourdon
- Department of Experimental Medical Science, Lund University, SE-22362 Lund, Sweden
- Department of Biomedical Sciences, University of Copenhagen, DK-2100 Copenhagen, Denmark
| | - Erik Sturegård
- Department of Clinical Microbiology, Institution of Translational Medicine, Lund University, SE-21428 Malmö, Sweden
| | - James C. S. Ho
- Singapore Centre on Environmental Life Sciences Engineering (SCELSE), Nanyang Technological University, Singapore 637553, Singapore
| | - Gabriela Godaly
- Department of Microbiology, Immunology and Glycobiology, Institution of Laboratory Medicine, Lund University, SE-22362 Lund, Sweden
- Correspondence:
| |
Collapse
|
30
|
Gazioglu O, Habtom M, Andrew PW, Yesilkaya H. The involvement of CiaR and the CiaR-regulated serine protease HtrA in thermal adaptation of Streptococcus pneumoniae. MICROBIOLOGY (READING, ENGLAND) 2023; 169. [PMID: 36811449 DOI: 10.1099/mic.0.001304] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/24/2023]
Abstract
The in vivo temperature can vary according to the host tissue and the response to infection. Streptococcus pneumoniae has evolved mechanisms to survive these temperature differences, but neither the consequences of different temperatures for pneumococcal phenotype nor the genetic basis of thermal adaptation are known in detail. In our previous study [16], we found that CiaR, which is a part of two-component regulatory system CiaRH, as well as 17 genes known to be controlled by CiaRH, were identified to be differentially expressed with temperature. One of the CiaRH-regulated genes shown to be differentially regulated by temperature is for the high-temperature requirement protein (HtrA), coded by SPD_2068 (htrA). In this study, we hypothesized that the CiaRH system plays an important role in pneumococcal thermal adaptation through its control over htrA. This hypothesis was evaluated by testing strains mutated or overexpressing ciaR and/or htrA, in in vitro and in vivo assays. The results showed that in the absence of ciaR, the growth, haemolytic activity, amount of capsule and biofilm formation were considerably diminished at 40 °C only, while the cell size and virulence were affected at both 34 and 40 °C. The overexpression of htrA in the ∆ciaR background reconstituted the growth at all temperatures, and the haemolytic activity, biofilm formation and virulence of ∆ciaR partially at 40 °C. We also showed that overexpression of htrA in the wild-type promoted pneumococcal virulence at 40 °C, while the increase of capsule was observed at 34 °C, suggesting that the role of htrA changes at different temperatures. Our data suggest that CiaR and HtrA play an important role in pneumococcal thermal adaptation.
Collapse
Affiliation(s)
- Ozcan Gazioglu
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Medhanie Habtom
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Peter W Andrew
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| | - Hasan Yesilkaya
- Department of Respiratory Sciences, University of Leicester, Leicester, UK
| |
Collapse
|
31
|
Boshoff A. Chaperonin: Co-chaperonin Interactions. Subcell Biochem 2023; 101:213-246. [PMID: 36520309 DOI: 10.1007/978-3-031-14740-1_8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Co-chaperonins function together with chaperonins to mediate ATP-dependent protein folding in a variety of cellular compartments. Chaperonins are evolutionarily conserved and form two distinct classes, namely, group I and group II chaperonins. GroEL and its co-chaperonin GroES form part of group I and are the archetypal members of this family of protein folding machines. The unique mechanism used by GroEL and GroES to drive protein folding is embedded in the complex architecture of double-ringed complexes, forming two central chambers that undergo conformational rearrangements that enable protein folding to occur. GroES forms a lid over the chamber and in doing so dislodges bound substrate into the chamber, thereby allowing non-native proteins to fold in isolation. GroES also modulates allosteric transitions of GroEL. Group II chaperonins are functionally similar to group I chaperonins but differ in structure and do not require a co-chaperonin. A significant number of bacteria and eukaryotes house multiple chaperonin and co-chaperonin proteins, many of which have acquired additional intracellular and extracellular biological functions. In some instances, co-chaperonins display contrasting functions to those of chaperonins. Human HSP60 (HSPD) continues to play a key role in the pathogenesis of many human diseases, in particular autoimmune diseases and cancer. A greater understanding of the fascinating roles of both intracellular and extracellular Hsp10 on cellular processes will accelerate the development of techniques to treat diseases associated with the chaperonin family.
Collapse
Affiliation(s)
- Aileen Boshoff
- Biotechnology Innovation Centre, Rhodes University, Makhanda/Grahamstown, South Africa.
| |
Collapse
|
32
|
Abukhalid N, Rojony R, Danelishvili L, Bermudez LE. Metabolic pathways that permit Mycobacterium avium subsp. hominissuis to transition to different environments encountered within the host during infection. Front Cell Infect Microbiol 2023; 13:1092317. [PMID: 37124045 PMCID: PMC10140322 DOI: 10.3389/fcimb.2023.1092317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 03/23/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction M. avium subsp. hominissuis (M. avium) is an intracellular, facultative bacterium known to colonize and infect the human host through ingestion or respiratory inhalation. The majority of pulmonary infections occur in association with pre- existing lung diseases, such as bronchiectasis, cystic fibrosis, or chronic obstructive pulmonary disease. M. avium is also acquired by the gastrointestinal route in immunocompromised individuals such as human immunodeficiency virus HIV-1 patients leading to disseminated disease. A hallmark of M. avium pulmonary infections is the ability of pathogen to form biofilms. In addition, M. avium can reside within granulomas of low oxygen and limited nutrient conditions while establishing a persistent niche through metabolic adaptations. Methods Bacterial metabolic pathways used by M. avium within the host environment, however, are poorly understood. In this study, we analyzed M. avium proteome with a focus on core metabolic pathways expressed in the anaerobic, biofilm and aerobic conditions and that can be used by the pathogen to transition from one environment to another. Results Overall, 3,715 common proteins were identified between all studied conditions and proteins with increased synthesis over the of the level of expression in aerobic condition were selected for analysis of in specific metabolic pathways. The data obtained from the M. avium proteome of biofilm phenotype demonstrates in enrichment of metabolic pathways involved in the fatty acid metabolism and biosynthesis of aromatic amino acid and cofactors. Here, we also highlight the importance of chloroalkene degradation pathway and anaerobic fermentationthat enhance during the transition of M. avium from aerobic to anaerobic condition. It was also found that the production of fumarate and succinate by MAV_0927, a conserved hypothetical protein, is essential for M. avium survival and for withstanding the stress condition in biofilm. In addition, the participation of regulatory genes/proteins such as the TetR family MAV_5151 appear to be necessary for M. avium survival under biofilm and anaerobic conditions. Conclusion Collectively, our data reveal important core metabolic pathways that M. avium utilize under different stress conditions that allow the pathogen to survive in diverse host environments.
Collapse
Affiliation(s)
- Norah Abukhalid
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States
- College of Applied Medical Sciences, King Saud bin Abdulaziz University for Health Sciences, Riyadh, Saudi Arabia
- King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Rajoana Rojony
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States
| | - Lia Danelishvili
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States
- Department of Microbiology, College of Science, Oregon State University, Corvallis, OR, United States
| | - Luiz E. Bermudez
- Department of Biomedical Sciences, College of Veterinary Medicine, Oregon State University, Corvallis, OR, United States
- Department of Microbiology, College of Science, Oregon State University, Corvallis, OR, United States
- *Correspondence: Luiz E. Bermudez,
| |
Collapse
|
33
|
Kasthuri T, Barath S, Nandhakumar M, Karutha Pandian S. Proteomic profiling spotlights the molecular targets and the impact of the natural antivirulent umbelliferone on stress response, virulence factors, and the quorum sensing network of Pseudomonas aeruginosa. Front Cell Infect Microbiol 2022; 12:998540. [PMID: 36530435 PMCID: PMC9748083 DOI: 10.3389/fcimb.2022.998540] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 10/18/2022] [Indexed: 12/05/2022] Open
Abstract
Pseudomonas aeruginosa easily adapts to newer environments and acquires several genome flexibilities to overcome the effect of antibiotics during therapeutics, especially in cystic fibrosis patients. During adaptation to the host system, the bacteria employ various tactics including virulence factor production and biofilm formation to escape from the host immune system and resist antibiotics. Hence, identifying alternative strategies to combat recalcitrant pathogens is imperative for the successful elimination of drug-resistant microbes. In this context, this study portrays the anti-virulence efficacy of umbelliferone (UMB) against P. aeruginosa. UMB (7-hydroxy coumarin) is pervasively found among the plant family of Umbelliferae and Asteraceae. The UMB impeded biofilm formation in the P. aeruginosa reference strain and clinical isolates on polystyrene and glass surfaces at the concentration of 125 µg/ml. Global proteomic analysis of UMB-treated cells revealed the downregulation of major virulence-associated proteins such as RhlR, LasA, AlgL, FliD, Tpx, HtpG, KatA, FusA1, Tsf, PhzM, PhzB2, CarB, DctP, MtnA, and MscL. A functional interaction study, gene ontology, and KEGG pathway analysis revealed that UMB could modulate the global regulators, enzymes, co-factors, and transcription factors related to quorum sensing (QS), stress tolerance, siderophore production, motility, and microcolony formation. In vitro biochemical assays further affirmed the anti-virulence efficacy of UMB by reducing pyocyanin, protease, elastase, and catalase production in various strains of P. aeruginosa. Besides the antibiofilm activity, UMB-treated cells exhibited enhanced antibiotic susceptibility to various antibiotics including amikacin, kanamycin, tobramycin, ciprofloxacin, and cefotaxime. Furthermore, in vitro cytotoxicity analysis revealed the biocompatibility of UMB, and the IC50 value was determined to be 249.85 µg/ml on the HepG2 cell line. Altogether, the study substantiates the anti-virulence efficacy of UMB against P. aeruginosa, and the proteomic analysis reveals the differential expression of the regulators related to QS, stress response, and motility factors.
Collapse
|
34
|
Boopathi S, Ramasamy S, Haridevamuthu B, Murugan R, Veerabadhran M, Jia AQ, Arockiaraj J. Intercellular communication and social behaviors in mycobacteria. Front Microbiol 2022; 13:943278. [PMID: 36177463 PMCID: PMC9514802 DOI: 10.3389/fmicb.2022.943278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/22/2022] [Indexed: 11/13/2022] Open
Abstract
Cell-to-cell communication is a fundamental process of bacteria to exert communal behaviors. Sputum samples of patients with cystic fibrosis have often been observed with extensive mycobacterial genetic diversity. The emergence of heterogenic mycobacterial populations is observed due to subtle changes in their morphology, gene expression level, and distributive conjugal transfer (DCT). Since each subgroup of mycobacteria has different hetero-resistance, they are refractory against several antibiotics. Such genetically diverse mycobacteria have to communicate with each other to subvert the host immune system. However, it is still a mystery how such heterogeneous strains exhibit synchronous behaviors for the production of quorum sensing (QS) traits, such as biofilms, siderophores, and virulence proteins. Mycobacteria are characterized by division of labor, where distinct sub-clonal populations contribute to the production of QS traits while exchanging complimentary products at the community level. Thus, active mycobacterial cells ensure the persistence of other heterogenic clonal populations through cooperative behaviors. Additionally, mycobacteria are likely to establish communication with neighboring cells in a contact-independent manner through QS signals. Hence, this review is intended to discuss our current knowledge of mycobacterial communication. Understanding mycobacterial communication could provide a promising opportunity to develop drugs to target key pathways of mycobacteria.
Collapse
Affiliation(s)
- Seenivasan Boopathi
- Key Laboratory of Tropical Biological Resources of Ministry Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Subbiah Ramasamy
- Department of Biochemistry, Cardiac Metabolic Disease Laboratory, School of Biological Sciences, Madurai Kamaraj University, Madurai, India
| | - B. Haridevamuthu
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Raghul Murugan
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| | - Maruthanayagam Veerabadhran
- Biofouling and Biofilm Processes Section, Water and Steam Chemistry Division, Bhabha Atomic Research Centre Facilities, Kalpakkam, Tamil Nadu, India
| | - Ai-Qun Jia
- Key Laboratory of Tropical Biological Resources of Ministry Education, School of Pharmaceutical Sciences, Hainan University, Haikou, China
| | - Jesu Arockiaraj
- Department of Biotechnology, College of Science and Humanities, SRM Institute of Science and Technology, Chennai, Tamil Nadu, India
| |
Collapse
|
35
|
Eoh H, Liu R, Lim J, Lee JJ, Sell P. Central carbon metabolism remodeling as a mechanism to develop drug tolerance and drug resistance in Mycobacterium tuberculosis. Front Cell Infect Microbiol 2022; 12:958240. [PMID: 36072228 PMCID: PMC9441700 DOI: 10.3389/fcimb.2022.958240] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/03/2022] [Indexed: 11/13/2022] Open
Abstract
Suboptimal efficacy of the current antibiotic regimens and frequent emergence of antibiotic-resistant Mycobacterium tuberculosis (Mtb), an etiological agent of tuberculosis (TB), render TB the world’s deadliest infectious disease before the COVID-19 outbreak. Our outdated TB treatment method is designed to eradicate actively replicating populations of Mtb. Unfortunately, accumulating evidence suggests that a small population of Mtb can survive antimycobacterial pressure of antibiotics by entering a “persister” state (slowly replicating or non-replicating and lacking a stably heritable antibiotic resistance, termed drug tolerance). The formation of drug-tolerant Mtb persisters is associated with TB treatment failure and is thought to be an adaptive strategy for eventual development of permanent genetic mutation-mediated drug resistance. Thus, the molecular mechanisms behind persister formation and drug tolerance acquisition are a source of new antibiotic targets to eradicate both Mtb persisters and drug-resistant Mtb. As Mtb persisters are genetically identical to antibiotic susceptible populations, metabolomics has emerged as a vital biochemical tool to differentiate these populations by determining phenotypic shifts and metabolic reprogramming. Metabolomics, which provides detailed insights into the molecular basis of drug tolerance and resistance in Mtb, has unique advantages over other techniques by its ability to identify specific metabolic differences between the two genetically identical populations. This review summarizes the recent advances in our understanding of the metabolic adaptations used by Mtb persisters to achieve intrinsic drug tolerance and facilitate the emergence of drug resistance. These findings present metabolomics as a powerful tool to identify previously unexplored antibiotic targets and improved combinations of drug regimens against drug-resistant TB infection.
Collapse
|
36
|
Agarwal N, Sharma S, Pal P, Kaushal PS, Kumar N. Era, a GTPase-like protein of the Ras family, does not control ribosome assembly in Mycobacterium tuberculosis. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35917161 DOI: 10.1099/mic.0.001200] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Era GTPase is universally present in microbes including Mycobacterium tuberculosis (Mtb) complex bacteria. While Era is known to regulate ribosomal assembly in Escherichia coli and predicted to be essential for in vitro growth, its function in mycobacteria remains obscured. Herein, we show that Era ortholog in the attenuated Mtb H37Ra strain, MRA_2388 (annotated as EraMT) is a cell envelope localized protein harbouring critical GTP-binding domains, which interacts with several envelope proteins of Mtb. The purified Era from M. smegmatis (annotated as EraMS) exhibiting ~90 % sequence similarity with EraMT, exists in monomeric conformation. While it is co-purified with RNA upon overexpression in E. coli, the presence of RNA does not modulate the GTPase activity of the EraMS as against its counterpart from other organisms. CRISPRi silencing of eraMT does not show any substantial effect on the in vitro growth of Mtb H37Ra, which suggests a redundant function of Era in mycobacteria. Notably, no effect on ribosome assembly, protein synthesis or bacterial susceptibility to protein synthesis inhibitors was observed upon depletion of EraMT in Mtb H37Ra, further indicating a divergent role of Era GTPase in mycobacteria.
Collapse
Affiliation(s)
- Nisheeth Agarwal
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad- 121001 (Haryana), India
| | - Shivani Sharma
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad- 121001 (Haryana), India
| | - Pramila Pal
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad- 121001 (Haryana), India.,Jawaharlal Nehru University, New Mehrauli Road, New Delhi- 110067 (Delhi), India
| | - Prem S Kaushal
- Regional Centre for Biotechnology, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad- 121001 (Haryana), India
| | - Naresh Kumar
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, 3rd Milestone, Faridabad-Gurgaon Expressway, Faridabad- 121001 (Haryana), India
| |
Collapse
|
37
|
Evaluation of early innate and adaptive immune responses to the TB vaccine Mycobacterium bovis BCG and vaccine candidate BCGΔBCG1419c. Sci Rep 2022; 12:12377. [PMID: 35858977 PMCID: PMC9300728 DOI: 10.1038/s41598-022-14935-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 05/03/2022] [Indexed: 12/30/2022] Open
Abstract
The vaccine Mycobacterium bovis Bacillus Calmette-Guérin (BCG) elicits an immune response that is protective against certain forms of tuberculosis (TB); however, because BCG efficacy is limited it is important to identify alternative TB vaccine candidates. Recently, the BCG deletion mutant and vaccine candidate BCGΔBCG1419c was demonstrated to survive longer in intravenously infected BALB/c mice due to enhanced biofilm formation, and better protected both BALB/c and C57BL/6 mice against TB-induced lung pathology during chronic stages of infection, relative to BCG controls. BCGΔBCG1419c-elicited protection also associated with lower levels of proinflammatory cytokines (i.e. IL6, TNFα) at the site of infection in C57BL/6 mice. Given the distinct immune profiles of BCG- and BCGΔBCG1419c-immunized mice during chronic TB, we set out to determine if there are early immunological events which distinguish these two groups, using multi-dimensional flow cytometric analysis of the lungs and other tissues soon after immunization. Our results demonstrate a number of innate and adaptive response differences between BCG- and BCGΔBCG1419c-immunized mice which are consistent with the latter being longer lasting and potentially less inflammatory, including lower frequencies of exhausted CD4+ T helper (TH) cells and higher frequencies of IL10-producing T cells, respectively. These studies suggest the use of BCGΔBCG1419c may be advantageous as an alternative TB vaccine candidate.
Collapse
|
38
|
Abstract
Mycobacteriophages-bacteriophages infecting Mycobacterium hosts-contribute substantially to our understanding of viral diversity and evolution, provide resources for advancing Mycobacterium genetics, are the basis of high-impact science education programs, and show considerable therapeutic potential. Over 10,000 individual mycobacteriophages have been isolated by high school and undergraduate students using the model organism Mycobacterium smegmatis mc2155 and 2,100 have been completely sequenced, giving a high-resolution view of the phages that infect a single common host strain. The phage genomes are revealed to be highly diverse and architecturally mosaic and are replete with genes of unknown function. Mycobacteriophages have provided many widely used tools for Mycobacterium genetics including integration-proficient vectors and recombineering systems, as well as systems for efficient delivery of reporter genes, transposons, and allelic exchange substrates. The genomic insights and engineering tools have facilitated exploration of phages for treatment of Mycobacterium infections, although their full therapeutic potential has yet to be realized.
Collapse
Affiliation(s)
- Graham F. Hatfull
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, United States of America
| |
Collapse
|
39
|
Sharma A, Vashistt J, Shrivastava R. Mycobacterium fortuitum fabG4 knockdown studies: Implication as pellicle and biofilm specific drug target. J Basic Microbiol 2022; 62:1504-1513. [PMID: 35736669 DOI: 10.1002/jobm.202200230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 05/25/2022] [Accepted: 06/11/2022] [Indexed: 11/08/2022]
Abstract
The fatty acid biosynthesis pathway is crucial for the formation of the mycobacterial cell envelope. The fatty acid synthase type-II (FAS-II) components are attractive targets for designing anti-biofilm inhibitors. Literature review, bioinformatics analysis, cloning, and sequencing led to the identification of a novel Mycobacterium fortuitum FAS-II gene MFfabG4 which interacts with mycobacterial proteins involved in biofilm formation. A manually curated M. fortuitum fatty acid biosynthesis pathway has been proposed exploiting functional studies from the Kyoto Encyclopedia of Genes and Genomes and Mycobrowser databases for MFFabG4. M. fortuitum MFfabG4 knockdown strain (FA) was constructed and validated by quantitative polymerase chain reaction. The FA strain displayed unstructured smooth colony architecture, correlating with decreased pathogenicity and virulence. MFfabG4 knockdown resulted in diminished pellicle and attenuated biofilm formation, along with impaired sliding motility, and reduced cell sedimentation. The FA strain showed lowered cell surface hydrophobicity, indicating attenuation in M. fortuitum intracellular infection-causing ability. Stress survival studies showed the requirement of MFfabG4 for survival in a nutrient-starved environment. The results indicate that MFfabG4 maintains the physiology of the cell envelope and is required for the formation of M. fortuitum pellicle and biofilm. The study corroborates the role of MFfabG4 as a pellicle- and biofilm-specific drug target and a potential diagnostic marker for M. fortuitum and related pathogenic mycobacteria.
Collapse
Affiliation(s)
- Ayushi Sharma
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, India
| | - Jitendraa Vashistt
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, India
| | - Rahul Shrivastava
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Waknaghat, Solan, Himachal Pradesh, India
| |
Collapse
|
40
|
Sadat A, Tiwari S, Sunidhi S, Chaphalkar A, Kochar M, Ali M, Zaidi Z, Sharma A, Verma K, Narayana Rao KB, Tripathi M, Ghosh A, Gautam D, Atul, Ray A, Mapa K, Chakraborty K. Conserved and divergent chaperoning effects of Hsp60/10 chaperonins on protein folding landscapes. Proc Natl Acad Sci U S A 2022; 119:e2118465119. [PMID: 35486698 PMCID: PMC9170145 DOI: 10.1073/pnas.2118465119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Accepted: 03/02/2022] [Indexed: 12/21/2022] Open
Abstract
The GroEL/ES chaperonin cavity surface charge properties, especially the negative charges, play an important role in its capacity to assist intracavity protein folding. Remarkably, the larger fraction of GroEL/ES negative charges are not conserved among different bacterial species, resulting in a large variation in negative-charge density in the GroEL/ES cavity across prokaryotes. Intriguingly, eukaryotic GroEL/ES homologs have the lowest negative-charge density in the chaperonin cavity. This prompted us to investigate if GroEL’s chaperoning mechanism changed during evolution. Using a model in vivo GroEL/ES substrate, we show that the ability of GroEL/ES to buffer entropic traps in the folding pathway of its substrate was partially dependent upon the negative-charge density inside its cavity. While this activity of GroEL/ES was found to be essential for Escherichia coli, it has been perfected in some organisms and diminished in others. However, irrespective of their charges, all the tested homologs retained their ability to regulate polypeptide chain collapse and remove enthalpic traps from folding pathways. The ability of these GroEL/ES homologs to buffer mutational variations in a model substrate correlated with their negative-charge density. Thus, Hsp60/10 chaperonins in different organisms may have changed to accommodate a different spectrum of mutations on their substrates.
Collapse
Affiliation(s)
- Anwar Sadat
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Chemical and System Biology Unit, CSIR–Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Satyam Tiwari
- Chemical and System Biology Unit, CSIR–Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - S. Sunidhi
- Department of Computational Biology, Indraprastha Institute of Information Technology–Delhi, New Delhi 110020, India
| | - Aseem Chaphalkar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Chemical and System Biology Unit, CSIR–Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Manisha Kochar
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Chemical and System Biology Unit, CSIR–Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Mudassar Ali
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida 201314, India
| | - Zainab Zaidi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Chemical and System Biology Unit, CSIR–Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Akanksha Sharma
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Chemical and System Biology Unit, CSIR–Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Kanika Verma
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Chemical and System Biology Unit, CSIR–Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Kannan Boosi Narayana Rao
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Chemical and System Biology Unit, CSIR–Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Manjul Tripathi
- Chemical and System Biology Unit, CSIR–Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Asmita Ghosh
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Chemical and System Biology Unit, CSIR–Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Deepika Gautam
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Chemical and System Biology Unit, CSIR–Institute of Genomics and Integrative Biology, New Delhi 110025, India
| | - Atul
- Department of Computational Biology, Indraprastha Institute of Information Technology–Delhi, New Delhi 110020, India
| | - Arjun Ray
- Department of Computational Biology, Indraprastha Institute of Information Technology–Delhi, New Delhi 110020, India
| | - Koyeli Mapa
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Department of Life Sciences, School of Natural Sciences, Shiv Nadar University, Greater Noida 201314, India
| | - Kausik Chakraborty
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
- Chemical and System Biology Unit, CSIR–Institute of Genomics and Integrative Biology, New Delhi 110025, India
| |
Collapse
|
41
|
Sharma A, Vashistt J, Shrivastava R. Knockdown of the Type-II Fatty acid synthase gene hadC in mycobacterium fortuitum does not affect its growth, biofilm formation, and survival under stress. Int J Mycobacteriol 2022; 11:159-166. [PMID: 35775548 DOI: 10.4103/ijmy.ijmy_46_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Background Mycobacterial fatty acid synthase Type-II (FAS-II) components are major virulence factors exploited as potential targets for developing novel antimycobacterial drugs. The FAS-II enzyme 3-hydroxyacyl-ACP dehydratase (HadC) is important for biofilm development and pathogenesis of Mycobacterium tuberculosis and other mycobacterial species. Methods Literature review and homology search led to the identification of Mycobacterium fortuitum MFhadC gene. Functional interaction study of MFHadC protein was done using STRING. M. fortuitum MFhadC over-expressing (HS) and knockdown (HA) strains were constructed and validated by expression analysis using quantitative polymerase chain reaction. The strains were analyzed for growth behavior and surface spreading ability. Biofilm formation was assayed through crystal violet assay, viability count, and basic fuchsin staining. In addition, survival of the strains was studied under in vitro nutrient starvation and detergent stress. Results STRING analysis showed the interaction of HadC with proteins involved in biofilm formation. The strains HS and HA showed spreading ability on the agarose surface, exhibiting translocation patterns similar to the vector control strain. All three strains showed a similar amount of biofilm formation when analyzed using crystal violet assay, viability count, and basic fuchsin staining. The strains showed no deviation in survival when incubated under nutrient starvation and detergent stress. Conclusion Our results suggest that MFhadC may not be important for the formation and maintenance of biofilm, a factor critically important in M. fortuitum pathogenicity. However, not essential for survival and growth, MFhadC maintains the viability of M. fortuitum under a nutrient-starved environment. Collectively, MFhadC may not be used as a biofilm-specific marker for M. fortuitum.
Collapse
Affiliation(s)
- Ayushi Sharma
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, Himachal Pradesh, India
| | - Jitendraa Vashistt
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, Himachal Pradesh, India
| | - Rahul Shrivastava
- Department of Biotechnology and Bioinformatics, Jaypee University of Information Technology, Solan, Himachal Pradesh, India
| |
Collapse
|
42
|
Mycobacterial Adhesion: From Hydrophobic to Receptor-Ligand Interactions. Microorganisms 2022; 10:microorganisms10020454. [PMID: 35208908 PMCID: PMC8875947 DOI: 10.3390/microorganisms10020454] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Revised: 02/07/2022] [Accepted: 02/12/2022] [Indexed: 11/24/2022] Open
Abstract
Adhesion is crucial for the infective lifestyles of bacterial pathogens. Adhesion to non-living surfaces, other microbial cells, and components of the biofilm extracellular matrix are crucial for biofilm formation and integrity, plus adherence to host factors constitutes a first step leading to an infection. Adhesion is, therefore, at the core of pathogens’ ability to contaminate, transmit, establish residency within a host, and cause an infection. Several mycobacterial species cause diseases in humans and animals with diverse clinical manifestations. Mycobacterium tuberculosis, which enters through the respiratory tract, first adheres to alveolar macrophages and epithelial cells leading up to transmigration across the alveolar epithelium and containment within granulomas. Later, when dissemination occurs, the bacilli need to adhere to extracellular matrix components to infect extrapulmonary sites. Mycobacteria causing zoonotic infections and emerging nontuberculous mycobacterial pathogens follow divergent routes of infection that probably require adapted adhesion mechanisms. New evidence also points to the occurrence of mycobacterial biofilms during infection, emphasizing a need to better understand the adhesive factors required for their formation. Herein, we review the literature on tuberculous and nontuberculous mycobacterial adhesion to living and non-living surfaces, to themselves, to host cells, and to components of the extracellular matrix.
Collapse
|
43
|
Li B, Zhang Y, Guo Q, He S, Fan J, Xu L, Zhang Z, Wu W, Chu H. Antibacterial peptide RP557 increases the antibiotic sensitivity of Mycobacterium abscessus by inhibiting biofilm formation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:151855. [PMID: 34813807 DOI: 10.1016/j.scitotenv.2021.151855] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 11/16/2021] [Accepted: 11/17/2021] [Indexed: 06/13/2023]
Abstract
Biofilm formation is an important factor for Mycobacterium abscessus to resist harsh environment and produce drug resistance. The anti-biofilm activity of a newly designed antibacterial peptide, RP557, was investigated. The effect of RP557 alone or in combination with several clinically effective antibiotics, including clarithromycin, amikacin, cefoxitin and imipenem, on M. abscessus growth in biofilms was determined. Microstructural changes in biofilms after RP557 treatment were observed by scanning electron microscope. The effect of RP557 on the viability of bacteria was determined by Syto9/PI staining and fluorescence microscopy. Finally, the potential mechanism of RP557 action on biofilm development was explored by transcriptome analysis. M. abscessus growing in biofilms showed increased resistance to antimicrobial drugs. RP557 alone exhibited only moderate anti-M. abscessus activity in vitro, but significantly increased the antibiotic sensitivity of M. abscessus in biofilms. The inhibitory effect of RP557 on biofilm formation was visualized by the scanning electron microscope; fluorescence staining demonstrated increased bacterial death in response to RP557 treatment. Furthermore, comparative analysis of transcriptomic data suggested RP557 may inhibit biofilm formation by down-regulating nitrogen and fatty acid metabolism, as well as peptidoglycan biosynthesis. As such, RP557 is a potential candidate to include in novel strategies to treat M. abscessus infections.
Collapse
Affiliation(s)
- Bing Li
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Yongjie Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China; School of Medicine, Tongji University, Shanghai 200092, China
| | - Qi Guo
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China; School of Medicine, Tongji University, Shanghai 200092, China
| | - Siyuan He
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China; School of Medicine, Tongji University, Shanghai 200092, China
| | - Junsheng Fan
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China; School of Medicine, Tongji University, Shanghai 200092, China
| | - Liyun Xu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Zhemin Zhang
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China
| | - Wenye Wu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China.
| | - Haiqing Chu
- Department of Respiratory and Critical Care Medicine, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China; Shanghai Key Laboratory of Tuberculosis, Shanghai Pulmonary Hospital, School of Medicine, Tongji University, Shanghai 200433, China.
| |
Collapse
|
44
|
Gauthier CH, Abad L, Venbakkam AK, Malnak J, Russell D, Hatfull G. OUP accepted manuscript. Nucleic Acids Res 2022; 50:e75. [PMID: 35451479 PMCID: PMC9303363 DOI: 10.1093/nar/gkac273] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/11/2022] [Accepted: 04/06/2022] [Indexed: 11/26/2022] Open
Abstract
Advances in genome sequencing have produced hundreds of thousands of bacterial genome sequences, many of which have integrated prophages derived from temperate bacteriophages. These prophages play key roles by influencing bacterial metabolism, pathogenicity, antibiotic resistance, and defense against viral attack. However, they vary considerably even among related bacterial strains, and they are challenging to identify computationally and to extract precisely for comparative genomic analyses. Here, we describe DEPhT, a multimodal tool for prophage discovery and extraction. It has three run modes that facilitate rapid screening of large numbers of bacterial genomes, precise extraction of prophage sequences, and prophage annotation. DEPhT uses genomic architectural features that discriminate between phage and bacterial sequences for efficient prophage discovery, and targeted homology searches for precise prophage extraction. DEPhT is designed for prophage discovery in Mycobacterium genomes but can be adapted broadly to other bacteria. We deploy DEPhT to demonstrate that prophages are prevalent in Mycobacterium strains but are absent not only from the few well-characterized Mycobacterium tuberculosis strains, but also are absent from all ∼30 000 sequenced M. tuberculosis strains.
Collapse
Affiliation(s)
| | | | - Ananya K Venbakkam
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Julia Malnak
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Daniel A Russell
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, PA 15260, USA
| | - Graham F Hatfull
- To whom correspondence should be addressed. Tel: +1 412 624 6975;
| |
Collapse
|
45
|
Hakiem OR, Batra JK. Role of HrcA in stress management in Mycobacterium tuberculosis. J Appl Microbiol 2021; 132:3315-3326. [PMID: 34953162 DOI: 10.1111/jam.15428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2021] [Revised: 12/20/2021] [Accepted: 12/21/2021] [Indexed: 11/26/2022]
Abstract
AIM The current study aims to understand the role of HrcA in stress response of M. tuberculosis. METHODS AND RESULTS In this study, using an hrcA knock out mutant of M. tuberculosis it is demonstrated that the heat shock repressor, HrcA is important for countering environmental stresses pathogen faces within the host during the infection process. Also, with scanning electron microscopy it has been shown that HrcA plays a role in maintaining the morphology and cell size of the pathogen as disruption of the hrcA gene resulted in significantly elongated bacilli. Further, heat shock proteins like ClpC1, ClpB, DnaK, GroEL2, GroEL1, DnaJ2 and GroES were detected in the secretome of M. tuberculosis by mass spectrometric analysis. The study also demonstrates a strong humoral response against M. tuberculosis heat shock proteins in H37 Rv infected mice sera. CONCLUSION The study establishes that though hrcA is not an essential gene for M. tuberculosis, it regulates the expression of heat shock proteins during infection, and disruption of hrcA gives a survival advantage to the pathogen during stress conditions. SIGNIFICANCE and Impact of the Study: HrcA plays an important role in maintaining a fine balance of heat shock proteins during infection to give adequate survival advantage and also evade immune detection.
Collapse
Affiliation(s)
- Owais R Hakiem
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.,Current address: Microbiology and Molecular Genetics, University of California, Irvine, 92697, USA
| | - Janendra K Batra
- National Institute of Immunology, Aruna Asaf Ali Marg, New Delhi, 110067, India.,Department of Biochemistry, School of Chemical and Life Sciences, Jamia Hamdard, New, Delhi, 110062, India
| |
Collapse
|
46
|
Reprogramming Mycobacterium tuberculosis CRISPR System for Gene Editing and Genome-wide RNA Interference Screening. GENOMICS, PROTEOMICS & BIOINFORMATICS 2021; 20:1180-1196. [PMID: 34923124 DOI: 10.1016/j.gpb.2021.01.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 11/29/2020] [Accepted: 01/27/2021] [Indexed: 02/07/2023]
Abstract
Mycobacterium tuberculosis is the causative agent of tuberculosis (TB), which is still the leading cause of mortality from a single infectious disease worldwide. The development of novel anti-TB drugs and vaccines is severely hampered by the complicated and time-consuming genetic manipulation techniques for M. tuberculosis. Here, we harnessed an endogenous type III-A CRISPR/Cas10 system of M. tuberculosis for efficient gene editing and RNA interference (RNAi). This simple and easy method only needs to transform a single mini-CRISPR array plasmid, thus avoiding the introduction of exogenous protein and minimizing proteotoxicity. We demonstrated that M. tuberculosis genes can be efficiently and specifically knocked in/out by this system as confirmed by DNA high-throughput sequencing. This system was further applied to single- and multiple-gene RNAi. Moreover, we successfully performed genome-wide RNAi screening to identify M. tuberculosis genes regulating in vitro and intracellular growth. This system can be extensively used for exploring the functional genomics of M. tuberculosis and facilitate the development of novel anti-TB drugs and vaccines.
Collapse
|
47
|
Imidazole-Thiosemicarbazide Derivatives as Potent Anti- Mycobacterium tuberculosis Compounds with Antibiofilm Activity. Cells 2021; 10:cells10123476. [PMID: 34943984 PMCID: PMC8700351 DOI: 10.3390/cells10123476] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 02/06/2023] Open
Abstract
Mycobacterium tuberculosis (Mtb) is an intracellular pathogenic bacterium and the causative agent of tuberculosis. This disease is one of the most ancient and deadliest bacterial infections, as it poses major health, social and economic challenges at a global level, primarily in low- and middle-income countries. The lack of an effective vaccine, the long and expensive drug therapy, and the rapid spread of drug-resistant strains of Mtb have led to the re-emergence of tuberculosis as a global pandemic. Here, we assessed the in vitro activity of new imidazole-thiosemicarbazide derivatives (ITDs) against Mtb infection and their effects on mycobacterial biofilm formation. Cytotoxicity studies of the new compounds in cell lines and human monocyte-derived macrophages (MDMs) were performed. The anti-Mtb activity of ITDs was evaluated by determining minimal inhibitory concentrations of resazurin, time-kill curves, bacterial intracellular growth and the effect on biofilm formation. Mutation frequency and whole-genome sequencing of mutants that were resistant to ITDs were performed. The antimycobacterial potential of ITDs with the ability to penetrate Mtb-infected human macrophages and significantly inhibit the intracellular growth of tubercle bacilli and suppress Mtb biofilm formation was observed.
Collapse
|
48
|
Chen Q, Li Q, Guo A, Liu L, Gu L, Liu W, Zhang X, Ruan Y. Transcriptome analysis of suspended aggregates formed by Listeria monocytogenes co-cultured with Ralstonia insidiosa. Food Control 2021. [DOI: 10.1016/j.foodcont.2021.108237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
|
49
|
Dokic A, Peterson E, Arrieta-Ortiz ML, Pan M, Di Maio A, Baliga N, Bhatt A. Mycobacterium abscessus biofilms produce an extracellular matrix and have a distinct mycolic acid profile. Cell Surf 2021; 7:100051. [PMID: 33912773 PMCID: PMC8066798 DOI: 10.1016/j.tcsw.2021.100051] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 02/06/2023] Open
Abstract
A non-tuberculous mycobacterium, Mycobacterium abscessus is an emerging opportunistic pathogen associated with difficult to treat pulmonary infections, particularly in patients suffering from cystic fibrosis. It is capable of forming biofilms in vitro that result in an increase of already high levels of antibiotic resistance in this bacterium. Evidence that M. abscessus forms biofilm-like microcolonies in patient lungs and on medical devices further implicated the need to investigate this biofilm in detail. Therefore, in this study we characterized the M. abscessus pellicular biofilm, formed on a liquid-air interface, by studying its molecular composition, and its transcriptional profile in comparison to planktonic cells. Using scanning electron micrographs and fluorescence microscopy, we showed that M. abscessus biofilms produce an extracellular matrix composed of lipids, proteins, carbohydrates and extracellular DNA. Transcriptomic analysis of biofilms revealed an upregulation of pathways involved in the glyoxylate shunt, redox metabolism and mycolic acid biosynthesis. Genes involved in elongation and desaturation of mycolic acids were highly upregulated in biofilms and, mirroring those findings, biochemical analysis of mycolates revealed molecular changes and an increase in mycolic acid chain length. Together these results give us an insight into the complex structure of M. abscessus biofilms, the understanding of which may be adapted for clinical use in treatment of biofilm infections, including strategies for dispersing the extracellular matrix, allowing antibiotics to gain access to bacteria within the biofilm.
Collapse
Affiliation(s)
- Anja Dokic
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | | | | | - Min Pan
- Institute for Systems Biology, Seattle, WA 98109 USA
| | - Alessandro Di Maio
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| | - Nitin Baliga
- Institute for Systems Biology, Seattle, WA 98109 USA
| | - Apoorva Bhatt
- School of Biosciences and Institute of Microbiology and Infection, University of Birmingham, Edgbaston, Birmingham B15 2TT, United Kingdom
| |
Collapse
|
50
|
Belardinelli JM, Li W, Avanzi C, Angala SK, Lian E, Wiersma CJ, Palčeková Z, Martin KH, Angala B, de Moura VCN, Kerns C, Jones V, Gonzalez-Juarrero M, Davidson RM, Nick JA, Borlee BR, Jackson M. Unique Features of Mycobacterium abscessus Biofilms Formed in Synthetic Cystic Fibrosis Medium. Front Microbiol 2021; 12:743126. [PMID: 34777289 PMCID: PMC8586431 DOI: 10.3389/fmicb.2021.743126] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 09/28/2021] [Indexed: 12/04/2022] Open
Abstract
Characterizing Mycobacterium abscessus complex (MABSC) biofilms under host-relevant conditions is essential to the design of informed therapeutic strategies targeted to this persistent, drug-tolerant, population of extracellular bacilli. Using synthetic cystic fibrosis medium (SCFM) which we previously reported to closely mimic the conditions encountered by MABSC in actual cystic fibrosis (CF) sputum and a new model of biofilm formation, we show that MABSC biofilms formed under these conditions are substantially different from previously reported biofilms grown in standard laboratory media in terms of their composition, gene expression profile and stress response. Extracellular DNA (eDNA), mannose-and glucose-containing glycans and phospholipids, rather than proteins and mycolic acids, were revealed as key extracellular matrix (ECM) constituents holding clusters of bacilli together. None of the environmental cues previously reported to impact biofilm development had any significant effect on SCFM-grown biofilms, most likely reflecting the fact that SCFM is a nutrient-rich environment in which MABSC finds a variety of ways of coping with stresses. Finally, molecular determinants were identified that may represent attractive new targets for the development of adjunct therapeutics targeting MABSC biofilms in persons with CF.
Collapse
Affiliation(s)
- Juan M Belardinelli
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Wei Li
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Charlotte Avanzi
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Shiva K Angala
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Elena Lian
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Crystal J Wiersma
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Zuzana Palčeková
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Kevin H Martin
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Bhanupriya Angala
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Vinicius C N de Moura
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Callan Kerns
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Victoria Jones
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Mercedes Gonzalez-Juarrero
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Rebecca M Davidson
- Center for Genes, Environment, and Health, National Jewish Health, Denver, CO, United States
| | - Jerry A Nick
- Department of Medicine, National Jewish Health, Denver, CO, United States.,Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO, United States
| | - Bradley R Borlee
- Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| | - Mary Jackson
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology, and Pathology, Colorado State University, Fort Collins, CO, United States
| |
Collapse
|