1
|
Anand P, Zhang Y, Patil S, Kaur K. Metabolic Stability and Targeted Delivery of Oligonucleotides: Advancing RNA Therapeutics Beyond The Liver. J Med Chem 2025; 68:6870-6896. [PMID: 39772535 PMCID: PMC11998008 DOI: 10.1021/acs.jmedchem.4c02528] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 12/11/2024] [Accepted: 12/26/2024] [Indexed: 01/11/2025]
Abstract
Oligonucleotides have emerged as a formidable new class of nucleic acid therapeutics. Fully modified oligonucleotides exhibit enhanced metabolic stability and display successful clinical applicability for targets formerly considered "undruggable". Accumulating studies show that conjugation to targeting modalities of stabilized oligonucleotides, especially small interfering RNAs (siRNAs), has enabled robust delivery to intended cells/tissues. However, the major challenge in the field has been the stability and targeted delivery of oligonucleotides (siRNAs and antisense oligonucleotides (ASOs)) to extrahepatic tissues. In this Perspective, we review chemistry innovations and emerging delivery approaches that have revolutionized oligonucleotide drug discovery and development. We explore findings from both academia and industry that highlight the potential of oligonucleotides for indications involving different extrahepatic organs─including skeletal muscles, brain, lungs, skin, heart, adipose tissue, and eyes. In all, continued advances in chemistry coupled with conjugation-based approaches or novel administration routes will further advance the delivery of oligonucleotides to extrahepatic tissues.
Collapse
Affiliation(s)
- Puneet Anand
- Regeneron Genetic Medicines, Regeneron Pharmaceuticals, Inc., Tarrytown, New York 10591, United States
| | - Yu Zhang
- Regeneron Genetic Medicines, Regeneron Pharmaceuticals, Inc., Tarrytown, New York 10591, United States
| | - Spoorthi Patil
- Regeneron Genetic Medicines, Regeneron Pharmaceuticals, Inc., Tarrytown, New York 10591, United States
| | - Keerat Kaur
- Regeneron Genetic Medicines, Regeneron Pharmaceuticals, Inc., Tarrytown, New York 10591, United States
| |
Collapse
|
2
|
Ebenezer O, Oyebamiji AK, Olanlokun JO, Tuszynski JA, Wong GKS. Recent Update on siRNA Therapeutics. Int J Mol Sci 2025; 26:3456. [PMID: 40331977 PMCID: PMC12026779 DOI: 10.3390/ijms26083456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2025] [Revised: 03/29/2025] [Accepted: 04/01/2025] [Indexed: 05/08/2025] Open
Abstract
Small interfering RNA (siRNA) has been deemed a promising therapeutic method for treating diverse diseases. siRNA-based therapeutics provide a distinct mechanism of action by selectively targeting and silencing disease-causing genes at the post-transcriptional level. This paper provides an overview of the present state of siRNA-based therapeutics, highlighting their potential in different therapeutic areas. The first section of this review introduces the basic principles of siRNA technology, including its mechanism of action and delivery methods. Subsequently, we discuss the impediments associated with siRNA delivery and manufacturing development and the strategies for overcoming these obstacles. The clinical advancement of siRNA therapeutics in various disease areas, including cancer, genetic disorders, viral infections, and inflammatory diseases, is summarized. Lastly, we summarize the successes, failures, and lessons learned from the development of siRNAs. With advancements in delivery systems and improvements in target selection, the field of medicine can be revolutionized, and siRNA therapeutics can offer new treatment options for patients.
Collapse
Affiliation(s)
- Oluwakemi Ebenezer
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada;
| | | | - John Oludele Olanlokun
- Laboratories for Biomembrane Research and Biotechnology, Department of Biochemistry, College of Medicine, University of Ibadan, Ibadan 200005, Nigeria;
| | - Jack A. Tuszynski
- Department of Physics, University of Alberta, Edmonton, AB T6G 2E1, Canada;
- Department of Oncology, Cross Cancer Institute, University of Alberta, Edmonton, AB T6G 1Z2, Canada
- Department of Mechanical and Aerospace Engineering (DIMEAS), Politecnico di Torino, 10129 Turin, Italy
- Department of Data Science and Engineering, The Silesian University of Technology, 44-100 Gliwice, Poland
| | - Gane Ka-Shu Wong
- Department of Biological Sciences, University of Alberta, Edmonton, AB T6G 2E9, Canada;
| |
Collapse
|
3
|
Lu RM, Hsu HE, Perez SJLP, Kumari M, Chen GH, Hong MH, Lin YS, Liu CH, Ko SH, Concio CAP, Su YJ, Chang YH, Li WS, Wu HC. Current landscape of mRNA technologies and delivery systems for new modality therapeutics. J Biomed Sci 2024; 31:89. [PMID: 39256822 PMCID: PMC11389359 DOI: 10.1186/s12929-024-01080-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Accepted: 08/20/2024] [Indexed: 09/12/2024] Open
Abstract
Realizing the immense clinical potential of mRNA-based drugs will require continued development of methods to safely deliver the bioactive agents with high efficiency and without triggering side effects. In this regard, lipid nanoparticles have been successfully utilized to improve mRNA delivery and protect the cargo from extracellular degradation. Encapsulation in lipid nanoparticles was an essential factor in the successful clinical application of mRNA vaccines, which conclusively demonstrated the technology's potential to yield approved medicines. In this review, we begin by describing current advances in mRNA modifications, design of novel lipids and development of lipid nanoparticle components for mRNA-based drugs. Then, we summarize key points pertaining to preclinical and clinical development of mRNA therapeutics. Finally, we cover topics related to targeted delivery systems, including endosomal escape and targeting of immune cells, tumors and organs for use with mRNA vaccines and new treatment modalities for human diseases.
Collapse
Affiliation(s)
- Ruei-Min Lu
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan
| | - Hsiang-En Hsu
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan
| | | | - Monika Kumari
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Taipei, 11529, Taiwan
| | - Guan-Hong Chen
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan
| | - Ming-Hsiang Hong
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan
| | - Yin-Shiou Lin
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan
| | - Ching-Hang Liu
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan
| | - Shih-Han Ko
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan
| | | | - Yi-Jen Su
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Taipei, 11529, Taiwan
| | - Yi-Han Chang
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan
| | - Wen-Shan Li
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan.
- Institute of Chemistry, Academia Sinica, No. 128, Academia Road, Section 2, Taipei, 11529, Taiwan.
| | - Han-Chung Wu
- Biomedical Translation Research Center, Academia Sinica, Taipei, 11571, Taiwan.
- Institute of Cellular and Organismic Biology, Academia Sinica, No. 128, Academia Road, Section 2, Taipei, 11529, Taiwan.
| |
Collapse
|
4
|
Murphy A, Hill R, Berna M. Bioanalytical approaches to support the development of antibody-oligonucleotide conjugate (AOC) therapeutic proteins. Xenobiotica 2024; 54:552-562. [PMID: 38607350 DOI: 10.1080/00498254.2024.2339983] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 04/03/2024] [Indexed: 04/13/2024]
Abstract
RNA interference (RNAi) is a biological process that evolved to protect eukaryotic organisms from foreign genes delivered by viruses. This process has been adapted as a powerful tool to treat numerous diseases through the delivery of small-interfering RNAs (siRNAs) to target cells to alter aberrant gene expression.Antibody-oligonucleotide conjugates (AOCs) are monoclonal antibodies with complexed siRNA or antisense oligonucleotides (ASOs) that have emerged to address some of the challenges faced by naked or chemically conjugated siRNA, which include rapid clearance from systemic circulation and lack of selective delivery of siRNA to target cells.It is essential to characterise the ADME properties of an AOC during development to optimise distribution to target tissues, to minimise the impact of biotransformation on exposure, and to characterise the PK/PD relationship to guide translation. However, owing to the complexity of AOC structure, this presents significant bioanalytical challenges, and multiple bioanalytical measurements are required to investigate the pharmacokinetics and biotransformation of the antibody, linker, and siRNA payload.In this paper, we describe an analytical workflow that details in vivo characterisation of AOCs through measurement of their distinct molecular components to provide the basis for greater understanding of their ADME properties. Although the approaches herein can be applied to in vitro characterisation of AOCs, this paper will focus on in vivo applications. This workflow relies on high-resolution mass spectrometry as the principal means of detection and leverages chromatographic, affinity-based, and enzymatic sample preparation steps.
Collapse
Affiliation(s)
- Anthony Murphy
- Investigative ADME/Toxicology and Bioanalytical Research, Eli Lilly and Company, Indianapolis, IN, USA
| | - Ryan Hill
- Investigative ADME/Toxicology and Bioanalytical Research, Eli Lilly and Company, Indianapolis, IN, USA
| | - Michael Berna
- Investigative ADME/Toxicology and Bioanalytical Research, Eli Lilly and Company, Indianapolis, IN, USA
| |
Collapse
|
5
|
Kurosaki T, Ueda Y, Kato Y, Nakashima M, Kitahara T, Sasaki H, Kodama Y. Effect of a novel siRNA delivery system, siRNA ternary complex, on melanoma lung metastasis. J Drug Target 2024; 32:848-854. [PMID: 38809595 DOI: 10.1080/1061186x.2024.2362361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Revised: 05/08/2024] [Accepted: 05/27/2024] [Indexed: 05/30/2024]
Abstract
In this study, we determined effects of an anionic siRNA delivery vector, siRNA ternary complex, which is constructed with biodegradable dendrigraft poly-L-lysine (DGL) and γ-polyglutamic acid (γ-PGA) on the melanoma cells and melanoma lung metastasis. The siRNA ternary complex showed high cellular uptake and silencing effect in melanoma cell line B16-F10/Luc cells. After intravenous administration of the siRNA ternary complex, high silencing effect was also observed in the lung of B16-F10/Luc melanoma metastasis model mice. Therefore, we applied vascular endothelial growth factor (VEGF)-siRNA on the siRNA ternary complex and determined the effect on the melanoma lung metastasis. The siRNA ternary complex containing VEGF-siRNA reduced VEGF protein levels significantly in in vitro and in vivo, and the complex successfully inhibited melanoma lung metastasis. This biodegradable and effective siRNA delivery vector, siRNA ternary complex, could be available for clinical trials.
Collapse
Affiliation(s)
- Tomoaki Kurosaki
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yuki Ueda
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Yuka Kato
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Mikiro Nakashima
- Graduate School of Biomedical Sciences, Nagasaki University, Nagasaki, Japan
| | - Takashi Kitahara
- Pharmacy Department, Yamaguchi University Hospital, Yamaguchi, Japan
| | - Hitoshi Sasaki
- Institute of Tropical Medicine, Nagasaki University, Nagasaki, Japan
| | - Yukinobu Kodama
- Department of Hospital Pharmacy, Nagasaki University Hospital, Nagasaki, Japan
| |
Collapse
|
6
|
Cocco E, de Stanchina E. Patient-Derived-Xenografts in Mice: A Preclinical Platform for Cancer Research. Cold Spring Harb Perspect Med 2024; 14:a041381. [PMID: 37696659 PMCID: PMC11216185 DOI: 10.1101/cshperspect.a041381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/13/2023]
Abstract
The use of patient-derived xenografts (PDXs) has dramatically improved drug development programs. PDXs (1) reproduce the pathological features and the genomic profile of the parental tumors more precisely than other preclinical models, and (2) more faithfully predict therapy response. However, PDXs have limitations. These include the inability to completely capture tumor heterogeneity and the role of the immune system, the low engraftment efficiency of certain tumor types, and the consequences of the human-host interactions. Recently, the use of novel mouse strains and specialized engraftment techniques has enabled the generation of "humanized" PDXs, partially overcoming such limitations. Importantly, establishing, characterizing, and maintaining PDXs is costly and requires a significant regulatory, administrative, clinical, and laboratory infrastructure. In this review, we will retrace the historical milestones that led to the implementation of PDXs for cancer research, review the most recent innovations in the field, and discuss future avenues to tackle deficiencies that still exist.
Collapse
Affiliation(s)
- Emiliano Cocco
- University of Miami, Miller School of Medicine, Department of Biochemistry and Molecular Biology, Sylvester Comprehensive Cancer Center, Miami, Florida 33136, USA
| | - Elisa de Stanchina
- Antitumor Assessment Core Facility, Molecular Pharmacology Program, Memorial Sloan Kettering Cancer Center, New York, New York 10065, USA
| |
Collapse
|
7
|
Kim S, Ullah I, Beloor J, Chung K, Kim J, Yi Y, Kang E, Yun G, Heo S, Pyun SH, Kim SH, Kumar P, Lee SK. Systemic Treatment with siRNA Targeting Gamma-Secretase Activating Protein Inhibits Amyloid-β Accumulation in Alzheimer's Disease. Biomater Res 2024; 28:0027. [PMID: 38868092 PMCID: PMC11168191 DOI: 10.34133/bmr.0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Accepted: 03/31/2024] [Indexed: 06/14/2024] Open
Abstract
Amyloid-β (Aβ) peptide aggregation in the brain is a key factor in Alzheimer's disease. However, direct inhibition of β-secretase or γ-secretase proves ineffective in reducing Aβ accumulation and improving cognition in Alzheimer's. Recent findings suggest that inhibiting gamma-secretase activating protein (GSAP) can decrease Aβ generation without affecting crucial γ-secretase substrates. Dimerization of Lep9R3LC (diLep9R3LC) was confirmed by Ellman's test. The peptide-small interfering RNA (siRNA) complex ratio, particle size, and surface charge were analyzed using electrophoretic mobility shift assay, and dynamic light scattering, respectively. In a 3xTg mice model of Alzheimer's disease, diLep9R3LC:siRNA complexes were intravenously administered twice a week for 8 weeks. Assessments included gene silencing, protein expression, and behavioral improvement using reverse transcription polymerase chain reaction, quantitative polymerase chain reaction, western blotting, Y-maze, and object recognition tests. The efficacy of Lep9R3LC dimerization was ~80% after a 3-d reaction by Ellman's test. In N2a cells, diLep9R3LC:siGSAP complexes achieved ~70% silencing at 48 h posttransfection. In 7-month-old male 3xTg mice, GSAP knockdown was ~30% in the cortex and ~50% in the hippocampus. The behavior improved in mice treated with diLep9R3LC:siGSAP complexes, showing a 60% increase in entries and an 80% increase object recognition. A novel dipeptide, diLep9R3LC, complexed with siRNA targeting GSAP (siGSAP), efficiently delivers siRNA to the mouse brain, targeting the hippocampus. The treatment inhibits Aβ accumulation, reduces GSK-3β-associated with tau hyperphosphorylation, and improves Alzheimer's behavior. Our findings highlight diLep9R3LC:siGSAP's potential for Alzheimer's and as a siRNA carrier for central nervous system-related diseases.
Collapse
Affiliation(s)
- Sunghwa Kim
- Department of Bioengineering and Institute of Nanoscience and Technology,
Hanyang University, Seoul, Korea
| | - Irfan Ullah
- Department of Bioengineering and Institute of Nanoscience and Technology,
Hanyang University, Seoul, Korea
- Department of Internal Medicine,
Yale University, New Haven, CT, USA
| | - Jagadish Beloor
- Department of Bioengineering and Institute of Nanoscience and Technology,
Hanyang University, Seoul, Korea
- Department of Internal Medicine,
Yale University, New Haven, CT, USA
| | - Kunho Chung
- Department of Bioengineering and Institute of Nanoscience and Technology,
Hanyang University, Seoul, Korea
- Lerner Research Institute,
Cleveland Clinic, Cleveland, OH, USA
| | - Jongkil Kim
- Department of Bioengineering and Institute of Nanoscience and Technology,
Hanyang University, Seoul, Korea
- Harvard Medical School, Boston, MA, USA
| | - Yujong Yi
- Department of Bioengineering and Institute of Nanoscience and Technology,
Hanyang University, Seoul, Korea
| | - Eunhwa Kang
- Department of Bioengineering and Institute of Nanoscience and Technology,
Hanyang University, Seoul, Korea
| | - Gyeongju Yun
- Department of Bioengineering and Institute of Nanoscience and Technology,
Hanyang University, Seoul, Korea
| | - Seoyoun Heo
- Department of Bioengineering and Institute of Nanoscience and Technology,
Hanyang University, Seoul, Korea
| | - Seon-Hong Pyun
- Department of Bioengineering and Institute of Nanoscience and Technology,
Hanyang University, Seoul, Korea
| | - Seung Hyun Kim
- Department of Neurology, College of Medicine,
Hanyang University, Seoul, Korea
| | - Priti Kumar
- Department of Internal Medicine,
Yale University, New Haven, CT, USA
| | - Sang-Kyung Lee
- Department of Bioengineering and Institute of Nanoscience and Technology,
Hanyang University, Seoul, Korea
| |
Collapse
|
8
|
Guo QR, Cao YJ. Applications of genetic code expansion technology in eukaryotes. Protein Cell 2024; 15:331-363. [PMID: 37847216 PMCID: PMC11074999 DOI: 10.1093/procel/pwad051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Accepted: 09/26/2023] [Indexed: 10/18/2023] Open
Abstract
Unnatural amino acids (UAAs) have gained significant attention in protein engineering and drug development owing to their ability to introduce new chemical functionalities to proteins. In eukaryotes, genetic code expansion (GCE) enables the incorporation of UAAs and facilitates posttranscriptional modification (PTM), which is not feasible in prokaryotic systems. GCE is also a powerful tool for cell or animal imaging, the monitoring of protein interactions in target cells, drug development, and switch regulation. Therefore, there is keen interest in utilizing GCE in eukaryotic systems. This review provides an overview of the application of GCE in eukaryotic systems and discusses current challenges that need to be addressed.
Collapse
Affiliation(s)
- Qiao-ru Guo
- State Key Laboratory of Chemical Oncogenomic, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
| | - Yu J Cao
- State Key Laboratory of Chemical Oncogenomic, Guangdong Provincial Key Laboratory of Chemical Genomics, Peking University Shenzhen Graduate School, Shenzhen 518055, China
- Institute of Chemical Biology, Shenzhen Bay Laboratory, Shenzhen 518132, China
| |
Collapse
|
9
|
Holloway AJ, Saito TB, Naqvi KF, Huante MB, Fan X, Lisinicchia JG, Gelman BB, Endsley JJ, Endsley MA. Inhibition of caspase pathways limits CD4 + T cell loss and restores host anti-retroviral function in HIV-1 infected humanized mice with augmented lymphoid tissue. Retrovirology 2024; 21:8. [PMID: 38693565 PMCID: PMC11064318 DOI: 10.1186/s12977-024-00641-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 04/05/2024] [Indexed: 05/03/2024] Open
Abstract
The study of HIV infection and pathogenicity in physical reservoirs requires a biologically relevant model. The human immune system (HIS) mouse is an established model of HIV infection, but defects in immune tissue reconstitution remain a challenge for examining pathology in tissues. We utilized exogenous injection of the human recombinant FMS-like tyrosine kinase 3 ligand (rFLT-3 L) into the hematopoietic stem cell (HSC) cord blood HIS mouse model to significantly expand the total area of lymph node (LN) and the number of circulating human T cells. The results enabled visualization and quantification of HIV infectivity, CD4 T cell depletion and other measures of pathogenesis in the secondary lymphoid tissues of the spleen and LN. Treatment with the Caspase-1/4 inhibitor VX-765 limited CD4+ T cell loss in the spleen and reduced viral load in both the spleen and axillary LN. In situ hybridization further demonstrated a decrease in viral RNA in both the spleen and LN. Transcriptomic analysis revealed that in vivo inhibition of caspase-1/4 led to an upregulation in host HIV restriction factors including SAMHD1 and APOBEC3A. These findings highlight the use of rFLT-3 L to augment human immune system characteristics in HIS mice to support investigations of HIV pathogenesis and test host directed therapies, though further refinements are needed to further augment LN architecture and cellular populations. The results further provide in vivo evidence of the potential to target inflammasome pathways as an avenue of host-directed therapy to limit immune dysfunction and virus replication in tissue compartments of HIV+ persons.
Collapse
Affiliation(s)
- Alex J Holloway
- Department of Microbiology and Immunology, University of Texas Medical Branch, 77555, Galveston, TX, USA
| | - Tais B Saito
- Department of Pathology, University of Texas Medical Branch, 77555, Galveston, TX, USA
- Current at the Laboratory of Bacteriology, Rocky Mountain Laboratories, Division of Intramural Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 59840, Hamilton, MT, USA
| | - Kubra F Naqvi
- Department of Microbiology and Immunology, University of Texas Medical Branch, 77555, Galveston, TX, USA
- Department of Internal Medicine, University of Texas Southwestern Medical Center, 75390, Dallas, TX, USA
| | - Matthew B Huante
- Department of Microbiology and Immunology, University of Texas Medical Branch, 77555, Galveston, TX, USA
| | - Xiuzhen Fan
- Department of Microbiology and Immunology, University of Texas Medical Branch, 77555, Galveston, TX, USA
- Department of Medicine, University of Toledo, 43614, Toledo, OH, USA
| | - Joshua G Lisinicchia
- Department of Pathology, University of Texas Medical Branch, 77555, Galveston, TX, USA
| | - Benjamin B Gelman
- Department of Pathology, University of Texas Medical Branch, 77555, Galveston, TX, USA
| | - Janice J Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch, 77555, Galveston, TX, USA
| | - Mark A Endsley
- Department of Microbiology and Immunology, University of Texas Medical Branch, 77555, Galveston, TX, USA.
| |
Collapse
|
10
|
Tang Q, Khvorova A. RNAi-based drug design: considerations and future directions. Nat Rev Drug Discov 2024; 23:341-364. [PMID: 38570694 PMCID: PMC11144061 DOI: 10.1038/s41573-024-00912-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2024] [Indexed: 04/05/2024]
Abstract
More than 25 years after its discovery, the post-transcriptional gene regulation mechanism termed RNAi is now transforming pharmaceutical development, proved by the recent FDA approval of multiple small interfering RNA (siRNA) drugs that target the liver. Synthetic siRNAs that trigger RNAi have the potential to specifically silence virtually any therapeutic target with unprecedented potency and durability. Bringing this innovative class of medicines to patients, however, has been riddled with substantial challenges, with delivery issues at the forefront. Several classes of siRNA drug are under clinical evaluation, but their utility in treating extrahepatic diseases remains limited, demanding continued innovation. In this Review, we discuss principal considerations and future directions in the design of therapeutic siRNAs, with a particular emphasis on chemistry, the application of informatics, delivery strategies and the importance of careful target selection, which together influence therapeutic success.
Collapse
Affiliation(s)
- Qi Tang
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Dermatology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Anastasia Khvorova
- RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA.
- Program in Molecular Medicine, University of Massachusetts Chan Medical School, Worcester, MA, USA.
| |
Collapse
|
11
|
Berdecka D, De Smedt SC, De Vos WH, Braeckmans K. Non-viral delivery of RNA for therapeutic T cell engineering. Adv Drug Deliv Rev 2024; 208:115215. [PMID: 38401848 DOI: 10.1016/j.addr.2024.115215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2023] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 02/26/2024]
Abstract
Adoptive T cell transfer has shown great success in treating blood cancers, resulting in a growing number of FDA-approved therapies using chimeric antigen receptor (CAR)-engineered T cells. However, the effectiveness of this treatment for solid tumors is still not satisfactory, emphasizing the need for improved T cell engineering strategies and combination approaches. Currently, CAR T cells are mainly manufactured using gammaretroviral and lentiviral vectors due to their high transduction efficiency. However, there are concerns about their safety, the high cost of producing them in compliance with current Good Manufacturing Practices (cGMP), regulatory obstacles, and limited cargo capacity, which limit the broader use of engineered T cell therapies. To overcome these limitations, researchers have explored non-viral approaches, such as membrane permeabilization and carrier-mediated methods, as more versatile and sustainable alternatives for next-generation T cell engineering. Non-viral delivery methods can be designed to transport a wide range of molecules, including RNA, which allows for more controlled and safe modulation of T cell phenotype and function. In this review, we provide an overview of non-viral RNA delivery in adoptive T cell therapy. We first define the different types of RNA therapeutics, highlighting recent advancements in manufacturing for their therapeutic use. We then discuss the challenges associated with achieving effective RNA delivery in T cells. Next, we provide an overview of current and emerging technologies for delivering RNA into T cells. Finally, we discuss ongoing preclinical and clinical studies involving RNA-modified T cells.
Collapse
Affiliation(s)
- Dominika Berdecka
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium; Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Stefaan C De Smedt
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium
| | - Winnok H De Vos
- Laboratory of Cell Biology and Histology, Department of Veterinary Sciences, University of Antwerp, Universiteitsplein 1, 2610 Wilrijk, Belgium
| | - Kevin Braeckmans
- Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
12
|
Kremer A, Ryaykenen T, Haraszti RA. Systematic optimization of siRNA productive uptake into resting and activated T cells ex vivo. Biomed Pharmacother 2024; 172:116285. [PMID: 38382331 DOI: 10.1016/j.biopha.2024.116285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 02/09/2024] [Accepted: 02/17/2024] [Indexed: 02/23/2024] Open
Abstract
RNA-based medicines are ideally suited for precise modulation of T cell phenotypes in anti-cancer immunity, in autoimmune diseases and for ex vivo modulation of T-cell-based therapies. Therefore, understanding productive siRNA uptake to T cells is of particular importance. Most studies used unmodified siRNAs or commercially available siRNAs with undisclosed chemical modification patterns to show functionality in T cells. Despite being an active field of research, robust siRNA delivery to T cells still represents a formidable challenge. Therefore, a systematic approach is needed to further optimize and understand productive siRNA uptake pathways to T cells. Here, we compared conjugate-mediated and nanoparticle-mediated delivery of siRNAs to T cells in the context of fully chemically modified RNA constructs. We showed that lipid-conjugate-mediated delivery outperforms lipid-nanoparticle-mediated and extracellular-vesicle-mediated delivery in activated T cells ex vivo. Yet, ex vivo manipulation of T cells without the need of activation is of great therapeutic interest for CAR-T, engineered TCR-T and allogeneic donor lymphocyte applications. We are first to report productive siRNA uptake into resting T cells using lipid-conjugate-mediated delivery. Interestingly, we observed strong dependence of silencing activity on lipid-conjugate-identity in resting T cells but not in activated T cells. This phenomenon is consistent with our early uptake kinetics data. Lipid-conjugates also enabled delivery of siRNA to all mononuclear immune cell types, including both lymphoid and myeloid lineages. These findings are expected to be broadly applicable for ex vivo modulation of immune cell therapies.
Collapse
Affiliation(s)
- A Kremer
- Department of Internal Medicine II, Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Germany; Gene and RNA Therapy Center (GRTC), Faculty of Medicine, University Tuebingen, Germany
| | - T Ryaykenen
- Department of Internal Medicine II, Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Germany; Gene and RNA Therapy Center (GRTC), Faculty of Medicine, University Tuebingen, Germany
| | - R A Haraszti
- Department of Internal Medicine II, Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tuebingen, Germany; Gene and RNA Therapy Center (GRTC), Faculty of Medicine, University Tuebingen, Germany.
| |
Collapse
|
13
|
Klinnert S, Schenkel CD, Freitag PC, Günthard HF, Plückthun A, Metzner KJ. Targeted shock-and-kill HIV-1 gene therapy approach combining CRISPR activation, suicide gene tBid and retargeted adenovirus delivery. Gene Ther 2024; 31:74-84. [PMID: 37558852 PMCID: PMC10940146 DOI: 10.1038/s41434-023-00413-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 07/12/2023] [Accepted: 07/26/2023] [Indexed: 08/11/2023]
Abstract
Infections with the human immunodeficiency virus type 1 (HIV-1) are incurable due the long-lasting, latent viral reservoir. The shock-and-kill cure approach aims to activate latent proviruses in HIV-1 infected cells and subsequently kill these cells with strategies such as therapeutic vaccines or immune enhancement. Here, we combined the dCas9-VPR CRISPR activation (CRISPRa) system with gRNA-V, the truncated Bid (tBid)-based suicide gene strategy and CD3-retargeted adenovirus (Ad) delivery vectors, in an all-in-one targeted shock-and-kill gene therapy approach to achieve specific elimination of latently HIV-1 infected cells. Simultaneous transduction of latently HIV-1 infected J-Lat 10.6 cells with a CD3-retargeted Ad-CRISPRa-V and Ad-tBid led to a 57.7 ± 17.0% reduction of productively HIV-1 infected cells and 2.4-fold ± 0.25 increase in cell death. The effective activation of latent HIV-1 provirus by Ad-CRISPRa-V was similar to the activation control TNF-α. The strictly HIV-1 dependent and non-leaky killing by tBid could be demonstrated. Furthermore, the high transduction efficiencies of up to 70.8 ± 0.4% by the CD3-retargeting technology in HIV-1 latently infected cell lines was the basis of successful shock-and-kill. This novel targeted shock-and-kill all-in-one gene therapy approach has the potential to safely and effectively eliminate HIV-1 infected cells in a highly HIV-1 and T cell specific manner.
Collapse
Affiliation(s)
- Sarah Klinnert
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
- Life Science Zurich Graduate School, University of Zurich, Zurich, Switzerland
| | - Corinne D Schenkel
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Patrick C Freitag
- Life Science Zurich Graduate School, University of Zurich, Zurich, Switzerland
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Huldrych F Günthard
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland
| | - Andreas Plückthun
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | - Karin J Metzner
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital Zurich, Zurich, Switzerland.
- Institute of Medical Virology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
14
|
Chung K, Ullah I, Yi Y, Kang E, Yun G, Heo S, Kim M, Chung SE, Park S, Lim J, Lee M, Rhim T, Lee SK. Intranasal Delivery of Anti-Apoptotic siRNA Complexed with Fas-Signaling Blocking Peptides Attenuates Cellular Apoptosis in Brain Ischemia. Pharmaceutics 2024; 16:290. [PMID: 38399343 PMCID: PMC10892455 DOI: 10.3390/pharmaceutics16020290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 02/15/2024] [Accepted: 02/16/2024] [Indexed: 02/25/2024] Open
Abstract
Ischemic stroke-induced neuronal cell death leads to the permanent impairment of brain function. The Fas-mediating extrinsic apoptosis pathway and the cytochrome c-mediating intrinsic apoptosis pathway are two major molecular mechanisms contributing to neuronal injury in ischemic stroke. In this study, we employed a Fas-blocking peptide (FBP) coupled with a positively charged nona-arginine peptide (9R) to form a complex with negatively charged siRNA targeting Bax (FBP9R/siBax). This complex is specifically designed to deliver siRNA to Fas-expressing ischemic brain cells. This complex enables the targeted inhibition of Fas-mediating extrinsic apoptosis pathways and cytochrome c-mediating intrinsic apoptosis pathways. Specifically, the FBP targets the Fas/Fas ligand signaling, while siBax targets Bax involved in mitochondria disruption in the intrinsic pathway. The FBP9R carrier system enables the delivery of functional siRNA to hypoxic cells expressing the Fas receptor on their surface-a finding validated through qPCR and confocal microscopy analyses. Through intranasal (IN) administration of FBP9R/siCy5 to middle cerebral artery occlusion (MCAO) ischemic rat models, brain imaging revealed the complex specifically localized to the Fas-expressing infarcted region but did not localize in the non-infarcted region of the brain. A single IN administration of FBP9R/siBax demonstrated a significant reduction in neuronal cell death by effectively inhibiting Fas signaling and preventing the release of cytochrome c. The targeted delivery of FBP9R/siBax represents a promising alternative strategy for the treatment of brain ischemia.
Collapse
Affiliation(s)
- Kunho Chung
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Republic of Korea; (K.C.); (Y.Y.); (S.H.)
- Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44106, USA
| | - Irfan Ullah
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Republic of Korea; (K.C.); (Y.Y.); (S.H.)
- Department of Internal Medicine, Yale University, New Haven, CT 06520, USA
| | - Yujong Yi
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Republic of Korea; (K.C.); (Y.Y.); (S.H.)
| | - Eunhwa Kang
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Republic of Korea; (K.C.); (Y.Y.); (S.H.)
| | - Gyeongju Yun
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Republic of Korea; (K.C.); (Y.Y.); (S.H.)
| | - Seoyoun Heo
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Republic of Korea; (K.C.); (Y.Y.); (S.H.)
| | - Minkyung Kim
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Republic of Korea; (K.C.); (Y.Y.); (S.H.)
| | - Seong-Eun Chung
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Republic of Korea; (K.C.); (Y.Y.); (S.H.)
| | - Seongjun Park
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Republic of Korea; (K.C.); (Y.Y.); (S.H.)
| | - Jaeyeoung Lim
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Republic of Korea; (K.C.); (Y.Y.); (S.H.)
| | - Minhyung Lee
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Republic of Korea; (K.C.); (Y.Y.); (S.H.)
| | - Taiyoun Rhim
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Republic of Korea; (K.C.); (Y.Y.); (S.H.)
| | - Sang-Kyung Lee
- Department of Bioengineering and Institute of Nanoscience and Technology, Hanyang University, Seoul 04763, Republic of Korea; (K.C.); (Y.Y.); (S.H.)
| |
Collapse
|
15
|
Shi Y, Zhen X, Zhang Y, Li Y, Koo S, Saiding Q, Kong N, Liu G, Chen W, Tao W. Chemically Modified Platforms for Better RNA Therapeutics. Chem Rev 2024; 124:929-1033. [PMID: 38284616 DOI: 10.1021/acs.chemrev.3c00611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2024]
Abstract
RNA-based therapies have catalyzed a revolutionary transformation in the biomedical landscape, offering unprecedented potential in disease prevention and treatment. However, despite their remarkable achievements, these therapies encounter substantial challenges including low stability, susceptibility to degradation by nucleases, and a prominent negative charge, thereby hindering further development. Chemically modified platforms have emerged as a strategic innovation, focusing on precise alterations either on the RNA moieties or their associated delivery vectors. This comprehensive review delves into these platforms, underscoring their significance in augmenting the performance and translational prospects of RNA-based therapeutics. It encompasses an in-depth analysis of various chemically modified delivery platforms that have been instrumental in propelling RNA therapeutics toward clinical utility. Moreover, the review scrutinizes the rationale behind diverse chemical modification techniques aiming at optimizing the therapeutic efficacy of RNA molecules, thereby facilitating robust disease management. Recent empirical studies corroborating the efficacy enhancement of RNA therapeutics through chemical modifications are highlighted. Conclusively, we offer profound insights into the transformative impact of chemical modifications on RNA drugs and delineates prospective trajectories for their future development and clinical integration.
Collapse
Affiliation(s)
- Yesi Shi
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Xueyan Zhen
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Yiming Zhang
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Yongjiang Li
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Seyoung Koo
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Qimanguli Saiding
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| | - Na Kong
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Liangzhu Laboratory, Zhejiang University Medical Center, Hangzhou 310058, China
| | - Gang Liu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, National Innovation Platform for Industry-Education Integration in Vaccine Research, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Wei Chen
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
- Genomics Research Center, Academia Sinica, Taipei 11529, Taiwan
| | - Wei Tao
- Center for Nanomedicine and Department of Anesthesiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, United States
| |
Collapse
|
16
|
Yang S, Chen Y, Gu J, Harris A, Su RC, Ho EA. pH-sensitive dual-preventive siRNA-based nanomicrobicide reactivates autophagy and inhibits HIV infection in vaginal CD4+ cells. J Control Release 2024; 366:849-863. [PMID: 38176469 DOI: 10.1016/j.jconrel.2023.12.043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/13/2023] [Accepted: 12/24/2023] [Indexed: 01/06/2024]
Abstract
Women are more susceptible to HIV transmission through unprotected heterosexual intercourse due to biological and social vulnerabilities. Intravaginal delivery of siRNAs targeting viral genes, host genes, or in combination has shown promising outcomes against HSV, HPV and HIV. Therefore, in this study, we designed, developed and evaluated a pH-sensitive RNAi-based combination nanomicrobide for the prevention/reduction of vaginal transmission of HIV. The nanomicrobide was composed of siRNA-PEI encapsulated PLGA-PEG nanoparticles (siRNA NP) loaded in a HEC gel dosage form with siRNA targeting host gene CCR5 and the viral gene Nef as a dual preventive strategy. Knocking down CCR5, a co-receptor for HIV could prevent HIV from attaching to and entering host cells and knocking down Nef could reactivate autophagy that was inhibited by Nef to improve the elimination of intracellular virus that escaped the first line of defense. The siRNA NP showed a desirable particle size and zeta potential for intravaginal delivery and a pH-dependent release profile whereby low amounts of siRNA was released under acidic vaginal conditions (vaginal fluid simulant; VFS, pH 4.2) (6.0 ± 0.4% released over 15 days) but significantly higher amounts of siRNA was released under neutral pH conditions (phosphate buffered saline; PBS, pH 7.4) (22.9 ± 0.4% released over 15 days). The CCR5-Nef-specific siRNA NP efficiently knocked down CCR5 and Nef protein expression by 43% and 63%, respectively, reactivated Nef-blocked autophagy and inhibited the replication of HIV in vitro (71.8% reduction in p24 expression). After being formulated into a gel dosage form, siRNA NP could be readily released from the gel, penetrate the vaginal epithelial layer, get taken up into the target cells and knockdown Nef and CCR5 without causing cytotoxicity in a vaginal mucosal co-culture model. Functionalization of siRNA NP with anti-CD4 antibody and loaded into a 0.5% HEC gel improved vaginal distribution and uptake of siRNA in a mouse model with distribution of siRNA restricted to the reproductive tract without any unwanted systemic uptake. The 0.5% HEC gel loaded with siRNA NP-(m)CD4 significantly downregulated approximately 40% of CCR5 protein in the lower vagina and 36% of CCR5 protein in the upper vaginal and cervical region. In contrast, 0.5% HEC gel loaded with siRNA NP-IgG did not result in significant gene knockdown.
Collapse
Affiliation(s)
- Sidi Yang
- Laboratory for Drug Delivery and Biomaterials, School of Pharmacy, Faculty of Science, University of Waterloo, Canada; College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Canada
| | - Yufei Chen
- Laboratory for Drug Delivery and Biomaterials, School of Pharmacy, Faculty of Science, University of Waterloo, Canada; College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Canada
| | - Jijin Gu
- College of Pharmacy, Rady Faculty of Health Sciences, University of Manitoba, Canada
| | - Angela Harris
- Department of Medical Microbiology & Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Canada; National HIV and Retrovirology Laboratory, JC Wilt Infectious Disease Research Centre, Public Health Agency of Canada, Canada
| | - Ruey-Chyi Su
- Department of Medical Microbiology & Infectious Diseases, Max Rady College of Medicine, Rady Faculty of Health Sciences, University of Manitoba, Canada; National HIV and Retrovirology Laboratory, JC Wilt Infectious Disease Research Centre, Public Health Agency of Canada, Canada
| | - Emmanuel A Ho
- Laboratory for Drug Delivery and Biomaterials, School of Pharmacy, Faculty of Science, University of Waterloo, Canada; Waterloo Institute for Nanotechnology, University of Waterloo, Canada.
| |
Collapse
|
17
|
Yue H, Bai L. Progress, implications, and challenges in using humanized immune system mice in CAR-T therapy-Application evaluation and improvement. Animal Model Exp Med 2024; 7:3-11. [PMID: 37823214 PMCID: PMC10961865 DOI: 10.1002/ame2.12353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 09/17/2023] [Indexed: 10/13/2023] Open
Abstract
In recent years, humanized immune system (HIS) mice have been gradually used as models for preclinical research in pharmacotherapies and cell therapies with major breakthroughs in tumor and other fields, better mimicking the human immune system and the tumor immune microenvironment, compared to traditional immunodeficient mice. To better promote the application of HIS mice in preclinical research, we selectively summarize the current prevalent and breakthrough research and evaluation of chimeric antigen receptor (CAR) -T cells in various antiviral and antitumor treatments. By exploring its application in preclinical research, we find that it can better reflect the actual clinical patient condition, with the advantages of providing high-efficiency detection indicators, even for progressive research and development. We believe that it has better clinical patient simulation and promotion for the updated design of CAR-T cell therapy than directly transplanted immunodeficient mice. The characteristics of the main models are proposed to improve the use defects of the existing models by reducing the limitation of antihost reaction, combining multiple models, and unifying sources and organoid substitution. Strategy study of relapse and toxicity after CAR-T treatment also provides more possibilities for application and development.
Collapse
Affiliation(s)
- Hanwei Yue
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal SciencesCAMS and PUMCChao‐yang District, BeijingChina
| | - Lin Bai
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal SciencesCAMS and PUMCChao‐yang District, BeijingChina
| |
Collapse
|
18
|
Klipp A, Burger M, Leroux JC. Get out or die trying: Peptide- and protein-based endosomal escape of RNA therapeutics. Adv Drug Deliv Rev 2023; 200:115047. [PMID: 37536508 DOI: 10.1016/j.addr.2023.115047] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/28/2023] [Accepted: 08/01/2023] [Indexed: 08/05/2023]
Abstract
RNA therapeutics offer great potential to transform the biomedical landscape, encompassing the treatment of hereditary conditions and the development of better vaccines. However, the delivery of RNAs into the cell is hampered, among others, by poor endosomal escape. This major hurdle is often tackled using special lipids, polymers, or protein-based delivery vectors. In this review, we will focus on the most prominent peptide- and protein-based endosomal escape strategies with focus on RNA drugs. We discuss cell penetrating peptides, which are still incorporated into novel transfection systems today to promote endosomal escape. However, direct evidence for enhanced endosomal escape by the action of such peptides is missing and their transfection efficiency, even in permissive cell culture conditions, is rather low. Endosomal escape by the help of pore forming proteins or phospholipases, on the other hand, allowed to generate more efficient transfection systems. These are, however, often hampered by considerable toxicity and immunogenicity. We conclude that the perfect enhancer of endosomal escape has yet to be devised. To increase the chances of success, any new transfection system should be tested under relevant conditions and guided by assays that allow direct quantification of endosomal escape.
Collapse
Affiliation(s)
- Alexander Klipp
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Switzerland.
| | - Michael Burger
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Switzerland.
| | - Jean-Christophe Leroux
- Institute of Pharmaceutical Sciences, Department of Chemistry and Applied Biosciences, ETH Zurich, Switzerland.
| |
Collapse
|
19
|
Koyasu K, Chandela A, Ueno Y. Non-terminal conjugation of small interfering RNAs with spermine improves duplex binding and serum stability with position-specific incorporation. RSC Adv 2023; 13:25169-25181. [PMID: 37622021 PMCID: PMC10445083 DOI: 10.1039/d3ra04918c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023] Open
Abstract
The conjugation of small interfering RNAs (siRNAs) has been studied using lipid and ligand conjugates for efficient delivery. However, most conjugates have been inserted at the terminal position; very few have been inserted at non-terminal positions. Herein, we synthesized a 4'-C-propyllevulinate-2'-O-methyluridine analog for non-terminal conjugation of spermine into the passenger strand of siRNA. Solid-phase oligonucleotide synthesis using this analog was successful, with the conjugation of one or two spermine molecules. The siRNAs conjugated with spermine displayed improved thermodynamic stability and resistance against nucleases, which depended on the site of conjugation in each case. Circular dichroism spectroscopy revealed that the A-type helical structure of the RNA duplex was not altered by these modifications. However, the gene-silencing activity of conjugated siRNAs was reduced and further decreased when the number of spermine molecules was increased. Hence, this work supplies valuable information and provides scope for the further development of drug-delivery systems through non-terminal conjugation.
Collapse
Affiliation(s)
- Keisuke Koyasu
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology, Gifu University Japan +81-58-293-2919 +81-58-293-2919
| | - Akash Chandela
- Course of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University Japan
| | - Yoshihito Ueno
- Department of Life Science and Chemistry, Graduate School of Natural Science and Technology, Gifu University Japan +81-58-293-2919 +81-58-293-2919
- Course of Applied Life Science, Faculty of Applied Biological Sciences, Gifu University Japan
- United Graduate School of Agricultural Science, Gifu University 1-1 Yanagido Gifu 501-1193 Japan
| |
Collapse
|
20
|
Baroncini L, Bredl S, Nicole KP, Speck RF. The Humanized Mouse Model: What Added Value Does It Offer for HIV Research? Pathogens 2023; 12:pathogens12040608. [PMID: 37111494 PMCID: PMC10142098 DOI: 10.3390/pathogens12040608] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 04/13/2023] [Accepted: 04/14/2023] [Indexed: 04/29/2023] Open
Abstract
In the early 2000s, novel humanized mouse models based on the transplantation of human hematopoietic stem and progenitor cells (HSPCs) into immunocompromised mice were introduced (hu mice). The human HSPCs gave rise to a lymphoid system of human origin. The HIV research community has greatly benefitted from these hu mice. Since human immunodeficiency virus (HIV) type 1 infection results in a high-titer disseminated HIV infection, hu mice have been of great value for all types of HIV research from pathogenesis to novel therapies. Since the first description of this new generation of hu mice, great efforts have been expended to improve humanization by creating other immunodeficient mouse models or supplementing mice with human transgenes to improve human engraftment. Many labs have their own customized hu mouse models, making comparisons quite difficult. Here, we discuss the different hu mouse models in the context of specific research questions in order to define which characteristics should be considered when determining which hu mouse model is appropriate for the question posed. We strongly believe that researchers must first define their research question and then determine whether a hu mouse model exists, allowing the research question to be studied.
Collapse
Affiliation(s)
- Luca Baroncini
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Simon Bredl
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Kadzioch P Nicole
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, 8091 Zurich, Switzerland
| | - Roberto F Speck
- Department of Infectious Diseases and Hospital Epidemiology, University Hospital of Zurich, University of Zurich, 8091 Zurich, Switzerland
| |
Collapse
|
21
|
Basar E, Shum B, Skaletz-Rorowski A, Wu Y, Nambiar S, Brockmeyer NH. Cholesterol-conjugated siRNAs silence gene expression in mucosal dendritic cells in cervicovaginal tissue in mice. J Eur Acad Dermatol Venereol 2023; 37:615-626. [PMID: 36331362 DOI: 10.1111/jdv.18718] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 10/06/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND RNA interference (RNAi) provides a powerful way to investigate the role of genes in disease pathogenesis and modulate gene expression to treat disease. In 2018, the FDA approved patisiran, the first RNAi-based drug, hence paving the way for a novel class of RNAi therapeutics. Harnessing RNAi to inhibit vaginal HIV transmission requires effective gene silencing in immune cells, which remains difficult. Knockdown in accessible mucosal tissues may be easier than systemic gene silencing. Vaginally applied cholesterol-conjugated small interfering RNAs (chol-siRNAs) blocked herpes simplex virus transmission in mice without tissue damage or immunostimulation. OBJECTIVES AND METHODS To investigate using flow cytometry, confocal microscopy, and quantitative imaging if chol-siRNAs silence gene expression in vaginal immune cells in mice. RESULTS Although chol-siRNAs and lipoplexed-siRNAs silence gene expression in dendritic cells (DCs) in vitro, most internalized siRNAs concentrate within multivesicular bodies, where they are inaccessible to the cellular RNAi machinery. When applied intravaginally in vivo, chol-siRNAs penetrate the vaginal mucosa, including the lamina propria, and are efficiently internalized by intraepithelial (IE) and lamina propria (LP) DCs, and CD11b+ CD45+ cells, but not by T cells. Chol-siRNAs induce partial gene silencing in IE and LP DCs throughout the genital mucosa in vivo but are inactive in F4/80+ CD11b+ macrophages and T cells. CONCLUSION As mucosal DCs play an essential role for mucosal viral entry and dissemination, chol-siRNAs could be harnessed to target various host factors that are critical for viral uptake, DC migration and trans-infection of virions to T cells, hence allowing the development of a preventive vaginal HIV microbicide. Furthermore, chol-siRNAs could help elucidate the pathways of HIV transmission and understand the immunologic function of DCs in the genital tract.
Collapse
Affiliation(s)
- Emre Basar
- Immune Disease Institute and Program in Cellular and Molecular Medicine, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, USA.,WIR - Walk In Ruhr, Center for Sexual Health & Medicine, Department of Dermatology, Venerology and Allergology, Ruhr-Universität Bochum, Bochum, Germany.,Competence Network for HIV/AIDS, Ruhr-Universität Bochum, Bochum, Germany
| | - Bennett Shum
- Immune Disease Institute and Program in Cellular and Molecular Medicine, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, USA
| | - Adriane Skaletz-Rorowski
- WIR - Walk In Ruhr, Center for Sexual Health & Medicine, Department of Dermatology, Venerology and Allergology, Ruhr-Universität Bochum, Bochum, Germany.,Competence Network for HIV/AIDS, Ruhr-Universität Bochum, Bochum, Germany
| | - Yichao Wu
- Immune Disease Institute and Program in Cellular and Molecular Medicine, Children's Hospital Boston, Harvard Medical School, Boston, Massachusetts, USA
| | - Sandeep Nambiar
- WIR - Walk In Ruhr, Center for Sexual Health & Medicine, Department of Dermatology, Venerology and Allergology, Ruhr-Universität Bochum, Bochum, Germany.,Competence Network for HIV/AIDS, Ruhr-Universität Bochum, Bochum, Germany
| | - Norbert H Brockmeyer
- WIR - Walk In Ruhr, Center for Sexual Health & Medicine, Department of Dermatology, Venerology and Allergology, Ruhr-Universität Bochum, Bochum, Germany.,Competence Network for HIV/AIDS, Ruhr-Universität Bochum, Bochum, Germany
| |
Collapse
|
22
|
Menon D, Singh R, Joshi KB, Gupta S, Bhatia D. Designer, Programmable DNA-peptide hybrid materials with emergent properties to probe and modulate biological systems. Chembiochem 2023; 24:e202200580. [PMID: 36468492 DOI: 10.1002/cbic.202200580] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 12/04/2022] [Accepted: 12/05/2022] [Indexed: 12/07/2022]
Abstract
The chemistry of DNA endows it with certain functional properties that facilitate the generation of self-assembled nanostructures, offering precise control over their geometry and morphology, that can be exploited for advanced biological applications. Despite the structural promise of these materials, their applications are limited owing to lack of functional capability to interact favourably with biological systems, which has been achieved by functional proteins or peptides. Herein, we outline a strategy for functionalizing DNA structures with short-peptides, leading to the formation of DNA-peptide hybrid materials. This proposition offers the opportunity to leverage the unique advantages of each of these bio-molecules, that have far reaching emergent properties in terms of better cellular interactions and uptake, better stability in biological media, an acceptable and programmable immune response and high bioactive molecule loading capacities. We discuss the synthetic strategies for the formation of these materials, namely, solid-phase functionalization and solution-coupling functionalization. We then proceed to highlight selected biological applications of these materials in the domains of cell instruction & molecular recognition, gene delivery, drug delivery and bone & tissue regeneration. We conclude with discussions shedding light on the challenges that these materials pose and offer our insights on future directions of peptide-DNA research for targeted biomedical applications.
Collapse
Affiliation(s)
- Dhruv Menon
- Cavendish Laboratory, Department of Physics, University of Cambridge, Cambridge, CB3 0HE, United Kingdom
| | - Ramesh Singh
- Biological Engineering Discipline, Indian Institute of Technology, Gandhinagar, 382355, India
| | - Kashti B Joshi
- Department of Chemistry, Dr. Harisingh Gour Vishwavidyalaya (A Central University), Sagar, Madhya Pradesh, India
| | - Sharad Gupta
- Biological Engineering Discipline, Indian Institute of Technology, Gandhinagar, 382355, India
| | - Dhiraj Bhatia
- Biological Engineering Discipline, Indian Institute of Technology, Gandhinagar, 382355, India
| |
Collapse
|
23
|
Recent Developments in NSG and NRG Humanized Mouse Models for Their Use in Viral and Immune Research. Viruses 2023; 15:v15020478. [PMID: 36851692 PMCID: PMC9962986 DOI: 10.3390/v15020478] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/04/2023] [Accepted: 02/06/2023] [Indexed: 02/11/2023] Open
Abstract
Humanized mouse models have been widely used in virology, immunology, and oncology in the last decade. With advances in the generation of knockout mouse strains, it is now possible to generate animals in which human immune cells or human tissue can be engrafted. These models have been used for the study of human infectious diseases, cancers, and autoimmune diseases. In recent years, there has been an increase in the use of humanized mice to model human-specific viral infections. A human immune system in these models is crucial to understand the pathogenesis observed in human patients, which allows for better treatment design and vaccine development. Recent advances in our knowledge about viral pathogenicity and immune response using NSG and NRG mice are reviewed in this paper.
Collapse
|
24
|
Schaible P, Bethge W, Lengerke C, Haraszti RA. RNA Therapeutics for Improving CAR T-cell Safety and Efficacy. Cancer Res 2023; 83:354-362. [PMID: 36512627 PMCID: PMC7614194 DOI: 10.1158/0008-5472.can-22-2155] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 11/02/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Autologous chimeric antigen receptor (CAR) T cells have recently emerged as potent tools in the fight against cancer, with promising therapeutic efficacy against hematological malignancies. However, several limitations hamper their widespread clinical use, including availability of target antigen, severe toxic effects, primary and secondary resistance, heterogeneous quality of autologous T cells, variable persistence, and low activity against solid tumors. Development of allogeneic off-the-shelf CAR T cells could help address some of these limitations but is impeded by alloimmunity with either rejection and limited expansion of allo-CAR T cells or CAR T cells versus host reactions. RNA therapeutics, such as small interfering RNAs, microRNAs, and antisense oligonucleotides, are able to silence transcripts in a sequence-specific and proliferation-sensitive way, which may offer a way to overcome some of the challenges facing CAR T-cell development and clinical utility. Here, we review how different RNA therapeutics or a combination of RNA therapeutics and genetic engineering could be harnessed to improve the safety and efficacy of autologous and allogeneic CAR T-cell therapy.
Collapse
Affiliation(s)
- Philipp Schaible
- Department of Internal Medicine II, Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Wolfgang Bethge
- Department of Internal Medicine II, Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Claudia Lengerke
- Department of Internal Medicine II, Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| | - Reka Agnes Haraszti
- Department of Internal Medicine II, Hematology, Oncology, Clinical Immunology and Rheumatology, University Hospital Tübingen, Tübingen, Germany
| |
Collapse
|
25
|
Chen MJ, Gatignol A, Scarborough RJ. The discovery and development of RNA-based therapies for treatment of HIV-1 infection. Expert Opin Drug Discov 2023; 18:163-179. [PMID: 36004505 DOI: 10.1080/17460441.2022.2117296] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Long-term control of HIV-1 infection can potentially be achieved using autologous stem cell transplants with gene-modified cells. Non-coding RNAs represent a diverse class of therapeutic agents including ribozymes, RNA aptamers and decoys, small interfering RNAs, short hairpin RNAs, and U1 interference RNAs that can be designed to inhibit HIV-1 replication. They have been engineered for delivery as drugs to complement current HIV-1 therapies and as gene therapies for a potential HIV-1 functional cure. AREAS COVERED This review surveys the past three decades of development of these RNA technologies with a focus on their efficacy and safety for treating HIV-1 infections. We describe the mechanisms of each RNA-based agent, targets they have been developed against, efforts to enhance their stability and efficacy, and we evaluate their performance in past and ongoing preclinical and clinical trials. EXPERT OPINION RNA-based technologies are among the top candidates for gene therapies where they can be stably expressed for long-term suppression of HIV-1. Advances in both gene and drug delivery strategies and improvements to non-coding RNA stability and antiviral properties will cooperatively drive forward progress in improving drug therapy and engineering HIV-1 resistant cells.
Collapse
Affiliation(s)
- Michelle J Chen
- Lady Davis Institute for Medical Research, Montréal, Québec, Canada.,Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec, Canada
| | - Anne Gatignol
- Lady Davis Institute for Medical Research, Montréal, Québec, Canada.,Department of Medicine, Division of Experimental Medicine, McGill University, Montréal, Québec, Canada.,Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| | - Robert J Scarborough
- Lady Davis Institute for Medical Research, Montréal, Québec, Canada.,Department of Microbiology and Immunology, McGill University, Montréal, Québec, Canada
| |
Collapse
|
26
|
Abosalha AK, Ahmad W, Boyajian J, Islam P, Ghebretatios M, Schaly S, Thareja R, Arora K, Prakash S. A comprehensive update of siRNA delivery design strategies for targeted and effective gene silencing in gene therapy and other applications. Expert Opin Drug Discov 2023; 18:149-161. [PMID: 36514963 DOI: 10.1080/17460441.2022.2155630] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
INTRODUCTION RNA interference (RNAi) using small interfering RNA (siRNA) is a promising strategy to control many genetic disorders by targeting the mRNA of underlying genes and degrade it. However, the delivery of siRNA to targeted organs is highly restricted by several intracellular and extracellular barriers. AREAS COVERED This review discusses various design strategies developed to overcome siRNA delivery obstacles. The applied techniques involve chemical modification, bioconjugation to specific ligands, and carrier-mediated strategies. Nanotechnology-based systems like liposomes, niosomes, solid lipid nanoparticles (SLNs), dendrimers, and polymeric nanoparticles (PNs) are also discussed. EXPERT OPINION Although the mechanism of siRNA as a gene silencer is well-established, only a few products are available as therapeutics. There is a great need to develop and establish siRNA delivery systems that protects siRNAs and delivers them efficiently to the desired sitesare efficient and capable of targeted delivery. Several diseases are reported to be controlled by siRNA at their early stages. However, their targeted delivery is a daunting challenge.
Collapse
Affiliation(s)
- Ahmed Khaled Abosalha
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University H3A 2B4, Montreal, Quebec, Canada.,Pharmaceutical Technology department, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Waqar Ahmad
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University H3A 2B4, Montreal, Quebec, Canada
| | - Jacqueline Boyajian
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University H3A 2B4, Montreal, Quebec, Canada
| | - Paromita Islam
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University H3A 2B4, Montreal, Quebec, Canada
| | - Merry Ghebretatios
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University H3A 2B4, Montreal, Quebec, Canada
| | - Sabrina Schaly
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University H3A 2B4, Montreal, Quebec, Canada
| | - Rahul Thareja
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University H3A 2B4, Montreal, Quebec, Canada
| | - Karan Arora
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University H3A 2B4, Montreal, Quebec, Canada
| | - Satya Prakash
- Biomedical Technology and Cell Therapy Research Laboratory, Department of Biomedical Engineering, Faculty of Medicine, McGill University H3A 2B4, Montreal, Quebec, Canada
| |
Collapse
|
27
|
Antiviral Peptide-Based Conjugates: State of the Art and Future Perspectives. Pharmaceutics 2023; 15:pharmaceutics15020357. [PMID: 36839679 PMCID: PMC9958607 DOI: 10.3390/pharmaceutics15020357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/24/2023] Open
Abstract
Infectious diseases caused by microbial pathogens (bacteria, virus, fungi, parasites) claim millions of deaths per year worldwide and have become a serious challenge to global human health in our century. Viral infections are particularly notable in this regard, not only because humankind is facing some of the deadliest viral pandemics in recent history, but also because the arsenal of drugs to combat the high levels of mutation, and hence the antigenic variability of (mostly RNA) viruses, is disturbingly scarce. Therefore, the search for new antivirals able to successfully fight infection with minimal or no adverse effects on the host is a pressing task. Traditionally, antiviral therapies have relied on relatively small-sized drugs acting as proteases, polymerases, integrase inhibitors, etc. In recent decades, novel approaches involving targeted delivery such as that achieved by peptide-drug conjugates (PDCs) have gained attention as alternative (pro)drugs for tackling viral diseases. Antiviral PDC therapeutics typically involve one or more small drug molecules conjugated to a cell-penetrating peptide (CPP) carrier either directly or through a linker. Such integration of two bioactive elements into a single molecular entity is primarily aimed at achieving improved bioavailability in conditions where conventional drugs are challenged, but may also turn up novel unexpected functionalities and applications. Advances in peptide medicinal chemistry have eased the way to antiviral PDCs, but challenges remain on the way to therapeutic success. In this paper, we review current antiviral CPP-drug conjugates (antiviral PDCs), with emphasis on the types of CPP and antiviral cargo. We integrate the conjugate and the chemical approaches most often applied to combine both entities. Additionally, we comment on various obstacles faced in the design of antiviral PDCs and on the future outlooks for this class of antiviral therapeutics.
Collapse
|
28
|
Site-Specific Antibody Conjugation with Payloads beyond Cytotoxins. Molecules 2023; 28:molecules28030917. [PMID: 36770585 PMCID: PMC9921355 DOI: 10.3390/molecules28030917] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2022] [Revised: 01/12/2023] [Accepted: 01/15/2023] [Indexed: 01/18/2023] Open
Abstract
As antibody-drug conjugates have become a very important modality for cancer therapy, many site-specific conjugation approaches have been developed for generating homogenous molecules. The selective antibody coupling is achieved through antibody engineering by introducing specific amino acid or unnatural amino acid residues, peptides, and glycans. In addition to the use of synthetic cytotoxins, these novel methods have been applied for the conjugation of other payloads, including non-cytotoxic compounds, proteins/peptides, glycans, lipids, and nucleic acids. The non-cytotoxic compounds include polyethylene glycol, antibiotics, protein degraders (PROTAC and LYTAC), immunomodulating agents, enzyme inhibitors and protein ligands. Different small proteins or peptides have been selectively conjugated through unnatural amino acid using click chemistry, engineered C-terminal formylglycine for oxime or click chemistry, or specific ligation or transpeptidation with or without enzymes. Although the antibody protamine peptide fusions have been extensively used for siRNA coupling during early studies, direct conjugations through engineered cysteine or lysine residues have been demonstrated later. These site-specific antibody conjugates containing these payloads other than cytotoxic compounds can be used in proof-of-concept studies and in developing new therapeutics for unmet medical needs.
Collapse
|
29
|
Brunetti JE, Kitsera M, Muñoz-Fontela C, Rodríguez E. Use of Hu-PBL Mice to Study Pathogenesis of Human-Restricted Viruses. Viruses 2023; 15:228. [PMID: 36680271 PMCID: PMC9866769 DOI: 10.3390/v15010228] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/07/2023] [Accepted: 01/11/2023] [Indexed: 01/18/2023] Open
Abstract
Different humanized mouse models have been developed to study human diseases such as autoimmune illnesses, cancer and viral infections. These models are based on the use of immunodeficient mouse strains that are transplanted with human tissues or human immune cells. Among the latter, mice transplanted with hematopoietic stem cells have been widely used to study human infectious diseases. However, mouse models built upon the transplantation of donor-specific mature immune cells are still under development, especially in the field of viral infections. These models can retain the unique immune memory of the donor, making them suitable for the study of correlates of protection upon natural infection or vaccination. Here, we will review some of these models and how they have been applied to virology research. Moreover, the future applications and the potential of these models to design therapies against human viral infections are discussed.
Collapse
Affiliation(s)
| | - Maksym Kitsera
- Bernhard-Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
| | - César Muñoz-Fontela
- Bernhard-Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Borstel-Lübeck, 38124 Braunschweig, Germany
| | - Estefanía Rodríguez
- Bernhard-Nocht Institute for Tropical Medicine, 20359 Hamburg, Germany
- German Center for Infection Research, Partner Site Hamburg-Borstel-Lübeck, 38124 Braunschweig, Germany
| |
Collapse
|
30
|
MicroRNAs in T Cell-Immunotherapy. Int J Mol Sci 2022; 24:ijms24010250. [PMID: 36613706 PMCID: PMC9820302 DOI: 10.3390/ijms24010250] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 12/06/2022] [Accepted: 12/15/2022] [Indexed: 12/28/2022] Open
Abstract
MicroRNAs (miRNAs) act as master regulators of gene expression in homeostasis and disease. Despite the rapidly growing body of evidence on the theranostic potential of restoring miRNA levels in pre-clinical models, the translation into clinics remains limited. Here, we review the current knowledge of miRNAs as T-cell targeting immunotherapeutic tools, and we offer an overview of the recent advances in miRNA delivery strategies, clinical trials and future perspectives in RNA interference technologies.
Collapse
|
31
|
Chen J, Liao S, Xiao Z, Pan Q, Wang X, Shen K, Wang S, Yang L, Guo F, Liu HF, Pan Q. The development and improvement of immunodeficient mice and humanized immune system mouse models. Front Immunol 2022; 13:1007579. [PMID: 36341323 PMCID: PMC9626807 DOI: 10.3389/fimmu.2022.1007579] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/07/2022] [Indexed: 12/02/2022] Open
Abstract
Animal models play an indispensable role in the study of human diseases. However, animal models of different diseases do not fully mimic the complex internal environment of humans. Immunodeficient mice are deficient in certain genes and do not express these or show reduced expression in some of their cells, facilitating the establishment of humanized mice and simulation of the human environment in vivo. Here, we summarize the developments in immunodeficient mice, from the initial nude mice lacking T lymphocytes to NOD/SCID rgnull mice lacking T, B, and NK cell populations. We describe existing humanized immune system mouse models based on immunodeficient mice in which human cells or tissues have been transplanted to establish a human immune system, including humanized-peripheral blood mononuclear cells (Hu-PBMCs), humanized hematopoietic stem cells (Hu-HSCs), and humanized bone marrow, liver, thymus (Hu-BLT) mouse models. The different methods for their development involve varying levels of complexity and humanization. Humanized mice are widely used in the study of various diseases to provide a transitional stage for clinical research. However, several challenges persist, including improving the efficiency of reconstructing the human B cell immune response, extending lifespan, improving the survival rate of mice to extend the observation period, and improving the development of standardized commercialized models and as well as their use. Overall, there are many opportunities and challenges in the development of humanized immune system mouse models which can provide novel strategies for understanding the mechanisms and treatments of human disease.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Qingjun Pan
- *Correspondence: Hua-feng Liu, ; Qingjun Pan,
| |
Collapse
|
32
|
Guo J, Wang S, Gao Q. Can next-generation humanized mice that reconstituted with both functional human immune system and hepatocytes model the progression of viral hepatitis to hepatocarcinogenesis? Front Med (Lausanne) 2022; 9:1002260. [PMID: 36213658 PMCID: PMC9537463 DOI: 10.3389/fmed.2022.1002260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/08/2022] [Indexed: 11/30/2022] Open
Abstract
Hepatitis B virus (HBV) and Hepatitis C virus (HCV) chronic infections cause liver immunopathological diseases such as hepatitis, fibrosis, cirrhosis, and hepatocellular carcinomas, which are difficult to treat and continue to be major health problems globally. Due to the species-specific hepato-tropism of HBV and HCV, conventional rodent models are limited in their utility for studying the infection and associated liver immunopathogenesis. Humanized mice reconstituted with both functional human immune system and hepatocytes (HIS-HuHEP mice) have been extremely instrumental for in vivo studies of HBV or HCV infection and human-specific aspects of the progression of liver immunopathogenesis. However, none of the current HIS-HuHEP mice can model the progression of viral hepatitis to hepatocarcinogenesis which may be a notorious result of HBV or HCV chronic infection in patients, suggesting that they were functionally compromised and that there is still significant space to improve and establish next-generation of HIS-HuHEP mice with more sophisticated functions. In this review, we first summarize the principal requirements to establish HIS-HuHEP mice. We then discuss the respective protocols for current HIS-HuHEP mice and their applications, as well as their advantages and disadvantages. We also raise perspectives for further improving and establishing next-generation HIS-HuHEP mice.
Collapse
Affiliation(s)
- Jinglong Guo
- Department of Cardiovascular Disease, The First Hospital of Jilin University, Changchun, China
| | - Siyue Wang
- Graduate Program in Immunology and Microbiology, Baylor College of Medicine, One Baylor Plaza, Houston, TX, United States
| | - Qi Gao
- Department of Cardiovascular Disease, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
33
|
Fotooh Abadi L, Damiri F, Zehravi M, Joshi R, Pai R, Berrada M, Massoud EES, Rahman MH, Rojekar S, Cavalu S. Novel Nanotechnology-Based Approaches for Targeting HIV Reservoirs. Polymers (Basel) 2022; 14:3090. [PMID: 35956604 PMCID: PMC9370744 DOI: 10.3390/polym14153090] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/23/2022] [Accepted: 07/26/2022] [Indexed: 12/04/2022] Open
Abstract
Highly active anti-retroviral therapy (HAART) is prescribed for HIV infection and, to a certain extent, limits the infection's spread. However, it cannot completely eradicate the latent virus in remote and cellular reservoir areas, and due to the complex nature of the infection, the total eradication of HIV is difficult to achieve. Furthermore, monotherapy and multiple therapies are not of much help. Hence, there is a dire need for novel drug delivery strategies that may improve efficacy, decrease side effects, reduce dosing frequency, and improve patient adherence to therapy. Such a novel strategy could help to target the reservoir sites and eradicate HIV from different biological sanctuaries. In the current review, we have described HIV pathogenesis, the mechanism of HIV replication, and different biological reservoir sites to better understand the underlying mechanisms of HIV spread. Further, the review deliberates on the challenges faced by the current conventional drug delivery systems and introduces some novel drug delivery strategies that have been explored to overcome conventional drug delivery limitations. In addition, the review also summarizes several nanotechnology-based approaches that are being explored to resolve the challenges of HIV treatment by the virtue of delivering a variety of anti-HIV agents, either as combination therapies or by actively targeting HIV reservoir sites.
Collapse
Affiliation(s)
- Leila Fotooh Abadi
- Department of Virology, Indian Council of Medical Research, National AIDS Research Institute, Pune 411026, Maharashtra, India;
| | - Fouad Damiri
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M’Sick, University Hassan II of Casablanca, Casablanca 20000, Morocco;
| | - Mehrukh Zehravi
- Department of Clinical Pharmacy Girls Section, Prince Sattam Bin Abdul Aziz University, Alkharj 11942, Saudi Arabia;
| | - Rohit Joshi
- Precision NanoSystem Inc., Vancouver, BC V6P 6T7, Canada;
| | - Rohan Pai
- Shobhaben Pratapbhai Patel School of Pharmacy & Technology Management, SVKM’s NMIMS, V.L. Mehta Road, Vile Parle (W), Mumbai 400056, Maharashtra, India;
| | - Mohammed Berrada
- Laboratory of Biomolecules and Organic Synthesis (BIOSYNTHO), Department of Chemistry, Faculty of Sciences Ben M’Sick, University Hassan II of Casablanca, Casablanca 20000, Morocco;
| | - Ehab El Sayed Massoud
- Biology Department, Faculty of Science and Arts in Dahran Aljnoub, King Khalid University, Abha 62529, Saudi Arabia;
- Research Center for Advanced Materials Science (RCAMS), King Khalid University, Abha 61413, Saudi Arabia
- Agriculture Research Centre, Soil, Water and Environment Research Institute, Giza 3725004, Egypt
| | - Md. Habibur Rahman
- Department of Global Medical Science, Wonju College of Medicine, Yonsei University, Gangwon-do, Wonju 26426, Korea;
| | - Satish Rojekar
- Department of Pharmaceutical Sciences and Technology, Institute of Chemical Technology, Mumbai 400019, Maharashtra, India
- Departments of Medicine and Pharmacological Sciences, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, P-ta 1 Decembrie 10, 410087 Oradea, Romania
| |
Collapse
|
34
|
A novel aptamer-based small RNA delivery platform and its application to cancer therapy. Genes Dis 2022. [DOI: 10.1016/j.gendis.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
|
35
|
Cao W, Li R, Pei X, Chai M, Sun L, Huang Y, Wang J, Barth S, Yu F, He H. Antibody-siRNA conjugates (ARC): Emerging siRNA drug formulation. MEDICINE IN DRUG DISCOVERY 2022. [DOI: 10.1016/j.medidd.2022.100128] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022] Open
|
36
|
Van Hoeck J, Braeckmans K, De Smedt SC, Raemdonck K. Non-viral siRNA delivery to T cells: Challenges and opportunities in cancer immunotherapy. Biomaterials 2022; 286:121510. [DOI: 10.1016/j.biomaterials.2022.121510] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 03/17/2022] [Accepted: 04/01/2022] [Indexed: 12/12/2022]
|
37
|
Unleashing cell-penetrating peptide applications for immunotherapy. Trends Mol Med 2022; 28:482-496. [DOI: 10.1016/j.molmed.2022.03.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 12/31/2022]
|
38
|
Shi J, Huang MW, Lu ZD, Du XJ, Shen S, Xu CF, Wang J. Delivery of mRNA for regulating functions of immune cells. J Control Release 2022; 345:494-511. [PMID: 35337940 PMCID: PMC8942439 DOI: 10.1016/j.jconrel.2022.03.033] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 03/14/2022] [Accepted: 03/17/2022] [Indexed: 12/29/2022]
Abstract
Abnormal immune cell functions are commonly related to various diseases, including cancer, autoimmune diseases, and infectious diseases. Messenger RNA (mRNA)-based therapy can regulate the functions of immune cells or assign new functions to immune cells, thereby generating therapeutic immune responses to treat these diseases. However, mRNA is unstable in physiological environments and can hardly enter the cytoplasm of target cells; thus, effective mRNA delivery systems are critical for developing mRNA therapy. The two mRNA vaccines of Pfizer-BioNTech and Moderna have demonstrated that lipid nanoparticles (LNPs) can deliver mRNA into dendritic cells (DCs) to induce immunization against severe acute respiratory syndrome coronavirus 2, which opened the floodgates to the development of mRNA therapy. Apart from DCs, other immune cells are promising targets for mRNA therapy. This review summarized the barriers to mRNA delivery and advances in mRNA delivery for regulating the functions of different immune cells.
Collapse
Affiliation(s)
- Jia Shi
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, PR China
| | - Meng-Wen Huang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, PR China
| | - Zi-Dong Lu
- School of Medicine, South China University of Technology, Guangzhou 510006, PR China
| | - Xiao-Jiao Du
- School of Medicine, South China University of Technology, Guangzhou 510006, PR China
| | - Song Shen
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, PR China; Shenzhen Bay Laboratory, Shenzhen 518132, PR China; Key Laboratory of Biomedical Materials and Engineering of the Ministry of Education, South China University of Technology, Guangzhou 510006, PR China
| | - Cong-Fei Xu
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, PR China; Key Laboratory of Biomedical Engineering of Guangdong Province, and Innovation Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China.
| | - Jun Wang
- School of Biomedical Sciences and Engineering, South China University of Technology, Guangzhou International Campus, Guangzhou 511442, PR China; National Engineering Research Center for Tissue Restoration and Reconstruction, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
39
|
Hui RWH, Mak LY, Seto WK, Yuen MF. RNA interference as a novel treatment strategy for chronic hepatitis B infection. Clin Mol Hepatol 2022; 28:408-424. [PMID: 35172540 PMCID: PMC9293617 DOI: 10.3350/cmh.2022.0012] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 02/16/2022] [Indexed: 11/26/2022] Open
Abstract
Chronic hepatitis B (CHB) is a major cause of liver-related morbidity and mortality. Functional cure of CHB, defined as sustainable hepatitis B surface antigen (HBsAg) seroclearance, is associated with improved clinical outcomes. However, functional cure is rarely attainable by current treatment modalities. RNA interference (RNAi) by small-interfering RNA (siRNA) and anti-sense oligonucleotide (ASO) has been studied as a novel treatment strategy for CHB. RNAi targets post-transcriptional messenger RNAs and pregenomic RNAs to reduce hepatitis B virus (HBV) antigen production and viral replication. By reducing viral antigens, host immune reconstitution against HBV may also be attained. Phase I/II trials on siRNAs have demonstrated them to be safe and well-tolerated. siRNA is effective when given in monthly doses with different total number of doses according to different trial design, and can lead to sustainable dose-dependent mean HBsAg reduction by 2–2.5 log. Incidences of HBsAg seroclearance after siRNA therapy have also been reported. ASOs have also been studied in early phase trials, and a phase Ib study using frequent dosing regimen within 4 weeks could achieve similar HBsAg reduction of 2 log from baseline. Given the established efficacy and safety of nucleos(t) ide analogues (NAs), future RNAi regimens will likely include NA backbone. While the current evidence on RNAi appears promising, it remains undetermined whether the potent HBsAg reduction by RNAi can result in a high rate of HBsAg seroclearance with durability. Data on RNAi from phase IIb/III trials are keenly anticipated.
Collapse
Affiliation(s)
- Rex Wan-Hin Hui
- Department of Medicine, The University of Hong Kong, Hong Kong
| | - Lung-Yi Mak
- Department of Medicine, The University of Hong Kong, Hong Kong.,State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Wai-Kay Seto
- Department of Medicine, The University of Hong Kong, Hong Kong.,State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| | - Man-Fung Yuen
- Department of Medicine, The University of Hong Kong, Hong Kong.,State Key Laboratory of Liver Research, The University of Hong Kong, Hong Kong
| |
Collapse
|
40
|
Tarab-Ravski D, Stotsky-Oterin L, Peer D. Delivery strategies of RNA therapeutics to leukocytes. J Control Release 2022; 342:362-371. [PMID: 35041904 DOI: 10.1016/j.jconrel.2022.01.016] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 12/31/2021] [Accepted: 01/10/2022] [Indexed: 12/27/2022]
Abstract
Harnessing RNA-based therapeutics for cancer, inflammation, and viral diseases is hindered by poor delivery of therapeutic RNA molecules. Targeting leukocytes to treat these conditions holds great promise, as they are key participants in their initiation, drug response, and treatment. The various extra- and intra-cellular obstacles that impediment the clinical implementation of therapeutic RNA can be overcome by utilizing drug delivery systems. However, delivery of therapeutic RNA to leukocytes poses an even greater challenge as these cells are difficult to reach and transfect upon systemic administration. This review briefly describes the existing successful delivery strategies that efficiently target leukocytes in vivo and discuss their potential clinical applicability.
Collapse
Affiliation(s)
- Dana Tarab-Ravski
- Laboratory of Precision NanoMedicine, Tel Aviv University, Tel Aviv, Israel; Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Sciences & Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel
| | - Lior Stotsky-Oterin
- Laboratory of Precision NanoMedicine, Tel Aviv University, Tel Aviv, Israel; Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Sciences & Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel
| | - Dan Peer
- Laboratory of Precision NanoMedicine, Tel Aviv University, Tel Aviv, Israel; Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel; Department of Materials Sciences & Engineering, Iby and Aladar Fleischman Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel; Center for Nanoscience and Nanotechnology, Tel Aviv University, Tel Aviv, Israel; Cancer Biology Research Center, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
41
|
Specific properties of shRNA-mediated CCR5 downregulation that enhance the inhibition of HIV-1 infection in combination with shRNA targeting HIV-1 rev. Mol Biol Rep 2022; 49:11187-11192. [PMID: 36098885 PMCID: PMC9618491 DOI: 10.1007/s11033-022-07899-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 08/28/2022] [Accepted: 08/30/2022] [Indexed: 12/01/2022]
Abstract
Treatment with RNAi against HIV-1 transcripts efficiently inhibits viral replication but induces selection of escape mutants; therefore, the CCR5 coreceptor was suggested as an additional target. Blocking viral and host transcripts improved the antiviral effect. We have used short hairpin RNA (shRNA) targeting the human CCR5 (shCCR5) or the HIV-1 rev (shRev) transcripts to demonstrate distinctive properties of anti-CCR5 shRNA: shCCR5 induced more sustained protection than shRev; partial reduction in CCR5 expression substantially decreased HIV-1 infection, and shCCR5 performed better than shRev in the mixed shRNA-treated and untreated cultures. These observations indicate that CCR5 inhibitors should be conveniently included in HIV-1 gene silencing treatment schedules when only a certain cell fraction is protected to further reduce endogenous virus in a properly ART-treated HIV-1 infected individual.
Collapse
|
42
|
Serumula W, Fernandez G, Gonzalez VM, Parboosing R. Anti-HIV Aptamers: Challenges and Prospects. Curr HIV Res 2022; 20:7-19. [PMID: 34503417 DOI: 10.2174/1570162x19666210908114825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Revised: 08/06/2021] [Accepted: 08/11/2021] [Indexed: 02/08/2023]
Abstract
Human Immunodeficiency Virus (HIV) infection continues to be a significant health burden in many countries around the world. Current HIV treatment through a combination of different antiretroviral drugs (cART) effectively suppresses viral replication, but drug resistance and crossresistance are significant challenges. This has prompted the search for novel targets and agents, such as nucleic acid aptamers. Nucleic acid aptamers are oligonucleotides that attach to the target sites with high affinity and specificity. This review provides a target-by-target account of research into anti-HIV aptamers and summarises the challenges and prospects of this therapeutic strategy, specifically in the unique context of HIV infection.
Collapse
Affiliation(s)
- William Serumula
- Department of Virology, National Health Laboratory Service, University of KwaZulu-Natal, c/o Inkosi Albert Luthuli Central Hospital, 5th Floor Laboratory Building, 800 Bellair Road, Mayville, Durban 4091, South Africa
| | - Geronimo Fernandez
- Departamento de Bioquímica-Investigación, Aptus Biotech SL, Avda. Cardenal Herrera Oria, 298-28035 Madrid. Spain
| | - Victor M Gonzalez
- Departamento de Bioquímica-Investigación, Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS)-Hospital Ramón y Cajal, 28034 Madrid, Spain
| | - Raveen Parboosing
- Department of Virology, National Health Laboratory Service, University of KwaZulu-Natal, c/o Inkosi Albert Luthuli Central Hospital, 5th Floor Laboratory Building, 800 Bellair Road, Mayville, Durban 4091, South Africa
| |
Collapse
|
43
|
Beloor J, Kudalkar SN, Buzzelli G, Yang F, Mandl HK, Rajashekar JK, Spasov KA, Jorgensen WL, Saltzman WM, Anderson KS, Kumar P. Long-acting and extended-release implant and nanoformulations with a synergistic antiretroviral two-drug combination controls HIV-1 infection in a humanized mouse model. Bioeng Transl Med 2022; 7:e10237. [PMID: 35079625 PMCID: PMC8780078 DOI: 10.1002/btm2.10237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Revised: 05/23/2021] [Accepted: 06/04/2021] [Indexed: 11/21/2022] Open
Abstract
The HIV pandemic has affected over 38 million people worldwide with close to 26 million currently accessing antiretroviral therapy (ART). A major challenge in the long-term treatment of HIV-1 infection is nonadherence to ART. Long-acting antiretroviral (LA-ARV) formulations, that reduce dosing frequency to less than once a day, are an urgent need that could tackle the adherence issue. Here, we have developed two LA-ART interventions, one an injectable nanoformulation, and the other, a removable implant, for the delivery of a synergistic two-drug ARV combination comprising a pre-clinical nonnucleoside reverse transcriptase inhibitor (NNRTI), Compound I, and the nucleoside reverse transcriptase inhibitor (NRTI), 4'-ethynyl-2-fluoro-2'-deoxyadenosine. The nanoformulation is poly(lactide-co-glycolide)-based and the implant is a copolymer of ω-pentadecalactone and p-dioxanone, poly(PDL-co-DO), a novel class of biocompatible, biodegradable materials. Both the interventions, packaged independently with each ARV, released sustained levels of the drugs, maintaining plasma therapeutic indices for over a month, and suppressed viremia in HIV-1-infected humanized mice for up to 42 days with maintenance of CD4+ T cells. These data suggest promise in the use of these new drugs as LA-ART formulations in subdermal implant and injectable mode.
Collapse
Affiliation(s)
- Jagadish Beloor
- Department of Internal Medicine, Section of Infectious DiseasesYale University School of MedicineNew HavenConnecticutUSA
| | - Shalley N. Kudalkar
- Department of PharmacologyYale University School of MedicineNew HavenConnecticutUSA
- Department of Molecular Biophysics and BiochemistryYale University School of MedicineNew HavenConnecticutUSA
| | - Gina Buzzelli
- Department of Biomedical EngineeringYale UniversityNew HavenConnecticutUSA
| | - Fan Yang
- Department of Biomedical EngineeringYale UniversityNew HavenConnecticutUSA
| | - Hanna K. Mandl
- Department of Biomedical EngineeringYale UniversityNew HavenConnecticutUSA
| | - Jyothi K. Rajashekar
- Department of Internal Medicine, Section of Infectious DiseasesYale University School of MedicineNew HavenConnecticutUSA
| | - Krasimir A. Spasov
- Department of PharmacologyYale University School of MedicineNew HavenConnecticutUSA
- Department of Molecular Biophysics and BiochemistryYale University School of MedicineNew HavenConnecticutUSA
| | | | - W. Mark Saltzman
- Department of Biomedical EngineeringYale UniversityNew HavenConnecticutUSA
| | - Karen S. Anderson
- Department of PharmacologyYale University School of MedicineNew HavenConnecticutUSA
- Department of Molecular Biophysics and BiochemistryYale University School of MedicineNew HavenConnecticutUSA
| | - Priti Kumar
- Department of Internal Medicine, Section of Infectious DiseasesYale University School of MedicineNew HavenConnecticutUSA
| |
Collapse
|
44
|
Ohyagi M, Nagata T, Ihara K, Yoshida-Tanaka K, Nishi R, Miyata H, Abe A, Mabuchi Y, Akazawa C, Yokota T. DNA/RNA heteroduplex oligonucleotide technology for regulating lymphocytes in vivo. Nat Commun 2021; 12:7344. [PMID: 34937876 PMCID: PMC8695577 DOI: 10.1038/s41467-021-26902-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2020] [Accepted: 10/19/2021] [Indexed: 11/30/2022] Open
Abstract
Manipulating lymphocyte functions with gene silencing approaches is promising for treating autoimmunity, inflammation, and cancer. Although oligonucleotide therapy has been proven to be successful in treating several conditions, efficient in vivo delivery of oligonucleotide to lymphocyte populations remains a challenge. Here, we demonstrate that intravenous injection of a heteroduplex oligonucleotide (HDO), comprised of an antisense oligonucleotide (ASO) and its complementary RNA conjugated to α-tocopherol, silences lymphocyte endogenous gene expression with higher potency, efficacy, and longer retention time than ASOs. Importantly, reduction of Itga4 by HDO ameliorates symptoms in both adoptive transfer and active experimental autoimmune encephalomyelitis models. Our findings reveal the advantages of HDO with enhanced gene knockdown effect and different delivery mechanisms compared with ASO. Thus, regulation of lymphocyte functions by HDO is a potential therapeutic option for immune-mediated diseases.
Collapse
MESH Headings
- Administration, Intravenous
- Adoptive Transfer
- Animals
- Demyelinating Diseases/genetics
- Demyelinating Diseases/immunology
- Demyelinating Diseases/pathology
- Encephalomyelitis, Autoimmune, Experimental/genetics
- Encephalomyelitis, Autoimmune, Experimental/immunology
- Encephalomyelitis, Autoimmune, Experimental/pathology
- Endocytosis/drug effects
- Female
- Gene Expression Regulation
- Gene Silencing
- Graft vs Host Disease/genetics
- Graft vs Host Disease/immunology
- Humans
- Integrin alpha4/genetics
- Integrin alpha4/metabolism
- Jurkat Cells
- Lymphocytes/metabolism
- Male
- Mice, Inbred C57BL
- Nucleic Acid Heteroduplexes/administration & dosage
- Nucleic Acid Heteroduplexes/metabolism
- Nucleic Acid Heteroduplexes/pharmacokinetics
- Nucleic Acid Heteroduplexes/pharmacology
- Oligonucleotides/administration & dosage
- Oligonucleotides/metabolism
- Oligonucleotides/pharmacokinetics
- Oligonucleotides/pharmacology
- RNA/metabolism
- RNA, Long Noncoding/metabolism
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Spinal Cord/pathology
- Tissue Distribution/drug effects
- Mice
Collapse
Affiliation(s)
- Masaki Ohyagi
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Tetsuya Nagata
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan.
| | - Kensuke Ihara
- Department of Bio-informational Pharmacology, Medical Research Institute, Tokyo Medical and Dental University, Tokyo, Japan
| | - Kie Yoshida-Tanaka
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Rieko Nishi
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Haruka Miyata
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Aya Abe
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan
| | - Yo Mabuchi
- Department of Biochemistry and Biophysics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Chihiro Akazawa
- Department of Biochemistry and Biophysics, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan
| | - Takanori Yokota
- Department of Neurology and Neurological Science, Graduate School of Medical and Dental Sciences, Tokyo Medical and Dental University, Tokyo, Japan.
- Center for Brain Integration Research, Tokyo Medical and Dental University, Tokyo, Japan.
| |
Collapse
|
45
|
Zhai Y, Ma Y, Pang B, Zhang J, Li Y, Rui Y, Xu T, Zhao Y, Qian Z, Gu Y, Li S. A cascade targeting strategy based on modified bacterial vesicles for enhancing cancer immunotherapy. J Nanobiotechnology 2021; 19:434. [PMID: 34930285 PMCID: PMC8686283 DOI: 10.1186/s12951-021-01193-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 12/08/2021] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND As an efficient tumor immunotherapy, PD-1 antibody has been gradually used in clinical tumor treatment, but the low response rate and excessive immune response limit its extensive application. RESULTS Herein, a therapeutic regime for the reinvigoration and activation of the tumor immune microenvironment is introduced to improve the anti-tumor effect of the PD-1 antibody. To comprehensively improve the effect of the immunotherapy and reduce excessive immune response, a biomimetic cascade targeting nanosystem, siRNA@PLOV, which was fused by photothermal sensitive liposomes (PTSLs) and attenuated Salmonella outer membrane vesicles (OMVs), was administered in the tumor therapy for targeting of tumor tissues and T cells within tumor respectively. The fused PLOVs which not only retained the biological character of the OMVs, but also enhanced the drug loading ability. The results demonstrated that the immunogenicity of OMVs and photothermal effects can obviously increase the infiltration of T cells and the silencing of CD38 can effectively improve the T cell cytotoxicity, especially combining with PD-1 antibody. CONCLUSIONS Interesting, this study revealed that anti-PD-1 administration on the 5th day after siRNA@PLOV treatment had the best performance in killing tumors compared with other groups. In addition, this new therapeutic regime also presents a novel strategy for inducing "vaccine effects", conclusively highlighting its potential in preventing tumor recurrence and improving prognosis.
Collapse
Affiliation(s)
- Yuewen Zhai
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 639 Longmian Avenue, Jiangning District, Nanjing, 211198, China
| | - Yuying Ma
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 639 Longmian Avenue, Jiangning District, Nanjing, 211198, China
| | - Bo Pang
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Jinnan Zhang
- Department of Neurosurgery, China-Japan Union Hospital, Jilin University, Changchun, Jilin, China
| | - Ying Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 639 Longmian Avenue, Jiangning District, Nanjing, 211198, China
| | - Yalan Rui
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 639 Longmian Avenue, Jiangning District, Nanjing, 211198, China
| | - Tian Xu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 639 Longmian Avenue, Jiangning District, Nanjing, 211198, China
| | - Yu Zhao
- Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, China
| | - Zhiyu Qian
- Department of Biomedical Engineering, School of Automation, Nanjing University of Aeronautics and Astronautics, 29th JiangJun Street, Nanjing, 211106, Jiangsu, China
| | - Yueqing Gu
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 639 Longmian Avenue, Jiangning District, Nanjing, 211198, China.
| | - Siwen Li
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug Screening, Department of Biomedical Engineering, School of Engineering, China Pharmaceutical University, No. 639 Longmian Avenue, Jiangning District, Nanjing, 211198, China.
| |
Collapse
|
46
|
In Vitro Cellular Uptake and Transfection of Oligoarginine-Conjugated Glycol Chitosan/siRNA Nanoparticles. Polymers (Basel) 2021; 13:polym13234219. [PMID: 34883722 PMCID: PMC8659484 DOI: 10.3390/polym13234219] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 11/26/2021] [Accepted: 11/30/2021] [Indexed: 11/17/2022] Open
Abstract
Chitosan and its derivatives have been extensively utilized in gene delivery applications because of their low toxicity and positively charged characteristics. However, their low solubility under physiological conditions often limits their application. Glycol chitosan (GC) is a derivative of chitosan that exhibits excellent solubility in physiological buffer solutions. However, it lacks the positive characteristics of a gene carrier. Thus, we hypothesized that the introduction of oligoarginine peptide to GC could improve the formation of complexes with siRNA, resulting in enhanced uptake by cells and increased transfection efficiency in vitro. A peptide with nine arginine residues and 10 glycine units (R9G10) was successfully conjugated to GC, which was confirmed by infrared spectroscopy, 1H NMR spectroscopy, and elemental analysis. The physicochemical characteristics of R9G10-GC/siRNA complexes were also investigated. The size and surface charge of the R9G10-GC/siRNA nanoparticles depended on the amount of R9G10 coupled to the GC. In addition, the R9G10-GC/siRNA nanoparticles showed improved uptake in HeLa cells and enhanced in vitro transfection efficiency while maintaining low cytotoxicity determined by the MTT assay. Oligoarginine-modified glycol chitosan may be useful as a potential gene carrier in many therapeutic applications.
Collapse
|
47
|
Ando Y, Nakazawa H, Miura D, Otake M, Umetsu M. Enzymatic ligation of an antibody and arginine 9 peptide for efficient and cell-specific siRNA delivery. Sci Rep 2021; 11:21882. [PMID: 34750461 PMCID: PMC8575896 DOI: 10.1038/s41598-021-01331-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 10/18/2021] [Indexed: 01/03/2023] Open
Abstract
A fusion protein comprising an antibody and a cationic peptide, such as arginine-9 (R9), is a candidate molecule for efficient and cell-specific delivery of siRNA into cells in order to reduce the side effects of nucleic acid drugs. However, their expression in bacterial hosts, required for their development, often fails, impeding research progress. In this study, we separately prepared anti-EGFR nanobodies with the K-tag sequence MRHKGS at the C-terminus and R9 with the Q-tag sequence LLQG at the N-terminus, and enzymatically ligated them in vitro by microbial transglutaminase to generate Nanobody-R9, which is not expressed as a fused protein in E. coli. Nanobody-R9 was synthesized at a maximum binding efficiency of 85.1%, without changing the binding affinity of the nanobody for the antigen. Nanobody-R9 successfully delivered siRNA into the cells, and the cellular influx of siRNA increased with increase in the ratio of Nanobody-R9 to siRNA. We further demonstrated that the Nanobody-R9-siRNA complex, at a 30:1 ratio, induced an approximately 58.6% reduction in the amount of target protein due to RNAi in mRNA compared to lipofectamine.
Collapse
Affiliation(s)
- Yu Ando
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-1, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| | - Hikaru Nakazawa
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-1, Aramaki, Aoba-ku, Sendai, 980-8579, Japan.
| | - Daisuke Miura
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-1, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| | - Maho Otake
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-1, Aramaki, Aoba-ku, Sendai, 980-8579, Japan
| | - Mitsuo Umetsu
- Department of Biomolecular Engineering, Graduate School of Engineering, Tohoku University, Aoba 6-6-1, Aramaki, Aoba-ku, Sendai, 980-8579, Japan.
| |
Collapse
|
48
|
Uno A, Arima K, Shimazaki M, Ushida M, Amano K, Namikawa R, Sakurai K. A novel β-glucan-oligonucleotide complex selectively delivers siRNA to APCs via Dectin-1. J Control Release 2021; 338:792-803. [PMID: 34530053 DOI: 10.1016/j.jconrel.2021.09.011] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 10/20/2022]
Abstract
Delivering therapeutic nucleic acids to targeted cells and organs has been a challenge for decades. A novel technology to deliver oligonucleotide therapeutics to immune cells is here described. In this approach, a macromolecular complex of oligonucleotides and the β-1,3-glucan schizophyllan (SPG) is selectively delivered to cells expressing a lectin receptor, Dectin-1, via SPG-Dectin-1 interaction. Detailed investigation of Dectin-1-expressing cells revealed that Dectin-1 is expressed in all subsets of monocytes as well as dendritic cell (DC) populations, including conventional DCs (cDCs) and plasmacytoid DCs (pDCs), in humans. The expression patterns in mice and humans are comparable, except for the expression in pDCs. The results indicate that Dectin-1 is expressed on cells capable of professional antigen presentation, except for B cells. We chose CD40 as a target gene for small interfering RNA (siRNA) as CD40 expression in antigen-presenting cells (APCs), particularly in DCs, plays critical roles in regulating immune responses. Dose-dependent cellular uptake of siCD40-SPG complexes was confirmed in cells expressing Dectin-1. Gene silencing activity was confirmed in vitro by the reduction of CD40 mRNA and by the site-specific cleavage of CD40 mRNA as determined by the 5' RNA ligase-mediated rapid amplification of cDNA ends (5'RLM-RACE) technique. In vivo activity of siCD40-SPG complexes was demonstrated as the reduced CD40 protein expression in monocytes and DCs in mice. Furthermore, the in vivo activity of siCD40-SPG targeting human CD40 was confirmed in cynomolgus monkeys by the 5'RLM-RACE technique. In conclusion, we have demonstrated the receptor-ligand binding-mediated delivery of siRNA targeting immune-regulating monocytes and DCs via the interaction of SPG and its receptor, Dectin-1. As monocytes and DCs play central roles in inducing and controlling immune responses, Dectin-1-targeted delivery of nucleic acids should provide a useful tool for developing drugs to treat a wide range of diseases, including autoimmune diseases, allergy, and cancer, as well as transplantation.
Collapse
Affiliation(s)
- Atsushi Uno
- NapaJen Pharma Co., Ltd., URAC 1204, 2-24-16 Nakacho, Koganei, Tokyo, 184-0012, Japan; Department of Applied Chemistry and BioEngineering, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi, Osaka 558-8585, Japan.
| | - Kenji Arima
- NapaJen Pharma Co., Ltd., URAC 1204, 2-24-16 Nakacho, Koganei, Tokyo, 184-0012, Japan
| | - Masako Shimazaki
- NapaJen Pharma Co., Ltd., URAC 1204, 2-24-16 Nakacho, Koganei, Tokyo, 184-0012, Japan
| | - Maki Ushida
- NapaJen Pharma Co., Ltd., URAC 1204, 2-24-16 Nakacho, Koganei, Tokyo, 184-0012, Japan
| | - Kanako Amano
- NapaJen Pharma Co., Ltd., URAC 1204, 2-24-16 Nakacho, Koganei, Tokyo, 184-0012, Japan
| | - Reiko Namikawa
- NapaJen Pharma Co., Ltd., URAC 1204, 2-24-16 Nakacho, Koganei, Tokyo, 184-0012, Japan
| | - Kazuo Sakurai
- NapaJen Pharma Co., Ltd., URAC 1204, 2-24-16 Nakacho, Koganei, Tokyo, 184-0012, Japan
| |
Collapse
|
49
|
Hu W, Zheng H, Li Q, Wang Y, Liu X, Hu X, Liu W, Liu S, Chen Z, Feng W, Cai X, Li N. shRNA transgenic swine display resistance to infection with the foot-and-mouth disease virus. Sci Rep 2021; 11:16377. [PMID: 34385528 PMCID: PMC8361160 DOI: 10.1038/s41598-021-95853-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2020] [Accepted: 07/29/2021] [Indexed: 12/15/2022] Open
Abstract
Foot-and-mouth disease virus (FMDV) is one of the most important animal pathogens in the world. FMDV naturally infects swine, cattle, and other cloven-hoofed animals. FMD is not adequately controlled by vaccination. An alternative strategy is to develop swine that are genetically resistant to infection. Here, we generated FMDV-specific shRNA transgenic cells targeting either nonstructural protein 2B or polymerase 3D of FMDV. The shRNA-positive transgenic cells displayed significantly lower viral production than that of the control cells after infection with FMDV (P < 0.05). Twenty-three transgenic cloned swine (TGCS) and nine non-transgenic cloned swine (Non-TGCS) were produced by somatic cell nuclear transfer (SCNT). In the FMDV challenge study, one TGCS was completely protected, no clinical signs, no viremia and no viral RNA in the tissues, no non-structural antibody response, another one TGCS swine recovered after showing clinical signs for two days, whereas all of the normal control swine (NS) and Non-TGCS developed typical clinical signs, viremia and viral RNA was determined in the tissues, the non-structural antibody was determined, and one Non-TGCS swine died. The viral RNA load in the blood and tissues of the TGCS was reduced in both challenge doses. These results indicated that the TGCS displayed resistance to the FMDV infection. Immune cells, including CD3+, CD4+, CD8+, CD21+, and CD172+ cells, and the production of IFN-γ were analyzed, there were no significant differences observed between the TGCS and NS or Non-TGCS, suggesting that the FMDV resistance may be mainly derived from the RNAi-based antiviral pathway. Our work provides a foundation for a breeding approach to preventing infectious disease in swine.
Collapse
Affiliation(s)
- Wenping Hu
- State Key Laboratory of AgroBiotechnology, China Agricultural University, Beijing, China.,Key Laboratory of Animal Genetics and Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China
| | - Haixue Zheng
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinarian Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Qiuyan Li
- State Key Laboratory of AgroBiotechnology, China Agricultural University, Beijing, China.,Beijing Genprotein Biotechnology Company, Beijing, China
| | - Yuhang Wang
- State Key Laboratory of AgroBiotechnology, China Agricultural University, Beijing, China
| | - Xiangtao Liu
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinarian Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China
| | - Xiaoxiang Hu
- State Key Laboratory of AgroBiotechnology, China Agricultural University, Beijing, China
| | - Wenjie Liu
- State Key Laboratory of AgroBiotechnology, China Agricultural University, Beijing, China
| | - Shen Liu
- State Key Laboratory of AgroBiotechnology, China Agricultural University, Beijing, China
| | - Zhisheng Chen
- State Key Laboratory of AgroBiotechnology, China Agricultural University, Beijing, China
| | - Wenhai Feng
- State Key Laboratory of AgroBiotechnology, China Agricultural University, Beijing, China
| | - Xuepeng Cai
- State Key Laboratory of Veterinary Etiological Biology, National Foot and Mouth Diseases Reference Laboratory, Lanzhou Veterinarian Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu, China.
| | - Ning Li
- State Key Laboratory of AgroBiotechnology, China Agricultural University, Beijing, China.
| |
Collapse
|
50
|
Herrera-Carrillo E, Gao Z, Berkhout B. CRISPR therapy towards an HIV cure. Brief Funct Genomics 2021; 19:201-208. [PMID: 31711197 DOI: 10.1093/bfgp/elz021] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2019] [Revised: 08/19/2019] [Accepted: 08/21/2019] [Indexed: 12/11/2022] Open
Abstract
Tools based on RNA interference (RNAi) and the recently developed clustered regularly short palindromic repeats (CRISPR) system enable the selective modification of gene expression, which also makes them attractive therapeutic reagents for combating HIV infection and other infectious diseases. Several parallels can be drawn between the RNAi and CRISPR-Cas9 platforms. An ideal RNAi or CRISPR-Cas9 therapeutic strategy for treating infectious or genetic diseases should exhibit potency, high specificity and safety. However, therapeutic applications of RNAi and CRISPR-Cas9 have been challenged by several major limitations, some of which can be overcome by optimal design of the therapy or the design of improved reagents. In this review, we will discuss some advantages and limitations of anti-HIV strategies based on RNAi and CRISPR-Cas9 with a focus on the efficiency, specificity, off-target effects and delivery methods.
Collapse
Affiliation(s)
- Elena Herrera-Carrillo
- Department of Medical Microbiology Laboratory of Experimental Virology Amsterdam UMC, AMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Zongliang Gao
- Department of Medical Microbiology Laboratory of Experimental Virology Amsterdam UMC, AMC, University of Amsterdam, Amsterdam, the Netherlands
| | - Ben Berkhout
- Department of Medical Microbiology Laboratory of Experimental Virology Amsterdam UMC, AMC, University of Amsterdam, Amsterdam, the Netherlands.,Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy
| |
Collapse
|