1
|
Eckschlager T, Vicha A, Frolikova D. Lysine demethylases and cancer. Pathol Res Pract 2025; 271:156011. [PMID: 40373490 DOI: 10.1016/j.prp.2025.156011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 05/12/2025] [Accepted: 05/12/2025] [Indexed: 05/17/2025]
Abstract
Epigenetic mechanisms are of pivotal importance in the normal development and maintenance of cell and tissue-specific gene expression patterns, and are fundamental to the genesis of cancer. One significant category of epigenetic modifications is histone methylation. Histone methylation plays a crucial role in the regulation of gene expression, and its dysregulation has been observed in various diseases, including cancer. The maintenance of the histone methylation state is dependent on two classes of enzymes: histone methyltransferases, which add methyl groups to arginine and lysine residues, and lysine demethylases, which remove methyl groups from lysine residues of histones. To date, eight subfamilies have been identified, comprising approximately 30 lysine demethylases. These enzymes are expressed differently across cells and tissues and exert a substantial impact on the development and progression of cancer. The diverse range of lysine demethylases influence a multitude of oncogenic pathways, either by promoting or inhibiting their activity. However, comprehensive data on the full spectrum expression of lysine demethylases in distinct cancer types remain scarce. Lysine demethylases have been demonstrated to play a role in drug resistance in numerous cancers. This is achieved by modulating the metabolic profile of cancer cells, enhancing the ratio of cancer stem cells, and elevating the expression of drug-tolerant genes. Additionally, they facilitate epithelial-mesenchymal transition and metastatic potential. The objective of this review is to synthesize recent data on the relationship between lysine demethylases and cancer, with a particular focus on cancer cell drug resistance.
Collapse
Affiliation(s)
- Tomas Eckschlager
- Department of Pediatric Hematology and Oncology, 2nd Medical Faculty, Charles University and University Hospital Motol, V Úvalu 84, Prague 150 06, Czech Republic.
| | - Ales Vicha
- Department of Pediatric Hematology and Oncology, 2nd Medical Faculty, Charles University and University Hospital Motol, V Úvalu 84, Prague 150 06, Czech Republic
| | - Daniela Frolikova
- Department of Pediatric Hematology and Oncology, 2nd Medical Faculty, Charles University and University Hospital Motol, V Úvalu 84, Prague 150 06, Czech Republic
| |
Collapse
|
2
|
Gray ZH, Honer MA, Ghatalia P, Shi Y, Whetstine JR. 20 years of histone lysine demethylases: From discovery to the clinic and beyond. Cell 2025; 188:1747-1783. [PMID: 40185081 DOI: 10.1016/j.cell.2025.02.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 02/17/2025] [Accepted: 02/21/2025] [Indexed: 04/07/2025]
Abstract
Twenty years ago, histone lysine demethylases (KDMs) were discovered. Since their discovery, they have been increasingly studied and shown to be important across species, development, and diseases. Considerable advances have been made toward understanding their (1) enzymology, (2) role as critical components of biological complexes, (3) role in normal cellular processes and functions, (4) implications in pathological conditions, and (5) therapeutic potential. This Review covers these key relationships related to the KDM field with the awareness that numerous laboratories have contributed to this field. The current knowledge coupled with future insights will shape our understanding about cell function, development, and disease onset and progression, which will allow for novel biomarkers to be identified and for optimal therapeutic options to be developed for KDM-related diseases in the years ahead.
Collapse
Affiliation(s)
- Zach H Gray
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Biomedical Sciences Program, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Madison A Honer
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Biomedical Sciences Program, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Pooja Ghatalia
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Biomedical Sciences Program, Lewis Katz School of Medicine, Temple University, Philadelphia, PA 19140, USA
| | - Yang Shi
- Ludwig Institute for Cancer Research, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Johnathan R Whetstine
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| |
Collapse
|
3
|
Fu J, Ni Y, Hu Y, Tang W, Fu J, Wang Y, Yu S, Xu W. Glutamine, Serine and Glycine at Increasing Concentrations Regulate Cisplatin Sensitivity in Gastric Cancer by Posttranslational Modifications of KDM4A. Mol Carcinog 2025; 64:703-715. [PMID: 39835657 DOI: 10.1002/mc.23881] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 12/19/2024] [Accepted: 01/02/2025] [Indexed: 01/22/2025]
Abstract
Gastric cancer is a common digestive system tumor with a high resistance rate that reduces the sensitivity to chemotherapy. Nutrition therapy is an important adjuvant approach to favor the prognosis of gastric cancer. Dietary amino acids contribute greatly to gastric cancer progression by mediating tumor gene expressions, epigenetics, signal transduction, and metabolic remodeling. In the present study, 20 types of amino acids were screened and glutamine, glycine and serine were identified as the critical regulators of cisplatin (DDP) sensitivity in gastric cancer cells. Moreover, KDM4A acetylation drove the reduced chemotherapy sensitivity in gastric cancer cells by maintaining protein stability and activating DNA repair ability when the concentrations of glutamine (Gln), serine (Ser), and glycine (Gly) decreased. Conversely, Gln/Ser/Gly at increasing concentrations stimulated ubiquitination degradation of KDM4A, which in turn elevated the sensitivity of gastric cancer cells to chemotherapy. Our findings unveiled the role of amino acid nutrition in regulating chemotherapy sensitivity of gastric cancer and the underlying mechanism, thus providing a scientific basis for expanding the clinical significance of nutrition therapy for gastric cancer patients.
Collapse
Affiliation(s)
- Junhao Fu
- Department of Gastrointestinal Oncology, Central Laboratory and Precision Medicine Center, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, China
- Department of Gastrointestinal Oncology, Jinhua Key Laboratory of Cancer Nutrition and Metabolism Research, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, China
| | - Yuqi Ni
- Department of Gastrointestinal Oncology, Central Laboratory and Precision Medicine Center, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, China
- Department of Gastrointestinal Oncology, Jinhua Key Laboratory of Cancer Nutrition and Metabolism Research, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, China
| | - Yuqing Hu
- Department of Gastrointestinal Oncology, Central Laboratory and Precision Medicine Center, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, China
- Department of Gastrointestinal Oncology, Jinhua Key Laboratory of Cancer Nutrition and Metabolism Research, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, China
| | - Wanfen Tang
- Department of Oncology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, China
| | - Jianfei Fu
- Department of Oncology, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, China
| | - Yue Wang
- Department of Experimental Technology, Dian Diagnostics Group Co. Ltd., Hangzhou, Zhejiang Province, China
| | - Shian Yu
- Department of General Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, China
| | - Wenxia Xu
- Department of Gastrointestinal Oncology, Central Laboratory and Precision Medicine Center, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, China
- Department of Gastrointestinal Oncology, Jinhua Key Laboratory of Cancer Nutrition and Metabolism Research, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, Zhejiang Province, China
| |
Collapse
|
4
|
Azadegan C, Santoro J, Whetstine JR. Connecting the dots: Epigenetic regulation of extrachromosomal and inherited DNA amplifications. J Biol Chem 2025; 301:108454. [PMID: 40154613 DOI: 10.1016/j.jbc.2025.108454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2024] [Revised: 03/20/2025] [Accepted: 03/22/2025] [Indexed: 04/01/2025] Open
Abstract
DNA amplification has intrigued scientists for decades. Since its discovery, significant progress has been made in understanding the mechanisms promoting DNA amplification and their associated function(s). While DNA copy gains were once thought to be regulated purely by stochastic processes, recent findings have revealed the important role of epigenetic modifications in driving these amplifications and their integration into the genome. Furthermore, advances in genomic technology have enabled detailed characterization of these genomic events in terms of size, structure, formation, and regulation. This review highlights how our understanding of DNA amplifications has evolved over time, tracing its trajectory from initial discovery to the contemporary landscape. We describe how recent discoveries have started to uncover how these genomic events occur by controlled biological processes rather than stochastic mechanisms, presenting opportunities for therapeutic modulation.
Collapse
Affiliation(s)
- Chloe Azadegan
- Drexel University, College of Medicine, Philadelphia, Pennsylvania, USA; Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - John Santoro
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA
| | - Johnathan R Whetstine
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
5
|
Ludwig MP, Wilson JR, Galbraith MD, Bhandari N, Dunn LN, Black JC, Sullivan KD. NF-κB signaling directs a program of transient amplifications at innate immune response genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.11.641929. [PMID: 40161744 PMCID: PMC11952383 DOI: 10.1101/2025.03.11.641929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/02/2025]
Abstract
The cellular response to pathogens involves an intricate response directed by key innate immune signaling pathways which is characterized by cell-to-cell heterogeneity. How this heterogeneity is established and regulated remains unclear. We describe a program of transient site-specific gains (TSSG) producing extrachromosomal DNA (ecDNA) of immune-related genes in response to innate immune signaling. Activation of NF-κB drives TSSG of the interferon receptor gene cluster through inducible recruitment of the transcription factor RelA and the pre-replication complex member MCM2 to an epigenetically regulated TSSG control element. Targeted recruitment of RelA or p300 are sufficient to induce TSSG formation. RelA and MCM2 specify a program of TSSG for at least six and as many as 179 regions enriched in innate immune response genes. Identification of this program reveals regulated production of ecDNA as a mechanism of heterogeneity in the host response.
Collapse
Affiliation(s)
- Michael P. Ludwig
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- These Authors Contributed Equally
| | - Jason R. Wilson
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- These Authors Contributed Equally
| | - Matthew D. Galbraith
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus; Aurora, CO, USA
| | - Nirajan Bhandari
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Lauren N. Dunn
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Joshua C. Black
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Department of Pharmacology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
| | - Kelly D. Sullivan
- Linda Crnic Institute for Down Syndrome, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- RNA Bioscience Initiative, University of Colorado Anschutz Medical Campus; Aurora, CO, USA
- Department of Pediatrics, Section of Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO, USA
- Lead Contact
| |
Collapse
|
6
|
Ni D, Chen X, Wang H, Shen T, Li X, Liang B, Zhang R, Liu R, Xiao W. Design, synthesis and biological evaluation of 4,6-diarylquinoxaline-based KDM4D inhibitors. Bioorg Med Chem 2024; 114:117945. [PMID: 39454559 DOI: 10.1016/j.bmc.2024.117945] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 09/18/2024] [Accepted: 10/06/2024] [Indexed: 10/28/2024]
Abstract
Histone lysine demethylase 4D (KDM4D) is a critical player in the regulation of tumorigenesis, emerging as a potential target for developing anti-tumor agents. In this study, a series of KDM4D inhibitors containing the 4,6-diarylquinoxaline scaffold were prepared based on the previously discovered hit compound QD-1. Among these inhibitors, 33a was the most potent compound, with an IC50 value of 0.62 μM. In an in vitro assay, 33a showed a superior ability to inhibit the viability of liver cancer Huh-7 cells with IC50 = 5.23 μM. 33a exhibits significant effects in inhibiting cell cycle progression and proliferation of liver cancer cells, as well as suppressing cell migration. This work provided a promising scaffold for developing KDM4D inhibitors, as well as a lead compound for the development of anti-tumor drugs targeting KDM4D.
Collapse
Affiliation(s)
- Dongxuan Ni
- Key Laboratory of Medicinal Chemistry for Natural Resource of Ministry of Education, School of Chemical Science and Technology, School of Pharmacy, School of Life Sciences, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Research & Development Center for Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Xuechun Chen
- Translational Cancer Research Center, Peking University First Hospital, Beijing 100034, China
| | - Hairong Wang
- Key Laboratory of Medicinal Chemistry for Natural Resource of Ministry of Education, School of Chemical Science and Technology, School of Pharmacy, School of Life Sciences, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Research & Development Center for Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Tianze Shen
- Key Laboratory of Medicinal Chemistry for Natural Resource of Ministry of Education, School of Chemical Science and Technology, School of Pharmacy, School of Life Sciences, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Research & Development Center for Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China; Southwest United Graduate School, Kunming 650092, China
| | - Xiaoli Li
- Key Laboratory of Medicinal Chemistry for Natural Resource of Ministry of Education, School of Chemical Science and Technology, School of Pharmacy, School of Life Sciences, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Research & Development Center for Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Bin Liang
- Key Laboratory of Medicinal Chemistry for Natural Resource of Ministry of Education, School of Chemical Science and Technology, School of Pharmacy, School of Life Sciences, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Research & Development Center for Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China
| | - Ruihan Zhang
- Key Laboratory of Medicinal Chemistry for Natural Resource of Ministry of Education, School of Chemical Science and Technology, School of Pharmacy, School of Life Sciences, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Research & Development Center for Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China.
| | - Rong Liu
- Translational Cancer Research Center, Peking University First Hospital, Beijing 100034, China; Southwest United Graduate School, Kunming 650092, China.
| | - Weilie Xiao
- Key Laboratory of Medicinal Chemistry for Natural Resource of Ministry of Education, School of Chemical Science and Technology, School of Pharmacy, School of Life Sciences, Yunnan Characteristic Plant Extraction Laboratory, Yunnan Research & Development Center for Natural Products, State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, China; Southwest United Graduate School, Kunming 650092, China.
| |
Collapse
|
7
|
Małecki PH, Fassauer GM, Rüger N, Schulig L, Link A, Krylova O, Heinemann U, Weiss MS. Structure-based mapping of the histone-binding pocket of KDM4D using functionalized tetrazole and pyridine core compounds. Eur J Med Chem 2024; 276:116642. [PMID: 38981336 DOI: 10.1016/j.ejmech.2024.116642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 06/28/2024] [Accepted: 06/29/2024] [Indexed: 07/11/2024]
Abstract
KDM4 histone demethylases became an exciting target for inhibitor development as the evidence linking them directly to tumorigenesis mounts. In this study, we set out to better understand the binding cavity using an X-ray crystallographic approach to provide a detailed landscape of possible interactions within the under-investigated region of KDM4. Our design strategy was based on utilizing known KDM binding motifs, such as nicotinic acid and tetrazolylhydrazides, as core motifs that we decided to enrich with flexible tails to map the distal histone binding site. The resulting X-ray structures of the novel compounds bound to KDM4D, a representative of the KDM4 family, revealed the interaction pattern with distal residues in the histone-binding site. The most prominent protein rearrangement detected upon ligand binding is the loop movement that blocks the accessibility to the histone binding site. Apart from providing new sites that potential inhibitors can target, the novel compounds may prove helpful in exploring the capacity of ligands to bind in sites distal to the cofactor-binding site of other KDMs or 2-oxoglutarate (2OG)-dependent oxygenases. The case study proves that combining a strong small binding motif with flexible tails to probe the binding pocket will facilitate lead discovery in classical drug-discovery campaigns, given the ease of accessing X-ray quality crystals.
Collapse
Affiliation(s)
- Piotr H Małecki
- Macromolecular Structure and Interaction, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125, Berlin, Germany; Macromolecular Crystallography, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany; Department of Structural Biology of Prokaryotic Organisms, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Z. Noskowskiego-Str. 12/14, 61-704, Poznań, Poland.
| | - Georg M Fassauer
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Universität Greifswald, Friedrich-Ludwig-Jahn-Straße 17, 17489, Greifswald, Germany
| | - Nicole Rüger
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Universität Greifswald, Friedrich-Ludwig-Jahn-Straße 17, 17489, Greifswald, Germany
| | - Lukas Schulig
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Universität Greifswald, Friedrich-Ludwig-Jahn-Straße 17, 17489, Greifswald, Germany
| | - Andreas Link
- Department of Pharmaceutical and Medicinal Chemistry, Institute of Pharmacy, Universität Greifswald, Friedrich-Ludwig-Jahn-Straße 17, 17489, Greifswald, Germany
| | - Oxana Krylova
- Department of Molecular Biophysics, Leibniz-Forschungsinstitut für Molekulare Pharmakologie, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Udo Heinemann
- Macromolecular Structure and Interaction, Max-Delbrück-Center for Molecular Medicine, Robert-Rössle-Str. 10, 13125, Berlin, Germany
| | - Manfred S Weiss
- Macromolecular Crystallography, Helmholtz-Zentrum Berlin für Materialien und Energie, Albert-Einstein-Str. 15, 12489, Berlin, Germany
| |
Collapse
|
8
|
Wang Y, Liang J. Pioneer factors for DNA replication initiation in metazoans. Bioessays 2024; 46:e2400002. [PMID: 38881154 DOI: 10.1002/bies.202400002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/30/2024] [Accepted: 06/04/2024] [Indexed: 06/18/2024]
Abstract
Precise DNA replication is fundamental for genetic inheritance. In eukaryotes, replication initiates at multiple origins that are first "licensed" and subsequently "fired" to activate DNA synthesis. Despite the success in identifying origins with specific DNA motifs in Saccharomyces cerevisiae, no consensus sequence or sequences with a predictive value of replication origins have been recognized in metazoan genomes. Rather, epigenetic rules and chromatin structures are believed to play important roles in governing the selection and activation of replication origins. We propose that replication initiation is facilitated by a group of sequence-specific "replication pioneer factors," which function to increase chromatin accessibility and foster a chromatin environment that is conducive to the loading of the prereplication complex. Dysregulation of the function of these factors may lead to gene duplication, genomic instability, and ultimately the occurrence of pathological conditions such as cancer.
Collapse
Affiliation(s)
- Yue Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Zhejiang Key Laboratory of Medical Epigenetics, Hangzhou Normal University, Hangzhou, China
| | - Jing Liang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| |
Collapse
|
9
|
Cai X, Yu X, Tang T, Xu Y, Wu T. JMJD2A promotes the development of castration-resistant prostate cancer by activating androgen receptor enhancer and inhibiting the cGAS-STING pathway. Mol Carcinog 2024; 63:1682-1696. [PMID: 38818897 DOI: 10.1002/mc.23753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/08/2024] [Accepted: 05/15/2024] [Indexed: 06/01/2024]
Abstract
Exploring targets for inhibiting androgen receptor (AR) activity is an effective strategy for suppressing the development of castration-resistant prostate cancer (CRPC). Upregulation of histone demethylase JMJD2A activity is an important factor in increasing AR expression in CRPC. Based on our research, we found that the binding affinity between JMJD2A and AR increases in CRPC, while the level of AR histone methylation decreases and the H3K27ac level increases in the AR enhancer region. Further investigations revealed that overexpression of the histone demethylase JMJD2A increased the binding affinity between JMJD2A and AR, decreased AR histone methylation levels, upregulated H3K27ac in the AR enhancer region, and increased AR activity. Conversely, knocking down JMJD2A effectively reversed these effects. Additionally, in CRPC, JMJD2A expression was upregulated, the tumor-intrinsic immune cGAS-STING signaling pathway was suppressed, the tumor microenvironment was altered, and AR expression was upregulated. However, both knocking down JMJD2A and inhibiting the cyclic GMP-AMP synthase/stimulator of interferon genes (cGAS-STING) signaling pathway reversed these effects. In summary, our study indicates that in CRPC, JMJD2A can directly bind to AR and activate residual AR enhancers through its demethylation activity, thereby promoting AR expression. Furthermore, upregulation of JMJD2A expression inhibits the innate immune cGAS-STING signaling pathway of the tumor, leading to a decrease in antitumor immune function, and further promoting AR expression.
Collapse
Affiliation(s)
- Xiang Cai
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Xiaodong Yu
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Tielong Tang
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| | - Yi Xu
- Department of Pharmacy, First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Tao Wu
- Department of Urology, Affiliated Hospital of North Sichuan Medical College, Nanchong, China
| |
Collapse
|
10
|
Honer MA, Ferman BI, Gray ZH, Bondarenko EA, Whetstine JR. Epigenetic modulators provide a path to understanding disease and therapeutic opportunity. Genes Dev 2024; 38:473-503. [PMID: 38914477 PMCID: PMC11293403 DOI: 10.1101/gad.351444.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
The discovery of epigenetic modulators (writers, erasers, readers, and remodelers) has shed light on previously underappreciated biological mechanisms that promote diseases. With these insights, novel biomarkers and innovative combination therapies can be used to address challenging and difficult to treat disease states. This review highlights key mechanisms that epigenetic writers, erasers, readers, and remodelers control, as well as their connection with disease states and recent advances in associated epigenetic therapies.
Collapse
Affiliation(s)
- Madison A Honer
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Biomedical Sciences Program, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, USA
| | - Benjamin I Ferman
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Biomedical Sciences Program, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, USA
| | - Zach H Gray
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Biomedical Sciences Program, Lewis Katz School of Medicine, Temple University, Philadelphia, Pennsylvania 19140, USA
| | - Elena A Bondarenko
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| | - Johnathan R Whetstine
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA;
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, Pennsylvania 19111, USA
| |
Collapse
|
11
|
Ma J, Ren D, Wang Z, Li W, Li L, Liu T, Ye Q, Lei Y, Jian Y, Ma B, Fan Y, Liu J, Gao Y, Jin X, Huang H, Li L. CK2-dependent degradation of CBX3 dictates replication fork stalling and PARP inhibitor sensitivity. SCIENCE ADVANCES 2024; 10:eadk8908. [PMID: 38781342 PMCID: PMC11114232 DOI: 10.1126/sciadv.adk8908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2023] [Accepted: 04/17/2024] [Indexed: 05/25/2024]
Abstract
DNA replication is a vulnerable cellular process, and its deregulation leads to genomic instability. Here, we demonstrate that chromobox protein homolog 3 (CBX3) binds replication protein A 32-kDa subunit (RPA2) and regulates RPA2 retention at stalled replication forks. CBX3 is recruited to stalled replication forks by RPA2 and inhibits ring finger and WD repeat domain 3 (RFWD3)-facilitated replication restart. Phosphorylation of CBX3 at serine-95 by casein kinase 2 (CK2) kinase augments cadherin 1 (CDH1)-mediated CBX3 degradation and RPA2 dynamics at stalled replication forks, which permits replication fork restart. Increased expression of CBX3 due to gene amplification or CK2 inhibitor treatment sensitizes prostate cancer cells to poly(ADP-ribose) polymerase (PARP) inhibitors while inducing replication stress and DNA damage. Our work reveals CBX3 as a key regulator of RPA2 function and DNA replication, suggesting that CBX3 could serve as an indicator for targeted therapy of cancer using PARP inhibitors.
Collapse
Affiliation(s)
- Jian Ma
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Dianyun Ren
- Department of Pancreatic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zixi Wang
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Wei Li
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Lei Li
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Tianjie Liu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Qi Ye
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yuzeshi Lei
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yanlin Jian
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Bohan Ma
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yizeng Fan
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Jing Liu
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Yang Gao
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| | - Xin Jin
- Department of Urology, The Second Xiangya Hospital, Central South University, Changsha 410011, China
| | - Haojie Huang
- Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine and Science, Rochester, MN 55905, USA
- Institute of Urologic Science and Technology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 311100, China
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 311100, China
| | - Lei Li
- Department of Urology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, China
| |
Collapse
|
12
|
Affandi T, Haas A, Ohm AM, Wright GM, Black JC, Reyland ME. PKCδ Regulates Chromatin Remodeling and DNA Repair through SIRT6. Mol Cancer Res 2024; 22:181-196. [PMID: 37889141 PMCID: PMC10872792 DOI: 10.1158/1541-7786.mcr-23-0493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 09/07/2023] [Accepted: 10/25/2023] [Indexed: 10/28/2023]
Abstract
Irradiation (IR) is a highly effective cancer therapy; however, IR damage to tumor-adjacent healthy tissues can result in significant comorbidities and potentially limit the course of therapy. We have previously shown that protein kinase C delta (PKCδ) is required for IR-induced apoptosis and that inhibition of PKCδ activity provides radioprotection in vivo. Here we show that PKCδ regulates histone modification, chromatin accessibility, and double-stranded break (DSB) repair through a mechanism that requires Sirtuin 6 (SIRT6). Overexpression of PKCδ promotes genomic instability and increases DNA damage and apoptosis. Conversely, depletion of PKCδ increases DNA repair via nonhomologous end joining (NHEJ) and homologous recombination (HR) as evidenced by increased formation of DNA damage foci, increased expression of DNA repair proteins, and increased repair of NHEJ and HR fluorescent reporter constructs. Nuclease sensitivity indicates that PKCδ depletion is associated with more open chromatin, while overexpression of PKCδ reduces chromatin accessibility. Epiproteome analysis reveals increased chromatin associated H3K36me2 in PKCδ-depleted cells which is accompanied by chromatin disassociation of KDM2A. We identify SIRT6 as a downstream mediator of PKCδ. PKCδ-depleted cells have increased SIRT6 expression, and depletion of SIRT6 reverses changes in chromatin accessibility, histone modification and DSB repair in PKCδ-depleted cells. Furthermore, depletion of SIRT6 reverses radioprotection in PKCδ-depleted cells. Our studies describe a novel pathway whereby PKCδ orchestrates SIRT6-dependent changes in chromatin accessibility to regulate DNA repair, and define a mechanism for regulation of radiation-induced apoptosis by PKCδ. IMPLICATIONS PKCδ controls sensitivity to irradiation by regulating DNA repair.
Collapse
Affiliation(s)
- Trisiani Affandi
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ami Haas
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Angela M. Ohm
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Gregory M. Wright
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Joshua C. Black
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mary E. Reyland
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
13
|
Lombino J, Vallone R, Cimino M, Gulotta MR, De Simone G, Morando MA, Sabbatella R, Di Martino S, Fogazza M, Sarno F, Coronnello C, De Rosa M, Cipollina C, Altucci L, Perricone U, Alfano C. In-silico guided chemical exploration of KDM4A fragments hits. Clin Epigenetics 2023; 15:197. [PMID: 38129913 PMCID: PMC10740270 DOI: 10.1186/s13148-023-01613-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 12/06/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Lysine demethylase enzymes (KDMs) are an emerging class of therapeutic targets, that catalyse the removal of methyl marks from histone lysine residues regulating chromatin structure and gene expression. KDM4A isoform plays an important role in the epigenetic dysregulation in various cancers and is linked to aggressive disease and poor clinical outcomes. Despite several efforts, the KDM4 family lacks successful specific molecular inhibitors. RESULTS Herein, starting from a structure-based fragments virtual screening campaign we developed a synergic framework as a guide to rationally design efficient KDM4A inhibitors. Commercial libraries were used to create a fragments collection and perform a virtual screening campaign combining docking and pharmacophore approaches. The most promising compounds were tested in-vitro by a Homogeneous Time-Resolved Fluorescence-based assay developed for identifying selective substrate-competitive inhibitors by means of inhibition of H3K9me3 peptide demethylation. 2-(methylcarbamoyl)isonicotinic acid was identified as a preliminary active fragment, displaying inhibition of KDM4A enzymatic activity. Its chemical exploration was deeply investigated by computational and experimental approaches which allowed a rational fragment growing process. The in-silico studies guided the development of derivatives designed as expansion of the primary fragment hit and provided further knowledge on the structure-activity relationship. CONCLUSIONS Our study describes useful insights into key ligand-KDM4A protein interaction and provides structural features for the development of successful selective KDM4A inhibitors.
Collapse
Affiliation(s)
- Jessica Lombino
- Molecular Informatics Group, Fondazione Ri.MED, 90100, Palermo, Italy
- C4T S.r.l., Colosseum Combinatorial Chemistry Center, 00133, Rome, Italy
| | - Rosario Vallone
- Structural Biology and Biophysics Unit, Fondazione Ri.MED, 90100, Palermo, Italy
| | - Maura Cimino
- Target Identification and Screening Group, Fondazione Ri.MED, 90100, Palermo, Italy
| | | | - Giada De Simone
- Molecular Informatics Group, Fondazione Ri.MED, 90100, Palermo, Italy
| | - Maria Agnese Morando
- Structural Biology and Biophysics Unit, Fondazione Ri.MED, 90100, Palermo, Italy
| | - Raffaele Sabbatella
- Structural Biology and Biophysics Unit, Fondazione Ri.MED, 90100, Palermo, Italy
| | | | - Mario Fogazza
- Target Identification and Screening Group, Fondazione Ri.MED, 90100, Palermo, Italy
- Axxam SpA, 20091, Bresso, MI, Italy
| | - Federica Sarno
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "L. Vanvitelli", 80100, Naples, Italy
- Department of Pathology and Medical Biology, University Medical Center Groningen, University of Groningen, 9713, Groningen, GZ, The Netherlands
| | | | - Maria De Rosa
- Medicinal Chemistry Group, Fondazione Ri.MED, 90100, Palermo, Italy
| | - Chiara Cipollina
- Target Identification and Screening Group, Fondazione Ri.MED, 90100, Palermo, Italy
| | - Lucia Altucci
- Dipartimento di Medicina di Precisione, Università degli Studi della Campania "L. Vanvitelli", 80100, Naples, Italy
- BIOGEM, 83031, Ariano Irpino, AV, Italy
- IEOS-CNR, 80100, Naples, Italy
| | - Ugo Perricone
- Molecular Informatics Group, Fondazione Ri.MED, 90100, Palermo, Italy.
| | - Caterina Alfano
- Structural Biology and Biophysics Unit, Fondazione Ri.MED, 90100, Palermo, Italy.
| |
Collapse
|
14
|
Lee SCES, Pyo AHA, Koritzinsky M. Longitudinal dynamics of the tumor hypoxia response: From enzyme activity to biological phenotype. SCIENCE ADVANCES 2023; 9:eadj6409. [PMID: 37992163 PMCID: PMC10664991 DOI: 10.1126/sciadv.adj6409] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 10/23/2023] [Indexed: 11/24/2023]
Abstract
Poor oxygenation (hypoxia) is a common spatially heterogeneous feature of human tumors. Biological responses to tumor hypoxia are orchestrated by the decreased activity of oxygen-dependent enzymes. The affinity of these enzymes for oxygen positions them along a continuum of oxygen sensing that defines their roles in launching reactive and adaptive cellular responses. These responses encompass regulation of all steps in the central dogma, with rapid perturbation of the metabolome and proteome followed by more persistent reprogramming of the transcriptome and epigenome. Core hypoxia response genes and pathways are commonly regulated at multiple inflection points, fine-tuning the dependencies on oxygen concentration and hypoxia duration. Ultimately, shifts in the activity of oxygen-sensing enzymes directly or indirectly endow cells with intrinsic hypoxia tolerance and drive processes that are associated with aggressive phenotypes in cancer including angiogenesis, migration, invasion, immune evasion, epithelial mesenchymal transition, and stemness.
Collapse
Affiliation(s)
- Sandy Che-Eun S. Lee
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Andrea Hye An Pyo
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
| | - Marianne Koritzinsky
- Princess Margaret Cancer Center, University Health Network, Toronto, Ontario, Canada
- Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada
- Department of Radiation Oncology, University of Toronto, Toronto, Ontario, Canada
- Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
15
|
Zhou X, Sekino Y, Li HT, Fu G, Yang Z, Zhao S, Gujar H, Zu X, Weisenberger DJ, Gill IS, Tulpule V, D’souza A, Quinn DI, Han B, Liang G. SETD2 Deficiency Confers Sensitivity to Dual Inhibition of DNA Methylation and PARP in Kidney Cancer. Cancer Res 2023; 83:3813-3826. [PMID: 37695044 PMCID: PMC10843145 DOI: 10.1158/0008-5472.can-23-0401] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 07/18/2023] [Accepted: 09/06/2023] [Indexed: 09/12/2023]
Abstract
SETD2 deficiency alters the epigenetic landscape by causing depletion of H3K36me3 and plays an important role in diverse forms of cancer, most notably in aggressive and metastatic clear-cell renal cell carcinomas (ccRCC). Development of an effective treatment scheme targeting SETD2-compromised cancer is urgently needed. Considering that SETD2 is involved in DNA methylation and DNA repair, a combination treatment approach using DNA hypomethylating agents (HMA) and PARP inhibitors (PARPi) could have strong antitumor activity in SETD2-deficient kidney cancer. We tested the effects of the DNA HMA 5-aza-2'-dexoxydytidine (DAC), the PARPi talazoparib (BMN-673), and both in combination in human ccRCC models with or without SETD2 deficiency. The combination treatment of DAC and BMN-673 synergistically increased cytotoxicity in vitro in SETD2-deficient ccRCC cell lines but not in SETD2-proficient cell lines. DAC and BMN-673 led to apoptotic induction, increased DNA damage, insufficient DNA damage repair, and increased genomic instability. Furthermore, the combination treatment elevated immune responses, upregulated STING, and enhanced viral mimicry by activating transposable elements. Finally, the combination effectively suppressed the growth of SETD2-deficient ccRCC in in vivo mouse models. Together, these findings indicate that combining HMA and PARPi is a promising potential therapeutic strategy for treating SETD2-compromised ccRCC. SIGNIFICANCE SETD2 deficiency creates a vulnerable epigenetic status that is targetable using a DNA hypomethylating agent and PARP inhibitor combination to suppress renal cell carcinoma, identifying a precision medicine-based approach for SETD2-compromised cancers.
Collapse
Affiliation(s)
- Xinyi Zhou
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Urology, Xiangya Hospital, Central South University, Hunan, Changsha 410008, China
| | - Yohei Sekino
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Urology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Hong-Tao Li
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Guanghou Fu
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
- Department of Urology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310009, China
| | - Zhi Yang
- Department of Surgery, Keck School of Medicine of USC, Los Angeles, California; Department of Surgery and Biomedical Engineering, Keck School of Medicine USC, Los Angeles, CA, USA
| | - Shuqing Zhao
- Department of Surgery, Keck School of Medicine of USC, Los Angeles, California; Department of Surgery and Biomedical Engineering, Keck School of Medicine USC, Los Angeles, CA, USA
| | - Hemant Gujar
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Xiongbing Zu
- Department of Urology, Xiangya Hospital, Central South University, Hunan, Changsha 410008, China
| | - Daniel J Weisenberger
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Inderbir S. Gill
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Varsha Tulpule
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Anishka D’souza
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - David I Quinn
- Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - Bo Han
- Department of Surgery, Keck School of Medicine of USC, Los Angeles, California; Department of Surgery and Biomedical Engineering, Keck School of Medicine USC, Los Angeles, CA, USA
| | - Gangning Liang
- Department of Urology, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| |
Collapse
|
16
|
Gu R, Kim TD, Song H, Sui Y, Shin S, Oh S, Janknecht R. SET7/9-mediated methylation affects oncogenic functions of histone demethylase JMJD2A. JCI Insight 2023; 8:e164990. [PMID: 37870957 PMCID: PMC10619491 DOI: 10.1172/jci.insight.164990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 09/05/2023] [Indexed: 10/25/2023] Open
Abstract
The histone demethylase JMJD2A/KDM4A facilitates prostate cancer development, yet how JMJD2A function is regulated has remained elusive. Here, we demonstrate that SET7/9-mediated methylation on 6 lysine residues modulated JMJD2A. Joint mutation of these lysine residues suppressed JMJD2A's ability to stimulate the MMP1 matrix metallopeptidase promoter upon recruitment by the ETV1 transcription factor. Mutation of just 3 methylation sites (K505, K506, and K507) to arginine residues (3xR mutation) was sufficient to maximally reduce JMJD2A transcriptional activity and also decreased its binding to ETV1. Introduction of the 3xR mutation into DU145 prostate cancer cells reduced in vitro growth and invasion and also severely compromised tumorigenesis. Consistently, the 3xR genotype caused transcriptome changes related to cell proliferation and invasion pathways, including downregulation of MMP1 and the NPM3 nucleophosmin/nucleoplasmin gene. NPM3 downregulation phenocopied and its overexpression rescued, to a large degree, the 3xR mutation in DU145 cells, suggesting that NPM3 was a seminal downstream effector of methylated JMJD2A. Moreover, we found that NPM3 was overexpressed in prostate cancer and might be indicative of disease aggressiveness. SET7/9-mediated lysine methylation of JMJD2A may aggravate prostate tumorigenesis in a manner dependent on NPM3, implying that the SET7/9→JMJD2A→NPM3 axis could be targeted for therapy.
Collapse
Affiliation(s)
| | | | | | | | - Sook Shin
- Department of Cell Biology
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Sangphil Oh
- Department of Cell Biology
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| | - Ralf Janknecht
- Department of Cell Biology
- Department of Pathology, and
- Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, Oklahoma, USA
| |
Collapse
|
17
|
Gray ZH, Chakraborty D, Duttweiler RR, Alekbaeva GD, Murphy SE, Chetal K, Ji F, Ferman BI, Honer MA, Wang Z, Myers C, Sun R, Kaniskan HÜ, Toma MM, Bondarenko EA, Santoro JN, Miranda C, Dillingham ME, Tang R, Gozani O, Jin J, Skorski T, Duy C, Lee H, Sadreyev RI, Whetstine JR. Epigenetic balance ensures mechanistic control of MLL amplification and rearrangement. Cell 2023; 186:4528-4545.e18. [PMID: 37788669 PMCID: PMC10591855 DOI: 10.1016/j.cell.2023.09.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 06/01/2023] [Accepted: 09/08/2023] [Indexed: 10/05/2023]
Abstract
MLL/KMT2A amplifications and translocations are prevalent in infant, adult, and therapy-induced leukemia. However, the molecular contributor(s) to these alterations are unclear. Here, we demonstrate that histone H3 lysine 9 mono- and di-methylation (H3K9me1/2) balance at the MLL/KMT2A locus regulates these amplifications and rearrangements. This balance is controlled by the crosstalk between lysine demethylase KDM3B and methyltransferase G9a/EHMT2. KDM3B depletion increases H3K9me1/2 levels and reduces CTCF occupancy at the MLL/KMT2A locus, in turn promoting amplification and rearrangements. Depleting CTCF is also sufficient to generate these focal alterations. Furthermore, the chemotherapy doxorubicin (Dox), which associates with therapy-induced leukemia and promotes MLL/KMT2A amplifications and rearrangements, suppresses KDM3B and CTCF protein levels. KDM3B and CTCF overexpression rescues Dox-induced MLL/KMT2A alterations. G9a inhibition in human cells or mice also suppresses MLL/KMT2A events accompanying Dox treatment. Therefore, MLL/KMT2A amplifications and rearrangements are controlled by epigenetic regulators that are tractable drug targets, which has clinical implications.
Collapse
Affiliation(s)
- Zach H Gray
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Damayanti Chakraborty
- Department of Medicine, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA
| | - Reuben R Duttweiler
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Department of Medicine, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA
| | - Gulnaz D Alekbaeva
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Sedona E Murphy
- Department of Medicine, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA
| | - Kashish Chetal
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Fei Ji
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Benjamin I Ferman
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Madison A Honer
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Zhentian Wang
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Cynthia Myers
- Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Renhong Sun
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - H Ümit Kaniskan
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Monika Maria Toma
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Fels Cancer Institute for Personalized Medicine, Temple University School of Medicine, 3420 N. Broad Street, MRB 548, Philadelphia, PA 19140, USA
| | - Elena A Bondarenko
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - John N Santoro
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Christopher Miranda
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Megan E Dillingham
- Department of Medicine, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA
| | - Ran Tang
- Department of Medicine, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA; School of Life Science and Technology, Harbin Institute of Technology, 150000 Harbin, China
| | - Or Gozani
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Jian Jin
- Mount Sinai Center for Therapeutics Discovery, Departments of Pharmacological Sciences and Oncological Sciences, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA
| | - Tomasz Skorski
- Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Fels Cancer Institute for Personalized Medicine, Temple University School of Medicine, 3420 N. Broad Street, MRB 548, Philadelphia, PA 19140, USA
| | - Cihangir Duy
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Hayan Lee
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Ruslan I Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA
| | - Johnathan R Whetstine
- Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Nuclear Dynamics and Cancer Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Department of Medicine, Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA.
| |
Collapse
|
18
|
Zhang W, Wang Y, Liu Y, Liu C, Wang Y, He L, Cheng X, Peng Y, Xia L, Wu X, Wu J, Zhang Y, Sun L, Chen P, Li G, Tu Q, Liang J, Shang Y. NFIB facilitates replication licensing by acting as a genome organizer. Nat Commun 2023; 14:5076. [PMID: 37604829 PMCID: PMC10442334 DOI: 10.1038/s41467-023-40846-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 08/12/2023] [Indexed: 08/23/2023] Open
Abstract
The chromatin-based rule governing the selection and activation of replication origins in metazoans remains to be investigated. Here we report that NFIB, a member of Nuclear Factor I (NFI) family that was initially purified in host cells to promote adenoviral DNA replication but has since mainly been investigated in transcription regulation, is physically associated with the pre-replication complex (pre-RC) in mammalian cells. Genomic analyses reveal that NFIB facilitates the assembly of the pre-RC by increasing chromatin accessibility. Nucleosome binding and single-molecule magnetic tweezers shows that NFIB binds to and opens up nucleosomes. Transmission electron microscopy indicates that NFIB promotes nucleosome eviction on parental chromatin. NFIB deficiency leads to alterations of chromosome contacts/compartments in both G1 and S phase and affects the firing of a subset of origins at early-replication domains. Significantly, cancer-associated NFIB overexpression provokes gene duplication and genomic alterations recapitulating the genetic aberrance in clinical breast cancer and empowering cancer cells to dynamically evolve growth advantage and drug resistance. Together, these results point a role for NFIB in facilitating replication licensing by acting as a genome organizer, shedding new lights on the biological function of NFIB and on the replication origin selection in eukaryotes.
Collapse
Affiliation(s)
- Wenting Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yue Wang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Yongjie Liu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Cuifang Liu
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Yizhou Wang
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Lin He
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xiao Cheng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Yani Peng
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Lu Xia
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Xiaodi Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Jiajing Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Yu Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Luyang Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China
| | - Ping Chen
- Department of Immunology, School of Basic Medical Sciences, Advanced Innovation Center for Human Brain Protection, Capital Medical University, Beijing, 100069, China
| | - Guohong Li
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China
| | - Qiang Tu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Beijing, 100101, China
| | - Jing Liang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
| | - Yongfeng Shang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University Health Science Center, Beijing, 100191, China.
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
19
|
Affandi T, Haas A, Ohm AM, Wright GM, Black JC, Reyland ME. PKCδ regulates chromatin remodeling and DNA repair through SIRT6. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.24.541991. [PMID: 37292592 PMCID: PMC10245827 DOI: 10.1101/2023.05.24.541991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Protein kinase C delta (PKCδ) is a ubiquitous kinase whose function is defined in part by localization to specific cellular compartments. Nuclear PKCδ is both necessary and sufficient for IR-induced apoptosis, while inhibition of PKCδ activity provides radioprotection in vivo. How nuclear PKCδ regulates DNA-damage induced cell death is poorly understood. Here we show that PKCδ regulates histone modification, chromatin accessibility, and double stranded break (DSB) repair through a mechanism that requires SIRT6. Overexpression of PKCδ promotes genomic instability and increases DNA damage and apoptosis. Conversely, depletion of PKCδ increases DNA repair via non-homologous end joining (NHEJ) and homologous recombination (HR) as evidenced by more rapid formation of NHEJ (DNA-PK) and HR (Rad51) DNA damage foci, increased expression of repair proteins, and increased repair of NHEJ and HR fluorescent reporter constructs. Nuclease sensitivity indicates that PKCδ depletion is associated with more open chromatin, while overexpression of PKCδ reduces chromatin accessibility. Epiproteome analysis revealed that PKCδ depletion increases chromatin associated H3K36me2, and reduces ribosylation of KDM2A and chromatin bound KDM2A. We identify SIRT6 as a downstream mediator of PKCδ. PKCδ-depleted cells have increased expression of SIRT6, and depletion of SIRT6 reverses the changes in chromatin accessibility, histone modification and NHEJ and HR DNA repair seen with PKCδ-depletion. Furthermore, depletion of SIRT6 reverses radioprotection in PKCδ-depleted cells. Our studies describe a novel pathway whereby PKCδ orchestrates SIRT6-dependent changes in chromatin accessibility to increase DNA repair, and define a mechanism for regulation of radiation-induced apoptosis by PKCδ.
Collapse
Affiliation(s)
- Trisiani Affandi
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Ami Haas
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Angela M. Ohm
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Gregory M. Wright
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Joshua C. Black
- Department of Pharmacology, School of Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Mary E. Reyland
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| |
Collapse
|
20
|
Wright GM, Menzel J, Tatman PD, Black JC. Transition from Transient DNA Rereplication to Inherited Gene Amplification Following Prolonged Environmental Stress. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.08.539886. [PMID: 37214911 PMCID: PMC10197558 DOI: 10.1101/2023.05.08.539886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Cells require the ability to adapt to changing environmental conditions, however, it is unclear how these changes elicit stable permanent changes in genomes. We demonstrate that, in response to environmental metal exposure, the metallothionein (MT) locus undergoes DNA rereplication generating transient site-specific gene amplifications (TSSGs). Chronic metal exposure allows transition from MT TSSG to inherited MT gene amplification through homologous recombination within and outside of the MT locus. DNA rereplication of the MT locus is suppressed by H3K27me3 and EZH2. Long-term ablation of EZH2 activity eventually leads to integration and inheritance of MT gene amplifications without the selective pressure of metal exposure. The rereplication and inheritance of MT gene amplification is an evolutionarily conserved response to environmental metal from yeast to human. Our results describe a new paradigm for adaptation to environmental stress where targeted, transient DNA rereplication precedes stable inherited gene amplification.
Collapse
|
21
|
Li HT, Jang HJ, Rohena-Rivera K, Liu M, Gujar H, Kulchycki J, Zhao S, Billet S, Zhou X, Weisenberger DJ, Gill I, Jones PA, Bhowmick NA, Liang G. RNA mis-splicing drives viral mimicry response after DNMTi therapy in SETD2-mutant kidney cancer. Cell Rep 2023; 42:112016. [PMID: 36662621 PMCID: PMC10034851 DOI: 10.1016/j.celrep.2023.112016] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2022] [Revised: 10/26/2022] [Accepted: 01/05/2023] [Indexed: 01/21/2023] Open
Abstract
Tumors with mutations in chromatin regulators present attractive targets for DNA hypomethylating agent 5-aza-2'-deoxycytidine (DAC) therapy, which further disrupts cancer cells' epigenomic fidelity and reactivates transposable element (TE) expression to drive viral mimicry responses. SETD2 encodes a histone methyltransferase (H3K36me3) and is prevalently mutated in advanced kidney cancers. Here, we show that SETD2-mutant kidney cancer cells are especially sensitive in vitro and in vivo to DAC treatment. We find that the viral mimicry response are direct consequences of mis-splicing events, such as exon inclusions or extensions, triggered by DAC treatment in an SETD2-loss context. Comprehensive epigenomic analysis reveals H3K9me3 deposition, rather than DNA methylation dynamics, across intronic TEs might contribute to elevated mis-splicing rates. Through epigenomic and transcriptomic analyses, we show that SETD2-deficient kidney cancers are prone to mis-splicing, which can be therapeutically exacerbated with DAC treatment to increase viral mimicry activation and provide synergy with combinatorial immunotherapy approaches.
Collapse
Affiliation(s)
- Hong-Tao Li
- Department of Urology, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| | - H Josh Jang
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Krizia Rohena-Rivera
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Minmin Liu
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Hemant Gujar
- Department of Urology, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Justin Kulchycki
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA
| | - Shuqing Zhao
- Department of Urology, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Sandrin Billet
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA
| | - Xinyi Zhou
- Department of Urology, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Daniel J Weisenberger
- Department of Biochemistry and Molecular Medicine, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Inderbir Gill
- Department of Urology, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA
| | - Peter A Jones
- Department of Epigenetics, Van Andel Institute, Grand Rapids, MI 49503, USA.
| | - Neil A Bhowmick
- Department of Biomedical Sciences, Cedars-Sinai Medical Center, Los Angeles, CA 90048, USA; VA Greater Los Angeles Healthcare System, Los Angeles, CA 90073, USA.
| | - Gangning Liang
- Department of Urology, USC Norris Comprehensive Cancer Center, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
22
|
Jiang Y, Liu L, Yang ZQ. KDM4 Demethylases: Structure, Function, and Inhibitors. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2023; 1433:87-111. [PMID: 37751137 DOI: 10.1007/978-3-031-38176-8_5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
KDM4 histone demethylases mainly catalyze the removal of methyl marks from H3K9 and H3K36 to epigenetically regulate chromatin structure and gene expression. KDM4 expression is strictly regulated to ensure proper function in a myriad of biological processes, including transcription, cellular proliferation and differentiation, DNA damage repair, immune response, and stem cell self-renewal. Aberrant expression of KDM4 demethylase has been documented in many types of blood and solid tumors, and thus, KDM4s represent promising therapeutic targets. In this chapter, we summarize the current knowledge of the structures and regulatory mechanisms of KDM4 proteins and our understanding of their alterations in human pathological processes with a focus on development and cancer. We also review the reported KDM4 inhibitors and discuss their potential as therapeutic agents.
Collapse
Affiliation(s)
- Yuanyuan Jiang
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, 4100 John R Street, HWCRC 815, Detroit, MI, 48201, USA
| | - Lanxin Liu
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, 4100 John R Street, HWCRC 815, Detroit, MI, 48201, USA
| | - Zeng-Quan Yang
- Department of Oncology, Karmanos Cancer Institute, Wayne State University, 4100 John R Street, HWCRC 815, Detroit, MI, 48201, USA.
| |
Collapse
|
23
|
Wu L, Huang J, Trivedi P, Sun X, Yu H, He Z, Zhang X. Zinc finger myeloid Nervy DEAF-1 type (ZMYND) domain containing proteins exert molecular interactions to implicate in carcinogenesis. Discov Oncol 2022; 13:139. [PMID: 36520265 PMCID: PMC9755447 DOI: 10.1007/s12672-022-00597-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 11/28/2022] [Indexed: 12/23/2022] Open
Abstract
Morphogenesis and organogenesis in the low organisms have been found to be modulated by a number of proteins, and one of such factor, deformed epidermal auto-regulatory factor-1 (DEAF-1) has been initially identified in Drosophila. The mammalian homologue of DEAF-1 and structurally related proteins have been identified, and they formed a family with over 20 members. The factors regulate gene expression through association with co-repressors, recognition of genomic marker, to exert histone modification by catalyze addition of some chemical groups to certain amino acid residues on histone and non-histone proteins, and degradation host proteins, so as to regulate cell cycle progression and execution of cell death. The formation of fused genes during chromosomal translocation, exemplified with myeloid transforming gene on chromosome 8 (MTG8)/eight-to-twenty one translocation (ETO) /ZMYND2, MTG receptor 1 (MTGR1)/ZMYND3, MTG on chromosome 16/MTGR2/ZMYND4 and BS69/ZMYND11 contributes to malignant transformation. Other anomaly like copy number variation (CNV) of BS69/ZMYND11 and promoter hyper methylation of BLU/ZMYND10 has been noted in malignancies. It has been reported that when fusing with Runt-related transcription factor 1 (RUNX1), the binding of MTG8/ZMYND2 with co-repressors is disturbed, and silencing of BLU/ZMYND10 abrogates its ability to inhibition of cell cycle and promotion of apoptotic death. Further characterization of the implication of ZMYND proteins in carcinogenesis would enhance understanding of the mechanisms of occurrence and early diagnosis of tumors, and effective antitumor efficacy.
Collapse
Affiliation(s)
- Longji Wu
- Department of Pathophysiology, School of Basic Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Songshan Lake Scientific and Industrial Park, Dongguan, 523808, Guangdong, People's Republic of China
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
- Institute of Modern Biology, Nanjing University, Nanjing, Jiangsu, China
| | - Jing Huang
- Department of Pathophysiology, School of Basic Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Songshan Lake Scientific and Industrial Park, Dongguan, 523808, Guangdong, People's Republic of China
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Pankaj Trivedi
- Department of Experimental Medicine, La Sapienza University, Rome, Italy
| | - Xuerong Sun
- Institute of Aging, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Hongbing Yu
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China.
| | - Zhiwei He
- Department of Pathophysiology, School of Basic Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Songshan Lake Scientific and Industrial Park, Dongguan, 523808, Guangdong, People's Republic of China
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China
| | - Xiangning Zhang
- Department of Pathophysiology, School of Basic Medicine, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Songshan Lake Scientific and Industrial Park, Dongguan, 523808, Guangdong, People's Republic of China.
- Chinese-American Tumor Institute, Guangdong Provincial Key Laboratory of Medical Molecular Diagnostics, Guangdong Medical University, Dongguan, Guangdong, People's Republic of China.
| |
Collapse
|
24
|
Sharda A, Humphrey TC. The role of histone H3K36me3 writers, readers and erasers in maintaining genome stability. DNA Repair (Amst) 2022; 119:103407. [PMID: 36155242 DOI: 10.1016/j.dnarep.2022.103407] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/15/2022] [Accepted: 09/15/2022] [Indexed: 11/03/2022]
Abstract
Histone Post-Translational Modifications (PTMs) play fundamental roles in mediating DNA-related processes such as transcription, replication and repair. The histone mark H3K36me3 and its associated methyltransferase SETD2 (Set2 in yeast) are archetypical in this regard, performing critical roles in each of these DNA transactions. Here, we present an overview of H3K36me3 regulation and the roles of its writers, readers and erasers in maintaining genome stability through facilitating DNA double-strand break (DSB) repair, checkpoint signalling and replication stress responses. Further, we consider how loss of SETD2 and H3K36me3, frequently observed in a number of different cancer types, can be specifically targeted in the clinic through exploiting loss of particular genome stability functions.
Collapse
Affiliation(s)
- Asmita Sharda
- CRUK and MRC Oxford Institute for Radiation Oncology, Old Road Campus Research Building, University of Oxford, Oxford OX3 7DQ, UK
| | - Timothy C Humphrey
- CRUK and MRC Oxford Institute for Radiation Oncology, Old Road Campus Research Building, University of Oxford, Oxford OX3 7DQ, UK
| |
Collapse
|
25
|
Millán-Zambrano G, Burton A, Bannister AJ, Schneider R. Histone post-translational modifications - cause and consequence of genome function. Nat Rev Genet 2022; 23:563-580. [PMID: 35338361 DOI: 10.1038/s41576-022-00468-7] [Citation(s) in RCA: 482] [Impact Index Per Article: 160.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/28/2022] [Indexed: 12/16/2022]
Abstract
Much has been learned since the early 1960s about histone post-translational modifications (PTMs) and how they affect DNA-templated processes at the molecular level. This understanding has been bolstered in the past decade by the identification of new types of histone PTM, the advent of new genome-wide mapping approaches and methods to deposit or remove PTMs in a locally and temporally controlled manner. Now, with the availability of vast amounts of data across various biological systems, the functional role of PTMs in important processes (such as transcription, recombination, replication, DNA repair and the modulation of genomic architecture) is slowly emerging. This Review explores the contribution of histone PTMs to the regulation of genome function by discussing when these modifications play a causative (or instructive) role in DNA-templated processes and when they are deposited as a consequence of such processes, to reinforce and record the event. Important advances in the field showing that histone PTMs can exert both direct and indirect effects on genome function are also presented.
Collapse
Affiliation(s)
- Gonzalo Millán-Zambrano
- Centro Andaluz de Biología Molecular y Medicina Regenerativa CABIMER, Universidad de Sevilla-CSIC-Universidad Pablo de Olavide, Seville, Spain
- Departamento de Genética, Facultad de Biología, Universidad de Sevilla, Seville, Spain
| | - Adam Burton
- Institute of Epigenetics and Stem Cells, Helmholtz Center Munich, Munich, Germany
| | - Andrew J Bannister
- Gurdon Institute and Department of Pathology, University of Cambridge, Cambridge, UK.
| | - Robert Schneider
- Institute of Functional Epigenetics, Helmholtz Center Munich, Munich, Germany.
- Faculty of Biology, Ludwig Maximilian University (LMU) of Munich, Munich, Germany.
| |
Collapse
|
26
|
Wu Q, Young B, Wang Y, Davidoff AM, Rankovic Z, Yang J. Recent Advances with KDM4 Inhibitors and Potential Applications. J Med Chem 2022; 65:9564-9579. [PMID: 35838529 PMCID: PMC9531573 DOI: 10.1021/acs.jmedchem.2c00680] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The histone lysine demethylase 4 (KDM4) family plays an important role in regulating gene transcription, DNA repair, and metabolism. The dysregulation of KDM4 functions is associated with many human disorders, including cancer, obesity, and cardiovascular diseases. Selective and potent KDM4 inhibitors may help not only to understand the role of KDM4 in these disorders but also to provide potential therapeutic opportunities. Here, we provide an overview of the field and discuss current status, challenges, and opportunities lying ahead in the development of KDM4-based anticancer therapeutics.
Collapse
Affiliation(s)
- Qiong Wu
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Brandon Young
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Yan Wang
- Department of Geriatrics and Occupational Disease, Qingdao Central Hospital, Qingdao 266044, China
| | - Andrew M Davidoff
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Zoran Rankovic
- Department of Chemical Biology and Therapeutics, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States
| | - Jun Yang
- Department of Surgery, St. Jude Children's Research Hospital, Memphis, Tennessee 38105, United States.,Department of Pathology and Laboratory Medicine, College of Medicine, The University of Tennessee Health Science Center, 930 Madison Avenue, Suite 500, Memphis, Tennessee 38163, United States
| |
Collapse
|
27
|
Clarke TL, Mostoslavsky R. DNA repair as a shared hallmark in cancer and ageing. Mol Oncol 2022; 16:3352-3379. [PMID: 35834102 PMCID: PMC9490147 DOI: 10.1002/1878-0261.13285] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 05/23/2022] [Accepted: 07/08/2022] [Indexed: 11/30/2022] Open
Abstract
Increasing evidence demonstrates that DNA damage and genome instability play a crucial role in ageing. Mammalian cells have developed a wide range of complex and well‐orchestrated DNA repair pathways to respond to and resolve many different types of DNA lesions that occur from exogenous and endogenous sources. Defects in these repair pathways lead to accelerated or premature ageing syndromes and increase the likelihood of cancer development. Understanding the fundamental mechanisms of DNA repair will help develop novel strategies to treat ageing‐related diseases. Here, we revisit the processes involved in DNA damage repair and how these can contribute to diseases, including ageing and cancer. We also review recent mechanistic insights into DNA repair and discuss how these insights are being used to develop novel therapeutic strategies for treating human disease. We discuss the use of PARP inhibitors in the clinic for the treatment of breast and ovarian cancer and the challenges associated with acquired drug resistance. Finally, we discuss how DNA repair pathway‐targeted therapeutics are moving beyond PARP inhibition in the search for ever more innovative and efficacious cancer therapies.
Collapse
Affiliation(s)
- Thomas L Clarke
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, 02114, Boston, MA, USA.,The Broad Institute of Harvard and MIT, 02142, Cambridge, MA, USA
| | - Raul Mostoslavsky
- The Massachusetts General Hospital Cancer Center, Harvard Medical School, 02114, Boston, MA, USA.,The Broad Institute of Harvard and MIT, 02142, Cambridge, MA, USA
| |
Collapse
|
28
|
Histone Demethylase JMJD2D: A Novel Player in Colorectal and Hepatocellular Cancers. Cancers (Basel) 2022; 14:cancers14122841. [PMID: 35740507 PMCID: PMC9221006 DOI: 10.3390/cancers14122841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 05/26/2022] [Accepted: 05/28/2022] [Indexed: 02/01/2023] Open
Abstract
Simple Summary Histone demethylase JMJD2D is a multifunctional epigenetic factor coordinating androgen receptor activation, DNA damage repair, DNA replication, cell cycle regulation, and inflammation modulation. JMJD2D is also a well-established epigenetic facilitator in the progression of multiple malignant tumors, especially in colorectal cancer (CRC) and hepatocellular cancer (HCC). This review aims to summarize the mechanisms of JMJD2D in promoting CRC and HCC progression, which provides novel ideas for targeting JMJD2D in oncotherapy. JMJD2D promotes gene transcription by reducing H3K9 methylation and serves as a coactivator to enhance the activities of multiple carcinogenic pathways, including Wnt/β-catenin, Hedgehog, HIF1, JAK-STAT3, and Notch signaling; or acts as an antagonist of the tumor suppressor p53. Abstract Posttranslational modifications (PTMs) of histones are well-established contributors in a variety of biological functions, especially tumorigenesis. Histone demethylase JMJD2D (also known as KDM4D), a member of the JMJD2 subfamily, promotes gene transcription by antagonizing H3K9 methylation. JMJD2D is an epigenetic factor coordinating androgen receptor activation, DNA damage repair, DNA replication, and cell cycle regulation. Recently, the oncogenic role of JMJD2D in colorectal cancer (CRC) and hepatocellular cancer (HCC) has been recognized. JMJD2D serves as a coactivator of β-catenin, Gli1/2, HIF1α, STAT3, IRF1, TCF4, and NICD or an antagonist of p53 to promote the progression of CRC and HCC. In this review, we summarize the molecular mechanisms of JMJD2D in promoting the progression of CRC and HCC as well as the constructive role of its targeting inhibitors in suppressing tumorigenesis and synergistically enhancing the efficacy of anti-PD-1/PD-L1 immunotherapy.
Collapse
|
29
|
Molenaar TM, van Leeuwen F. SETD2: from chromatin modifier to multipronged regulator of the genome and beyond. Cell Mol Life Sci 2022; 79:346. [PMID: 35661267 PMCID: PMC9167812 DOI: 10.1007/s00018-022-04352-9] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 04/09/2022] [Accepted: 05/05/2022] [Indexed: 12/13/2022]
Abstract
Histone modifying enzymes play critical roles in many key cellular processes and are appealing proteins for targeting by small molecules in disease. However, while the functions of histone modifying enzymes are often linked to epigenetic regulation of the genome, an emerging theme is that these enzymes often also act by non-catalytic and/or non-epigenetic mechanisms. SETD2 (Set2 in yeast) is best known for associating with the transcription machinery and methylating histone H3 on lysine 36 (H3K36) during transcription. This well-characterized molecular function of SETD2 plays a role in fine-tuning transcription, maintaining chromatin integrity, and mRNA processing. Here we give an overview of the various molecular functions and mechanisms of regulation of H3K36 methylation by Set2/SETD2. These fundamental insights are important to understand SETD2’s role in disease, most notably in cancer in which SETD2 is frequently inactivated. SETD2 also methylates non-histone substrates such as α-tubulin which may promote genome stability and contribute to the tumor-suppressor function of SETD2. Thus, to understand its role in disease, it is important to understand and dissect the multiple roles of SETD2 within the cell. In this review we discuss how histone methylation by Set2/SETD2 has led the way in connecting histone modifications in active regions of the genome to chromatin functions and how SETD2 is leading the way to showing that we also have to look beyond histones to truly understand the physiological role of an ‘epigenetic’ writer enzyme in normal cells and in disease.
Collapse
|
30
|
Tan ES, Knepper TC, Wang X, Permuth JB, Wang L, Fleming JB, Xie H. Copy Number Alterations as Novel Biomarkers and Therapeutic Targets in Colorectal Cancer. Cancers (Basel) 2022; 14:2223. [PMID: 35565354 PMCID: PMC9101426 DOI: 10.3390/cancers14092223] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 04/21/2022] [Accepted: 04/24/2022] [Indexed: 12/10/2022] Open
Abstract
In colorectal cancer, somatic mutations have played an important role as prognostic and predictive biomarkers, with some also functioning as therapeutic targets. Another genetic aberration that has shown significance in colorectal cancer is copy number alterations (CNAs). CNAs occur when a change to the DNA structure propagates gain/amplification or loss/deletion in sections of DNA, which can often lead to changes in protein expression. Multiple techniques have been developed to detect CNAs, including comparative genomic hybridization with microarray, low pass whole genome sequencing, and digital droplet PCR. In this review, we summarize key findings in the literature regarding the role of CNAs in the pathogenesis of colorectal cancer, from adenoma to carcinoma to distant metastasis, and discuss the roles of CNAs as prognostic and predictive biomarkers in colorectal cancer.
Collapse
Affiliation(s)
- Elaine S. Tan
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive Tampa, Tampa, FL 33612, USA; (E.S.T.); (J.B.P.); (J.B.F.)
| | - Todd C. Knepper
- Department of Individualized Cancer Management, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive Tampa, Tampa, FL 33612, USA;
| | - Xuefeng Wang
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive Tampa, Tampa, FL 33612, USA;
| | - Jennifer B. Permuth
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive Tampa, Tampa, FL 33612, USA; (E.S.T.); (J.B.P.); (J.B.F.)
| | - Liang Wang
- Department of Tumor Biology, H. Lee Moffitt Cancer Center and Research Institute, 12901 USF Magnolia Drive Tampa, Tampa, FL 33612, USA;
| | - Jason B. Fleming
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive Tampa, Tampa, FL 33612, USA; (E.S.T.); (J.B.P.); (J.B.F.)
| | - Hao Xie
- Department of Gastrointestinal Oncology, H. Lee Moffitt Cancer Center and Research Institute, 12902 USF Magnolia Drive Tampa, Tampa, FL 33612, USA; (E.S.T.); (J.B.P.); (J.B.F.)
| |
Collapse
|
31
|
Emerging Glycation-Based Therapeutics-Glyoxalase 1 Inducers and Glyoxalase 1 Inhibitors. Int J Mol Sci 2022; 23:ijms23052453. [PMID: 35269594 PMCID: PMC8910005 DOI: 10.3390/ijms23052453] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 02/15/2022] [Accepted: 02/17/2022] [Indexed: 12/13/2022] Open
Abstract
The abnormal accumulation of methylglyoxal (MG) leading to increased glycation of protein and DNA has emerged as an important metabolic stress, dicarbonyl stress, linked to aging, and disease. Increased MG glycation produces inactivation and misfolding of proteins, cell dysfunction, activation of the unfolded protein response, and related low-grade inflammation. Glycation of DNA and the spliceosome contribute to an antiproliferative and apoptotic response of high, cytotoxic levels of MG. Glyoxalase 1 (Glo1) of the glyoxalase system has a major role in the metabolism of MG. Small molecule inducers of Glo1, Glo1 inducers, have been developed to alleviate dicarbonyl stress as a prospective treatment for the prevention and early-stage reversal of type 2 diabetes and prevention of vascular complications of diabetes. The first clinical trial with the Glo1 inducer, trans-resveratrol and hesperetin combination (tRES-HESP)-a randomized, double-blind, placebo-controlled crossover phase 2A study for correction of insulin resistance in overweight and obese subjects, was completed successfully. tRES-HESP corrected insulin resistance, improved dysglycemia, and low-grade inflammation. Cell permeable Glo1 inhibitor prodrugs have been developed to induce severe dicarbonyl stress as a prospective treatment for cancer-particularly for high Glo1 expressing-related multidrug-resistant tumors. The prototype Glo1 inhibitor is prodrug S-p-bromobenzylglutathione cyclopentyl diester (BBGD). It has antitumor activity in vitro and in tumor-bearing mice in vivo. In the National Cancer Institute human tumor cell line screen, BBGD was most active against the glioblastoma SNB-19 cell line. Recently, potent antitumor activity was found in glioblastoma multiforme tumor-bearing mice. High Glo1 expression is a negative survival factor in chemotherapy of breast cancer where adjunct therapy with a Glo1 inhibitor may improve treatment outcomes. BBGD has not yet been evaluated clinically. Glycation by MG now appears to be a pathogenic process that may be pharmacologically manipulated for therapeutic outcomes of potentially important clinical impact.
Collapse
|
32
|
Thakur BL, Ray A, Redon CE, Aladjem MI. Preventing excess replication origin activation to ensure genome stability. Trends Genet 2022; 38:169-181. [PMID: 34625299 PMCID: PMC8752500 DOI: 10.1016/j.tig.2021.09.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 09/14/2021] [Accepted: 09/16/2021] [Indexed: 02/03/2023]
Abstract
Cells activate distinctive regulatory pathways that prevent excessive initiation of DNA replication to achieve timely and accurate genome duplication. Excess DNA synthesis is constrained by protein-DNA interactions that inhibit initiation at dormant origins. In parallel, specific modifications of pre-replication complexes prohibit post-replicative origin relicensing. Replication stress ensues when the controls that prevent excess replication are missing in cancer cells, which often harbor extrachromosomal DNA that can be further amplified by recombination-mediated processes to generate chromosomal translocations. The genomic instability that accompanies excess replication origin activation can provide a promising target for therapeutic intervention. Here we review molecular pathways that modulate replication origin dormancy, prevent excess origin activation, and detect, encapsulate, and eliminate persistent excess DNA.
Collapse
Affiliation(s)
- Bhushan L Thakur
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Anagh Ray
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Christophe E Redon
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Mirit I Aladjem
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
33
|
Nanamori H, Sawada Y. Epigenetic Modification of PD-1/PD-L1-Mediated Cancer Immunotherapy against Melanoma. Int J Mol Sci 2022; 23:ijms23031119. [PMID: 35163049 PMCID: PMC8835029 DOI: 10.3390/ijms23031119] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/10/2022] [Accepted: 01/19/2022] [Indexed: 02/06/2023] Open
Abstract
Malignant melanoma is one of the representative skin cancers with unfavorable clinical behavior. Immunotherapy is currently used for the treatment, and it dramatically improves clinical outcomes in patients with advanced malignant melanoma. On the other hand, not all these patients can obtain therapeutic efficacy. To overcome this limitation of current immunotherapy, epigenetic modification is a highlighted issue for clinicians. Epigenetic modification is involved in various physiological and pathological conditions in the skin. Recent studies identified that skin cancer, especially malignant melanoma, has advantages in tumor development, indicating that epigenetic manipulation for regulation of gene expression in the tumor can be expected to result in additional therapeutic efficacy during immunotherapy. In this review, we focus on the detailed molecular mechanism of epigenetic modification in immunotherapy, especially anti-PD-1/PD-L1 antibody treatment for malignant melanoma.
Collapse
|
34
|
Kang X, Yang X, Guo X, Li Y, Yang C, Wei H, Chang J. OUP accepted manuscript. J Mol Cell Biol 2022; 14:6544677. [PMID: 35259279 PMCID: PMC9254884 DOI: 10.1093/jmcb/mjac014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 02/23/2022] [Accepted: 03/04/2022] [Indexed: 11/24/2022] Open
Abstract
Sense mutations in several conserved modifiable sites of histone H3 have been found to be strongly correlated with multiple tissue-specific clinical cancers. These clinical site mutants acquire a distinctively new epigenetic role and mediate cancer evolution. In this study, we mimicked histone H3 at the 56th lysine (H3K56) mutant incorporation in mouse embryonic stem cells (mESCs) by lentivirus-mediated ectopic expression and analyzed the effects on replication and epigenetic regulation. The data show that two types of H3K56 mutants, namely H3 lysine 56-to-methionine (H3K56M) and H3 lysine 56-to-alanine (H3K56A), promote replication by recruiting more minichromosome maintenance complex component 3 and checkpoint kinase 1 onto chromatin compared with wild-type histone H3 and other site substitution mutants. Under this condition, the frequency of genomic copy number gain in H3K56M and H3K56A cells globally increases, especially in the Mycl1 region, a known molecular marker frequently occurring in multiple malignant cancers. Additionally, we found the disruption of H3K56 acetylation distribution in the copy-gain regions, which indicates a probable epigenetic mechanism of H3K56M and H3K56A. We then identified that H3K56M and H3K56A can trigger a potential adaptation to transcription; genes involved in the mitogen-activated protein kinase pathway are partially upregulated, whereas genes associated with intrinsic apoptotic function show obvious downregulation. The final outcome of ectopic H3K56M and H3K56A incorporation in mESCs is an enhanced ability to form carcinomas. This work indicates that H3K56 site conservation and proper modification play important roles in harmonizing the function of the replication machinery in mESCs.
Collapse
Affiliation(s)
- Xuan Kang
- Correspondence to: Xuan Kang, E-mail:
| | - Xiaomei Yang
- Research Center for Translational Medicine, East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Xiaobo Guo
- Research Center for Translational Medicine, East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Yabin Li
- Research Center for Translational Medicine, East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | - Chenxin Yang
- Research Center for Translational Medicine, East Hospital, School of Life Sciences and Technology, Tongji University, Shanghai 200092, China
| | | | | |
Collapse
|
35
|
The genetic architecture of DNA replication timing in human pluripotent stem cells. Nat Commun 2021; 12:6746. [PMID: 34799581 PMCID: PMC8604924 DOI: 10.1038/s41467-021-27115-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 10/29/2021] [Indexed: 12/11/2022] Open
Abstract
DNA replication follows a strict spatiotemporal program that intersects with chromatin structure but has a poorly understood genetic basis. To systematically identify genetic regulators of replication timing, we exploited inter-individual variation in human pluripotent stem cells from 349 individuals. We show that the human genome's replication program is broadly encoded in DNA and identify 1,617 cis-acting replication timing quantitative trait loci (rtQTLs) - sequence determinants of replication initiation. rtQTLs function individually, or in combinations of proximal and distal regulators, and are enriched at sites of histone H3 trimethylation of lysines 4, 9, and 36 together with histone hyperacetylation. H3 trimethylation marks are individually repressive yet synergistically associate with early replication. We identify pluripotency-related transcription factors and boundary elements as positive and negative regulators of replication timing, respectively. Taken together, human replication timing is controlled by a multi-layered mechanism with dozens of effectors working combinatorially and following principles analogous to transcription regulation.
Collapse
|
36
|
Varghese B, Del Gaudio N, Cobellis G, Altucci L, Nebbioso A. KDM4 Involvement in Breast Cancer and Possible Therapeutic Approaches. Front Oncol 2021; 11:750315. [PMID: 34778065 PMCID: PMC8581295 DOI: 10.3389/fonc.2021.750315] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/13/2021] [Indexed: 12/24/2022] Open
Abstract
Breast cancer (BC) is the second leading cause of cancer death in women, although recent scientific and technological achievements have led to significant improvements in progression-free disease and overall survival of patients. Genetic mutations and epigenetic modifications play a critical role in deregulating gene expression, leading to uncontrolled cell proliferation and cancer progression. Aberrant histone modifications are one of the most frequent epigenetic mechanisms occurring in cancer. In particular, methylation and demethylation of specific lysine residues alter gene accessibility via histone lysine methyltransferases (KMTs) and histone lysine demethylases (KDMs). The KDM family includes more than 30 members, grouped into six subfamilies and two classes based on their sequency homology and catalytic mechanisms, respectively. Specifically, the KDM4 gene family comprises six members, KDM4A-F, which are associated with oncogene activation, tumor suppressor silencing, alteration of hormone receptor downstream signaling, and chromosomal instability. Blocking the activity of KDM4 enzymes renders them "druggable" targets with therapeutic effects. Several KDM4 inhibitors have already been identified as anticancer drugs in vitro in BC cells. However, no KDM4 inhibitors have as yet entered clinical trials due to a number of issues, including structural similarities between KDM4 members and conservation of the active domain, which makes the discovery of selective inhibitors challenging. Here, we summarize our current knowledge of the molecular functions of KDM4 members in BC, describe currently available KDM4 inhibitors, and discuss their potential use in BC therapy.
Collapse
Affiliation(s)
- Benluvankar Varghese
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Napoli, Italy
| | - Nunzio Del Gaudio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Napoli, Italy
| | - Gilda Cobellis
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Napoli, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Napoli, Italy.,Biogem Institute of Molecular Biology and Genetics, Ariano Irpino, Italy
| | - Angela Nebbioso
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, Napoli, Italy.,Saint Camillus International University of Health and Medical Sciences, Rome, Italy
| |
Collapse
|
37
|
Xiao C, Fan T, Tian H, Zheng Y, Zhou Z, Li S, Li C, He J. H3K36 trimethylation-mediated biological functions in cancer. Clin Epigenetics 2021; 13:199. [PMID: 34715919 PMCID: PMC8555273 DOI: 10.1186/s13148-021-01187-2] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2021] [Accepted: 10/19/2021] [Indexed: 12/12/2022] Open
Abstract
Histone modification is an important form of epigenetic regulation. Thereinto, histone methylation is a critical determination of chromatin states, participating in multiple cellular processes. As a conserved histone methylation mark, histone 3 lysine 36 trimethylation (H3K36me3) can mediate multiple transcriptional-related events, such as the regulation of transcriptional activity, transcription elongation, pre-mRNA alternative splicing, and RNA m6A methylation. Additionally, H3K36me3 also contributes to DNA damage repair. Given the crucial function of H3K36me3 in genome regulation, the roles of H3K36me3 and its sole methyltransferase SETD2 in pathogenesis, especially malignancies, have been emphasized in many studies, and it is conceivable that disruption of histone methylation regulatory network composed of "writer", "eraser", "reader", and the mutation of H3K36me3 codes have the capacity of powerfully modulating cancer initiation and development. Here we review H3K36me3-mediated biological processes and summarize the latest findings regarding its role in cancers. We highlight the significance of epigenetic combination therapies in cancers.
Collapse
Affiliation(s)
- Chu Xiao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Tao Fan
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - He Tian
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yujia Zheng
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zheng Zhou
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shuofeng Li
- Department of Colorectal Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Chunxiang Li
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Jie He
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
38
|
Souto JA. Continuous‐Flow Preparation of Benzotropolones: Combined Batch and Flow Synthesis of Epigenetic Modulators of the (JmjC)‐Containing Domain. ChemistrySelect 2021. [DOI: 10.1002/slct.202102457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- José A. Souto
- Departamento de Química Orgánica Facultade de Química Centro de Investigacións Biomédicas (CINBIO) and IIS Galicia Sur. Universidade de Vigo 36310 Vigo Spain
| |
Collapse
|
39
|
Bisht K, Walker B, Kumar SK, Spicka I, Moreau P, Martin T, Costa LJ, Richter J, Fukao T, Macé S, van de Velde H. Chromosomal 1q21 abnormalities in multiple myeloma: a review of translational, clinical research, and therapeutic strategies. Expert Rev Hematol 2021; 14:1099-1114. [PMID: 34551651 DOI: 10.1080/17474086.2021.1983427] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
INTRODUCTION Multiple myeloma (MM) remains an incurable disease with a median overall survival of approximately 5 years. Gain or amplification of 1q21 (1q21+) occurs in around 40% of patients with MM and generally portends a poor prognosis. Patients with MM who harbor 1q21+ are at increased risk of drug resistance, disease progression, and death. New pharmacotherapies with novel modes of action are required to overcome the negative prognostic impact of 1q21+. Areas covered: This review discusses the detection, biology, prognosis, and therapeutic targeting of 1q21+ in newly diagnosed and relapsed MM. Patients with MM and 1q21+ tend to present with higher tumor burden, greater end-organ damage, and more co-occurring high-risk cytogenetic abnormalities than patients without 1q21+. The chromosomal rearrangements associated with 1q21+ result in dysregulation of genes involved in oncogenesis. Identification and characterization of the 1q21+ molecular targets are needed to inform on prognosis and treatment strategy. Clinical trial data are emerging that addition of isatuximab to combination therapies may improve outcomes in patients with 1q21+ MM. Expert opinion: In the next 5 years, the results of ongoing research and trials are likely to focus on the therapeutic impact and treatment decisions associated with 1q21+ in MM.
Collapse
Affiliation(s)
- Kamlesh Bisht
- Oncology Therapeutic Area, Sanofi Research and Development, Cambridge, MA, USA
| | - Brian Walker
- Melvin and Bren Simon Comprehensive Cancer Center, Division of Hematology Oncology, Indiana University, Indianapolis, IN, USA
| | - Shaji K Kumar
- Division of Hematology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Ivan Spicka
- First Department of Medicine, Department of Hematology, First Faculty of Medicine, Charles University and General Hospital, Prague, Czech Republic
| | - Philippe Moreau
- Department of Hematology, University Hospital of Nantes, Nantes, France
| | - Tom Martin
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Luciano J Costa
- Division of Hematology and Oncology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Joshua Richter
- Division of Hematology and Medical Oncology, Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Taro Fukao
- Oncology Therapeutic Area, Sanofi Research and Development, Cambridge, MA, USA
| | - Sandrine Macé
- Sanofi Research and Development, Sanofi, Vitry-Sur-Seine, France
| | - Helgi van de Velde
- Oncology Therapeutic Area, Sanofi Research and Development, Cambridge, MA, USA
| |
Collapse
|
40
|
Van Rechem C, Ji F, Chakraborty D, Black JC, Sadreyev RI, Whetstine JR. Collective regulation of chromatin modifications predicts replication timing during cell cycle. Cell Rep 2021; 37:109799. [PMID: 34610305 PMCID: PMC8530517 DOI: 10.1016/j.celrep.2021.109799] [Citation(s) in RCA: 32] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/16/2021] [Accepted: 09/14/2021] [Indexed: 12/13/2022] Open
Abstract
Replication timing (RT) associates with genome architecture, while having a mixed relationship to histone marks. By profiling replication at high resolution and assessing broad histone marks across the cell cycle at the resolution of RT with and without genetic perturbation, we address the causal relationship between histone marks and RT. Four primary chromatin states, including an uncharacterized H3K36me2 state, emerge and define 97% of the mappable genome. RT and local replication patterns (e.g., initiation zones) quantitatively associate with chromatin states, histone mark dynamics, and spatial chromatin structure. Manipulation of broad histone marks and enhancer elements by overexpressing the histone H3 lysine 9/36 tri-demethylase KDM4A impacts RT across 11% of the genome. Broad histone modification changes were strong predictors of the observed RT alterations. Lastly, replication within H3K36me2-enriched neighborhoods is sensitive to KDM4A overexpression and is controlled at a megabase scale. These studies establish a role for collective chromatin mark regulation in modulating RT.
Collapse
Affiliation(s)
- Capucine Van Rechem
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA; Department of Pathology, Stanford Medicine, Stanford, CA 94305, USA
| | - Fei Ji
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA
| | - Damayanti Chakraborty
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA
| | - Joshua C Black
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA
| | - Ruslan I Sadreyev
- Department of Molecular Biology, Massachusetts General Hospital, Boston, MA 02114, USA; Department of Pathology, Massachusetts General Hospital and Harvard Medical School, Boston, MA 02114, USA.
| | - Johnathan R Whetstine
- Massachusetts General Hospital Cancer Center and Harvard Medical School, Charlestown, MA 02129, USA; Cancer Signaling and Epigenetics Program, Fox Chase Cancer Center, Philadelphia, PA 19111, USA; Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA 19111, USA.
| |
Collapse
|
41
|
Wang Z, Chen J, Gao C, Xiao Q, Wang X, Tang S, Li Q, Zhong B, Song Z, Shu H, Li L, Wu M. Epigenetic Dysregulation Induces Translocation of Histone H3 into Cytoplasm. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2100779. [PMID: 34363353 PMCID: PMC8498869 DOI: 10.1002/advs.202100779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 04/10/2021] [Indexed: 06/13/2023]
Abstract
In eukaryote cells, core components of chromatin, such as histones and DNA, are packaged in nucleus. Leakage of nuclear materials into cytosol will induce pathological effects. However, the underlying mechanisms remain elusive. Here, cytoplasmic localization of nuclear materials induced by chromatin dysregulation (CLIC) in mammalian cells is reported. H3K9me3 inhibition by small chemicals, HP1α knockdown, or knockout of H3K9 methylase SETDB1, induces formation of cytoplasmic puncta containing histones H3.1, H4 and cytosolic DNA, which in turn activates inflammatory genes and autophagic degradation. Autophagy deficiency rescues H3 degradation, and enhances the activation of inflammatory genes. MRE11, a subunit of MRN complex, enters cytoplasm after heterochromatin dysregulation. Deficiency of MRE11 or NBS1, but not RAD50, inhibits CLIC puncta in cytosol. MRE11 depletion represses tumor growth enhanced by HP1α deficiency, suggesting a connection between CLIC and tumorigenesis. This study reveals a novel pathway that heterochromatin dysregulation induces translocation of nuclear materials into cytoplasm, which is important for inflammatory diseases and cancer.
Collapse
Affiliation(s)
- Zhen Wang
- College of Life SciencesWuhan UniversityWuhan430072China
- Hubei Key Laboratory of Cell HomeostasisHubei Key Laboratory of Developmentally Originated DiseaseHubei Key Laboratory of EnteropathyWuhan UniversityWuhan430072China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
| | - Ji Chen
- College of Life SciencesWuhan UniversityWuhan430072China
- Hubei Key Laboratory of Cell HomeostasisHubei Key Laboratory of Developmentally Originated DiseaseHubei Key Laboratory of EnteropathyWuhan UniversityWuhan430072China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
| | - Chuan Gao
- College of Life SciencesWuhan UniversityWuhan430072China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
- Department of ImmunologyMedical Research InstituteSchool of MedicineWuhan UniversityWuhan430071China
| | - Qiong Xiao
- College of Life SciencesWuhan UniversityWuhan430072China
- Hubei Key Laboratory of Cell HomeostasisHubei Key Laboratory of Developmentally Originated DiseaseHubei Key Laboratory of EnteropathyWuhan UniversityWuhan430072China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
| | - Xi‐Wei Wang
- College of Life SciencesWuhan UniversityWuhan430072China
- Hubei Key Laboratory of Cell HomeostasisHubei Key Laboratory of Developmentally Originated DiseaseHubei Key Laboratory of EnteropathyWuhan UniversityWuhan430072China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
| | - Shan‐Bo Tang
- College of Life SciencesWuhan UniversityWuhan430072China
- Hubei Key Laboratory of Cell HomeostasisHubei Key Laboratory of Developmentally Originated DiseaseHubei Key Laboratory of EnteropathyWuhan UniversityWuhan430072China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
| | - Qing‐Lan Li
- College of Life SciencesWuhan UniversityWuhan430072China
- Hubei Key Laboratory of Cell HomeostasisHubei Key Laboratory of Developmentally Originated DiseaseHubei Key Laboratory of EnteropathyWuhan UniversityWuhan430072China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
| | - Bo Zhong
- College of Life SciencesWuhan UniversityWuhan430072China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
- Department of ImmunologyMedical Research InstituteSchool of MedicineWuhan UniversityWuhan430071China
| | - Zhi‐Yin Song
- College of Life SciencesWuhan UniversityWuhan430072China
- Hubei Key Laboratory of Cell HomeostasisHubei Key Laboratory of Developmentally Originated DiseaseHubei Key Laboratory of EnteropathyWuhan UniversityWuhan430072China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
| | - Hong‐Bing Shu
- College of Life SciencesWuhan UniversityWuhan430072China
- Hubei Key Laboratory of Cell HomeostasisHubei Key Laboratory of Developmentally Originated DiseaseHubei Key Laboratory of EnteropathyWuhan UniversityWuhan430072China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
- Department of ImmunologyMedical Research InstituteSchool of MedicineWuhan UniversityWuhan430071China
| | - Lian‐Yun Li
- College of Life SciencesWuhan UniversityWuhan430072China
- Hubei Key Laboratory of Cell HomeostasisHubei Key Laboratory of Developmentally Originated DiseaseHubei Key Laboratory of EnteropathyWuhan UniversityWuhan430072China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
| | - Min Wu
- College of Life SciencesWuhan UniversityWuhan430072China
- Hubei Key Laboratory of Cell HomeostasisHubei Key Laboratory of Developmentally Originated DiseaseHubei Key Laboratory of EnteropathyWuhan UniversityWuhan430072China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430072China
| |
Collapse
|
42
|
The Sound of Silence: How Silenced Chromatin Orchestrates the Repair of Double-Strand Breaks. Genes (Basel) 2021; 12:genes12091415. [PMID: 34573397 PMCID: PMC8467445 DOI: 10.3390/genes12091415] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/07/2021] [Accepted: 09/13/2021] [Indexed: 12/29/2022] Open
Abstract
The eukaryotic nucleus is continuously being exposed to endogenous and exogenous sources that cause DNA breaks, whose faithful repair requires the activity of dedicated nuclear machineries. DNA is packaged into a variety of chromatin domains, each characterized by specific molecular properties that regulate gene expression and help maintain nuclear structure. These different chromatin environments each demand a tailored response to DNA damage. Silenced chromatin domains in particular present a major challenge to the cell’s DNA repair machinery due to their specific biophysical properties and distinct, often repetitive, DNA content. To this end, we here discuss the interplay between silenced chromatin domains and DNA damage repair, specifically double-strand breaks, and how these processes help maintain genome stability.
Collapse
|
43
|
Ortmann BM, Nathan JA. Genetic approaches to understand cellular responses to oxygen availability. FEBS J 2021; 289:5396-5412. [PMID: 34125486 DOI: 10.1111/febs.16072] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/24/2021] [Accepted: 06/14/2021] [Indexed: 12/21/2022]
Abstract
Oxygen-sensing mechanisms have evolved to allow organisms to respond and adapt to oxygen availability. In metazoans, oxygen-sensing is predominantly mediated by the hypoxia inducible factors (HIFs). These transcription factors are stabilised when oxygen is limiting, activating genes involved in angiogenesis, cell growth, pH regulation and metabolism to reset cell function and adapt to the cellular environment. However, the recognition that other cellular pathways and enzymes can also respond to changes in oxygen abundance provides further complexity. Dissecting this interplay of oxygen-sensing mechanisms has been a key research goal. Here, we review how genetic approaches have contributed to our knowledge of oxygen-sensing pathways which to date have been predominantly focused on the HIF pathway. We discuss how genetic studies have advanced the field and outline the implications and limitations of such approaches for the development of therapies targeting oxygen-sensing mechanisms in human disease.
Collapse
Affiliation(s)
- Brian M Ortmann
- Department of Medicine, Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, UK
| | - James A Nathan
- Department of Medicine, Cambridge Institute of Therapeutic Immunology & Infectious Disease (CITIID), Jeffrey Cheah Biomedical Centre, University of Cambridge, UK
| |
Collapse
|
44
|
A KDM4A-PAF1-mediated epigenomic network is essential for acute myeloid leukemia cell self-renewal and survival. Cell Death Dis 2021; 12:573. [PMID: 34083515 PMCID: PMC8175737 DOI: 10.1038/s41419-021-03738-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2020] [Revised: 04/02/2021] [Accepted: 04/06/2021] [Indexed: 02/07/2023]
Abstract
Epigenomic dysregulation is a common pathological feature in human hematological malignancies. H3K9me3 emerges as an important epigenomic marker in acute myeloid leukemia (AML). Its associated methyltransferases, such as SETDB1, suppress AML leukemogenesis, whilst H3K9me3 demethylases KDM4C is required for mixed-lineage leukemia rearranged AML. However, the specific role and molecular mechanism of action of another member of the KDM4 family, KDM4A has not previously been clearly defined. In this study, we delineated and functionally validated the epigenomic network regulated by KDM4A. We show that selective loss of KDM4A is sufficient to induce apoptosis in a broad spectrum of human AML cells. This detrimental phenotype results from a global accumulation of H3K9me3 and H3K27me3 at KDM4A targeted genomic loci thereby causing downregulation of a KDM4A-PAF1 controlled transcriptional program essential for leukemogenesis, distinct from that of KDM4C. From this regulatory network, we further extracted a KDM4A-9 gene signature enriched with leukemia stem cell activity; the KDM4A-9 score alone or in combination with the known LSC17 score, effectively stratifies high-risk AML patients. Together, these results establish the essential and unique role of KDM4A for AML self-renewal and survival, supporting further investigation of KDM4A and its targets as a potential therapeutic vulnerability in AML.
Collapse
|
45
|
Zhang W, Liu W, Jia L, Chen D, Chang I, Lake M, Bentolila LA, Wang CY. Targeting KDM4A epigenetically activates tumor-cell-intrinsic immunity by inducing DNA replication stress. Mol Cell 2021; 81:2148-2165.e9. [PMID: 33743195 PMCID: PMC8141018 DOI: 10.1016/j.molcel.2021.02.038] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Revised: 10/23/2020] [Accepted: 02/24/2021] [Indexed: 12/17/2022]
Abstract
Developing strategies to activate tumor-cell-intrinsic immune response is critical for improving tumor immunotherapy by exploiting tumor vulnerability. KDM4A, as a histone H3 lysine 9 trimethylation (H3K9me3) demethylase, has been found to play a critical role in squamous cell carcinoma (SCC) growth and metastasis. Here we report that KDM4A inhibition promoted heterochromatin compaction and induced DNA replication stress, which elicited antitumor immunity in SCC. Mechanistically, KDM4A inhibition promoted the formation of liquid-like HP1γ puncta on heterochromatin and stall DNA replication, which activated tumor-cell-intrinsic cGAS-STING signaling through replication-stress-induced cytosolic DNA accumulation. Moreover, KDM4A inhibition collaborated with PD1 blockade to inhibit SCC growth and metastasis by recruiting and activating CD8+ T cells. In vivo lineage tracing demonstrated that KDM4A inhibition plus PD1 blockade efficiently eliminated cancer stem cells. Altogether, our results demonstrate that targeting KDM4A can activate anti-tumor immunity and enable PD1 blockade immunotherapy by aggravating replication stress in SCC cells.
Collapse
Affiliation(s)
- Wuchang Zhang
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Wei Liu
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Lingfei Jia
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Demeng Chen
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Insoon Chang
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Michael Lake
- Advanced Light Microscopy and Spectroscopy Laboratory, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Laurent A Bentolila
- Advanced Light Microscopy and Spectroscopy Laboratory, California NanoSystems Institute, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Cun-Yu Wang
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA 90095, USA; Laboratory of Molecular Signaling, Division of Oral Biology and Medicine, School of Dentistry, University of California, Los Angeles, Los Angeles, CA 90095, USA; Department of Bioengineering, Henry Samueli School of Engineering and Applied Science, University of California, Los Angeles, Los Angeles, CA 90095, USA.
| |
Collapse
|
46
|
PLOD2-driven IL-6/STAT3 signaling promotes the invasion and metastasis of oral squamous cell carcinoma via activation of integrin β1. Int J Oncol 2021; 58:29. [PMID: 33887877 PMCID: PMC8057293 DOI: 10.3892/ijo.2021.5209] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Accepted: 03/31/2021] [Indexed: 12/12/2022] Open
Abstract
We previously reported that high expression of procollagen-lysine 2-oxoglutarate 5-dioxygenase 2 (PLOD2) leads to stabilization and plasma membrane translocation of integrin β1 to promote the invasion and metastasis of oral squamous cell carcinoma (SCC). The present study aimed to further understand the relationship between PLOD2-integrin β1 signaling and the tumor microenvironment. This study provided further advanced insights indicating that elevated interleukin (IL)-6 in the tumor microenvironment acts as a key molecule that triggers PLOD2-integrin β1 axis-derived acceleration of tumor invasion and metastasis. It was found using the dual-luciferase reporter assay system that signal transducer and activator of transcription 3 (STAT3) activation by IL-6 was essential for increasing the expression levels of PLOD2 through direct activation of the PLOD2 promoter in oral SCC, whereas IL-6 stimulation did not contribute to integrin β1 expression or the subsequent maturation process towards a functional form on the plasma membrane. Furthermore, the expression of IL-6 in oral SCC tissues was mainly observed in the tumor stroma. Finally, with double immunofluorescence staining, it was found that IL-6 expression occurred in CD163-positive M2 macrophages distributed around the tumor nest. These results combined with our previous results indicate that as IL-6 significantly increases STAT3-mediated PLOD2 promoter activity, IL-6 released by M2-type tumor-associated macrophages is a crucial factor that promotes PLOD2-integrin β1 axis-enhanced invasion and metastasis of oral SCC cells.
Collapse
|
47
|
Walters ZS, Aladowicz E, Villarejo-Balcells B, Nugent G, Selfe JL, Eve P, Blagg J, Rossanese O, Shipley J. Role for the Histone Demethylase KDM4B in Rhabdomyosarcoma via CDK6 and CCNA2: Compensation by KDM4A and Apoptotic Response of Targeting Both KDM4B and KDM4A. Cancers (Basel) 2021; 13:1734. [PMID: 33917420 PMCID: PMC8038694 DOI: 10.3390/cancers13071734] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 04/02/2021] [Accepted: 04/04/2021] [Indexed: 01/10/2023] Open
Abstract
Histone demethylases are epigenetic modulators that play key roles in regulating gene expression related to many critical cellular functions and are emerging as promising therapeutic targets in a number of tumor types. We previously identified histone demethylase family members as overexpressed in the pediatric sarcoma, rhabdomyosarcoma. Here we show high sensitivity of rhabdomyosarcoma cells to a pan-histone demethylase inhibitor, JIB-04 and identify a key role for the histone demethylase KDM4B in rhabdomyosarcoma cell growth through an RNAi-screening approach. Decreasing KDM4B levels affected cell cycle progression and transcription of G1/S and G2/M checkpoint genes including CDK6 and CCNA2, which are bound by KDM4B in their promoter regions. However, after sustained knockdown of KDM4B, rhabdomyosarcoma cell growth recovered. We show that this can be attributed to acquired molecular compensation via recruitment of KDM4A to the promoter regions of CDK6 and CCNA2 that are otherwise bound by KDM4B. Furthermore, upfront silencing of both KDM4B and KDM4A led to RMS cell apoptosis, not seen by reducing either alone. To circumvent compensation and elicit stronger therapeutic responses, our study supports targeting histone demethylase sub-family proteins through selective poly-pharmacology as a therapeutic approach.
Collapse
Affiliation(s)
- Zoë S. Walters
- Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, Sutton, London SM2 5NG, UK; (Z.S.W.); (E.A.); (B.V.-B.); (J.L.S.)
- Cancer Sciences, Faculty of Medicine, Southampton General Hospital, Southampton SO16 6YD, UK
| | - Ewa Aladowicz
- Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, Sutton, London SM2 5NG, UK; (Z.S.W.); (E.A.); (B.V.-B.); (J.L.S.)
| | - Barbara Villarejo-Balcells
- Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, Sutton, London SM2 5NG, UK; (Z.S.W.); (E.A.); (B.V.-B.); (J.L.S.)
| | - Gary Nugent
- Division of Cancer Therapeutics, The Institute of Cancer Research, Sutton, London SM2 5NG, UK; (G.N.); (P.E.); (J.B.); (O.R.)
| | - Joanna L. Selfe
- Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, Sutton, London SM2 5NG, UK; (Z.S.W.); (E.A.); (B.V.-B.); (J.L.S.)
| | - Paul Eve
- Division of Cancer Therapeutics, The Institute of Cancer Research, Sutton, London SM2 5NG, UK; (G.N.); (P.E.); (J.B.); (O.R.)
| | - Julian Blagg
- Division of Cancer Therapeutics, The Institute of Cancer Research, Sutton, London SM2 5NG, UK; (G.N.); (P.E.); (J.B.); (O.R.)
| | - Olivia Rossanese
- Division of Cancer Therapeutics, The Institute of Cancer Research, Sutton, London SM2 5NG, UK; (G.N.); (P.E.); (J.B.); (O.R.)
| | - Janet Shipley
- Divisions of Molecular Pathology and Cancer Therapeutics, The Institute of Cancer Research, Sutton, London SM2 5NG, UK; (Z.S.W.); (E.A.); (B.V.-B.); (J.L.S.)
| |
Collapse
|
48
|
Yang J, Liu X, Huang Y, He L, Zhang W, Ren J, Wang Y, Wu J, Wu X, Shan L, Yang X, Sun L, Liang J, Zhang Y, Shang Y. TRPS1 drives heterochromatic origin refiring and cancer genome evolution. Cell Rep 2021; 34:108814. [PMID: 33691114 DOI: 10.1016/j.celrep.2021.108814] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 12/18/2020] [Accepted: 02/10/2021] [Indexed: 02/06/2023] Open
Abstract
Exploitation of naturally occurring genetic mutations could empower the discovery of novel aspects of established cancer genes. We report here that TRPS1, a gene linked to the tricho-rhino-phalangeal syndrome (TRPS) and recently identified as a potential breast cancer driver, promotes breast carcinogenesis through regulating replication. Epigenomic decomposition of TRPS1 landscape reveals nearly half of H3K9me3-marked heterochromatic origins are occupied by TRPS1, where it encourages the chromatin loading of APC/C, resulting in uncontrolled origin refiring. TRPS1 binds to the genome through its atypical H3K9me3 reading via GATA and IKAROS domains, while TRPS-related mutations affect its chromatin binding, replication boosting, and tumorigenicity. Concordantly, overexpression of wild-type but not TRPS-associated mutants of TRPS1 is sufficient to drive cancer genome amplifications, which experience an extrachromosomal route and dynamically evolve to confer therapeutic resistance. Together, these results uncover a critical function of TRPS1 in driving heterochromatin origin firing and breast cancer genome evolution.
Collapse
Affiliation(s)
- Jianguo Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Xiaoping Liu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Yunchao Huang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Lin He
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Wenting Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Jie Ren
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Yue Wang
- Department of Biochemistry and Molecular Biology, School of Medicine, Hangzhou Normal University, Hangzhou 311121, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Jiajing Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xiaodi Wu
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Lin Shan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Xiaohan Yang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Luyang Sun
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Jing Liang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China
| | - Yu Zhang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China.
| | - Yongfeng Shang
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Health Science Center, Beijing 100191, China; Department of Biochemistry and Molecular Biology, School of Medicine, Hangzhou Normal University, Hangzhou 311121, China; Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
49
|
Ramarao-Milne P, Kondrashova O, Barry S, Hooper JD, Lee JS, Waddell N. Histone Modifying Enzymes in Gynaecological Cancers. Cancers (Basel) 2021; 13:cancers13040816. [PMID: 33669182 PMCID: PMC7919659 DOI: 10.3390/cancers13040816] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 02/10/2021] [Accepted: 02/11/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Epigenetics is a process that allows genetic control, without the involvement of sequence changes to DNA or genes. In cancer, epigenetics is a key event in tumour development that can alter the expression of cancer driver genes and result in genomic instability. Due to the critical role of epigenetics in malignant transformation, therapies that target these processes have been developed to treat cancer. Here, we provide a summary of the epigenetic changes that have been described in a variety of gynaecological cancers. We then highlight how these changes are being targeted in preclinical models and clinical trials for gynaecological cancers. Abstract Genetic and epigenetic factors contribute to the development of cancer. Epigenetic dysregulation is common in gynaecological cancers and includes altered methylation at CpG islands in gene promoter regions, global demethylation that leads to genome instability and histone modifications. Histones are a major determinant of chromosomal conformation and stability, and unlike DNA methylation, which is generally associated with gene silencing, are amenable to post-translational modifications that induce facultative chromatin regions, or condensed transcriptionally silent regions that decondense resulting in global alteration of gene expression. In comparison, other components, crucial to the manipulation of chromatin dynamics, such as histone modifying enzymes, are not as well-studied. Inhibitors targeting DNA modifying enzymes, particularly histone modifying enzymes represent a potential cancer treatment. Due to the ability of epigenetic therapies to target multiple pathways simultaneously, tumours with complex mutational landscapes affected by multiple driver mutations may be most amenable to this type of inhibitor. Interrogation of the actionable landscape of different gynaecological cancer types has revealed that some patients have biomarkers which indicate potential sensitivity to epigenetic inhibitors. In this review we describe the role of epigenetics in gynaecological cancers and highlight how it may exploited for treatment.
Collapse
Affiliation(s)
- Priya Ramarao-Milne
- Medical Genomics Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (P.R.-M.); (O.K.); (N.W.)
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4006, Australia
| | - Olga Kondrashova
- Medical Genomics Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (P.R.-M.); (O.K.); (N.W.)
| | - Sinead Barry
- Department of Gynaecological Oncology, Mater Hospital Brisbane, Brisbane, QLD 4101, Australia;
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia;
| | - John D. Hooper
- Mater Research Institute, The University of Queensland, Translational Research Institute, Woolloongabba, QLD 4102, Australia;
| | - Jason S. Lee
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4006, Australia
- Epigenetics and Disease Laboratory, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia
- School of Biomedical Sciences, Queensland University of Technology, Brisbane, QLD 4000, Australia
- Correspondence: ; Tel.: +61-7-38453951
| | - Nicola Waddell
- Medical Genomics Group, QIMR Berghofer Medical Research Institute, Brisbane, QLD 4006, Australia; (P.R.-M.); (O.K.); (N.W.)
- Faculty of Medicine, The University of Queensland, Brisbane, QLD 4006, Australia
| |
Collapse
|
50
|
Rapsomaniki MA, Maxouri S, Nathanailidou P, Garrastacho MR, Giakoumakis NN, Taraviras S, Lygeros J, Lygerou Z. In silico analysis of DNA re-replication across a complete genome reveals cell-to-cell heterogeneity and genome plasticity. NAR Genom Bioinform 2021; 3:lqaa112. [PMID: 33554116 PMCID: PMC7846089 DOI: 10.1093/nargab/lqaa112] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 12/15/2020] [Accepted: 01/20/2021] [Indexed: 01/06/2023] Open
Abstract
DNA replication is a complex and remarkably robust process: despite its inherent uncertainty, manifested through stochastic replication timing at a single-cell level, multiple control mechanisms ensure its accurate and timely completion across a population. Disruptions in these mechanisms lead to DNA re-replication, closely connected to genomic instability and oncogenesis. Here, we present a stochastic hybrid model of DNA re-replication that accurately portrays the interplay between discrete dynamics, continuous dynamics and uncertainty. Using experimental data on the fission yeast genome, model simulations show how different regions respond to re-replication and permit insight into the key mechanisms affecting re-replication dynamics. Simulated and experimental population-level profiles exhibit a good correlation along the genome, robust to model parameters, validating our approach. At a single-cell level, copy numbers of individual loci are affected by intrinsic properties of each locus, in cis effects from adjoining loci and in trans effects from distant loci. In silico analysis and single-cell imaging reveal that cell-to-cell heterogeneity is inherent in re-replication and can lead to genome plasticity and a plethora of genotypic variations.
Collapse
Affiliation(s)
- Maria Anna Rapsomaniki
- Department of Biology, School of Medicine, University of Patras, 26500 Rio Patras, Greece
| | - Stella Maxouri
- Department of Biology, School of Medicine, University of Patras, 26500 Rio Patras, Greece
| | - Patroula Nathanailidou
- Department of Biology, School of Medicine, University of Patras, 26500 Rio Patras, Greece
| | | | | | - Stavros Taraviras
- Department of Physiology, School of Medicine, University of Patras, 26500 Rio Patras, Greece
| | - John Lygeros
- Automatic Control Laboratory, ETH Zurich, 8092 Zurich, Switzerland
| | - Zoi Lygerou
- Department of Biology, School of Medicine, University of Patras, 26500 Rio Patras, Greece
| |
Collapse
|