1
|
Betzler AC, Brunner C. The Role of the Transcriptional Coactivator BOB.1/OBF.1 in Adaptive Immunity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1459:53-77. [PMID: 39017839 DOI: 10.1007/978-3-031-62731-6_3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/18/2024]
Abstract
BOB.1/OBF.1 is a transcriptional coactivator involved in octamer-dependent transcription. Thereby, BOB.1/OBF.1 is involved in the transcriptional regulation of genes important for lymphocyte physiology. BOB.1/OBF.1-deficient mice reveal multiple B- and T-cell developmental defects. The most prominent defect of these mice is the complete absence of germinal centers (GCs) resulting in severely impaired T-cell-dependent immune responses. In humans, BOB.1/OBF.1 is associated with several autoimmune and inflammatory diseases but also linked to liquid and solid tumors. Although its role for B-cell development is relatively well understood, its exact role for the GC reaction and T-cell biology has long been unclear. Here, the contribution of BOB.1/OBF.1 for B-cell maturation is summarized, and recent findings regarding its function in GC B- as well as in various T-cell populations are discussed. Finally, a detailed perspective on how BOB.1/OBF.1 contributes to different pathologies is provided.
Collapse
Affiliation(s)
- Annika C Betzler
- Department of Oto-Rhino-Larnygology, Ulm University Medical Center, Ulm, Germany
- Core Facility Immune Monitoring, Ulm University, Ulm, Germany
| | - Cornelia Brunner
- Department of Oto-Rhino-Larnygology, Ulm University Medical Center, Ulm, Germany.
- Core Facility Immune Monitoring, Ulm University, Ulm, Germany.
| |
Collapse
|
2
|
Wu XS, Vakoc CR. Made to order tuft cells by an OCA-T1 isoform switch. Sci Immunol 2023; 8:eadh3123. [PMID: 37172101 DOI: 10.1126/sciimmunol.adh3123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
A genetic mechanism accounts for the variation in tuft cell abundance seen among inbred mouse strains: alternative isoforms of OCA-T1 (Oct coactivator from tuft cells 1), a recently discovered transcriptional coactivator that specifies the tuft cell lineage (see related Research Article by Nadjsombati et al.).
Collapse
Affiliation(s)
- Xiaoli S Wu
- Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | | |
Collapse
|
3
|
Zheng S, Zheng H, Zhang R, Piao X, Hu J, Zhu Y, Wang Y. Immunomodulatory Effect of Ginsenoside Rb2 Against Cyclophosphamide-Induced Immunosuppression in Mice. Front Pharmacol 2022; 13:927087. [PMID: 35814238 PMCID: PMC9263391 DOI: 10.3389/fphar.2022.927087] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 05/31/2022] [Indexed: 01/10/2023] Open
Abstract
Ginsenoside Rb2 (Rb2), a fundamental saponin produced and isolated from ginseng (Panax ginseng C.A. Meyer), has a wide range of biological actions. The objective of this investigation was to see if ginsenoside Rb2 has any immunomodulatory properties against cyclophosphamide (CTX)-induced immunosuppression. For the positive control group, levamisole hydrochloride (LD) was used. We discovered that intraperitoneal injection of Rb2 (5, 10, 20 mg/kg) could relieve CTX-induced immunosuppression by enhanced immune organ index, reduced the pathological characteristics of immunosuppression, promoted natural killer (NK) cells viability, improved cell-mediated immune response, boosted the IFN-γ (Interferon-gamma), TNF-α (Tumor necrosis factor-alpha), IL-2 (Interleukin-2), and IgG (Immunoglobulin G), as well as macrophage activity like carbon clearance and phagocytic index. Rb2 significantly elevated the mRNA expression of IL-4 (Interleukin-4), SYK (Tyrosine-protein kinase-SYK), IL-2, TNF-α, and IL-6 (Interleukin-6) in the spleen of CTX-injected animals. Molecular docking results showed that Rb2 had excellent binding properties with IL-4, SYK, IL-2, TNF, and IL-6, indicating the target protein might be strongly correlated with the immunomodulatory effect of Rb2. Taken together, ginsenoside Rb2 can improve the immune function that is declined in CTX-induced immunosuppressed mice, the efficacy maybe due to the regulation of related cytokine and mRNA expression.
Collapse
Affiliation(s)
- Siwen Zheng
- National and Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, China
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Housheng Zheng
- National and Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, China
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Rui Zhang
- National and Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, China
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Xiangmin Piao
- National and Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, China
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Junnan Hu
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
| | - Yanzhu Zhu
- Institute of Special Animal and Plant Sciences, Chinese Academy of Agricultural Sciences, Changchun, China
- Animal Science and Technology College, Jilin Agriculture Science and Technology University, Jilin, China
- *Correspondence: Yanzhu Zhu, ; Yingping Wang,
| | - Yingping Wang
- National and Local Joint Engineering Research Center for Ginseng Breeding and Development, Changchun, China
- College of Chinese Medicinal Materials, Jilin Agricultural University, Changchun, China
- *Correspondence: Yanzhu Zhu, ; Yingping Wang,
| |
Collapse
|
4
|
Lombard‐Vadnais F, Lacombe J, Chabot‐Roy G, Ferron M, Lesage S. OCA‐B does not act as a transcriptional coactivator in T cells. Immunol Cell Biol 2022; 100:338-351. [DOI: 10.1111/imcb.12543] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 02/14/2022] [Accepted: 03/09/2022] [Indexed: 11/27/2022]
Affiliation(s)
- Félix Lombard‐Vadnais
- Immunologie‐oncologie Centre de recherche de l’Hôpital Maisonneuve‐Rosemont Montréal QC H1T 2M4 Canada
- Department of Microbiology & Immunology McGill University Montreal QC H3A 0G4 Canada
| | - Julie Lacombe
- Molecular Physiology Research Unit Institut de recherches cliniques de Montréal Montréal QC H2W 1R7 Canada
| | - Geneviève Chabot‐Roy
- Immunologie‐oncologie Centre de recherche de l’Hôpital Maisonneuve‐Rosemont Montréal QC H1T 2M4 Canada
| | - Mathieu Ferron
- Molecular Physiology Research Unit Institut de recherches cliniques de Montréal Montréal QC H2W 1R7 Canada
- Département de médecine Université de Montréal Montréal QC H3T 1J4 Canada
- Division of Experimental Medicine McGill University Montreal QC H3A 0G4 Canada
| | - Sylvie Lesage
- Immunologie‐oncologie Centre de recherche de l’Hôpital Maisonneuve‐Rosemont Montréal QC H1T 2M4 Canada
- Département de microbiologie, infectiologie et immunologie Université de Montréal Montréal QC H3T 1J4 Canada
| |
Collapse
|
5
|
Betzler AC, Fiedler K, Hoffmann TK, Fehling HJ, Wirth T, Brunner C. BOB.1/OBF.1 is required during B-cell ontogeny for B-cell differentiation and germinal center function. Eur J Immunol 2021; 52:404-417. [PMID: 34918350 DOI: 10.1002/eji.202149333] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 10/28/2021] [Accepted: 11/26/2021] [Indexed: 11/06/2022]
Abstract
BOB.1/OBF.1 is a lymphocyte-specific transcriptional co-activator of octamer-dependent transcription. It regulates the expression of genes important for lymphocyte physiology together with the Oct-1 and Oct-2 transcription factors. So far, BOB.1/OBF.1 has been studied in conventional knockout mice, whereby a function of BOB.1/OBF.1 in B but also in T cells was described. The main characteristic of BOB.1/OBF.1-deficient mice is the complete absence of germinal centers. However, it is entirely unsolved at which stage of B-cell development BOB.1/OBF.1 expression is essential for germinal center formation. Still, it is not known whether defects observed late in B-cell development of BOB.1/OBF.1-deficient mice are merely a consequence of defective early B-cell development. To answer the question, whether BOB.1/OBF.1 expression is required before or during the process of germinal center formation, we established a mouse system, which allows the conditional deletion of BOB.1/OBF.1 at different stages of B-cell development. Our data reveal a requirement for BOB.1/OBF.1 during both early antigen-independent and late antigen-dependent B-cell development, and further a requirement for efficient germinal center reaction during complete B-cell ontogeny. By specifically deleting BOB.1/OBF.1 in germinal center B cells, we provide evidence that the failure to form germinal centers is a germinal center B-cell intrinsic defect and not exclusively a consequence of defective early B-cell maturation.
Collapse
Affiliation(s)
- Annika C Betzler
- Department of Oto-Rhino-Laryngology, Ulm University Medical Center, Ulm, Germany
| | - Katja Fiedler
- Department of Oto-Rhino-Laryngology, Ulm University Medical Center, Ulm, Germany.,Department of Physiological Chemistry, Ulm University, Ulm, Germany
| | - Thomas K Hoffmann
- Department of Oto-Rhino-Laryngology, Ulm University Medical Center, Ulm, Germany
| | | | - Thomas Wirth
- Department of Physiological Chemistry, Ulm University, Ulm, Germany
| | - Cornelia Brunner
- Department of Oto-Rhino-Laryngology, Ulm University Medical Center, Ulm, Germany
| |
Collapse
|
6
|
Agammaglobulinemia with normal B-cell numbers in a patient lacking Bob1. J Allergy Clin Immunol 2021; 147:1977-1980. [DOI: 10.1016/j.jaci.2021.01.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2020] [Revised: 01/20/2021] [Accepted: 01/28/2021] [Indexed: 11/21/2022]
|
7
|
Yeremenko N, Danger R, Baeten D, Tomilin A, Brouard S. Transcriptional regulator BOB.1: Molecular mechanisms and emerging role in chronic inflammation and autoimmunity. Autoimmun Rev 2021; 20:102833. [PMID: 33864944 DOI: 10.1016/j.autrev.2021.102833] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 01/28/2021] [Indexed: 11/19/2022]
Abstract
Lymphocytes constitute an essential and potent effector compartment of the immune system. Therefore, their development and functions must be strictly regulated to avoid inappropriate immune responses, such as autoimmune reactions. Several lines of evidence from genetics (e.g. association with multiple sclerosis and primary biliary cirrhosis), human expression studies (e.g. increased expression in target tissues and draining lymph nodes of patients with autoimmune diseases), animal models (e.g. loss of functional protein protects animals from the development of collagen-induced arthritis, experimental autoimmune encephalomyelitis, type 1 diabetes, bleomycin-induced fibrosis) strongly support a causal link between the aberrant expression of the lymphocyte-restricted transcriptional regulator BOB.1 and the development of autoimmune diseases. In this review, we summarize the current knowledge of unusual structural and functional plasticity of BOB.1, stringent regulation of its expression, and the pivotal role that BOB.1 plays in shaping B- and T-cell responses. We discuss recent developments highlighting the significant contribution of BOB.1 to the pathogenesis of autoimmune diseases and how to leverage our knowledge to target this regulator to treat autoimmune tissue inflammation.
Collapse
Affiliation(s)
- Nataliya Yeremenko
- CHU Nantes, Université de Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France; Amsterdam Rheumatology and Immunology Center, Department of Clinical Immunology and Rheumatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands; Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands.
| | - Richard Danger
- CHU Nantes, Université de Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| | - Dominique Baeten
- Amsterdam Rheumatology and Immunology Center, Department of Clinical Immunology and Rheumatology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands; Department of Experimental Immunology, Amsterdam University Medical Centers, University of Amsterdam, Amsterdam, Netherlands
| | - Alexey Tomilin
- Institute of Cytology, Russian Academy of Sciences, St-Petersburg, Russian Federation
| | - Sophie Brouard
- CHU Nantes, Université de Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Nantes, France
| |
Collapse
|
8
|
Hitomi Y, Aiba Y, Kawai Y, Kojima K, Ueno K, Nishida N, Kawashima M, Gervais O, Khor SS, Nagasaki M, Tokunaga K, Nakamura M, Tsuiji M. rs1944919 on chromosome 11q23.1 and its effector genes COLCA1/COLCA2 confer susceptibility to primary biliary cholangitis. Sci Rep 2021; 11:4557. [PMID: 33633225 PMCID: PMC7907150 DOI: 10.1038/s41598-021-84042-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Accepted: 02/11/2021] [Indexed: 01/12/2023] Open
Abstract
Primary biliary cholangitis (PBC) is a chronic, progressive cholestatic liver disease in which intrahepatic bile ducts are destroyed by an autoimmune reaction. Our previous genome-wide association study (GWAS) identified chromosome 11q23.1 as a susceptibility gene locus for PBC in the Japanese population. Here, high-density association mapping based on single nucleotide polymorphism (SNP) imputation and in silico/in vitro functional analyses identified rs1944919 as the primary functional variant. Expression-quantitative trait loci analyses showed that the PBC susceptibility allele of rs1944919 was significantly associated with increased COLCA1/COLCA2 expression levels. Additionally, the effects of rs1944919 on COLCA1/COLCA2 expression levels were confirmed using genotype knock-in versions of cell lines constructed using the CRISPR/Cas9 system and differed between rs1944919-G/G clones and -T/T clones. To our knowledge, this is the first study to demonstrate the contribution of COLCA1/COLCA2 to PBC susceptibility.
Collapse
Affiliation(s)
- Yuki Hitomi
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan.
| | - Yoshihiro Aiba
- Clinical Research Center, National Hospital Organization (NHO) Nagasaki Medical Center, Omura, Japan
| | - Yosuke Kawai
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Kaname Kojima
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Kazuko Ueno
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Nao Nishida
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan.,The Research Center for Hepatitis and Immunology, National Center for Global Health and Medicine, Ichikawa, Japan
| | | | - Olivier Gervais
- Human Biosciences Unit for the Top Global Course Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
| | - Seik-Soon Khor
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Masao Nagasaki
- Human Biosciences Unit for the Top Global Course Center for the Promotion of Interdisciplinary Education and Research, Kyoto University, Kyoto, Japan
| | - Katsushi Tokunaga
- Genome Medical Science Project, National Center for Global Health and Medicine, Tokyo, Japan
| | - Minoru Nakamura
- Clinical Research Center, National Hospital Organization (NHO) Nagasaki Medical Center, Omura, Japan.,Department of Hepatology, Nagasaki University Graduate School of Biomedical Sciences, Omura, Japan.,Headquarters of PBC Research in NHO Study Group for Liver Disease in Japan (NHOSLJ), Clinical Research Center, NHO Nagasaki Medical Center, Omura, Japan
| | - Makoto Tsuiji
- Department of Microbiology, Hoshi University School of Pharmacy and Pharmaceutical Sciences, 2-4-41 Ebara, Shinagawa-ku, Tokyo, 142-8501, Japan.
| |
Collapse
|
9
|
Lu X, Chu CS, Fang T, Rayon-Estrada V, Fang F, Patke A, Qian Y, Clarke SH, Melnick AM, Zhang Y, Papavasiliou FN, Roeder RG. MTA2/NuRD Regulates B Cell Development and Cooperates with OCA-B in Controlling the Pre-B to Immature B Cell Transition. Cell Rep 2020; 28:472-485.e5. [PMID: 31291582 PMCID: PMC6690613 DOI: 10.1016/j.celrep.2019.06.029] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/21/2019] [Accepted: 06/06/2019] [Indexed: 02/06/2023] Open
Abstract
The NuRD complex contains both chromatin remodeling and histone deacetylase activities. Mice lacking the MTA2 subunit of NuRD show developmental defects in pro-B, pre-B, immature B, and marginal zone B cells, and abnormal germinal center B cell differentiation during immune responses. Mta2 inactivation also causes a derepression of Igll1 and VpreB1 genes in pre-B cells. Furthermore, MTA2/NuRD interacts directly with AIOLOS/IKAROS and shows a striking overlap with AIOLOS/IKAROS target genes in human pre-B cells, suggesting a functional interdependence between MTA2/NuRD and AIOLOS. Mechanistically, MTA2 deficiency in mice leads to increased H3K27 acetylation at both Igll1 and VpreB1 promoters. Gene profiling analyses also identify distinct MTA2-dependent transcription programs in pro-B and pre-B cells. In addition, we find a strong synergy between MTA2 and OCA-B in repressing Igll1 and VpreB1 at the pre-B cell stage, and in regulating both the pre-B to immature B transition and splenic B cell development. Lu et al. examine B cell developmental defects in MTA2-deficient mice. MTA2 interacts with AIOLOS/IKAROS, represses Igll1 expression, co-binds to most AIOLOS/IKAROS target genes in pre-B cells, and cooperates with OCA-B in the pre-B to immature B transition. These data suggest that AIOLOS/IKAROS functions through MTA2/NuRD during B cell development.
Collapse
Affiliation(s)
- Xiangdong Lu
- The Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Chi-Shuen Chu
- The Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA
| | - Terry Fang
- The Laboratory of Immune Cell Epigenetics and Signaling, The Rockefeller University, New York, NY 10065, USA
| | - Violeta Rayon-Estrada
- The Laboratory of Lymphocyte Biology, The Rockefeller University, New York, NY 10065, USA
| | - Fang Fang
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Alina Patke
- The Laboratory of Immune Cell Epigenetics and Signaling, The Rockefeller University, New York, NY 10065, USA
| | - Ye Qian
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Stephen H Clarke
- Department of Microbiology and Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Ari M Melnick
- Department of Medicine, Division of Hematology and Medical Oncology, Weill Cornell Medicine, New York, NY 10065, USA
| | - Yi Zhang
- HHMI, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - F Nina Papavasiliou
- The Laboratory of Lymphocyte Biology, The Rockefeller University, New York, NY 10065, USA; Division of Immune Diversity, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Robert G Roeder
- The Laboratory of Biochemistry and Molecular Biology, The Rockefeller University, New York, NY 10065, USA.
| |
Collapse
|
10
|
Ji C, Li Y, Yang K, Gao Y, Sha Y, Xiao D, Liang X, Cheng Z. Identification of four genes associated with cutaneous metastatic melanoma. Open Med (Wars) 2020; 15:531-539. [PMID: 33336008 PMCID: PMC7712158 DOI: 10.1515/med-2020-0190] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/14/2020] [Accepted: 05/13/2020] [Indexed: 01/11/2023] Open
Abstract
Background Cutaneous melanoma is an aggressive cancer with increasing incidence and mortality rates worldwide. Metastasis is one of the primary elements that influence the prognosis of patients with cutaneous melanoma. This study aims to clarify the potential mechanism underlying the low survival rate of metastatic melanoma and to search for novel target genes to improve the survival rate of patients with metastatic tumors. Methods Gene expression dataset and clinical data were downloaded from The Cancer Genome Atlas portal. Differentially expressed genes (DEGs) were identified, and their functions were studied through gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses. Survival and multivariate Cox regression analyses were used to screen out candidate genes that could affect the prognosis of patients with metastatic melanoma. Results After a series of comprehensive statistical analysis, 464 DEGs were identified between primary tumor tissues and metastatic tissues. Survival and multivariate Cox regression analyses revealed four vital genes, namely, POU2AF1, ITGAL, CXCR2P1, and MZB1, that affect the prognosis of patients with metastatic melanoma. Conclusion This study provides a new direction for studying the pathogenesis of metastatic melanoma. The genes related to cutaneous metastatic melanoma that affect the overall survival time of patients were identified.
Collapse
Affiliation(s)
- Chen Ji
- Department of Dermatology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, 77 Changan South Road, Zhangjiagang, Jiangsu Province, 215600, China
| | - Yuming Li
- Department of Dermatology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, 77 Changan South Road, Zhangjiagang, Jiangsu Province, 215600, China
| | - Kai Yang
- Department of Dermatology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, 77 Changan South Road, Zhangjiagang, Jiangsu Province, 215600, China
| | - Yanwei Gao
- Department of Dermatology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, 77 Changan South Road, Zhangjiagang, Jiangsu Province, 215600, China
| | - Yan Sha
- Department of Dermatology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, 77 Changan South Road, Zhangjiagang, Jiangsu Province, 215600, China
| | - Dong Xiao
- Department of Dermatology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, 77 Changan South Road, Zhangjiagang, Jiangsu Province, 215600, China
| | - Xiaohong Liang
- Department of Pulmonary and Critical Care Medicine, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, 77 Changan South Road, Zhangjiagang, Jiangsu Province, 215600, China
| | - Zhongqin Cheng
- Department of Dermatology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, 77 Changan South Road, Zhangjiagang, Jiangsu Province, 215600, China
| |
Collapse
|
11
|
González-Rincón J, Méndez M, Gómez S, García JF, Martín P, Bellas C, Pedrosa L, Rodríguez-Pinilla SM, Camacho FI, Quero C, Pérez-Callejo D, Rueda A, Llanos M, Gómez-Codina J, Piris MA, Montes-Moreno S, Bárcena C, Rodríguez-Abreu D, Menárguez J, de la Cruz-Merino L, Monsalvo S, Parejo C, Royuela A, Kwee I, Cascione L, Arribas A, Bertoni F, Mollejo M, Provencio M, Sánchez-Beato M. Unraveling transformation of follicular lymphoma to diffuse large B-cell lymphoma. PLoS One 2019; 14:e0212813. [PMID: 30802265 PMCID: PMC6388933 DOI: 10.1371/journal.pone.0212813] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 02/08/2019] [Indexed: 02/07/2023] Open
Abstract
Follicular lymphoma (FL) is an indolent but largely incurable disease. Some patients suffer histological transformation to a more aggressive subtype with poorer prognosis. This study aimed to improve our understanding of the genetics underlying FL histological transformation, and to identify genetic drivers or promoters of the transformation by elucidating the differences between FL samples from patients who did and did not transform. We conducted targeted massive parallel sequencing of 22 pre-transformed FL/transformed diffuse large B-cell lymphoma pairs and 20 diagnostic samples from non-transformed FL patients. Additionally, 22 matched samples from 11 transformed FL patients (pre-transformed FL and diffuse large B-cell lymphoma) and 9 non-transformed FLs were studied for copy number variation using SNP arrays. We identified recurrently mutated genes that were enriched at transformation, most notably LRP1B, GNA13 and POU2AF1, which have roles in B-cell differentiation, GC architecture and migration. Mutations in POU2AF1 might be associated with lower levels of expression, were more frequent in transformed FLs, and seemed to be specific to transformed- compared with de novo-diffuse large B-cell lymphomas. Pre-transformed FLs carried more mutations per sample and had greater subclonal heterogeneity than non-transformed FLs. Finally, we identified four mutated genes in FL samples that differed between patients who did and did not transform: NOTCH2, DTX1, UBE2A and HIST1H1E. The presence of mutations in these genes was associated with shorter time to transformation when mutated in the FL biopsies. This information might be useful for identifying patients at higher risk of transformation.
Collapse
MESH Headings
- Adult
- Aged
- B-Lymphocytes/metabolism
- B-Lymphocytes/pathology
- Biopsy
- Cell Differentiation/genetics
- Cell Transformation, Neoplastic/genetics
- Cell Transformation, Neoplastic/metabolism
- Cell Transformation, Neoplastic/pathology
- Female
- Follow-Up Studies
- Humans
- Lymphoma, Follicular/genetics
- Lymphoma, Follicular/metabolism
- Lymphoma, Follicular/pathology
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/metabolism
- Lymphoma, Large B-Cell, Diffuse/pathology
- Male
- Middle Aged
- Mutation
- Neoplasm Proteins/genetics
- Neoplasm Proteins/metabolism
Collapse
Affiliation(s)
- Julia González-Rincón
- Lymphoma Research Group, Medical Oncology Department, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Madrid, Spain
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC),Madrid, Spain
| | - Miriam Méndez
- Lymphoma Research Group, Medical Oncology Department, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Madrid, Spain
- Medical Oncology Department, Hospital Universitario Puerta de Hierro, Madrid, Spain
| | - Sagrario Gómez
- Lymphoma Research Group, Medical Oncology Department, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Madrid, Spain
| | - Juan F. García
- Pathology Department, Hospital MD Anderson Cancer Center, Madrid, Spain
| | - Paloma Martín
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC),Madrid, Spain
- Pathology Department, Hospital Universitario Puerta de Hierro, Madrid, Spain
| | - Carmen Bellas
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC),Madrid, Spain
- Pathology Department, Hospital Universitario Puerta de Hierro, Madrid, Spain
| | - Lucía Pedrosa
- Lymphoma Research Group, Medical Oncology Department, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Madrid, Spain
| | - Socorro M. Rodríguez-Pinilla
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC),Madrid, Spain
- Pathology Department, Fundación Jiménez Díaz, Madrid, Spain
| | | | - Cristina Quero
- Medical Oncology Department, Hospital Universitario Virgen de la Victoria, Malaga, Spain
| | - David Pérez-Callejo
- Lymphoma Research Group, Medical Oncology Department, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Madrid, Spain
- Medical Oncology Department, Hospital Universitario Puerta de Hierro, Madrid, Spain
| | - Antonio Rueda
- Medical Oncology Department, Hospital Costa del Sol, Malaga, Spain
| | - Marta Llanos
- Medical Oncology Department, Hospital Universitario de Canarias, Santa Cruz de Tenerife, Spain
| | - José Gómez-Codina
- Medical Oncology Department, Hospital Universitari i Politècnic La Fe, Valencia, Spain
| | - Miguel A. Piris
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC),Madrid, Spain
- Pathology Department, Fundación Jiménez Díaz, Madrid, Spain
| | - Santiago Montes-Moreno
- Centro de Investigación Biomédica en Red de Cáncer (CIBERONC),Madrid, Spain
- Pathology Department/Translational Hematology Group, Hospital Universitario Marqués de Valdecilla/IDIVAL, Santander, Spain
| | - Carmen Bárcena
- Pathology Department, Hospital Universitario 12 de Octubre, Madrid, Spain
| | - Delvys Rodríguez-Abreu
- Medical Oncology Department, Hospital Universitario Insular de Gran Canaria, Las Palmas de Gran Canarias, Spain
| | - Javier Menárguez
- Pathology Department, Hospital General Universitario Gregorio Marañón, Madrid, Spain
| | | | - Silvia Monsalvo
- Hematology Department, Fundación Jiménez Díaz, Madrid, Spain
| | - Consuelo Parejo
- TIC Unit- Medical Oncology Department, Instituto de Investigación Sanitaria Puerta de Hierro- Segovia de Arana, Madrid, Spain
| | - Ana Royuela
- Clinical Biostatistics Unit, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Madrid, Spain
| | - Ivo Kwee
- Institute of Oncology Research (IOR), Belinzona, Switzerland
- Universitá della Svizzera Italiana (USI), Lugano, Switzerland
- Dalle Molle Institute for Artificial Intelligence (IDSIA), Belinzona, Switzerland
- Swiss Institute of Bioinformatics (SIB), Belinzona, Switzerland
| | - Luciano Cascione
- Institute of Oncology Research (IOR), Belinzona, Switzerland
- Universitá della Svizzera Italiana (USI), Lugano, Switzerland
- Swiss Institute of Bioinformatics (SIB), Belinzona, Switzerland
- Oncology Institute of Southern Switzerland (IOSI), Belinzona, Switzerland
| | - Alberto Arribas
- Institute of Oncology Research (IOR), Belinzona, Switzerland
- Universitá della Svizzera Italiana (USI), Lugano, Switzerland
- Swiss Institute of Bioinformatics (SIB), Belinzona, Switzerland
- Oncology Institute of Southern Switzerland (IOSI), Belinzona, Switzerland
| | - Francesco Bertoni
- Institute of Oncology Research (IOR), Belinzona, Switzerland
- Universitá della Svizzera Italiana (USI), Lugano, Switzerland
- Swiss Institute of Bioinformatics (SIB), Belinzona, Switzerland
- Oncology Institute of Southern Switzerland (IOSI), Belinzona, Switzerland
| | - Manuela Mollejo
- Pathology Department, Hospital Virgen de la Salud, Toledo, Spain
| | - Mariano Provencio
- Medical Oncology Department, Hospital Universitario Puerta de Hierro, Madrid, Spain
| | - Margarita Sánchez-Beato
- Lymphoma Research Group, Medical Oncology Department, Instituto de Investigación Sanitaria Puerta de Hierro-Segovia de Arana, Madrid, Spain
- * E-mail:
| |
Collapse
|
12
|
Zhai K, Chang J, Hu J, Wu C, Lin D. Germline variation in the 3'-untranslated region of the POU2AF1 gene is associated with susceptibility to lymphoma. Mol Carcinog 2017; 56:1945-1952. [PMID: 28345816 DOI: 10.1002/mc.22652] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 03/05/2017] [Accepted: 03/23/2017] [Indexed: 01/06/2023]
Abstract
Genetic variations in certain genes may alter the susceptibility to lymphoma. We searched electronic databases and selected candidate single-nucleotide polymorphisms (SNPs) located within 3'-untranslated regions (3'-UTRs) that might affect miRNA-binding ability in the 50 most dysregulated genes in lymphoma for further study. We found that rs1042752-located in the 3'-UTR of POU2AF1, which plays a vital role in lymphomagenesis-was significantly associated with lymphoma risk in a case-control study with 793 patients and 939 controls. Compared with individuals with the rs1042752TT genotype, those with the rs1042752CC genotype had a higher risk of lymphoma (OR = 2.14, 95% CI: 1.55-2.95, P < 0.001), even in stratified analysis for non-Hodgkin lymphoma (OR = 4.58, 95% CI: 2.38-8.81, P < 0.001), B-cell lymphoma (OR = 4.89, 95% CI: 2.46-9.73, P < 0.001), T-cell lymphoma (OR = 4.20, 95% CI: 1.76-10.05, P = 0.001), and Hodgkin lymphoma (OR = 3.62, 95% CI: 1.25-10.46, P = 0.018). Similar results were also observed in a recessive genetic model. Database findings suggested that rs1042752 might affect the interaction of POU2AF1 mRNA with hsa-miR-633. Functional assays confirmed that rs1042752C altered the binding site of hsa-miR-633 and increased POU2AF1 expression in Ramos, HuT 102, and Jurkat E6-1 cell lines. These findings demonstrate for the first time that functional polymorphism in the 3'-UTR of POU2AF1 is associated with susceptibility, and that SNP interaction with hsa-miR-633 affects gene expression and increases the risk of lymphoma.
Collapse
Affiliation(s)
- Kan Zhai
- Medical Research Center, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Jiang Chang
- State Key Laboratory of Environment Health (Incubation), MOE (Ministry of Education) Key Laboratory of Environment and Health, Ministry of Environmental Protection Key Laboratory of Environment and Health (Wuhan) and School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinlong Hu
- Department of Oncology, People's Hospital of Zhengzhou University and Henan Provincial People's Hospital, Zhengzhou, China
| | - Chen Wu
- Department of Etiology and Carcinogenesis, Chinese Academy of Medical Science and Peking Union Medical College, Cancer Institute and Hospital, Beijing, China
| | - Dongxin Lin
- Department of Etiology and Carcinogenesis, Chinese Academy of Medical Science and Peking Union Medical College, Cancer Institute and Hospital, Beijing, China
| |
Collapse
|
13
|
|
14
|
TCR-based therapy for multiple myeloma and other B-cell malignancies targeting intracellular transcription factor BOB1. Blood 2017; 129:1284-1295. [PMID: 28053195 DOI: 10.1182/blood-2016-09-737536] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Accepted: 12/22/2016] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy for hematological malignancies or solid tumors by administration of monoclonal antibodies or T cells engineered to express chimeric antigen receptors or T-cell receptors (TCRs) has demonstrated clinical efficacy. However, antigen-loss tumor escape variants and the absence of currently targeted antigens on several malignancies hamper the widespread application of immunotherapy. We have isolated a TCR targeting a peptide of the intracellular B cell-specific transcription factor BOB1 presented in the context of HLA-B*07:02. TCR gene transfer installed BOB1 specificity and reactivity onto recipient T cells. TCR-transduced T cells efficiently lysed primary B-cell leukemia, mantle cell lymphoma, and multiple myeloma in vitro. We also observed recognition and lysis of healthy BOB1-expressing B cells. In addition, strong BOB1-specific proliferation could be demonstrated for TCR-modified T cells upon antigen encounter. Furthermore, clear in vivo antitumor reactivity was observed of BOB1-specific TCR-engineered T cells in a xenograft mouse model of established multiple myeloma. Absence of reactivity toward a broad panel of BOB1- but HLA-B*07:02+ nonhematopoietic and hematopoietic cells indicated no off-target toxicity. Therefore, administration of BOB1-specific TCR-engineered T cells may provide novel cellular treatment options to patients with B-cell malignancies, including multiple myeloma.
Collapse
|
15
|
Yamashita K, Kawata K, Matsumiya H, Kamekura R, Jitsukawa S, Nagaya T, Ogasawara N, Takano KI, Kubo T, Kimura S, Shigehara K, Himi T, Ichimiya S. Bob1 limits cellular frequency of T-follicular helper cells. Eur J Immunol 2016; 46:1361-70. [PMID: 27080143 PMCID: PMC5084739 DOI: 10.1002/eji.201545499] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2015] [Revised: 03/03/2016] [Accepted: 04/08/2016] [Indexed: 12/16/2022]
Abstract
T follicular helper (Tfh) cells are involved in specific humoral immunity at initial and recall phases. The fact that the transcription repressors B‐cell lymphoma‐6 and Blimp‐1 determine lineages of Tfh cells and other types of effector CD4+ T cells, respectively, suggests that there are unique mechanisms to establish Tfh‐cell identity. In this study, we found that Tfh cells preferentially express the transcriptional coactivator Bob1. Bob1 of Tfh cells was dispensable for the expression of B‐cell lymphoma‐6 and the functional property of the cells for B cell help. However, upon initial immunization of foreign antigens, the percentages of Tfh cells in Bob1−/− mice were much higher than those in wild‐type (WT) mice. In addition, expansion of Tfh cells within Bob1−/−CD4+ T cells transferred into WT mice revealed that the high frequency of Tfh cells was caused by a T‐cell‐intrinsic mechanism. These findings were further supported by the results of in vitro studies demonstrating that Bob1−/− Tfh cells had greater proliferative activity in response to stimuli by CD3/CD28 monoclonal antibody and were also refractory to CD3‐induced cell death in comparison to WT Tfh cells. These results suggest that Tfh cells harbor a Bob1‐related mechanism to restrict numerical frequency against stimulation of TCRs.
Collapse
Affiliation(s)
- Keiji Yamashita
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Koji Kawata
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Hiroshi Matsumiya
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Ryuta Kamekura
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Sumito Jitsukawa
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tomonori Nagaya
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan.,Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Noriko Ogasawara
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Ken-Ichi Takano
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Terufumi Kubo
- Department of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Sachiko Kimura
- Division of Pathology and Laboratory Medicine, Hokkaido Medical Center for Child Health and Rehabilitation, Sapporo, Japan
| | - Katsunori Shigehara
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Tetsuo Himi
- Department of Otolaryngology, Sapporo Medical University School of Medicine, Sapporo, Japan
| | - Shingo Ichimiya
- Department of Human Immunology, Research Institute for Frontier Medicine, Sapporo Medical University School of Medicine, Sapporo, Japan
| |
Collapse
|
16
|
Abstract
Continued generation of new B cells within the bone marrow is required throughout life. However, in old age, B lymphopoiesis is inhibited at multiple developmental stages from hematopoietic stem cells through the late stages of new B cell generation. While changes in B cell precursor subsets, as well as alterations in the supporting bone marrow microenvironment, in old age have been known for the last 20 years, only more recently have insights into the cellular and molecular mechanisms responsible become clarified. Our recent discovery that B cells in aged mice are pro-inflammatory and can diminish B cell generation within the bone marrow suggests a potential mechanism of inappropriate "B cell feedback" which contributes to a bone marrow microenvironment unfavorable to B lymphopoiesis. We hypothesize that the consequences of a pro-inflammatory microenvironment in old age are (1) reduced B cell generation and (2) alteration in the "read-out" of the antibody repertoire. Both of these likely ensue from reduced expression of the surrogate light chain (λ5 + VpreB) and consequently reduced expression of the pre-B cell receptor (preBCR), critical to pre-B cell expansion and Vh selection. In old age, B cell development may progressively be diverted into a preBCR-compromised pathway. These abnormalities in B lymphopoiesis likely contribute to the poor humoral immunity seen in old age.
Collapse
Affiliation(s)
- Richard L Riley
- Department of Microbiology and Immunology, University of Miami Miller School of Medicine, P.O. Box 016960 (R-138), Miami, FL, 33101, USA,
| |
Collapse
|
17
|
Corcoran L, Emslie D, Kratina T, Shi W, Hirsch S, Taubenheim N, Chevrier S. Oct2 and Obf1 as Facilitators of B:T Cell Collaboration during a Humoral Immune Response. Front Immunol 2014; 5:108. [PMID: 24688485 PMCID: PMC3960507 DOI: 10.3389/fimmu.2014.00108] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2013] [Accepted: 03/03/2014] [Indexed: 11/16/2022] Open
Abstract
The Oct2 protein, encoded by the Pou2f2 gene, was originally predicted to act as a DNA binding transcriptional activator of immunoglobulin (Ig) in B lineage cells. This prediction flowed from the earlier observation that an 8-bp sequence, the “octamer motif,” was a highly conserved component of most Ig gene promoters and enhancers, and evidence from over-expression and reporter assays confirmed Oct2-mediated, octamer-dependent gene expression. Complexity was added to the story when Oct1, an independently encoded protein, ubiquitously expressed from the Pou2f1 gene, was characterized and found to bind to the octamer motif with almost identical specificity, and later, when the co-activator Obf1 (OCA-B, Bob.1), encoded by the Pou2af1 gene, was cloned. Obf1 joins Oct2 (and Oct1) on the DNA of a subset of octamer motifs to enhance their transactivation strength. While these proteins variously carried the mantle of determinants of Ig gene expression in B cells for many years, such a role has not been borne out for them by characterization of mice lacking functional copies of the genes, either as single or as compound mutants. Instead, we and others have shown that Oct2 and Obf1 are required for B cells to mature fully in vivo, for B cells to respond to the T cell cytokines IL5 and IL4, and for B cells to produce IL6 normally during a T cell dependent immune response. We show here that Oct2 affects Syk gene expression, thus influencing B cell receptor signaling, and that Oct2 loss blocks Slamf1 expression in vivo as a result of incomplete B cell maturation. Upon IL4 signaling, Stat6 up-regulates Obf1, indirectly via Xbp1, to enable plasma cell differentiation. Thus, Oct2 and Obf1 enable B cells to respond normally to antigen receptor signals, to express surface receptors that mediate physical interaction with T cells, or to produce and respond to cytokines that are critical drivers of B cell and T cell differentiation during a humoral immune response.
Collapse
Affiliation(s)
- Lynn Corcoran
- Molecular Immunology Division, Walter and Eliza Hall Institute of Medical Research , Melbourne, VIC , Australia ; Department of Medical Biology, The University of Melbourne , Melbourne, VIC , Australia
| | - Dianne Emslie
- Molecular Immunology Division, Walter and Eliza Hall Institute of Medical Research , Melbourne, VIC , Australia ; Department of Medical Biology, The University of Melbourne , Melbourne, VIC , Australia
| | - Tobias Kratina
- Molecular Immunology Division, Walter and Eliza Hall Institute of Medical Research , Melbourne, VIC , Australia ; Department of Medical Biology, The University of Melbourne , Melbourne, VIC , Australia
| | - Wei Shi
- Molecular Immunology Division, Walter and Eliza Hall Institute of Medical Research , Melbourne, VIC , Australia ; Department of Medical Biology, The University of Melbourne , Melbourne, VIC , Australia
| | - Susanne Hirsch
- Molecular Immunology Division, Walter and Eliza Hall Institute of Medical Research , Melbourne, VIC , Australia ; Department of Medical Biology, The University of Melbourne , Melbourne, VIC , Australia
| | - Nadine Taubenheim
- Molecular Immunology Division, Walter and Eliza Hall Institute of Medical Research , Melbourne, VIC , Australia ; Department of Medical Biology, The University of Melbourne , Melbourne, VIC , Australia
| | - Stephane Chevrier
- Molecular Immunology Division, Walter and Eliza Hall Institute of Medical Research , Melbourne, VIC , Australia ; Department of Medical Biology, The University of Melbourne , Melbourne, VIC , Australia
| |
Collapse
|
18
|
Ta VBT, de Bruijn MJW, Matheson L, Zoller M, Bach MP, Wardemann H, Jumaa H, Corcoran A, Hendriks RW. Highly Restricted Usage of Ig H Chain VH14 Family Gene Segments in Slp65-Deficient Pre-B Cell Leukemia in Mice. THE JOURNAL OF IMMUNOLOGY 2012; 189:4842-51. [DOI: 10.4049/jimmunol.1201440] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
19
|
Eisenhaber B, Sammer M, Lua WH, Benetka W, Liew LL, Yu W, Lee HK, Koranda M, Eisenhaber F, Adhikari S. Nuclear import of a lipid-modified transcription factor: mobilization of NFAT5 isoform a by osmotic stress. Cell Cycle 2011; 10:3897-911. [PMID: 22071693 DOI: 10.4161/cc.10.22.18043] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Lipid-modified transcription factors (TFs) are biomolecular oddities since their reduced mobility and membrane attachment appear to contradict nuclear import required for their gene-regulatory function. NFAT5 isoform a (selected from an in silico screen for predicted lipid-modified TFs) is shown to contribute about half of all endogenous expression of human NFAT5 isoforms in the isotonic state. Wild-type NFAT5a protein is indeed myristoylated and palmitoylated on its transport to the plasmalemma via the endoplasmic reticulum and the Golgi. In contrast, its lipid anchor-deficient mutants as well as isoforms NFAT5b/c are diffusely localized in the cytoplasm without preference to vesicular structures. Quantitative/live microscopy shows the plasmamembrane-bound fraction of NFAT5a moving into the nucleus upon osmotic stress despite the lipid anchoring. The mobilization mechanism is not based on proteolytic processing of the lipid-anchored N-terminus but appears to involve reversible palmitoylation. Thus, NFAT5a is an example of TFs immobilized with lipid anchors at cyotoplasmic membranes in the resting state and that, nevertheless, can translocate into the nucleus upon signal induction.
Collapse
|
20
|
Roy AL, Sen R, Roeder RG. Enhancer-promoter communication and transcriptional regulation of Igh. Trends Immunol 2011; 32:532-9. [PMID: 21855411 DOI: 10.1016/j.it.2011.06.012] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2011] [Revised: 06/23/2011] [Accepted: 06/23/2011] [Indexed: 12/18/2022]
Abstract
Transcriptional regulation of eukaryotic protein-coding genes requires the participation of site-specific transcription factors that bind distal regulatory elements, as well as factors that, together with RNA polymerase II, form the basal transcription machinery at the core promoter. Gene regulation requires proper communication between promoters and enhancers, often over great distances. Therefore, it is important to understand the potentially inter-related transcription factor interactions at both of these elements. How this is achieved on tissue-specific genes, such as the immunoglobulin heavy chain (IgH) in B cells remains unclear. Here, we review known interactions at the Igh variable region (V(H)) promoters and present our perspective on promoter-enhancer interactions that are likely important for Ig gene regulation in B cells.
Collapse
Affiliation(s)
- Ananda L Roy
- Program in Immunology, Department of Pathology, Tufts University School of Medicine, Boston, MA, USA.
| | | | | |
Collapse
|
21
|
Wilson JP, Raghavan AS, Yang YY, Charron G, Hang HC. Proteomic analysis of fatty-acylated proteins in mammalian cells with chemical reporters reveals S-acylation of histone H3 variants. Mol Cell Proteomics 2010; 10:M110.001198. [PMID: 21076176 DOI: 10.1074/mcp.m110.001198] [Citation(s) in RCA: 112] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Bioorthogonal chemical reporters are useful tools for visualizing and identifying post-translational modifications on proteins. Here we report the proteomic analysis of mammalian proteins targeted by a series of fatty acid chemical reporters ranging from myristic to stearic acid. The large-scale analysis of total cell lysates from fully solubilized Jurkat T cells identified known fatty-acylated proteins and many new candidates, including nuclear proteins and in particular histone H3 variants. We demonstrate that histones H3.1, H3.2, and H3.3 are modified with fatty acid chemical reporters and identify the conserved cysteine 110 as a new site of S-acylation on histone H3.2. This newly discovered modification of histone H3 could have implications for nuclear organization and chromatin regulation. The unbiased proteomic analysis of fatty-acylated proteins using chemical reporters has revealed a greater diversity of lipid-modified proteins in mammalian cells and identified a novel post-translational modification of histones.
Collapse
Affiliation(s)
- John P Wilson
- The Laboratory of Chemical Biology and Microbial Pathogenesis, The Rockefeller University, New York, NY 10065, USA
| | | | | | | | | |
Collapse
|
22
|
Lee MC, Toh LL, Yaw LP, Luo Y. Drosophila octamer elements and Pdm-1 dictate the coordinated transcription of core histone genes. J Biol Chem 2010; 285:9041-53. [PMID: 20097756 DOI: 10.1074/jbc.m109.075358] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
We reveal a set of divergent octamer elements in Drosophila melanogaster (dm) core histone gene promoters. These elements recruit transcription factor POU-domain protein in D. melanogaster 1 (Pdm-1), which along with co-activator dmOct-1 coactivator in S-phase (dmOCA-S), activates transcription from at least the Drosophila histone 2B (dmH2B) and 4 (dmH4) promoters in a fashion similar to the transcription of mammalian histone 2B (H2B) gene activated by octamer binding transcription factor 1 (Oct-1) and Oct-1 coactivator in S-phase (OCA-S). The expression of core histone genes in both kingdoms is coordinated; however, although the expression of mammalian histone genes involves subtype-specific transcription factors and/or co-activator(s), the expression of Drosophila core histone genes is regulated by a common module (Pdm-1/dmOCA-S) in a directly coordinated manner. Finally, dmOCA-S is recruited to the Drosophila histone locus bodies in the S-phase, marking S-phase-specific transcription activation of core histone genes.
Collapse
Affiliation(s)
- Mei-Chin Lee
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, Proteos, Singapore
| | | | | | | |
Collapse
|
23
|
Ishmael S, MacGlashan D. Early signal protein expression profiles in basophils: a population study. J Leukoc Biol 2009; 86:313-25. [PMID: 19436043 DOI: 10.1189/jlb.1208724] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
IgE-mediated histamine release from peripheral blood basophils is highly variable within the general population. Recent studies have shown that the ability of anti-IgE antibody to induce release can be predicted reasonably well by knowing the level of syk expression in the cells. The current study expands a previous survey to include 14 additional early elements known to be involved in activation and deactivation of basophils and showed that with the exception of syk, the variance of expression of 19 other elements (lyn, fyn, csk, cbp/PAG, CIN85, Bob1, c-cbl, SHIP1, SHIP2, p85alpha, p110delta, btk, PLCgamma1, PLCgamma2, SHP-1, PTEN, SOS2, CRACM1, and IL-3Ralpha) was narrow despite a broad range of functional capability in the basophils under study. With syk as the only element with high variance and well-correlated to maximum histamine release and cellular sensitivity, this survey examined the expression levels of two proteins thought to regulate syk expression: Bob1/OCA-B and CIN85. Expression of CIN85 was not correlated to syk expression, but Bob1 expression was negatively correlated to expression of syk and maximum histamine release. However, the expected behavior for this protein should have been as a protector of post-translational syk loss and therefore, positively correlated. Previous studies suggested that post-translational control mechanisms regulated syk expression. However, in this study, steady-state mRNA levels for syk in resting basophils showed a correlation with syk protein expression levels (r=0.593). It is concluded that with the exception of syk expression, the expression of 19 early signaling elements is tightly regulated and that a component of the regulation of syk may be related to control of transcription or processing of syk mRNA.
Collapse
Affiliation(s)
- Susan Ishmael
- Johns Hopkins Asthma and Allergy Center, Baltimore, MD 21224, USA
| | | |
Collapse
|
24
|
Bordon A, Bosco N, Du Roure C, Bartholdy B, Kohler H, Matthias G, Rolink AG, Matthias P. Enforced expression of the transcriptional coactivator OBF1 impairs B cell differentiation at the earliest stage of development. PLoS One 2008; 3:e4007. [PMID: 19104664 PMCID: PMC2603323 DOI: 10.1371/journal.pone.0004007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2008] [Accepted: 11/19/2008] [Indexed: 02/06/2023] Open
Abstract
OBF1, also known as Bob.1 or OCA-B, is a B lymphocyte-specific transcription factor which coactivates Oct1 and Oct2 on B cell specific promoters. So far, the function of OBF1 has been mainly identified in late stage B cell populations. The central defect of OBF1 deficient mice is a severely reduced immune response to T cell-dependent antigens and a lack of germinal center formation in the spleen. Relatively little is known about a potential function of OBF1 in developing B cells. Here we have generated transgenic mice overexpressing OBF1 in B cells under the control of the immunoglobulin heavy chain promoter and enhancer. Surprisingly, these mice have greatly reduced numbers of follicular B cells in the periphery and have a compromised immune response. Furthermore, B cell differentiation is impaired at an early stage in the bone marrow: a first block is observed during B cell commitment and a second differentiation block is seen at the large preB2 cell stage. The cells that succeed to escape the block and to differentiate into mature B cells have post-translationally downregulated the expression of transgene, indicating that expression of OBF1 beyond the normal level early in B cell development is deleterious. Transcriptome analysis identified genes deregulated in these mice and Id2 and Id3, two known negative regulators of B cell differentiation, were found to be upregulated in the EPLM and preB cells of the transgenic mice. Furthermore, the Id2 and Id3 promoters contain octamer-like sites, to which OBF1 can bind. These results provide evidence that tight regulation of OBF1 expression in early B cells is essential to allow efficient B lymphocyte differentiation.
Collapse
Affiliation(s)
- Alain Bordon
- Friedrich Miescher Institute for Biomedical Research, Novartis Research Foundation, Basel, Switzerland
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Richard MLL, Hikima JI, Wilson MR, Miller NW, Cunningham C, Warr GW. BOB.1 of the channel catfish, Ictalurus punctatus: not a transcriptional coactivator? Mol Immunol 2008; 46:481-91. [PMID: 19041136 DOI: 10.1016/j.molimm.2008.10.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2008] [Revised: 10/05/2008] [Accepted: 10/08/2008] [Indexed: 10/21/2022]
Abstract
Expression of the immunoglobulin heavy chain (IGH) locus of the channel catfish (Ictalurus punctatus) is driven by the Emu3' enhancer, whose core region contains two octamer motifs and a muE5 site. Orthologues of the Oct1 and Oct2 transcription factors have been cloned in the channel catfish and shown to bind to the octamer motifs within the core enhancer. While catfish Oct2 is an activator of transcription, catfish Oct1 failed to drive transcription and may act as a negative regulator of IGH transcription. In mammals, the Oct co-activator BOB.1 (B cell Oct-binding protein1, also known as OCA-B and OBF-1) greatly enhances the transcriptional activity of Oct factors and plays an important role in the development of the immune system. An orthologue of BOB.1 has been cloned in the catfish, and its function characterized. The POU binding domain of the catfish BOB.1 was found to be 95% identical at the amino acid level with the binding domain of human BOB.1, and all the residues directly involved in binding to the Oct-DNA complex were conserved. Despite this conservation, catfish BOB.1 failed to enhance transcriptional activation mediated by endogenous or co-transfected catfish Oct2, and failed to rescue the activity of the inactive catfish Oct1. Electrophoretic mobility shift assays showed that catfish BOB.1 was capable of binding both catfish Oct1 and Oct2 when they formed a complex with the Oct motif. Analysis of recombinant chimeric catfish and human BOB.1 proteins demonstrated that the failure to drive transcription was due to the lack of a functional activation domain within the catfish BOB.1.
Collapse
Affiliation(s)
- Mara L Lennard Richard
- Marine Biomedicine and Environmental Sciences Center, Department of Biochemistry and Molecular Biology, Medical University of South Carolina, Charleston, SC 29425, USA.
| | | | | | | | | | | |
Collapse
|
26
|
MacGlashan DW, Ishmael S, MacDonald SM, Langdon JM, Arm JP, Sloane DE. Induced loss of Syk in human basophils by non-IgE-dependent stimuli. THE JOURNAL OF IMMUNOLOGY 2008; 180:4208-17. [PMID: 18322233 DOI: 10.4049/jimmunol.180.6.4208] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the general population, Syk expression in human basophils is highly variable and correlates well with the IgE-mediated responsiveness of these cells. Previous studies established that IgE-mediated stimulation results in loss of Syk expression. The current studies investigated whether stimulation through other receptors results in loss of Syk. Two classes of stimulation were examined, those that operate through the kinase Syk and those that operate through a GTP-binding protein. These studies demonstrated that aggregation of leukocyte Ig-like receptor LILRA-2 resulted in phosphorylation of Syk and c-Cbl, was inhibited by a third generation Syk inhibitor with an expected IC(50), and induced histamine release in strict proportion to release induced by anti-IgE Ab. Stimulation of LILRA-2 for 18 h resulted in modest loss of Syk that correlated with the more profound loss of Syk induced by anti-IgE Ab. Human recombinant histamine-releasing factor has also recently been shown to induce Syk phosphorylation and in the current studies has also been shown to induce loss of Syk in 18-h cultures. fMLP stimulation for 18 h was also found to induce modest loss of Syk. fMLP induced phosphorylation of c-Cbl that was sustained for at least 45 min. Phosphorylation of c-Cbl was inhibited by a Syk kinase inhibitor but with an IC(50) that was not consistent with Syk activity, suggesting another kinase was responsible for Cbl phosphorylation following fMLP. These studies demonstrate that it is possible to induce the loss of Syk expression in human basophils by a non-IgE-dependent mechanism and even by a mechanism that does directly involve Syk in the reaction complex.
Collapse
Affiliation(s)
- Donald W MacGlashan
- Asthma and Allergy Center, Johns Hopkins University, Baltimore, MD 21224, USA.
| | | | | | | | | | | |
Collapse
|
27
|
Peruzzi G, Molfetta R, Gasparrini F, Vian L, Morrone S, Piccoli M, Frati L, Santoni A, Paolini R. The adaptor molecule CIN85 regulates Syk tyrosine kinase level by activating the ubiquitin-proteasome degradation pathway. THE JOURNAL OF IMMUNOLOGY 2007; 179:2089-96. [PMID: 17675467 DOI: 10.4049/jimmunol.179.4.2089] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Triggering of mast cells and basophils by IgE and Ag initiates a cascade of biochemical events that lead to cell degranulation and the release of allergic mediators. Receptor aggregation also induces a series of biochemical events capable of limiting FcepsilonRI-triggered signals and functional responses. Relevant to this, we have recently demonstrated that Cbl-interacting 85-kDa protein (CIN85), a multiadaptor protein mainly involved in the process of endocytosis and vesicle trafficking, regulates the Ag-dependent endocytosis of the IgE receptor, with consequent impairment of FcepsilonRI-mediated cell degranulation. The purpose of this study was to further investigate whether CIN85 could alter the FcepsilonRI-mediated signaling by affecting the activity and/or expression of molecules directly implicated in signal propagation. We found that CIN85 overexpression inhibits the FcepsilonRI-induced tyrosine phosphorylation of phospholipase Cgamma, thus altering calcium mobilization. This functional defect is associated with a substantial decrease of Syk protein levels, which are restored by the use of selective proteasome inhibitors, and it is mainly due to the action of the ubiquitin ligase c-Cbl. Furthermore, coimmunoprecipitation experiments demonstrate that CIN85 overexpression limits the ability of Cbl to bind suppressor of TCR signaling 1 (Sts1), a negative regulator of Cbl functions, while CIN85 knockdown favors the formation of Cbl/Sts1 complexes. Altogether, our findings support a new role for CIN85 in regulating Syk protein levels in RBL-2H3 cells through the activation of the ubiquitin-proteasome pathway and provide a mechanism for this regulation involving c-Cbl ligase activity.
Collapse
MESH Headings
- Adaptor Proteins, Signal Transducing/genetics
- Adaptor Proteins, Signal Transducing/immunology
- Adaptor Proteins, Signal Transducing/metabolism
- Animals
- Antigens/immunology
- Antigens/metabolism
- Basophils/immunology
- Basophils/metabolism
- Calcium Signaling/genetics
- Calcium Signaling/immunology
- Cell Degranulation/genetics
- Cell Degranulation/immunology
- Cell Line
- Endocytosis/genetics
- Endocytosis/immunology
- Gene Expression
- Humans
- Immunoglobulin A/immunology
- Immunoglobulin A/metabolism
- Intracellular Signaling Peptides and Proteins/genetics
- Intracellular Signaling Peptides and Proteins/immunology
- Intracellular Signaling Peptides and Proteins/metabolism
- Mast Cells/immunology
- Mast Cells/metabolism
- Neoplasm Proteins/genetics
- Neoplasm Proteins/immunology
- Neoplasm Proteins/metabolism
- Nerve Tissue Proteins/genetics
- Nerve Tissue Proteins/immunology
- Nerve Tissue Proteins/metabolism
- Phospholipase C gamma
- Phosphorylation
- Proteasome Endopeptidase Complex/genetics
- Proteasome Endopeptidase Complex/immunology
- Proteasome Endopeptidase Complex/metabolism
- Protein-Tyrosine Kinases/genetics
- Protein-Tyrosine Kinases/immunology
- Protein-Tyrosine Kinases/metabolism
- Proto-Oncogene Proteins c-cbl/genetics
- Proto-Oncogene Proteins c-cbl/immunology
- Proto-Oncogene Proteins c-cbl/metabolism
- Rats
- Receptors, Antigen, T-Cell/genetics
- Receptors, Antigen, T-Cell/immunology
- Receptors, Antigen, T-Cell/metabolism
- Receptors, IgE/genetics
- Receptors, IgE/immunology
- Receptors, IgE/metabolism
- Syk Kinase
- Ubiquitin/genetics
- Ubiquitin/immunology
- Ubiquitin/metabolism
- Ubiquitin-Protein Ligases/genetics
- Ubiquitin-Protein Ligases/immunology
- Ubiquitin-Protein Ligases/metabolism
Collapse
Affiliation(s)
- Giovanna Peruzzi
- Department of Experimental Medicine, Institute Pasteur-Fondazione Cenci Bolognetti, University La Sapienza, Rome, Italy
| | | | | | | | | | | | | | | | | |
Collapse
|
28
|
Youssef LA, Schuyler M, Gilmartin L, Pickett G, Bard JDJ, Tarleton CA, Archibeque T, Qualls C, Wilson BS, Oliver JM. Histamine release from the basophils of control and asthmatic subjects and a comparison of gene expression between "releaser" and "nonreleaser" basophils. THE JOURNAL OF IMMUNOLOGY 2007; 178:4584-94. [PMID: 17372017 DOI: 10.4049/jimmunol.178.7.4584] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Most human blood basophils respond to FcepsilonRI cross-linking by releasing histamine and other inflammatory mediators. Basophils that do not degranulate after anti-IgE challenge, known as "nonreleaser" basophils, characteristically have no or barely detectable levels of the Syk tyrosine kinase. The true incidence of the nonreleaser phenotype, its relationship (if any) to allergic asthma, and its molecular mechanism are not well understood. In this study, we report statistical analyses of degranulation assays performed in 68 control and 61 asthmatic subjects that establish higher basal and anti-IgE-stimulated basophil degranulation among the asthmatics. Remarkably, 28% of the control group and 13% of the asthmatic group were nonreleasers for all or part of our 4-year long study and cycling between the releaser and nonreleaser phenotypes occurred at least once in blood basophils from 8 (of 8) asthmatic and 16 (of 23) control donors. Microarray analysis showed that basal gene expression was generally lower in nonreleaser than releaser basophils. In releaser cells, FcepsilonRI cross-linking up-regulated >200 genes, including genes encoding receptors (the FcepsilonRI alpha and beta subunits, the histamine 4 receptor, the chemokine (C-C motif) receptor 1), signaling proteins (Lyn), chemokines (IL-8, RANTES, MIP-1alpha, and MIP-1beta) and transcription factors (early growth response-1, early growth response-3, and AP-1). FcepsilonRI cross-linking induced fewer, and quite distinct, transcriptional responses in nonreleaser cells. We conclude that "nonreleaser" and "cycler" basophils represent a distinct and reversible natural phenotype. Although histamine is more readily released from basophils isolated from asthmatics than controls, the presence of nonreleaser basophils does not rule out the diagnosis of asthma.
Collapse
Affiliation(s)
- Lama A Youssef
- Department of Pathology, University of New Mexico Health Sciences Center, School of Medicine, 2325 Camino de Salud, NM 87131, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Zuo J, Ge H, Zhu G, Matthias P, Sun J. OBF-1 is essential for the generation of antibody-secreting cells and the development of autoimmunity in MRL-lpr mice. J Autoimmun 2007; 29:87-96. [PMID: 17574818 DOI: 10.1016/j.jaut.2007.05.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2007] [Revised: 05/06/2007] [Accepted: 05/07/2007] [Indexed: 02/06/2023]
Abstract
As reported previously, the lack of the transcriptional co-activator OBF-1 prevented development of autoimmunity in Aiolos knockout mice. To further investigate the role and mechanism of OBF-1 in autoimmunity, we crossed OBF-1 null mice with MRL-lpr mice and generated OBF-1-deficent MRL-lpr mice. OBF-1 deletion abrogated all autoantibodies in the MRL-lpr mice, including anti-dsDNA Ab and anti-Sm Ab. The failure to produce autoantibodies was not related to development of immature or mature B cells, but correlated with severely reduced antibody-secreting cells (ASCs). The loss of OBF-1 protected against hypergammaglobulinemia, immune complex deposition, glomerulonephritis, and early mortality in MRL-lpr mice. In addition, accumulation of CD4(-)CD8(-)B220(+)CD3(+) T cells that characteristically develop in Fas mutation mice were markedly reduced in MRL-lpr mice without OBF-1. These results identify OBF-1 as a critical gene in the development of autoantibodies and reveal an essential role for OBF-1 in the generation of antibody/autoantibody-secreting cells in vivo.
Collapse
Affiliation(s)
- Jinxin Zuo
- Health Science Institute, Shanghai Institutes for Biological Sciences & Shanghai JiaoTong University School of Medicine, Chinese Academy of Sciences, Shanghai 200025, People's Republic of China
| | | | | | | | | |
Collapse
|
30
|
Brunner C, Sindrilaru A, Girkontaite I, Fischer KD, Sunderkötter C, Wirth T. BOB.1/OBF.1 controls the balance of TH1 and TH2 immune responses. EMBO J 2007; 26:3191-202. [PMID: 17568779 PMCID: PMC1914090 DOI: 10.1038/sj.emboj.7601742] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2006] [Accepted: 05/11/2007] [Indexed: 01/15/2023] Open
Abstract
BOB.1/OBF.1 is a transcriptional coactivator essential at several stages of B-cell development. In T cells, BOB.1/OBF.1 expression is inducible by co-stimulation. However, a defined role of BOB.1/OBF.1 for T-cell function had not been discovered so far. Here, we show that BOB.1/OBF.1 is critical for T helper cell function. BOB.1/OBF.1(-/-) mice showed imbalanced immune responses, resulting in increased susceptibility to Leishmania major infection. Functional analyses revealed specific defects in TH1 and TH2 cells. Whereas expression levels of TH1 cytokines were reduced, the secretion of TH2 cytokines was increased. BOB.1/OBF.1 directly contributes to the IFNgamma and IL2 promoter activities. In contrast, increased TH2 cytokine production is controlled indirectly, probably via the transcription factor PU.1, the expression of which is regulated by BOB.1/OBF.1. Thus, BOB.1/OBF.1 regulates the balance of TH1 versus TH2 mediated immunity.
Collapse
Affiliation(s)
- Cornelia Brunner
- Institute of Physiological Chemistry, University of Ulm, Ulm, Germany
| | | | | | | | | | | |
Collapse
|
31
|
Wossning T, Herzog S, Köhler F, Meixlsperger S, Kulathu Y, Mittler G, Abe A, Fuchs U, Borkhardt A, Jumaa H. Deregulated Syk inhibits differentiation and induces growth factor-independent proliferation of pre-B cells. ACTA ACUST UNITED AC 2006; 203:2829-40. [PMID: 17130299 PMCID: PMC2118175 DOI: 10.1084/jem.20060967] [Citation(s) in RCA: 64] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The nonreceptor protein spleen tyrosine kinase (Syk) is a key mediator of signal transduction in a variety of cell types, including B lymphocytes. We show that deregulated Syk activity allows growth factor–independent proliferation and transforms bone marrow–derived pre–B cells that are then able to induce leukemia in mice. Syk-transformed pre–B cells show a characteristic pattern of tyrosine phosphorylation, increased c-Myc expression, and defective differentiation. Treatment of Syk-transformed pre–B cells with a novel Syk-specific inhibitor (R406) reduces tyrosine phosphorylation and c-Myc expression. In addition, R406 treatment removes the developmental block and allows the differentiation of the Syk-transformed pre–B cells into immature B cells. Because R406 treatment also prevents the proliferation of c-Myc–transformed pre–B cells, our data indicate that endogenous Syk kinase activity may be required for the survival of pre–B cells transformed by other oncogenes. Collectively, our data suggest that Syk is a protooncogene involved in the transformation of lymphocytes, thus making Syk a potential target for the treatment of leukemia.
Collapse
Affiliation(s)
- Thomas Wossning
- Institute of Biology III, Albert-Ludwigs-University of Freiburg, 79104 Freiburg, and Department of Pediatric Hematology and Oncology, Children's Hospital, Munich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
32
|
Research highlights. Nat Immunol 2006. [DOI: 10.1038/ni0706-707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|