1
|
Xu Z, Chang CC, Coyle SM. Synthetic Forms Most Beautiful: Engineering Insights into Self-Organization. Physiology (Bethesda) 2025; 40:0. [PMID: 39938118 DOI: 10.1152/physiol.00064.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2024] [Revised: 12/04/2024] [Accepted: 12/04/2024] [Indexed: 02/14/2025] Open
Abstract
Reflecting on the diversity of the natural world, Darwin famously observed that "from so simple a beginning endless forms most beautiful and most wonderful have been, and are being evolved." However, the examples that we are able to observe in nature are a consequence of chance, constrained by selection, drift, and epistasis. Here we explore how the efforts of synthetic biology to build new living systems can expand our understanding of the fundamental design principles that allow life to self-organize biological form, from cellular to organismal levels. We suggest that the ability to impose a length or timescale onto a biological activity is an essential strategy for self-organization in evolved systems and a key design target that is now being realized synthetically at all scales. By learning to integrate these strategies together, we are poised to expand on evolution's success and realize a space of synthetic forms not only beautiful but with diverse applications and transformative potential.
Collapse
Affiliation(s)
- Zhejing Xu
- Department of Biochemistry, University of Wisconsin-Madison, Wisconsin, United States
- Integrated Program in Biochemistry Graduate Program, University of Wisconsin-Madison, Wisconsin, United States
| | - Chih-Chia Chang
- Department of Biochemistry, University of Wisconsin-Madison, Wisconsin, United States
- Biophysics Graduate Program, University of Wisconsin-Madison, Wisconsin, United States
| | - Scott M Coyle
- Department of Biochemistry, University of Wisconsin-Madison, Wisconsin, United States
| |
Collapse
|
2
|
Tang L, Wang J, Xu K, Li Z, Song J. Upgraded circular single-stranded DNA regulators for multiple-input multiple-output gene circuits in mammalian cells. SCIENCE ADVANCES 2025; 11:eadv3396. [PMID: 40378217 PMCID: PMC12083533 DOI: 10.1126/sciadv.adv3396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Accepted: 04/11/2025] [Indexed: 05/18/2025]
Abstract
Synthetic gene networks hold promise for genetic diagnostics and gene therapy but face limitations due to insufficient molecular tools. Gene-encoded circular single-stranded DNA (Css DNA) has been developed as a switchable vector to enrich regulatory components beyond protein/RNA-based systems in mammalian cells. However, the previous Css DNA regulator suffered from constrained regulatory sequence flexibility, disability of multiple-input multiple-output (MIMO) signals, and lack of endogenous orthogonal regulation. Here, we address these challenges by engineering a "bridge" design into the Css DNA regulator. These bridges function as sequence-programmable switches to control gene expression, responding to endogenous molecular signals (such as ATP, APE1, and RNase H) and enabling trans-regulation within or between Css DNAs. We exploit the orthogonality of Css DNA regulator to construct the three-input three-output genetic circuits. The upgraded Css DNA-based regulatory strategy represents a versatile and powerful platform for gene regulation and provides a promising avenue for the development of synthetic gene networks.
Collapse
Affiliation(s)
- Linlin Tang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang, Hangzhou, 310022, China
| | - Jinghao Wang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang, Hangzhou, 310022, China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Kaiqi Xu
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang, Hangzhou, 310022, China
- Department of Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Zhen Li
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Jie Song
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, Zhejiang, Hangzhou, 310022, China
| |
Collapse
|
3
|
Song K, Ji H, Lee J, Yoon Y. Microbial Transcription Factor-Based Biosensors: Innovations from Design to Applications in Synthetic Biology. BIOSENSORS 2025; 15:221. [PMID: 40277535 PMCID: PMC12024804 DOI: 10.3390/bios15040221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Revised: 03/25/2025] [Accepted: 03/28/2025] [Indexed: 04/26/2025]
Abstract
Transcription factor-based biosensors (TFBs) are powerful tools in microbial biosensor applications, enabling dynamic control of metabolic pathways, real-time monitoring of intracellular metabolites, and high-throughput screening (HTS) for strain engineering. These systems use transcription factors (TFs) to convert metabolite concentrations into quantifiable outputs, enabling precise regulation of metabolic fluxes and biosynthetic efficiency in microbial cell factories. Recent advancements in TFB, including improved sensitivity, specificity, and dynamic range, have broadened their applications in synthetic biology and industrial biotechnology. Computational tools such as Cello have further revolutionized TFB design, enabling in silico optimization and construction of complex genetic circuits for integrating multiple signals and achieving precise gene regulation. This review explores innovations in TFB systems for microbial biosensors, their role in metabolic engineering and adaptive evolution, and their future integration with artificial intelligence and advanced screening technologies to overcome critical challenges in synthetic biology and industrial bioproduction.
Collapse
Affiliation(s)
| | | | | | - Youngdae Yoon
- Department of Environmental Health Science, Konkuk University, Seoul 05029, Republic of Korea; (K.S.); (H.J.)
| |
Collapse
|
4
|
Rajasekaran R, Galateo TM, Xu Z, Bolshakov DT, Weix EWZ, Coyle SM. Genetically encoded protein oscillators for FM streaming of single-cell data. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.28.640587. [PMID: 40060462 PMCID: PMC11888400 DOI: 10.1101/2025.02.28.640587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/15/2025]
Abstract
Radios and cellphones use frequency modulation (FM) of an oscillating carrier signal to reliably transmit multiplexed data while rejecting noise. Here, we establish a biochemical analogue of this paradigm using genetically encoded protein oscillators (GEOs) as carrier signals in circuits that enable continuous, real-time FM streaming of single-cell data. GEOs are constructed from evolutionarily diverse MinDE-family ATPase and activator modules that generate fast synthetic protein oscillations when co-expressed in human cells. These oscillations serve as a single-cell carrier signal, with frequency and amplitude controlled by GEO component levels and activity. We systematically characterize 169 ATPase/activator GEO pairs and engineer composite GEOs with multiple competing activators to develop a comprehensive platform for waveform programming. Using these principles, we design circuits that modulate GEO frequency in response to cellular activity and decode their responses using a calibrated machine-learning model to demonstrate sensitive, real-time FM streaming of transcription and proteasomal degradation dynamics in single cells. GEOs establish a dynamically controllable biochemical carrier signal, unlocking noise-resistant FM data-encoding paradigms that open new avenues for dynamic single-cell analysis.
Collapse
Affiliation(s)
- Rohith Rajasekaran
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Integrated Program in Biochemistry Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Thomas M Galateo
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Zhejing Xu
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Integrated Program in Biochemistry Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Dennis T Bolshakov
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
- Cellular and Molecular Biology Graduate Program, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Elliott W Z Weix
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| | - Scott M Coyle
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
| |
Collapse
|
5
|
Kar S, Gardner EC, Javanmardi K, Boutz DR, Shroff R, Horton AP, Segall-Shapiro TH, Ellington AD, Gollihar J. Directed evolution of an orthogonal transcription engine for programmable gene expression in eukaryotes. iScience 2025; 28:111541. [PMID: 39811667 PMCID: PMC11732208 DOI: 10.1016/j.isci.2024.111541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Revised: 11/12/2024] [Accepted: 12/03/2024] [Indexed: 01/16/2025] Open
Abstract
T7 RNA polymerase (RNAP) has enabled orthogonal control of gene expression and recombinant protein production across diverse prokaryotic host chassis organisms for decades. However, the absence of 5' methyl guanosine caps on T7 RNAP-derived transcripts has severely limited its utility and widespread adoption in eukaryotic systems. To address this shortcoming, we evolved a fusion enzyme combining T7 RNAP with the single subunit capping enzyme from African swine fever virus using Saccharomyces cerevisiae. We isolated highly active variants of this fusion enzyme, which exhibited roughly two orders of magnitude higher protein expression compared to the wild-type enzyme. We demonstrate the programmable control of gene expression using T7 RNAP-based genetic circuits in yeast and validate enhanced performance of these engineered variants in mammalian cells. This study presents a robust, orthogonal gene regulatory system applicable across diverse eukaryotic hosts, enhancing the versatility and efficiency of synthetic biology applications.
Collapse
Affiliation(s)
- Shaunak Kar
- Laboratory of Antibody Discovery and Accelerated Protein Therapeutics, Center for Infectious Diseases, Houston Methodist Research Institute and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Elizabeth C. Gardner
- Department of Bioengineering, Rice University, Houston, TX, USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Kamyab Javanmardi
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Daniel R. Boutz
- Laboratory of Antibody Discovery and Accelerated Protein Therapeutics, Center for Infectious Diseases, Houston Methodist Research Institute and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Raghav Shroff
- Laboratory of Antibody Discovery and Accelerated Protein Therapeutics, Center for Infectious Diseases, Houston Methodist Research Institute and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Andrew P. Horton
- Laboratory of Antibody Discovery and Accelerated Protein Therapeutics, Center for Infectious Diseases, Houston Methodist Research Institute and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Thomas H. Segall-Shapiro
- Laboratory of Antibody Discovery and Accelerated Protein Therapeutics, Center for Infectious Diseases, Houston Methodist Research Institute and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Andrew D. Ellington
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
- Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA
| | - Jimmy Gollihar
- Laboratory of Antibody Discovery and Accelerated Protein Therapeutics, Center for Infectious Diseases, Houston Methodist Research Institute and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
6
|
Yang X, Rocks JW, Jiang K, Walters AJ, Rai K, Liu J, Nguyen J, Olson SD, Mehta P, Collins JJ, Daringer NM, Bashor CJ. Engineering synthetic phosphorylation signaling networks in human cells. Science 2025; 387:74-81. [PMID: 39745956 DOI: 10.1126/science.adm8485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 10/24/2024] [Indexed: 01/04/2025]
Abstract
Protein phosphorylation signaling networks have a central role in how cells sense and respond to their environment. We engineered artificial phosphorylation networks in which reversible enzymatic phosphorylation cycles were assembled from modular protein domain parts and wired together to create synthetic phosphorylation circuits in human cells. Our design scheme enabled model-guided tuning of circuit function and the ability to make diverse network connections; synthetic phosphorylation circuits can be coupled to upstream cell surface receptors to enable fast-timescale sensing of extracellular ligands, and downstream connections can regulate gene expression. We engineered cell-based cytokine controllers that dynamically sense and suppress activated T cells. Our work introduces a generalizable approach that allows the design of signaling circuits that enable user-defined sense-and-respond function for diverse biosensing and therapeutic applications.
Collapse
Affiliation(s)
- Xiaoyu Yang
- Department of Bioengineering, Rice University, Houston, TX, USA
- Graduate Program in Systems, Synthetic and Physical Biology, Rice University, Houston, TX, USA
- Rice Synthetic Biology Institute, Rice University, Houston, TX, USA
| | - Jason W Rocks
- Department of Physics, Boston University, Boston, MA, USA
| | - Kaiyi Jiang
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Andrew J Walters
- Department of Bioengineering, Rice University, Houston, TX, USA
- Rice Synthetic Biology Institute, Rice University, Houston, TX, USA
- Graduate Program in Bioengineering, Rice University, Houston, TX, USA
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Kshitij Rai
- Department of Bioengineering, Rice University, Houston, TX, USA
- Rice Synthetic Biology Institute, Rice University, Houston, TX, USA
| | - Jing Liu
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Jason Nguyen
- Department of Bioengineering, Rice University, Houston, TX, USA
| | - Scott D Olson
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Pankaj Mehta
- Department of Physics, Boston University, Boston, MA, USA
- Biological Design Center, Boston University, Boston, MA, USA
- Faculty of Computing and Data Science, Boston University, Boston, MA, USA
| | - James J Collins
- Institute for Medical Engineering and Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology, Cambridge, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| | - Nichole M Daringer
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ, USA
| | - Caleb J Bashor
- Department of Bioengineering, Rice University, Houston, TX, USA
- Rice Synthetic Biology Institute, Rice University, Houston, TX, USA
- Department of Biosciences, Rice University, Houston, TX, USA
| |
Collapse
|
7
|
Lee PW, Maerkl SJ. Regulatory Components for Bacterial Cell-Free Systems Engineering. ACS Synth Biol 2024; 13:3827-3841. [PMID: 39509282 DOI: 10.1021/acssynbio.4c00574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2024]
Abstract
Cell-free systems are advancing synthetic biology through fast prototyping and modularity. Complex regulatory networks can now be implemented in cell-free systems enabling various applications, such as diagnostic tool development, gene circuit prototyping, and metabolic engineering. As functional complexity increases, the need for regulatory components also grows. This review provides a comprehensive overview of native as well as engineered regulatory components and their use in bacterial cell-free systems.
Collapse
Affiliation(s)
- Pao-Wan Lee
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| | - Sebastian J Maerkl
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne 1015, Switzerland
| |
Collapse
|
8
|
Kar S, Gardner EC, Javanmardi K, Boutz DR, Shroff R, Horton AP, Segall-Shapiro TH, Ellington AD, Gollihar J. Directed evolution of an orthogonal transcription engine for programmable gene expression in eukaryotes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.25.614978. [PMID: 39386662 PMCID: PMC11463353 DOI: 10.1101/2024.09.25.614978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
T7 RNA polymerase has enabled orthogonal control of gene expression and recombinant protein production across diverse prokaryotic host chassis organisms for decades. However, the absence of 5' methyl guanosine caps on T7 RNAP derived transcripts has severely limited its utility and widespread adoption in eukaryotic systems. To address this shortcoming, we evolved a fusion enzyme combining T7 RNAP with the single subunit capping enzyme from African swine fever virus using Saccharomyces cerevisiae. We isolated highly active variants of this fusion enzyme, which exhibited roughly two orders of magnitude higher protein expression compared to the wild-type enzyme. We demonstrate the programmable control of gene expression using T7 RNAP-based genetic circuits in yeast and validate enhanced performance of these engineered variants in mammalian cells. This study presents a robust, orthogonal gene regulatory system applicable across diverse eukaryotic hosts, enhancing the versatility and efficiency of synthetic biology applications.
Collapse
Affiliation(s)
- Shaunak Kar
- Laboratory of Antibody Discovery and Accelerated Protein Therapeutics, Center for Infectious Diseases, Houston Methodist Research Institute and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
- Authors contributed equally
| | - Elizabeth C. Gardner
- Department of Bioengineering, Rice University, Houston, TX, USA
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
- Authors contributed equally
| | - Kamyab Javanmardi
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
| | - Daniel R. Boutz
- Laboratory of Antibody Discovery and Accelerated Protein Therapeutics, Center for Infectious Diseases, Houston Methodist Research Institute and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Raghav Shroff
- Laboratory of Antibody Discovery and Accelerated Protein Therapeutics, Center for Infectious Diseases, Houston Methodist Research Institute and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Andrew P. Horton
- Laboratory of Antibody Discovery and Accelerated Protein Therapeutics, Center for Infectious Diseases, Houston Methodist Research Institute and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Thomas H. Segall-Shapiro
- Laboratory of Antibody Discovery and Accelerated Protein Therapeutics, Center for Infectious Diseases, Houston Methodist Research Institute and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| | - Andrew D. Ellington
- Department of Molecular Biosciences, The University of Texas at Austin, Austin, TX, USA
- Center for Systems and Synthetic Biology, The University of Texas at Austin, Austin, TX, USA
| | - Jimmy Gollihar
- Laboratory of Antibody Discovery and Accelerated Protein Therapeutics, Center for Infectious Diseases, Houston Methodist Research Institute and Department of Pathology and Genomic Medicine, Houston Methodist Hospital, Houston, TX, USA
| |
Collapse
|
9
|
Capponi S, Wang S. AI in cellular engineering and reprogramming. Biophys J 2024; 123:2658-2670. [PMID: 38576162 PMCID: PMC11393708 DOI: 10.1016/j.bpj.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/19/2024] [Accepted: 04/01/2024] [Indexed: 04/06/2024] Open
Abstract
During the last decade, artificial intelligence (AI) has increasingly been applied in biophysics and related fields, including cellular engineering and reprogramming, offering novel approaches to understand, manipulate, and control cellular function. The potential of AI lies in its ability to analyze complex datasets and generate predictive models. AI algorithms can process large amounts of data from single-cell genomics and multiomic technologies, allowing researchers to gain mechanistic insights into the control of cell identity and function. By integrating and interpreting these complex datasets, AI can help identify key molecular events and regulatory pathways involved in cellular reprogramming. This knowledge can inform the design of precision engineering strategies, such as the development of new transcription factor and signaling molecule cocktails, to manipulate cell identity and drive authentic cell fate across lineage boundaries. Furthermore, when used in combination with computational methods, AI can accelerate and improve the analysis and understanding of the intricate relationships between genes, proteins, and cellular processes. In this review article, we explore the current state of AI applications in biophysics with a specific focus on cellular engineering and reprogramming. Then, we showcase a couple of recent applications where we combined machine learning with experimental and computational techniques. Finally, we briefly discuss the challenges and prospects of AI in cellular engineering and reprogramming, emphasizing the potential of these technologies to revolutionize our ability to engineer cells for a variety of applications, from disease modeling and drug discovery to regenerative medicine and biomanufacturing.
Collapse
Affiliation(s)
- Sara Capponi
- IBM Almaden Research Center, San Jose, California; Center for Cellular Construction, San Francisco, California.
| | - Shangying Wang
- Bay Area Institute of Science, Altos Labs, Redwood City, California.
| |
Collapse
|
10
|
Kabaria SR, Bae Y, Ehmann ME, Beitz AM, Lende-Dorn BA, Peterman EL, Love KS, Ploessl DS, Galloway KE. Programmable promoter editing for precise control of transgene expression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.19.599813. [PMID: 38948694 PMCID: PMC11212971 DOI: 10.1101/2024.06.19.599813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
Subtle changes in gene expression direct cells to distinct cellular states. Identifying and controlling dose-dependent transgenes require tools for precisely titrating expression. To this end, we developed a highly modular, extensible framework called DIAL for building editable promoters that allow for fine-scale, heritable changes in transgene expression. Using DIAL, we increase expression by recombinase-mediated excision of spacers between the binding sites of a synthetic zinc finger transcription factor and the core promoter. By nesting varying numbers and lengths of spacers, DIAL generates a tunable range of unimodal setpoints from a single promoter. Through small-molecule control of transcription factors and recombinases, DIAL supports temporally defined, user-guided control of transgene expression that is extensible to additional transcription factors. Lentiviral delivery of DIAL generates multiple setpoints in primary cells and iPSCs. As promoter editing generates stable states, DIAL setpoints are heritable, facilitating mapping of transgene levels to phenotypes. The DIAL framework opens new opportunities for tailoring transgene expression and improving the predictability and performance of gene circuits across diverse applications.
Collapse
Affiliation(s)
- Sneha R. Kabaria
- Department of Chemical Engineering, MIT, Cambridge, MA 02139, USA
| | - Yunbeen Bae
- Department of Chemical Engineering, MIT, Cambridge, MA 02139, USA
| | - Mary E. Ehmann
- Department of Chemical Engineering, MIT, Cambridge, MA 02139, USA
| | - Adam M. Beitz
- Department of Chemical Engineering, MIT, Cambridge, MA 02139, USA
| | | | - Emma L. Peterman
- Department of Chemical Engineering, MIT, Cambridge, MA 02139, USA
| | - Kasey S. Love
- Department of Biological Engineering, MIT, Cambridge, MA 02139, USA
| | - Deon S. Ploessl
- Department of Chemical Engineering, MIT, Cambridge, MA 02139, USA
| | - Kate E. Galloway
- Department of Chemical Engineering, MIT, Cambridge, MA 02139, USA
| |
Collapse
|
11
|
Peruzzi JA, Gunnels TF, Edelstein HI, Lu P, Baker D, Leonard JN, Kamat NP. Enhancing extracellular vesicle cargo loading and functional delivery by engineering protein-lipid interactions. Nat Commun 2024; 15:5618. [PMID: 38965227 PMCID: PMC11224323 DOI: 10.1038/s41467-024-49678-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2023] [Accepted: 06/13/2024] [Indexed: 07/06/2024] Open
Abstract
Naturally generated lipid nanoparticles termed extracellular vesicles (EVs) hold significant promise as engineerable therapeutic delivery vehicles. However, active loading of protein cargo into EVs in a manner that is useful for delivery remains a challenge. Here, we demonstrate that by rationally designing proteins to traffic to the plasma membrane and associate with lipid rafts, we can enhance loading of protein cargo into EVs for a set of structurally diverse transmembrane and peripheral membrane proteins. We then demonstrate the capacity of select lipid tags to mediate increased EV loading and functional delivery of an engineered transcription factor to modulate gene expression in target cells. We envision that this technology could be leveraged to develop new EV-based therapeutics that deliver a wide array of macromolecular cargo.
Collapse
Affiliation(s)
- Justin A Peruzzi
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Taylor F Gunnels
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Hailey I Edelstein
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA
| | - Peilong Lu
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
- Westlake Laboratory of Life Sciences and Biomedicine, Hangzhou, Zhejiang, China
- Institute of Biology, Westlake Institute for Advanced Study, Hangzhou, Zhejiang, China
| | - David Baker
- Department of Biochemistry, University of Washington, Seattle, WA, 98195, USA
- Institute for Protein Design, University of Washington, Seattle, WA, 98195, USA
- Howard Hughes Medical Institute, University of Washington, Seattle, WA, 98195, USA
| | - Joshua N Leonard
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, 60208, USA.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA.
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA.
- Member, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL, 60208, USA.
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, 60208, USA.
| | - Neha P Kamat
- Center for Synthetic Biology, Northwestern University, Evanston, IL, 60208, USA.
- Department of Biomedical Engineering, Northwestern University, Evanston, IL, 60208, USA.
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, 60208, USA.
- Member, Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL, 60208, USA.
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, 60208, USA.
| |
Collapse
|
12
|
Neumann EN, Bertozzi TM, Wu E, Serack F, Harvey JW, Brauer PP, Pirtle CP, Coffey A, Howard M, Kamath N, Lenz K, Guzman K, Raymond MH, Khalil AS, Deverman BE, Minikel EV, Vallabh SM, Weissman JS. Brainwide silencing of prion protein by AAV-mediated delivery of an engineered compact epigenetic editor. Science 2024; 384:ado7082. [PMID: 38935715 PMCID: PMC11875203 DOI: 10.1126/science.ado7082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 05/02/2024] [Indexed: 06/29/2024]
Abstract
Prion disease is caused by misfolding of the prion protein (PrP) into pathogenic self-propagating conformations, leading to rapid-onset dementia and death. However, elimination of endogenous PrP halts prion disease progression. In this study, we describe Coupled Histone tail for Autoinhibition Release of Methyltransferase (CHARM), a compact, enzyme-free epigenetic editor capable of silencing transcription through programmable DNA methylation. Using a histone H3 tail-Dnmt3l fusion, CHARM recruits and activates endogenous DNA methyltransferases, thereby reducing transgene size and cytotoxicity. When delivered to the mouse brain by systemic injection of adeno-associated virus (AAV), Prnp-targeted CHARM ablates PrP expression across the brain. Furthermore, we have temporally limited editor expression by implementing a kinetically tuned self-silencing approach. CHARM potentially represents a broadly applicable strategy to suppress pathogenic proteins, including those implicated in other neurodegenerative diseases.
Collapse
Affiliation(s)
- Edwin N. Neumann
- Whitehead Institute for Biomedical Research; Cambridge, MA 02142, USA
- Department of Biological Engineering, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
| | - Tessa M. Bertozzi
- Whitehead Institute for Biomedical Research; Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology; Cambridge, MA 02142, USA
| | - Elaine Wu
- Whitehead Institute for Biomedical Research; Cambridge, MA 02142, USA
| | - Fiona Serack
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA02142, USA
| | - John W. Harvey
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA02142, USA
| | - Pamela P. Brauer
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA02142, USA
| | - Catherine P. Pirtle
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA02142, USA
| | - Alissa Coffey
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA02142, USA
| | - Michael Howard
- Comparative Medicine, Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
| | - Nikita Kamath
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA02142, USA
| | - Kenney Lenz
- Comparative Medicine, Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
| | - Kenia Guzman
- Comparative Medicine, Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
| | - Michael H. Raymond
- Biological Design Center, Boston University; Boston, MA 02215, USA
- Department of Biomedical Engineering, Boston University; Boston, MA 02215, USA
| | - Ahmad S. Khalil
- Biological Design Center, Boston University; Boston, MA 02215, USA
- Department of Biomedical Engineering, Boston University; Boston, MA 02215, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University; Boston, MA 02115. USA
| | - Benjamin E. Deverman
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA02142, USA
| | - Eric Vallabh Minikel
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA02142, USA
- McCance Center for Brain Health and Department of Neurology, Massachusetts General Hospital; Boston, MA 02114, USA
| | - Sonia M. Vallabh
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard; Cambridge, MA02142, USA
- McCance Center for Brain Health and Department of Neurology, Massachusetts General Hospital; Boston, MA 02114, USA
| | - Jonathan S. Weissman
- Whitehead Institute for Biomedical Research; Cambridge, MA 02142, USA
- Howard Hughes Medical Institute, Massachusetts Institute of Technology; Cambridge, MA 02142, USA
- Department of Biology, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- David H. Koch Institute for Integrative Cancer Research, Massachusetts Institute of Technology; Cambridge, MA 02142, USA
| |
Collapse
|
13
|
Joshi SHN, Jenkins C, Ulaeto D, Gorochowski TE. Accelerating Genetic Sensor Development, Scale-up, and Deployment Using Synthetic Biology. BIODESIGN RESEARCH 2024; 6:0037. [PMID: 38919711 PMCID: PMC11197468 DOI: 10.34133/bdr.0037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/23/2024] [Indexed: 06/27/2024] Open
Abstract
Living cells are exquisitely tuned to sense and respond to changes in their environment. Repurposing these systems to create engineered biosensors has seen growing interest in the field of synthetic biology and provides a foundation for many innovative applications spanning environmental monitoring to improved biobased production. In this review, we present a detailed overview of currently available biosensors and the methods that have supported their development, scale-up, and deployment. We focus on genetic sensors in living cells whose outputs affect gene expression. We find that emerging high-throughput experimental assays and evolutionary approaches combined with advanced bioinformatics and machine learning are establishing pipelines to produce genetic sensors for virtually any small molecule, protein, or nucleic acid. However, more complex sensing tasks based on classifying compositions of many stimuli and the reliable deployment of these systems into real-world settings remain challenges. We suggest that recent advances in our ability to precisely modify nonmodel organisms and the integration of proven control engineering principles (e.g., feedback) into the broader design of genetic sensing systems will be necessary to overcome these hurdles and realize the immense potential of the field.
Collapse
Affiliation(s)
| | - Christopher Jenkins
- CBR Division, Defence Science and Technology Laboratory, Porton Down, Wiltshire SP4 0JQ, UK
| | - David Ulaeto
- CBR Division, Defence Science and Technology Laboratory, Porton Down, Wiltshire SP4 0JQ, UK
| | - Thomas E. Gorochowski
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
- BrisEngBio,
School of Chemistry, University of Bristol, Bristol BS8 1TS, UK
| |
Collapse
|
14
|
Alcantar MA, English MA, Valeri JA, Collins JJ. A high-throughput synthetic biology approach for studying combinatorial chromatin-based transcriptional regulation. Mol Cell 2024; 84:2382-2396.e9. [PMID: 38906116 DOI: 10.1016/j.molcel.2024.05.025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 04/11/2024] [Accepted: 05/24/2024] [Indexed: 06/23/2024]
Abstract
The construction of synthetic gene circuits requires the rational combination of multiple regulatory components, but predicting their behavior can be challenging due to poorly understood component interactions and unexpected emergent behaviors. In eukaryotes, chromatin regulators (CRs) are essential regulatory components that orchestrate gene expression. Here, we develop a screening platform to investigate the impact of CR pairs on transcriptional activity in yeast. We construct a combinatorial library consisting of over 1,900 CR pairs and use a high-throughput workflow to characterize the impact of CR co-recruitment on gene expression. We recapitulate known interactions and discover several instances of CR pairs with emergent behaviors. We also demonstrate that supervised machine learning models trained with low-dimensional amino acid embeddings accurately predict the impact of CR co-recruitment on transcriptional activity. This work introduces a scalable platform and machine learning approach that can be used to study how networks of regulatory components impact gene expression.
Collapse
Affiliation(s)
- Miguel A Alcantar
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; Institute for Medical Engineering and Science, MIT, Cambridge, MA 02139, USA
| | - Max A English
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; Institute for Medical Engineering and Science, MIT, Cambridge, MA 02139, USA
| | - Jacqueline A Valeri
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; Institute for Medical Engineering and Science, MIT, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA
| | - James J Collins
- Department of Biological Engineering, Massachusetts Institute of Technology (MIT), Cambridge, MA 02139, USA; Institute for Medical Engineering and Science, MIT, Cambridge, MA 02139, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA; Broad Institute of MIT and Harvard, Cambridge, MA 02142, USA.
| |
Collapse
|
15
|
Islam F, Lewis MR, Craig JD, Leyendecker PM, Deans TL. Advancing in vivo reprogramming with synthetic biology. Curr Opin Biotechnol 2024; 87:103109. [PMID: 38520824 PMCID: PMC11162311 DOI: 10.1016/j.copbio.2024.103109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Revised: 02/23/2024] [Accepted: 02/27/2024] [Indexed: 03/25/2024]
Abstract
Reprogramming cells will play a fundamental role in shaping the future of cell therapies by developing new strategies to engineer cells for improved performance and higher-order physiological functions. Approaches in synthetic biology harness cells' natural ability to sense diverse signals, integrate environmental inputs to make decisions, and execute complex behaviors based on the health of the organism or tissue. In this review, we highlight strategies in synthetic biology to reprogram cells, and discuss how recent approaches in the delivery of modified mRNA have created new opportunities to alter cell function in vivo. Finally, we discuss how combining concepts from synthetic biology and the delivery of mRNA in vivo could provide a platform for innovation to advance in vivo cellular reprogramming.
Collapse
Affiliation(s)
- Farhana Islam
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Mitchell R Lewis
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - James D Craig
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Peyton M Leyendecker
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA
| | - Tara L Deans
- Department of Biomedical Engineering, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
16
|
Yu S, Pan H, Yang H, Zhuang H, Yang H, Yu X, Zhang S, Fang M, Li T, Ge S, Xia N. A non-viral DNA delivery system consisting of multifunctional chimeric peptide fused with zinc-finger protein. iScience 2024; 27:109464. [PMID: 38558940 PMCID: PMC10981093 DOI: 10.1016/j.isci.2024.109464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 02/06/2024] [Accepted: 03/07/2024] [Indexed: 04/04/2024] Open
Abstract
Non-viral gene delivery systems have received sustained attention as a promising alternative to viral vectors for disease treatment and prevention in recent years. Numerous methods have been developed to enhance gene uptake and delivery in the cytoplasm; however, due to technical difficulties and delivery efficiency, these systems still face challenges in a range of biological applications, especially in vivo. To alleviate this challenge, we devised a novel system for gene delivery based on a recombinant protein eTAT-ZF9-NLS, which consisted of a multifunctional chimeric peptide and a zinc-finger protein with sequence-specific DNA-binding activity. High transfection efficiency was observed in several mammalian cells after intracellular delivery of plasmid containing ZF9-binding sites mediated by eTAT-ZF9-NLS. Our new approach provides a novel transfection strategy and the transfection efficiency was confirmed both in vitro and in vivo, making it a preferential transfection reagent for possible gene therapy.
Collapse
Affiliation(s)
- Siyuan Yu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Haifeng Pan
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Han Yang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Haoyun Zhuang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Haihui Yang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Xuan Yu
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Shiyin Zhang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Mujin Fang
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Tingdong Li
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Shengxiang Ge
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| | - Ningshao Xia
- State Key Laboratory of Vaccines for Infectious Diseases, Xiang An Biomedicine Laboratory, Department of Laboratory Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
- National Institute of Diagnostics and Vaccine Development in Infectious Diseases, State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, Collaborative Innovation Center of Biologic Products, National Innovation Platform for Industry-Education Integration in Vaccine Research, NMPA Key Laboratory for Research and Evaluation of Infectious Disease Diagnostic Technology, the Research Unit of Frontier Technology of Structural Vaccinology of Chinese Academy of Medical Sciences, Xiamen University, Xiamen 361102, China
| |
Collapse
|
17
|
Bhatt B, García-Díaz P, Foight GW. Synthetic transcription factor engineering for cell and gene therapy. Trends Biotechnol 2024; 42:449-463. [PMID: 37865540 DOI: 10.1016/j.tibtech.2023.09.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/22/2023] [Accepted: 09/25/2023] [Indexed: 10/23/2023]
Abstract
Synthetic transcription factors (synTFs) that control beneficial transgene expression are an important method to increase the safety and efficacy of cell and gene therapy. Reliance on synTF components from non-human sources has slowed progress in the field because of concerns about immunogenicity and inducer drug properties. Recent advances in human-derived DNA-binding domains (DBDs) and transcriptional activation domains (TADs) paired with novel control modules responsive to clinically approved small molecules have poised the synTF field to overcome these hurdles. Advances include controllers inducible by autonomous signaling inputs and more complex, multi-input synTF circuits. Demonstrations of advanced control strategies with human-derived transcription factor components in clinically relevant vectors and in vivo models will facilitate progression into the clinic.
Collapse
Affiliation(s)
- Bhoomi Bhatt
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, and Baylor College of Medicine, Houston, TX, USA
| | - Pablo García-Díaz
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, and Baylor College of Medicine, Houston, TX, USA
| | - Glenna Wink Foight
- Center for Cell and Gene Therapy, Texas Children's Hospital, Houston Methodist Hospital, and Baylor College of Medicine, Houston, TX, USA; Department of Molecular and Cellular Biology, Baylor College of Medicine, Houston, TX, USA.
| |
Collapse
|
18
|
Recktenwald M, Hutt E, Davis L, MacAulay J, Daringer NM, Galie PA, Staehle MM, Vega SL. Engineering transcriptional regulation for cell-based therapies. SLAS Technol 2024; 29:100121. [PMID: 38340892 DOI: 10.1016/j.slast.2024.100121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/10/2024] [Accepted: 02/07/2024] [Indexed: 02/12/2024]
Abstract
A major aim in the field of synthetic biology is developing tools capable of responding to user-defined inputs by activating therapeutically relevant cellular functions. Gene transcription and regulation in response to external stimuli are some of the most powerful and versatile of these cellular functions being explored. Motivated by the success of chimeric antigen receptor (CAR) T-cell therapies, transmembrane receptor-based platforms have been embraced for their ability to sense extracellular ligands and to subsequently activate intracellular signal transduction. The integration of transmembrane receptors with transcriptional activation platforms has not yet achieved its full potential. Transient expression of plasmid DNA is often used to explore gene regulation platforms in vitro. However, applications capable of targeting therapeutically relevant endogenous or stably integrated genes are more clinically relevant. Gene regulation may allow for engineered cells to traffic into tissues of interest and secrete functional proteins into the extracellular space or to differentiate into functional cells. Transmembrane receptors that regulate transcription have the potential to revolutionize cell therapies in a myriad of applications, including cancer treatment and regenerative medicine. In this review, we will examine current engineering approaches to control transcription in mammalian cells with an emphasis on systems that can be selectively activated in response to extracellular signals. We will also speculate on the potential therapeutic applications of these technologies and examine promising approaches to expand their capabilities and tighten the control of gene regulation in cellular therapies.
Collapse
Affiliation(s)
- Matthias Recktenwald
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Evan Hutt
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Leah Davis
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - James MacAulay
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Nichole M Daringer
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Peter A Galie
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Mary M Staehle
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA
| | - Sebastián L Vega
- Department of Biomedical Engineering, Rowan University, Glassboro, NJ 08028, USA; Department of Orthopaedic Surgery, Cooper Medical School of Rowan University, Camden, NJ 08103, USA.
| |
Collapse
|
19
|
Franko N, da Silva Santinha AJ, Xue S, Zhao H, Charpin-El Hamri G, Platt RJ, Teixeira AP, Fussenegger M. Integrated compact regulators of protein activity enable control of signaling pathways and genome-editing in vivo. Cell Discov 2024; 10:9. [PMID: 38263404 PMCID: PMC10805712 DOI: 10.1038/s41421-023-00632-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 12/02/2023] [Indexed: 01/25/2024] Open
Abstract
Viral proteases and clinically safe inhibitors were employed to build integrated compact regulators of protein activity (iCROP) for post-translational regulation of functional proteins by tunable proteolytic activity. In the absence of inhibitor, the co-localized/fused protease cleaves a target peptide sequence introduced in an exposed loop of the protein of interest, irreversibly fragmenting the protein structure and destroying its functionality. We selected three proteases and demonstrated the versatility of the iCROP framework by validating it to regulate the functional activity of ten different proteins. iCROP switches can be delivered either as mRNA or DNA, and provide rapid actuation kinetics with large induction ratios, while remaining strongly suppressed in the off state without inhibitor. iCROPs for effectors of the NF-κB and NFAT signaling pathways were assembled and confirmed to enable precise activation/inhibition of downstream events in response to protease inhibitors. In lipopolysaccharide-treated mice, iCROP-sr-IκBα suppressed cytokine release ("cytokine storm") by rescuing the activity of IκBα, which suppresses NF-κB signaling. We also constructed compact inducible CRISPR-(d)Cas9 variants and showed that iCROP-Cas9-mediated knockout of the PCSK9 gene in the liver lowered blood LDL-cholesterol levels in mice. iCROP-based protein switches will facilitate protein-level regulation in basic research and translational applications.
Collapse
Affiliation(s)
- Nik Franko
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | | | - Shuai Xue
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Haijie Zhao
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Ghislaine Charpin-El Hamri
- Département Génie Biologique, Institut Universitaire de Technologie, Université Claude Bernard Lyon 1, Villeurbanne, Cedex, France
| | | | - Ana Palma Teixeira
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland.
- Faculty of Science, University of Basel, Basel, Switzerland.
| |
Collapse
|
20
|
Yagci ZB, Kelkar GR, Johnson TJ, Sen D, Keung AJ. Designing Epigenome Editors: Considerations of Biochemical and Locus Specificities. Methods Mol Biol 2024; 2842:23-55. [PMID: 39012589 DOI: 10.1007/978-1-0716-4051-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/17/2024]
Abstract
The advent of locus-specific protein recruitment technologies has enabled a new class of studies in chromatin biology. Epigenome editors (EEs) enable biochemical modifications of chromatin at almost any specific endogenous locus. Their locus-specificity unlocks unique information including the functional roles of distinct modifications at specific genomic loci. Given the growing interest in using these tools for biological and translational studies, there are many specific design considerations depending on the scientific question or clinical need. Here, we present and discuss important design considerations and challenges regarding the biochemical and locus specificities of epigenome editors. These include how to: account for the complex biochemical diversity of chromatin; control for potential interdependency of epigenome editors and their resultant modifications; avoid sequestration effects; quantify the locus specificity of epigenome editors; and improve locus-specificity by considering concentration, affinity, avidity, and sequestration effects.
Collapse
Affiliation(s)
- Z Begum Yagci
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Gautami R Kelkar
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Tyler J Johnson
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Dilara Sen
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA
| | - Albert J Keung
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
21
|
Gao Y, Wang L, Wang B. Customizing cellular signal processing by synthetic multi-level regulatory circuits. Nat Commun 2023; 14:8415. [PMID: 38110405 PMCID: PMC10728147 DOI: 10.1038/s41467-023-44256-1] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/05/2023] [Indexed: 12/20/2023] Open
Abstract
As synthetic biology permeates society, the signal processing circuits in engineered living systems must be customized to meet practical demands. Towards this mission, novel regulatory mechanisms and genetic circuits with unprecedented complexity have been implemented over the past decade. These regulatory mechanisms, such as transcription and translation control, could be integrated into hybrid circuits termed "multi-level circuits". The multi-level circuit design will tremendously benefit the current genetic circuit design paradigm, from modifying basic circuit dynamics to facilitating real-world applications, unleashing our capabilities to customize cellular signal processing and address global challenges through synthetic biology.
Collapse
Affiliation(s)
- Yuanli Gao
- College of Chemical and Biological Engineering & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310058, China
- School of Biological Sciences, University of Edinburgh, Edinburgh, EH9 3FF, UK
| | - Lei Wang
- Center of Synthetic Biology and Integrated Bioengineering & School of Engineering, Westlake University, Hangzhou, 310030, China.
| | - Baojun Wang
- College of Chemical and Biological Engineering & ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou, 310058, China.
- Research Center for Biological Computation, Zhejiang Lab, Hangzhou, 311100, China.
| |
Collapse
|
22
|
Yang X, Rocks JW, Jiang K, Walters AJ, Rai K, Liu J, Nguyen J, Olson SD, Mehta P, Collins JJ, Daringer NM, Bashor CJ. Engineering synthetic phosphorylation signaling networks in human cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.11.557100. [PMID: 37745327 PMCID: PMC10515791 DOI: 10.1101/2023.09.11.557100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Protein phosphorylation signaling networks play a central role in how cells sense and respond to their environment. Here, we describe the engineering of artificial phosphorylation networks in which "push-pull" motifs-reversible enzymatic phosphorylation cycles consisting of opposing kinase and phosphatase activities-are assembled from modular protein domain parts and then wired together to create synthetic phosphorylation circuits in human cells. We demonstrate that the composability of our design scheme enables model-guided tuning of circuit function and the ability to make diverse network connections; synthetic phosphorylation circuits can be coupled to upstream cell surface receptors to enable fast-timescale sensing of extracellular ligands, while downstream connections can regulate gene expression. We leverage these capabilities to engineer cell-based cytokine controllers that dynamically sense and suppress activated T cells. Our work introduces a generalizable approach for designing and building phosphorylation signaling circuits that enable user-defined sense-and-respond function for diverse biosensing and therapeutic applications.
Collapse
Affiliation(s)
- Xiaoyu Yang
- Department of Bioengineering, Rice University; Houston, TX 77030, USA
- Graduate Program in Systems, Synthetic and Physical Biology, Rice University; Houston, TX 77030, USA
| | - Jason W. Rocks
- Department of Physics, Boston University; Boston, MA 02215, USA
| | - Kaiyi Jiang
- Department of Bioengineering, Rice University; Houston, TX 77030, USA
| | - Andrew J. Walters
- Department of Bioengineering, Rice University; Houston, TX 77030, USA
- Graduate Program in Bioengineering, Rice University; Houston, TX 77030, USA
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston; Houston, TX 77030, USA
| | - Kshitij Rai
- Graduate Program in Systems, Synthetic and Physical Biology, Rice University; Houston, TX 77030, USA
| | - Jing Liu
- Department of Bioengineering, Rice University; Houston, TX 77030, USA
| | - Jason Nguyen
- Department of Bioengineering, Rice University; Houston, TX 77030, USA
| | - Scott D. Olson
- Department of Pediatric Surgery, McGovern Medical School, University of Texas Health Science Center at Houston; Houston, TX 77030, USA
| | - Pankaj Mehta
- Department of Physics, Boston University; Boston, MA 02215, USA
- Biological Design Center, Boston University; Boston, MA 02215, USA
- Faculty of Computing and Data Science, Boston University; Boston, MA 02215, USA
| | - James J. Collins
- Institute for Medical Engineering and Science, Department of Biological Engineering, and Synthetic Biology Center, Massachusetts Institute of Technology; Cambridge, MA 02139, USA
- Broad Institute of MIT and Harvard; Cambridge, MA 02142, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University; Boston, MA 02115, USA
| | - Nichole M Daringer
- Department of Biomedical Engineering, Rowan University; Glassboro, NJ 08028, USA
| | - Caleb J. Bashor
- Department of Bioengineering, Rice University; Houston, TX 77030, USA
- Department of Biosciences, Rice University; Houston, TX 77030, USA
| |
Collapse
|
23
|
Tang L, Tian Z, Cheng J, Zhang Y, Song Y, Liu Y, Wang J, Zhang P, Ke Y, Simmel FC, Song J. Circular single-stranded DNA as switchable vector for gene expression in mammalian cells. Nat Commun 2023; 14:6665. [PMID: 37863879 PMCID: PMC10589306 DOI: 10.1038/s41467-023-42437-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2022] [Accepted: 10/11/2023] [Indexed: 10/22/2023] Open
Abstract
Synthetic gene networks in mammalian cells are currently limited to either protein-based transcription factors or RNA-based regulators. Here, we demonstrate a regulatory approach based on circular single-stranded DNA (Css DNA), which can be used as an efficient expression vector with switchable activity, enabling gene regulation in mammalian cells. The Css DNA is transformed into its double-stranded form via DNA replication and used as vectors encoding a variety of different proteins in a wide range of cell lines as well as in mice. The rich repository of DNA nanotechnology allows to use sort single-stranded DNA effectors to fold Css DNA into DNA nanostructures of different complexity, leading the gene expression to programmable inhibition and subsequently re-activation via toehold-mediated strand displacement. The regulatory strategy from Css DNA can thus expand the molecular toolbox for the realization of synthetic regulatory networks with potential applications in genetic diagnosis and gene therapy.
Collapse
Affiliation(s)
- Linlin Tang
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Zhijin Tian
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, 310022, Hangzhou, Zhejiang, China
- Department of Chemistry, University of Science & Technology of China, 230026, Hefei, Anhui, China
| | - Jin Cheng
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Yijing Zhang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, 310022, Hangzhou, Zhejiang, China
- School of Life Sciences, Tianjin University, 300072, Tianjin, China
| | - Yongxiu Song
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, 310022, Hangzhou, Zhejiang, China
| | - Yan Liu
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China
| | - Jinghao Wang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, 310022, Hangzhou, Zhejiang, China
- Department of Chemistry, University of Science & Technology of China, 230026, Hefei, Anhui, China
| | - Pengfei Zhang
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, 310022, Hangzhou, Zhejiang, China
| | - Yonggang Ke
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, GA, 30322, USA.
| | | | - Jie Song
- Institute of Nano Biomedicine and Engineering, Department of Instrument Science and Engineering, School of Electronic Information and Electrical Engineering, Shanghai Jiao Tong University, 200240, Shanghai, China.
- Hangzhou Institute of Medicine, Chinese Academy of Sciences, 310022, Hangzhou, Zhejiang, China.
| |
Collapse
|
24
|
Naseri G, Raasch H, Charpentier E, Erhardt M. A versatile regulatory toolkit of arabinose-inducible artificial transcription factors for Enterobacteriaceae. Commun Biol 2023; 6:1005. [PMID: 37789111 PMCID: PMC10547716 DOI: 10.1038/s42003-023-05363-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 09/15/2023] [Indexed: 10/05/2023] Open
Abstract
The Gram-negative bacteria Salmonella enterica and Escherichia coli are important model organisms, powerful prokaryotic expression platforms for biotechnological applications, and pathogenic strains constitute major public health threats. To facilitate new approaches for research and biotechnological applications, we here develop a set of arabinose-inducible artificial transcription factors (ATFs) using CRISPR/dCas9 and Arabidopsis-derived DNA-binding proteins to control gene expression in E. coli and Salmonella over a wide inducer concentration range. The transcriptional output of the different ATFs, in particular when expressed in Salmonella rewired for arabinose catabolism, varies over a wide spectrum (up to 35-fold gene activation). As a proof-of-concept, we use the developed ATFs to engineer a Salmonella two-input biosensor strain, SALSOR 0.2 (SALmonella biosenSOR 0.2), which detects and quantifies alkaloid drugs through a measurable fluorescent output. Moreover, we use plant-derived ATFs to regulate β-carotene biosynthesis in E. coli, resulting in ~2.1-fold higher β-carotene production compared to expression of the biosynthesis pathway using a strong constitutive promoter.
Collapse
Affiliation(s)
- Gita Naseri
- Max Planck Unit for the Science of Pathogens, Charitéplatz 1, 10117, Berlin, Germany.
- Institut für Biologie, Humboldt-Universität zu Berlin, Philippstrasse 13, 10115, Berlin, Germany.
| | - Hannah Raasch
- Institut für Biologie, Humboldt-Universität zu Berlin, Philippstrasse 13, 10115, Berlin, Germany
| | - Emmanuelle Charpentier
- Max Planck Unit for the Science of Pathogens, Charitéplatz 1, 10117, Berlin, Germany
- Institut für Biologie, Humboldt-Universität zu Berlin, Philippstrasse 13, 10115, Berlin, Germany
| | - Marc Erhardt
- Max Planck Unit for the Science of Pathogens, Charitéplatz 1, 10117, Berlin, Germany.
- Institut für Biologie, Humboldt-Universität zu Berlin, Philippstrasse 13, 10115, Berlin, Germany.
| |
Collapse
|
25
|
Bragdon MDJ, Patel N, Chuang J, Levien E, Bashor CJ, Khalil AS. Cooperative assembly confers regulatory specificity and long-term genetic circuit stability. Cell 2023; 186:3810-3825.e18. [PMID: 37552983 PMCID: PMC10528910 DOI: 10.1016/j.cell.2023.07.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 05/17/2023] [Accepted: 07/10/2023] [Indexed: 08/10/2023]
Abstract
A ubiquitous feature of eukaryotic transcriptional regulation is cooperative self-assembly between transcription factors (TFs) and DNA cis-regulatory motifs. It is thought that this strategy enables specific regulatory connections to be formed in gene networks between otherwise weakly interacting, low-specificity molecular components. Here, using synthetic gene circuits constructed in yeast, we find that high regulatory specificity can emerge from cooperative, multivalent interactions among artificial zinc-finger-based TFs. We show that circuits "wired" using the strategy of cooperative TF assembly are effectively insulated from aberrant misregulation of the host cell genome. As we demonstrate in experiments and mathematical models, this mechanism is sufficient to rescue circuit-driven fitness defects, resulting in genetic and functional stability of circuits in long-term continuous culture. Our naturally inspired approach offers a simple, generalizable means for building high-fidelity, evolutionarily robust gene circuits that can be scaled to a wide range of host organisms and applications.
Collapse
Affiliation(s)
- Meghan D J Bragdon
- Biological Design Center, Boston University, Boston, MA 02215, USA; Program in Molecular Biology, Cell Biology and Biochemistry, Boston University, Boston, MA 02215, USA
| | - Nikit Patel
- Biological Design Center, Boston University, Boston, MA 02215, USA; Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - James Chuang
- Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Department of Genetics, Harvard Medical School, Boston, MA 02115, USA
| | - Ethan Levien
- Department of Mathematics, Dartmouth College, Hanover, NH 03755, USA
| | - Caleb J Bashor
- Department of Bioengineering, Rice University, Houston, TX 77030, USA; Department of Biosciences, Rice University, Houston, TX 77030, USA
| | - Ahmad S Khalil
- Biological Design Center, Boston University, Boston, MA 02215, USA; Program in Molecular Biology, Cell Biology and Biochemistry, Boston University, Boston, MA 02215, USA; Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA.
| |
Collapse
|
26
|
Ichikawa DM, Abdin O, Alerasool N, Kogenaru M, Mueller AL, Wen H, Giganti DO, Goldberg GW, Adams S, Spencer JM, Razavi R, Nim S, Zheng H, Gionco C, Clark FT, Strokach A, Hughes TR, Lionnet T, Taipale M, Kim PM, Noyes MB. A universal deep-learning model for zinc finger design enables transcription factor reprogramming. Nat Biotechnol 2023; 41:1117-1129. [PMID: 36702896 PMCID: PMC10421740 DOI: 10.1038/s41587-022-01624-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 11/17/2022] [Indexed: 01/27/2023]
Abstract
Cys2His2 zinc finger (ZF) domains engineered to bind specific target sequences in the genome provide an effective strategy for programmable regulation of gene expression, with many potential therapeutic applications. However, the structurally intricate engagement of ZF domains with DNA has made their design challenging. Here we describe the screening of 49 billion protein-DNA interactions and the development of a deep-learning model, ZFDesign, that solves ZF design for any genomic target. ZFDesign is a modern machine learning method that models global and target-specific differences induced by a range of library environments and specifically takes into account compatibility of neighboring fingers using a novel hierarchical transformer architecture. We demonstrate the versatility of designed ZFs as nucleases as well as activators and repressors by seamless reprogramming of human transcription factors. These factors could be used to upregulate an allele of haploinsufficiency, downregulate a gain-of-function mutation or test the consequence of regulation of a single gene as opposed to the many genes that a transcription factor would normally influence.
Collapse
Affiliation(s)
- David M Ichikawa
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY, USA
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA
| | - Osama Abdin
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Nader Alerasool
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Manjunatha Kogenaru
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY, USA
| | - April L Mueller
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY, USA
| | - Han Wen
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - David O Giganti
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY, USA
| | - Gregory W Goldberg
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY, USA
| | - Samantha Adams
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY, USA
| | - Jeffrey M Spencer
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY, USA
| | - Rozita Razavi
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Satra Nim
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Hong Zheng
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Courtney Gionco
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY, USA
| | - Finnegan T Clark
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY, USA
| | - Alexey Strokach
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada
| | - Timothy R Hughes
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Timothee Lionnet
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY, USA
| | - Mikko Taipale
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Philip M Kim
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada.
- Department of Computer Science, University of Toronto, Toronto, Ontario, Canada.
| | - Marcus B Noyes
- Institute for Systems Genetics, NYU Grossman School of Medicine, New York, NY, USA.
- Department of Biochemistry and Molecular Pharmacology, NYU Grossman School of Medicine, New York, NY, USA.
| |
Collapse
|
27
|
O'Connell RW, Rai K, Piepergerdes TC, Wang Y, Samra KD, Wilson JA, Lin S, Zhang TH, Ramos E, Sun A, Kille B, Curry KD, Rocks JW, Treangen TJ, Mehta P, Bashor CJ. Ultra-high throughput mapping of genetic design space. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.16.532704. [PMID: 36993481 PMCID: PMC10055055 DOI: 10.1101/2023.03.16.532704] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Massively parallel genetic screens have been used to map sequence-to-function relationships for a variety of genetic elements. However, because these approaches only interrogate short sequences, it remains challenging to perform high throughput (HT) assays on constructs containing combinations of sequence elements arranged across multi-kb length scales. Overcoming this barrier could accelerate synthetic biology; by screening diverse gene circuit designs, "composition-to-function" mappings could be created that reveal genetic part composability rules and enable rapid identification of behavior-optimized variants. Here, we introduce CLASSIC, a generalizable genetic screening platform that combines long- and short-read next-generation sequencing (NGS) modalities to quantitatively assess pooled libraries of DNA constructs of arbitrary length. We show that CLASSIC can measure expression profiles of >10 5 drug-inducible gene circuit designs (ranging from 6-9 kb) in a single experiment in human cells. Using statistical inference and machine learning (ML) approaches, we demonstrate that data obtained with CLASSIC enables predictive modeling of an entire circuit design landscape, offering critical insight into underlying design principles. Our work shows that by expanding the throughput and understanding gained with each design-build-test-learn (DBTL) cycle, CLASSIC dramatically augments the pace and scale of synthetic biology and establishes an experimental basis for data-driven design of complex genetic systems.
Collapse
|
28
|
Chen J, Vishweshwaraiah YL, Mailman RB, Tabdanov ED, Dokholyan NV. A noncommutative combinatorial protein logic circuit controls cell orientation in nanoenvironments. SCIENCE ADVANCES 2023; 9:eadg1062. [PMID: 37235645 PMCID: PMC10219599 DOI: 10.1126/sciadv.adg1062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 04/20/2023] [Indexed: 05/28/2023]
Abstract
Single-protein-based devices that integrate signal sensing with logical operations to generate functional outputs offer exceptional promise for monitoring and modulating biological systems. Engineering such intelligent nanoscale computing agents is challenging, as it requires the integration of sensor domains into a functional protein via intricate allosteric networks. We incorporate a rapamycin-sensitive sensor (uniRapR) and a blue light-responsive LOV2 domain into human Src kinase, creating a protein device that functions as a noncommutative combinatorial logic circuit. In our design, rapamycin activates Src kinase, causing protein localization to focal adhesions, whereas blue light exerts the reverse effect that inactivates Src translocation. Focal adhesion maturation induced by Src activation reduces cell migration dynamics and shifts cell orientation to align along collagen nanolane fibers. Using this protein device, we reversibly control cell orientation by applying the appropriate input signals, a framework that may be useful in tissue engineering and regenerative medicine.
Collapse
Affiliation(s)
- Jiaxing Chen
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033-0850, USA
| | | | - Richard B. Mailman
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033-0850, USA
| | - Erdem D. Tabdanov
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033-0850, USA
| | - Nikolay V. Dokholyan
- Department of Pharmacology, Penn State College of Medicine, Hershey, PA 17033-0850, USA
- Department of Biochemistry and Molecular Biology, Penn State College of Medicine, Hershey, PA 17033-0850, USA
- Department of Chemistry, Pennsylvania State University, University Park, PA 16802, USA
- Department of Biomedical Engineering, Pennsylvania State University, University Park, PA 16802, USA
| |
Collapse
|
29
|
Martinez-Corral R, Park M, Biette KM, Friedrich D, Scholes C, Khalil AS, Gunawardena J, DePace AH. Transcriptional kinetic synergy: A complex landscape revealed by integrating modeling and synthetic biology. Cell Syst 2023; 14:324-339.e7. [PMID: 37080164 PMCID: PMC10472254 DOI: 10.1016/j.cels.2023.02.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 08/22/2022] [Accepted: 02/10/2023] [Indexed: 04/22/2023]
Abstract
Transcription factors (TFs) control gene expression, often acting synergistically. Classical thermodynamic models offer a biophysical explanation for synergy based on binding cooperativity and regulated recruitment of RNA polymerase. Because transcription requires polymerase to transition through multiple states, recent work suggests that "kinetic synergy" can arise through TFs acting on distinct steps of the transcription cycle. These types of synergy are not mutually exclusive and are difficult to disentangle conceptually and experimentally. Here, we model and build a synthetic circuit in which TFs bind to a single shared site on DNA, such that TFs cannot synergize by simultaneous binding. We model mRNA production as a function of both TF binding and regulation of the transcription cycle, revealing a complex landscape dependent on TF concentration, DNA binding affinity, and regulatory activity. We use synthetic TFs to confirm that the transcription cycle must be integrated with recruitment for a quantitative understanding of gene regulation.
Collapse
Affiliation(s)
| | - Minhee Park
- Biological Design Center, Boston University, Boston, MA 02215, USA; Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA
| | - Kelly M Biette
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Dhana Friedrich
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Clarissa Scholes
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Ahmad S Khalil
- Biological Design Center, Boston University, Boston, MA 02215, USA; Department of Biomedical Engineering, Boston University, Boston, MA 02215, USA; Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA 02115, USA
| | - Jeremy Gunawardena
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Angela H DePace
- Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
30
|
Anastassov S, Filo M, Chang CH, Khammash M. A cybergenetic framework for engineering intein-mediated integral feedback control systems. Nat Commun 2023; 14:1337. [PMID: 36906662 PMCID: PMC10008564 DOI: 10.1038/s41467-023-36863-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 02/21/2023] [Indexed: 03/13/2023] Open
Abstract
The ability of biological systems to tightly regulate targeted variables, despite external and internal disturbances, is known as Robust Perfect Adaptation (RPA). Achieved frequently through biomolecular integral feedback controllers at the cellular level, RPA has important implications for biotechnology and its various applications. In this study, we identify inteins as a versatile class of genetic components suitable for implementing these controllers and present a systematic approach for their design. We develop a theoretical foundation for screening intein-based RPA-achieving controllers and a simplified approach for modeling them. We then genetically engineer and test intein-based controllers using commonly used transcription factors in mammalian cells and demonstrate their exceptional adaptation properties over a wide dynamic range. The small size, flexibility, and applicability of inteins across life forms allow us to create a diversity of genetic RPA-achieving integral feedback control systems that can be used in various applications, including metabolic engineering and cell-based therapy.
Collapse
Affiliation(s)
- Stanislav Anastassov
- Department of Biosystems Science and Engineering, ETH Zürich, 4058, Basel, Switzerland
| | - Maurice Filo
- Department of Biosystems Science and Engineering, ETH Zürich, 4058, Basel, Switzerland
| | - Ching-Hsiang Chang
- Department of Biosystems Science and Engineering, ETH Zürich, 4058, Basel, Switzerland
| | - Mustafa Khammash
- Department of Biosystems Science and Engineering, ETH Zürich, 4058, Basel, Switzerland.
| |
Collapse
|
31
|
Song J, Liu C, Li B, Liu L, Zeng L, Ye Z, Wu W, Zhu L, Hu B. Synthetic peptides for the precise transportation of proteins of interests to selectable subcellular areas. Front Bioeng Biotechnol 2023; 11:1062769. [PMID: 36890909 PMCID: PMC9986269 DOI: 10.3389/fbioe.2023.1062769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 02/09/2023] [Indexed: 02/22/2023] Open
Abstract
Proteins, as gifts from nature, provide structure, sequence, and function templates for designing biomaterials. As first reported here, one group of proteins called reflectins and derived peptides were found to present distinct intracellular distribution preferences. Taking their conserved motifs and flexible linkers as Lego bricks, a series of reflectin-derivates were designed and expressed in cells. The selective intracellular localization property leaned on an RMs (canonical conserved reflectin motifs)-replication-determined manner, suggesting that these linkers and motifs were constructional fragments and ready-to-use building blocks for synthetic design and construction. A precise spatiotemporal application demo was constructed in the work by integrating RLNto2 (as one representative of a synthetic peptide derived from RfA1) into the Tet-on system to effectively transport cargo peptides into nuclei at selective time points. Further, the intracellular localization of RfA1 derivatives was spatiotemporally controllable with a CRY2/CIB1 system. At last, the functional homogeneities of either motifs or linkers were verified, which made them standardized building blocks for synthetic biology. In summary, the work provides a modularized, orthotropic, and well-characterized synthetic-peptide warehouse for precisely regulating the nucleocytoplasmic localization of proteins.
Collapse
Affiliation(s)
- Junyi Song
- *Correspondence: Junyi Song, ; Lingyun Zhu, ; Biru Hu,
| | | | | | | | | | | | | | - Lingyun Zhu
- Department of Biology and Chemistry, College of Science, National University of Defense Technology, Changsha, Hunan, China
| | - Biru Hu
- Department of Biology and Chemistry, College of Science, National University of Defense Technology, Changsha, Hunan, China
| |
Collapse
|
32
|
Duan Y, Tan Y, Wei X, Pei X, Li M. Versatile Strategy for the Construction of a Transcription Factor-Based Orthogonal Gene Expression Toolbox in Monascus spp. ACS Synth Biol 2023; 12:213-223. [PMID: 36625512 DOI: 10.1021/acssynbio.2c00500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
Gene expression is needed to be conducted in an orthogonal manner and controllable independently from the host's native regulatory system. However, there is a shortage of gene expression regulatory toolboxes that function orthogonally from each other and toward the host. Herein, we developed a strategy based on the mutant library to generate orthogonal gene expression toolboxes. A transcription factor, MaR, located in the Monascus azaphilone biosynthetic gene cluster, was taken as a typical example. Nine DNA-binding residues of MaR were identified by molecular simulation and site-directed mutagenesis. We created five MaR multi-site saturation mutagenesis libraries consisting of 10743 MaR variants on the basis of five cognate promoters. A functional analysis revealed that all five tested promoters were orthogonally regulated by five different MaR variants, respectively. Furthermore, fine gene expression tunability and high signal sensitivity of this toolbox are demonstrated by introducing chemically inducible expression modules, designing synthetic promoter elements, and creating protein-protein interaction between MaRs. This study paves the way for a bottom-up approach to build orthogonal gene expression toolboxes.
Collapse
Affiliation(s)
- Yali Duan
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, Hubei Province430070, China.,College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province430070, China
| | - Yingao Tan
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, Hubei Province430070, China.,College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province430070, China
| | - Xuetuan Wei
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province430070, China
| | - Xiaolin Pei
- College of Material, Chemistry and Chemical Engineering, Hangzhou Normal University, Hangzhou310012, China
| | - Mu Li
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Wuhan, Hubei Province430070, China.,College of Food Science and Technology, Huazhong Agricultural University, Wuhan, Hubei Province430070, China
| |
Collapse
|
33
|
Holland K, Blazeck J. High throughput mutagenesis and screening for yeast engineering. J Biol Eng 2022; 16:37. [PMID: 36575525 PMCID: PMC9793380 DOI: 10.1186/s13036-022-00315-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Accepted: 12/03/2022] [Indexed: 12/28/2022] Open
Abstract
The eukaryotic yeast Saccharomyces cerevisiae is a model host utilized for whole cell biocatalytic conversions, protein evolution, and scientific inquiries into the pathogenesis of human disease. Over the past decade, the scale and pace of such studies has drastically increased alongside the advent of novel tools for both genome-wide studies and targeted genetic mutagenesis. In this review, we will detail past and present (e.g., CRISPR/Cas) genome-scale screening platforms, typically employed in the context of growth-based selections for improved whole cell phenotype or for mechanistic interrogations. We will further highlight recent advances that enable the rapid and often continuous evolution of biomolecules with improved function. Additionally, we will detail the corresponding advances in high throughput selection and screening strategies that are essential for assessing or isolating cellular and protein improvements. Finally, we will describe how future developments can continue to advance yeast high throughput engineering.
Collapse
Affiliation(s)
- Kendreze Holland
- grid.213917.f0000 0001 2097 4943Department of Biomedical Engineering, Georgia Institute of Technology and Emory University, Atlanta, Georgia USA ,grid.213917.f0000 0001 2097 4943Bioengineering Program, Georgia Institute of Technology, Atlanta, Georgia USA
| | - John Blazeck
- grid.213917.f0000 0001 2097 4943Bioengineering Program, Georgia Institute of Technology, Atlanta, Georgia USA ,grid.213917.f0000 0001 2097 4943School of Chemical and Biomolecular Engineering, Georgia Institute of Technology, Atlanta, Georgia USA
| |
Collapse
|
34
|
Wang S, Garcia-Ojalvo J, Elowitz MB. Periodic spatial patterning with a single morphogen. Cell Syst 2022; 13:1033-1047.e7. [PMID: 36435178 DOI: 10.1016/j.cels.2022.11.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 07/13/2022] [Accepted: 11/02/2022] [Indexed: 11/26/2022]
Abstract
During multicellular development, periodic spatial patterning systems generate repetitive structures, such as digits, vertebrae, and teeth. Turing patterning provides a foundational paradigm for understanding such systems. The simplest Turing systems are believed to require at least two morphogens to generate periodic patterns. Here, using mathematical modeling, we show that a simpler circuit, including only a single diffusible morphogen, is sufficient to generate long-range, spatially periodic patterns that propagate outward from transient initiating perturbations and remain stable after the perturbation is removed. Furthermore, an additional bistable intracellular feedback or operation on a growing cell lattice can make patterning robust to noise. Together, these results show that a single morphogen can be sufficient for robust spatial pattern formation and should provide a foundation for engineering pattern formation in the emerging field of synthetic developmental biology.
Collapse
Affiliation(s)
- Sheng Wang
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jordi Garcia-Ojalvo
- Department of Medicine and Life Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Michael B Elowitz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA; Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
35
|
Abstract
Systems that allow researchers to precisely control the expression of genes are fundamental to biological research, biotechnology, and synthetic biology. However, few inducible gene expression systems exist that can enable simultaneous multigene control under common nutritionally favorable conditions in the important model organism and chassis Saccharomyces cerevisiae. Here we repurposed ligand binding domains from mammalian type I nuclear receptors to establish a family of up to five orthogonal synthetic gene expression systems in yeast. Our systems enable tight, independent, multigene control through addition of inert hormones and are capable of driving robust and rapid gene expression outputs, in some cases achieving up to 600-fold induction. As a proof of principle, we placed expression of four enzymes from the violacein biosynthetic pathway under independent expression control to selectively route pathway flux by addition of specific inducer combinations. Our results establish a modular, versatile, and potentially expandable toolkit for multidimensional control of gene expression in yeast that can be used to construct and control naturally occurring and synthetic gene networks.
Collapse
Affiliation(s)
- Adam Sanford
- Biological
Design Center, Boston University, Boston, Massachusetts 02215, United States,Department
of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States
| | - Szilvia Kiriakov
- Biological
Design Center, Boston University, Boston, Massachusetts 02215, United States,Program
in Molecular Biology, Cell Biology, and Biochemistry, Boston University, Boston, Massachusetts 02215, United States
| | - Ahmad S. Khalil
- Biological
Design Center, Boston University, Boston, Massachusetts 02215, United States,Department
of Biomedical Engineering, Boston University, Boston, Massachusetts 02215, United States,Program
in Molecular Biology, Cell Biology, and Biochemistry, Boston University, Boston, Massachusetts 02215, United States,Wyss
Institute for Biologically Inspired Engineering, Harvard University, Boston, Massachusetts 02115, United States,
| |
Collapse
|
36
|
Li HS, Israni DV, Gagnon KA, Gan KA, Raymond MH, Sander JD, Roybal KT, Joung JK, Wong WW, Khalil AS. Multidimensional control of therapeutic human cell function with synthetic gene circuits. Science 2022; 378:1227-1234. [PMID: 36520914 PMCID: PMC10054295 DOI: 10.1126/science.ade0156] [Citation(s) in RCA: 81] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Synthetic gene circuits that precisely control human cell function could expand the capabilities of gene- and cell-based therapies. However, platforms for developing circuits in primary human cells that drive robust functional changes in vivo and have compositions suitable for clinical use are lacking. Here, we developed synthetic zinc finger transcription regulators (synZiFTRs), which are compact and based largely on human-derived proteins. As a proof of principle, we engineered gene switches and circuits that allow precise, user-defined control over therapeutically relevant genes in primary T cells using orthogonal, US Food and Drug Administration-approved small-molecule inducers. Our circuits can instruct T cells to sequentially activate multiple cellular programs such as proliferation and antitumor activity to drive synergistic therapeutic responses. This platform should accelerate the development and clinical translation of synthetic gene circuits in diverse human cell types and contexts.
Collapse
Affiliation(s)
- Hui-Shan Li
- Biological Design Center, Boston University, Boston, MA, USA.,Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Divya V Israni
- Biological Design Center, Boston University, Boston, MA, USA.,Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Keith A Gagnon
- Biological Design Center, Boston University, Boston, MA, USA.,Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Kok Ann Gan
- Biological Design Center, Boston University, Boston, MA, USA.,Program in Molecular Biology, Cell Biology, and Biochemistry, Boston University, Boston, MA, USA
| | - Michael H Raymond
- Biological Design Center, Boston University, Boston, MA, USA.,Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Jeffry D Sander
- Molecular Pathology Unit, Center for Cancer Research, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA.,Department of Pathology, Harvard Medical School, Boston, MA, USA.,Department of Genomics Technologies, Corteva Agriscience, Johnston, IA, USA
| | - Kole T Roybal
- Cell Design Institute and Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA, USA.,Parker Institute for Cancer Immunotherapy, University of California, San Francisco, San Francisco, CA, USA.,Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, San Francisco, CA, USA.,Chan Zuckerberg Biohub, San Francisco, CA, USA
| | - J Keith Joung
- Molecular Pathology Unit, Center for Cancer Research, and Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, MA, USA.,Department of Pathology, Harvard Medical School, Boston, MA, USA
| | - Wilson W Wong
- Biological Design Center, Boston University, Boston, MA, USA.,Department of Biomedical Engineering, Boston University, Boston, MA, USA
| | - Ahmad S Khalil
- Biological Design Center, Boston University, Boston, MA, USA.,Department of Biomedical Engineering, Boston University, Boston, MA, USA.,Program in Molecular Biology, Cell Biology, and Biochemistry, Boston University, Boston, MA, USA.,Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, USA
| |
Collapse
|
37
|
Galindo-Trigo S. STARTing to dissect the molecular determinants of GLABRA2 activity. PLANT PHYSIOLOGY 2022; 190:2064-2065. [PMID: 36135829 PMCID: PMC9706426 DOI: 10.1093/plphys/kiac436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Accepted: 08/22/2022] [Indexed: 06/16/2023]
|
38
|
Altay HY, Ozdemir F, Afghah F, Kilinc Z, Ahmadian M, Tschopp M, Agca C. Gene regulatory and gene editing tools and their applications for retinal diseases and neuroprotection: From proof-of-concept to clinical trial. Front Neurosci 2022; 16:924917. [PMID: 36340792 PMCID: PMC9630553 DOI: 10.3389/fnins.2022.924917] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 09/26/2022] [Indexed: 09/11/2023] Open
Abstract
Gene editing and gene regulatory fields are continuously developing new and safer tools that move beyond the initial CRISPR/Cas9 technology. As more advanced applications are emerging, it becomes crucial to understand and establish more complex gene regulatory and editing tools for efficient gene therapy applications. Ophthalmology is one of the leading fields in gene therapy applications with more than 90 clinical trials and numerous proof-of-concept studies. The majority of clinical trials are gene replacement therapies that are ideal for monogenic diseases. Despite Luxturna's clinical success, there are still several limitations to gene replacement therapies including the size of the target gene, the choice of the promoter as well as the pathogenic alleles. Therefore, further attempts to employ novel gene regulatory and gene editing applications are crucial to targeting retinal diseases that have not been possible with the existing approaches. CRISPR-Cas9 technology opened up the door for corrective gene therapies with its gene editing properties. Advancements in CRISPR-Cas9-associated tools including base modifiers and prime editing already improved the efficiency and safety profile of base editing approaches. While base editing is a highly promising effort, gene regulatory approaches that do not interfere with genomic changes are also becoming available as safer alternatives. Antisense oligonucleotides are one of the most commonly used approaches for correcting splicing defects or eliminating mutant mRNA. More complex gene regulatory methodologies like artificial transcription factors are also another developing field that allows targeting haploinsufficiency conditions, functionally equivalent genes, and multiplex gene regulation. In this review, we summarized the novel gene editing and gene regulatory technologies and highlighted recent translational progress, potential applications, and limitations with a focus on retinal diseases.
Collapse
Affiliation(s)
- Halit Yusuf Altay
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, Istanbul, Turkey
| | - Fatma Ozdemir
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, Istanbul, Turkey
| | - Ferdows Afghah
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, Istanbul, Turkey
| | - Zeynep Kilinc
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, Istanbul, Turkey
| | - Mehri Ahmadian
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, Istanbul, Turkey
| | - Markus Tschopp
- Department of Ophthalmology, Cantonal Hospital Aarau, Aarau, Switzerland
- Department of Ophthalmology, Inselspital, Bern University Hospital, University of Bern, Bern, Switzerland
| | - Cavit Agca
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, Istanbul, Turkey
- Nanotechnology Research and Application Center (SUNUM), Sabanci University, Istanbul, Turkey
| |
Collapse
|
39
|
Duan Y, Ma H, Wei X, Li M. Dynamic regulation of Monascus azaphilones biosynthesis by the binary MrPigE-MrPigF oxidoreductase system. Appl Microbiol Biotechnol 2022; 106:7519-7530. [PMID: 36221033 DOI: 10.1007/s00253-022-12219-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 11/02/2022]
Abstract
Monascus azaphilones (MAs) have been extensively applied as natural food coloring agents. MAs are classified into three categories: yellow MAs (YMAs), orange MAs (OMAs), and red MAs with various biological activities. However, the exact biosynthetic mechanism of OMAs and YMAs are not thoroughly elucidated. Firstly, we identified four DNA-binding residues of transcription factor MrPigB and constructed a multi-site saturation mutagenesis library of MrPigB. Then, comparative metabolite and gene expression of the mutants revealed that two oxidoreductases MrPigE and MrPigF were responsible for the formation of YMAs and OMAs. Finally, the in vitro and in vivo assays demonstrated the opposite roles of MrPigE and MrPigF in conversion of OMAs to YMAs. To our knowledge, this is the first report of a binary oxidoreductase system for dynamic regulation of fungal secondary metabolite biosynthesis. Broadly, our work also demonstrates the transcription factor engineering strategy for elucidating the biosynthetic pathway of secondary metabolite. KEY POINTS: • MrPigE converts orange Monascus azaphilones to yellow Monascus azaphilones • MrPigF oxidizes intermediates to afford orange Monascus azaphilones • MrPigE and MrPigF constitute a binary system in Monascus azaphilones biosynthesis.
Collapse
Affiliation(s)
- Yali Duan
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Hubei Province, Wuhan, 430070, China.,College of Food Science and Technology, Huazhong Agricultural University, Hubei Province, Wuhan, 430070, China
| | - Hongmin Ma
- Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Wuhan University, Wuhan, 430072, China
| | - Xuetuan Wei
- College of Food Science and Technology, Huazhong Agricultural University, Hubei Province, Wuhan, 430070, China
| | - Mu Li
- Hubei International Scientific and Technological Cooperation Base of Traditional Fermented Foods, Huazhong Agricultural University, Hubei Province, Wuhan, 430070, China. .,College of Food Science and Technology, Huazhong Agricultural University, Hubei Province, Wuhan, 430070, China.
| |
Collapse
|
40
|
Shahein A, López-Malo M, Istomin I, Olson EJ, Cheng S, Maerkl SJ. Systematic analysis of low-affinity transcription factor binding site clusters in vitro and in vivo establishes their functional relevance. Nat Commun 2022; 13:5273. [PMID: 36071116 PMCID: PMC9452512 DOI: 10.1038/s41467-022-32971-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Accepted: 08/25/2022] [Indexed: 11/10/2022] Open
Abstract
Binding to binding site clusters has yet to be characterized in depth, and the functional relevance of low-affinity clusters remains uncertain. We characterized transcription factor binding to low-affinity clusters in vitro and found that transcription factors can bind concurrently to overlapping sites, challenging the notion of binding exclusivity. Furthermore, small clusters with binding sites an order of magnitude lower in affinity give rise to high mean occupancies at physiologically-relevant transcription factor concentrations. To assess whether the observed in vitro occupancies translate to transcriptional activation in vivo, we tested low-affinity binding site clusters in a synthetic and native gene regulatory network in S. cerevisiae. In both systems, clusters of low-affinity binding sites generated transcriptional output comparable to single or even multiple consensus sites. This systematic characterization demonstrates that clusters of low-affinity binding sites achieve substantial occupancies, and that this occupancy can drive expression in eukaryotic promoters.
Collapse
Affiliation(s)
- Amir Shahein
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Maria López-Malo
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Ivan Istomin
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Evan J Olson
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Shiyu Cheng
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Sebastian J Maerkl
- Institute of Bioengineering, School of Engineering, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| |
Collapse
|
41
|
Bashor CJ, Hilton IB, Bandukwala H, Smith DM, Veiseh O. Engineering the next generation of cell-based therapeutics. Nat Rev Drug Discov 2022; 21:655-675. [PMID: 35637318 PMCID: PMC9149674 DOI: 10.1038/s41573-022-00476-6] [Citation(s) in RCA: 188] [Impact Index Per Article: 62.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2022] [Indexed: 12/19/2022]
Abstract
Cell-based therapeutics are an emerging modality with the potential to treat many currently intractable diseases through uniquely powerful modes of action. Despite notable recent clinical and commercial successes, cell-based therapies continue to face numerous challenges that limit their widespread translation and commercialization, including identification of the appropriate cell source, generation of a sufficiently viable, potent and safe product that meets patient- and disease-specific needs, and the development of scalable manufacturing processes. These hurdles are being addressed through the use of cutting-edge basic research driven by next-generation engineering approaches, including genome and epigenome editing, synthetic biology and the use of biomaterials.
Collapse
Affiliation(s)
- Caleb J Bashor
- Department of Bioengineering, Rice University, Houston, TX, USA.
- Department of Biosciences, Rice University, Houston, TX, USA.
| | - Isaac B Hilton
- Department of Bioengineering, Rice University, Houston, TX, USA.
- Department of Biosciences, Rice University, Houston, TX, USA.
| | - Hozefa Bandukwala
- Sigilon Therapeutics, Cambridge, MA, USA
- Flagship Pioneering, Cambridge, MA, USA
| | - Devyn M Smith
- Sigilon Therapeutics, Cambridge, MA, USA
- Arbor Biotechnologies, Cambridge, MA, USA
| | - Omid Veiseh
- Department of Bioengineering, Rice University, Houston, TX, USA.
| |
Collapse
|
42
|
Oliveira SMD, Densmore D. Hardware, Software, and Wetware Codesign Environment for Synthetic Biology. BIODESIGN RESEARCH 2022; 2022:9794510. [PMID: 37850136 PMCID: PMC10521664 DOI: 10.34133/2022/9794510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Accepted: 08/10/2022] [Indexed: 10/19/2023] Open
Abstract
Synthetic biology is the process of forward engineering living systems. These systems can be used to produce biobased materials, agriculture, medicine, and energy. One approach to designing these systems is to employ techniques from the design of embedded electronics. These techniques include abstraction, standards, modularity, automated design, and formal semantic models of computation. Together, these elements form the foundation of "biodesign automation," where software, robotics, and microfluidic devices combine to create exciting biological systems of the future. This paper describes a "hardware, software, wetware" codesign vision where software tools can be made to act as "genetic compilers" that transform high-level specifications into engineered "genetic circuits" (wetware). This is followed by a process where automation equipment, well-defined experimental workflows, and microfluidic devices are explicitly designed to house, execute, and test these circuits (hardware). These systems can be used as either massively parallel experimental platforms or distributed bioremediation and biosensing devices. Next, scheduling and control algorithms (software) manage these systems' actual execution and data analysis tasks. A distinguishing feature of this approach is how all three of these aspects (hardware, software, and wetware) may be derived from the same basic specification in parallel and generated to fulfill specific cost, performance, and structural requirements.
Collapse
Affiliation(s)
- Samuel M. D. Oliveira
- Department of Electrical and Computer Engineering, Boston University, MA 02215, USA
- Biological Design Center, Boston University, MA 02215, USA
| | - Douglas Densmore
- Department of Electrical and Computer Engineering, Boston University, MA 02215, USA
- Biological Design Center, Boston University, MA 02215, USA
| |
Collapse
|
43
|
Talluri S. Engineering and Design of Programmable Genome Editors. J Phys Chem B 2022; 126:5140-5150. [PMID: 35819243 DOI: 10.1021/acs.jpcb.2c03761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Programmable genome editors are enzymes that can be targeted to a specific location in the genome for making site-specific alterations or deletions. The engineering, design, and development of sequence-specific editors has resulted in a dramatic increase in the precision of editing for nucleotide sequences. These editors can target specific locations in a genome, in vivo. The genome editors are being deployed for the development of genetically modified organisms for agriculture and industry, and for gene therapy of inherited human genetic disorders, cancer, and immunotherapy. Experimental and computational studies of structure, binding, activity, dynamics, and folding, reviewed here, have provided valuable insights that have the potential for increasing the functional efficiency of these gene/genome editors. Biochemical and biophysical studies of the specificities of natural and engineered genome editors reveal that increased binding affinity can be detrimental because of the increase of off-target effects and that the engineering and design of genome editors with higher specificity may require modulation and control of the conformational dynamics.
Collapse
Affiliation(s)
- Sekhar Talluri
- Department of Biotechnology, GITAM, Visakhapatnam, India 530045
| |
Collapse
|
44
|
Wu J, Chen B, Liu Y, Ma L, Huang W, Lin Y. Modulating gene regulation function by chemically controlled transcription factor clustering. Nat Commun 2022; 13:2663. [PMID: 35562359 PMCID: PMC9106659 DOI: 10.1038/s41467-022-30397-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Accepted: 04/29/2022] [Indexed: 12/21/2022] Open
Abstract
Recent studies have suggested that transcriptional protein condensates (or clusters) may play key roles in gene regulation and cell fate determination. However, it remains largely unclear how the gene regulation function is quantitatively tuned by transcription factor (TF) clustering and whether TF clustering may confer emergent behaviors as in cell fate control systems. Here, to address this, we construct synthetic TFs whose clustering behavior can be chemically controlled. Through single-parameter tuning of the system (i.e., TF clustering propensity), we provide lines of evidence supporting the direct transcriptional activation and amplification of target genes by TF clustering. Single-gene imaging suggests that such amplification results from the modulation of transcriptional dynamics. Importantly, TF clustering propensity modulates the gene regulation function by significantly tuning the effective TF binding affinity and to a lesser extent the ultrasensitivity, contributing to bimodality and sustained response behavior that are reminiscent of canonical cell fate control systems. Collectively, these results demonstrate that TF clustering can modulate the gene regulation function to enable emergent behaviors, and highlight the potential applications of chemically controlled protein clustering. Transcription factor (TF) condensates appear to be pervasive, yet their roles remain debated. Here, the authors use a synthetic biology approach to show that TF clusters causally amplify transcription and can confer bimodality and “memory”.
Collapse
Affiliation(s)
- Jiegen Wu
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China.,The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, 100871, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China.,School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Baoqiang Chen
- School of Life Sciences, Tsinghua University, 100084, Beijing, China
| | - Yadi Liu
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China.,The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, 100871, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Liang Ma
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China.,The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, 100871, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Wen Huang
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China.,The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, 100871, Beijing, China.,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China
| | - Yihan Lin
- Center for Quantitative Biology, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China. .,The MOE Key Laboratory of Cell Proliferation and Differentiation, School of Life Sciences, Peking University, 100871, Beijing, China. .,Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, 100871, Beijing, China.
| |
Collapse
|
45
|
Mediator Engineering of Saccharomyces cerevisiae To Improve Multidimensional Stress Tolerance. Appl Environ Microbiol 2022; 88:e0162721. [PMID: 35369708 DOI: 10.1128/aem.01627-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Saccharomyces cerevisiae is a well-performing workhorse in chemical production, which encounters complex environmental stresses during industrial processes. We constructed a multiple stress tolerance mutant, Med15V76R/R84K, that was obtained by engineering the KIX domain of Mediator tail subunit Med15. Med15V76R/R84K interacted with transcription factor Hap5 to improve ARV1 expression for sterol homeostasis for decreasing membrane fluidity and thereby enhancing acid tolerance. Med15V76R/R84K interacted with transcription factor Mga2 to improve GIT1 expression for phospholipid biosynthesis for increasing membrane integrity and thereby improving oxidative tolerance. Med15V76R/R84K interacted with transcription factor Aft1 to improve NFT1 expression for inorganic ion transport for reducing membrane permeability and thereby enhancing osmotic tolerance. Based on this Med15 mutation, Med15V76R/R84K, the engineered S. cerevisiae strain, showed a 28.1% increase in pyruvate production in a 1.0-L bioreactor compared to that of S. cerevisiae with its native Med15. These results indicated that Mediator engineering provides a potential alternative for improving multidimensional stress tolerance in S. cerevisiae. IMPORTANCE This study identified the role of the KIX domain of Mediator tail subunit Med15 in response to acetic acid, H2O2, and NaCl in S. cerevisiae. Engineered KIX domain by protein engineering, the mutant strain Med15V76R/R84K, increased multidimensional stress tolerance and pyruvate production compared with that of S. cerevisiae with its native Med15. The Med15V76R/R84K could increase membrane related genes expression possibly by enhancing interaction with transcription factor to improve membrane physiological functions under stress conditions.
Collapse
|
46
|
Kar S, Bordiya Y, Rodriguez N, Kim J, Gardner EC, Gollihar JD, Sung S, Ellington AD. Orthogonal control of gene expression in plants using synthetic promoters and CRISPR-based transcription factors. PLANT METHODS 2022; 18:42. [PMID: 35351174 PMCID: PMC8966344 DOI: 10.1186/s13007-022-00867-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/01/2022] [Indexed: 06/01/2023]
Abstract
BACKGROUND The construction and application of synthetic genetic circuits is frequently improved if gene expression can be orthogonally controlled, relative to the host. In plants, orthogonality can be achieved via the use of CRISPR-based transcription factors that are programmed to act on natural or synthetic promoters. The construction of complex gene circuits can require multiple, orthogonal regulatory interactions, and this in turn requires that the full programmability of CRISPR elements be adapted to non-natural and non-standard promoters that have few constraints on their design. Therefore, we have developed synthetic promoter elements in which regions upstream of the minimal 35S CaMV promoter are designed from scratch to interact via programmed gRNAs with dCas9 fusions that allow activation of gene expression. RESULTS A panel of three, mutually orthogonal promoters that can be acted on by artificial gRNAs bound by CRISPR regulators were designed. Guide RNA expression targeting these promoters was in turn controlled by either Pol III (U6) or ethylene-inducible Pol II promoters, implementing for the first time a fully artificial Orthogonal Control System (OCS). Following demonstration of the complete orthogonality of the designs, the OCS was tied to cellular metabolism by putting gRNA expression under the control of an endogenous plant signaling molecule, ethylene. The ability to form complex circuitry was demonstrated via the ethylene-driven, ratiometric expression of fluorescent proteins in single plants. CONCLUSIONS The design of synthetic promoters is highly generalizable to large tracts of sequence space, allowing Orthogonal Control Systems of increasing complexity to potentially be generated at will. The ability to tie in several different basal features of plant molecular biology (Pol II and Pol III promoters, ethylene regulation) to the OCS demonstrates multiple opportunities for engineering at the system level. Moreover, given the fungibility of the core 35S CaMV promoter elements, the derived synthetic promoters can potentially be utilized across a variety of plant species.
Collapse
Affiliation(s)
- Shaunak Kar
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA.
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, USA.
| | - Yogendra Bordiya
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
- Life Sciences Solutions Group, Thermo Fisher Scientific, Austin, TX, USA
| | - Nestor Rodriguez
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Junghyun Kim
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Elizabeth C Gardner
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, USA
| | | | - Sibum Sung
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA.
| | - Andrew D Ellington
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA.
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
47
|
Govorkova P, Candice Lam CK, Truong K. Design of Synthetic Mammalian Promoters Using Highly Palindromic Subsequences. ACS Synth Biol 2022; 11:1096-1105. [PMID: 35225601 DOI: 10.1021/acssynbio.1c00600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
To express transgenes in specific cell types and states, promoters for endogenous genes are commonly created by truncating the sequence upstream of the transcriptional start site until the promoter is no longer functional. In this paper, we developed a method to design shorter synthetic mammalian promoters for endogenous genes by concatenating only its highly palindromic subsequences with a minimal core promoter. After developing metrics for palindromic density, analysis across all the human and mouse promoters showed higher palindromic density than expected by random. As experimental demonstrations, we applied the method to the CMV promoter (reduced to 432 nucleotides) and the mouse synapsin-1 promoter (383 nucleotides) to express fluorescent protein as reporters. Remarkably, the highly palindromic subsequences of these synthetic promoters contained sites important for strong constitutive expression and neuron-specific expression. As a resource to the community, we created enhancer sequences for all the human and mouse promoters.
Collapse
Affiliation(s)
- Polina Govorkova
- Edward S. Rogers, Sr. Department of Electrical and Computer Engineering, University of Toronto, 10 King’s College Circle, Toronto, Ontario M5S 3G4, Canada
| | - Chee Ka Candice Lam
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| | - Kevin Truong
- Edward S. Rogers, Sr. Department of Electrical and Computer Engineering, University of Toronto, 10 King’s College Circle, Toronto, Ontario M5S 3G4, Canada
- Institute of Biomedical Engineering, University of Toronto, 164 College Street, Toronto, Ontario M5S 3G9, Canada
| |
Collapse
|
48
|
Manhas J, Edelstein HI, Leonard JN, Morsut L. The evolution of synthetic receptor systems. Nat Chem Biol 2022; 18:244-255. [PMID: 35058646 PMCID: PMC9041813 DOI: 10.1038/s41589-021-00926-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2021] [Accepted: 10/18/2021] [Indexed: 12/15/2022]
Abstract
Receptors enable cells to detect, process and respond to information about their environments. Over the past two decades, synthetic biologists have repurposed physical parts and concepts from natural receptors to engineer synthetic receptors. These technologies implement customized sense-and-respond programs that link a cell's interaction with extracellular and intracellular cues to user-defined responses. When combined with tools for information processing, these advances enable programming of sophisticated customized functions. In recent years, the library of synthetic receptors and their capabilities has substantially evolved-a term we employ here to mean systematic improvement and expansion. Here, we survey the existing mammalian synthetic biology toolkit of protein-based receptors and signal-processing components, highlighting efforts to evolve and integrate some of the foundational synthetic receptor systems. We then propose a generalized strategy for engineering and improving receptor systems to meet defined functional objectives called a 'metric-enabled approach for synthetic receptor engineering' (MEASRE).
Collapse
Affiliation(s)
- Janvie Manhas
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
- The Eli and Edythe Broad CIRM Center, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Hailey I Edelstein
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA
| | - Joshua N Leonard
- Department of Chemical and Biological Engineering, Northwestern University, Evanston, IL, USA.
- Interdisciplinary Biological Sciences Program, Northwestern University, Evanston, IL, USA.
- Center for Synthetic Biology, Northwestern University, Evanston, IL, USA.
- Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA.
- Robert H. Lurie Comprehensive Cancer Center, Northwestern University, Evanston, IL, USA.
| | - Leonardo Morsut
- The Eli and Edythe Broad CIRM Center, Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA.
- Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA, USA.
| |
Collapse
|
49
|
Billerbeck S, Cornish VW. Peptide-Dependent Growth in Yeast via Fine-Tuned Peptide/GPCR-Activated Essential Gene Expression. Biochemistry 2022; 61:150-159. [PMID: 35023728 PMCID: PMC8811955 DOI: 10.1021/acs.biochem.1c00661] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 12/30/2021] [Indexed: 11/30/2022]
Abstract
Building multicellular microbial consortia that communicate with each other and perform programmed functionalities is the next milestone for synthetic biology. Achieving cell-cell communication within these communities requires programming of the transduction of an extracellular signal into a customized intracellular response. G-protein-coupled receptors (GPCRs) are attractive candidates for engineering signal transduction as they can sense extracellular events with high sensitivity and specificity and transduce them into complex intracellular programs. We recently developed a scalable cell-cell communication language based on fungal mating GPCRs and their secreted peptide ligands. This language allows the assembly of engineered yeast strains into multicellular communication networks and allows them to be made interdependent by peptide signaling. In peptide signaling, one cell secretes a peptide that supports the growth of another cell at nanomolar concentrations, a scalable approach for engineering interdependence. Here we address the challenge of correlating the doubling time of Saccharomyces cerevisiae cells with an increasing external peptide concentration by linking GPCR activation to the expression of an essential gene. The required fine-tuning of downstream signaling is achieved via the transcriptional titration of a set of orthogonal GPCR-activated transcription factors, a series of corresponding promoters with different output dynamics, and the use of chemically recoded peptide ligands with varying activation potentials. As such, our work establishes three control points that allow the tuning of the basal and maximal activation of the GPCR response, fold change activation, and response sensitivity. The presented results enable the implementation of peptide-dependent and peptide-tunable growth but could also facilitate the design and calibration of more complex GPCR-controlled synthetic functionality in the future.
Collapse
Affiliation(s)
- Sonja Billerbeck
- Molecular
Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, University of Groningen, 9700 AB Groningen, The Netherlands
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
| | - Virginia W. Cornish
- Department
of Chemistry, Columbia University, New York, New York 10027, United States
| |
Collapse
|
50
|
Zhu R, Del Rio-Salgado JM, Garcia-Ojalvo J, Elowitz MB. Synthetic multistability in mammalian cells. Science 2022; 375:eabg9765. [PMID: 35050677 DOI: 10.1126/science.abg9765] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
In multicellular organisms, gene regulatory circuits generate thousands of molecularly distinct, mitotically heritable states through the property of multistability. Designing synthetic multistable circuits would provide insight into natural cell fate control circuit architectures and would allow engineering of multicellular programs that require interactions among distinct cell types. We created MultiFate, a naturally inspired, synthetic circuit that supports long-term, controllable, and expandable multistability in mammalian cells. MultiFate uses engineered zinc finger transcription factors that transcriptionally self-activate as homodimers and mutually inhibit one another through heterodimerization. Using a model-based design, we engineered MultiFate circuits that generate as many as seven states, each stable for at least 18 days. MultiFate permits controlled state switching and modulation of state stability through external inputs and can be expanded with additional transcription factors. These results provide a foundation for engineering multicellular behaviors in mammalian cells.
Collapse
Affiliation(s)
- Ronghui Zhu
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jesus M Del Rio-Salgado
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Jordi Garcia-Ojalvo
- Department of Experimental and Health Sciences, Universitat Pompeu Fabra, 08003 Barcelona, Spain
| | - Michael B Elowitz
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA.,Howard Hughes Medical Institute, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|