1
|
Marple AC, Shannon BA, Rishi A, Estafanos L, Armstrong BD, Guariglia-Oropeza V, Tuffs SW, McCormick JK. The Streptococcus pyogenes mannose phosphotransferase system (Man-PTS) influences antimicrobial activity and niche-specific nasopharyngeal infection. J Bacteriol 2025; 207:e0049224. [PMID: 40135874 PMCID: PMC12004959 DOI: 10.1128/jb.00492-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Accepted: 02/21/2025] [Indexed: 03/27/2025] Open
Abstract
Streptococcus pyogenes is a human-adapted pathogen that can cause multiple diseases, including pharyngitis and skin infections. Although this bacterium produces many virulence factors, how S. pyogenes competes with the host microbiota is not well understood. Here, we detected antimicrobial activity from S. pyogenes MGAS8232 that prevented the growth of Micrococcus luteus. This activity was produced when cells were grown in 5% CO2 in M17 media supplemented with galactose; however, the addition of alternative sugars coupled with genome sequencing experiments revealed that the antimicrobial phenotype was not related to classical bacteriocins. To further determine genes involved in the production of this activity, a transposon mutant library in S. pyogenes MGAS8232 identified the mannose phosphotransferase system (Man-PTS), a major sugar transporter, as important for the antimicrobial phenotype. Loss-of-function transposon mutants linked to the antimicrobial activity were identified to also be involved in alternative sugar utilization, and additionally, the Man-PTS was further identified from an inadvertent secondary mutation in a bacteriocin operon mutant. Sugar utilization in the Man-PTS mutants demonstrated that galactose, mannose, and N-acetylglucosamine utilization was impaired. RNA-seq experiments in high and low glucose concentrations further characterized the Man-PTS as a glucose transporter; however, transcriptional regulators or virulence factors were not affected with the loss of the Man-PTS. Deletion of Man-PTS demonstrated defects in a mouse model of nasopharyngeal infection but not skin infection. This work suggests that the ability of S. pyogenes to utilize alternative sugars presented by glycans may play a role in acute infection and interactions with the endogenous microbial population existing in the nasopharynx.IMPORTANCEStreptococcus pyogenes is responsible for over 500,000 deaths per year primarily due to invasive infections and post-infection sequelae, although the most common manifestations include pharyngitis and impetigo. S. pyogenes can adapt to its environment through alternative sugar metabolism. Here, we identified an antimicrobial phenotype that was not bacteriocin-related but a by-product of alternative sugar metabolism. The mannose phosphotransferase system was involved in the production of the antimicrobial and was also important for S. pyogenes to utilize alternative sugars and establish nasopharyngeal infection but not skin infection. Overall, this study identified potential strategies used by S. pyogenes for interactions with the endogenous microbiota and further elucidated the importance of sugar metabolism in acute upper respiratory tract infection.
Collapse
Affiliation(s)
- Amanda C. Marple
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Blake A. Shannon
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Aanchal Rishi
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Lana Estafanos
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - Brent D. Armstrong
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | | | - Stephen W. Tuffs
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| | - John K. McCormick
- Department of Microbiology and Immunology, University of Western Ontario, London, Ontario, Canada
| |
Collapse
|
2
|
Sharma A, Anand A, Ravins M, Zhang X, Horstmann N, Shelburne SA, McIver KS, Hanski E. Group A Streptococcal asparagine metabolism regulates bacterial virulence. EMBO Rep 2025:10.1038/s44319-025-00447-z. [PMID: 40229432 DOI: 10.1038/s44319-025-00447-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 03/24/2025] [Accepted: 04/01/2025] [Indexed: 04/16/2025] Open
Abstract
Group A Streptococcus (GAS) causes various human diseases linked to virulome expression predominantly regulated by the two-component system (TCS), CovR/S. Here, we demonstrate that asparagine (Asn) presence in a minimal chemically defined medium increases virulence gene expression in a CovR-dependent fashion. It also decreases the transcription of asparagine synthetase (AsnA), the ABC transporter responsible for Asn uptake (GlnPQ), and that of the hemolysin toxins responsible for scavenging Asn from the host. Metabolomics data show that Asn availability increases intracellular ADP/ATP ratio, which enhances phosphatase activity in structurally related CovS sensors and is probably responsible for the Asn-mediated decrease in CovR phosphorylation. Mutants deficient in AsnA, GlnPQ, asparaginase, (AsnB) activities are attenuated in a mouse model of human GAS invasive soft tissue infection. The similarity between the mechanisms of Asn-mediated regulation of GAS virulence and tumor growth suggests that, as in cancer, components maintaining Asn homeostasis could be targeted for anti-GAS treatments.
Collapse
Affiliation(s)
- Abhinay Sharma
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Aparna Anand
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Miriam Ravins
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel
| | - Xiaolan Zhang
- Department of Physiology, College of Basic Medical Science, Harbin Medical University, Harbin, China
| | - Nicola Horstmann
- Department of Infectious Diseases, Infection Control and Employee Health, MD Anderson Cancer Center, Houston, TX, USA
| | - Samuel A Shelburne
- Department of Infectious Diseases, Infection Control and Employee Health, MD Anderson Cancer Center, Houston, TX, USA
| | - Kevin S McIver
- Department of Cell Biology and Molecular Genetics, Maryland Pathogen Research Institute, University of Maryland, College Park, MD, 20742, USA
| | - Emanuel Hanski
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, 9112102, Israel.
| |
Collapse
|
3
|
Gao F, Shah R, Xin G, Wang R. Metabolic Dialogue Shapes Immune Response in the Tumor Microenvironment. Eur J Immunol 2025; 55:e202451102. [PMID: 40223597 PMCID: PMC11995254 DOI: 10.1002/eji.202451102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Revised: 03/20/2025] [Accepted: 03/24/2025] [Indexed: 04/15/2025]
Abstract
The fate of immune cells is fundamentally linked to their metabolic program, which is also influenced by the metabolic landscape of their environment. The tumor microenvironment represents a unique system for intercellular metabolic interactions, where tumor-derived metabolites suppress effector CD8+ T cells and promote tumor-promoting macrophages, reinforcing an immune-suppressive niche. This review will discuss recent advancements in metabolism research, exploring the interplay between various metabolites and their effects on immune cells within the tumor microenvironment.
Collapse
Affiliation(s)
- Fengxia Gao
- Department of Microbial Infection and ImmunityPelotonia Institute for Immuno‐OncologyThe Ohio State UniversityColumbusOhioUSA
| | - Rushil Shah
- Center for Childhood Cancer ResearchHematology/Oncology & BMTAbigail Wexner Research Institute at Nationwide Children's HospitalDepartment of PediatricsThe Ohio State UniversityColumbusOhioUSA
| | - Gang Xin
- Department of Microbial Infection and ImmunityPelotonia Institute for Immuno‐OncologyThe Ohio State UniversityColumbusOhioUSA
| | - Ruoning Wang
- Center for Childhood Cancer ResearchHematology/Oncology & BMTAbigail Wexner Research Institute at Nationwide Children's HospitalDepartment of PediatricsThe Ohio State UniversityColumbusOhioUSA
| |
Collapse
|
4
|
Moulding PB, El-Halfawy OM. Chemical-mediated virulence: the effects of host chemicals on microbial virulence and potential new antivirulence strategies. Can J Microbiol 2024; 70:405-425. [PMID: 38905704 DOI: 10.1139/cjm-2024-0017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/23/2024]
Abstract
The rising antimicrobial resistance rates and declining antimicrobial discovery necessitate alternative strategies to combat multidrug-resistant pathogens. Targeting microbial virulence is an emerging area of interest. Traditionally, virulence factors were largely restricted to bacteria-derived toxins, adhesins, capsules, quorum sensing systems, secretion systems, factors required to sense, respond to, acquire, or synthesize, and utilize trace elements (such as iron and other metals) and micronutrients (such as vitamins), and other factors bacteria use to establish infection, form biofilms, or damage the host tissues and regulatory elements thereof. However, this traditional definition overlooks bacterial virulence that may be induced or influenced by host-produced metabolites or other chemicals that bacteria may encounter at the infection site. This review will discuss virulence from a non-traditional perspective, shedding light on chemical-mediated host-pathogen interactions and outlining currently available mechanistic insight into increased bacterial virulence in response to host factors. This review aims to define a possibly underestimated theme of chemically mediated host-pathogen interactions and encourage future validation and characterization of the contribution of host chemicals to microbial virulence in vivo. From this perspective, we discuss proposed antivirulence compounds and suggest new potential targets for antimicrobials that prevent chemical-mediated virulence. We also explore proposed host-targeting therapeutics reducing the level of host chemicals that induce microbial virulence, serving as virulence attenuators. Understanding the host chemical-mediated virulence may enable new antimicrobial solutions to fight multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Peri B Moulding
- Department of Chemistry and Biochemistry, Faculty of Science, University of Regina, Regina, SK S4S 0A2, Canada
| | - Omar M El-Halfawy
- Department of Chemistry and Biochemistry, Faculty of Science, University of Regina, Regina, SK S4S 0A2, Canada
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, Alexandria, 21521, Egypt
| |
Collapse
|
5
|
Chen Y, Quirk NF, Tan S. Shining a light on bacterial environmental cue integration and its relation to metabolism. Mol Microbiol 2023; 120:71-74. [PMID: 37433048 PMCID: PMC10348474 DOI: 10.1111/mmi.15065] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Revised: 04/05/2023] [Accepted: 04/06/2023] [Indexed: 07/13/2023]
Abstract
The ability of a bacterium to successfully colonize its host is dependent on proper adaptation to its local environment. Environmental cues are diverse in nature, ranging from ions to bacterial-produced signals, and to host immune responses that can also be exploited by the bacteria as cues. Simultaneously, bacterial metabolism must be matched to the carbon and nitrogen sources available at a given time and location. While initial characterization of a bacterium's response to a given environmental cue or its ability to utilize a particular carbon/nitrogen source requires study of the signal in question in isolation, actual infection poses a situation where multiple signals are present concurrently. This perspective focuses on the untapped potential in uncovering and understanding how bacteria integrate their response to multiple concurrent environmental cues, and in elucidating the possible intrinsic coordination of bacterial environmental response with its metabolism.
Collapse
Affiliation(s)
- Yue Chen
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
| | - Natalia F. Quirk
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Graduate Program in Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, USA
| | - Shumin Tan
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, USA
- Graduate Program in Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, USA
| |
Collapse
|
6
|
Hirose Y, Poudel S, Sastry AV, Rychel K, Lamoureux CR, Szubin R, Zielinski DC, Lim HG, Menon ND, Bergsten H, Uchiyama S, Hanada T, Kawabata S, Palsson BO, Nizet V. Elucidation of independently modulated genes in Streptococcus pyogenes reveals carbon sources that control its expression of hemolytic toxins. mSystems 2023; 8:e0024723. [PMID: 37278526 PMCID: PMC10308926 DOI: 10.1128/msystems.00247-23] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 04/02/2023] [Indexed: 06/07/2023] Open
Abstract
Streptococcus pyogenes can cause a wide variety of acute infections throughout the body of its human host. An underlying transcriptional regulatory network (TRN) is responsible for altering the physiological state of the bacterium to adapt to each unique host environment. Consequently, an in-depth understanding of the comprehensive dynamics of the S. pyogenes TRN could inform new therapeutic strategies. Here, we compiled 116 existing high-quality RNA sequencing data sets of invasive S. pyogenes serotype M1 and estimated the TRN structure in a top-down fashion by performing independent component analysis (ICA). The algorithm computed 42 independently modulated sets of genes (iModulons). Four iModulons contained the nga-ifs-slo virulence-related operon, which allowed us to identify carbon sources that control its expression. In particular, dextrin utilization upregulated the nga-ifs-slo operon by activation of two-component regulatory system CovRS-related iModulons, altering bacterial hemolytic activity compared to glucose or maltose utilization. Finally, we show that the iModulon-based TRN structure can be used to simplify the interpretation of noisy bacterial transcriptome data at the infection site. IMPORTANCE S. pyogenes is a pre-eminent human bacterial pathogen that causes a wide variety of acute infections throughout the body of its host. Understanding the comprehensive dynamics of its TRN could inform new therapeutic strategies. Since at least 43 S. pyogenes transcriptional regulators are known, it is often difficult to interpret transcriptomic data from regulon annotations. This study shows the novel ICA-based framework to elucidate the underlying regulatory structure of S. pyogenes allows us to interpret the transcriptome profile using data-driven regulons (iModulons). Additionally, the observations of the iModulon architecture lead us to identify the multiple regulatory inputs governing the expression of a virulence-related operon. The iModulons identified in this study serve as a powerful guidepost to further our understanding of S. pyogenes TRN structure and dynamics.
Collapse
Affiliation(s)
- Yujiro Hirose
- Department of Microbiology, Graduate School of Dentistry, Osaka University, Suita, Osaka, Japan
- Department of Pediatrics, University of California at San Diego School of Medicine, La Jolla, California, USA
| | - Saugat Poudel
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Anand V. Sastry
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Kevin Rychel
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Cameron R. Lamoureux
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Richard Szubin
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Daniel C. Zielinski
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Hyun Gyu Lim
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
- Department of Biological Engineering, Inha University, Michuhol-gu, Incheon, South Korea
| | - Nitasha D. Menon
- Department of Pediatrics, University of California at San Diego School of Medicine, La Jolla, California, USA
- School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kerala, India
| | - Helena Bergsten
- Department of Pediatrics, University of California at San Diego School of Medicine, La Jolla, California, USA
| | - Satoshi Uchiyama
- Department of Pediatrics, University of California at San Diego School of Medicine, La Jolla, California, USA
| | - Tomoki Hanada
- Department of Microbiology, Graduate School of Dentistry, Osaka University, Suita, Osaka, Japan
| | - Shigetada Kawabata
- Department of Microbiology, Graduate School of Dentistry, Osaka University, Suita, Osaka, Japan
- Center for Infectious Diseases Education and Research, Osaka University, Suita, Osaka, Japan
| | - Bernhard O. Palsson
- Department of Bioengineering, University of California San Diego, La Jolla, California, USA
| | - Victor Nizet
- Department of Pediatrics, University of California at San Diego School of Medicine, La Jolla, California, USA
- Skaggs School of Pharmaceutical Sciences, University of California at San Diego, La Jolla, California, USA
| |
Collapse
|
7
|
Shi D, Zhou L, Shi H, Zhang J, Zhang J, Zhang L, Liu D, Feng T, Zeng M, Chen J, Zhang X, Xue M, Jing Z, Liu J, Ji Z, He H, Guo L, Wu Y, Ma J, Feng L. Autophagy is induced by swine acute diarrhea syndrome coronavirus through the cellular IRE1-JNK-Beclin 1 signaling pathway after an interaction of viral membrane-associated papain-like protease and GRP78. PLoS Pathog 2023; 19:e1011201. [PMID: 36888569 PMCID: PMC9994726 DOI: 10.1371/journal.ppat.1011201] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 02/10/2023] [Indexed: 03/09/2023] Open
Abstract
Autophagy plays an important role in the infectious processes of diverse pathogens. For instance, cellular autophagy could be harnessed by viruses to facilitate replication. However, it is still uncertain about the interplay of autophagy and swine acute diarrhea syndrome coronavirus (SADS-CoV) in cells. In this study, we reported that SADS-CoV infection could induce a complete autophagy process both in vitro and in vivo, and an inhibition of autophagy significantly decreased SADS-CoV production, thus suggesting that autophagy facilitated the replication of SADS-CoV. We found that ER stress and its downstream IRE1 pathway were indispensable in the processes of SADS-CoV-induced autophagy. We also demonstrated that IRE1-JNK-Beclin 1 signaling pathway, neither PERK-EIF2S1 nor ATF6 pathways, was essential during SADS-CoV-induced autophagy. Importantly, our work provided the first evidence that expression of SADS-CoV PLP2-TM protein induced autophagy through the IRE1-JNK-Beclin 1 signaling pathway. Furthermore, the interaction of viral PLP2-TMF451-L490 domain and substrate-binding domain of GRP78 was identified to activate the IRE1-JNK-Beclin 1 signaling pathway, and thus resulting in autophagy, and in turn, enhancing SADS-CoV replication. Collectively, these results not only showed that autophagy promoted SADS-CoV replication in cultured cells, but also revealed that the molecular mechanism underlying SADS-CoV-induced autophagy in cells.
Collapse
Affiliation(s)
- Da Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Ling Zhou
- College of Animal Science, South China Agricultural University, Tianhe District, China
| | - Hongyan Shi
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Jiyu Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Jialin Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Liaoyuan Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Dakai Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Tingshuai Feng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Miaomiao Zeng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Jianfei Chen
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Xin Zhang
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Mei Xue
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Zhaoyang Jing
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Jianbo Liu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Zhaoyang Ji
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Haojie He
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Longjun Guo
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Yang Wu
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| | - Jingyun Ma
- College of Animal Science, South China Agricultural University, Tianhe District, China
| | - Li Feng
- State Key Laboratory of Veterinary Biotechnology, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Xiangfang District, China
| |
Collapse
|
8
|
Sharma A, Kaushik V, Goel M. Insights into the Distribution and Functional Properties of l-Asparaginase in the Archaeal Domain and Characterization of Picrophilus torridus Asparaginase Belonging to the Novel Family Asp2like1. ACS OMEGA 2022; 7:40750-40765. [PMID: 36406543 PMCID: PMC9670692 DOI: 10.1021/acsomega.2c01127] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
l-Asparaginase catalyzes the hydrolysis of l-asparagine to aspartic acid and ammonia and is used in the medical and food industries. In this investigation, from the proteomes of 176 archaeal organisms (with completely sequenced genomes), 116 homologs of l-asparaginase were obtained from 86 archaeal organisms segregated into Asp1, Asp2, IaaA, Asp2like1, and Asp2like2 families based on the conserved domain. The similarities and differences in the structure of selected representatives from each family are discussed. From the two novel archaeal l-asparaginase families Asp2like1 and Asp2like2, a representative of Asp2like1 family Picrophilus torridus asparaginase (PtAsp2like1) was characterized in detail to find its suitability in therapeutics. PtAsp2like1 was a glutaminase-free asparaginase that showed the optimum activity at 80 °C and pH 10.0. The Km of PtAsp2like1 toward substrate l-asparagine was 11.69 mM. This study demonstrates the improved mapping of asparaginases in the archaeal domain, facilitating future focused research on archaeal asparaginases for therapeutic applications.
Collapse
|
9
|
Patel PG, Panseriya HZ, Vala AK, Dave BP, Gosai HB. Exploring current scenario and developments in the field of microbial L-asparaginase production and applications: A review. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.07.029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
10
|
Al-Askar AA, Ghoneem KM, Hafez EE, Saber WIA. A Case Study in Saudi Arabia: Biodiversity of Maize Seed-Borne Pathogenic Fungi in Relation to Biochemical, Physiological, and Molecular Characteristics. PLANTS (BASEL, SWITZERLAND) 2022; 11:829. [PMID: 35336711 PMCID: PMC8954539 DOI: 10.3390/plants11060829] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/16/2022] [Accepted: 03/17/2022] [Indexed: 05/02/2023]
Abstract
Microbiodiversity is usually correlated with environmental conditions. This investigation is a case study to cover the lack of knowledge on the correlation of biochemical, physiological, and molecular attributes with the distribution of seed-borne pathogenic fungi of maize under the environmental conditions of the Kingdom of Saudi Arabia to help forecast any destructive epidemics. Forty-one fungal species belonging to 24 genera were detected using standard moist blotter (SMB), deep freezing blotter (DFB), and agar plate (AP) techniques. SMB was superior in detecting the maximum numbers (36 species) of seed-borne mycoflora. The pathogenicity assay revealed that, among 18 seed-borne fungal pathogens used, 12 isolates caused high percentages of rotted seeds and seedling mortality symptoms, which were identified molecularly using an internal transcribed spacer sequence. Two Curvularia spp. and Sarocladium zeae were reported for the first time in KSA. The strains showed various enzymatic activities and amino acid profiles under different environmental setups. Temperature and humidity were the environmental variables influencing the fungal pathogenicity. The highest pathogenicity was correlated with the presence and concentration of threonine, alanine, glutamic, aspartic acids, and protein. The study concluded with the discovery of four new phytopathogens in KSA and, further, evidenced a marked correlation among the investigated variables. Nevertheless, more studies are encouraged to include additional physiological properties of the phytopathogens, such as toxigenic activity, as well as extend the fungal biodiversity study to other plants.
Collapse
Affiliation(s)
- Abdulaziz A. Al-Askar
- Botany and Microbiology Department, Faculty of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Khalid M. Ghoneem
- Seed Pathology Research Department, Plant Pathology Research Institute, Agricultural Research Center, Giza 12619, Egypt;
| | - Elsayed E. Hafez
- Plant Protection and Biomolecular Diagnosis Department, Arid Lands Cultivation Research Institute, City of Scientific Research and Technological Applications, New Borg El-Arab City 21934, Egypt;
| | - WesamEldin I. A. Saber
- Microbial Activity Unit, Microbiology Department, Soils, Water and Environment Research Institute, Agricultural Research Center, Giza 12619, Egypt
| |
Collapse
|
11
|
Horstmann N, Myers KS, Tran CN, Flores AR, Shelburne III SA. CovS inactivation reduces CovR promoter binding at diverse virulence factor encoding genes in group A Streptococcus. PLoS Pathog 2022; 18:e1010341. [PMID: 35180278 PMCID: PMC8893699 DOI: 10.1371/journal.ppat.1010341] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Revised: 03/03/2022] [Accepted: 02/04/2022] [Indexed: 11/18/2022] Open
Abstract
The control of virulence gene regulator (CovR), also called caspsule synthesis regulator (CsrR), is critical to how the major human pathogen group A Streptococcus fine-tunes virulence factor production. CovR phosphorylation (CovR~P) levels are determined by its cognate sensor kinase CovS, and functional abrogating mutations in CovS can occur in invasive GAS isolates leading to hypervirulence. Presently, the mechanism of CovR-DNA binding specificity is unclear, and the impact of CovS inactivation on global CovR binding has not been assessed. Thus, we performed CovR chromatin immunoprecipitation sequencing (ChIP-seq) analysis in the emm1 strain MGAS2221 and its CovS kinase deficient derivative strain 2221-CovS-E281A. We identified that CovR bound in the promoter regions of nearly all virulence factor encoding genes in the CovR regulon. Additionally, direct CovR binding was observed for numerous genes encoding proteins involved in amino acid metabolism, but we found limited direct CovR binding to genes encoding other transcriptional regulators. The consensus sequence AATRANAAAARVABTAAA was present in the promoters of genes directly regulated by CovR, and mutations of highly conserved positions within this motif relieved CovR repression of the hasA and MGAS2221_0187 promoters. Analysis of strain 2221-CovS-E281A revealed that binding of CovR at repressed, but not activated, promoters is highly dependent on CovR~P state. CovR repressed virulence factor encoding genes could be grouped dependent on how CovR~P dependent variation in DNA binding correlated with gene transcript levels. Taken together, the data show that CovR repression of virulence factor encoding genes is primarily direct in nature, involves binding to a newly-identified DNA binding motif, and is relieved by CovS inactivation. These data provide new mechanistic insights into one of the most important bacterial virulence regulators and allow for subsequent focused investigations into how CovR-DNA interaction at directly controlled promoters impacts GAS pathogenesis. Tight regulation of virulence factor production is a critical, but poorly understood aspect of bacterial pathogenesis. The OmpR/PhoB family member control of virulence regulator (CovR) is the master virulence factor controller in group A Streptococcus (GAS), a bacterium which commonly causes a diverse array of human infections. Mutations in the cognate kinase of CovR, CovS, are commonly observed among invasive GAS isolates, but the functional impact of CovS on global CovR function is unknown. Herein, we defined CovR global DNA binding locations, identified a consensus CovR binding motif, and determined how inactivation of the CovR cognate sensor kinase, CovS, impacts CovR-DNA interaction. Our findings show that CovR-repressed virulence factor encoding genes are directly regulated by CovR and that CovS inactivation markedly reduces CovR binding at CovR-repressed promoters. Given the widespread nature of CovR homologues in streptococci and other Gram-positive pathogens, these findings extend understanding of mechanisms by which OmpR/PhoB family members impact the ability of bacteria to cause serious infections.
Collapse
Affiliation(s)
- Nicola Horstmann
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Kevin S. Myers
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, Wisconsin, United States of America
| | - Chau Nguyen Tran
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Anthony R. Flores
- Center for Antimicrobial Resistance and Microbial Genomics McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
- Department of Pediatrics, McGovern Medical School, University of Texas Health Science Center at Houston, Houston, Texas, United States of America
| | - Samuel A. Shelburne III
- Department of Infectious Diseases, Infection Control and Employee Health, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
12
|
Streptococcus pyogenes TrxSR Two-Component System Regulates Biofilm Production in Acidic Environments. Infect Immun 2021; 89:e0036021. [PMID: 34424754 DOI: 10.1128/iai.00360-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
Bacteria form biofilms for their protection against environmental stress and produce virulence factors within the biofilm. Biofilm formation in acidified environments is regulated by a two-component system, as shown by studies on isogenic mutants of the sensor protein of the two-component regulatory system in Streptococcus pyogenes. In this study, we found that the LiaS histidine kinase sensor mediates biofilm production and pilus expression in an acidified environment through glucose fermentation. The liaS isogenic mutant produced biofilms in a culture acidified by hydrochloric acid but not glucose, suggesting that the acidified environment is sensed by another protein. In addition, the trxS isogenic mutant could not produce biofilms or activate the mga promoter in an acidified environment. Mass spectrometry analysis showed that TrxS regulates M protein, consistent with the transcriptional regulation of emm, which encodes M protein. Our results demonstrate that biofilm production during environmental acidification is directly under the control of TrxS.
Collapse
|
13
|
Rafeeq H, Hussain A, Tarar MHA, Afsheen N, Bilal M, Iqbal HMN. Expanding the bio-catalysis scope and applied perspectives of nanocarrier immobilized asparaginases. 3 Biotech 2021; 11:453. [PMID: 34616647 PMCID: PMC8486911 DOI: 10.1007/s13205-021-02999-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2021] [Accepted: 09/18/2021] [Indexed: 02/08/2023] Open
Abstract
l-asparaginase is an essential enzyme in medicine and a well-known chemotherapeutic agent. This enzyme's importance is not limited to its use as an anti-cancer agent; it also has a wide variety of medicinal applications. Antimicrobial properties, prevention of infectious disorders, autoimmune diseases, and canine and feline cancer are among the applications. Apart from the healthcare industry, its importance has been identified in the food industry as a food manufacturing agent to lower acrylamide levels. When isolated from their natural habitats, they are especially susceptible to different denaturing conditions due to their protein composition. The use of an immobilization technique is one of the most common approaches suggested to address these limitations. Immobilization is a technique that involves fixing enzymes to or inside stable supports, resulting in a heterogeneous immobilized enzyme framework. Strong support structures usually stabilize the enzymes' configuration, and their functions are maintained as a result. In recent years, there has been a lot of curiosity and focus on the ability of immobilized enzymes. The nanomaterials with ideal properties can be used to immobilize enzymes to regulate key factors that determine the efficacy of bio-catalysis. With applications in biotechnology, immunosensing, biomedicine, and nanotechnology sectors have opened a realm of opportunities for enzyme immobilization.
Collapse
Affiliation(s)
- Hamza Rafeeq
- Department of Biochemistry, Riphah International University, Faisalabad, Pakistan
| | - Asim Hussain
- Department of Biochemistry, Riphah International University, Faisalabad, Pakistan
| | | | - Nadia Afsheen
- Department of Biochemistry, Riphah International University, Faisalabad, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, 223003 China
| | - Hafiz M. N. Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, 64849 Monterrey, Mexico
| |
Collapse
|
14
|
Liu X, Zhu K, Duan X, Wang P, Han Y, Peng W, Huang J. Extracellular matrix stiffness modulates host-bacteria interactions and antibiotic therapy of bacterial internalization. Biomaterials 2021; 277:121098. [PMID: 34478931 DOI: 10.1016/j.biomaterials.2021.121098] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Revised: 05/12/2021] [Accepted: 08/24/2021] [Indexed: 02/04/2023]
Abstract
Pathogenic bacteria evolve multiple strategies to hijack host cells for intracellular survival and persistent infections. Previous studies have revealed the intricate interactions between bacteria and host cells at genetic, biochemical and even single molecular levels. Mechanical interactions and mechanotransduction exert a crucial impact on the behaviors and functions of pathogenic bacteria and host cells, owing to the ubiquitous mechanical microenvironments like extracellular matrix (ECM) stiffness. Nevertheless, it remains unclear whether and how ECM stiffness modulates bacterial infections and the sequential outcome of antibacterial therapy. Here we show that bacteria tend to adhere to and invade epithelial cells located on the regions with relatively high traction forces. ECM stiffness regulates spatial distributions of bacteria during the invasion through arrangements of F-actin cytoskeletons in host cells. Depolymerization of cytoskeletons in the host cells induced by bacterial infection decreases intracellular accumulation of antibiotics, thus preventing the eradication of invaded bacterial pathogens. These findings not only reveal the key regulatory role of ECM stiffness, but suggest that the coordination of cytoskeletons may provide alternative approaches to improve antibiotic therapy against multidrug resistant bacteria in clinic.
Collapse
Affiliation(s)
- Xiaoye Liu
- Department of Mechanics and Engineering Science, College of Engineering, Academy for Advanced Interdisciplinary Studies, and Beijing Innovation Center for Engineering Science and Advanced Technology, College of Engineering, Peking University, Beijing, 100871, China; College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Kui Zhu
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Xiaocen Duan
- Department of Mechanics and Engineering Science, College of Engineering, Academy for Advanced Interdisciplinary Studies, and Beijing Innovation Center for Engineering Science and Advanced Technology, College of Engineering, Peking University, Beijing, 100871, China
| | - Pudi Wang
- Department of Mechanics and Engineering Science, College of Engineering, Academy for Advanced Interdisciplinary Studies, and Beijing Innovation Center for Engineering Science and Advanced Technology, College of Engineering, Peking University, Beijing, 100871, China
| | - Yiming Han
- Department of Mechanics and Engineering Science, College of Engineering, Academy for Advanced Interdisciplinary Studies, and Beijing Innovation Center for Engineering Science and Advanced Technology, College of Engineering, Peking University, Beijing, 100871, China
| | - Wenjing Peng
- College of Veterinary Medicine, China Agricultural University, Beijing, 100193, China
| | - Jianyong Huang
- Department of Mechanics and Engineering Science, College of Engineering, Academy for Advanced Interdisciplinary Studies, and Beijing Innovation Center for Engineering Science and Advanced Technology, College of Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
15
|
Anand A, Sharma A, Ravins M, Biswas D, Ambalavanan P, Lim KXZ, Tan RYM, Johri AK, Tirosh B, Hanski E. Unfolded protein response inhibitors cure group A streptococcal necrotizing fasciitis by modulating host asparagine. Sci Transl Med 2021; 13:13/605/eabd7465. [PMID: 34349034 DOI: 10.1126/scitranslmed.abd7465] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 02/24/2021] [Accepted: 06/25/2021] [Indexed: 11/02/2022]
Abstract
Group A streptococcus (GAS) is among the top 10 causes of mortality from an infectious disease, producing mild to invasive life-threatening manifestations. Necrotizing fasciitis (NF) is characterized by a rapid GAS spread into fascial planes followed by extensive tissue destruction. Despite prompt treatments of antibiotic administration and tissue debridement, mortality from NF is still high. Moreover, there is no effective vaccine against GAS, and early diagnosis of NF is problematic because its clinical presentations are not specific. Thus, there is a genuine need for effective treatments against GAS NF. Previously, we reported that GAS induces endoplasmic reticulum (ER) stress to gain asparagine from the host. Here, we demonstrate that GAS-mediated asparagine induction and release occur through the PERK-eIF2α-ATF4 branch of the unfolded protein response. Inhibitors of PERK or integrated stress response (ISR) blocked the formation and release of asparagine by infected mammalian cells, and exogenously added asparagine overcame this inhibition. Moreover, in a murine model of NF, we show that the inhibitors minimized mortality when mice were challenged with a lethal dose of GAS and reduced bacterial counts and lesion size when mice were challenged with a sublethal dose. Immunohistopathology studies demonstrated that PERK/ISR inhibitors protected mice by enabling neutrophil infiltration into GAS-infected fascia and reducing the pro-inflammatory response that causes tissue damage. Inhibitor treatment was also effective in mice when started at 12 hours after infection. We conclude that host metabolic alteration induced by PERK or ISR inhibitors is a promising therapeutic strategy to treat highly invasive GAS infections.
Collapse
Affiliation(s)
- Aparna Anand
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Abhinay Sharma
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Miriam Ravins
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel
| | - Debabrata Biswas
- Singapore-HUJ Alliance for Research and Enterprise, MMID Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 117576, Singapore.,Department of Microbiology and Immunology, National University of Singapore, Singapore 138602, Singapore
| | - Poornima Ambalavanan
- Singapore-HUJ Alliance for Research and Enterprise, MMID Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 117576, Singapore.,Department of Microbiology and Immunology, National University of Singapore, Singapore 138602, Singapore
| | - Kimberly Xuan Zhen Lim
- Singapore-HUJ Alliance for Research and Enterprise, MMID Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 117576, Singapore.,Department of Microbiology and Immunology, National University of Singapore, Singapore 138602, Singapore
| | - Rachel Ying Min Tan
- Singapore-HUJ Alliance for Research and Enterprise, MMID Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 117576, Singapore.,Department of Microbiology and Immunology, National University of Singapore, Singapore 138602, Singapore
| | - Atul Kumar Johri
- School of Life Sciences, Jawaharlal Nehru University, New Mehrauli Road, New Delhi 110067, India
| | - Boaz Tirosh
- Institute for Drug Research, School of Pharmacy, Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel.
| | - Emanuel Hanski
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem 9112102, Israel. .,Singapore-HUJ Alliance for Research and Enterprise, MMID Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore 117576, Singapore.,Department of Microbiology and Immunology, National University of Singapore, Singapore 138602, Singapore
| |
Collapse
|
16
|
Ikeda H. Plasma amino acid levels in individuals with bacterial pneumonia and healthy controls. Clin Nutr ESPEN 2021; 44:204-210. [PMID: 34330467 DOI: 10.1016/j.clnesp.2021.06.021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 06/04/2021] [Accepted: 06/22/2021] [Indexed: 10/20/2022]
Abstract
BACKGROUND & AIMS Amino acids play an important role in immune responses and as neurotransmitters. During the course of a bacterial pneumonia episode, from the onset to the recovery phase, immune responses dramatically change, as does the metabolism of amino acids, a concept referred to as immuno-nutrition. We investigated the differences in plasma amino acid levels (PAA) between the acute and recovery phases in individuals with community-acquired pneumonia (CAP) and healthy controls. METHODS Two groups of participants were recruited: Healthy adults aged over 60 years and patients hospitalized with CAP. Samples were collected on Day 0 (the day of admission) and Day 7 (after 6-8 days treatment). RESULTS A total of 93 healthy adults and 60 patients with CAP participated in the study. Of those with CAP, 43 had their amino acids measured on Day 7. Patients with CAP had markedly decreased PAA of 12 amino acids on Day 0. Citrulline, histidine, and tryptophan remained low in male, while aspartic acid, asparagine, ornithine, proline, and threonine were higher on Day 7 in both males and females. Phenylalanine increased at Day 0 and Day7. CONCLUSIONS The findings suggest that the host response against bacterial infection changed the plasma amino acid levels. PAA on Day 7 (representing convalescence) continued to display an amino acid profile distinct from that observed in healthy individuals. Based on these findings, reconsideration for providing amino acids to patients with bacterial pneumonia should be needed depending on stage of the pneumonia from the perspective of immuno-nutrition.
Collapse
Affiliation(s)
- Hideki Ikeda
- Department of Pulmonary Medicine, Sanyudo Hospital, Yonezawa, Japan.
| |
Collapse
|
17
|
Richter J, Brouwer S, Schroder K, Walker MJ. Inflammasome activation and IL-1β signalling in group A Streptococcus disease. Cell Microbiol 2021; 23:e13373. [PMID: 34155776 DOI: 10.1111/cmi.13373] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 05/17/2021] [Indexed: 01/02/2023]
Abstract
Group A Streptococcus (GAS) is a Gram-positive bacterial pathogen that causes significant morbidity and mortality worldwide. Recent clinical evidence suggests that the inflammatory marker interleukin-1β (IL-1β) plays an important role in GAS disease progression, and presents a potential target for therapeutic intervention. Interaction with GAS activates the host inflammasome pathway to stimulate production and secretion of IL-1β, but GAS can also stimulate IL-1β production in an inflammasome-independent manner. This review highlights progress that has been made in understanding the importance of host cell inflammasomes and IL-1 signalling in GAS disease, and explores challenges and unsolved problems in this host-pathogen interaction. TAKE AWAY: Inflammasome signalling during GAS infection is an emerging field of research. GAS modulates the NLRP3 inflammasome pathway through multiple mechanisms. SpeB contributes to IL-1β production independently of the inflammasome pathway. IL-1β signalling can be host-protective, but also drive severe GAS disease.
Collapse
Affiliation(s)
- Johanna Richter
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Stephan Brouwer
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| | - Kate Schroder
- Australian Infectious Diseases Research Centre, Institute for Molecular Bioscience and IMB Centre for Inflammation and Disease Research, The University of Queensland, St. Lucia, Queensland, Australia
| | - Mark J Walker
- Australian Infectious Diseases Research Centre and School of Chemistry and Molecular Biosciences, The University of Queensland, St. Lucia, Queensland, Australia
| |
Collapse
|
18
|
Li H, Ma X, Tang Y, Wang D, Zhang Z, Liu Z. Network-based analysis of virulence factors for uncovering Aeromonas veronii pathogenesis. BMC Microbiol 2021; 21:188. [PMID: 34162325 PMCID: PMC8223281 DOI: 10.1186/s12866-021-02261-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Accepted: 06/15/2021] [Indexed: 01/06/2023] Open
Abstract
BACKGROUND Aeromonas veronii is a bacterial pathogen in aquaculture, which produces virulence factors to enable it colonize and evade host immune defense. Given that experimental verification of virulence factors is time-consuming and laborious, few virulence factors have been characterized. Moreover, most studies have only focused on single virulence factors, resulting in biased interpretation of the pathogenesis of A. veronii. RESULTS In this study, a PPI network at genome-wide scale for A. veronii was first constructed followed by prediction and mapping of virulence factors on the network. When topological characteristics were analyzed, the virulence factors had higher degree and betweenness centrality than other proteins in the network. In particular, the virulence factors tended to interact with each other and were enriched in two network modules. One of the modules mainly consisted of histidine kinases, response regulators, diguanylate cyclases and phosphodiesterases, which play important roles in two-component regulatory systems and the synthesis and degradation of cyclic-diGMP. Construction of the interspecies PPI network between A. veronii and its host Oreochromis niloticus revealed that the virulence factors interacted with homologous proteins in the host. Finally, the structures and interacting sites of the virulence factors during interaction with host proteins were predicted. CONCLUSIONS The findings here indicate that the virulence factors probably regulate the virulence of A. veronii by involving in signal transduction pathway and manipulate host biological processes by mimicking and binding competitively to host proteins. Our results give more insight into the pathogenesis of A. veronii and provides important information for designing targeted antibacterial drugs.
Collapse
Affiliation(s)
- Hong Li
- School of Life Sciences, Hainan University, Haikou, China
| | - Xiang Ma
- School of Life Sciences, Hainan University, Haikou, China
| | - Yanqiong Tang
- School of Life Sciences, Hainan University, Haikou, China
| | - Dan Wang
- Key Laboratory for Sustainable Utilization of Tropical Bioresource, College of Tropical Crops, Hainan University, Haikou, China
| | - Ziding Zhang
- State Key Laboratory of Agrobiotechnology, College of Biological Sciences, China Agricultural University, Beijing, China
| | - Zhu Liu
- School of Life Sciences, Hainan University, Haikou, China.
| |
Collapse
|
19
|
Reprogramming of microRNA expression via E2F1 downregulation promotes Salmonella infection both in infected and bystander cells. Nat Commun 2021; 12:3392. [PMID: 34099666 PMCID: PMC8184997 DOI: 10.1038/s41467-021-23593-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022] Open
Abstract
Cells infected with pathogens can contribute to clearing infections by releasing signals that instruct neighbouring cells to mount a pro-inflammatory cytokine response, or by other mechanisms that reduce bystander cells’ susceptibility to infection. Here, we show the opposite effect: epithelial cells infected with Salmonella Typhimurium secrete host factors that facilitate the infection of bystander cells. We find that the endoplasmic reticulum stress response is activated in both infected and bystander cells, and this leads to activation of JNK pathway, downregulation of transcription factor E2F1, and consequent reprogramming of microRNA expression in a time-dependent manner. These changes are not elicited by infection with other bacterial pathogens, such as Shigella flexneri or Listeria monocytogenes. Remarkably, the protein HMGB1 present in the secretome of Salmonella-infected cells is responsible for the activation of the IRE1 branch of the endoplasmic reticulum stress response in non-infected, neighbouring cells. Furthermore, E2F1 downregulation and the associated microRNA alterations promote Salmonella replication within infected cells and prime bystander cells for more efficient infection. Cells infected with pathogens can release signals that instruct neighbouring cells to mount an immune response or that reduce these cells’ susceptibility to infection. Here, Aguilar et al. show the opposite effect: cells infected with Salmonella Typhimurium secrete host factors that facilitate the infection of bystander cells by activating their ER-stress response.
Collapse
|
20
|
|
21
|
Weckel A, Guilbert T, Lambert C, Plainvert C, Goffinet F, Poyart C, Méhats C, Fouet A. Streptococcus pyogenes infects human endometrium by limiting the innate immune response. J Clin Invest 2021; 131:130746. [PMID: 33320843 DOI: 10.1172/jci130746] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Accepted: 12/10/2020] [Indexed: 11/17/2022] Open
Abstract
Group A Streptococcus (GAS), a Gram-positive human-specific pathogen, yields 517,000 deaths annually worldwide, including 163,000 due to invasive infections and among them puerperal fever. Before efficient prophylactic measures were introduced, the mortality rate for mothers during childbirth was approximately 10%; puerperal fever still accounts for over 75,000 maternal deaths annually. Yet, little is known regarding the factors and mechanisms of GAS invasion and establishment in postpartum infection. We characterized the early steps of infection in an ex vivo infection model of the human decidua, the puerperal fever portal of entry. Coordinate analysis of GAS behavior and the immune response led us to demonstrate that (a) GAS growth was stimulated by tissue products; (b) GAS invaded tissue and killed approximately 50% of host cells within 2 hours, and these processes required SpeB protease and streptolysin O (SLO) activities, respectively; and (c) GAS impaired the tissue immune response. Immune impairment occurred both at the RNA level, with only partial induction of the innate immune response, and protein level, in an SLO- and SpeB-dependent manner. Our study indicates that efficient GAS invasion of the decidua and the restricted host immune response favored its propensity to develop rapid invasive infections in a gynecological-obstetrical context.
Collapse
Affiliation(s)
- Antonin Weckel
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France.,Département Hospitalo-Universitaire Risk & Pregnancy, Port Royal Maternity, Paris, France
| | - Thomas Guilbert
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France
| | - Clara Lambert
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France.,Département Hospitalo-Universitaire Risk & Pregnancy, Port Royal Maternity, Paris, France
| | - Céline Plainvert
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France.,Département Hospitalo-Universitaire Risk & Pregnancy, Port Royal Maternity, Paris, France.,Centre National de Référence des Streptocoques.,Hôpitaux Universitaires Paris Centre, Cochin, Assistance Publique Hôpitaux de Paris
| | - François Goffinet
- Département Hospitalo-Universitaire Risk & Pregnancy, Port Royal Maternity, Paris, France.,Faculté de Médecine, Université Paris Descartes, and.,Service de Gynécologie Obstétrique I, Maternité Port Royal, Assistance Publique-Hôpitaux de Paris, Paris, France
| | - Claire Poyart
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France.,Département Hospitalo-Universitaire Risk & Pregnancy, Port Royal Maternity, Paris, France.,Centre National de Référence des Streptocoques.,Hôpitaux Universitaires Paris Centre, Cochin, Assistance Publique Hôpitaux de Paris
| | - Céline Méhats
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France.,Département Hospitalo-Universitaire Risk & Pregnancy, Port Royal Maternity, Paris, France
| | - Agnès Fouet
- Université de Paris, Institut Cochin, INSERM, U1016, CNRS, UMR8104, Paris, France.,Département Hospitalo-Universitaire Risk & Pregnancy, Port Royal Maternity, Paris, France.,Centre National de Référence des Streptocoques
| |
Collapse
|
22
|
Jiang Y, Zhang M, Zhang Y, Zulewska J, Yang Z. Calcium (Ca 2+)-regulated exopolysaccharide biosynthesis in probiotic Lactobacillus plantarum K25 as analyzed by an omics approach. J Dairy Sci 2021; 104:2693-2708. [PMID: 33455763 DOI: 10.3168/jds.2020-19237] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 10/19/2020] [Indexed: 01/21/2023]
Abstract
Exopolysaccharide (EPS)-producing lactic acid bacteria have been widely used in dairy products, but how calcium, the main metal ion component in milk, regulates the EPS biosynthesis in lactic acid bacteria is not clear. In this study, the effect of Ca2+ on the biosynthesis of EPS in the probiotic Lactobacillus plantarum K25 was studied. The results showed that addition of CaCl2 at 20 mg/L in a semi-defined medium did not affect the growth of strain K25, but it increased the EPS yield and changed the microstructure of the polymer. The presence of Ca2+ also changed the monosaccharide composition of the EPS with decreased high molecular weight components and more content of rhamnose, though the functional groups of the polymer were not altered as revealed by Fourier transform infrared spectral analysis. These were further confirmed by analysis of the mRNA expression of cps genes, 9 of which were upregulated by Ca2+, including cps4F and rfbD associated with EPS biosynthesis with rhamnose. Proteomics analysis showed that Ca2+ upregulated most of the proteins related to carbon transport and metabolism, fatty acid synthesis, amino acid synthesis, ion transport, UMP synthesis. Specially, the increased expression of MelB, PtlIIBC, EIIABC, PtlIIC, PtlIID, Bgl, GH1, MalFGK, DhaK, and FBPase provided substrates for the EPS synthesis. Meanwhile, metabolomics analysis revealed significant change of the small molecular metabolites in tricarboxylic acid cycle, glucose metabolism and propionic acid metabolism. Among them the content of active small molecules such as polygalitol, lyxose, and 5-phosphate ribose increased, facilitating the EPS biosynthesis. Furthermore, Ca2+ activated HipB signaling pathway to inhibit the expression of manipulator repressor such as ArsR, LytR/AlgR, IscR, and RafR, and activated the expression of GntR to regulate the EPS synthesis genes. This study provides a basis for understanding the overall change of metabolic pathways related to the EPS biosynthesis in L. plantarum K25 in response to Ca2+, facilitating exploitation of its EPS-producing potential for application in probiotic dairy products.
Collapse
Affiliation(s)
- Yunyun Jiang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, P.R. China 100048; Mengniu Gaoke Dairy (Beijing) Co. Ltd., Beijing, P.R. China 101100
| | - Min Zhang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, P.R. China 100048
| | - Yang Zhang
- Department of Neurology, Affiliated Hospital of Guizhou Medical University, Guiyang, P.R. China 550001
| | - Justyna Zulewska
- Department of Dairy Science and Quality Management, Faculty of Food Sciences, University of Warmia and Mazury, 10-719 Olsztyn, Poland
| | - Zhennai Yang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, Beijing Engineering and Technology Research Center of Food Additives, Beijing Technology and Business University, Beijing, P.R. China 100048.
| |
Collapse
|
23
|
Matysik A, Ho FK, Ler Tan AQ, Vajjala A, Kline KA. Cellular chaining influences biofilm formation and structure in group A Streptococcus. Biofilm 2020; 2:100013. [PMID: 33447800 PMCID: PMC7798446 DOI: 10.1016/j.bioflm.2019.100013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2019] [Revised: 11/02/2019] [Accepted: 11/22/2019] [Indexed: 11/16/2022] Open
Abstract
Group A Streptococcal (GAS) biofilm formation is an important pathological feature contributing to the antibiotic tolerance and progression of various GAS infections. Although a number of bacterial factors have been described to promote in vitro GAS biofilm formation, the relevance of in vitro biofilms to host-associated biofilms requires further understanding. In this study, we demonstrate how constituents of the host environment, such as lysozyme and NaCl, can modulate GAS bacterial chain length and, in turn, shape GAS biofilm morphology and structure. Disruption of GAS chains with lysozyme results in biofilms that are more stable. Based on confocal microscopy, we attribute the increase in biofilm stability to a dense and compact three-dimensional structure produced by de-chained cells. To show that changes in biofilm stability and structure are due to the shortening of bacterial chains and not specific to the activity of lysozyme, we demonstrate that augmented chaining induced by NaCl or deletion of the autolysin gene mur1.2 produced defects in biofilm formation characterized by a loose biofilm architecture. We conclude that GAS biofilm formation can be directly influenced by host and environmental factors through the modulation of bacterial chain length, potentially contributing to persistence and colonization within the host. Further studies of in vitro biofilm models incorporating physiological constituents such as lysozyme may uncover new insights into the physiology of in vivo GAS biofilms.
Collapse
Affiliation(s)
- Artur Matysik
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Dr, 637551, Singapore
| | - Foo Kiong Ho
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Dr, 637551, Singapore
| | - Alicia Qian Ler Tan
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Dr, 637551, Singapore
| | - Anuradha Vajjala
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Dr, 637551, Singapore
| | - Kimberly A. Kline
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, 60 Nanyang Dr, 637551, Singapore
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Dr, Singapore, 637551
| |
Collapse
|
24
|
Liu X, Liu F, Ding S, Shen J, Zhu K. Sublethal Levels of Antibiotics Promote Bacterial Persistence in Epithelial Cells. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:1900840. [PMID: 32999821 PMCID: PMC7509632 DOI: 10.1002/advs.201900840] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Revised: 05/17/2020] [Indexed: 05/21/2023]
Abstract
Antibiotic therapy and host cells frequently fail to eliminate invasive bacterial pathogens due to the emergence of antibiotic resistance, resulting in the relapse and recurrence of infections. Bacteria evolve various strategies to persist and survive in epithelial cells, a front-line barrier of host tissues counteracting invasion; however, it remains unclear how bacteria hijack cellular responses to promote cytoplasmic survival under antibiotic therapy. Here, it is demonstrated that extracellular bacteria show invasive behavior and survive in epithelial cells in both in vivo and in vitro models, to increase antibiotic tolerance. In turn, sublethal levels of antibiotics increase bacterial invasion through promoting the production of bacterial virulence factors. Furthermore, antibiotic treatments interrupt lysosomal acidification in autophagy due to the internalized bacteria, using Bacillus cereus and ciprofloxacin as a model. In addition, it is found that sublethal levels of ciprofloxacin cause mitochondrial dysfunction and reactive oxygen species (ROS) accumulation to impair lysosomal vascular tape ATPase (V-ATPase) to further promote bacterial persistence. Collectively, these results highlight the potential of host cells mediated antibiotic tolerance, which markedly compromises antibiotic efficacy and worsens the outcomes of infection.
Collapse
Affiliation(s)
- Xiaoye Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Veterinary MedicineChina Agricultural UniversityNo. 2 Yuanmingyuan West RoadBeijing100193China
- National Center for Veterinary Drug Safety EvaluationCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| | - Fei Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Veterinary MedicineChina Agricultural UniversityNo. 2 Yuanmingyuan West RoadBeijing100193China
| | - Shuangyang Ding
- National Center for Veterinary Drug Safety EvaluationCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
- Beijing Key Laboratory of Detection Technology for Animal‐Derived Food Safety and Beijing Laboratory for Food Quality and SafetyChina Agricultural UniversityBeijing100193China
| | - Jianzhong Shen
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Veterinary MedicineChina Agricultural UniversityNo. 2 Yuanmingyuan West RoadBeijing100193China
- National Center for Veterinary Drug Safety EvaluationCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
- Beijing Key Laboratory of Detection Technology for Animal‐Derived Food Safety and Beijing Laboratory for Food Quality and SafetyChina Agricultural UniversityBeijing100193China
| | - Kui Zhu
- Beijing Advanced Innovation Center for Food Nutrition and Human HealthCollege of Veterinary MedicineChina Agricultural UniversityNo. 2 Yuanmingyuan West RoadBeijing100193China
- National Center for Veterinary Drug Safety EvaluationCollege of Veterinary MedicineChina Agricultural UniversityBeijing100193China
| |
Collapse
|
25
|
Interaction of Macrophages and Cholesterol-Dependent Cytolysins: The Impact on Immune Response and Cellular Survival. Toxins (Basel) 2020; 12:toxins12090531. [PMID: 32825096 PMCID: PMC7551085 DOI: 10.3390/toxins12090531] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2020] [Revised: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 02/07/2023] Open
Abstract
Cholesterol-dependent cytolysins (CDCs) are key virulence factors involved in many lethal bacterial infections, including pneumonia, necrotizing soft tissue infections, bacterial meningitis, and miscarriage. Host responses to these diseases involve myeloid cells, especially macrophages. Macrophages use several systems to detect and respond to cholesterol-dependent cytolysins, including membrane repair, mitogen-activated protein (MAP) kinase signaling, phagocytosis, cytokine production, and activation of the adaptive immune system. However, CDCs also promote immune evasion by silencing and/or destroying myeloid cells. While there are many common themes between the various CDCs, each CDC also possesses specific features to optimally benefit the pathogen producing it. This review highlights host responses to CDC pathogenesis with a focus on macrophages. Due to their robust plasticity, macrophages play key roles in the outcome of bacterial infections. Understanding the unique features and differences within the common theme of CDCs bolsters new tools for research and therapy.
Collapse
|
26
|
Choi JA, Song CH. Insights Into the Role of Endoplasmic Reticulum Stress in Infectious Diseases. Front Immunol 2020; 10:3147. [PMID: 32082307 PMCID: PMC7005066 DOI: 10.3389/fimmu.2019.03147] [Citation(s) in RCA: 67] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2019] [Accepted: 12/27/2019] [Indexed: 11/13/2022] Open
Abstract
The endoplasmic reticulum (ER) is the major organelle in the cell for protein folding and plays an important role in cellular functions. The unfolded protein response (UPR) is activated in response to misfolded or unfolded protein accumulation in the ER. However, the UPR successfully alleviates the ER stress. If UPR fails to restore ER homeostasis, apoptosis is induced. ER stress plays an important role in innate immune signaling in response to microorganisms. Dysregulation of UPR signaling contributes to the pathogenesis of a variety of infectious diseases. In this review, we summarize the contribution of ER stress to the innate immune response to invading microorganisms and its role in the pathogenesis of infectious diseases.
Collapse
Affiliation(s)
- Ji-Ae Choi
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea.,Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea.,Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon, South Korea
| | - Chang-Hwa Song
- Department of Medical Science, College of Medicine, Chungnam National University, Daejeon, South Korea.,Department of Microbiology, College of Medicine, Chungnam National University, Daejeon, South Korea.,Research Institute for Medical Sciences, College of Medicine, Chungnam National University, Daejeon, South Korea
| |
Collapse
|
27
|
Abdellatif AM, Jensen Smith H, Harms RZ, Sarvetnick NE. Human Islet Response to Selected Type 1 Diabetes-Associated Bacteria: A Transcriptome-Based Study. Front Immunol 2019; 10:2623. [PMID: 31781116 PMCID: PMC6857727 DOI: 10.3389/fimmu.2019.02623] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 10/22/2019] [Indexed: 12/12/2022] Open
Abstract
Type 1 diabetes (T1D) is a chronic autoimmune disease that results from destruction of pancreatic β-cells. T1D subjects were recently shown to harbor distinct intestinal microbiome profiles. Based on these findings, the role of gut bacteria in T1D is being intensively investigated. The mechanism connecting intestinal microbial homeostasis with the development of T1D is unknown. Specific gut bacteria such as Bacteroides dorei (BD) and Ruminococcus gnavus (RG) show markedly increased abundance prior to the development of autoimmunity. One hypothesis is that these bacteria might traverse the damaged gut barrier, and their constituents elicit a response from human islets that causes metabolic abnormalities and inflammation. We have tested this hypothesis by exposing human islets to BD and RG in vitro, after which RNA-Seq analysis was performed. The bacteria altered expression of many islet genes. The commonly upregulated genes by these bacteria were cytokines, chemokines and enzymes, suggesting a significant effect of gut bacteria on islet antimicrobial and biosynthetic pathways. Additionally, each bacteria displayed a unique set of differentially expressed genes (DEGs). Ingenuity pathway analysis of DEGs revealed that top activated pathways and diseases included TREM1 signaling and inflammatory response, illustrating the ability of bacteria to induce islet inflammation. The increased levels of selected factors were confirmed using immunoblotting and ELISA methods. Our data demonstrate that islets produce a complex anti-bacterial response. The response includes both symbiotic and pathogenic aspects. Both oxidative damage and leukocyte recruitment factors were prominent, which could induce beta cell damage and subsequent autoimmunity.
Collapse
Affiliation(s)
- Ahmed M. Abdellatif
- Department of Surgery-Transplant, University of Nebraska Medical Center, Omaha, NE, United States
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, United States
- Department of Anatomy and Embryology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Heather Jensen Smith
- Fred & Pamela Buffett Cancer Center, University of Nebraska Medical Center, Omaha, NE, United States
- Eppley Institute for Research in Cancer, University of Nebraska Medical Center, Omaha, NE, United States
| | - Robert Z. Harms
- Department of Surgery-Transplant, University of Nebraska Medical Center, Omaha, NE, United States
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, United States
| | - Nora E. Sarvetnick
- Department of Surgery-Transplant, University of Nebraska Medical Center, Omaha, NE, United States
- Mary and Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE, United States
| |
Collapse
|
28
|
Palma Medina LM, Becker AK, Michalik S, Yedavally H, Raineri EJM, Hildebrandt P, Gesell Salazar M, Surmann K, Pförtner H, Mekonnen SA, Salvati A, Kaderali L, van Dijl JM, Völker U. Metabolic Cross-talk Between Human Bronchial Epithelial Cells and Internalized Staphylococcus aureus as a Driver for Infection. Mol Cell Proteomics 2019; 18:892-908. [PMID: 30808728 PMCID: PMC6495256 DOI: 10.1074/mcp.ra118.001138] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/25/2019] [Indexed: 11/06/2022] Open
Abstract
Staphylococcus aureus is infamous for causing recurrent infections of the human respiratory tract. This is a consequence of its ability to adapt to different niches, including the intracellular milieu of lung epithelial cells. To understand the dynamic interplay between epithelial cells and the intracellular pathogen, we dissected their interactions over 4 days by mass spectrometry. Additionally, we investigated the dynamics of infection through live cell imaging, immunofluorescence and electron microscopy. The results highlight a major role of often overlooked temporal changes in the bacterial and host metabolism, triggered by fierce competition over limited resources. Remarkably, replicating bacteria reside predominantly within membrane-enclosed compartments and induce apoptosis of the host within ∼24 h post infection. Surviving infected host cells carry a subpopulation of non-replicating bacteria in the cytoplasm that persists. Altogether, we conclude that, besides the production of virulence factors by bacteria, it is the way in which intracellular resources are used, and how host and intracellular bacteria subsequently adapt to each other that determines the ultimate outcome of the infectious process.
Collapse
Affiliation(s)
- Laura M Palma Medina
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Mecklenburg-Vorpommern, Germany;; Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Ann-Kristin Becker
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Mecklenburg-Vorpommern, Germany
| | - Stephan Michalik
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Mecklenburg-Vorpommern, Germany
| | - Harita Yedavally
- Division of Pharmacokinetics, Toxicology, and Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Groningen, The Netherlands
| | - Elisa J M Raineri
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Petra Hildebrandt
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Mecklenburg-Vorpommern, Germany
| | - Manuela Gesell Salazar
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Mecklenburg-Vorpommern, Germany
| | - Kristin Surmann
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Mecklenburg-Vorpommern, Germany
| | - Henrike Pförtner
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Mecklenburg-Vorpommern, Germany
| | - Solomon A Mekonnen
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Mecklenburg-Vorpommern, Germany;; Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands
| | - Anna Salvati
- Division of Pharmacokinetics, Toxicology, and Targeting, Groningen Research Institute of Pharmacy, University of Groningen, Groningen, Groningen, The Netherlands
| | - Lars Kaderali
- Institute of Bioinformatics, University Medicine Greifswald, Greifswald, Mecklenburg-Vorpommern, Germany
| | - Jan Maarten van Dijl
- Department of Medical Microbiology, University of Groningen, University Medical Center Groningen, Groningen, the Netherlands;.
| | - Uwe Völker
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Mecklenburg-Vorpommern, Germany;.
| |
Collapse
|
29
|
Brito C, Cabanes D, Sarmento Mesquita F, Sousa S. Mechanisms protecting host cells against bacterial pore-forming toxins. Cell Mol Life Sci 2019; 76:1319-1339. [PMID: 30591958 PMCID: PMC6420883 DOI: 10.1007/s00018-018-2992-8] [Citation(s) in RCA: 92] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 12/06/2018] [Accepted: 12/10/2018] [Indexed: 12/19/2022]
Abstract
Pore-forming toxins (PFTs) are key virulence determinants produced and secreted by a variety of human bacterial pathogens. They disrupt the plasma membrane (PM) by generating stable protein pores, which allow uncontrolled exchanges between the extracellular and intracellular milieus, dramatically disturbing cellular homeostasis. In recent years, many advances were made regarding the characterization of conserved repair mechanisms that allow eukaryotic cells to recover from mechanical disruption of the PM membrane. However, the specificities of the cell recovery pathways that protect host cells against PFT-induced damage remain remarkably elusive. During bacterial infections, the coordinated action of such cell recovery processes defines the outcome of infected cells and is, thus, critical for our understanding of bacterial pathogenesis. Here, we review the cellular pathways reported to be involved in the response to bacterial PFTs and discuss their impact in single-cell recovery and infection.
Collapse
Affiliation(s)
- Cláudia Brito
- i3S-Instituto de Investigação e Inovação em Saúde, IBMC, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
- Programa Doutoral em Biologia Molecular e Celular (MCbiology), Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, Rua Jorge de Viterbo Ferreira 228, 4050-313, Porto, Portugal
| | - Didier Cabanes
- i3S-Instituto de Investigação e Inovação em Saúde, IBMC, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal
| | - Francisco Sarmento Mesquita
- i3S-Instituto de Investigação e Inovação em Saúde, IBMC, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.
- Global Health Institute, School of Life Science, Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland.
| | - Sandra Sousa
- i3S-Instituto de Investigação e Inovação em Saúde, IBMC, Universidade do Porto, Rua Alfredo Allen, 208, 4200-135, Porto, Portugal.
| |
Collapse
|
30
|
Zhang Y, Wang Y, Wang R, Shen Y, Xu J, Webster TJ, Fang Y. Personalized nanomedicine: a rapid, sensitive, and selective UV-vis spectrophotometry method for the quantification of nanostructured PEG-asparaginase activity in children's plasma. Int J Nanomedicine 2018; 13:6337-6344. [PMID: 30410325 PMCID: PMC6198885 DOI: 10.2147/ijn.s167380] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Purpose PEGylated asparaginase (PEG-ASNase), which hydrolyzes asparagine to ammonia and aspartic acid, is an effective nanostructured antitumor agent for acute lymphoblastic leukemia (ALL). In order to monitor the activity of PEG-ASNase in plasma and design an individualization project, a rapid and sensitive method to determine PEG-ASNase activity in plasma using ultraviolet–visible spectrophotometry was established. Methods PEG-ASNase is commonly used in acute lymphoblastic leukemia. With Nessler’s reagent as the chromogenic reagent of ammonia, a stable yellow complex was produced. The units of enzyme activity were defined as micromoles of ammonia released per minute. Results Calibration curves fitted by plotting the OD at 450 nm of the Nessler product vs concentration were linear in the range of 27.8–1,111.0 IU/L with r2=0.999. The lower limit of quantification for PEG-ASNase activity in human plasma was 20 IU/L with good accuracy and precision. The intra- and interday precision (relative standard deviation) values were below 10% and accuracy ranged from 90% to 110% at all quality control levels. Analytical recoveries were determined between 90% and 110% for all quality control samples. Conclusion This study proved that the Nessler method is well validated and can be successfully applied in the determination of plasma samples in the clinical setting for patients with ALL. It takes personalized nanomedicine to an entirely new level.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Yongren Wang
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China, .,Key Laboratory of Hematology, Nanjing Medical University, Nanjing 210008, China,
| | - Ru Wang
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Yan Shen
- State Key Laboratory of Natural Medicines, Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
| | - Jing Xu
- Department of Pharmacy, Children's Hospital of Nanjing Medical University, Nanjing 210008, China
| | - Thomas J Webster
- Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA,
| | - Yongjun Fang
- Department of Hematology and Oncology, Children's Hospital of Nanjing Medical University, Nanjing 210008, China, .,Key Laboratory of Hematology, Nanjing Medical University, Nanjing 210008, China,
| |
Collapse
|
31
|
Vajjala A, Biswas D, Tay WH, Hanski E, Kline KA. Streptolysin-induced endoplasmic reticulum stress promotes group A Streptococcal host-associated biofilm formation and necrotising fasciitis. Cell Microbiol 2018; 21:e12956. [PMID: 30239106 DOI: 10.1111/cmi.12956] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2018] [Revised: 09/10/2018] [Accepted: 09/12/2018] [Indexed: 12/24/2022]
Abstract
Group A Streptococcus (GAS) is a human pathogen that causes infections ranging from mild to fulminant and life-threatening. Biofilms have been implicated in acute GAS soft-tissue infections such as necrotising fasciitis (NF). However, most in vitro models used to study GAS biofilms have been designed to mimic chronic infections and insufficiently recapitulate in vivo conditions along with the host-pathogen interactions that might influence biofilm formation. Here, we establish and characterise an in vitro model of GAS biofilm development on mammalian cells that simulates microcolony formation observed in a mouse model of human NF. We show that on mammalian cells, GAS forms dense aggregates that display hallmark biofilm characteristics including a 3D architecture and enhanced tolerance to antibiotics. In contrast to abiotic-grown biofilms, host-associated biofilms require the expression of secreted GAS streptolysins O and S (SLO, SLS) that induce endoplasmic reticulum (ER) stress in the host. In an in vivo mouse model, the streptolysin null mutant is attenuated in both microcolony formation and bacterial spread, but pretreatment of soft-tissue with an ER stressor restores the ability of the mutant to form wild-type-like microcolonies that disseminate throughout the soft tissue. Taken together, we have identified a new role of streptolysin-driven ER stress in GAS biofilm formation and NF disease progression.
Collapse
Affiliation(s)
- Anuradha Vajjala
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore
| | - Debabrata Biswas
- Cellular and Molecular Mechanisms of Inflammation, Campus for Research Excellence and Technological Enterprise (CREATE), Department of Microbiology and Immunology, National University of Singapore (NUS)-The Hebrew University of Jerusalem (HUJ), Singapore
| | - Wei Hong Tay
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore.,Singapore Centre for Environmental Life Sciences Engineering, Interdisciplinary Graduate School, Nanyang Technological University, Singapore
| | - Emanuel Hanski
- Cellular and Molecular Mechanisms of Inflammation, Campus for Research Excellence and Technological Enterprise (CREATE), Department of Microbiology and Immunology, National University of Singapore (NUS)-The Hebrew University of Jerusalem (HUJ), Singapore.,Department of Microbiology and Molecular Genetics, Faculty of Medicine, The Institute for Medical Research, Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Kimberly A Kline
- Singapore Centre for Environmental Life Sciences Engineering, Nanyang Technological University, Singapore.,School of Biological Sciences, Nanyang Technological University, Singapore
| |
Collapse
|
32
|
Hertzog BB, Kaufman Y, Biswas D, Ravins M, Ambalavanan P, Wiener R, Angeli V, Chen SL, Hanski E. A Sub-population of Group A Streptococcus Elicits a Population-wide Production of Bacteriocins to Establish Dominance in the Host. Cell Host Microbe 2018; 23:312-323.e6. [PMID: 29544095 DOI: 10.1016/j.chom.2018.02.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 12/26/2017] [Accepted: 02/07/2018] [Indexed: 11/30/2022]
Abstract
Bacteria use quorum sensing (QS) to regulate gene expression. We identified a group A Streptococcus (GAS) strain possessing the QS system sil, which produces functional bacteriocins, through a sequential signaling pathway integrating host and bacterial signals. Host cells infected by GAS release asparagine (ASN), which is sensed by the bacteria to alter its gene expression and rate of proliferation. We show that upon ASN sensing, GAS upregulates expression of the QS autoinducer peptide SilCR. Initial SilCR expression activates the autoinduction cycle for further SilCR production. The autoinduction process propagates throughout the GAS population, resulting in bacteriocin production. Subcutaneous co-injection of mice with a bacteriocin-producing strain and the globally disseminated M1T1 GAS clone results in M1T1 killing within soft tissue. Thus, by sensing host signals, a fraction of a bacterial population can trigger an autoinduction mechanism mediated by QS, which acts on the entire bacterial community to outcompete other bacteria within the infection.
Collapse
Affiliation(s)
- Baruch B Hertzog
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem 9112102, Israel
| | - Yael Kaufman
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem 9112102, Israel
| | - Debabrata Biswas
- NUS-HUJ-CREATE Programme for Inflammation Research, Center for Research Excellence & Technological Enterprise (CREATE), Department of Microbiology and Immunology, National University of Singapore, Singapore 138602, Singapore
| | - Miriam Ravins
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem 9112102, Israel
| | - Poornima Ambalavanan
- NUS-HUJ-CREATE Programme for Inflammation Research, Center for Research Excellence & Technological Enterprise (CREATE), Department of Microbiology and Immunology, National University of Singapore, Singapore 138602, Singapore
| | - Reuven Wiener
- Department of Biochemistry and Molecular Biology, The Institute for Medical Research, Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem 9112102, Israel
| | - Veronique Angeli
- Department of Microbiology and Immunology, National University of Singapore; LSI Immunology Programme, National University of Singapore, Singapore 117456, Singapore
| | - Swaine L Chen
- Department of Medicine, Yong Loo Lin School of Medicine, National University of Singapore, and Infectious Diseases Group, Genome Institute of Singapore, Singapore 119074, Singapore
| | - Emanuel Hanski
- Department of Microbiology and Molecular Genetics, The Institute for Medical Research, Israel-Canada (IMRIC), The Hebrew University of Jerusalem, Faculty of Medicine, Jerusalem 9112102, Israel; NUS-HUJ-CREATE Programme for Inflammation Research, Center for Research Excellence & Technological Enterprise (CREATE), Department of Microbiology and Immunology, National University of Singapore, Singapore 138602, Singapore.
| |
Collapse
|
33
|
l-Asparaginase: a feasible therapeutic molecule for multiple diseases. 3 Biotech 2018; 8:278. [PMID: 29872609 DOI: 10.1007/s13205-018-1282-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2017] [Accepted: 05/07/2018] [Indexed: 02/01/2023] Open
Abstract
This note highlights our understanding and thinking about the feasibility of l-asparaginase as therapeutics for multiple diseases. l-asparaginase enzyme (l-asparagine amidohydrolase, EC 3.5.1.1) is prominently known for its chemotherapeutic application. It is primarily used in the treatment of acute lymphoblastic leukemia in children. It is also used in the treatment of other forms of cancer Hodgkin disease, lymphosarcoma, acute myelomonocytic leukemia, acute myelogenous leukemia, chronic lymphocytic leukemia, reticulosarcoma and melanosarcoma (Lopes et al. Crit Rev Biotechnol 23:1-18, 2015). It deaminates l-asparagine present in the plasma pool causing the demise of tumor cell due to nutritional starvation. The anti-tumorigenic property of this enzyme has been exploited for over four decades and evidenced as a boon for the cancer patients. Presently, the medical application of l-asparaginase is limited only in curing various forms of cancer.
Collapse
|
34
|
Controlled branched-chain amino acids auxotrophy in Listeria monocytogenes allows isoleucine to serve as a host signal and virulence effector. PLoS Genet 2018. [PMID: 29529043 PMCID: PMC5864092 DOI: 10.1371/journal.pgen.1007283] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Listeria monocytogenes (Lm) is a saprophyte and intracellular pathogen. Transition to the pathogenic state relies on sensing of host-derived metabolites, yet it remains unclear how these are recognized and how they mediate virulence gene regulation. We previously found that low availability of isoleucine signals Lm to activate the virulent state. This response is dependent on CodY, a global regulator and isoleucine sensor. Isoleucine-bound CodY represses metabolic pathways including branched-chain amino acids (BCAA) biosynthesis, however under BCAA depletion, as occurs during infection, BCAA biosynthesis is upregulated and isoleucine-unbound CodY activates virulence genes. While isoleucine was revealed as an important input signal, it was not identified how internal levels are controlled during infection. Here we show that Lm regulates BCAA biosynthesis via CodY and via a riboregulator located upstream to the BCAA biosynthesis genes, named Rli60. rli60 is transcribed when BCAA levels drop, forming a ribosome-mediated attenuator that cis-regulates the downstream genes according to BCAA supply. Notably, we found that Rli60 restricts BCAA production, essentially starving Lm, a mechanism that is directly linked to virulence, as it controls the internal isoleucine pool and thereby CodY activity. This controlled BCAA auxotrophy likely evolved to enable isoleucine to serve as a host signal and virulence effector. Bacterial pathogens must adapt to their host environment to carry out a successful infection. Sensing host-derived signals precedes adaptation, and triggers switching to the virulent state. Within mammalian cells L. monocytogenes responds to branched-chain amino acids (BCAA) deficiency by inducing virulence gene expression. In this study, we provide compelling evidence that fine tuning BCAA biosynthesis in L. monocytogenes allows the bacteria to sense isoleucine as a host-specific signal. Tightly controlled BCAA production depends on Rli60, a riboregulator, which is transcribed upstream to the BCAA biosynthesis genes. Rli60 functions as a ribosome mediated attenuator that cis-regulates BCAA production under limiting conditions. This study highlights the remarkable cross-regulation of metabolism and virulence in bacterial pathogens.
Collapse
|
35
|
Ren W, Rajendran R, Zhao Y, Tan B, Wu G, Bazer FW, Zhu G, Peng Y, Huang X, Deng J, Yin Y. Amino Acids As Mediators of Metabolic Cross Talk between Host and Pathogen. Front Immunol 2018. [PMID: 29535717 PMCID: PMC5835074 DOI: 10.3389/fimmu.2018.00319] [Citation(s) in RCA: 78] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The interaction between host and pathogen decidedly shapes the outcome of an infection, thus understanding this interaction is critical to the treatment of a pathogen-induced infection. Although research in this area of cell biology has yielded surprising findings regarding interactions between host and pathogen, understanding of the metabolic cross talk between host and pathogen is limited. At the site of infection, host and pathogen share similar or identical nutritional substrates and generate common metabolic products, thus metabolic cross talk between host and pathogen could profoundly affect the pathogenesis of an infection. In this review, we present results of a recent discovery of a metabolic interaction between host and pathogen from an amino acid (AA) metabolism-centric point of view. The host depends on AA metabolism to support defensive responses against pathogens, while the pathogens modulate AA metabolism for its own advantage. Some AA, such as arginine, asparagine, and tryptophan, are central points of competition between the host and pathogen. Thus, a better understanding of AA-mediated metabolic cross talk between host and pathogen will provide insight into fruitful therapeutic approaches to manipulate and prevent progression of an infection.
Collapse
Affiliation(s)
- Wenkai Ren
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China.,Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Ranjith Rajendran
- School of Medicine, College of Medical, Veterinary and Life Sciences (MVLS), University of Glasgow, Glasgow, United Kingdom
| | - Yuanyuan Zhao
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Bie Tan
- Laboratory of Animal Nutrition and Health and Key Laboratory of Agro-Ecology, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha, China
| | - Guoyao Wu
- Department of Animal Science, Texas A&M University, TAMU, College Station, TX, United States
| | - Fuller W Bazer
- Department of Animal Science, Texas A&M University, TAMU, College Station, TX, United States
| | - Guoqiang Zhu
- Jiangsu Co-Innovation Center for Important Animal Infectious Diseases and Zoonoses, Joint International Research Laboratory of Agriculture and Agri-Product Safety of Ministry of Education of China, College of Veterinary Medicine, Yangzhou University, Yangzhou, China
| | - Yuanyi Peng
- Chongqing Key Laboratory of Forage & Herbivorce, College of Animal Science and Technology, Southwest University, Chongqing, China
| | | | - Jinping Deng
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| | - Yulong Yin
- Guangdong Provincial Key Laboratory of Animal Nutrition Control, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, China
| |
Collapse
|
36
|
Cabezas-Cruz A, Espinosa PJ, Obregón DA, Alberdi P, de la Fuente J. Ixodes scapularis Tick Cells Control Anaplasma phagocytophilum Infection by Increasing the Synthesis of Phosphoenolpyruvate from Tyrosine. Front Cell Infect Microbiol 2017; 7:375. [PMID: 28861402 PMCID: PMC5562928 DOI: 10.3389/fcimb.2017.00375] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Accepted: 08/04/2017] [Indexed: 01/14/2023] Open
Abstract
The obligate intracellular pathogen, Anaplasma phagocytophilum, is the causative agent of life-threatening diseases in humans and animals. A. phagocytophilum is an emerging tick-borne pathogen in the United States, Europe, Africa and Asia, with increasing numbers of infected people and animals every year. It is increasingly recognized that intracellular pathogens modify host cell metabolic pathways to increase infection and transmission in both vertebrate and invertebrate hosts. Recent reports have shown that amino acids are central to the host–pathogen metabolic interaction. In this study, a genome-wide search for components of amino acid metabolic pathways was performed in Ixodes scapularis, the main tick vector of A. phagocytophilum in the United States, for which the genome was recently published. The enzymes involved in the synthesis and degradation pathways of the twenty amino acids were identified. Then, the available transcriptomics and proteomics data was used to characterize the mRNA and protein levels of I. scapularis amino acid metabolic pathway components in response to A. phagocytophilum infection of tick tissues and ISE6 tick cells. Our analysis was focused on the interplay between carbohydrate and amino acid metabolism during A. phagocytophilum infection in ISE6 cells. The results showed that tick cells increase the synthesis of phosphoenolpyruvate (PEP) from tyrosine to control A. phagocytophilum infection. Metabolic pathway analysis suggested that this is achieved by (i) increasing the transcript and protein levels of mitochondrial phosphoenolpyruvate carboxykinase (PEPCK-M), (ii) shunting tyrosine into the tricarboxylic acid (TCA) cycle to increase fumarate and oxaloacetate which will be converted into PEP by PEPCK-M, and (iii) blocking all the pathways that use PEP downstream gluconeogenesis (i.e., de novo serine synthesis pathway (SSP), glyceroneogenesis and gluconeogenesis). While sequestering host PEP may be critical for this bacterium because it cannot actively carry out glycolysis to produce PEP, excess of this metabolite may be toxic for A. phagocytophilum. The present work provides a more comprehensive view of the major amino acid metabolic pathways involved in the response to pathogen infection in ticks, and provides the basis for further studies to develop novel strategies for the control of granulocytic anaplasmosis.
Collapse
Affiliation(s)
- Alejandro Cabezas-Cruz
- Biologie Moléculaire et Immunologie Parasitaires (BIPAR), Unité Mixte de Recherche (UMR), Institut National Recherche Agronomique, Agence Nationale Sécurité Sanitaire Alimentaire Nationale (ANSES), Ecole Nationale Vétérinaire d'Alfort, Université Paris-EstMaisons-Alfort, France.,Department of Parasitology, Faculty of Science, University of South BohemiaČeské Budějovice, Czechia.,Institute of Parasitology, Biology Center, Czech Academy of SciencesČeské Budějovice, Czechia
| | - Pedro J Espinosa
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM)Ciudad Real, Spain
| | - Dasiel A Obregón
- Cell and Molecular Biology Laboratory, University of Sao PauloSao Paulo, Brazil
| | - Pilar Alberdi
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM)Ciudad Real, Spain
| | - José de la Fuente
- SaBio, Instituto de Investigación en Recursos Cinegéticos IREC (CSIC-UCLM-JCCM)Ciudad Real, Spain.,Department of Veterinary Pathobiology, Center for Veterinary Health Sciences, Oklahoma State UniversityStillwater, OK, United States
| |
Collapse
|
37
|
Vimal A, Kumar A. Biotechnological production and practical application of L-asparaginase enzyme. Biotechnol Genet Eng Rev 2017; 33:40-61. [PMID: 28766374 DOI: 10.1080/02648725.2017.1357294] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
L-asparaginase is a vital enzyme of medical importance, and renowned as a chemotherapeutic agent. The relevance of this enzyme is not only limited as an anti-cancer agent, it also possesses a wide range of medical application. The application includes the antimicrobial property, treatment of infectious diseases, autoimmune diseases, canine and feline cancer. Apart from the health care industry, its significance is also established in the food sector as a food processing agent to reduce the acrylamide concentration. L-asparaginase is known to be produced from various bacterial, fungal and plant sources. However, there is a huge market demand due to its wide range of application. Therefore, the industry is still in the search of better-producing source in terms of high yield and low immunogenicity. It can be produced by both submerged and solid state fermentation, and each fermentation process has its own merits and demerits. This review paper focuses on its improved production strategy by adopting statistical experimental optimization techniques, development of recombinant strains, through mutagenesis and nanoparticle immobilization, adopting advanced and cost-effective purification techniques. Available research literature proves the competence and therapeutic potential of this enzyme. Therefore, research orientation toward the exploration of this clinical significant enzyme has to be accelerated. The objectives of this review are to discuss the high yielding sources, current production strategies, improvement of production, effective downstream processing and therapeutic application of L-asparaginase.
Collapse
Affiliation(s)
- Archana Vimal
- a Department of Biotechnology , National Institute of Technology (NIT) , Raipur , India
| | - Awanish Kumar
- a Department of Biotechnology , National Institute of Technology (NIT) , Raipur , India
| |
Collapse
|
38
|
Olsson S, Bonfante P, Pawlowska TE. Chapter 39 Ecology and Evolution of Fungal-Bacterial Interactions. Mycology 2017. [DOI: 10.1201/9781315119496-40] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
|
39
|
Complete Genome Sequence of Streptococcus pyogenes emm14 JS95, a Necrotizing Fasciitis Strain Isolated in Israel. GENOME ANNOUNCEMENTS 2017; 5:5/11/e00025-17. [PMID: 28302774 PMCID: PMC5356051 DOI: 10.1128/genomea.00025-17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Here, we report the complete genome sequence of the Streptococcus pyogenes emm14 strain JS95, isolated from a patient with necrotizing fasciitis. The streptococcal invasion locus (sil), the first quorum-sensing system characterized in S. pyogenes, was identified in this strain.
Collapse
|
40
|
Kiat HJ, En Natalie YH, Fatimah L. Necrotizing Fasciitis: How Reliable are the Cutaneous Signs? J Emerg Trauma Shock 2017; 10:205-210. [PMID: 29097860 PMCID: PMC5663140 DOI: 10.4103/jets.jets_42_17] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Necrotizing fasciitis (NF) is a surgical emergency. It is often aggressive and characterized by the rapidly progressive inflammatory infection of the fascia that causes extensive necrosis of the subcutaneous tissue and fascia, relatively sparing the muscle and skin tissue. As the disease progresses, thrombosis of the affected cutaneous perforators subsequently devascularizes the overlying skin. The course indeed can be a fulminant one. The diagnosis of NF, especially in the early stages, is extremely challenging, and it can be very close in presentation to other skin and subcutaneous tissue infections. The primary site of the pathology is the deep fascia. Necrosis of the tissues and fascia may manifest as erythema without sharp margins, swelling, warmth, shiny, and exquisitely tender areas. Pain out of proportion to physical examination findings may be observed. The subcutaneous tissue may be firm and indurated such that the underlying muscle groups cannot be distinctly palpated. Eventually, as the overlying skin is stripped of its blood supply, skin necrosis ensues and hemorrhagic bullae form. Bacteremia and sepsis invariably develop when the infection is well established. This paper discusses some of issues related to the cutaneous signs found in NF and also provides a review the current, available literature on the subject matter.
Collapse
Affiliation(s)
- Ho Jun Kiat
- Yong Loo Lin Medical School, National University of, Singapore
| | | | - Lateef Fatimah
- Yong Loo Lin Medical School, National University of, Singapore.,Senior Consultant, Department of Emergency Medicine, Singapore General Hospital, Associate Professor, Duke NUS Graduate Medical School, Singapore
| |
Collapse
|
41
|
In vitro screening and in silico validation revealed key microbes for higher production of significant therapeutic enzyme l-asparaginase. Enzyme Microb Technol 2016; 98:9-17. [PMID: 28110669 DOI: 10.1016/j.enzmictec.2016.12.001] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/07/2016] [Accepted: 12/08/2016] [Indexed: 11/22/2022]
Abstract
l-asparaginase is an enzyme of medical prominence and reputable as a chemotherapeutic agent. It also has immense potential to cure autoimmune and infectious diseases. The vast application of this enzyme in healthcare sector increases its market demand. However, presently the huge market demand is not achieved completely. This serves the basis to explore better producer microbial strains to bridge the gap between huge demand and supply of this therapeutic enzyme. The present study deals with the successful screening of potent microorganisms producing l-asparaginase. 47 microorganisms were screened including bacteria, fungi, and yeasts. Among all, Penicillium lilacinum showed the highest enzyme activity i.e., 39.67 IU/ml. Shigella flexneri has 23.21 IU/ml of enzyme activity (highest among all the bacterial strain tested). Further, the 3-D structure of l-asparaginase from higher producer strains was developed and validated in silico for its activity. l-asparagine (substrate for l-asparaginase) was docked inside the binding pocket of P. lilacinum and S. flexneri. Docking score for the most common substrate l-asparagine is -6.188 (P. lilacinum), -5.576 (S. flexneri) which is quite good. Moreover, the chemical property of the binding pocket revealed that amino acid residues Phe 243, Gln 260, Gly 365, Asp 386 in P. lilacinum and residues Asp 181, Thr 318, Asn 320 in S. flexneri have an important role in H-bonding. The in silico results supports and strengthen the wet lab results. The outcome obtained motivates to take the present study result from lab to industry for the economic/massive production of this enzyme for the diverse therapeutic application.
Collapse
|
42
|
Identification of a two-component Class IIb bacteriocin in Streptococcus pyogenes by recombinase-based in vivo expression technology. Sci Rep 2016; 6:36233. [PMID: 27808235 PMCID: PMC5093712 DOI: 10.1038/srep36233] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 10/10/2016] [Indexed: 12/30/2022] Open
Abstract
Streptococcus pyogenes is a globally prominent bacterial pathogen that exhibits strict tropism for the human host, yet bacterial factors responsible for the ability of S. pyogenes to compete within this limited biological niche are not well understood. Using an engineered recombinase-based in vivo expression technology (RIVET) system, we identified an in vivo-induced promoter region upstream of a predicted Class IIb bacteriocin system in the M18 serotype S. pyogenes strain MGAS8232. This promoter element was not active under in vitro laboratory conditions, but was highly induced within the mouse nasopharynx. Recombinant expression of the predicted mature S. pyogenes bacteriocin peptides (designated SpbM and SpbN) revealed that both peptides were required for antimicrobial activity. Using a gain of function experiment in Lactococcus lactis, we further demonstrated S. pyogenes immunity function is encoded downstream of spbN. These data highlight the importance of bacterial gene regulation within appropriate environments to help understand mechanisms of niche adaptation by bacterial pathogens.
Collapse
|
43
|
Popa C, Li L, Gil S, Tatjer L, Hashii K, Tabuchi M, Coll NS, Ariño J, Valls M. The effector AWR5 from the plant pathogen Ralstonia solanacearum is an inhibitor of the TOR signalling pathway. Sci Rep 2016; 6:27058. [PMID: 27257085 PMCID: PMC4891724 DOI: 10.1038/srep27058] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Accepted: 05/12/2016] [Indexed: 01/31/2023] Open
Abstract
Bacterial pathogens possess complex type III effector (T3E) repertoires that are translocated inside the host cells to cause disease. However, only a minor proportion of these effectors have been assigned a function. Here, we show that the T3E AWR5 from the phytopathogen Ralstonia solanacearum is an inhibitor of TOR, a central regulator in eukaryotes that controls the switch between cell growth and stress responses in response to nutrient availability. Heterologous expression of AWR5 in yeast caused growth inhibition and autophagy induction coupled to massive transcriptomic changes, unmistakably reminiscent of TOR inhibition by rapamycin or nitrogen starvation. Detailed genetic analysis of these phenotypes in yeast, including suppression of AWR5-induced toxicity by mutation of CDC55 and TPD3, encoding regulatory subunits of the PP2A phosphatase, indicated that AWR5 might exert its function by directly or indirectly inhibiting the TOR pathway upstream PP2A. We present evidence in planta that this T3E caused a decrease in TOR-regulated plant nitrate reductase activity and also that normal levels of TOR and the Cdc55 homologues in plants are required for R. solanacearum virulence. Our results suggest that the TOR pathway is a bona fide T3E target and further prove that yeast is a useful platform for T3E function characterisation.
Collapse
Affiliation(s)
- Crina Popa
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Catalonia, Spain
- Genetics Department, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Liang Li
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Catalonia, Spain
| | - Sergio Gil
- Genetics Department, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Laura Tatjer
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Catalonia, Spain
| | - Keisuke Hashii
- Laboratory of Applied Molecular and Cell Biology, Kagawa University, Kagawa, Japan
| | - Mitsuaki Tabuchi
- Laboratory of Applied Molecular and Cell Biology, Kagawa University, Kagawa, Japan
| | - Núria S. Coll
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Catalonia, Spain
| | - Joaquín Ariño
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Cerdanyola del Vallès, Catalonia, Spain
| | - Marc Valls
- Centre for Research in Agricultural Genomics (CSIC-IRTA-UAB-UB), Bellaterra, Catalonia, Spain
- Genetics Department, Universitat de Barcelona, Barcelona, Catalonia, Spain
| |
Collapse
|
44
|
The Endoplasmic Reticulum-Mitochondrion Tether ERMES Orchestrates Fungal Immune Evasion, Illuminating Inflammasome Responses to Hyphal Signals. mSphere 2016; 1:mSphere00074-16. [PMID: 27303738 PMCID: PMC4888881 DOI: 10.1128/msphere.00074-16] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2016] [Accepted: 04/26/2016] [Indexed: 01/01/2023] Open
Abstract
The pathogenic yeast Candida albicans escapes macrophages by triggering NLRP3 inflammasome-dependent host cell death (pyroptosis). Pyroptosis is inflammatory and must be tightly regulated by host and microbe, but the mechanism is incompletely defined. We characterized the C. albicans endoplasmic reticulum (ER)-mitochondrion tether ERMES and show that the ERMES mmm1 mutant is severely crippled in killing macrophages despite hyphal formation and normal phagocytosis and survival. To understand dynamic inflammasome responses to Candida with high spatiotemporal resolution, we established live-cell imaging for parallel detection of inflammasome activation and pyroptosis at the single-cell level. This showed that the inflammasome response to mmm1 mutant hyphae is delayed by 10 h, after which an exacerbated activation occurs. The NLRP3 inhibitor MCC950 inhibited inflammasome activation and pyroptosis by C. albicans, including exacerbated inflammasome activation by the mmm1 mutant. At the cell biology level, inactivation of ERMES led to a rapid collapse of mitochondrial tubular morphology, slow growth and hyphal elongation at host temperature, and reduced exposed 1,3-β-glucan in hyphal populations. Our data suggest that inflammasome activation by C. albicans requires a signal threshold dependent on hyphal elongation and cell wall remodeling, which could fine-tune the response relative to the level of danger posed by C. albicans. The phenotypes of the ERMES mutant and the lack of conservation in animals suggest that ERMES is a promising antifungal drug target. Our data further indicate that NLRP3 inhibition by MCC950 could modulate C. albicans-induced inflammation. IMPORTANCE The yeast Candida albicans causes human infections that have mortality rates approaching 50%. The key to developing improved therapeutics is to understand the host-pathogen interface. A critical interaction is that with macrophages: intracellular Candida triggers the NLRP3/caspase-1 inflammasome for escape through lytic host cell death, but this also activates antifungal responses. To better understand how the inflammasome response to Candida is fine-tuned, we established live-cell imaging of inflammasome activation at single-cell resolution, coupled with analysis of the fungal ERMES complex, a mitochondrial regulator that lacks human homologs. We show that ERMES mediates Candida escape via inflammasome-dependent processes, and our data suggest that inflammasome activation is controlled by the level of hyphal growth and exposure of cell wall components as a proxy for severity of danger. Our study provides the most detailed dynamic analysis of inflammasome responses to a fungal pathogen so far and establishes promising pathogen- and host-derived therapeutic strategies.
Collapse
|
45
|
Ren W, Yin J, Chen S, Duan J, Liu G, Li T, Li N, Peng Y, Tan B, Yin Y. Proteome analysis for the global proteins in the jejunum tissues of enterotoxigenic Escherichia coli -infected piglets. Sci Rep 2016; 6:25640. [PMID: 27157636 PMCID: PMC4860632 DOI: 10.1038/srep25640] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2016] [Accepted: 04/20/2016] [Indexed: 02/06/2023] Open
Abstract
Enterotoxigenic Escherichia coli (ETEC) is a common cause of diarrhea in humans and livestock. In this study, isobaric tags for relative and absolute quantitation (iTRAQ) combined with multidimensional liquid chromatography (LC) and MS analysis was used for screening the differentially expressed proteins in piglet jejunum after ETEC infection. Totally 1,897 proteins were identified with quantitative information in piglet jejunum. We identified 92 differentially expressed proteins in ETEC-induced diarrhea, of which 30 were up regulated and 62 down regulated. Most of the differentially expressed proteins were involved in intestinal function of binding, metabolic process, catalytic activity and immune responses. The inhibition of intestinal immune responses in the jejunum in ETEC-induced diarrhea was also validated by immunobloting and RT-PCR. Our study is the first attempt to analyze the protein profile of ETEC-infected piglets by quantitative proteomics, and our findings could provide valuable information with respect to better understanding the host response to ETEC infection.
Collapse
Affiliation(s)
- Wenkai Ren
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China.,University of the Chinese Academy of Sciences, Beijing 10008, China
| | - Jie Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China
| | - Shuai Chen
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China
| | - Jielin Duan
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China
| | - Gang Liu
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China
| | - Tiejun Li
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China
| | - Nengzhang Li
- Chongqing Key Laboratory of Forage &Herbivorce, College of Animal Science and Technology, Southwest University, Chongqing 400716, China
| | - Yuanyi Peng
- Chongqing Key Laboratory of Forage &Herbivorce, College of Animal Science and Technology, Southwest University, Chongqing 400716, China
| | - Bie Tan
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China.,Hunan Collaborative Innovation Center for Utilization of Botanical Functional Ingredients; Hunan Collaborative Innovation Center of Animal Production Safety, Changsha, Hunan, 410128, China
| | - Yulong Yin
- Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences; Hunan Provincial Engineering Research Center for Healthy Livestock and Poultry Production, Changsha, Hunan 410125, China
| |
Collapse
|
46
|
Sheth RU, Cabral V, Chen SP, Wang HH. Manipulating Bacterial Communities by in situ Microbiome Engineering. Trends Genet 2016; 32:189-200. [PMID: 26916078 PMCID: PMC4828914 DOI: 10.1016/j.tig.2016.01.005] [Citation(s) in RCA: 153] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 01/22/2016] [Accepted: 01/26/2016] [Indexed: 02/07/2023]
Abstract
Microbial communities inhabit our entire planet and have a crucial role in biogeochemical processes, agriculture, biotechnology, and human health. Here, we argue that 'in situ microbiome engineering' represents a new paradigm of community-scale genetic and microbial engineering. We discuss contemporary applications of this approach to directly add, remove, or modify specific sets of functions and alter community-level properties in terrestrial, aquatic, and host-associated microbial communities. Specifically, we highlight emerging in situ genome engineering approaches as tractable techniques to manipulate microbial communities with high specificity and efficacy. Finally, we describe opportunities for technological innovation and ways to bridge existing knowledge gaps to accelerate the development of in situ approaches for microbiome manipulations.
Collapse
Affiliation(s)
- Ravi U Sheth
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA; Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University Medical Center, New York, NY, USA
| | - Vitor Cabral
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA
| | - Sway P Chen
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA; Integrated Program in Cellular, Molecular and Biomedical Studies, Columbia University Medical Center, New York, NY, USA
| | - Harris H Wang
- Department of Systems Biology, Columbia University Medical Center, New York, NY, USA; Department of Pathology and Cell Biology, Columbia University Medical Center, New York, NY, USA.
| |
Collapse
|
47
|
Olive AJ, Sassetti CM. Metabolic crosstalk between host and pathogen: sensing, adapting and competing. Nat Rev Microbiol 2016; 14:221-34. [PMID: 26949049 DOI: 10.1038/nrmicro.2016.12] [Citation(s) in RCA: 151] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Our understanding of bacterial pathogenesis is dominated by the cell biology of the host-pathogen interaction. However, the majority of metabolites that are used in prokaryotic and eukaryotic physiology and signalling are chemically similar or identical. Therefore, the metabolic crosstalk between pathogens and host cells may be as important as the interactions between bacterial effector proteins and their host targets. In this Review we focus on host-pathogen interactions at the metabolic level: chemical signalling events that enable pathogens to sense anatomical location and the local physiology of the host; microbial metabolic pathways that are dedicated to circumvent host immune mechanisms; and a few metabolites as central points of competition between the host and bacterial pathogens.
Collapse
Affiliation(s)
- Andrew J Olive
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| | - Christopher M Sassetti
- Department of Microbiology and Physiological Systems, University of Massachusetts Medical School, Worcester, Massachusetts 01655, USA
| |
Collapse
|
48
|
Yao H, Vancoillie J, D’Hondt M, Wynendaele E, Bracke N, Spiegeleer BD. An analytical quality by design (aQbD) approach for a l -asparaginase activity method. J Pharm Biomed Anal 2016; 117:232-9. [DOI: 10.1016/j.jpba.2015.08.042] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 08/29/2015] [Accepted: 08/31/2015] [Indexed: 11/24/2022]
|
49
|
Faria J, Loureiro I, Santarém N, Macedo-Ribeiro S, Tavares J, Cordeiro-da-Silva A. Leishmania infantum Asparagine Synthetase A Is Dispensable for Parasites Survival and Infectivity. PLoS Negl Trop Dis 2016; 10:e0004365. [PMID: 26771178 PMCID: PMC4714757 DOI: 10.1371/journal.pntd.0004365] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 12/15/2015] [Indexed: 11/19/2022] Open
Abstract
A growing interest in asparagine (Asn) metabolism has currently been observed in cancer and infection fields. Asparagine synthetase (AS) is responsible for the conversion of aspartate into Asn in an ATP-dependent manner, using ammonia or glutamine as a nitrogen source. There are two structurally distinct AS: the strictly ammonia dependent, type A, and the type B, which preferably uses glutamine. Absent in humans and present in trypanosomatids, AS-A was worthy of exploring as a potential drug target candidate. Appealingly, it was reported that AS-A was essential in Leishmania donovani, making it a promising drug target. In the work herein we demonstrate that Leishmania infantum AS-A, similarly to Trypanosoma spp. and L. donovani, is able to use both ammonia and glutamine as nitrogen donors. Moreover, we have successfully generated LiASA null mutants by targeted gene replacement in L. infantum, and these parasites do not display any significant growth or infectivity defect. Indeed, a severe impairment of in vitro growth was only observed when null mutants were cultured in asparagine limiting conditions. Altogether our results demonstrate that despite being important under asparagine limitation, LiAS-A is not essential for parasite survival, growth or infectivity in normal in vitro and in vivo conditions. Therefore we exclude AS-A as a suitable drug target against L. infantum parasites.
Collapse
Affiliation(s)
- Joana Faria
- Parasite Disease Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Inês Loureiro
- Parasite Disease Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Nuno Santarém
- Parasite Disease Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Sandra Macedo-Ribeiro
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Protein Crystallography Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal
| | - Joana Tavares
- Parasite Disease Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
| | - Anabela Cordeiro-da-Silva
- Parasite Disease Group, Instituto de Biologia Molecular e Celular da Universidade do Porto, Porto, Portugal
- Instituto de Investigação e Inovação em Saúde, Universidade do Porto, Porto, Portugal
- Departamento de Ciências Biológicas, Faculdade de Farmácia, Universidade do Porto, Porto, Portugal
| |
Collapse
|
50
|
Wolcott RD, Hanson JD, Rees EJ, Koenig LD, Phillips CD, Wolcott RA, Cox SB, White JS. Analysis of the chronic wound microbiota of 2,963 patients by 16S rDNA pyrosequencing. Wound Repair Regen 2015; 24:163-74. [DOI: 10.1111/wrr.12370] [Citation(s) in RCA: 209] [Impact Index Per Article: 20.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 10/10/2015] [Indexed: 12/17/2022]
Affiliation(s)
| | | | - Eric J. Rees
- Research and Testing LaboratoryLubbock Texas and
| | | | | | - Richard A. Wolcott
- Research and Testing LaboratoryLubbock Texas and
- PathoGenius LaboratoryLubbock Texas
| | | | | |
Collapse
|