1
|
Chien YC, Lin SH, Lien CC, Wood JN, Chen CC. Lacking ASIC1a in ASIC4-positive amygdala/bed nucleus of the stria terminalis (BNST) neurons reduces anxiety and innate fear in mice. J Biomed Sci 2025; 32:43. [PMID: 40264173 PMCID: PMC12016152 DOI: 10.1186/s12929-025-01138-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Accepted: 03/28/2025] [Indexed: 04/24/2025] Open
Abstract
BACKGROUND Anxiety is an innate response in the face of danger. When anxiety is overwhelming or persistent, it could be considered an anxiety disorder. Recent studies have shown that acid-sensing ion channels (ASICs) represent a novel class of promising targets for developing effective therapies for anxiety. Especially, ASIC1a and ASIC4 of the ASIC family are widely expressed in the central nervous system and their gene knockouts result in reducing or enhancing anxiety-like responses in mice respectively. However, how ASIC1a and ASIC4 modulate anxiety-associated responses remains unknown. METHODS Here we combined chemo-optogenetic, conditional knockout, gene rescue, molecular biology and biochemistry, and electrophysiological approaches to probe the roles of ASIC4 and ASIC4-expressing cells in anxiety-associated responses in mouse models. RESULTS Chemo-optogenetically activating ASIC4-positive cells induced fear and anxiety-like responses in mice. Also, mice lacking ASIC4 (Asic4-/-) in the amygdala or the bed nucleus of the stria terminalis (BNST) exhibited anxiety-associated phenotypes. Conditional knockout of ASIC1a in ASIC4-positive cells reduced anxiety-associated behaviors. In situ hybridization analyses indicated that ASIC4 transcripts were highly co-localized with ASIC1a in the amygdala and BNST. We identified two glycosylation sites of ASIC4, Asn191 and Asn341, that were involved in interacting with ASIC1a and thus could modulate ASIC1a surface protein expression and channel activity. More importantly, viral vector-mediated gene transfer of wild-type ASIC4 but not Asn191 and Asn341 mutants in the amygdala or BNST rescued the anxiogenic phenotypes of Asic4-/- mice. CONCLUSIONS Together, these data suggest that ASIC4 plays an important role in fear and anxiety-related behaviors in mice by modulating ASIC1a activity in the amygdala and BNST.
Collapse
Affiliation(s)
- Ya-Chih Chien
- Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Shing-Hong Lin
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan
| | - Cheng-Chang Lien
- Institute of Neuroscience, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - John N Wood
- The Wolfson Institute for Biomedical Research, University College London, WIBR UCL, Gower Street, London, WC1E 6BT, UK.
| | - Chih-Cheng Chen
- Program in Molecular Medicine, National Yang Ming Chiao Tung University and Academia Sinica, Taipei, Taiwan.
- Institute of Biomedical Sciences, Academia Sinica, Taipei, Taiwan.
- Taiwan Mouse Clinic-National Comprehensive Phenotyping and Drug Testing Center, Academia Sinica, 128, Section , Academia Road, Taipei, 115, Taiwan.
- Neuroscience Program of Academia Sinica, Academia Sinica, Taipei, Taiwan.
| |
Collapse
|
2
|
Martial C, Fritz P, Gosseries O, Bonhomme V, Kondziella D, Nelson K, Lejeune N. A neuroscientific model of near-death experiences. Nat Rev Neurol 2025:10.1038/s41582-025-01072-z. [PMID: 40159547 DOI: 10.1038/s41582-025-01072-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/21/2025] [Indexed: 04/02/2025]
Abstract
Near-death experiences (NDEs) are episodes of disconnected consciousness that typically occur in situations that involve an actual or potential physical threat or are perceived as such, and the experiences are characterized by a rich content with prototypical mystical features. Several explanatory theories for NDEs have been proposed, ranging from psychological or neurophysiological to evolutionary models. However, these concepts were often formulated independently, and, owing to the fragmented nature of research in this domain, integration of these ideas has been limited. Lines of empirical evidence from different areas of neuroscience, including non-human studies, studies investigating psychedelic-induced mystical experiences in humans, and research on the dying brain, are now converging to provide a comprehensive explanation for NDEs. In this Review, we discuss processes that might underlie the rich conscious experience in NDEs, mostly focusing on prototypical examples and addressing both the potential psychological mechanisms and neurophysiological changes, including cellular and electrophysiological brain network modifications and alterations in neurotransmitter release. On the basis of this discussion, we propose a model for NDEs that encompasses a cascade of concomitant psychological and neurophysiological processes within an evolutionary framework. We also consider how NDE research can inform the debate on the emergence of consciousness in near-death conditions that arise before brain death.
Collapse
Affiliation(s)
- Charlotte Martial
- Coma Science Group, GIGA-Consciousness, GIGA Institute, University of Liège, Liège, Belgium.
- NeuroRehab & Consciousness Clinic, Neurology Department, University Hospital of Liège, Liège, Belgium.
| | - Pauline Fritz
- Coma Science Group, GIGA-Consciousness, GIGA Institute, University of Liège, Liège, Belgium
- NeuroRehab & Consciousness Clinic, Neurology Department, University Hospital of Liège, Liège, Belgium
| | - Olivia Gosseries
- Coma Science Group, GIGA-Consciousness, GIGA Institute, University of Liège, Liège, Belgium
- NeuroRehab & Consciousness Clinic, Neurology Department, University Hospital of Liège, Liège, Belgium
| | - Vincent Bonhomme
- Anaesthesia and Perioperative Neuroscience Laboratory, GIGA-Consciousness, GIGA Institute, University of Liège, Liège, Belgium
- Department of Anaesthesia and Intensive Care Medicine, University Hospital of Liège, Liège, Belgium
| | - Daniel Kondziella
- Department of Neurology, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Kevin Nelson
- Department of Neurology, University of Kentucky, Lexington, KY, USA
| | - Nicolas Lejeune
- Coma Science Group, GIGA-Consciousness, GIGA Institute, University of Liège, Liège, Belgium
- NeuroRehab & Consciousness Clinic, Neurology Department, University Hospital of Liège, Liège, Belgium
| |
Collapse
|
3
|
McKnight JC, Bønnelycke EM, Balfour S, Milne R, Moss SEW, Armstrong HC, Downie C, Hall AJ, Kershaw JL. Cognitive perception of circulating oxygen in seals is the reason they don't drown. Science 2025; 387:1276-1280. [PMID: 40112059 DOI: 10.1126/science.adq4921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Accepted: 12/20/2024] [Indexed: 03/22/2025]
Abstract
Marine mammals rely on maintaining sufficient blood oxygen levels while diving to prevent drowning. Generally, oxygen is cognitively imperceptible to mammals that instead sense rising carbon dioxide as a proxy for low oxygen. Not perceiving oxygen, however, is risky for diving mammals. We argue that any ability to alter dives based upon direct perception of oxygen should have been strongly selected for. We exposed diving seals to inhaled gas mixes that were experimentally altered to affect circulating levels of oxygen and carbon dioxide. Dive duration was positively correlated with circulating oxygen levels but unaffected by carbon dioxide levels and pH. These results suggest that seals do cognitively perceive circulating oxygen and use this to alter dive behavior.
Collapse
Affiliation(s)
- J Chris McKnight
- Sea Mammal Research Unit, School of Biology, University of St Andrews, St Andrews, Scotland, UK
| | - Eva-Maria Bønnelycke
- Sea Mammal Research Unit, School of Biology, University of St Andrews, St Andrews, Scotland, UK
| | - Steve Balfour
- Sea Mammal Research Unit Instrumentation Group, School of Biology, University of St Andrews, St Andrews, Scotland, UK
| | - Ryan Milne
- Sea Mammal Research Unit, School of Biology, University of St Andrews, St Andrews, Scotland, UK
| | - Simon E W Moss
- Sea Mammal Research Unit, School of Biology, University of St Andrews, St Andrews, Scotland, UK
| | - Holly C Armstrong
- Sea Mammal Research Unit, School of Biology, University of St Andrews, St Andrews, Scotland, UK
| | - Caitlin Downie
- Sea Mammal Research Unit, School of Biology, University of St Andrews, St Andrews, Scotland, UK
| | - Ailsa J Hall
- Sea Mammal Research Unit, School of Biology, University of St Andrews, St Andrews, Scotland, UK
| | - Joanna L Kershaw
- Sea Mammal Research Unit, School of Biology, University of St Andrews, St Andrews, Scotland, UK
| |
Collapse
|
4
|
Granget J, Niérat MC, Lehongre K, Lambrecq V, Frazzini V, Navarro V, Buonviso N, Similowski T. Corticolimbic structures activation during preparation and execution of respiratory manoeuvres in voluntary olfactory sampling: An intracranial EEG study. J Physiol 2025; 603:989-1006. [PMID: 39704560 PMCID: PMC11826067 DOI: 10.1113/jp287045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 11/05/2024] [Indexed: 12/21/2024] Open
Abstract
Volitional respiratory manoeuvres such as sniffing and apnoea play a key role in the active olfactory exploration of the environment. Their impairment by neurodegenerative processes could thus impair olfactory abilities with the ensuing impact on quality of life. Functional brain imaging studies have identified brain networks engaged in sniffing and voluntary apnoea, comprising the primary motor and somatosensory cortices, the insula, the anterior cingulate cortex and the amygdala. The temporal organization and the oscillatory activities of these networks are not known. To elucidate these aspects, we recorded intracranial electroencephalograms in six patients during voluntary sniffs and short apnoeas (12 s). The preparation phase of both manoeuvres involved increased alpha and theta activity in the posterior insula, amygdala and temporal regions, with a specific preparatory activity in the parahippocampus for the short apnoeas and the hippocampus for sniff. Subsequently, it narrowed to the superior and median temporal areas, immediately after the manoeuvres. During short apnoeas, a particular dynamic was observed, consisting of a rapid decline in alpha and theta activity followed by a slow recovery and increase. Volitional respiratory manoeuvres involved in olfactory control involve corticolimbic structures in both a preparatory and executive manner. Further studies are needed to determine whether diseases altering deep brain structures can disrupt these mechanisms and if such disruption contributes to the corresponding olfactory deficits. KEY POINTS: Both sniff manoeuvres and short apnoeas are associated with oscillatory activity predominantly in low-frequency bands (alpha and theta). Preparation of sniff manoeuvres and short apnoeas involve activities in low-frequency bands in the posterior insula and temporal regions that extend to amygdala during the execution of both manoeuvres. During short apnoeas, activities in low-frequency bands initially decline before continuously increasing until the apnoeas end.
Collapse
Affiliation(s)
- Jules Granget
- Sorbonne UniversitéINSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et CliniqueParisFrance
- AP‐HP, Groupe Hospitalier Universitaire APHP‐Sorbonne UniversitéHôpital Pitié‐Salpêtrière, Département R3SParisFrance
| | - Marie Cécile Niérat
- Sorbonne UniversitéINSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et CliniqueParisFrance
| | - Katia Lehongre
- Paris Brain Institute, ICM, INSERM, CNRSSorbonne UniversitéParisFrance
| | - Virginie Lambrecq
- Paris Brain Institute, ICM, INSERM, CNRSSorbonne UniversitéParisFrance
- AP‐HP, Groupe Hospitalier APAH‐Sorbonne Université, Hôpital Pitié‐Salpêtrière, Unité d'Épilepsie, Centre de Référence des épilepsies raresERN‐EpiCare, Département de NeurologieParisFrance
| | - Valerio Frazzini
- Paris Brain Institute, ICM, INSERM, CNRSSorbonne UniversitéParisFrance
- AP‐HP, Groupe Hospitalier APAH‐Sorbonne Université, Hôpital Pitié‐Salpêtrière, Unité d'Épilepsie, Centre de Référence des épilepsies raresERN‐EpiCare, Département de NeurologieParisFrance
| | - Vincent Navarro
- Paris Brain Institute, ICM, INSERM, CNRSSorbonne UniversitéParisFrance
- AP‐HP, Groupe Hospitalier APAH‐Sorbonne Université, Hôpital Pitié‐Salpêtrière, Unité d'Épilepsie, Centre de Référence des épilepsies raresERN‐EpiCare, Département de NeurologieParisFrance
| | - Nathalie Buonviso
- Université Lyon 1, CNRS UMR5292 INSERM U1028, Codage Mémoire OlfactionCentre de Recherche en Neurosciences de LyonLyonFrance
| | - Thomas Similowski
- Sorbonne UniversitéINSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et CliniqueParisFrance
- AP‐HP, Groupe Hospitalier Universitaire APHP‐Sorbonne UniversitéHôpital Pitié‐Salpêtrière, Département R3SParisFrance
| |
Collapse
|
5
|
McAfee CA, Josephs RA, DiVita A, Telch MJ, Champagne FA. CO 2 challenge-evoked hormonal changes predicting TSST changes in cortisol and subjective distress. Psychoneuroendocrinology 2025; 171:107187. [PMID: 39362036 DOI: 10.1016/j.psyneuen.2024.107187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/28/2024] [Accepted: 09/13/2024] [Indexed: 10/05/2024]
Abstract
The importance of stressor response in relation to the development of psychopathology has been recognized for decades, yet the relationship is not fully understood. The Trier Social Stress Test (TSST) is an established conditioned stressor and frequently used to assess cortisol response to acute stress in different psychopathologies. The 35 % CO2 Challenge is a biological stressor and has mostly been utilized to assess subjective responses in anxiety related disorders. In the current study (N=189), we assessed the hormonal effects (cortisol, testosterone) and subjective distress (stress, anxiety, and fear) of the 35 % CO2 Challenge, and several days later, assessed the hormonal and subjective distress effects of the TSST in a mixed-sex, college-aged sample, to test for predictive effects of the 35 % CO2 Challenge on TSST-evoked outcomes. No testosterone by cortisol interaction effects were found in females. In males, the 35 % CO2 Challenge-evoked interaction of testosterone and cortisol predicted TSST-evoked subjective stress, anxiety, and fear, with higher concentrations of testosterone predicting subjective distress, but only at (relatively) low concentrations of cortisol (one standard deviation below mean concentrations). This result - in line with the dual-hormone hypothesis - suggests the 35 % CO2 Challenge could be utilized in a wider array of laboratory stress response research.
Collapse
Affiliation(s)
- Ciara A McAfee
- University of Texas at Austin, Austin, TX, USA; Central Texas Veterans Healthcare System, Austin, TX, USA.
| | | | | | | | | |
Collapse
|
6
|
de Matos NMP, Staempfli P, Zoelch N, Seifritz E, Bruegger M. Neurochemical dynamics during two hypnotic states evidenced by magnetic resonance spectroscopy. Sci Rep 2024; 14:29952. [PMID: 39622963 PMCID: PMC11612407 DOI: 10.1038/s41598-024-80795-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/21/2024] [Indexed: 12/06/2024] Open
Abstract
This study explores neurochemical changes in the brain during hypnosis, targeting the parieto-occipital (PO) and posterior superior temporal gyrus (pSTG) regions using proton magnetic resonance spectroscopy (MRS). We examined 52 healthy, hypnosis experienced participants to investigate how two different hypnotic states of varying depth impacted brain neurochemistry in comparison to each other and to their respective non-hypnagogic control conditions. Alongside neurochemical assessments, we recorded respiration and heart rate variability (HRV) to further explore possible associations between physiological correlates of hypnotic depth. Significant changes in myo-Inositol concentration relative to total creatine were observed in the PO region during the deeper hypnosis state, possibly indicating reduced neuronal activity. No significant neurochemical shifts were detected in the pSTG region. Additionally, our findings revealed notable physiological changes during hypnosis. Respiratory rates were significantly slowed in both hypnotic states compared to the respective controls, with more pronounced slowing in the deeper hypnotic state. This study contributes a first-time insight into neurochemical responses during hypnotic states. We hope offering a foundation for further research in understanding the neurobiological correlates of hypnosis in both, basic science and-down the line-clinical applications.
Collapse
Affiliation(s)
- Nuno Miguel Prates de Matos
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich and University of Zurich, Zurich, Switzerland
- Clinic of Cranio-Maxillofacial and Oral Surgery, Center of Dental Medicine, University of Zurich, Zurich, Switzerland
| | - Philipp Staempfli
- MR-Center for Child, Adolescent and Adult Psychiatric-Psychotherapeutic Research, Psychiatric University Clinic Zurich and University of Zurich, Zurich, Switzerland
| | - Niklaus Zoelch
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich and University of Zurich, Zurich, Switzerland
- Institute of Forensic Medicine, University of Zurich, Zurich, Switzerland
| | - Erich Seifritz
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich and University of Zurich, Zurich, Switzerland
| | - Mike Bruegger
- Department of Adult Psychiatry and Psychotherapy, Psychiatric University Clinic Zurich and University of Zurich, Zurich, Switzerland.
- Clinic of Cranio-Maxillofacial and Oral Surgery, Center of Dental Medicine, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
7
|
Lin B, Jin Z, Park G, Ge Q, Singh K, Ryan V WG, Imami AS, Naghavi F, Miller OA, Khan S, Lu H, McCullumsmith RE, Du J. Mice lacking acid-sensing ion channel 2 in the medial prefrontal cortex exhibit social dominance. SCIENCE ADVANCES 2024; 10:eadn7573. [PMID: 39453995 PMCID: PMC11506137 DOI: 10.1126/sciadv.adn7573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 09/23/2024] [Indexed: 10/27/2024]
Abstract
Social dominance is essential for maintaining a stable society and has both positive and negative impacts on social animals, including humans. However, the regulatory mechanisms governing social dominance, as well as the crucial regulators and biomarkers involved, remain poorly understood. We discover that mice lacking acid-sensing ion channel 2 (ASIC2) exhibit persistently higher social dominance than their wild-type cagemates. Conversely, overexpression of ASIC2 in the medial prefrontal cortex reverses the dominance hierarchy observed in ASIC2 knockout (Asic2-/-) mice. Asic2-/- neurons exhibit increased synaptic transmission and plasticity, potentially mediated by protein kinase A signaling pathway. Furthermore, ASIC2 plays distinct functional roles in excitatory and inhibitory neurons, thereby modulating the balance of neuronal activities underlying social dominance behaviors-a phenomenon suggestive of a cell subtype-specific mechanism. This research lays the groundwork for understanding the mechanisms of social dominance, offering potential insights for managing social disorders, such as depression and anxiety.
Collapse
Affiliation(s)
- Boren Lin
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Zhen Jin
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Gyeongah Park
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Qian Ge
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Kritika Singh
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - William G. Ryan V
- Department of Neuroscience, University of Toledo, Toledo, OH 43606, USA
| | - Ali Sajid Imami
- Department of Neuroscience, University of Toledo, Toledo, OH 43606, USA
| | - Farzaneh Naghavi
- Department of Neuroscience, University of Toledo, Toledo, OH 43606, USA
| | - Olivia Ann Miller
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Saira Khan
- Department of Biological Sciences, University of Toledo, Toledo, OH 43606, USA
| | - Hui Lu
- Department of Pharmacology and Physiology, George Washington University School of Medicine, Washington, DC 20037, USA
| | - Robert E. McCullumsmith
- Department of Neuroscience, University of Toledo, Toledo, OH 43606, USA
- Neurosciences Institute, ProMedica, Toledo, OH 43614, USA
| | - Jianyang Du
- Department of Anatomy and Neurobiology, University of Tennessee Health Science Center, Memphis, TN 38163, USA
- Neuroscience Institute, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
8
|
Ripamonte GC, Fonseca EM, Frias AT, Patrone LGA, Vilela-Costa HH, Silva KSC, Szawka RE, Bícego KC, Zangrossi H, Plummer NW, Jensen P, Gargaglioni LH. Locus coeruleus noradrenaline depletion and its differential impact on CO 2-induced panic and hyperventilation in male and female mice. Prog Neuropsychopharmacol Biol Psychiatry 2024; 134:111063. [PMID: 38908504 PMCID: PMC11323958 DOI: 10.1016/j.pnpbp.2024.111063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/11/2024] [Accepted: 06/17/2024] [Indexed: 06/24/2024]
Abstract
CO2 exposure has been used to investigate the panicogenic response in patients with panic disorder. These patients are more sensitive to CO2, and more likely to experience the "false suffocation alarm" which triggers panic attacks. Imbalances in locus coeruleus noradrenergic (LC-NA) neurotransmission are responsible for psychiatric disorders, including panic disorder. These neurons are sensitive to changes in CO2/pH. Therefore, we investigated if LC-NA neurons are differentially activated after severe hypercapnia in mice. Further, we evaluated the participation of LC-NA neurons in ventilatory and panic-like escape responses induced by 20% CO2 in male and female wild type mice and two mouse models of altered LC-NA synthesis. Hypercapnia activates the LC-NA neurons, with males presenting a heightened level of activation. Mutant males lacking or with reduced LC-NA synthesis showed hypoventilation, while animals lacking LC noradrenaline present an increased metabolic rate compared to wild type in normocapnia. When exposed to CO2, males lacking LC noradrenaline showed a lower respiratory frequency compared to control animals. On the other hand, females lacking LC noradrenaline presented a higher tidal volume. Nevertheless, no change in ventilation was observed in either sex. CO2 evoked an active escape response. Mice lacking LC noradrenaline had a blunted jumping response and an increased freezing duration compared to the other groups. They also presented fewer racing episodes compared to wild type animals, but not different from mice with reduced LC noradrenaline. These findings suggest that LC-NA has an important role in ventilatory and panic-like escape responses elicited by CO2 exposure in mice.
Collapse
Affiliation(s)
- Gabriel C Ripamonte
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinarian Sciences, São Paulo State University, Jaboticabal, São Paulo, 14884-900, Brazil
| | - Elisa M Fonseca
- Department of Physiology and Pharmacology, Hotchkiss Brain Institute and Alberta Children's Hospital Research Institute, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Alana T Frias
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinarian Sciences, São Paulo State University, Jaboticabal, São Paulo, 14884-900, Brazil
| | - Luis Gustavo A Patrone
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinarian Sciences, São Paulo State University, Jaboticabal, São Paulo, 14884-900, Brazil
| | - Heloísa H Vilela-Costa
- Department of Biochemistry, Pharmacology and Physiology, Institute of Biological and Natural Sciences, Federal University of Triangulo Mineiro, Uberaba, MG, Brazil
| | - Kaoma S C Silva
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| | - Raphael E Szawka
- Department of Physiology and Biophysics, Institute of Biological Sciences, Federal University of Minas Gerais - UFMG, Belo Horizonte, MG, Brazil
| | - Kênia C Bícego
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinarian Sciences, São Paulo State University, Jaboticabal, São Paulo, 14884-900, Brazil
| | - Hélio Zangrossi
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Av. Bandeirantes, 3900, Ribeirão Preto CEP:14049-900, Brazil
| | - Nicholas W Plummer
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, United States Department of Health and Human Services, Durham, NC, USA
| | - Patricia Jensen
- Neurobiology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, United States Department of Health and Human Services, Durham, NC, USA
| | - Luciane H Gargaglioni
- Department of Animal Morphology and Physiology, College of Agricultural and Veterinarian Sciences, São Paulo State University, Jaboticabal, São Paulo, 14884-900, Brazil.
| |
Collapse
|
9
|
Fukuda J, Matsuda K, Sato G, Kitamura Y, Uno A, Takeda N. Effects of sodium bicarbonate solution on hypergravity-induced Fos expression in neurons of the amygdala in rats: Implication of sodium bicarbonate therapy for vertigo. Auris Nasus Larynx 2024; 51:733-737. [PMID: 38838426 DOI: 10.1016/j.anl.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 04/14/2024] [Accepted: 05/09/2024] [Indexed: 06/07/2024]
Abstract
OBJECTIVE In Japan, intravenous injection of a 7 % solution of sodium bicarbonate (NaHCO3) had been originally developed to inhibit motion sickness and then have long been used to treat vertigo. Previously, we reported that Fos-positive neurons appear in the amygdala after hypergravity stimulation in rats. In the present study, we examined whether injection of 7 % NaHCO3 inhibits hypergravity-induced Fos expression in the neurons in the central nucleus of the amygdala in rats. METHODS Rats were exposed to 2 G hypergravity in an animal centrifuge device for 3 h. A solution of 7 % NaHCO3 at a dose of 4 mM/kg was injected intraperitoneally before 2 G hypergraviy. Fos-positive neurons in the amygdala were stained immunohistochemically. RESULTS The number of Fos-positive neurons in the central nucleus of the amygdala was significantly increased after 2 G hypergravity in rats that received no drugs or saline, compared to that in rats exposed only to the noise of the centrifuge and received 7 % NaHCO3 solution. The number of Fos-positive neurons in the central nucleus of the amygdala after 2 G hypergravity was significantly decreased in rats that received 7 % NaHCO3 solution, compared to that in rats that received no drugs or saline. CONCLUSION Since Fos expression is a marker of activated neurons, the present findings suggest that hypergravity activates the amygdala and that administration of 7 % NaHCO3 suppresses hypergravity-induced activation of the amygdala. Hypergravity disturbs spatial orientation to produce motion sickness and the amygdala is involved in fear response. Recently, Ziemann et al. suggested that fear-evoking stimuli reduce the pH in the amygdala to activate it, leading to induction of fear behavior and that administering HCO3- attenuates fear behavior [Cell 2009; 139: 1012-1021]. Therefore, it is possible that hypergravity reduces the pH in the amygdala to activate it, thereby inducing the fear associated with motion sickness and that administration of 7 % NaHCO3 increases the brain pH thereby suppressing hypergravity-induced activation of the amygdala and inhibiting the fear associated with motion sickness. In patients with vertigo, 7 % NaHCO3 therapy may increase the brain pH thereby suppressing the activation of the amygdala and inhibiting the fear associated with vertigo to elicit a beneficial clinical effect.
Collapse
Affiliation(s)
- Junya Fukuda
- Department of Otolaryngology-Head and Neck Surgery, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Kazunori Matsuda
- Department of Otolaryngology-Head and Neck Surgery, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Go Sato
- Department of Otolaryngology-Head and Neck Surgery, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Yoshiaki Kitamura
- Department of Otolaryngology-Head and Neck Surgery, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Atsuhiko Uno
- Department of Otolaryngology-Head and Neck Surgery, Osaka General Medical Center, Osaka, Japan
| | - Noriaki Takeda
- Department of Otolaryngology-Head and Neck Surgery, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan.
| |
Collapse
|
10
|
Bonnichsen R, Hansen C, Søndergaard JR, Schrøder-Petersen DL. Effect of Stocking Density during CO 2 Stunning of Pigs on Induction Time and Activity Level Measured Using AI. Animals (Basel) 2024; 14:1953. [PMID: 38998065 PMCID: PMC11240643 DOI: 10.3390/ani14131953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/14/2024] Open
Abstract
During the CO2 stunning of pigs, a variation in their reaction to the gas and the duration of the induction period is observed. The stunning process can be affected by several conditions, such as stressful events and previous experiences, but the stocking density in the gondola may also have an impact. The objective was to investigate the effect of stocking density on the stunning process under commercial conditions. To quantify the pigs' reactions under industrial settings with a stocking density of up to eight pigs pr. Gondola (3.91 m2), the activity level was measured using an AI solution. Compared with a simulation of the expected induction period, a significantly longer induction period was found in gondolas containing seven and eight pigs (p < 0.001) but not when the gondolas contained three or four pigs. Both high and mean activity levels were significantly higher when stocking density was increased from three or four pigs to seven or eight pigs. The stunning process was thus negatively affected when increasing the stocking density. More knowledge is needed to explain this effect and to make statements on optimal stocking density. The measured activity levels may be a useful tool for obtaining information under commercial conditions and for documenting animal welfare.
Collapse
Affiliation(s)
- Rikke Bonnichsen
- Department of Food and Production, Danish Technological Institute, Gregersensvej, DK-2630 Taastrup, Denmark; (C.H.); (J.R.S.); (D.L.S.-P.)
| | | | | | | |
Collapse
|
11
|
Theparambil SM, Begum G, Rose CR. pH regulating mechanisms of astrocytes: A critical component in physiology and disease of the brain. Cell Calcium 2024; 120:102882. [PMID: 38631162 PMCID: PMC11423562 DOI: 10.1016/j.ceca.2024.102882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/28/2024] [Accepted: 03/28/2024] [Indexed: 04/19/2024]
Abstract
Strict homeostatic control of pH in both intra- and extracellular compartments of the brain is fundamentally important, primarily due to the profound impact of free protons ([H+]) on neuronal activity and overall brain function. Astrocytes, crucial players in the homeostasis of various ions in the brain, actively regulate their intracellular [H+] (pHi) through multiple membrane transporters and carbonic anhydrases. The activation of astroglial pHi regulating mechanisms also leads to corresponding alterations in the acid-base status of the extracellular fluid. Notably, astrocyte pH regulators are modulated by various neuronal signals, suggesting their pivotal role in regulating brain acid-base balance in both health and disease. This review presents the mechanisms involved in pH regulation in astrocytes and discusses their potential impact on extracellular pH under physiological conditions and in brain disorders. Targeting astrocytic pH regulatory mechanisms represents a promising therapeutic approach for modulating brain acid-base balance in diseases, offering a potential critical contribution to neuroprotection.
Collapse
Affiliation(s)
- Shefeeq M Theparambil
- Faculty of Health and Medicine, Department of Biomedical and Life Sciences, Lancaster University, Lancaster, LA1 4YW, Lancaster, UK.
| | - Gulnaz Begum
- Department of Neurology, The Pittsburgh Institute for Neurodegenerative Diseases, University of Pittsburgh, Pittsburgh, PA, USA
| | - Christine R Rose
- Institute of Neurobiology, Faculty of Mathematics and Natural Sciences, Heinrich Heine University Düsseldorf, 40225, Düsseldorf, Germany
| |
Collapse
|
12
|
Guan X, Cao P. Brain Mechanisms Underlying Panic Attack and Panic Disorder. Neurosci Bull 2024; 40:795-814. [PMID: 37477800 PMCID: PMC11178723 DOI: 10.1007/s12264-023-01088-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 04/23/2023] [Indexed: 07/22/2023] Open
Abstract
Panic disorder is a psychiatric disorder characterized by recurrent panic attacks, with a prevalence of ~ 4% in the general population, causing heavy personal and socioeconomic burdens. The similarities of animal defense responses to clinical panic attack symptoms in humans make it possible to translate neuroanatomical pathways identified in animal studies to panic disorder in humans. Therefore, in this review we first present a basic overview of panic disorder in humans including the main subtypes, models commonly used to trigger panic attacks, related hypotheses, the neurotransmitter systems that may be involved, and the current clinical treatments to give the reader a comprehensive understanding of panic disorder. The animal section introduces the models that trigger panic-like behavior in animals and the brain regions that may be involved, providing insights for future elucidation of the neural circuit mechanisms behind panic attacks.
Collapse
Affiliation(s)
- Xuyan Guan
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China.
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China.
| | - Peng Cao
- Tsinghua Institute of Multidisciplinary Biomedical Research, Tsinghua University, Beijing, 102206, China
- National Institute of Biological Sciences (NIBS), Beijing, 102206, China
| |
Collapse
|
13
|
Ahlbrand R, Wilson A, Woller P, Sachdeva Y, Lai J, Davis N, Wiggins J, Sah R. Sex-specific threat responding and neuronal engagement in carbon dioxide associated fear and extinction: Noradrenergic involvement in female mice. Neurobiol Stress 2024; 30:100617. [PMID: 38433995 PMCID: PMC10907837 DOI: 10.1016/j.ynstr.2024.100617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 02/12/2024] [Accepted: 02/13/2024] [Indexed: 03/05/2024] Open
Abstract
Difficulty in appropriately responding to threats is a key feature of psychiatric disorders, especially fear-related conditions such as panic disorder (PD) and posttraumatic stress disorder (PTSD). Most prior work on threat and fear regulation involves exposure to external threatful cues. However, fear can also be triggered by aversive, within-the-body, sensations. This interoceptive signaling of fear is highly relevant to PD and PTSD but is not well understood, especially in the context of sex. Using female and male mice, the current study investigated fear-associated spontaneous and conditioned behaviors to carbon dioxide (CO2) inhalation, a potent interoceptive threat that induces fear and panic. We also investigated whether behavioral sensitivity to CO2 is associated with delayed PTSD-relevant behaviors. CO2 evoked heterogenous freezing behaviors in both male and female animals. However, active, rearing behavior was significantly reduced in CO2-exposed male but not female mice. Interestingly, behavioral sensitivity to CO2 was associated with compromised fear extinction, independent of sex. However, in comparison to CO2-exposed males, females elicited less freezing and higher rearing during extinction suggesting an engagement of active versus passive defensive coping. Persistent neuronal activation marker ΔFosB immuno-mapping revealed attenuated engagement of infralimbic-prefrontal areas in both sexes but higher activation of brain stem locus coeruleus (LC) area in females. Inter-regional co-activation mapping revealed sex-independent disruptions in the infralimbic-amygdala associations but altered LC associations only in CO2-exposed female mice. Lastly, dopamine β hydroxylase positive (DβH + ve) noradrenergic neuronal cell counts in the LC correlated with freezing and rearing behaviors during CO2 inhalation and extinction only in female but not male mice. Collectively, these data provide evidence for higher active defensive responding to interoceptive threat CO2-associated fear in females that may stem from increased recruitment of the brainstem noradrenergic system. Our findings reveal distinct contributory mechanisms that may promote sex differences in fear and panic associated pathologies.
Collapse
Affiliation(s)
- Rebecca Ahlbrand
- Department of Pharmacology and Systems Physiology, University of Cincinnati, USA
- Veterans Affairs Medical Center, Cincinnati, OH, USA
| | - Allison Wilson
- Neuroscience Undergraduate Program, University of Cincinnati, USA
| | - Patrick Woller
- Neuroscience Graduate Program, University of Cincinnati, USA
| | - Yuv Sachdeva
- Department of Pharmacology and Systems Physiology, University of Cincinnati, USA
| | - Jayden Lai
- Department of Pharmacology and Systems Physiology, University of Cincinnati, USA
| | - Nikki Davis
- Neuroscience Undergraduate Program, University of Cincinnati, USA
| | - James Wiggins
- Neuroscience Undergraduate Program, University of Cincinnati, USA
| | - Renu Sah
- Department of Pharmacology and Systems Physiology, University of Cincinnati, USA
- Neuroscience Graduate Program, University of Cincinnati, USA
- Veterans Affairs Medical Center, Cincinnati, OH, USA
| |
Collapse
|
14
|
Gonye EC, Dagli AV, Kumar NN, Clements RT, Xu W, Bayliss DA. Expression of endogenous epitope-tagged GPR4 in the mouse brain. eNeuro 2024; 11:ENEURO.0002-24.2024. [PMID: 38408869 DOI: 10.1523/eneuro.0002-24.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2024] [Revised: 02/13/2024] [Accepted: 02/17/2024] [Indexed: 02/28/2024] Open
Abstract
GPR4 is a proton-sensing G protein-coupled receptor implicated in many peripheral and central physiological processes. GPR4 expression has previously been assessed only via detection of the cognate transcript or indirectly, by use of fluorescent reporters. In this work, CRISPR/Cas9 knock-in technology was used to encode a hemagglutinin (HA) epitope tag within the endogenous locus of Gpr4 and visualize GPR4-HA in the mouse central nervous system using a specific, well characterized HA antibody; GPR4 expression was further verified by complementary Gpr4 mRNA detection. HA immunoreactivity was found in a limited set of brain regions, including in the retrotrapezoid nucleus (RTN), serotonergic raphe nuclei, medial habenula, lateral septum, and several thalamic nuclei. GPR4 expression was not restricted to cells of a specific neurochemical identity as it was observed in excitatory, inhibitory, and aminergic neuronal cell groups. HA immunoreactivity was not detected in brain vascular endothelium, despite clear expression of Gpr4 mRNA in endothelial cells. In the RTN, GPR4 expression was detected at the soma and in proximal dendrites along blood vessels and the ventral surface of the brainstem; HA immunoreactivity was not detected in RTN projections to two known target regions. This localization of GPR4 protein in mouse brain neurons corroborates putative sites of expression where its function has been previously implicated (e.g., CO2-regulated breathing by RTN), and provides a guide for where GPR4 could contribute to other CO2/H+ modulated brain functions. Finally, GPR4-HA animals provide a useful reagent for further study of GPR4 in other physiological processes outside of the brain.Significance Statement GPR4 is a proton-sensing G-protein coupled receptor whose expression is necessary for a number of diverse physiological processes including acid-base sensing in the kidney, immune function, and cancer progression. In the brain, GPR4 has been implicated in the hypercapnic ventilatory response mediated by brainstem neurons. While knockout studies in animals have clearly demonstrated its necessity for normal physiology, descriptions of GPR4 expression have been limited due to a lack of specific antibodies for use in mouse models. In this paper, we implemented a CRISPR/Cas9 knock-in approach to incorporate the coding sequence for a small epitope tag into the locus of GPR4. Using these mice, we were able to describe GPR4 protein expression directly for the first time.
Collapse
Affiliation(s)
- Elizabeth C Gonye
- University of Virginia, Department of Pharmacology, Charlottesville, VA, USA
| | - Alexandra V Dagli
- University of Virginia, Department of Pharmacology, Charlottesville, VA, USA
| | - Natasha N Kumar
- University of New South Wales Sydney, School of Biomedical Sciences, New South Wales, Australia
| | - Rachel T Clements
- University of Virginia, Department of Pharmacology, Charlottesville, VA, USA
| | - Wenhao Xu
- University of Virginia, Genetically Engineered Mouse Model Core, Charlottesville, VA, USA
| | - Douglas A Bayliss
- University of Virginia, Department of Pharmacology, Charlottesville, VA, USA
| |
Collapse
|
15
|
Kang SJ, Kim JH, Kim DI, Roberts BZ, Han S. A pontomesencephalic PACAPergic pathway underlying panic-like behavioral and somatic symptoms in mice. Nat Neurosci 2024; 27:90-101. [PMID: 38177337 PMCID: PMC11195305 DOI: 10.1038/s41593-023-01504-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Accepted: 10/19/2023] [Indexed: 01/06/2024]
Abstract
Panic disorder is characterized by uncontrollable fear accompanied by somatic symptoms that distinguish it from other anxiety disorders. Neural mechanisms underlying these unique symptoms are not completely understood. Here, we report that the pituitary adenylate cyclase-activating polypeptide (PACAP)-expressing neurons in the lateral parabrachial nucleus projecting to the dorsal raphe are crucial for panic-like behavioral and physiological alterations. These neurons are activated by panicogenic stimuli but inhibited in conditioned fear and anxiogenic conditions. Activating these neurons elicits strong defensive behaviors and rapid cardiorespiratory increase without creating aversive memory, whereas inhibiting them attenuates panic-associated symptoms. Chemogenetic or pharmacological inhibition of downstream PACAP receptor-expressing dorsal raphe neurons abolishes panic-like symptoms. The pontomesencephalic PACAPergic pathway is therefore a likely mediator of panicogenesis, and may be a promising therapeutic target for treating panic disorder.
Collapse
Affiliation(s)
- Sukjae J Kang
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Jong-Hyun Kim
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Republic of Korea
| | - Dong-Il Kim
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
| | - Benjamin Z Roberts
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA
- Neuroscience Graduate Program, University of California San Diego, La Jolla, CA, USA
| | - Sung Han
- Peptide Biology Laboratory, The Salk Institute for Biological Studies, La Jolla, CA, USA.
- Neuroscience Graduate Program, University of California San Diego, La Jolla, CA, USA.
- Center for Neuroscience Imaging Research, Institute for Basic Science, Suwon, Republic of Korea.
- Department of Biomedical Engineering, Sungkyunkwan University, Suwon, Republic of Korea.
| |
Collapse
|
16
|
Araki R, Kita A, Yabe T. Decreased Brain pH Underlies Behavioral and Brain Abnormalities Induced by Chronic Exposure to Glucocorticoids in Mice. Biol Pharm Bull 2024; 47:1836-1845. [PMID: 39522977 DOI: 10.1248/bpb.b24-00251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Depressed patients may exhibit glucocorticoid hypersecretion, suggesting that elevated levels of glucocorticoids may play an important role in the pathophysiology of depression. Some postmortem brain studies have shown decreased pH and increased lactate levels in psychiatric patients, implying involvement of these factors in the pathogenesis. To investigate the effects of glucocorticoids on brain pH and lactate levels, and their roles in depressive symptoms, brain pH and lactate were examined in mice treated with corticosterone (CORT), the major bioactive glucocorticoid in rodents. A single administration of CORT decreased hippocampal pH after 24 h. Three weeks of CORT treatment decreased pH in the prefrontal cortex (PFC), striatum, and hippocampus (HC), whereas intake of pH 9.0 drinking water increased pH in these brain regions. pH and lactate levels were correlated in the PFC and HC of mice treated with CORT for 3 weeks. The suppression of body weight gain and decrease in adrenal weight observed after 3 weeks of CORT treatment were not alleviated by pH 9.0 water. However, an increase in immobility time in the forced swim test and a decrease in neurogenesis in the hippocampus were alleviated. The decrease in brain pH and increase in immobility time in the forced swim test and a decrease in neurogenesis in the hippocampus induced by CORT treatment were abolished by co-treatment with the glucocorticoid receptor (GR) antagonist mifepristone. These findings indicate that decreased brain pH via GRs may be related to glucocorticoid-induced depression-like behavior and decreased hippocampal neurogenesis.
Collapse
Affiliation(s)
- Ryota Araki
- Laboratory of Functional Biomolecules and Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University
| | - Ayami Kita
- Laboratory of Functional Biomolecules and Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University
| | - Takeshi Yabe
- Laboratory of Functional Biomolecules and Chemical Pharmacology, Faculty of Pharmaceutical Sciences, Setsunan University
| |
Collapse
|
17
|
Munro BA, Merenick DR, Gee JM, Pang DSJ. Use of Loss of Righting Reflex to Assess Susceptibility to Carbon Dioxide Gas in Three Mouse Strains. JOURNAL OF THE AMERICAN ASSOCIATION FOR LABORATORY ANIMAL SCIENCE : JAALAS 2023; 62:553-558. [PMID: 37770194 PMCID: PMC10772915 DOI: 10.30802/aalas-jaalas-23-000035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 06/20/2023] [Accepted: 07/24/2023] [Indexed: 09/30/2023]
Abstract
Exposure to CO₂ gas is a common rodent euthanasia method. CO₂ activates nociceptors in rats and is painful to humans at concentrations equal to or greater than 32.5% The concentration of CO₂ at which rodents become unconsciousness is inadequately defined. We used loss of righting reflex (LORR) to identify the concentration at which CO₂ caused loss of consciousness in C57Bl/6, CD1 and 129P3J mice (16 females and 16 males per strain). We used a custom built, rotating, motorized cylinder to determine LORR as CO₂ concentrations were increased. Two LORR assessment methods were used: 1) a 1-Paw assessment in which the righting reflex was considered to be present if one or more paws contacted the cylinder after rotation into dorsal recumbency and 2) a 4-Paw assessment in which the righting reflex was considered to be present only if all 4 paws contacted the cylinder. LORR test data were analyzed with Probit regression and dose response curves were plotted. 1-Paw EC95 values (CO₂ concentration at which LORR occurred for 95% of the population) were: C57Bl/6; 30.7%, CD1; 26.2%, 129P3J; 20.1%. The EC95 for C57Bl/6 was significantly higher than that of the 129P3J mice, with no significant differences between other strains. Four-Paw EC95 values were: C57Bl/6; 22.8%, CD1; 25.3%, 129P3J; 20.1%. Values for 129P3J mice were significantly lower than those of CD1 mice), with no significant difference between other strains. The EC95 varied significantly between 1-Paw and 4-Paw methods only for C57Bl/6 mice. These results suggest a potential for nociception and pain to occur in some individuals of some mouse strains during CO₂ euthanasia.
Collapse
Affiliation(s)
- Brittany A Munro
- Faculty of Veterinary Medicine, University of Calgary, Alberta, Canada
| | - Dexter R Merenick
- Faculty of Veterinary Medicine, University of Calgary, Alberta, Canada
| | - Julia M Gee
- College of Engineering and Physical Sciences, University of Guelph, Ontario, Canada
| | - Daniel SJ Pang
- Faculty of Veterinary Medicine, University of Calgary, Alberta, Canada
- Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada
| |
Collapse
|
18
|
Li Y, Chen R, Shen G, Yin J, Li Y, Zhao J, Nan F, Zhang S, Zhang H, Yang C, Wu M, Fan Y. Delayed CO 2 postconditioning promotes neurological recovery after cryogenic traumatic brain injury by downregulating IRF7 expression. CNS Neurosci Ther 2023; 29:3378-3390. [PMID: 37208955 PMCID: PMC10580333 DOI: 10.1111/cns.14268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 04/23/2023] [Accepted: 05/03/2023] [Indexed: 05/21/2023] Open
Abstract
AIMS Few treatments are available in the subacute phase of traumatic brain injury (TBI) except rehabilitation training. We previously reported that transient CO2 inhalation applied within minutes after reperfusion has neuroprotective effects against cerebral ischemia/reperfusion injury. In this study, it was hypothesized that delayed CO2 postconditioning (DCPC) starting at the subacute phase may promote neurological recovery of TBI. METHODS Using a cryogenic TBI (cTBI) model, mice received DCPC daily by inhaling 5%/10%/20% CO2 for various time-courses (one/two/three cycles of 10-min inhalation/10-min break) at Days 3-7, 3-14 or 7-18 after cTBI. Beam walking and gait tests were used to assess the effect of DCPC. Lesion size, expression of GAP-43 and synaptophysin, amoeboid microglia number and glia scar area were detected. Transcriptome and recombinant interferon regulatory factor 7 (Irf7) adeno-associated virus were applied to investigate the molecular mechanisms. RESULTS DCPC significantly promoted recovery of motor function in a concentration and time-course dependent manner with a wide therapeutic time window of at least 7 days after cTBI. The beneficial effects of DCPC were blocked by intracerebroventricular injection of NaHCO3 . DCPC also increased puncta density of GAP-43 and synaptophysin, and reduced amoeboid microglia number and glial scar formation in the cortex surrounding the lesion. Transcriptome analysis showed many inflammation-related genes and pathways were altered by DCPC, and Irf7 was a hub gene, while overexpression of IRF7 blocked the motor function improvement of DCPC. CONCLUSIONS We first showed that DCPC promoted functional recovery and brain tissue repair, which opens a new therapeutic time window of postconditioning for TBI. Inhibition of IRF7 is a key molecular mechanism for the beneficial effects of DCPC, and IRF7 may be a potential therapeutic target for rehabilitation after TBI.
Collapse
Affiliation(s)
- Yan Li
- Department of Pharmacology, Basic Medical Sciences CenterShanxi Medical UniversityTaiyuanChina
| | - Ru Chen
- Department of Pharmacology, Basic Medical Sciences CenterShanxi Medical UniversityTaiyuanChina
| | - Gui‐Ping Shen
- Department of Pharmacology, Basic Medical Sciences CenterShanxi Medical UniversityTaiyuanChina
| | - Jing Yin
- Department of Pharmacology, Basic Medical Sciences CenterShanxi Medical UniversityTaiyuanChina
| | - Yu Li
- Department of Pharmacology, Basic Medical Sciences CenterShanxi Medical UniversityTaiyuanChina
| | - Jing Zhao
- Department of Pharmacology, Basic Medical Sciences CenterShanxi Medical UniversityTaiyuanChina
| | - Fang Nan
- Department of Pharmacology, Basic Medical Sciences CenterShanxi Medical UniversityTaiyuanChina
| | - Shu‐Han Zhang
- Department of Pharmacology, Basic Medical Sciences CenterShanxi Medical UniversityTaiyuanChina
| | - Hui‐Feng Zhang
- Department of Pharmacology, Basic Medical Sciences CenterShanxi Medical UniversityTaiyuanChina
| | - Cai‐Hong Yang
- Department of Pharmacology, Basic Medical Sciences CenterShanxi Medical UniversityTaiyuanChina
| | - Mei‐Na Wu
- Key Laboratory of Cellular Physiology, Ministry of EducationShanxi Medical UniversityTaiyuanChina
| | - Yan‐Ying Fan
- Department of Pharmacology, Basic Medical Sciences CenterShanxi Medical UniversityTaiyuanChina
- Key Laboratory of Cellular Physiology, Ministry of EducationShanxi Medical UniversityTaiyuanChina
| |
Collapse
|
19
|
Ambrozio-Marques D, Gagnon M, Radcliff AB, Meza AL, Baker TL, Watters JJ, Kinkead R. Gestational intermittent hypoxia increases FosB-immunoreactive perikaryas in the paraventricular nucleus of the hypothalamus of adult male (but not female) rats. Exp Physiol 2023; 108:1376-1385. [PMID: 37642495 PMCID: PMC10841242 DOI: 10.1113/ep091343] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/10/2023] [Indexed: 08/31/2023]
Abstract
Sleep-disordered breathing is a respiratory disorder commonly experienced by pregnant women. The recurrent hypoxaemic events associated with sleep-disordered breathing have deleterious consequences for the mother and fetus. Adult male (but not female) rats born to dams subjected to gestational intermittent hypoxia (GIH) have a higher resting blood pressure than control animals and show behavioural/neurodevelopmental disorders. The origin of this persistent, sex-specific effect of GIH in offspring is unknown, but disruption of the neuroendocrine stress pathways is a key mechanism by which gestational stress increases disease risk in progeny. Using FosB immunolabelling as a chronic marker of neuronal activation, we determined whether GIH augments basal expression of FosB in the perikaryas of cells in the paraventricular nucleus of the hypothalamus (PVN), a key structure in the regulation of the stress response and blood pressure. From gestational day 10, female rats were subjected to GIH for 8 h/day (light phase) until the day before delivery (gestational day 21); GIH consisted of 2 min hypoxic bouts (10.5% O2 ) alternating with normoxia. Control rats were exposed to intermittent normoxia over the same period (GNX). At adulthood (10-15 weeks), the brains of male and female rats were harvested for FosB immunohistochemistry. In males, GIH augmented PVN FosB labelling density by 30%. Conversely, PVN FosB density in GIH females was 28% lower than that of GNX females. We conclude that GIH has persistent and sex-specific impacts on the development of stress pathways, thereby offering a plausible mechanism by which GIH can disturb neural development and blood pressure homeostasis in adulthood. NEW FINDINGS: What is the central question of this study? In pregnant women, sleep apnoea increases the risk of disease for the offspring at various life stages. Given that gestational stress disrupts the programming of the stress pathways, we determined whether exposing female rats to gestational intermittent hypoxia (GIH) activates hypothalamic neurons regulating the stress response in adult rats. What is the main finding and its importance? Using FosB immunolabelling as a marker of marker of neuronal activation, we showed that GIH augmented basal activation of the paraventricular nucleus of the hypothalamus in males, but not females. Disruption of the stress pathways is a new hypothesis to explain the persistent and sex-specific impacts of GIH on offspring health.
Collapse
Affiliation(s)
- Danuzia Ambrozio-Marques
- Research Center of the Québec Heart and Lung Institute, Université Laval, Quebec City, Québec, Canada
| | - Marianne Gagnon
- Research Center of the Québec Heart and Lung Institute, Université Laval, Quebec City, Québec, Canada
| | - Abigail B Radcliff
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Armand L Meza
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Tracy L Baker
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Jyoti J Watters
- Department of Comparative Biosciences, School of Veterinary Medicine, University of Wisconsin, Madison, Wisconsin, USA
| | - Richard Kinkead
- Research Center of the Québec Heart and Lung Institute, Université Laval, Quebec City, Québec, Canada
| |
Collapse
|
20
|
Gałgańska H, Jarmuszkiewicz W, Gałgański Ł. Carbon dioxide and MAPK signalling: towards therapy for inflammation. Cell Commun Signal 2023; 21:280. [PMID: 37817178 PMCID: PMC10566067 DOI: 10.1186/s12964-023-01306-x] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/05/2023] [Indexed: 10/12/2023] Open
Abstract
Inflammation, although necessary to fight infections, becomes a threat when it exceeds the capability of the immune system to control it. In addition, inflammation is a cause and/or symptom of many different disorders, including metabolic, neurodegenerative, autoimmune and cardiovascular diseases. Comorbidities and advanced age are typical predictors of more severe cases of seasonal viral infection, with COVID-19 a clear example. The primary importance of mitogen-activated protein kinases (MAPKs) in the course of COVID-19 is evident in the mechanisms by which cells are infected with SARS-CoV-2; the cytokine storm that profoundly worsens a patient's condition; the pathogenesis of diseases, such as diabetes, obesity, and hypertension, that contribute to a worsened prognosis; and post-COVID-19 complications, such as brain fog and thrombosis. An increasing number of reports have revealed that MAPKs are regulated by carbon dioxide (CO2); hence, we reviewed the literature to identify associations between CO2 and MAPKs and possible therapeutic benefits resulting from the elevation of CO2 levels. CO2 regulates key processes leading to and resulting from inflammation, and the therapeutic effects of CO2 (or bicarbonate, HCO3-) have been documented in all of the abovementioned comorbidities and complications of COVID-19 in which MAPKs play roles. The overlapping MAPK and CO2 signalling pathways in the contexts of allergy, apoptosis and cell survival, pulmonary oedema (alveolar fluid resorption), and mechanical ventilation-induced responses in lungs and related to mitochondria are also discussed. Video Abstract.
Collapse
Affiliation(s)
- Hanna Gałgańska
- Faculty of Biology, Molecular Biology Techniques Laboratory, Adam Mickiewicz University in Poznan, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Wieslawa Jarmuszkiewicz
- Faculty of Biology, Department of Bioenergetics, Adam Mickiewicz University in Poznan, Institute of Molecular Biology and Biotechnology, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland
| | - Łukasz Gałgański
- Faculty of Biology, Department of Bioenergetics, Adam Mickiewicz University in Poznan, Institute of Molecular Biology and Biotechnology, Uniwersytetu Poznanskiego 6, 61-614, Poznan, Poland.
| |
Collapse
|
21
|
Battaglia M, Rossignol O, Lorenzo LE, Deguire J, Godin AG, D’Amato FR, De Koninck Y. Enhanced harm detection following maternal separation: Transgenerational transmission and reversibility by inhaled amiloride. SCIENCE ADVANCES 2023; 9:eadi8750. [PMID: 37792939 PMCID: PMC10550232 DOI: 10.1126/sciadv.adi8750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Accepted: 09/01/2023] [Indexed: 10/06/2023]
Abstract
Early-life adversities are associated with altered defensive responses. Here, we demonstrate that the repeated cross-fostering (RCF) paradigm of early maternal separation is associated with enhancements of distinct homeostatic reactions: hyperventilation in response to hypercapnia and nociceptive sensitivity, among the first generation of RCF-exposed animals, as well as among two successive generations of their normally reared offspring, through matrilineal transmission. Parallel enhancements of acid-sensing ion channel 1 (ASIC1), ASIC2, and ASIC3 messenger RNA transcripts were detected transgenerationally in central neurons, in the medulla oblongata, and in periaqueductal gray matter of RCF-lineage animals. A single, nebulized dose of the ASIC-antagonist amiloride renormalized respiratory and nociceptive responsiveness across the entire RCF lineage. These findings reveal how, following an early-life adversity, a biological memory reducible to a molecular sensor unfolds, shaping adaptation mechanisms over three generations. Our findings are entwined with multiple correlates of human anxiety and pain conditions and suggest nebulized amiloride as a therapeutic avenue.
Collapse
Affiliation(s)
- Marco Battaglia
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Child Youth and Emerging Adult Programme, Centre for Addiction and Mental Health, Toronto, ON, Canada
- CERVO Brain Research Centre, Québec Mental Health Institute, Québec City, QC, Canada
- Department of Psychiatry and Neuroscience, Université Laval, Québec City, QC, Canada
| | - Orlane Rossignol
- CERVO Brain Research Centre, Québec Mental Health Institute, Québec City, QC, Canada
| | - Louis-Etienne Lorenzo
- CERVO Brain Research Centre, Québec Mental Health Institute, Québec City, QC, Canada
| | - Jasmin Deguire
- CERVO Brain Research Centre, Québec Mental Health Institute, Québec City, QC, Canada
| | - Antoine G. Godin
- CERVO Brain Research Centre, Québec Mental Health Institute, Québec City, QC, Canada
- Department of Psychiatry and Neuroscience, Université Laval, Québec City, QC, Canada
| | - Francesca R. D’Amato
- Institute of Biochemistry and Cell Biology, National Research Council, Rome, Italy
| | - Yves De Koninck
- CERVO Brain Research Centre, Québec Mental Health Institute, Québec City, QC, Canada
- Department of Psychiatry and Neuroscience, Université Laval, Québec City, QC, Canada
| |
Collapse
|
22
|
Zhao S, Chi L, Chen H. CEGA: a method for inferring natural selection by comparative population genomic analysis across species. Genome Biol 2023; 24:219. [PMID: 37789379 PMCID: PMC10548728 DOI: 10.1186/s13059-023-03068-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/20/2023] [Indexed: 10/05/2023] Open
Abstract
We developed maximum likelihood method for detecting positive selection or balancing selection using multilocus or genomic polymorphism and divergence data from two species. The method is especially useful for investigating natural selection in noncoding regions. Simulations demonstrate that the method outperforms existing methods in detecting both positive and balancing selection. We apply the method to population genomic data from human and chimpanzee. The list of genes identified under selection in the noncoding regions is prominently enriched in pathways related to the brain and nervous system. Therefore, our method will serve as a useful tool for comparative population genomic analysis.
Collapse
Affiliation(s)
- Shilei Zhao
- CAS Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
- School of Future Technology, College of Life Sciences and Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lianjiang Chi
- CAS Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China
- China National Center for Bioinformation, Beijing, 100101, China
| | - Hua Chen
- CAS Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, 100101, China.
- China National Center for Bioinformation, Beijing, 100101, China.
- School of Future Technology, College of Life Sciences and Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China.
- CAS Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, Kunming, 650223, China.
| |
Collapse
|
23
|
Allgire E, Ahlbrand RA, Nawreen N, Ajmani A, Hoover C, McAlees JW, Lewkowich IP, Sah R. Altered Fear Behavior in Aeroallergen House Dust Mite Exposed C57Bl/6 Mice: A Model of Th2-skewed Airway Inflammation. Neuroscience 2023; 528:75-88. [PMID: 37516435 PMCID: PMC10530159 DOI: 10.1016/j.neuroscience.2023.07.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 06/05/2023] [Accepted: 07/19/2023] [Indexed: 07/31/2023]
Abstract
There is a growing interest for studying the impact of chronic inflammation, particularly lung inflammation, on the brain and behavior. This includes asthma, a chronic inflammatory condition, that has been associated with psychiatric conditions such as posttraumatic stress disorder (PTSD). Although asthma is driven by elevated production of Th2 cytokines (IL-4, IL-5 and IL-13), which drive asthma symptomology, recent work demonstrates that concomitant Th1 or Th17 cytokine production can worsen asthma severity. We previously demonstrated a detrimental link between PTSD-relevant fear behavior and allergen-induced lung inflammation associated with a mixed Th2/Th17-inflammatory profile in mice. However, the behavioral effects of Th2-skewed airway inflammation, typical to mild/moderate asthma, are unknown. Therefore, we investigated fear conditioning/extinction in allergen house dust mite (HDM)-exposed C57Bl/6 mice, a model of Th2-skewed allergic asthma. Behaviors relevant to panic, anxiety, and depression were also assessed. Furthermore, we investigated the accumulation of Th2/Th17-cytokine-expressing cells in lung and brain, and the neuronal activation marker, ΔFosB, in fear regulatory brain areas. HDM-exposed mice elicited lower freezing during fear extinction with no effects on acquisition and conditioned fear. No HDM effect on panic, anxiety or depression-relevant behaviors was observed. While HDM evoked a Th2-skewed immune response in lung tissue, no significant alterations in brain Th cell subsets were observed. Significantly reduced ΔFosB+ cells in the basolateral amygdala of HDM mice were observed post extinction. Our data indicate that allergen-driven Th2-skewed responses may induce fear extinction promoting effects, highlighting beneficial interactions of Th2-associated immune mediators with fear regulatory circuits.
Collapse
Affiliation(s)
- E Allgire
- Dept. of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH 45220, United States; Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45220, United States
| | - R A Ahlbrand
- Dept. of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH 45220, United States
| | - N Nawreen
- Dept. of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH 45220, United States; Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45220, United States
| | - A Ajmani
- Neuroscience Undergraduate Program, University of Cincinnati, Cincinnati, OH 45220, United States
| | - C Hoover
- Neuroscience Undergraduate Program, University of Cincinnati, Cincinnati, OH 45220, United States
| | - J W McAlees
- Division of Immunobiology, Children's Hospital Medical Center, Cincinnati, OH 45220, United States
| | - I P Lewkowich
- Division of Immunobiology, Children's Hospital Medical Center, Cincinnati, OH 45220, United States; Department of Pediatrics, University of Cincinnati, Cincinnati, OH 45220, United States
| | - R Sah
- Dept. of Pharmacology & Systems Physiology, University of Cincinnati, Cincinnati, OH 45220, United States; Neuroscience Graduate Program, University of Cincinnati, Cincinnati, OH 45220, United States; VA Medical Center, Cincinnati, OH 45220, United States.
| |
Collapse
|
24
|
Park G, Jin Z, Ge Q, Pan Y, Du J. Neuronal acid-sensing ion channel 1a regulates neuron-to-glioma synapses. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.31.555794. [PMID: 37693494 PMCID: PMC10491214 DOI: 10.1101/2023.08.31.555794] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Neuronal activity promotes high-grade glioma progression via secreted proteins and neuron-to-glioma synapses, and glioma cells boost neuronal activity to further reinforce the malignant cycle. Whereas strong evidence supports that the activity of neuron-to-glioma synapses accelerates tumor progression, the molecular mechanisms that modulate the formation and function of neuron-to-glioma synapses remain largely unknown. Our recent findings suggest that a proton (H + ) signaling pathway actively mediates neuron-to-glioma synaptic communications by activating neuronal acid-sensing ion channel 1a (Asic1a), a predominant H + receptor in the central nervous system (CNS). Supporting this idea, our preliminary data revealed that local acid puff on neurons in high-grade glioma-bearing brain slices induces postsynaptic currents of glioma cells. Stimulating Asic1a knockout (Asic1a -/- ) neurons results in lower AMPA receptor-dependent excitatory postsynaptic currents (EPSCs) in glioma cells than stimulating wild-type (WT) neurons. Moreover, glioma-bearing Asic1a -/- mice exhibited reduced tumor size and survived longer than the glioma-bearing WT mice. Finally, pharmacologically targeting brain Asic1a inhibited high-grade glioma progression. In conclusion, our findings suggest that the neuronal H + -Asic1a axis plays a key role in regulating the neuron-glioma synapse. The outcomes of this study will greatly expand our understanding of how this deadly tumor integrates into the neuronal microenvironment.
Collapse
|
25
|
Kalinovskii AP, Pushkarev AP, Mikhailenko AD, Kudryavtsev DS, Belozerova OA, Shmygarev VI, Yatskin ON, Korolkova YV, Kozlov SA, Osmakov DI, Popov A, Andreev YA. Dual Modulator of ASIC Channels and GABA A Receptors from Thyme Alters Fear-Related Hippocampal Activity. Int J Mol Sci 2023; 24:13148. [PMID: 37685955 PMCID: PMC10487430 DOI: 10.3390/ijms241713148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/21/2023] [Accepted: 08/22/2023] [Indexed: 09/10/2023] Open
Abstract
Acid-sensing ion channels (ASICs) are proton-gated ion channels that mediate nociception in the peripheral nervous system and contribute to fear and learning in the central nervous system. Sevanol was reported previously as a naturally-occurring ASIC inhibitor from thyme with favorable analgesic and anti-inflammatory activity. Using electrophysiological methods, we found that in the high micromolar range, the compound effectively inhibited homomeric ASIC1a and, in sub- and low-micromolar ranges, positively modulated the currents of α1β2γ2 GABAA receptors. Next, we tested the compound in anxiety-related behavior models using a targeted delivery into the hippocampus with parallel electroencephalographic measurements. In the open field, 6 µM sevanol reduced both locomotor and θ-rhythmic activity similar to GABA, suggesting a primary action on the GABAergic system. At 300 μM, sevanol markedly suppressed passive avoidance behavior, implying alterations in conditioned fear memory. The observed effects could be linked to distinct mechanisms involving GABAAR and ASIC1a. These results elaborate the preclinical profile of sevanol as a candidate for drug development and support the role of ASIC channels in fear-related functions of the hippocampus.
Collapse
Affiliation(s)
- Aleksandr P. Kalinovskii
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia (D.S.K.); (O.A.B.); (S.A.K.); (A.P.); (Y.A.A.)
| | - Anton P. Pushkarev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia (D.S.K.); (O.A.B.); (S.A.K.); (A.P.); (Y.A.A.)
| | - Anastasia D. Mikhailenko
- Moscow State Academy of Veterinary Medicine and Biotechnology—MVA named after K.I. Skryabin, ul. Akademika Skryabina, 23, 109472 Moscow, Russia
| | - Denis S. Kudryavtsev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia (D.S.K.); (O.A.B.); (S.A.K.); (A.P.); (Y.A.A.)
| | - Olga A. Belozerova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia (D.S.K.); (O.A.B.); (S.A.K.); (A.P.); (Y.A.A.)
| | - Vladimir I. Shmygarev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia (D.S.K.); (O.A.B.); (S.A.K.); (A.P.); (Y.A.A.)
| | - Oleg N. Yatskin
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia (D.S.K.); (O.A.B.); (S.A.K.); (A.P.); (Y.A.A.)
| | - Yuliya V. Korolkova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia (D.S.K.); (O.A.B.); (S.A.K.); (A.P.); (Y.A.A.)
| | - Sergey A. Kozlov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia (D.S.K.); (O.A.B.); (S.A.K.); (A.P.); (Y.A.A.)
| | - Dmitry I. Osmakov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia (D.S.K.); (O.A.B.); (S.A.K.); (A.P.); (Y.A.A.)
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya Str. 8, bld. 2, 119991 Moscow, Russia
| | - Alexander Popov
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia (D.S.K.); (O.A.B.); (S.A.K.); (A.P.); (Y.A.A.)
| | - Yaroslav A. Andreev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, ul. Miklukho-Maklaya 16/10, 117997 Moscow, Russia (D.S.K.); (O.A.B.); (S.A.K.); (A.P.); (Y.A.A.)
- Institute of Molecular Medicine, Sechenov First Moscow State Medical University, Trubetskaya Str. 8, bld. 2, 119991 Moscow, Russia
| |
Collapse
|
26
|
Souza GMPR, Stornetta DS, Shi Y, Lim E, Berry FE, Bayliss DA, Abbott SBG. Neuromedin B-Expressing Neurons in the Retrotrapezoid Nucleus Regulate Respiratory Homeostasis and Promote Stable Breathing in Adult Mice. J Neurosci 2023; 43:5501-5520. [PMID: 37290937 PMCID: PMC10376939 DOI: 10.1523/jneurosci.0386-23.2023] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 06/01/2023] [Accepted: 06/05/2023] [Indexed: 06/10/2023] Open
Abstract
Respiratory chemoreceptor activity encoding arterial Pco2 and Po2 is a critical determinant of ventilation. Currently, the relative importance of several putative chemoreceptor mechanisms for maintaining eupneic breathing and respiratory homeostasis is debated. Transcriptomic and anatomic evidence suggests that bombesin-related peptide Neuromedin-B (Nmb) expression identifies chemoreceptor neurons in the retrotrapezoid nucleus (RTN) that mediate the hypercapnic ventilatory response, but functional support is missing. In this study, we generated a transgenic Nmb-Cre mouse and used Cre-dependent cell ablation and optogenetics to test the hypothesis that RTN Nmb neurons are necessary for the CO2-dependent drive to breathe in adult male and female mice. Selective ablation of ∼95% of RTN Nmb neurons causes compensated respiratory acidosis because of alveolar hypoventilation, as well as profound breathing instability and respiratory-related sleep disruption. Following RTN Nmb lesion, mice were hypoxemic at rest and were prone to severe apneas during hyperoxia, suggesting that oxygen-sensitive mechanisms, presumably the peripheral chemoreceptors, compensate for the loss of RTN Nmb neurons. Interestingly, ventilation following RTN Nmb -lesion was unresponsive to hypercapnia, but behavioral responses to CO2 (freezing and avoidance) and the hypoxia ventilatory response were preserved. Neuroanatomical mapping shows that RTN Nmb neurons are highly collateralized and innervate the respiratory-related centers in the pons and medulla with a strong ipsilateral preference. Together, this evidence suggests that RTN Nmb neurons are dedicated to the respiratory effects of arterial Pco2/pH and maintain respiratory homeostasis in intact conditions and suggest that malfunction of these neurons could underlie the etiology of certain forms of sleep-disordered breathing in humans.SIGNIFICANCE STATEMENT Respiratory chemoreceptors stimulate neural respiratory motor output to regulate arterial Pco2 and Po2, thereby maintaining optimal gas exchange. Neurons in the retrotrapezoid nucleus (RTN) that express the bombesin-related peptide Neuromedin-B are proposed to be important in this process, but functional evidence has not been established. Here, we developed a transgenic mouse model and demonstrated that RTN neurons are fundamental for respiratory homeostasis and mediate the stimulatory effects of CO2 on breathing. Our functional and anatomic data indicate that Nmb-expressing RTN neurons are an integral component of the neural mechanisms that mediate CO2-dependent drive to breathe and maintain alveolar ventilation. This work highlights the importance of the interdependent and dynamic integration of CO2- and O2-sensing mechanisms in respiratory homeostasis of mammals.
Collapse
Affiliation(s)
- George M P R Souza
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Daniel S Stornetta
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Yingtang Shi
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Eunu Lim
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Faye E Berry
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Douglas A Bayliss
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| | - Stephen B G Abbott
- Department of Pharmacology, University of Virginia, Charlottesville, Virginia 22908
| |
Collapse
|
27
|
Hognestad BW, Digranes N, Opsund VG, Espenes A, Haga HA. CO 2 Stunning in Pigs: Physiological Deviations at Onset of Excitatory Behaviour. Animals (Basel) 2023; 13:2387. [PMID: 37508164 PMCID: PMC10376161 DOI: 10.3390/ani13142387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/11/2023] [Accepted: 07/20/2023] [Indexed: 07/30/2023] Open
Abstract
Stunning by carbon dioxide (CO2) inhalation is controversial because it is associated with vigorous movements and behaviours which may or may not be conscious reactions. Furthermore, it is unknown whether some behaviours might indicate the transition into unconsciousness. Our study objective was to investigate the loss of consciousness during CO2 stunning by linking physiological variables (in particular pH, PaO2 and PaCO2) to the onset of observed behaviours. A total of 11 cross-bred pigs were studied. A tracheostomy tube, venous and arterial cannulae were placed under sevoflurane anaesthesia. After recovery from this, and a "wash out" period of at least 30 min, arterial blood samples were taken (and baseline values established) before 90-95% CO2 in medical air was administered through the tracheostomy tube. Subsequent behaviours were video-recorded and key physiological variables were evaluated using an anaesthetic monitor and the frequent sampling of arterial blood (albeit with inconsistent inter-sample intervals). After the study, behaviours were classified in an ethogram. At the onset of behaviours categorised as "vigorous movement extremities", "opisthotonos" and "agonal gasping" pH values (range) were: 6.74-7.34; 6.66-6.96 and 6.65-6.87, while PaCO2 (kPa) was 4.6-42.2, 24.4-51.4 and 29.1-47.6. Based upon these values, we conclude that the pigs were probably unconscious at the onset of "opisthotonos" and "agonal gasping", but some were probably conscious at the onset of "vigorous movements".
Collapse
Affiliation(s)
- Bente Wabakken Hognestad
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Nora Digranes
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Vigdis Groven Opsund
- Department of Production Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Arild Espenes
- Department of Preclinical Sciences and Pathology, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1433 Ås, Norway
| | - Henning Andreas Haga
- Department of Companion Animal Clinical Sciences, Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1433 Ås, Norway
| |
Collapse
|
28
|
Meuret AE, Rosenfield D, Millard MM, Ritz T. Biofeedback Training to Increase P co2 in Asthma With Elevated Anxiety: A One-Stop Treatment of Both Conditions? Psychosom Med 2023; 85:440-448. [PMID: 36961348 PMCID: PMC10238676 DOI: 10.1097/psy.0000000000001188] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
OBJECTIVE Anxiety is highly prevalent in individuals with asthma. Asthma symptoms and medication can exacerbate anxiety, and vice versa. Unfortunately, treatments of comorbid anxiety and asthma are largely lacking. A problematic feature common to both conditions is hyperventilation. It adversely affects lung function and symptoms in asthma and anxiety. We examined whether a treatment to reduce hyperventilation, shown to improve asthma symptoms, also improves anxiety in asthma patients with high anxiety. METHOD One hundred twenty English- or Spanish-speaking adult patients with asthma were randomly assigned to either Capnometry-Assisted Respiratory Training (CART) to raise P co2 or feedback to slow respiratory rate (SLOW). Although anxiety was not an inclusion criterion, 21.7% met clinically relevant anxiety levels on the Hospital Anxiety and Depression Scale (HADS). Anxiety (HADS-A) and depression (HADS-D) scales, anxiety sensitivity (Anxiety Sensitivity Index [ASI]), and negative affect (Negative Affect Scale of the Positive Affect Negative Affect Schedule) were assessed at baseline, posttreatment, 1-month follow-up, and 6-month follow-up. RESULTS In this secondary analysis, asthma patients with high baseline anxiety showed greater reductions in ASI and PANAS-N in CART than in SLOW ( p values ≤ .005, Cohen d values ≥ 0.58). Furthermore, at 6-month follow-up, these patients also had lower ASI, PANAS-N, and HADS-D in CART than in SLOW ( p values ≤ .012, Cohen d values ≥ 0.54). Patients with low baseline anxiety did not have differential outcomes in CART than in SLOW. CONCLUSIONS For asthma patients with high anxiety, our brief training designed to raise P co2 resulted in significant and sustained reductions in anxiety sensitivity and negative affect compared with slow-breathing training. The findings lend support for P co2 as a potential physiological target for anxiety reduction in asthma. TRIAL REGISTRATION Clinicaltrials.gov Identifier: NCT00975273 .
Collapse
Affiliation(s)
- Alicia E. Meuret
- Department of Psychology, Southern Methodist University, Dallas, Texas, USA
| | - David Rosenfield
- Department of Psychology, Southern Methodist University, Dallas, Texas, USA
| | - Mark. M. Millard
- Baylor Martha Foster Lung Care Center, Baylor University Medical Center, Dallas, Texas, USA
| | - Thomas Ritz
- Department of Psychology, Southern Methodist University, Dallas, Texas, USA
| |
Collapse
|
29
|
Kinkead R, Ambrozio-Marques D, Fournier S, Gagnon M, Guay LM. Estrogens, age, and, neonatal stress: panic disorders and novel views on the contribution of non-medullary structures to respiratory control and CO 2 responses. Front Physiol 2023; 14:1183933. [PMID: 37265841 PMCID: PMC10229816 DOI: 10.3389/fphys.2023.1183933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2023] [Accepted: 04/21/2023] [Indexed: 06/03/2023] Open
Abstract
CO2 is a fundamental component of living matter. This chemical signal requires close monitoring to ensure proper match between metabolic production and elimination by lung ventilation. Besides ventilatory adjustments, CO2 can also trigger innate behavioral and physiological responses associated with fear and escape but the changes in brain CO2/pH required to induce ventilatory adjustments are generally lower than those evoking fear and escape. However, for patients suffering from panic disorder (PD), the thresholds for CO2-evoked hyperventilation, fear and escape are reduced and the magnitude of those reactions are excessive. To explain these clinical observations, Klein proposed the false suffocation alarm hypothesis which states that many spontaneous panics occur when the brain's suffocation monitor erroneously signals a lack of useful air, thereby maladaptively triggering an evolved suffocation alarm system. After 30 years of basic and clinical research, it is now well established that anomalies in respiratory control (including the CO2 sensing system) are key to PD. Here, we explore how a stress-related affective disorder such as PD can disrupt respiratory control. We discuss rodent models of PD as the concepts emerging from this research has influenced our comprehension of the CO2 chemosensitivity network, especially structure that are not located in the medulla, and how factors such as stress and biological sex modulate its functionality. Thus, elucidating why hormonal fluctuations can lead to excessive responsiveness to CO2 offers a unique opportunity to gain insights into the neuroendocrine mechanisms regulating this key aspect of respiratory control and the pathophysiology of respiratory manifestations of PD.
Collapse
|
30
|
Kozlakidis Z, Shi P, Abarbanel G, Klein C, Sfera A. Recent Developments in Protein Lactylation in PTSD and CVD: Novel Strategies and Targets. BIOTECH 2023; 12:38. [PMID: 37218755 PMCID: PMC10204439 DOI: 10.3390/biotech12020038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Revised: 04/27/2023] [Accepted: 05/01/2023] [Indexed: 05/24/2023] Open
Abstract
In 1938, Corneille Heymans received the Nobel Prize in physiology for discovering that oxygen sensing in the aortic arch and carotid sinus was mediated by the nervous system. The genetics of this process remained unclear until 1991 when Gregg Semenza while studying erythropoietin, came upon hypoxia-inducible factor 1, for which he obtained the Nobel Prize in 2019. The same year, Yingming Zhao found protein lactylation, a posttranslational modification that can alter the function of hypoxia-inducible factor 1, the master regulator of cellular senescence, a pathology implicated in both post-traumatic stress disorder (PTSD) and cardiovascular disease (CVD). The genetic correlation between PTSD and CVD has been demonstrated by many studies, of which the most recent one utilizes large-scale genetics to estimate the risk factors for these conditions. This study focuses on the role of hypertension and dysfunctional interleukin 7 in PTSD and CVD, the former caused by stress-induced sympathetic arousal and elevated angiotensin II, while the latter links stress to premature endothelial cell senescence and early vascular aging. This review summarizes the recent developments and highlights several novel PTSD and CVD pharmacological targets. They include lactylation of histone and non-histone proteins, along with the related biomolecular actors such as hypoxia-inducible factor 1α, erythropoietin, acid-sensing ion channels, basigin, and Interleukin 7, as well as strategies to delay premature cellular senescence by telomere lengthening and resetting the epigenetic clock.
Collapse
Affiliation(s)
- Zisis Kozlakidis
- International Agency for Research on Cancer, World Health Organization (IARC/WHO), 69372 Lyon, France
| | - Patricia Shi
- Department of Psychiatry, Loma Linda University, Loma Linda, CA 92350, USA
| | - Ganna Abarbanel
- Patton State Hospital, University of California, Riverside, CA 92521, USA
| | | | - Adonis Sfera
- Patton State Hospital, University of California, Riverside, CA 92521, USA
- Department of Psychiatry, University of California, Riverside, CA 92521, USA
| |
Collapse
|
31
|
Cherninskyi A, Storozhuk M, Maximyuk O, Kulyk V, Krishtal O. Triggering of Major Brain Disorders by Protons and ATP: The Role of ASICs and P2X Receptors. Neurosci Bull 2023; 39:845-862. [PMID: 36445556 PMCID: PMC9707125 DOI: 10.1007/s12264-022-00986-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 08/14/2022] [Indexed: 11/30/2022] Open
Abstract
Adenosine triphosphate (ATP) is well-known as a universal source of energy in living cells. Less known is that this molecule has a variety of important signaling functions: it activates a variety of specific metabotropic (P2Y) and ionotropic (P2X) receptors in neuronal and non-neuronal cell membranes. So, a wide variety of signaling functions well fits the ubiquitous presence of ATP in the tissues. Even more ubiquitous are protons. Apart from the unspecific interaction of protons with any protein, many physiological processes are affected by protons acting on specific ionotropic receptors-acid-sensing ion channels (ASICs). Both protons (acidification) and ATP are locally elevated in various pathological states. Using these fundamentally important molecules as agonists, ASICs and P2X receptors signal a variety of major brain pathologies. Here we briefly outline the physiological roles of ASICs and P2X receptors, focusing on the brain pathologies involving these receptors.
Collapse
Affiliation(s)
- Andrii Cherninskyi
- Bogomoletz Institute of Physiology of National Academy of Sciences of Ukraine, Kyiv, 01024, Ukraine.
| | - Maksim Storozhuk
- Bogomoletz Institute of Physiology of National Academy of Sciences of Ukraine, Kyiv, 01024, Ukraine
| | - Oleksandr Maximyuk
- Bogomoletz Institute of Physiology of National Academy of Sciences of Ukraine, Kyiv, 01024, Ukraine
| | - Vyacheslav Kulyk
- Bogomoletz Institute of Physiology of National Academy of Sciences of Ukraine, Kyiv, 01024, Ukraine
| | - Oleg Krishtal
- Bogomoletz Institute of Physiology of National Academy of Sciences of Ukraine, Kyiv, 01024, Ukraine
| |
Collapse
|
32
|
Cheng K, Wang Y, He Y, Tian Y, Li J, Chen C, Xu X, Wu Z, Yu H, Chen X, Wu Y, Song W, Dong Z, Xu H, Xie P. Upregulation of carbonic anhydrase 1 beneficial for depressive disorder. Acta Neuropathol Commun 2023; 11:59. [PMID: 37013604 PMCID: PMC10071615 DOI: 10.1186/s40478-023-01545-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 03/06/2023] [Indexed: 04/05/2023] Open
Abstract
Carbonic Anhydrase 1 (CAR1) is a zinc-metalloenzyme that catalyzes the hydration of carbon dioxide, and the alteration of CAR1 has been implicated in neuropsychiatric disorders. However, the mechanism underlying the role of CAR1 in major depressive disorder (MDD) remains largely unknown. In this study, we report the decreased level of CAR1 in MDD patients and depression-like model rodents. We found that CAR1 is expressed in hippocampal astrocytes and CAR1 regulates extracellular bicarbonate concentration and pH value in the partial hilus. Ablation of the CAR1 gene increased the activity of granule cells via decreasing their miniature inhibitory postsynaptic currents (mIPSC), and caused depression-like behaviors in CAR1-knockout mice. Astrocytic CAR1 expression rescued the deficits in mIPSCs of granule cells and reduced depression-like behaviors in CAR1 deficient mice. Furthermore, pharmacological activation of CAR1 and overexpression of CAR1 in the ventral hippocampus of mice improved depressive behaviors. These findings uncover a critical role of CAR1 in the MDD pathogenesis and its therapeutic potential.
Collapse
Affiliation(s)
- Ke Cheng
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yue Wang
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Yong He
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yu Tian
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Junjie Li
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, China
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China
| | - Chong Chen
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xingzhe Xu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Zhonghao Wu
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Heming Yu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Xiangyu Chen
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yili Wu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Zhejiang Provincial Clinical Research Center for Mental Disorders, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China
| | - Weihong Song
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Institute of Aging, Zhejiang Provincial Clinical Research Center for Mental Disorders, Key Laboratory of Alzheimer's Disease of Zhejiang Province, School of Mental Health and Kangning Hospital, Wenzhou Medical University, Wenzhou, Zhejiang, 325000, China.
| | - Zhifang Dong
- Ministry of Education Key Laboratory of Child Development and Disorders, National Clinical Research Center for Child Health and Disorders, Chongqing, 400014, China.
- Chongqing Key Laboratory of Translational Medical Research in Cognitive Development and Learning and Memory Disorders, Children's Hospital of Chongqing Medical University, Chongqing, 400014, China.
| | - Huatai Xu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, CAS Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, Shanghai, 200031, China.
- Shanghai Center for Brain Science and Brain-Inspired Intelligence Technology, Shanghai, 201210, China.
| | - Peng Xie
- NHC Key Laboratory of Diagnosis and Treatment on Brain Functional Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
33
|
Davis MJ, Earley S, Li YS, Chien S. Vascular mechanotransduction. Physiol Rev 2023; 103:1247-1421. [PMID: 36603156 PMCID: PMC9942936 DOI: 10.1152/physrev.00053.2021] [Citation(s) in RCA: 85] [Impact Index Per Article: 42.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 09/26/2022] [Accepted: 10/04/2022] [Indexed: 01/07/2023] Open
Abstract
This review aims to survey the current state of mechanotransduction in vascular smooth muscle cells (VSMCs) and endothelial cells (ECs), including their sensing of mechanical stimuli and transduction of mechanical signals that result in the acute functional modulation and longer-term transcriptomic and epigenetic regulation of blood vessels. The mechanosensors discussed include ion channels, plasma membrane-associated structures and receptors, and junction proteins. The mechanosignaling pathways presented include the cytoskeleton, integrins, extracellular matrix, and intracellular signaling molecules. These are followed by discussions on mechanical regulation of transcriptome and epigenetics, relevance of mechanotransduction to health and disease, and interactions between VSMCs and ECs. Throughout this review, we offer suggestions for specific topics that require further understanding. In the closing section on conclusions and perspectives, we summarize what is known and point out the need to treat the vasculature as a system, including not only VSMCs and ECs but also the extracellular matrix and other types of cells such as resident macrophages and pericytes, so that we can fully understand the physiology and pathophysiology of the blood vessel as a whole, thus enhancing the comprehension, diagnosis, treatment, and prevention of vascular diseases.
Collapse
Affiliation(s)
- Michael J Davis
- Department of Medical Pharmacology and Physiology, University of Missouri, Columbia, Missouri
| | - Scott Earley
- Department of Pharmacology, University of Nevada, Reno, Nevada
| | - Yi-Shuan Li
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
| | - Shu Chien
- Department of Bioengineering, University of California, San Diego, California
- Institute of Engineering in Medicine, University of California, San Diego, California
- Department of Medicine, University of California, San Diego, California
| |
Collapse
|
34
|
Harmata GIS, Chan AC, Merfeld MJ, Taugher-Hebl RJ, Harijan AK, Hardie JB, Fan R, Long JD, Wang GZ, Dlouhy BJ, Bera AK, Narayanan NS, Wemmie JA. Intoxicating effects of alcohol depend on acid-sensing ion channels. Neuropsychopharmacology 2023; 48:806-815. [PMID: 36243771 PMCID: PMC10066229 DOI: 10.1038/s41386-022-01473-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 09/06/2022] [Accepted: 09/23/2022] [Indexed: 11/09/2022]
Abstract
Persons at risk for developing alcohol use disorder (AUD) differ in their sensitivity to acute alcohol intoxication. Alcohol effects are complex and thought to depend on multiple mechanisms. Here, we explored whether acid-sensing ion channels (ASICs) might play a role. We tested ASIC function in transfected CHO cells and amygdala principal neurons, and found alcohol potentiated currents mediated by ASIC1A homomeric channels, but not ASIC1A/2 A heteromeric channels. Supporting a role for ASIC1A in the intoxicating effects of alcohol in vivo, we observed marked alcohol-induced changes on local field potentials in basolateral amygdala, which differed significantly in Asic1a-/- mice, particularly in the gamma, delta, and theta frequency ranges. Altered electrophysiological responses to alcohol in mice lacking ASIC1A, were accompanied by changes in multiple behavioral measures. Alcohol administration during amygdala-dependent fear conditioning dramatically diminished context and cue-evoked memory on subsequent days after the alcohol had cleared. There was a significant alcohol by genotype interaction. Context- and cue-evoked memory were notably worse in Asic1a-/- mice. We further examined acute stimulating and sedating effects of alcohol on locomotor activity, loss of righting reflex, and in an acute intoxication severity scale. We found loss of ASIC1A increased the stimulating effects of alcohol and reduced the sedating effects compared to wild-type mice, despite similar blood alcohol levels. Together these observations suggest a novel role for ASIC1A in the acute intoxicating effects of alcohol in mice. They further suggest that ASICs might contribute to intoxicating effects of alcohol and AUD in humans.
Collapse
Affiliation(s)
- Gail I S Harmata
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa, USA
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
- Pharmacological Sciences Predoctoral Research Training Program, Department of Neuroscience and Pharmacology, University of Iowa, Iowa City, IA, USA
- Department of Veterans Affairs Medical Center, Iowa City, IA, USA
| | - Aubrey C Chan
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa, USA
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
- Department of Veterans Affairs Medical Center, Iowa City, IA, USA
- Department of Internal Medicine, University of Iowa, Iowa City, IA, USA
| | - Madison J Merfeld
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
- Department of Veterans Affairs Medical Center, Iowa City, IA, USA
| | - Rebecca J Taugher-Hebl
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
- Department of Veterans Affairs Medical Center, Iowa City, IA, USA
| | - Anjit K Harijan
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Jason B Hardie
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
- Department of Veterans Affairs Medical Center, Iowa City, IA, USA
| | - Rong Fan
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
- Department of Veterans Affairs Medical Center, Iowa City, IA, USA
| | - Jeffrey D Long
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
- Department of Biostatistics, University of Iowa, Iowa City, IA, USA
| | - Grace Z Wang
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
- Department of Veterans Affairs Medical Center, Iowa City, IA, USA
| | - Brian J Dlouhy
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA
| | - Amal K Bera
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai, Tamil Nadu, India
| | - Nandakumar S Narayanan
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa, USA
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA
- Department of Neurology, University of Iowa, Iowa City, IA, USA
| | - John A Wemmie
- Interdisciplinary Graduate Program in Neuroscience, University of Iowa, Iowa City, Iowa, USA.
- Department of Psychiatry, University of Iowa, Iowa City, IA, USA.
- Iowa Neuroscience Institute, University of Iowa, Iowa City, IA, USA.
- Department of Neurosurgery, University of Iowa, Iowa City, IA, USA.
- Department of Veterans Affairs Medical Center, Iowa City, IA, USA.
- Department of Molecular Physiology and Biophysics, University of Iowa, Iowa City, IA, USA.
- Roy J. Carver Chair of Psychiatry and Neuroscience, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
35
|
Ogoh S, Watanabe H, Saito S, Fisher JP, Iwamoto E. Can Alterations in Cerebrovascular CO 2 Reactivity Be Identified Using Transfer Function Analysis without the Requirement for Carbon Dioxide Inhalation? J Clin Med 2023; 12:jcm12062441. [PMID: 36983441 PMCID: PMC10051076 DOI: 10.3390/jcm12062441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/09/2023] [Accepted: 03/21/2023] [Indexed: 03/30/2023] Open
Abstract
The present study aimed to examine the validity of a novel method to assess cerebrovascular carbon dioxide (CO2) reactivity (CVR) that does not require a CO2 inhalation challenge, e.g., for use in patients with respiratory disease or the elderly, etc. In twenty-one healthy participants, CVR responses to orthostatic stress (50° head-up tilt, HUT) were assessed using two methods: (1) the traditional CO2 inhalation method, and (2) transfer function analysis (TFA) between middle cerebral artery blood velocity (MCA V) and predicted arterial partial pressure of CO2 (PaCO2) during spontaneous respiration. During HUT, MCA V steady-state (i.e., magnitude) and MCA V onset (i.e., time constant) responses to CO2 inhalation were decreased (p < 0.001) and increased (p = 0.001), respectively, indicative of attenuated CVR. In contrast, TFA gain in the very low-frequency range (VLF, 0.005-0.024 Hz) was unchanged, while the TFA phase in the VLF approached zero during HUT (-0.38 ± 0.59 vs. 0.31 ± 0.78 radians, supine vs. HUT; p = 0.003), indicative of a shorter time (i.e., improved) response of CVR. These findings indicate that CVR metrics determined by TFA without a CO2 inhalation do not track HUT-evoked reductions in CVR identified using CO2 inhalation, suggesting that enhanced cerebral blood flow response to a change in CO2 using CO2 inhalation is necessary to assess CVR adequately.
Collapse
Affiliation(s)
- Shigehiko Ogoh
- Department of Biomedical Engineering, Toyo University, Kawagoe 350-8585, Japan
- Neurovascular Research Laboratory, University of South Wales, Pontypridd CF37 1DL, UK
| | - Hironori Watanabe
- Department of Biomedical Engineering, Toyo University, Kawagoe 350-8585, Japan
| | - Shotaro Saito
- Department of Biomedical Engineering, Toyo University, Kawagoe 350-8585, Japan
| | - James P Fisher
- Department of Physiology, Faculty of Medical and Health Sciences, University of Auckland, Auckland 1023, New Zealand
| | - Erika Iwamoto
- School of Health Sciences, Sapporo Medical University, Sapporo 060-8556, Japan
| |
Collapse
|
36
|
Krohn F, Novello M, van der Giessen RS, De Zeeuw CI, Pel JJM, Bosman LWJ. The integrated brain network that controls respiration. eLife 2023; 12:83654. [PMID: 36884287 PMCID: PMC9995121 DOI: 10.7554/elife.83654] [Citation(s) in RCA: 54] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Accepted: 01/29/2023] [Indexed: 03/09/2023] Open
Abstract
Respiration is a brain function on which our lives essentially depend. Control of respiration ensures that the frequency and depth of breathing adapt continuously to metabolic needs. In addition, the respiratory control network of the brain has to organize muscular synergies that integrate ventilation with posture and body movement. Finally, respiration is coupled to cardiovascular function and emotion. Here, we argue that the brain can handle this all by integrating a brainstem central pattern generator circuit in a larger network that also comprises the cerebellum. Although currently not generally recognized as a respiratory control center, the cerebellum is well known for its coordinating and modulating role in motor behavior, as well as for its role in the autonomic nervous system. In this review, we discuss the role of brain regions involved in the control of respiration, and their anatomical and functional interactions. We discuss how sensory feedback can result in adaptation of respiration, and how these mechanisms can be compromised by various neurological and psychological disorders. Finally, we demonstrate how the respiratory pattern generators are part of a larger and integrated network of respiratory brain regions.
Collapse
Affiliation(s)
- Friedrich Krohn
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | - Manuele Novello
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | | - Chris I De Zeeuw
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands.,Netherlands Institute for Neuroscience, Royal Academy of Arts and Sciences, Amsterdam, Netherlands
| | - Johan J M Pel
- Department of Neuroscience, Erasmus MC, Rotterdam, Netherlands
| | | |
Collapse
|
37
|
McMurray KMJ, Sah R. Neuroimmune mechanisms in fear and panic pathophysiology. Front Psychiatry 2022; 13:1015349. [PMID: 36523875 PMCID: PMC9745203 DOI: 10.3389/fpsyt.2022.1015349] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Accepted: 11/02/2022] [Indexed: 12/02/2022] Open
Abstract
Panic disorder (PD) is unique among anxiety disorders in that the emotional symptoms (e.g., fear and anxiety) associated with panic are strongly linked to body sensations indicative of threats to physiological homeostasis. For example, panic attacks often present with feelings of suffocation that evoke hyperventilation, breathlessness, or air hunger. Due to the somatic underpinnings of PD, a major focus has been placed on interoceptive signaling and it is recognized that dysfunctional body-to-brain communication pathways promote the initiation and maintenance of PD symptomatology. While body-to-brain signaling can occur via several pathways, immune and humoral pathways play an important role in communicating bodily physiological state to the brain. Accumulating evidence suggests that neuroimmune mediators play a role in fear and panic-associated disorders, although this has not been systematically investigated. Currently, our understanding of the role of immune mechanisms in the etiology and maintenance of PD remains limited. In the current review, we attempt to summarize findings that support a role of immune dysregulation in PD symptomology. We compile evidence from human studies and panic-relevant rodent paradigms that indicate a role of systemic and brain immune signaling in the regulation of fear and panic-relevant behavior and physiology. Specifically, we discuss how immune signaling can contribute to maladaptive body-to-brain communication and conditioned fear that are relevant to spontaneous and conditioned symptoms of PD and identify putative avenues warranting future investigation.
Collapse
Affiliation(s)
- Katherine M. J. McMurray
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States
- Veterans Affairs Medical Center, Cincinnati, OH, United States
| | - Renu Sah
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, OH, United States
- Veterans Affairs Medical Center, Cincinnati, OH, United States
| |
Collapse
|
38
|
Cuyler RN, Katdare R, Thomas S, Telch M. Real-world outcomes of an innovative digital therapeutic for treatment of panic disorder and PTSD: A 1,500 patient effectiveness study. Front Digit Health 2022; 4:976001. [PMID: 36465089 PMCID: PMC9712796 DOI: 10.3389/fdgth.2022.976001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 10/21/2022] [Indexed: 09/10/2024] Open
Abstract
Objective Prior clinical trials have shown consistent clinical benefit for Capnometry Guided Respiratory Intervention (CGRI), a prescription digital therapeutic for the treatment of panic disorder (PD) and post-traumatic stress disorder (PTSD). The purpose of this study is to report real-world outcomes in a series of patients treated with the intervention in clinical practice. Design This paper reports pre- and post-treatment self-reported symptom reduction, measures of respiratory rate and end-tidal carbon dioxide levels, drop-out and adherence rates drawn from an automatic data repository in a large real-world series of patients receiving CGRI for panic disorder and PTSD. Setting Patients used the intervention in their homes, supported by telehealth coaching. Participants Patients meeting symptom criteria for panic disorder (n = 1,395) or posttraumatic stress disorder (n = 174) were treated following assessment by a healthcare professional. Intervention Capnometry Guided Respiratory Intervention is a 28-day home-based treatment that provides breath-to-breath feedback of respiratory rate and exhaled carbon dioxide levels, aimed at normalizing respiratory style and increasing patients' mastery for coping with symptoms of stress, anxiety, and panic. Health coaches provide initial training with weekly follow up during the treatment episode. Remote data upload and monitoring facilitates individualized coaching and aggregate outcomes analysis. Main outcome measures Self-reported Panic Disorder Severity Scale (PDSS) and the Posttraumatic Stress Disorder Checklist for DSM-5 (PCL-5) scores were obtained at pre-treatment and post-treatment. Results Panic disorder (PD) patients showed a mean pre-to-post-treatment reduction in total PDSS scores of 50.2% (P < 0.001, d = 1.31). Treatment response rates for PD (defined as a 40% or greater reduction in PDSS total scores) were observed in 65.3% of the PD patients. PTSD patients showed a pre-to-post-treatment reduction in total PCL-5 scores of 41.1% (P < 0.001, d = 1.16). The treatment response rate for PTSD (defined as a ≥10-point reduction in PCL-5 scores) was 72.4%. In an additional analysis of response at the individual level, 55.7% of panic disorder patients and 53.5% of PTSD patients were classified as treatment responders using the Reliable Change Index. Patients with both normal and below-normal baseline exhaled CO2 levels experienced comparable benefit. Across the 28-day treatment period, mean adherence rates of 74.8% (PD) and 74.9% (PTSD) were recorded during the 28-day treatment. Dropout rates were 10% (PD) and 11% (PTSD) respectively. Conclusions The results from this cohort of 1,569 patients treated with the CGRI intervention demonstrate significant rates of symptom reduction and adherence consistent with prior published clinical trials. The brief duration of treatment, high adherence rates, and clinical benefit suggests that CGRI provides an important addition to treatment options for panic disorder and PTSD.
Collapse
Affiliation(s)
| | | | | | - Michael J. Telch
- Laboratory for the Study of Anxiety Disorders, University of Texas, Austin, TX, United States
| |
Collapse
|
39
|
van der Schrier R, van Velzen M, Roozekrans M, Sarton E, Olofsen E, Niesters M, Smulders C, Dahan A. Carbon dioxide tolerability and toxicity in rat and man: A translational study. FRONTIERS IN TOXICOLOGY 2022; 4:1001709. [PMID: 36310693 PMCID: PMC9606673 DOI: 10.3389/ftox.2022.1001709] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 09/12/2022] [Indexed: 11/07/2022] Open
Abstract
Background: Due the increasing need for storage of carbon dioxide (CO2) more individuals are prone to be exposed to high concentrations of CO2 accidentally released into atmosphere, with deleterious consequences. Methods: We tested the effect of increasing CO2 concentrations in humans (6–12%) and rats (10–50%) at varying inhalation times (10–60 min). In humans, a continuous positive airway pressure helmet was used to deliver the gas mixture to the participants. Unrestrained rats were exposed to CO2 in a transparent chamber. In both species regular arterial blood gas samples were obtained. After the studies, the lungs of the animals were examined for macroscopic and microscopic abnormalities. Results: In humans, CO2 concentrations of 9% inhaled for >10 min, and higher concentrations inhaled for <10 min were poorly or not tolerated due to exhaustion, anxiety, dissociation or acidosis (pH < 7.2), despite intact oxygenation. In rats, concentrations of 30% and higher were associated with CO2 narcosis, epilepsy, poor oxygenation and, at 50% CO2, spontaneous death. Lung hemorrhage and edema were observed in the rats at inhaled concentrations of 30% and higher. Conclusion: This study provides essential insight into the occurrence of physiological changes in humans and fatalities in rats after acute exposure to high levels of CO2. Humans tolerate 9% CO2 and retain their ability to function coherently for up to 10 min. These data support reconsideration of the current CO2 levels (<7.5%) that pose a risk to exposed individuals (<7.5%) as determined by governmental agencies to ≤9%.
Collapse
Affiliation(s)
| | - Monique van Velzen
- Department of Anesthesiology, Leiden University Medical Center, Leiden, Netherlands
| | - Margot Roozekrans
- Department of Anesthesiology, Leiden University Medical Center, Leiden, Netherlands,Department of Anesthesiology, Noordwest Ziekenhuisgroep, Alkmaar, Netherlands
| | - Elise Sarton
- Department of Anesthesiology, Leiden University Medical Center, Leiden, Netherlands
| | - Erik Olofsen
- Department of Anesthesiology, Leiden University Medical Center, Leiden, Netherlands
| | - Marieke Niesters
- Department of Anesthesiology, Leiden University Medical Center, Leiden, Netherlands
| | | | - Albert Dahan
- Department of Anesthesiology, Leiden University Medical Center, Leiden, Netherlands,*Correspondence: Albert Dahan,
| |
Collapse
|
40
|
Wang W, Xu M, Yue J, Zhang Q, Nie X, Jin Y, Zhang Z. Knockdown of Acid-sensing Ion Channel 1a in the PVN Promotes Metabolic Disturbances in Male Mice. Endocrinology 2022; 163:6650558. [PMID: 35894166 DOI: 10.1210/endocr/bqac115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Indexed: 11/19/2022]
Abstract
Increasing incidence of metabolic disturbances has become a severe public healthcare problem. Ion channels and receptors in the paraventricular nucleus (PVN) of the hypothalamus serve vital roles in modulating neuronal activities and endocrine functions, which are linked to the regulation of energy balance and glucose metabolism. In this study, we found that acid-sensing ion channel 1a (ASIC1a), a Ca2+-permeable cationic ion channel was localized in the PVN. Knockdown of ASIC1a in this region led to significant body weight gain, glucose intolerance, and insulin resistance. Pharmacological inhibition of ASIC1a resulted in an increase in food intake and a decrease in energy expenditure. Our findings suggest ASIC1a in the PVN as a potential new target for the therapeutic intervention of metabolic disorders.
Collapse
Affiliation(s)
- Wei Wang
- Department of Endocrinology and Laboratory for Diabetes, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Mengyun Xu
- Institute of Endocrine and Metabolic Diseases, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Jiayin Yue
- Department of Endocrinology and Laboratory for Diabetes, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Qilun Zhang
- Department of Endocrinology and Laboratory for Diabetes, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Xiaomin Nie
- Department of Endocrinology and Laboratory for Diabetes, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Yan Jin
- Stroke Center and Department of Neurology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| | - Zhi Zhang
- Hefei National Laboratory for Physical Sciences at the Microscale, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, China
| |
Collapse
|
41
|
Bignucolo O, Chipot C, Kellenberger S, Roux B. Galvani Offset Potential and Constant-pH Simulations of Membrane Proteins. J Phys Chem B 2022; 126:6868-6877. [PMID: 36049129 PMCID: PMC9483922 DOI: 10.1021/acs.jpcb.2c04593] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 08/17/2022] [Indexed: 02/01/2023]
Abstract
A central problem in computational biophysics is the treatment of titratable residues in molecular dynamics simulations of large biological macromolecular systems. Conventional simulation methods ascribe a fixed ionization state to titratable residues in accordance with their pKa and the pH of the system, assuming that an effective average model will be able to capture the predominant behavior of the system. While this assumption may be justifiable in many cases, it is certainly limited, and it is important to design alternative methodologies allowing a more realistic treatment. Constant-pH simulation methods provide powerful approaches to handle titratable residues more realistically by allowing the ionization state to vary statistically during the simulation. Extending the molecular mechanical (MM) potential energy function to a family of potential functions accounting for different ionization states, constant-pH simulations are designed to sample all accessible configurations and ionization states, properly weighted according to their Boltzmann factor. Because protonation and deprotonation events correspond to a change in the total charge, difficulties arise when the long-range Coulomb interaction is treated on the basis of an idealized infinite simulation model and periodic boundary conditions with particle-mesh Ewald lattice sums. Charging free-energy calculations performed under these conditions in aqueous solution depend on the Galvani potential of the bulk water phase. This has important implications for the equilibrium and nonequilibrium constant-pH simulation methods grounded in the relative free-energy difference corresponding to the protonated and unprotonated residues. Here, the effect of the Galvani potential is clarified, and a simple practical solution is introduced to address this issue in constant-pH simulations of the acid-sensing ion channel (ASIC).
Collapse
Affiliation(s)
- Olivier Bignucolo
- Department
of Biomedical Sciences, University of Lausanne, 1015 Lausanne, Switzerland
- SIB
Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Christophe Chipot
- Department
of Biochemistry and Molecular Biology, The
University of Chicago, Chicago, Illinois 60637, United States
- Laboratoire
International Associé Centre National de la Recherche Scientifique
et University of Illinois at Urbana−Champaign, Unité
Mixte de Recherche n◦7019, Université
de Lorraine, B.P. 70239, 54506 Cedex Vandœuvre-lès-Nancy, France
- Department
of Physics, University of Illinois at Urbana−Champaign, Urbana, Illinois 61820, United States
| | - Stephan Kellenberger
- Department
of Biomedical Sciences, University of Lausanne, 1015 Lausanne, Switzerland
| | - Benoît Roux
- Department
of Biochemistry and Molecular Biology, The
University of Chicago, Chicago, Illinois 60637, United States
- Department
of Chemistry, The University of Chicago, 5735 S. Ellis Ave., Chicago, Illinois 60637, United States
| |
Collapse
|
42
|
Winter A, McMurray KMJ, Ahlbrand R, Allgire E, Shukla S, Jones J, Sah R. The subfornical organ regulates acidosis-evoked fear by engaging microglial acid-sensor TDAG8 and forebrain neurocircuits in male mice. J Neurosci Res 2022; 100:1732-1746. [PMID: 35553084 PMCID: PMC9812228 DOI: 10.1002/jnr.25059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 04/06/2022] [Accepted: 04/23/2022] [Indexed: 01/07/2023]
Abstract
An important role of pH homeostasis has been suggested in the physiology of panic disorder, with acidosis as an interoceptive trigger leading to fear and panic. Identification of novel mechanisms that can translate acidosis into fear will promote a better understanding of panic physiology. The current study explores a role of the subfornical organ (SFO), a blood-brain barrier compromised brain area, in translating acidosis to fear-relevant behaviors. We performed SFO-targeted acidification in male, wild-type mice and mice lacking microglial acid-sensing G protein-coupled receptor-T-cell death-associated gene 8 (TDAG8). Localized SFO acidification evoked significant freezing and reduced exploration that was dependent on the presence of acid-sensor TDAG8. Acidosis promoted the activation of SFO microglia and neurons that were absent in TDAG8-deficient mice. The assessment of regional neuronal activation in wild-type and TDAG8-deficient mice following SFO acidification revealed significant acidosis and genotype-dependent alterations in the hypothalamus, amygdala, prefrontal cortex, and periaqueductal gray nuclei. Furthermore, mapping of interregional co-activation patterns revealed that SFO acidosis promoted positive hypothalamic-cortex associations and desynchronized SFO-cortex and amygdala-cortex associations, suggesting an interplay of homeostatic and fear regulatory areas. Importantly, these alterations were not evident in TDAG8-deficient mice. Overall, our data support a regulatory role of subfornical organ microglial acid sensing in acidosis-evoked fear, highlighting a centralized role of blood-brain barrier compromised nodes in interoceptive sensing and behavioral regulation. Identification of pathways by which humoral information can modulate fear behavior is relevant to panic disorder, where aberrant interoceptive signaling has been reported.
Collapse
Affiliation(s)
- Andrew Winter
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, Ohio, USA
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, Ohio, USA
| | - Katherine M. J. McMurray
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, Ohio, USA
- VA Medical Center, Cincinnati, Ohio, USA
| | - Rebecca Ahlbrand
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, Ohio, USA
- VA Medical Center, Cincinnati, Ohio, USA
| | - Emily Allgire
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, Ohio, USA
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, Ohio, USA
| | - Sachi Shukla
- Neuroscience Undergraduate Program, University of Cincinnati, Cincinnati, Ohio, USA
| | - James Jones
- Neuroscience Undergraduate Program, University of Cincinnati, Cincinnati, Ohio, USA
| | - Renu Sah
- Department of Pharmacology and Systems Physiology, University of Cincinnati, Cincinnati, Ohio, USA
- Neuroscience Graduate Program, University of Cincinnati, Cincinnati, Ohio, USA
- VA Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
43
|
Sintsova OV, Kalina RS, Gladkikh IN, Palikova YA, Palikov VA, Borozdina NA, Klimovich AA, Menshov AS, Dyachenko IA, Leychenko EV. Anxiolytic Effect of Peptides from Sea Anemone Heteractis crispa, Modulators of TRPV1 and ASIC Channels. DOKL BIOCHEM BIOPHYS 2022; 505:145-150. [DOI: 10.1134/s1607672922040093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 11/23/2022]
|
44
|
Burtscher J, Niedermeier M, Hüfner K, van den Burg E, Kopp M, Stoop R, Burtscher M, Gatterer H, Millet GP. The interplay of hypoxic and mental stress: Implications for anxiety and depressive disorders. Neurosci Biobehav Rev 2022; 138:104718. [PMID: 35661753 DOI: 10.1016/j.neubiorev.2022.104718] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 05/26/2022] [Accepted: 05/27/2022] [Indexed: 12/14/2022]
Abstract
Adequate oxygen supply is essential for the human brain to meet its high energy demands. Therefore, elaborate molecular and systemic mechanism are in place to enable adaptation to low oxygen availability. Anxiety and depressive disorders are characterized by alterations in brain oxygen metabolism and of its components, such as mitochondria or hypoxia inducible factor (HIF)-pathways. Conversely, sensitivity and tolerance to hypoxia may depend on parameters of mental stress and the severity of anxiety and depressive disorders. Here we discuss relevant mechanisms of adaptations to hypoxia, as well as their involvement in mental stress and the etiopathogenesis of anxiety and depressive disorders. We suggest that mechanisms of adaptations to hypoxia (including metabolic responses, inflammation, and the activation of chemosensitive brain regions) modulate and are modulated by stress-related pathways and associated psychiatric diseases. While severe chronic hypoxia or dysfunctional hypoxia adaptations can contribute to the pathogenesis of anxiety and depressive disorders, harnessing controlled responses to hypoxia to increase cellular and psychological resilience emerges as a novel treatment strategy for these diseases.
Collapse
Affiliation(s)
- Johannes Burtscher
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland; Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland.
| | - Martin Niedermeier
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Katharina Hüfner
- Department of Psychiatry, Psychotherapy, Psychosomatics and Medical Psychology, University Clinic for Psychiatry II, Innsbruck Medical University, Innsbruck, Austria
| | - Erwin van den Burg
- Department of Psychiatry, Center of Psychiatric Neuroscience (CNP), University Hospital of Lausanne (CHUV), Prilly, Lausanne, Switzerland
| | - Martin Kopp
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Ron Stoop
- Department of Psychiatry, Center of Psychiatric Neuroscience (CNP), University Hospital of Lausanne (CHUV), Prilly, Lausanne, Switzerland
| | - Martin Burtscher
- Department of Sport Science, University of Innsbruck, Innsbruck, Austria
| | - Hannes Gatterer
- Institute of Mountain Emergency Medicine, Eurac Research, Bolzano, Italy
| | - Grégoire P Millet
- Institute of Sport Sciences, University of Lausanne, Lausanne, Switzerland; Department of Biomedical Sciences, University of Lausanne, Lausanne, Switzerland
| |
Collapse
|
45
|
Kato K, Morinaga R, Yokoyama T, Fushuku S, Wakai J, Nakamuta N, Yamamoto Y. Effects of CO 2 on time-dependent changes in cardiorespiratory functions under sustained hypoxia. Respir Physiol Neurobiol 2022; 300:103886. [PMID: 35296417 DOI: 10.1016/j.resp.2022.103886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 02/16/2022] [Accepted: 03/09/2022] [Indexed: 11/18/2022]
Abstract
Hypercapnia in addition to hypoxia affects the mammalian cardiorespiratory system and has been suggested to exert its effects on cardiorespiratory function by slightly different mechanisms to hypoxia. In the present study, we examined cardiorespiratory changes in urethane-anesthetized rats under hypocapnic (Hypo, 10% O2), isocapnic (Iso, 10% O2 and 4% CO2), and hypercapnic (Hyper, 10% O2 and 8% CO2) hypoxia for 2 h to clarify the effects of CO2 on sustained hypoxia-induced cardiorespiratory responses. Respiratory frequency increased the most in Hypo and tidal volume in Hyper. Minute ventilation, a product of respiratory frequency and tidal volume, increased the most in the latter group. Regarding cardiovascular variables during the hypoxic exposure period, heart rate and mean blood pressure both markedly decreased in Hypo. However, decreases in these parameters were small in Iso, and both increased over the pre-exposure level in Hyper. The present results suggest that CO2 interferes with the hypoxia-activated neural pathway via another pathway under sustained exposure to hypoxia.
Collapse
Affiliation(s)
- Kouki Kato
- Center for Laboratory Animal Science, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Ryosuke Morinaga
- Department of Microscopic Anatomy and Cell Biology, Asahikawa Medical University, 2-1-1-1 Midorigaoka Higashi, Asahikawa, Hokkaido 078-8510, Japan
| | - Takuya Yokoyama
- Department of Anatomy (Cell Biology), Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Iwate 028-3694, Japan
| | - Seigo Fushuku
- Center for Laboratory Animal Science, National Defense Medical College, 3-2 Namiki, Tokorozawa, Saitama 359-8513, Japan
| | - Jun Wakai
- Department of Laboratory Animal Medicine, Institute for Biomedical Sciences, Iwate Medical University, 2-1-1 Nishitokuta, Yahaba, Iwate 028-3694, Japan
| | - Nobuaki Nakamuta
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, 18-8, Ueda 3-chome, Morioka, Iwate 020-8550, Japan
| | - Yoshio Yamamoto
- Laboratory of Veterinary Anatomy and Cell Biology, Faculty of Agriculture, Iwate University, 18-8, Ueda 3-chome, Morioka, Iwate 020-8550, Japan.
| |
Collapse
|
46
|
Lin Y, An J, Zhuo X, Qiu Y, Xie W, Yao W, Yin D, Wu L, Lei D, Li C, Xie Y, Hu A, Li S. Integrative Multi-Omics Analysis of Identified SKA3 as a Candidate Oncogene Correlates with Poor Prognosis and Immune Infiltration in Lung Adenocarcinoma. Int J Gen Med 2022; 15:4635-4647. [PMID: 35535142 PMCID: PMC9078431 DOI: 10.2147/ijgm.s359987] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 04/05/2022] [Indexed: 11/23/2022] Open
Affiliation(s)
- Yuansheng Lin
- Department of Emergency and Critical Care Medicine, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, People’s Republic of China
| | - Jianzhong An
- Department of Emergency and Critical Care Medicine, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, People’s Republic of China
| | - Xingli Zhuo
- Department of Emergency and Critical Care Medicine, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, People’s Republic of China
| | - Yingzhuo Qiu
- Department of Emergency and Critical Care Medicine, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, People’s Republic of China
| | - Wenjing Xie
- Department of Emergency and Critical Care Medicine, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, People’s Republic of China
| | - Wei Yao
- Department of Emergency and Critical Care Medicine, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, People’s Republic of China
| | - Dan Yin
- Department of Emergency and Critical Care Medicine, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, People’s Republic of China
| | - Linpeng Wu
- Department of Emergency and Critical Care Medicine, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, People’s Republic of China
| | - Dian Lei
- Department of Emergency and Critical Care Medicine, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, People’s Republic of China
| | - Chenghui Li
- Department of Emergency and Critical Care Medicine, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, People’s Republic of China
| | - Yuanguang Xie
- Department of Emergency and Critical Care Medicine, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, People’s Republic of China
| | - Ahu Hu
- Department of Emergency and Critical Care Medicine, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, People’s Republic of China
- Correspondence: Ahu Hu; Shengjun Li, Department of emergency and critical care medicine, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, No. 1 Lijiang Road, Suzhou, 215000, People’s Republic of China, Email ;
| | - Shengjun Li
- Department of Emergency and Critical Care Medicine, Suzhou Science & Technology Town Hospital, Gusu School, Nanjing Medical University, Suzhou, People’s Republic of China
| |
Collapse
|
47
|
Caretta A, Mucignat-Caretta C. Not Only COVID-19: Involvement of Multiple Chemosensory Systems in Human Diseases. Front Neural Circuits 2022; 16:862005. [PMID: 35547642 PMCID: PMC9081982 DOI: 10.3389/fncir.2022.862005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 03/21/2022] [Indexed: 11/13/2022] Open
Abstract
Chemosensory systems are deemed marginal in human pathology. In appraising their role, we aim at suggesting a paradigm shift based on the available clinical and experimental data that will be discussed. Taste and olfaction are polymodal sensory systems, providing inputs to many brain structures that regulate crucial visceral functions, including metabolism but also endocrine, cardiovascular, respiratory, and immune systems. Moreover, other visceral chemosensory systems monitor different essential chemical parameters of “milieu intérieur,” transmitting their data to the brain areas receiving taste and olfactory inputs; hence, they participate in regulating the same vital functions. These chemosensory cells share many molecular features with olfactory or taste receptor cells, thus they may be affected by the same pathological events. In most COVID-19 patients, taste and olfaction are disturbed. This may represent only a small portion of a broadly diffuse chemosensory incapacitation. Indeed, many COVID-19 peculiar symptoms may be explained by the impairment of visceral chemosensory systems, for example, silent hypoxia, diarrhea, and the “cytokine storm”. Dysregulation of chemosensory systems may underlie the much higher mortality rate of COVID-19 Acute Respiratory Distress Syndrome (ARDS) compared to ARDSs of different origins. In chronic non-infectious diseases like hypertension, diabetes, or cancer, the impairment of taste and/or olfaction has been consistently reported. This may signal diffuse chemosensory failure, possibly worsening the prognosis of these patients. Incapacitation of one or few chemosensory systems has negligible effects on survival under ordinary life conditions but, under stress, like metabolic imbalance or COVID-19 pneumonia, the impairment of multiple chemosensory systems may lead to dire consequences during the course of the disease.
Collapse
Affiliation(s)
- Antonio Caretta
- National Institute for Biostructures and Biosystems (NIBB), Rome, Italy
- Department of Food and Drug Science, University of Parma, Parma, Italy
| | - Carla Mucignat-Caretta
- National Institute for Biostructures and Biosystems (NIBB), Rome, Italy
- Department of Molecular Medicine, University of Padova, Padua, Italy
- *Correspondence: Carla Mucignat-Caretta,
| |
Collapse
|
48
|
Zhu Y, Hu X, Wang L, Zhang J, Pan X, Li Y, Cao R, Li B, Lin H, Wang Y, Zuo L, Huang Y. Recent Advances in Acid-sensitive Ion Channels in Central Nervous System Diseases. Curr Pharm Des 2022; 28:1406-1411. [PMID: 35466865 DOI: 10.2174/1381612828666220422084159] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/24/2022] [Indexed: 11/22/2022]
Abstract
Acid-sensitive ion channels (ASICs) are cationic channels activated by extracellular protons and widely distributed in the nervous system of mammals. It belongs to the ENaC/DEG family and has four coding genes: ASIC1, ASIC2, ASIC3, and ASIC4, which encode eight subunit proteins: ASIC1a, ASIC1b, ASIC1b2, ASIC2a, ASIC2b, ASIC3, ASIC4, and ASIC5. Different subtypes of ASICs have different distributions in the central nervous system, and they play an important role in various physiological and pathological processes of the central nervous system, including synaptic plasticity, anxiety disorders, fear conditioning, depression-related behavior, epilepsy, Alzheimer's disease, Parkinson's disease, Huntington's disease, multiple sclerosis, malignant Glioma, pain, and others. This paper reviewed the recent studies of ASICs on the central nervous system to improve the understanding of ASICs' physiological functions and pathological effects. This article also provides a reference for studying the molecular mechanisms and therapeutic measures of nervous system-related diseases.
Collapse
Affiliation(s)
- Yueqin Zhu
- Department of Pharmacy, West Branch of The First Affiliated Hospital of University of Science and Technology of China (Anhui Provincial Cancer Hospital), Hefei, 230031, China
| | - Xiaojie Hu
- School of Pharmacy, Anhui Medical University, Hefei 230022, Anhui, China
| | - Lili Wang
- School of Pharmacy, Anhui Medical University, Hefei 230022, Anhui, China
| | - Jin Zhang
- School of Pharmacy, Anhui Medical University, Hefei 230022, Anhui, China
| | - Xuesheng Pan
- School of Pharmacy, Anhui Medical University, Hefei 230022, Anhui, China
| | - Yangyang Li
- School of Pharmacy, Anhui Medical University, Hefei 230022, Anhui, China
| | - Rui Cao
- School of Pharmacy, Anhui Medical University, Hefei 230022, Anhui, China
| | - Bowen Li
- School of Pharmacy, Anhui Medical University, Hefei 230022, Anhui, China
| | - Huimin Lin
- School of Pharmacy, Anhui Medical University, Hefei 230022, Anhui, China
| | - Yanan Wang
- School of Pharmacy, Anhui Medical University, Hefei 230022, Anhui, China
| | - Longquan Zuo
- Department of Pharmacy, Hospital of Armed Police of Anhui Province, Hefei 230061, Anhui, China
| | - Yan Huang
- School of Pharmacy, Anhui Medical University, Hefei 230022, Anhui, China
| |
Collapse
|
49
|
Betka S, Adler D, Similowski T, Blanke O. Breathing control, brain, and bodily self-consciousness: Toward immersive digiceuticals to alleviate respiratory suffering. Biol Psychol 2022; 171:108329. [PMID: 35452780 DOI: 10.1016/j.biopsycho.2022.108329] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 04/11/2022] [Accepted: 04/11/2022] [Indexed: 01/19/2023]
Abstract
Breathing is peculiar among autonomic functions through several characteristics. It generates a very rich afferent traffic from an array of structures belonging to the respiratory system to various areas of the brain. It is intimately associated with bodily movements. It bears particular relationships with consciousness as its efferent motor control can be automatic or voluntary. In this review within the scope of "respiratory neurophysiology" or "respiratory neuroscience", we describe the physiological organisation of breathing control. We then review findings linking breathing and bodily self-consciousness through respiratory manipulations using virtual reality (VR). After discussing the currently admitted neurophysiological model for dyspnea, as well as a new Bayesian model applied to breathing control, we propose that visuo-respiratory paradigms -as developed in cognitive neuroscience- will foster insights into some of the basic mechanisms of the human respiratory system and will also lead to the development of immersive VR-based digital health tools (i.e. digiceuticals).
Collapse
Affiliation(s)
- Sophie Betka
- Laboratory of Cognitive Neuroscience, Brain Mind Institute and Center for Neuroprosthetics, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, (EPFL), Geneva 1202, Switzerland.
| | - Dan Adler
- Division of Lung Diseases, University Hospital and Geneva Medical School, University of Geneva, Switzerland
| | - Thomas Similowski
- Sorbonne Université, INSERM, UMRS1158 Neurophysiologie Respiratoire Expérimentale et Clinique, F-75005 Paris, France; AP-HP, Groupe Hospitalier Universitaire APHP-Sorbonne Université, site Pitié-Salpêtrière, Département R3S (Respiration, Réanimation, Réhabilitation respiratoire, Sommeil), F-75013 Paris, France
| | - Olaf Blanke
- Laboratory of Cognitive Neuroscience, Brain Mind Institute and Center for Neuroprosthetics, Faculty of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, (EPFL), Geneva 1202, Switzerland; Department of Clinical Neurosciences, University Hospital and Geneva Medical School, University of Geneva, Switzerland
| |
Collapse
|
50
|
Clarkson JM, McKeegan DEF, Sparrey J, Marchesi F, Leach MC, Martin JE. Determining Candidate Hypobaric Hypoxia Profiles for Humane Killing of Laboratory Mice. Front Vet Sci 2022; 9:834478. [PMID: 35400097 PMCID: PMC8988232 DOI: 10.3389/fvets.2022.834478] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 02/17/2022] [Indexed: 01/28/2023] Open
Abstract
Millions of mice are used annually in scientific research and must be humanely killed. Despite significant welfare concerns, carbon dioxide exposure remains the most common killing method, primarily because there is no practical and humane alternative. We explored whether hypobaric hypoxia via gradual decompression could induce a non-recovery state in anesthetized male C57BL/6 and Balb/c laboratory mice. We aimed to determine if this was possible in a feasible timescale with minimal pathological consequences, as a proof-of-principle step. Systematic evaluation of two decompression rates (75, 150 ms−1) and three profile shapes (accelerated, linear, gradual) in a factorial design revealed that hypobaric hypoxia effectively induced a non-recovery state in anesthetized laboratory mice, irrespective of decompression rate and shape. Mice took longer to reach a non-recovery state with the 75 ms−1 decompression rate (75 ms−1: 257 ± 8.96 vs. 150 ms−1: 214 ± 7.26 s), with longer latencies in gradual and linear shaped profiles. Accelerated shaped profiles were least susceptible to meaningful refinement via rate. The only pathological changes of concern were moderate middle ear congestion and hemorrhage. These findings suggest that hypobaric hypoxia has potential, and subsequent work will evaluate the welfare consequences of gradual decompression in conscious mice, to identify decompression profiles that minimize welfare harms associated with ear barotrauma.
Collapse
Affiliation(s)
- Jasmine M. Clarkson
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- *Correspondence: Jasmine M. Clarkson
| | - Dorothy E. F. McKeegan
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | | | - Francesco Marchesi
- School of Veterinary Medicine, College of Medical Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Matthew C. Leach
- School for Natural and Environmental Sciences, Newcastle University, Newcastle upon Tyne, United Kingdom
| | - Jessica E. Martin
- The Royal (Dick) School of Veterinary Studies, The Roslin Institute, The University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|