1
|
Kaminska A, Arzounian D, Delattre V, Laschet J, Magny JF, Hovhannisyan S, Mokhtari M, Manresa A, Boissel A, Ouss L, Hertz-Pannier L, Chiron C, Wendling F, Denoyer Y, Kuchenbuch M, Dubois J, Khazipov R. Auditory evoked delta brushes involve stimulus-specific cortical networks in preterm infants. iScience 2025; 28:112313. [PMID: 40343271 PMCID: PMC12059686 DOI: 10.1016/j.isci.2025.112313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 10/16/2023] [Accepted: 03/25/2025] [Indexed: 05/11/2025] Open
Abstract
During the third trimester of gestation in humans, the auditory cortex displays spontaneous and auditory-evoked EEG patterns of intermittent local oscillatory activity nested in delta waves - delta brushes (DBs). To test whether the spatiotemporal dynamics of evoked DBs depends on stimulus type, we studied auditory evoked responses (AERs) to voice and "click" using 32-electrode EEG in 30 healthy neonates aged 30 to 38 post-menstrual weeks. Both stimuli elicited two peaks at approximately 250 ms and 600 ms, the second corresponding to the first principal components of the AER and the evoked DB. The DB showed stimulus-specific topography, temporal posterior and mid-temporal for "click", and mid-temporal and pre-central inferior for voice, and contained theta to gamma oscillations more widespread for the "click"response. Gamma oscillations increased with age. AERs predominated on the right but shifted toward the left with age for voice response. Auditory evoked DBs may therefore underlie specific auditory processing during fetal development.
Collapse
Affiliation(s)
- Anna Kaminska
- Inserm, UMR 1141 NeuroDiderot, Paris, France
- CEA, NeuroSpin, UNIACT, Gif-sur-Yvette, France
- Université Paris Cité, Paris, France
- AP-HP, Necker-Enfants Malades Hospital, Department of Clinical Neurophysiology, Paris, France
| | - Dorothée Arzounian
- Inserm, UMR 1141 NeuroDiderot, Paris, France
- CEA, NeuroSpin, UNIACT, Gif-sur-Yvette, France
- Université Paris Cité, Paris, France
| | - Victor Delattre
- Inserm, UMR 1141 NeuroDiderot, Paris, France
- CEA, NeuroSpin, UNIACT, Gif-sur-Yvette, France
- Université Paris Cité, Paris, France
| | - Jacques Laschet
- Inserm, UMR 1141 NeuroDiderot, Paris, France
- CEA, NeuroSpin, UNIACT, Gif-sur-Yvette, France
- Université Paris Cité, Paris, France
| | | | | | - Mostafa Mokhtari
- Bicêtre Hospital, Neonatal Intensive Care Unit, Le Kremlin-Bicêtre, France
- AP-HP, Espace Ethique-Ile de France, CHU Saint-Louis, Paris X, France
| | | | - Anne Boissel
- Laboratory CRFDP, University of Rouen, Normandy, France
| | - Lisa Ouss
- AP-HP, Necker-Enfants Malades Hospital, Child and Adolescent Psychiatry Unit, Paris, France
| | - Lucie Hertz-Pannier
- Inserm, UMR 1141 NeuroDiderot, Paris, France
- CEA, NeuroSpin, UNIACT, Gif-sur-Yvette, France
- Université Paris Cité, Paris, France
| | - Catherine Chiron
- Inserm, UMR 1141 NeuroDiderot, Paris, France
- CEA, NeuroSpin, UNIACT, Gif-sur-Yvette, France
- Université Paris Cité, Paris, France
| | - Fabrice Wendling
- INSERM, LTSI – U1099, University of Rennes, 35000 Rennes, France
| | - Yves Denoyer
- INSERM, LTSI – U1099, University of Rennes, 35000 Rennes, France
- GHBS, Lorient, France
| | - Mathieu Kuchenbuch
- Department of Pediatrics, Reference Center for Rare Epilepsies, University Hospital of Nancy, Member of ERN EpiCare, 54000 Nancy, France
- UMR 7039, CRAN, CNRS, University of Lorraine, 54000 Nancy, France
| | - Jessica Dubois
- Inserm, UMR 1141 NeuroDiderot, Paris, France
- CEA, NeuroSpin, UNIACT, Gif-sur-Yvette, France
- Université Paris Cité, Paris, France
| | | |
Collapse
|
2
|
Wang H, He H. Optical Precise Ablation of Targeted Individual Neurons In Vivo. ACS Chem Neurosci 2025; 16:374-383. [PMID: 39800970 DOI: 10.1021/acschemneuro.4c00538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025] Open
Abstract
Targeted cell ablation is a powerful strategy for investigating the function of individual neurons within neuronal networks. Multiphoton ablation technology by a tightly focused femtosecond laser, with its significant advantages of noninvasiveness, high efficiency, and single-cell resolution, has been widely used in the study of neuroscience. However, the firing activity of the ablated neuron and its impact on the surrounding neurons and entire neuronal ensembles are still unclear. In this study, we describe the depolarization process of targeted neuron ablation by a femtosecond laser based on a standard two-photon microscope in vitro and in vivo. The photoporation damages the cell membrane, depolarizes the membrane potential, and thus disables the neuron's ability to fire action potentials. The dysfunctional neuron after laser ablation affects both the responses of surrounding neighbors and the functions of ensemble neurons in vivo. Although abnormal Ca2+ responses in spatially surrounding neurons are observed, the damage effect is confined to the focal volume. The function of the neuronal ensembles that associate with a specific visual stimulation is not influenced by the ablation of an individual member of the ensemble, indicating the redundancy of the ensemble organization. This study thus provides an insight into the targeted neuron ablation as well as the role of an individual neuron in an ensemble.
Collapse
Affiliation(s)
- Haipeng Wang
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| | - Hao He
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200030, P. R. China
| |
Collapse
|
3
|
Kim SH, Lee J, Jang M, Roh SE, Kim S, Lee JH, Seo J, Baek J, Hwang JY, Baek IS, Lee YS, Shigetomi E, Lee CJ, Koizumi S, Kim SK, Kim SJ. Cerebellar Bergmann glia integrate noxious information and modulate nocifensive behaviors. Nat Neurosci 2025; 28:336-345. [PMID: 39748107 DOI: 10.1038/s41593-024-01807-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Accepted: 09/27/2024] [Indexed: 01/04/2025]
Abstract
The cerebellum is activated by noxious stimuli and pathological pain but its role in noxious information processing remains unknown. Here, we show that in mice, cutaneous noxious electrical stimuli induced noradrenaline (NA) release from locus coeruleus (LC) terminals in the cerebellar cortex. Bergmann glia (BG) accumulated these LC-NA signals by increasing intracellular calcium in an integrative manner ('flares'). BG flares were also elicited in response to an intraplantar capsaicin injection. Chemogenetic inactivation of LC terminals or BG in the cerebellar cortex or BG-specific knockdown of α1-adrenergic receptors suppressed BG flares, reduced nocifensive licking and had analgesic effects in nerve injury-induced chronic neuropathic pain. Moreover, chemogenetic activation of BG or an intraplantar capsaicin injection reduced Purkinje cell firing, which may disinhibit the output activity of the deep cerebellar nuclei. These results suggest a role for BG in computing noxious information from the LC and in modulating pain-related behaviors by regulating cerebellar output.
Collapse
Affiliation(s)
- Seung Ha Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Jaegeon Lee
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Mirae Jang
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Seung-Eon Roh
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, Korea
- Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Soobin Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Ji Hwan Lee
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, Korea
| | - Jewoo Seo
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Jinhee Baek
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - Jae Yoon Hwang
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
| | - In Seon Baek
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Korea
| | - Yong-Seok Lee
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea
- Memory Network Medical Research Center, Neuroscience Research Institute, Wide River Institute of Immunology, Seoul National University College of Medicine, Seoul, Korea
| | - Eiji Shigetomi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
- Yamanashi GLIA Center, University of Yamanashi, Yamanashi, Japan
| | - C Justin Lee
- Center for Cognition and Sociality, Institute for Basic Science, Daejeon, Korea
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi, Japan
- Yamanashi GLIA Center, University of Yamanashi, Yamanashi, Japan
| | - Sun Kwang Kim
- Department of Physiology, College of Korean Medicine, Kyung Hee University, Seoul, Korea.
- Department of Science in Korean Medicine, Graduate School, Kyung Hee University, Seoul, Korea.
| | - Sang Jeong Kim
- Department of Physiology, Seoul National University College of Medicine, Seoul, Korea.
- Department of Biomedical Sciences, Seoul National University College of Medicine, Seoul, Korea.
- Memory Network Medical Research Center, Neuroscience Research Institute, Wide River Institute of Immunology, Seoul National University College of Medicine, Seoul, Korea.
| |
Collapse
|
4
|
Kang X, Ma L, Wen J, Gong W, Liu X, Hu Y, Feng Z, Jing Q, Cai Y, Li S, Cai X, Yuan K, Feng Y. Modeling of auditory neuropathy spectrum disorders associated with the TEME43 variant reveals impaired gap junction function of iPSC-derived glia-like support cells. Front Mol Neurosci 2025; 17:1457874. [PMID: 39834515 PMCID: PMC11743952 DOI: 10.3389/fnmol.2024.1457874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Accepted: 11/22/2024] [Indexed: 01/22/2025] Open
Abstract
Auditory neuropathy spectrum disorder (ANSD) is an auditory dysfunction disorder characterized by impaired speech comprehension. Its etiology is complex and can be broadly categorized into genetic and non-genetic factors. TMEM43 mutation is identified as a causative factor in ANSD. While some studies have been conducted using animal models, its pathogenic mechanisms in humans remain unclear. TMEM43 is predominantly expressed in cochlear glia-like support cells (GLSs) and plays a vital role in gap junction intercellular communication. In this work, we utilized induced pluripotent stem cells from an ANSD patient carrying the TMEM43 gene mutation c.1114C>T (p.Arg372Ter) and directed their differentiation toward GLSs to investigate the effect of TMEM43 mutation on the function of gap junctions in cochlear GLSs in vitro. Reduced expression of genes associated with GLSs characteristics and reduced gap junction intercellular communication in TMEM43 mutant cell lines were observed compared to controls. Transcriptome analysis revealed that differentially expressed genes were significantly enriched in pathways related to cell proliferation, differentiation, extracellular space and adhesion. Furthermore, significant alterations were noted in the PI3K-Akt signaling pathway and the calcium signaling pathway, which could potentially influence gap junction function and contribute to hearing loss. In summary, our study based on patient-derived iPSCs sheds new light on the molecular mechanisms by which TMEM43 mutations may lead to ANSD. These mutations could result in developmental defects in GLSs and a diminished capacity for gap junction function, which may be implicated in the auditory deficits observed in ANSD patients. Our study explored the pathological effects of the TMEM43 mutation and its causal relationship with ANSD using a patient-derived iPSC-based GLSs model, providing a foundation for future mechanistic studies and potential drug screening efforts.
Collapse
Affiliation(s)
- Xiaoming Kang
- Department of Otorhinolaryngology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Institute of Otorhinolaryngology, Head and Neck Surgery, University of South China, Changsha, China
| | - Lu Ma
- Institute of Otorhinolaryngology, Head and Neck Surgery, University of South China, Changsha, China
- MOE Key Lab of Rare Pediatric Diseases & Institute for Future Sciences, University of South China, Changsha, China
- Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, China
| | - Jie Wen
- Department of Otorhinolaryngology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Institute of Otorhinolaryngology, Head and Neck Surgery, University of South China, Changsha, China
| | - Wei Gong
- Department of Otorhinolaryngology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Institute of Otorhinolaryngology, Head and Neck Surgery, University of South China, Changsha, China
| | - Xianlin Liu
- Department of Otorhinolaryngology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Institute of Otorhinolaryngology, Head and Neck Surgery, University of South China, Changsha, China
| | - Yihan Hu
- Department of Otorhinolaryngology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Institute of Otorhinolaryngology, Head and Neck Surgery, University of South China, Changsha, China
| | - Zhili Feng
- Department of Otorhinolaryngology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Institute of Otorhinolaryngology, Head and Neck Surgery, University of South China, Changsha, China
| | - Qiancheng Jing
- Department of Otorhinolaryngology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Institute of Otorhinolaryngology, Head and Neck Surgery, University of South China, Changsha, China
| | - Yuexiang Cai
- Department of Otorhinolaryngology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Institute of Otorhinolaryngology, Head and Neck Surgery, University of South China, Changsha, China
| | - Sijun Li
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, China
| | - Xinzhang Cai
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, China
| | - Kai Yuan
- Hunan Key Laboratory of Molecular Precision Medicine, Department of Oncology, Xiangya Hospital & Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Yong Feng
- Department of Otorhinolaryngology, The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
- Institute of Otorhinolaryngology, Head and Neck Surgery, University of South China, Changsha, China
- MOE Key Lab of Rare Pediatric Diseases & Institute for Future Sciences, University of South China, Changsha, China
- Institute of Cytology and Genetics, Hengyang Medical School, University of South China, Hengyang, China
- Department of Otorhinolaryngology, Xiangya Hospital Central South University, Changsha, China
| |
Collapse
|
5
|
De Faveri F, Ceriani F, Marcotti W. In vivo spontaneous Ca 2+ activity in the pre-hearing mammalian cochlea. Nat Commun 2025; 16:29. [PMID: 39747044 PMCID: PMC11695946 DOI: 10.1038/s41467-024-55519-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 12/16/2024] [Indexed: 01/04/2025] Open
Abstract
The refinement of neural circuits towards mature function is driven during development by patterned spontaneous calcium-dependent electrical activity. In the auditory system, this sensory-independent activity arises in the pre-hearing cochlea and regulates the survival and refinement of the auditory pathway. However, the origin and interplay of calcium signals during cochlear development is unknown in vivo. Here we show how calcium dynamics in the cochlear neuroepithelium of live pre-hearing mice shape the activity of the inner hair cells (IHCs) and their afferent synapses. Both IHCs and supporting cells (SCs) generate spontaneous calcium-dependent activity. Calcium waves from SCs synchronise the activity of nearby IHCs, which then spreads longitudinally recruiting several additional IHCs via a calcium wave-independent mechanism. This synchronised IHC activity in vivo increases the probability of afferent terminal recruitment. Moreover, the modiolar-to-pillar segregation in sound sensitivity of mature auditory nerve fibres appears to be primed at pre-hearing ages.
Collapse
Affiliation(s)
| | - Federico Ceriani
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK.
| | - Walter Marcotti
- School of Biosciences, University of Sheffield, Sheffield, S10 2TN, UK.
- Neuroscience Institute, University of Sheffield, Sheffield, S10 2TN, UK.
| |
Collapse
|
6
|
Bottom RT, Xu Y, Siebald C, Jung J, Müller U. Defects in hair cells disrupt the development of auditory peripheral circuitry. Nat Commun 2024; 15:10899. [PMID: 39738090 PMCID: PMC11686150 DOI: 10.1038/s41467-024-55275-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Accepted: 12/05/2024] [Indexed: 01/01/2025] Open
Abstract
Deafness is the most common form of sensory impairment in humans and frequently caused by defects in hair cells of the inner ear. Here we demonstrate that in male mice which model recessive non-syndromic deafness (DFNB6), inactivation of Tmie in hair cells disrupts gene expression in the neurons that innervate them. This includes genes regulating axonal pathfinding and synaptogenesis, two processes that are disrupted in the inner ear of the mutant mice. Similar defects are observed in mouse models for deafness caused by mutations in other genes with primary functions in hair cells. Gene therapy targeting hair cells restores hearing and inner ear circuitry in DFNB6 model mice. We conclude that hair cell function is crucial for the establishment of peripheral auditory circuitry. Treatment modalities for deafness thus need to consider restoration of the function of both hair cells and neurons, even when the primary defect occurs in hair cells.
Collapse
Affiliation(s)
- Riley T Bottom
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Yijun Xu
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Caroline Siebald
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA
| | - Jinsei Jung
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, 03722, Republic of Korea
| | - Ulrich Müller
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD, 21205, USA.
| |
Collapse
|
7
|
Nguyen T, Bergles DE. Transient Receptor Potential (TRP) Channels in Cochlear Function: Looking Beyond Mechanotransduction. J Assoc Res Otolaryngol 2024; 25:409-412. [PMID: 38926267 PMCID: PMC11528078 DOI: 10.1007/s10162-024-00954-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/12/2024] [Indexed: 06/28/2024] Open
Abstract
Transient receptor potential (TRP) channels play key roles in sensory biology as transducers of various stimuli. Although these ion channels are expressed in the cochlea, their functions remain poorly understood. Recent studies by Vélez-Ortega and colleagues indicate that their expression by non-sensory supporting cells helps limit damage from acoustic trauma.
Collapse
Affiliation(s)
- Trinh Nguyen
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, USA
| | - Dwight E Bergles
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, USA.
- Department of Otolaryngology Head and Neck Surgery, Johns Hopkins University School of Medicine, Baltimore, USA.
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, USA.
| |
Collapse
|
8
|
Conrad LJ, Grandi FC, Carlton AJ, Jeng JY, de Tomasi L, Zarecki P, Marcotti W, Johnson SL, Mustapha M. The upregulation of K + and HCN channels in developing spiral ganglion neurons is mediated by cochlear inner hair cells. J Physiol 2024; 602:5329-5351. [PMID: 39324853 DOI: 10.1113/jp286134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 09/02/2024] [Indexed: 09/27/2024] Open
Abstract
Spiral ganglion neurons (SGNs) are primary sensory afferent neurons that relay acoustic information from the cochlear inner hair cells (IHCs) to the brainstem. The response properties of different SGNs diverge to represent a wide range of sound intensities in an action-potential code. This biophysical heterogeneity is established during pre-hearing stages of development, a time when IHCs fire spontaneous Ca2+ action potentials that drive glutamate release from their ribbon synapses onto the SGN terminals. The role of spontaneous IHC activity in the refinement of SGN characteristics is still largely unknown. Using pre-hearing otoferlin knockout mice (Otof-/-), in which Ca2+-dependent exocytosis in IHCs is abolished, we found that developing SGNs fail to upregulate low-voltage-activated K+-channels and hyperpolarisation-activated cyclic-nucleotide-gated channels. This delayed maturation resulted in hyperexcitable SGNs with immature firing characteristics. We have also shown that SGNs that synapse with the pillar side of the IHCs selectively express a resurgent K+ current, highlighting a novel biophysical marker for these neurons. RNA-sequencing showed that several K+ channels are downregulated in Otof-/- mice, further supporting the electrophysiological recordings. Our data demonstrate that spontaneous Ca2+-dependent activity in pre-hearing IHCs regulates some of the key biophysical and molecular features of the developing SGNs. KEY POINTS: Ca2+-dependent exocytosis in inner hair cells (IHCs) is otoferlin-dependent as early as postnatal day 1. A lack of otoferlin in IHCs affects potassium channel expression in SGNs. The absence of otoferlin is associated with SGN hyperexcitability. We propose that type I spiral ganglion neuron functional maturation depends on IHC exocytosis.
Collapse
Affiliation(s)
- Linus J Conrad
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Fiorella C Grandi
- INSERM, Institute de Myologie, Centre de Recherche en Myologie F-75013, Sorbonne Université, Paris, France
| | - Adam J Carlton
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Jing-Yi Jeng
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Lara de Tomasi
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Patryk Zarecki
- School of Biosciences, University of Sheffield, Sheffield, UK
| | - Walter Marcotti
- School of Biosciences, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Stuart L Johnson
- School of Biosciences, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| | - Mirna Mustapha
- School of Biosciences, University of Sheffield, Sheffield, UK
- Neuroscience Institute, University of Sheffield, Sheffield, UK
| |
Collapse
|
9
|
Kersbergen CJ, Bergles DE. Priming central sound processing circuits through induction of spontaneous activity in the cochlea before hearing onset. Trends Neurosci 2024; 47:522-537. [PMID: 38782701 PMCID: PMC11236524 DOI: 10.1016/j.tins.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 04/02/2024] [Accepted: 04/26/2024] [Indexed: 05/25/2024]
Abstract
Sensory systems experience a period of intrinsically generated neural activity before maturation is complete and sensory transduction occurs. Here we review evidence describing the mechanisms and functions of this 'spontaneous' activity in the auditory system. Both ex vivo and in vivo studies indicate that this correlated activity is initiated by non-sensory supporting cells within the developing cochlea, which induce depolarization and burst firing of groups of nearby hair cells in the sensory epithelium, activity that is conveyed to auditory neurons that will later process similar sound features. This stereotyped neural burst firing promotes cellular maturation, synaptic refinement, acoustic sensitivity, and establishment of sound-responsive domains in the brain. While sensitive to perturbation, the developing auditory system exhibits remarkable homeostatic mechanisms to preserve periodic burst firing in deaf mice. Preservation of this early spontaneous activity in the context of deafness may enhance the efficacy of later interventions to restore hearing.
Collapse
Affiliation(s)
- Calvin J Kersbergen
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - Dwight E Bergles
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA; Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, USA; Department of Otolaryngology - Head and Neck Surgery, Johns Hopkins University, Baltimore, MD, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
10
|
Li X, Wang Y, Zhang L, Yao S, Liu Q, Jin H, Tuo B. The role of anoctamin 1 in liver disease. J Cell Mol Med 2024; 28:e18320. [PMID: 38685684 PMCID: PMC11058335 DOI: 10.1111/jcmm.18320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 03/21/2024] [Accepted: 04/03/2024] [Indexed: 05/02/2024] Open
Abstract
Liver diseases include all types of viral hepatitis, alcoholic liver disease (ALD), nonalcoholic fatty liver disease (NAFLD), cirrhosis, liver failure (LF) and hepatocellular carcinoma (HCC). Liver disease is now one of the leading causes of disease and death worldwide, which compels us to better understand the mechanisms involved in the development of liver diseases. Anoctamin 1 (ANO1), a calcium-activated chloride channel (CaCC), plays an important role in epithelial cell secretion, proliferation and migration. ANO1 plays a key role in transcriptional regulation as well as in many signalling pathways. It is involved in the genesis, development, progression and/or metastasis of several tumours and other diseases including liver diseases. This paper reviews the role and molecular mechanisms of ANO1 in the development of various liver diseases, aiming to provide a reference for further research on the role of ANO1 in liver diseases and to contribute to the improvement of therapeutic strategies for liver diseases by regulating ANO1.
Collapse
Affiliation(s)
- Xin Li
- Department of Gastroenterology, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Yongfeng Wang
- Department of Gastroenterology, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Li Zhang
- Department of Gastroenterology, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Shun Yao
- Department of Gastroenterology, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Qian Liu
- Department of Gastroenterology, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
| | - Hai Jin
- Department of Gastroenterology, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative Innovation Center of Tissue Damage Repair and Regenerative Medicine of Zunyi Medical UniversityZunyiChina
| | - Biguang Tuo
- Department of Gastroenterology, Digestive Disease HospitalAffiliated Hospital of Zunyi Medical UniversityZunyiChina
- The Collaborative Innovation Center of Tissue Damage Repair and Regenerative Medicine of Zunyi Medical UniversityZunyiChina
| |
Collapse
|
11
|
Kang KW, Sharma K, Park SH, Lee JK, Lee JC, Yi E. NKCC1 in Neonatal Cochlear Support Cells Reloads Ions Necessary for Cochlear Spontaneous Activity. Exp Neurobiol 2024; 33:68-76. [PMID: 38724477 PMCID: PMC11089404 DOI: 10.5607/en24003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Revised: 03/14/2024] [Accepted: 03/28/2024] [Indexed: 05/15/2024] Open
Abstract
In the auditory system, the spontaneous activity of cochlear inner hair cells (IHCs) is initiated by the release of ATP from inner supporting cells (ISCs). This ATP release sets off a cascade, activating purinergic autoreceptors, opening of Ca2+-activated Cl- channel TMEM16A, Cl- efflux and osmotic cell shrinkage. Then, the shrunken ISCs efficiently regain their original volume, suggesting the existence of mechanisms for refilling Cland K+, priming them for subsequent activity. This study explores the potential involvement of NKCCs (Na+-K+-Cl- cotransporters) and KCCs (K+-Cl- cotransporters) in ISC spontaneous activity, considering their capability to transport both Cl- and K+ ions across the cell membrane. Employing a combination of immunohistochemistry, pharmacological interventions, and shRNA experiment, we unveiled the pivotal role of NKCC1 in cochlear spontaneous activity. Immunohistochemistry revealed robust NKCC1 expression in ISCs, persisting until the 2nd postnatal week. Intriguingly, we observed a developmental shift in NKCC1 expression from ISCs to synaptophysin-positive efferent terminals at postnatal day 18, hinting at its potential involvement in modulating synaptic transmission during the post-hearing period. Experiments using bumetanide, a well-known NKCC inhibitor, supported the functional significance of NKCC1 in ISC spontaneous activity. Bumetanide significantly reduced the frequency of spontaneous extracellular potentials (sEP) and spontaneous optical changes (sOCs) in ISCs. NKCC1-shRNA experiments conducted in cultured cochlear tissues further supported these findings, demonstrating a substantial decrease in event frequency and area. Taken together, we revealed the role of NKCC1 in shaping the ISC spontaneous activity that govern auditory pathway development.
Collapse
Affiliation(s)
- Kwon-Woo Kang
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Korea
| | - Kushal Sharma
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Korea
| | - Shi-Hyun Park
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Korea
| | - Jae Kwang Lee
- Division of Functional Food Research, Korea Food Research Institute, Wanju 55365, Korea
| | - Justin C. Lee
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon 34141, Korea
| | - Eunyoung Yi
- College of Pharmacy and Natural Medicine Research Institute, Mokpo National University, Muan 58554, Korea
| |
Collapse
|
12
|
Moysan L, Fazekas F, Fekete A, Köles L, Zelles T, Berekméri E. Ca 2+ Dynamics of Gap Junction Coupled and Uncoupled Deiters' Cells in the Organ of Corti in Hearing BALB/c Mice. Int J Mol Sci 2023; 24:11095. [PMID: 37446272 DOI: 10.3390/ijms241311095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 06/19/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
ATP, as a paracrine signalling molecule, induces intracellular Ca2+ elevation via the activation of purinergic receptors on the surface of glia-like cochlear supporting cells. These cells, including the Deiters' cells (DCs), are also coupled by gap junctions that allow the propagation of intercellular Ca2+ waves via diffusion of Ca2+ mobilising second messenger IP3 between neighbouring cells. We have compared the ATP-evoked Ca2+ transients and the effect of two different gap junction (GJ) blockers (octanol and carbenoxolone, CBX) on the Ca2+ transients in DCs located in the apical and middle turns of the hemicochlea preparation of BALB/c mice (P14-19). Octanol had no effect on Ca2+ signalling, while CBX inhibited the ATP response, more prominently in the middle turn. Based on astrocyte models and using our experimental results, we successfully simulated the Ca2+ dynamics in DCs in different cochlear regions. The mathematical model reliably described the Ca2+ transients in the DCs and suggested that the tonotopical differences could originate from differences in purinoceptor and Ca2+ pump expressions and in IP3-Ca2+ release mechanisms. The cochlear turn-dependent effect of CBX might be the result of the differing connexin isoform composition of GJs along the tonotopic axis. The contribution of IP3-mediated Ca2+ signalling inhibition by CBX cannot be excluded.
Collapse
Affiliation(s)
- Louise Moysan
- Department of Zoology, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary
| | - Fruzsina Fazekas
- Department of Zoology, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary
| | - Adam Fekete
- Program in Neurosciences and Mental Health, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - László Köles
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary
| | - Tibor Zelles
- Department of Oral Biology, Semmelweis University, H-1089 Budapest, Hungary
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary
- Laboratory of Molecular Pharmacology, Institute of Experimental Medicine, H-1083 Budapest, Hungary
| | - Eszter Berekméri
- Department of Zoology, University of Veterinary Medicine Budapest, H-1078 Budapest, Hungary
- Department of Pharmacology and Pharmacotherapy, Semmelweis University, H-1089 Budapest, Hungary
| |
Collapse
|
13
|
Kersbergen CJ, Babola TA, Kanold PO, Bergles DE. Preservation of developmental spontaneous activity enables early auditory system maturation in deaf mice. PLoS Biol 2023; 21:e3002160. [PMID: 37368868 PMCID: PMC10298803 DOI: 10.1371/journal.pbio.3002160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 05/11/2023] [Indexed: 06/29/2023] Open
Abstract
Intrinsically generated neural activity propagates through the developing auditory system to promote maturation and refinement of sound processing circuits prior to hearing onset. This early patterned activity is induced by non-sensory supporting cells in the organ of Corti, which are highly interconnected through gap junctions containing connexin 26 (Gjb2). Although loss of function mutations in Gjb2 impair cochlear development and are the most common cause of congenital deafness, it is not known if these variants disrupt spontaneous activity and the developmental trajectory of sound processing circuits in the brain. Here, we show in a new mouse model of Gjb2-mediated congenital deafness that cochlear supporting cells adjacent to inner hair cells (IHCs) unexpectedly retain intercellular coupling and the capacity to generate spontaneous activity, exhibiting only modest deficits prior to hearing onset. Supporting cells lacking Gjb2 elicited coordinated activation of IHCs, leading to coincident bursts of activity in central auditory neurons that will later process similar frequencies of sound. Despite alterations in the structure of the sensory epithelium, hair cells within the cochlea of Gjb2-deficient mice were intact and central auditory neurons could be activated within appropriate tonotopic domains by loud sounds at hearing onset, indicating that early maturation and refinement of auditory circuits was preserved. Only after cessation of spontaneous activity following hearing onset did progressive hair cell degeneration and enhanced auditory neuron excitability manifest. This preservation of cochlear spontaneous neural activity in the absence of connexin 26 may increase the effectiveness of early therapeutic interventions to restore hearing.
Collapse
Affiliation(s)
- Calvin J. Kersbergen
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Travis A. Babola
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Patrick O. Kanold
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Dwight E. Bergles
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, Maryland, United States of America
- Department of Otolaryngology Head and Neck Surgery, Johns Hopkins University, Baltimore, Maryland, United States of America
- Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, Maryland, United States of America
| |
Collapse
|
14
|
Hong G, Fu X, Chen X, Zhang L, Han X, Ding S, Liu Z, Bi X, Li W, Chang M, Qiao R, Guo S, Tu H, Chai R. Dyslexia-Related Hearing Loss Occurs Mainly through the Abnormal Spontaneous Electrical Activity of Spiral Ganglion Neurons. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2205754. [PMID: 37068190 PMCID: PMC10238183 DOI: 10.1002/advs.202205754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/25/2023] [Indexed: 06/04/2023]
Abstract
Dyslexia is a reading and spelling disorder due to neurodevelopmental abnormalities and is occasionally found to be accompanied by hearing loss, but the reason for the associated deafness remains unclear. This study finds that knockout of the dyslexia susceptibility 1 candidate 1 gene (Dyx1c1-/- ) in mice, the best gene for studying dyslexia, causes severe hearing loss, and thus it is a good model for studying the mechanism of dyslexia-related hearing loss (DRHL). This work finds that the Dyx1c1 gene is highly expressed in the mouse cochlea and that the spontaneous electrical activity of inner hair cells and type I spiral ganglion neurons is altered in the cochleae of Dyx1c1-/- mice. In addition, primary ciliary dyskinesia-related phenotypes such as situs inversus and disrupted ciliary structure are seen in Dyx1c1-/- mice. In conclusion, this study gives new insights into the mechanism of DRHL in detail and suggests that Dyx1c1 may serve as a potential target for the clinical diagnosis of DRHL.
Collapse
Affiliation(s)
- Guodong Hong
- State Key Laboratory of BioelectronicsDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast University210096NanjingChina
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical Sciences250000JinanChina
| | - Xiaolong Fu
- State Key Laboratory of BioelectronicsDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast University210096NanjingChina
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical Sciences250000JinanChina
| | - Xin Chen
- State Key Laboratory of BioelectronicsDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast University210096NanjingChina
| | - Liyan Zhang
- State Key Laboratory of BioelectronicsDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast University210096NanjingChina
| | - Xuan Han
- State Key Laboratory of BioelectronicsDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast University210096NanjingChina
| | - Shuqin Ding
- State Key Laboratory of BioelectronicsDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast University210096NanjingChina
| | - Ziyi Liu
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical Sciences250000JinanChina
| | - Xiuli Bi
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical Sciences250000JinanChina
| | - Wen Li
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical Sciences250000JinanChina
| | - Miao Chang
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical Sciences250000JinanChina
| | - Ruifeng Qiao
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical Sciences250000JinanChina
| | - Siwei Guo
- School of Life ScienceShandong University266237QingdaoChina
| | - Hailong Tu
- Medical Science and Technology Innovation CenterShandong First Medical University & Shandong Academy of Medical Sciences250000JinanChina
| | - Renjie Chai
- State Key Laboratory of BioelectronicsDepartment of Otolaryngology Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologyAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast University210096NanjingChina
- Co‐Innovation Center of NeuroregenerationNantong University226001NantongChina
- Department of Otolaryngology Head and Neck SurgerySichuan Provincial People's HospitalUniversity of Electronic Science and Technology of China610072ChengduChina
- Institute for Stem Cell and RegenerationChinese Academy of Science100101BeijingChina
- Beijing Key Laboratory of Neural Regeneration and RepairCapital Medical University100069BeijingChina
| |
Collapse
|
15
|
Fujimoto S, Leiwe MN, Aihara S, Sakaguchi R, Muroyama Y, Kobayakawa R, Kobayakawa K, Saito T, Imai T. Activity-dependent local protection and lateral inhibition control synaptic competition in developing mitral cells in mice. Dev Cell 2023:S1534-5807(23)00237-X. [PMID: 37290446 DOI: 10.1016/j.devcel.2023.05.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Revised: 02/20/2023] [Accepted: 05/16/2023] [Indexed: 06/10/2023]
Abstract
In developing brains, activity-dependent remodeling facilitates the formation of precise neuronal connectivity. Synaptic competition is known to facilitate synapse elimination; however, it has remained unknown how different synapses compete with one another within a post-synaptic cell. Here, we investigate how a mitral cell in the mouse olfactory bulb prunes all but one primary dendrite during the developmental remodeling process. We find that spontaneous activity generated within the olfactory bulb is essential. We show that strong glutamatergic inputs to one dendrite trigger branch-specific changes in RhoA activity to facilitate the pruning of the remaining dendrites: NMDAR-dependent local signals suppress RhoA to protect it from pruning; however, the subsequent neuronal depolarization induces neuron-wide activation of RhoA to prune non-protected dendrites. NMDAR-RhoA signals are also essential for the synaptic competition in the mouse barrel cortex. Our results demonstrate a general principle whereby activity-dependent lateral inhibition across synapses establishes a discrete receptive field of a neuron.
Collapse
Affiliation(s)
- Satoshi Fujimoto
- Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Laboratory for Sensory Circuit Formation, Riken Center for Developmental Biology, Kobe 650-0047, Japan
| | - Marcus N Leiwe
- Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Laboratory for Sensory Circuit Formation, Riken Center for Developmental Biology, Kobe 650-0047, Japan
| | - Shuhei Aihara
- Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Laboratory for Sensory Circuit Formation, Riken Center for Developmental Biology, Kobe 650-0047, Japan; Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Richi Sakaguchi
- Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Laboratory for Sensory Circuit Formation, Riken Center for Developmental Biology, Kobe 650-0047, Japan; Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan
| | - Yuko Muroyama
- Department of Developmental Biology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Reiko Kobayakawa
- Institute of Biomedical Science, Kansai Medical University, Hirakata 573-1010, Japan
| | - Ko Kobayakawa
- Institute of Biomedical Science, Kansai Medical University, Hirakata 573-1010, Japan
| | - Tetsuichiro Saito
- Department of Developmental Biology, Graduate School of Medicine, Chiba University, Chiba 260-8670, Japan
| | - Takeshi Imai
- Graduate School of Medical Sciences, Kyushu University, Fukuoka 812-8582, Japan; Laboratory for Sensory Circuit Formation, Riken Center for Developmental Biology, Kobe 650-0047, Japan; Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan; PRESTO and CREST, Japan Science and Technology Agency (JST), Saitama 332-0012, Japan.
| |
Collapse
|
16
|
Ma Q, Zhang J, Qi W, Li Z, Jiang Y, Zhang M, He H, Su K, Shi H. Store-Operated Ca 2+ Channels Contribute to the Generation of Ca 2+ Waves in Interdental Cells in the Cochleae. ACS Chem Neurosci 2023; 14:1896-1904. [PMID: 37146126 DOI: 10.1021/acschemneuro.3c00161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2023] Open
Abstract
Cochlear calcium (Ca2+) waves are vital regulators of the cochlear development and establishment of hearing function. Inner supporting cells are believed to be the main region generating Ca2+ waves that work as internal stimuli to coordinate the development of hair cells and the mapping of neurons in the cochlea. However, Ca2+ waves in interdental cells (IDCs) that connect to inner supporting cells and spiral ganglion neurons are rarely observed and poorly understood. Herein, we reported the mechanism of IDC Ca2+ wave formation and propagation by developing a single-cell Ca2+ excitation technology, which can easily be accomplished using a two-photon microscope for simultaneous microscopy and femtosecond laser Ca2+ excitation in any target individual cell in fresh cochlear tissues. We demonstrated that the store-operated Ca2+ channels in IDCs are responsible for Ca2+ wave formation in these cells. The specific architecture of the IDCs determines the propagation of Ca2+ waves. Our results provide the mechanism of Ca2+ formation in IDCs and a controllable, precise, and noninvasive technology to excite local Ca2+ waves in the cochlea, with good potential for research on cochlear Ca2+ and hearing functions.
Collapse
Affiliation(s)
- Qiang Ma
- Department of Otorhinolaryngology Head & Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, China
| | - Jianning Zhang
- Yueyang Hospital of Integrative Chinese & Western Medicine Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai 200437, China
| | - Weidong Qi
- Department of Otolaryngology Head and Neck Surgery, Huashan Hospital Fudan University, Shanghai 200040, China
| | - Zhuangzhuang Li
- Department of Otorhinolaryngology Head & Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, China
| | - Yumeng Jiang
- Department of Otorhinolaryngology Head & Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, China
| | - Miao Zhang
- Department of Otorhinolaryngology Head & Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, China
| | - Hao He
- Department of Otorhinolaryngology Head & Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, China
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai 200031, China
| | - Kaiming Su
- Department of Otorhinolaryngology Head & Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai 200233, China
| | - Haibo Shi
- Department of Otorhinolaryngology Head & Neck Surgery, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, China
- Shanghai Key Laboratory of Sleep Disordered Breathing, Shanghai 200233, China
| |
Collapse
|
17
|
Carlton AJ, Jeng J, Grandi FC, De Faveri F, Ceriani F, De Tomasi L, Underhill A, Johnson SL, Legan KP, Kros CJ, Richardson GP, Mustapha M, Marcotti W. A critical period of prehearing spontaneous Ca 2+ spiking is required for hair-bundle maintenance in inner hair cells. EMBO J 2023; 42:e112118. [PMID: 36594367 PMCID: PMC9929643 DOI: 10.15252/embj.2022112118] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 11/22/2022] [Accepted: 11/28/2022] [Indexed: 01/04/2023] Open
Abstract
Sensory-independent Ca2+ spiking regulates the development of mammalian sensory systems. In the immature cochlea, inner hair cells (IHCs) fire spontaneous Ca2+ action potentials (APs) that are generated either intrinsically or by intercellular Ca2+ waves in the nonsensory cells. The extent to which either or both of these Ca2+ signalling mechansims are required for IHC maturation is unknown. We find that intrinsic Ca2+ APs in IHCs, but not those elicited by Ca2+ waves, regulate the maturation and maintenance of the stereociliary hair bundles. Using a mouse model in which the potassium channel Kir2.1 is reversibly overexpressed in IHCs (Kir2.1-OE), we find that IHC membrane hyperpolarization prevents IHCs from generating intrinsic Ca2+ APs but not APs induced by Ca2+ waves. Absence of intrinsic Ca2+ APs leads to the loss of mechanoelectrical transduction in IHCs prior to hearing onset due to progressive loss or fusion of stereocilia. RNA-sequencing data show that pathways involved in morphogenesis, actin filament-based processes, and Rho-GTPase signaling are upregulated in Kir2.1-OE mice. By manipulating in vivo expression of Kir2.1 channels, we identify a "critical time period" during which intrinsic Ca2+ APs in IHCs regulate hair-bundle function.
Collapse
Affiliation(s)
| | - Jing‐Yi Jeng
- School of BiosciencesUniversity of SheffieldSheffieldUK
| | | | | | | | | | | | - Stuart L Johnson
- School of BiosciencesUniversity of SheffieldSheffieldUK
- Neuroscience InstituteUniversity of SheffieldSheffieldUK
| | - Kevin P Legan
- School of Life SciencesUniversity of Sussex, FalmerBrightonUK
| | - Corné J Kros
- School of Life SciencesUniversity of Sussex, FalmerBrightonUK
| | | | - Mirna Mustapha
- School of BiosciencesUniversity of SheffieldSheffieldUK
- Neuroscience InstituteUniversity of SheffieldSheffieldUK
| | - Walter Marcotti
- School of BiosciencesUniversity of SheffieldSheffieldUK
- Neuroscience InstituteUniversity of SheffieldSheffieldUK
| |
Collapse
|
18
|
Mukherjee D, Kanold PO. Changing subplate circuits: Early activity dependent circuit plasticity. Front Cell Neurosci 2023; 16:1067365. [PMID: 36713777 PMCID: PMC9874351 DOI: 10.3389/fncel.2022.1067365] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 12/16/2022] [Indexed: 01/12/2023] Open
Abstract
Early neural activity in the developing sensory system comprises spontaneous bursts of patterned activity, which is fundamental for sculpting and refinement of immature cortical connections. The crude early connections that are initially refined by spontaneous activity, are further elaborated by sensory-driven activity from the periphery such that orderly and mature connections are established for the proper functioning of the cortices. Subplate neurons (SPNs) are one of the first-born mature neurons that are transiently present during early development, the period of heightened activity-dependent plasticity. SPNs are well integrated within the developing sensory cortices. Their structural and functional properties such as relative mature intrinsic membrane properties, heightened connectivity via chemical and electrical synapses, robust activation by neuromodulatory inputs-place them in an ideal position to serve as crucial elements in monitoring and regulating spontaneous endogenous network activity. Moreover, SPNs are the earliest substrates to receive early sensory-driven activity from the periphery and are involved in its modulation, amplification, and transmission before the maturation of the direct adult-like thalamocortical connectivity. Consequently, SPNs are vulnerable to sensory manipulations in the periphery. A broad range of early sensory deprivations alters SPN circuit organization and functions that might be associated with long term neurodevelopmental and psychiatric disorders. Here we provide a comprehensive overview of SPN function in activity-dependent development during early life and integrate recent findings on the impact of early sensory deprivation on SPNs that could eventually lead to neurodevelopmental disorders.
Collapse
Affiliation(s)
- Didhiti Mukherjee
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States
| | - Patrick O. Kanold
- Department of Biomedical Engineering, Johns Hopkins University, Baltimore, MD, United States,Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, United States,*Correspondence: Patrick O. Kanold ✉
| |
Collapse
|
19
|
Kersbergen CJ, Babola TA, Rock J, Bergles DE. Developmental spontaneous activity promotes formation of sensory domains, frequency tuning and proper gain in central auditory circuits. Cell Rep 2022; 41:111649. [PMID: 36384119 PMCID: PMC9730452 DOI: 10.1016/j.celrep.2022.111649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 08/24/2022] [Accepted: 10/20/2022] [Indexed: 11/17/2022] Open
Abstract
Neurons that process sensory information exhibit bursts of electrical activity during development, providing early training to circuits that will later encode similar features of the external world. In the mammalian auditory system, this intrinsically generated activity emerges from the cochlea prior to hearing onset, but its role in maturation of auditory circuitry remains poorly understood. We show that selective suppression of cochlear supporting cell spontaneous activity disrupts patterned burst firing of central auditory neurons without affecting cell survival or acoustic thresholds. However, neurons in the inferior colliculus of these mice exhibit enhanced acoustic sensitivity and broader frequency tuning, resulting in wider isofrequency laminae. Despite this enhanced neural responsiveness, total tone-responsive regions in the auditory cortex are substantially smaller. Thus, disruption of pre-hearing cochlear activity causes profound changes in neural encoding of sound, with important implications for restoration of hearing in individuals who experience reduced activity during this critical developmental period.
Collapse
Affiliation(s)
- Calvin J Kersbergen
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | - Travis A Babola
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA
| | | | - Dwight E Bergles
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University, Baltimore, MD, USA; Department of Otolaryngology-Head and Neck Surgery, Johns Hopkins University, Baltimore, MD, USA; Kavli Neuroscience Discovery Institute, Johns Hopkins University, Baltimore, MD, USA.
| |
Collapse
|
20
|
Chen P, Wu W, Zhang J, Chen J, Li Y, Sun L, Hou S, Yang J. Pathological mechanisms of connexin26-related hearing loss: Potassium recycling, ATP-calcium signaling, or energy supply? Front Mol Neurosci 2022; 15:976388. [PMID: 36187349 PMCID: PMC9520402 DOI: 10.3389/fnmol.2022.976388] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/11/2022] [Indexed: 11/17/2022] Open
Abstract
Hereditary deafness is one of the most common human birth defects. GJB2 gene mutation is the most genetic etiology. Gap junction protein 26 (connexin26, Cx26) encoded by the GJB2 gene, which is responsible for intercellular substance transfer and signal communication, plays a critical role in hearing acquisition and maintenance. The auditory character of different Connexin26 transgenic mice models can be classified into two types: profound congenital deafness and late-onset progressive hearing loss. Recent studies demonstrated that there are pathological changes including endocochlear potential reduction, active cochlear amplification impairment, cochlear developmental disorders, and so on, in connexin26 deficiency mice. Here, this review summarizes three main hypotheses to explain pathological mechanisms of connexin26-related hearing loss: potassium recycling disruption, adenosine-triphosphate-calcium signaling propagation disruption, and energy supply dysfunction. Elucidating pathological mechanisms underlying connexin26-related hearing loss can help develop new protective and therapeutic strategies for this common deafness. It is worthy of further study on the detailed cellular and molecular upstream mechanisms to modify connexin (channel) function.
Collapse
Affiliation(s)
- Penghui Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Wenjin Wu
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Jifang Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Junmin Chen
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Yue Li
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Lianhua Sun
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
| | - Shule Hou
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
- *Correspondence: Shule Hou,
| | - Jun Yang
- Department of Otorhinolaryngology-Head and Neck Surgery, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Ear Institute, Shanghai Jiaotong University School of Medicine, Shanghai, China
- Shanghai Key Laboratory of Translational Medicine on Ear and Nose Diseases, Shanghai, China
- Jun Yang,
| |
Collapse
|
21
|
Kishimoto-Urata M, Urata S, Fujimoto C, Yamasoba T. Role of Oxidative Stress and Antioxidants in Acquired Inner Ear Disorders. Antioxidants (Basel) 2022; 11:1469. [PMID: 36009187 PMCID: PMC9405327 DOI: 10.3390/antiox11081469] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 07/25/2022] [Accepted: 07/25/2022] [Indexed: 01/27/2023] Open
Abstract
Oxygen metabolism in the mitochondria is essential for biological activity, and reactive oxygen species (ROS) are produced simultaneously in the cell. Once an imbalance between ROS production and degradation (oxidative stress) occurs, cells are damaged. Sensory organs, especially those for hearing, are constantly exposed during daily life. Therefore, almost all mammalian species are liable to hearing loss depending on their environment. In the auditory pathway, hair cells, spiral ganglion cells, and the stria vascularis, where mitochondria are abundant, are the main targets of ROS. Excessive generation of ROS in auditory sensory organs is widely known to cause sensorineural hearing loss, and mitochondria-targeted antioxidants are candidates for treatment. This review focuses on the relationship between acquired hearing loss and antioxidant use to provide an overview of novel antioxidants, namely medicines, supplemental nutrients, and natural foods, based on clinical, animal, and cultured-cell studies.
Collapse
Affiliation(s)
| | | | | | - Tatsuya Yamasoba
- Department of Otolaryngology, Graduate School of Medicine, The University of Tokyo, Tokyo 1138655, Japan; (M.K.-U.); (S.U.); (C.F.)
| |
Collapse
|
22
|
Kelley MW. Cochlear Development; New Tools and Approaches. Front Cell Dev Biol 2022; 10:884240. [PMID: 35813214 PMCID: PMC9260282 DOI: 10.3389/fcell.2022.884240] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Accepted: 05/19/2022] [Indexed: 12/21/2022] Open
Abstract
The sensory epithelium of the mammalian cochlea, the organ of Corti, is comprised of at least seven unique cell types including two functionally distinct types of mechanosensory hair cells. All of the cell types within the organ of Corti are believed to develop from a population of precursor cells referred to as prosensory cells. Results from previous studies have begun to identify the developmental processes, lineage restrictions and signaling networks that mediate the specification of many of these cell types, however, the small size of the organ and the limited number of each cell type has hampered progress. Recent technical advances, in particular relating to the ability to capture and characterize gene expression at the single cell level, have opened new avenues for understanding cellular specification in the organ of Corti. This review will cover our current understanding of cellular specification in the cochlea, discuss the most commonly used methods for single cell RNA sequencing and describe how results from a recent study using single cell sequencing provided new insights regarding cellular specification.
Collapse
|
23
|
Jang MW, Lim J, Park MG, Lee JH, Lee CJ. Active role of glia-like supporting cells in the organ of Corti: Membrane proteins and their roles in hearing. Glia 2022; 70:1799-1825. [PMID: 35713516 DOI: 10.1002/glia.24229] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 05/23/2022] [Accepted: 05/30/2022] [Indexed: 12/13/2022]
Abstract
The organ of Corti, located in the cochlea in the inner ear, is one of the major sensory organs involved in hearing. The organ of Corti consists of hair cells, glia-like supporting cells, and the cochlear nerve, which work in harmony to receive sound from the outer ear and transmit auditory signals to the cochlear nucleus in the auditory ascending pathway. In this process, maintenance of the endocochlear potential, with a high potassium gradient and clearance of electrolytes and biochemicals in the inner ear, is critical for normal sound transduction. There is an emerging need for a thorough understanding of each cell type involved in this process to understand the sophisticated mechanisms of the organ of Corti. Hair cells have long been thought to be active, playing a primary role in the cochlea in actively detecting and transmitting signals. In contrast, supporting cells are thought to be silent and function to support hair cells. However, growing lines of evidence regarding the membrane proteins that mediate ionic movement in supporting cells have demonstrated that supporting cells are not silent, but actively play important roles in normal signal transduction. In this review, we summarize studies that characterize diverse membrane proteins according to the supporting cell subtypes involved in cochlear physiology and hearing. This review contributes to a better understanding of supporting cell functions and facilitates the development of potential therapeutic tools for hearing loss.
Collapse
Affiliation(s)
- Minwoo Wendy Jang
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea.,Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Jiwoon Lim
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea.,IBS School, University of Science and Technology (UST), Daejeon, Republic of Korea
| | - Mingu Gordon Park
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea.,Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - Jae-Hun Lee
- Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea
| | - C Justin Lee
- KU-KIST Graduate School of Converging Science and Technology, Korea University, Seoul, Republic of Korea.,Center for Cognition and Sociality, Institute for Basic Science (IBS), Daejeon, Republic of Korea.,IBS School, University of Science and Technology (UST), Daejeon, Republic of Korea
| |
Collapse
|
24
|
Vogl C, Neef J, Wichmann C. Methods for multiscale structural and functional analysis of the mammalian cochlea. Mol Cell Neurosci 2022; 120:103720. [DOI: 10.1016/j.mcn.2022.103720] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 02/13/2022] [Accepted: 03/08/2022] [Indexed: 01/11/2023] Open
|
25
|
Agarwal HK, Janicek R, Zhao J, Sambath K, Egger M, Niggli E, Ellis-Davies GCR. The yin and yang of intracellular delivery of amphipathic optical probes using n-butyl charge masking. Chem Commun (Camb) 2022; 58:2826-2829. [PMID: 35112125 PMCID: PMC9502023 DOI: 10.1039/d1cc06792c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Monitoring and manipulation of ionized intracellular calcium concentrations within intact, living cells using optical probes with organic chromophores is a core method for cell physiology. Since all these probes have multiple negative charges, they must be smuggled through the plasma membrane in a transiently neutral form, with intracellular esterases used to deprotect the masked anions. Here we explore the ability of the synthetically easily accessible n-butyl ester protecting group to deliver amphipathic cargoes to the cytosol. We show that the size of the caging chromophore conditions the ability of intracellular probe delivery and esterase charge unmasking.
Collapse
Affiliation(s)
- Hitesh K. Agarwal
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA.,School of Pharmacy, South University, Savannah, GA 31406, USA
| | | | - Jun Zhao
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | - Karthik Sambath
- Department of Neuroscience, Mount Sinai School of Medicine, New York, NY 10029, USA.
| | - Marcel Egger
- Department of Physiology, University of Bern, Bern, Switzerland
| | - Ernst Niggli
- Department of Physiology, University of Bern, Bern, Switzerland
| | | |
Collapse
|
26
|
Maul A, Huebner AK, Strenzke N, Moser T, Rübsamen R, Jovanovic S, Hübner CA. The Cl--channel TMEM16A is involved in the generation of cochlear Ca2+ waves and promotes the refinement of auditory brainstem networks in mice. eLife 2022; 11:72251. [PMID: 35129434 PMCID: PMC8871368 DOI: 10.7554/elife.72251] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 02/06/2022] [Indexed: 11/17/2022] Open
Abstract
Before hearing onset (postnatal day 12 in mice), inner hair cells (IHCs) spontaneously fire action potentials, thereby driving pre-sensory activity in the ascending auditory pathway. The rate of IHC action potential bursts is modulated by inner supporting cells (ISCs) of Kölliker’s organ through the activity of the Ca2+-activated Cl--channel TMEM16A (ANO1). Here, we show that conditional deletion of Ano1 (Tmem16a) in mice disrupts Ca2+ waves within Kölliker’s organ, reduces the burst-firing activity and the frequency selectivity of auditory brainstem neurons in the medial nucleus of the trapezoid body (MNTB), and also impairs the functional refinement of MNTB projections to the lateral superior olive. These results reveal the importance of the activity of Kölliker’s organ for the refinement of central auditory connectivity. In addition, our study suggests the involvement of TMEM16A in the propagation of Ca2+ waves, which may also apply to other tissues expressing TMEM16A.
Collapse
Affiliation(s)
- Alena Maul
- Neuroscience Department, Max Delbrück Center for Molecular Medicine
| | | | - Nicola Strenzke
- Institute for Auditory Neuroscience, Department of Otolaryngology, University of Göttingen
| | - Tobias Moser
- Institute for Auditory Neuroscience, Department of Otolaryngology, University of Göttingen
| | - Rudolf Rübsamen
- Faculty of Bioscience, Pharmacy and Psychology, University of Leipzig
| | - Saša Jovanovic
- Faculty of Bioscience, Pharmacy and Psychology, University of Leipzig
| | | |
Collapse
|
27
|
Bajar BT, Phi NT, Isaacman-Beck J, Reichl J, Randhawa H, Akin O. A discrete neuronal population coordinates brain-wide developmental activity. Nature 2022; 602:639-646. [PMID: 35140397 PMCID: PMC9020639 DOI: 10.1038/s41586-022-04406-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 01/05/2022] [Indexed: 11/09/2022]
Abstract
In vertebrates, stimulus-independent activity accompanies neural circuit maturation throughout the developing brain1,2. The recent discovery of similar activity in the developing Drosophila central nervous system suggests that developmental activity is fundamental to the assembly of complex brains3. How such activity is coordinated across disparate brain regions to influence synaptic development at the level of defined cell types is not well understood. Here we show that neurons expressing the cation channel transient receptor potential gamma (Trpγ) relay and pattern developmental activity throughout the Drosophila brain. In trpγ mutants, activity is attenuated globally, and both patterns of activity and synapse structure are altered in a cell-type-specific manner. Less than 2% of the neurons in the brain express Trpγ. These neurons arborize throughout the brain, and silencing or activating them leads to loss or gain of brain-wide activity. Together, these results indicate that this small population of neurons coordinates brain-wide developmental activity. We propose that stereotyped patterns of developmental activity are driven by a discrete, genetically specified network to instruct neural circuit assembly at the level of individual cells and synapses. This work establishes the fly brain as an experimentally tractable system for studying how activity contributes to synapse and circuit formation.
Collapse
Affiliation(s)
- Bryce T Bajar
- Department of Biological Chemistry, Medical Scientist Training Program, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nguyen T Phi
- Molecular, Cellular, and Integrative Physiology Interdepartmental Graduate Program, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jesse Isaacman-Beck
- Department of Neurobiology, Stanford University School of Medicine, Stanford University, Stanford, CA, USA
| | - Jun Reichl
- Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA, USA
| | - Harpreet Randhawa
- Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA, USA
| | - Orkun Akin
- Department of Neurobiology, David Geffen School of Medicine at UCLA, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
28
|
Luhmann HJ. Neurophysiology of the Developing Cerebral Cortex: What We Have Learned and What We Need to Know. Front Cell Neurosci 2022; 15:814012. [PMID: 35046777 PMCID: PMC8761895 DOI: 10.3389/fncel.2021.814012] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 12/09/2021] [Indexed: 11/15/2022] Open
Abstract
This review article aims to give a brief summary on the novel technologies, the challenges, our current understanding, and the open questions in the field of the neurophysiology of the developing cerebral cortex in rodents. In the past, in vitro electrophysiological and calcium imaging studies on single neurons provided important insights into the function of cellular and subcellular mechanism during early postnatal development. In the past decade, neuronal activity in large cortical networks was recorded in pre- and neonatal rodents in vivo by the use of novel high-density multi-electrode arrays and genetically encoded calcium indicators. These studies demonstrated a surprisingly rich repertoire of spontaneous cortical and subcortical activity patterns, which are currently not completely understood in their functional roles in early development and their impact on cortical maturation. Technological progress in targeted genetic manipulations, optogenetics, and chemogenetics now allow the experimental manipulation of specific neuronal cell types to elucidate the function of early (transient) cortical circuits and their role in the generation of spontaneous and sensory evoked cortical activity patterns. Large-scale interactions between different cortical areas and subcortical regions, characterization of developmental shifts from synchronized to desynchronized activity patterns, identification of transient circuits and hub neurons, role of electrical activity in the control of glial cell differentiation and function are future key tasks to gain further insights into the neurophysiology of the developing cerebral cortex.
Collapse
Affiliation(s)
- Heiko J. Luhmann
- Institute of Physiology, University Medical Center Mainz, Mainz, Germany
| |
Collapse
|
29
|
Wichmann C, Kuner T. Heterogeneity of glutamatergic synapses: cellular mechanisms and network consequences. Physiol Rev 2022; 102:269-318. [PMID: 34727002 DOI: 10.1152/physrev.00039.2020] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Chemical synapses are commonly known as a structurally and functionally highly diverse class of cell-cell contacts specialized to mediate communication between neurons. They represent the smallest "computational" unit of the brain and are typically divided into excitatory and inhibitory as well as modulatory categories. These categories are subdivided into diverse types, each representing a different structure-function repertoire that in turn are thought to endow neuronal networks with distinct computational properties. The diversity of structure and function found among a given category of synapses is referred to as heterogeneity. The main building blocks for this heterogeneity are synaptic vesicles, the active zone, the synaptic cleft, the postsynaptic density, and glial processes associated with the synapse. Each of these five structural modules entails a distinct repertoire of functions, and their combination specifies the range of functional heterogeneity at mammalian excitatory synapses, which are the focus of this review. We describe synapse heterogeneity that is manifested on different levels of complexity ranging from the cellular morphology of the pre- and postsynaptic cells toward the expression of different protein isoforms at individual release sites. We attempt to define the range of structural building blocks that are used to vary the basic functional repertoire of excitatory synaptic contacts and discuss sources and general mechanisms of synapse heterogeneity. Finally, we explore the possible impact of synapse heterogeneity on neuronal network function.
Collapse
Affiliation(s)
- Carolin Wichmann
- Molecular Architecture of Synapses Group, Institute for Auditory Neuroscience, InnerEarLab and Institute for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, Göttingen, Germany
| | - Thomas Kuner
- Department of Functional Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg, Germany
| |
Collapse
|
30
|
Borse V, Kaur T, Hinton A, Ohlemiller K, Warchol ME. Programmed Cell Death Recruits Macrophages Into the Developing Mouse Cochlea. Front Cell Dev Biol 2021; 9:777836. [PMID: 34957108 PMCID: PMC8696258 DOI: 10.3389/fcell.2021.777836] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 11/19/2021] [Indexed: 12/31/2022] Open
Abstract
Programmed cell death (PCD) plays a critical role in the development and maturation of the cochlea. Significant remodeling occurs among cells of the greater epithelial ridge (GER) of Kölliker’s organ, leading to tissue regression and formation of the inner sulcus. In mice, this event normally occurs between postnatal days 5–15 (P5-15) and is regulated by thyroid hormone (T3). During this developmental time period, the cochlea also contains a large population of macrophages. Macrophages are frequently involved in the phagocytic clearance of dead cells, both during development and after injury, but the role of macrophages in the developing cochlea is unknown. This study examined the link between developmental cell death in the GER and the recruitment of macrophages into this region. Cell death in the basal GER begins at P5 and enhanced numbers of macrophages were observed at P7. This pattern of macrophage recruitment was unchanged in mice that were genetically deficient for CX3CR1, the receptor for fractalkine (a known macrophage chemoattractant). We found that injection of T3 at P0 and P1 caused GER cell death to begin at P3, and this premature PCD was accompanied by earlier recruitment of macrophages. We further found that depletion of macrophages from the developing cochlea (using CX3CR1DTR/+ mice and treatment with the CSF1R antagonist BLZ945) had no effect on the pattern of GER regression. Together, these findings suggest that macrophages are recruited into the GER region after initiation of developmental PCD, but that they are not essential for GER regression during cochlear remodeling.
Collapse
Affiliation(s)
- Vikrant Borse
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, United States
| | - Tejbeer Kaur
- Department of Biomedical Sciences, School of Medicine, Creighton University, Omaha, NE, United States
| | - Ashley Hinton
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, United States
| | - Kevin Ohlemiller
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, United States
| | - Mark E Warchol
- Department of Otolaryngology, Washington University School of Medicine, St. Louis, MO, United States
| |
Collapse
|
31
|
Udagawa T, Atkinson PJ, Milon B, Abitbol JM, Song Y, Sperber M, Huarcaya Najarro E, Scheibinger M, Elkon R, Hertzano R, Cheng AG. Lineage-tracing and translatomic analysis of damage-inducible mitotic cochlear progenitors identifies candidate genes regulating regeneration. PLoS Biol 2021; 19:e3001445. [PMID: 34758021 PMCID: PMC8608324 DOI: 10.1371/journal.pbio.3001445] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 11/22/2021] [Accepted: 10/18/2021] [Indexed: 12/21/2022] Open
Abstract
Cochlear supporting cells (SCs) are glia-like cells critical for hearing function. In the neonatal cochlea, the greater epithelial ridge (GER) is a mitotically quiescent and transient organ, which has been shown to nonmitotically regenerate SCs. Here, we ablated Lgr5+ SCs using Lgr5-DTR mice and found mitotic regeneration of SCs by GER cells in vivo. With lineage tracing, we show that the GER houses progenitor cells that robustly divide and migrate into the organ of Corti to replenish ablated SCs. Regenerated SCs display coordinated calcium transients, markers of the SC subtype inner phalangeal cells, and survive in the mature cochlea. Via RiboTag, RNA-sequencing, and gene clustering algorithms, we reveal 11 distinct gene clusters comprising markers of the quiescent and damaged GER, and damage-responsive genes driving cell migration and mitotic regeneration. Together, our study characterizes GER cells as mitotic progenitors with regenerative potential and unveils their quiescent and damaged translatomes.
Collapse
Affiliation(s)
- Tomokatsu Udagawa
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, United States of America
- Department of Otorhinolaryngology, The Jikei University School of Medicine, Tokyo, Japan
| | - Patrick J. Atkinson
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Beatrice Milon
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Julia M. Abitbol
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Yang Song
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Michal Sperber
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Elvis Huarcaya Najarro
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Mirko Scheibinger
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, United States of America
| | - Ran Elkon
- Department of Human Molecular Genetics and Biochemistry, Sackler School of Medicine, Tel Aviv University, Tel Aviv, Israel
| | - Ronna Hertzano
- Department of Otorhinolaryngology-Head and Neck Surgery, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Institute for Genome Sciences, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, Baltimore, Maryland, United States of America
| | - Alan G. Cheng
- Department of Otolaryngology-Head and Neck Surgery, Stanford University School of Medicine, Stanford, California, United States of America
- * E-mail:
| |
Collapse
|
32
|
Riley BB. Comparative assessment of Fgf's diverse roles in inner ear development: A zebrafish perspective. Dev Dyn 2021; 250:1524-1551. [PMID: 33830554 DOI: 10.1002/dvdy.343] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 03/26/2021] [Accepted: 03/26/2021] [Indexed: 01/21/2023] Open
Abstract
Progress in understanding mechanisms of inner ear development has been remarkably rapid in recent years. The research community has benefited from the availability of several diverse model organisms, including zebrafish, chick, and mouse. The complexity of the inner ear has proven to be a challenge, and the complexity of the mammalian cochlea in particular has been the subject of intense scrutiny. Zebrafish lack a cochlea and exhibit a number of other differences from amniote species, hence they are sometimes seen as less relevant for inner ear studies. However, accumulating evidence shows that underlying cellular and molecular mechanisms are often highly conserved. As a case in point, consideration of the diverse functions of Fgf and its downstream effectors reveals many similarities between vertebrate species, allowing meaningful comparisons the can benefit the entire research community. In this review, I will discuss mechanisms by which Fgf controls key events in early otic development in zebrafish and provide direct comparisons with chick and mouse.
Collapse
Affiliation(s)
- Bruce B Riley
- Biology Department, Texas A&M University, College Station, Texas, USA
| |
Collapse
|
33
|
Abstract
PURPOSE OF REVIEW We review recent progress in the characterization of spiral ganglion neurons (SGNs), the afferent neurons that transmit sound information from mechanosensory hair cells in the inner ear to the central nervous system. RECENT FINDINGS Single-cell ribonucleic acid sequencing studies of murine SGNs have demonstrated that SGNs consist of molecularly distinct subtypes. The molecularly defined SGN subtypes likely correspond to SGN subtypes previously identified on the basis of physiological properties, although this has not been experimentally demonstrated. Subtype maturation is completed postnatally in an activity-dependent manner and is impaired in several models of hearing loss. SUMMARY The recent molecular studies open new avenues to rigorously test whether SGN subtypes are important for the encoding of different sound features and if they show differential vulnerability to genetic factors and environmental insults. This could have important implications for the development of therapeutic strategies to treat hearing loss.
Collapse
Affiliation(s)
- Shuohao Sun
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | | |
Collapse
|
34
|
Ray S, Singhvi A. Charging Up the Periphery: Glial Ionic Regulation in Sensory Perception. Front Cell Dev Biol 2021; 9:687732. [PMID: 34458255 PMCID: PMC8385785 DOI: 10.3389/fcell.2021.687732] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/30/2021] [Indexed: 12/25/2022] Open
Abstract
The peripheral nervous system (PNS) receives diverse sensory stimuli from the environment and transmits this information to the central nervous system (CNS) for subsequent processing. Thus, proper functions of cells in peripheral sense organs are a critical gate-keeper to generating appropriate animal sensory behaviors, and indeed their dysfunction tracks sensory deficits, sensorineural disorders, and aging. Like the CNS, the PNS comprises two major cell types, neurons (or sensory cells) and glia (or glia-like supporting neuroepithelial cells). One classic function of PNS glia is to modulate the ionic concentration around associated sensory cells. Here, we review current knowledge of how non-myelinating support cell glia of the PNS regulate the ionic milieu around sensory cell endings across species and systems. Molecular studies reviewed here suggest that, rather than being a passive homeostatic response, glial ionic regulation may in fact actively modulate sensory perception, implying that PNS glia may be active contributors to sensorineural information processing. This is reminiscent of emerging studies suggesting analogous roles for CNS glia in modulating neural circuit processing. We therefore suggest that deeper molecular mechanistic investigations into critical PNS glial functions like ionic regulation are essential to comprehensively understand sensorineural health, disease, and aging.
Collapse
Affiliation(s)
- Sneha Ray
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.,Graduate Program in Neuroscience, University of Washington, Seattle, WA, United States
| | - Aakanksha Singhvi
- Division of Basic Sciences, Fred Hutchinson Cancer Research Center, Seattle, WA, United States.,Graduate Program in Neuroscience, University of Washington, Seattle, WA, United States.,Department of Biological Structure, School of Medicine, University of Washington, Seattle, WA, United States
| |
Collapse
|
35
|
Xu J, Yu D, Dong X, Xie X, Xu M, Guo L, Huang L, Tang Q, Gan L. GATA3 maintains the quiescent state of cochlear supporting cells by regulating p27 kip1. Sci Rep 2021; 11:15779. [PMID: 34349220 PMCID: PMC8338922 DOI: 10.1038/s41598-021-95427-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 07/26/2021] [Indexed: 01/22/2023] Open
Abstract
Haplo-insufficiency of the GATA3 gene causes hypoparathyroidism, sensorineural hearing loss, and renal disease (HDR) syndrome. Previous studies have shown that Gata3 is required for the development of the prosensory domain and spiral ganglion neurons (SGNs) of the mouse cochlea during embryogenesis. However, its role in supporting cells (SCs) after cell fate specification is largely unknown. In this study, we used tamoxifen-inducible Sox2CreERT2 mice to delete Gata3 in SCs of the neonatal mouse cochlea and showed that loss of Gata3 resulted in the proliferation of SCs, including the inner pillar cells (IPCs), inner border cells (IBCs), and lateral greater epithelium ridge (GER). In addition, loss of Gata3 resulted in the down-regulation of p27kip1, a cell cycle inhibitor, in the SCs of Gata3-CKO neonatal cochleae. Chromatin immunoprecipitation analysis revealed that GATA3 directly binds to p27kip1 promoter and could maintain the quiescent state of cochlear SCs by regulating p27kip1 expression. Furthermore, RNA-seq analysis revealed that loss of Gata3 function resulted in the change in the expression of genes essential for the development and function of cochlear SCs, including Tectb, Cyp26b1, Slitrk6, Ano1, and Aqp4.
Collapse
Affiliation(s)
- Jiadong Xu
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- Department of Ophthalmology and Flaum Eye Institute, University of Rochester, Rochester, NY, 14642, USA
| | - Dongliang Yu
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, China
| | - Xuhui Dong
- Department of Ophthalmology and Flaum Eye Institute, University of Rochester, Rochester, NY, 14642, USA
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Xiaoling Xie
- Department of Ophthalmology and Flaum Eye Institute, University of Rochester, Rochester, NY, 14642, USA
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Mei Xu
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- Department of Ophthalmology and Flaum Eye Institute, University of Rochester, Rochester, NY, 14642, USA
| | - Luming Guo
- College of Life Sciences, Zhejiang University, Hangzhou, 310058, Zhejiang, China
- Department of Ophthalmology and Flaum Eye Institute, University of Rochester, Rochester, NY, 14642, USA
| | - Liang Huang
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA
| | - Qi Tang
- Department of Ophthalmology and Flaum Eye Institute, University of Rochester, Rochester, NY, 14642, USA
- Department of Otolaryngology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Lin Gan
- Department of Ophthalmology and Flaum Eye Institute, University of Rochester, Rochester, NY, 14642, USA.
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia at Augusta University, Augusta, GA, 30912, USA.
| |
Collapse
|
36
|
Abstract
In mammals, the selective transformation of transient experience into stored memory occurs in the hippocampus, which develops representations of specific events in the context in which they occur. In this review, we focus on the development of hippocampal circuits and the self-organized dynamics embedded within them since the latter critically support the role of the hippocampus in learning and memory. We first discuss evidence that adult hippocampal cells and circuits are sculpted by development as early as during embryonic neurogenesis. We argue that these primary developmental programs provide a scaffold onto which later experience of the external world can be grafted. Next, we review the different sequences in the development of hippocampal cells and circuits at anatomical and functional levels. We cover a period extending from neurogenesis and migration to the appearance of phenotypic diversity within hippocampal cells, and their wiring into functional networks. We describe the progressive emergence of network dynamics in the hippocampus, from sensorimotor-driven early sharp waves to sequences of place cells tracking relational information. We outline the critical turn points and discontinuities in that developmental journey, and close by formulating open questions. We propose that rewinding the process of hippocampal development helps understand the main organization principles of memory circuits.
Collapse
Affiliation(s)
- Rosa Cossart
- Inserm, INMED, Turing Center for Living Systems, Aix Marseille University, Marseille, France
| | - Rustem Khazipov
- Inserm, INMED, Turing Center for Living Systems, Aix Marseille University, Marseille, France.,Laboratory of Neurobiology, Kazan Federal University, Kazan Russia
| |
Collapse
|
37
|
Kohrman D, Borges BC, Cassinotti L, Ji L, Corfas G. Axon-glia interactions in the ascending auditory system. Dev Neurobiol 2021; 81:546-567. [PMID: 33561889 PMCID: PMC9004231 DOI: 10.1002/dneu.22813] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 11/25/2020] [Accepted: 02/05/2021] [Indexed: 11/09/2022]
Abstract
The auditory system detects and encodes sound information with high precision to provide a high-fidelity representation of the environment and communication. In mammals, detection occurs in the peripheral sensory organ (the cochlea) containing specialized mechanosensory cells (hair cells) that initiate the conversion of sound-generated vibrations into action potentials in the auditory nerve. Neural activity in the auditory nerve encodes information regarding the intensity and frequency of sound stimuli, which is transmitted to the auditory cortex through the ascending neural pathways. Glial cells are critical for precise control of neural conduction and synaptic transmission throughout the pathway, allowing for the precise detection of the timing, frequency, and intensity of sound signals, including the sub-millisecond temporal fidelity is necessary for tasks such as sound localization, and in humans, for processing complex sounds including speech and music. In this review, we focus on glia and glia-like cells that interact with hair cells and neurons in the ascending auditory pathway and contribute to the development, maintenance, and modulation of neural circuits and transmission in the auditory system. We also discuss the molecular mechanisms of these interactions, their impact on hearing and on auditory dysfunction associated with pathologies of each cell type.
Collapse
Affiliation(s)
- David Kohrman
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109, USA
| | - Beatriz C. Borges
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109, USA
| | - Luis Cassinotti
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109, USA
| | - Lingchao Ji
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109, USA
| | - Gabriel Corfas
- Kresge Hearing Research Institute and Department of Otolaryngology - Head and Neck Surgery, University of Michigan, 1150 West. Medical Center Dr., Ann Arbor, MI 48109, USA
| |
Collapse
|
38
|
Nakazawa S, Iwasato T. Spatial organization and transitions of spontaneous neuronal activities in the developing sensory cortex. Dev Growth Differ 2021; 63:323-339. [PMID: 34166527 DOI: 10.1111/dgd.12739] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/21/2021] [Accepted: 06/22/2021] [Indexed: 12/30/2022]
Abstract
The sensory cortex underlies our ability to perceive and interact with the external world. Sensory perceptions are controlled by specialized neuronal circuits established through fine-tuning, which relies largely on neuronal activity during the development. Spontaneous neuronal activity is an essential driving force of neuronal circuit refinement. At early developmental stages, sensory cortices display spontaneous activities originating from the periphery and characterized by correlated firing arranged spatially according to the modality. The firing patterns are reorganized over time and become sparse, which is typical for the mature brain. This review focuses mainly on rodent sensory cortices. First, the features of the spontaneous activities during early postnatal stages are described. Then, the developmental changes in the spatial organization of the spontaneous activities and the transition mechanisms involved are discussed. The identification of the principles controlling the spatial organization of spontaneous activities in the developing sensory cortex is essential to understand the self-organization process of neuronal circuits.
Collapse
Affiliation(s)
- Shingo Nakazawa
- Laboratory of Mammalian Neural Circuits, National Institute of Genetics, Mishima, Japan.,Department of Basic Neurosciences, University of Geneva, Geneva, Switzerland
| | - Takuji Iwasato
- Laboratory of Mammalian Neural Circuits, National Institute of Genetics, Mishima, Japan.,Department of Genetics, SOKENDAI (The Graduate University for Advanced Studies), Mishima, Japan
| |
Collapse
|
39
|
Lim EY, Ye L, Paukert M. Potential and Realized Impact of Astroglia Ca 2 + Dynamics on Circuit Function and Behavior. Front Cell Neurosci 2021; 15:682888. [PMID: 34163330 PMCID: PMC8215280 DOI: 10.3389/fncel.2021.682888] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/03/2021] [Indexed: 11/13/2022] Open
Abstract
Astroglia display a wide range of spontaneous and behavioral state-dependent Ca2+ dynamics. During heightened vigilance, noradrenergic signaling leads to quasi-synchronous Ca2+ elevations encompassing soma and processes across the brain-wide astroglia network. Distinct from this vigilance-associated global Ca2+ rise are apparently spontaneous fluctuations within spatially restricted microdomains. Over the years, several strategies have been pursued to shed light on the physiological impact of these signals including deletion of endogenous ion channels or receptors and reduction of intracellular Ca2+ through buffering, extrusion or inhibition of release. Some experiments that revealed the most compelling behavioral alterations employed chemogenetic and optogenetic manipulations to modify astroglia Ca2+ signaling. However, there is considerable contrast between these findings and the comparatively modest effects of inhibiting endogenous sources of Ca2+. In this review, we describe the underlying mechanisms of various forms of astroglia Ca2+ signaling as well as the functional consequences of their inhibition. We then discuss how the effects of exogenous astroglia Ca2+ modification combined with our knowledge of physiological mechanisms of astroglia Ca2+ activation could guide further refinement of behavioral paradigms that will help elucidate the natural Ca2+-dependent function of astroglia.
Collapse
Affiliation(s)
- Eunice Y. Lim
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States,Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Liang Ye
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States
| | - Martin Paukert
- Department of Cellular and Integrative Physiology, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States,Center for Biomedical Neuroscience, University of Texas Health Science Center at San Antonio, San Antonio, TX, United States,*Correspondence: Martin Paukert,
| |
Collapse
|
40
|
A nonsense TMEM43 variant leads to disruption of connexin-linked function and autosomal dominant auditory neuropathy spectrum disorder. Proc Natl Acad Sci U S A 2021; 118:2019681118. [PMID: 34050020 PMCID: PMC8179140 DOI: 10.1073/pnas.2019681118] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Genes that are primarily expressed in cochlear glia-like supporting cells (GLSs) have not been clearly associated with progressive deafness. Herein, we present a deafness locus mapped to chromosome 3p25.1 and an auditory neuropathy spectrum disorder (ANSD) gene, TMEM43, mainly expressed in GLSs. We identify p.(Arg372Ter) of TMEM43 by linkage analysis and exome sequencing in two large Asian families segregating ANSD, which is characterized by inability to discriminate speech despite preserved sensitivity to sound. The knock-in mouse with the p.(Arg372Ter) variant recapitulates a progressive hearing loss with histological abnormalities in GLSs. Mechanistically, TMEM43 interacts with the Connexin26 and Connexin30 gap junction channels, disrupting the passive conductance current in GLSs in a dominant-negative fashion when the p.(Arg372Ter) variant is introduced. Based on these mechanistic insights, cochlear implant was performed on three subjects, and speech discrimination was successfully restored. Our study highlights a pathological role of cochlear GLSs by identifying a deafness gene and its causal relationship with ANSD.
Collapse
|
41
|
Kitcher SR, Pederson AM, Weisz CJC. Diverse identities and sites of action of cochlear neurotransmitters. Hear Res 2021; 419:108278. [PMID: 34108087 DOI: 10.1016/j.heares.2021.108278] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 04/30/2021] [Accepted: 05/18/2021] [Indexed: 11/18/2022]
Abstract
Accurate encoding of acoustic stimuli requires temporally precise responses to sound integrated with cellular mechanisms that encode the complexity of stimuli over varying timescales and orders of magnitude of intensity. Sound in mammals is initially encoded in the cochlea, the peripheral hearing organ, which contains functionally specialized cells (including hair cells, afferent and efferent neurons, and a multitude of supporting cells) to allow faithful acoustic perception. To accomplish the demanding physiological requirements of hearing, the cochlea has developed synaptic arrangements that operate over different timescales, with varied strengths, and with the ability to adjust function in dynamic hearing conditions. Multiple neurotransmitters interact to support the precision and complexity of hearing. Here, we review the location of release, action, and function of neurotransmitters in the mammalian cochlea with an emphasis on recent work describing the complexity of signaling.
Collapse
Affiliation(s)
- Siân R Kitcher
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, United States
| | - Alia M Pederson
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, United States
| | - Catherine J C Weisz
- Section on Neuronal Circuitry, National Institute on Deafness and Other Communication Disorders, NIH, Bethesda, MD 20892, United States.
| |
Collapse
|
42
|
Wang Y, Sanghvi M, Gribizis A, Zhang Y, Song L, Morley B, Barson DG, Santos-Sacchi J, Navaratnam D, Crair M. Efferent feedback controls bilateral auditory spontaneous activity. Nat Commun 2021; 12:2449. [PMID: 33907194 PMCID: PMC8079389 DOI: 10.1038/s41467-021-22796-8] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 03/24/2021] [Indexed: 12/21/2022] Open
Abstract
In the developing auditory system, spontaneous activity generated in the cochleae propagates into the central nervous system to promote circuit formation. The effects of peripheral firing patterns on spontaneous activity in the central auditory system are not well understood. Here, we describe wide-spread bilateral coupling of spontaneous activity that coincides with the period of transient efferent modulation of inner hair cells from the brainstem medial olivocochlear system. Knocking out α9/α10 nicotinic acetylcholine receptors, a requisite part of the efferent pathway, profoundly reduces bilateral correlations. Pharmacological and chemogenetic experiments confirm that the efferent system is necessary for normal bilateral coupling. Moreover, auditory sensitivity at hearing onset is reduced in the absence of pre-hearing efferent modulation. Together, these results demonstrate how afferent and efferent pathways collectively shape spontaneous activity patterns and reveal the important role of efferents in coordinating bilateral spontaneous activity and the emergence of functional responses during the prehearing period.
Collapse
Affiliation(s)
- Yixiang Wang
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Maya Sanghvi
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Alexandra Gribizis
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Max Planck Florida Institute for Neuroscience, One Max Planck Way, Jupiter, FL, USA
| | - Yueyi Zhang
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Lei Song
- Department of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, CT, USA
- Department of Otolaryngology-Head and Neck Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Barbara Morley
- Center for Sensory Neuroscience, Boys Town National Research Hospital, Omaha, NE, USA
| | - Daniel G Barson
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
| | - Joseph Santos-Sacchi
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Department of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, CT, USA
- Department of Cellular and Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Dhasakumar Navaratnam
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA
- Department of Surgery (Otolaryngology), Yale University School of Medicine, New Haven, CT, USA
- Department of Neurology, Yale University School of Medicine, New Haven, CT, USA
| | - Michael Crair
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT, USA.
- Kavli Institute for Neuroscience, Yale University, New Haven, CT, USA.
| |
Collapse
|
43
|
Di Guilmi MN, Rodríguez-Contreras A. Characterization of Developmental Changes in Spontaneous Electrical Activity of Medial Superior Olivary Neurons Before Hearing Onset With a Combination of Injectable and Volatile Anesthesia. Front Neurosci 2021; 15:654479. [PMID: 33935637 PMCID: PMC8081840 DOI: 10.3389/fnins.2021.654479] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Accepted: 03/25/2021] [Indexed: 11/13/2022] Open
Abstract
In this work the impact of two widely used anesthetics on the electrical activity of auditory brainstem neurons was studied during postnatal development. Spontaneous electrical activity in neonate rats of either sex was analyzed through a ventral craniotomy in mechanically ventilated pups to carry out patch clamp and multi-electrode electrophysiology recordings in the medial region of the superior olivary complex (SOC) between birth (postnatal day 0, P0) and P12. Recordings were obtained in pups anesthetized with the injectable mix of ketamine/xylazine (K/X mix), with the volatile anesthetic isoflurane (ISO), or in pups anesthetized with K/X mix that were also exposed to ISO. The results of patch clamp recordings demonstrate for the first time that olivary and periolivary neurons in the medial region of the SOC fire bursts of action potentials. The results of multielectrode recordings suggest that the firing pattern of single units recorded in K/X mix is similar to that recorded in ISO anesthetized rat pups. Taken together, the results of this study provide a framework to use injectable and volatile anesthetics for future studies to obtain functional information on the activity of medial superior olivary neurons in vivo.
Collapse
Affiliation(s)
- Mariano Nicolás Di Guilmi
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Dr. Héctor N. Torres, INGEBI-CONICET, Buenos Aires, Argentina
| | - Adrián Rodríguez-Contreras
- Department of Biology, Center for Discovery and Innovation, City College, Institute for Ultrafast Spectroscopy and Lasers, City University of New York, New York, NY, United States
| |
Collapse
|
44
|
Xu M, Shaw KL. Extensive Linkage and Genetic Coupling of Song and Preference Loci Underlying Rapid Speciation in Laupala Crickets. J Hered 2021; 112:204-213. [PMID: 33438016 DOI: 10.1093/jhered/esab001] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2020] [Accepted: 01/11/2021] [Indexed: 12/20/2022] Open
Abstract
In nature, closely related species commonly display divergent mating behaviors, suggesting a central role for such traits in the origin of species. Elucidating the genetic basis of divergence in these traits is necessary to understand the evolutionary process leading to reproductive barriers and speciation. The rapidly speciating Hawaiian crickets of the genus Laupala provides an ideal system for dissecting the genetic basis of mating behavior divergence. In Laupala, closely related species differ markedly in male song pulse rate and female preference for pulse rate. These behaviors play an important role in determining mating patterns. Previous studies identified a genetic architecture consisting of numerous small to moderate effect loci causing interspecific differences in pulse rate and preference, including colocalizing pulse rate and preference QTL on linkage group one (LG1). To further interrogate these QTL, we conduct a fine mapping study using high-density SNP linkage maps. With improved statistical power and map resolution, we provide robust evidence for genetic coupling between song and preference, along with two additional pulse rate QTL on LG1, revealing a more resolved picture of the genetic architecture underlying mating behavior divergence. Our sequence-based genetic map, along with dramatically narrowed QTL confidence intervals, allowed us to annotate genes within the QTL regions and identify several exciting candidate genes underlying variation in pulse rate and preference divergence. Such knowledge suggests potential molecular mechanisms underlying the evolution of behavioral barriers.
Collapse
Affiliation(s)
- Mingzi Xu
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY
| | - Kerry L Shaw
- Department of Neurobiology and Behavior, Cornell University, Ithaca, NY
| |
Collapse
|
45
|
Lago-Baldaia I, Fernandes VM, Ackerman SD. More Than Mortar: Glia as Architects of Nervous System Development and Disease. Front Cell Dev Biol 2020; 8:611269. [PMID: 33381506 PMCID: PMC7767919 DOI: 10.3389/fcell.2020.611269] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2020] [Accepted: 11/17/2020] [Indexed: 12/12/2022] Open
Abstract
Glial cells are an essential component of the nervous system of vertebrates and invertebrates. In the human brain, glia are as numerous as neurons, yet the importance of glia to nearly every aspect of nervous system development has only been expounded over the last several decades. Glia are now known to regulate neural specification, synaptogenesis, synapse function, and even broad circuit function. Given their ubiquity, it is not surprising that the contribution of glia to neuronal disease pathogenesis is a growing area of research. In this review, we will summarize the accumulated evidence of glial participation in several distinct phases of nervous system development and organization-neural specification, circuit wiring, and circuit function. Finally, we will highlight how these early developmental roles of glia contribute to nervous system dysfunction in neurodevelopmental and neurodegenerative disorders.
Collapse
Affiliation(s)
- Inês Lago-Baldaia
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Vilaiwan M. Fernandes
- Department of Cell and Developmental Biology, University College London, London, United Kingdom
| | - Sarah D. Ackerman
- Institute of Neuroscience, Howard Hughes Medical Institute, University of Oregon, Eugene, OR, United States
| |
Collapse
|
46
|
Purinergic Signaling Controls Spontaneous Activity in the Auditory System throughout Early Development. J Neurosci 2020; 41:594-612. [PMID: 33303678 DOI: 10.1523/jneurosci.2178-20.2020] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/06/2020] [Accepted: 11/25/2020] [Indexed: 12/23/2022] Open
Abstract
Spontaneous bursts of electrical activity in the developing auditory system arise within the cochlea before hearing onset and propagate through future sound-processing circuits of the brain to promote maturation of auditory neurons. Studies in isolated cochleae revealed that this intrinsically generated activity is initiated by ATP release from inner supporting cells (ISCs), resulting in activation of purinergic autoreceptors, K+ efflux, and subsequent depolarization of inner hair cells. However, it is unknown when this activity emerges or whether different mechanisms induce activity during distinct stages of development. Here we show that spontaneous electrical activity in mouse cochlea from both sexes emerges within ISCs during the late embryonic period, preceding the onset of spontaneous correlated activity in inner hair cells and spiral ganglion neurons, which begins at birth and follows a base to apex developmental gradient. At all developmental ages, pharmacological inhibition of P2Y1 purinergic receptors dramatically reduced spontaneous activity in these three cell types. Moreover, in vivo imaging within the inferior colliculus revealed that auditory neurons within future isofrequency zones exhibit coordinated neural activity at birth. The frequency of these discrete bursts increased progressively during the postnatal prehearing period yet remained dependent on P2RY1. Analysis of mice with disrupted cholinergic signaling in the cochlea indicate that this efferent input modulates, rather than initiates, spontaneous activity before hearing onset. Thus, the auditory system uses a consistent mechanism involving ATP release from ISCs and activation of P2RY1 autoreceptors to elicit coordinated excitation of neurons that will process similar frequencies of sound.SIGNIFICANCE STATEMENT In developing sensory systems, groups of neurons that will process information from similar sensory space exhibit highly correlated electrical activity that is critical for proper maturation and circuit refinement. Defining the period when this activity is present, the mechanisms responsible and the features of this activity are crucial for understanding how spontaneous activity influences circuit development. We show that, from birth to hearing onset, the auditory system relies on a consistent mechanism to elicit correlate firing of neurons that will process similar frequencies of sound. Targeted disruption of this activity will increase our understanding of how these early circuits mature and may provide insight into processes responsible for developmental disorders of the auditory system.
Collapse
|
47
|
Molnár Z, Luhmann HJ, Kanold PO. Transient cortical circuits match spontaneous and sensory-driven activity during development. Science 2020; 370:370/6514/eabb2153. [PMID: 33060328 DOI: 10.1126/science.abb2153] [Citation(s) in RCA: 173] [Impact Index Per Article: 34.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
At the earliest developmental stages, spontaneous activity synchronizes local and large-scale cortical networks. These networks form the functional template for the establishment of global thalamocortical networks and cortical architecture. The earliest connections are established autonomously. However, activity from the sensory periphery reshapes these circuits as soon as afferents reach the cortex. The early-generated, largely transient neurons of the subplate play a key role in integrating spontaneous and sensory-driven activity. Early pathological conditions-such as hypoxia, inflammation, or exposure to pharmacological compounds-alter spontaneous activity patterns, which subsequently induce disturbances in cortical network activity. This cortical dysfunction may lead to local and global miswiring and, at later stages, can be associated with neurological and psychiatric conditions.
Collapse
Affiliation(s)
- Zoltán Molnár
- Department of Physiology, Anatomy and Genetics, Sherrington Building, University of Oxford, Parks Road, Oxford OX1 3PT, UK.
| | - Heiko J Luhmann
- Institute of Physiology, University Medical Center of the Johannes Gutenberg University Mainz, Duesbergweg 6, Mainz 55128, Germany.
| | - Patrick O Kanold
- Department of Biomedical Engineering, Johns Hopkins University, School of Medicine, 720 Rutland Avenue, MRB 379, Baltimore, MD 21205, USA. .,Johns Hopkins University Kavli Neuroscience Discovery Institute, Baltimore, MD 21205, USA
| |
Collapse
|
48
|
Jovanovic S, Milenkovic I. Purinergic Modulation of Activity in the Developing Auditory Pathway. Neurosci Bull 2020; 36:1285-1298. [PMID: 33040238 DOI: 10.1007/s12264-020-00586-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Accepted: 09/10/2020] [Indexed: 12/11/2022] Open
Abstract
Purinergic P2 receptors, activated by endogenous ATP, are prominently expressed on neuronal and non-neuronal cells during development of the auditory periphery and central auditory neurons. In the mature cochlea, extracellular ATP contributes to ion homeostasis, and has a protective function against noise exposure. Here, we focus on the modulation of activity by extracellular ATP during early postnatal development of the lower auditory pathway. In mammals, spontaneous patterned activity is conveyed along afferent auditory pathways before the onset of acoustically evoked signal processing. During this critical developmental period, inner hair cells fire bursts of action potentials that are believed to provide a developmental code for synaptic maturation and refinement of auditory circuits, thereby establishing a precise tonotopic organization. Endogenous ATP-release triggers such patterned activity by raising the extracellular K+ concentration and contributes to firing by increasing the excitability of auditory nerve fibers, spiral ganglion neurons, and specific neuron types within the auditory brainstem, through the activation of diverse P2 receptors. We review recent studies that provide new models on the contribution of purinergic signaling to early development of the afferent auditory pathway. Further, we discuss potential future directions of purinergic research in the auditory system.
Collapse
Affiliation(s)
- Sasa Jovanovic
- School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129, Oldenburg, Germany
| | - Ivan Milenkovic
- School of Medicine and Health Sciences, Carl von Ossietzky University Oldenburg, 26129, Oldenburg, Germany.
| |
Collapse
|
49
|
Long-term potentiation of glycinergic synapses by semi-natural stimulation patterns during tonotopic map refinement. Sci Rep 2020; 10:16899. [PMID: 33037263 PMCID: PMC7547119 DOI: 10.1038/s41598-020-73050-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 09/10/2020] [Indexed: 12/22/2022] Open
Abstract
Before the onset of hearing, cochlea-generated patterns of spontaneous spike activity drive the maturation of central auditory circuits. In the glycinergic sound localization pathway from the medial nucleus of the trapezoid body (MNTB) to the lateral superior olive (LSO) this spontaneous activity guides the strengthening and silencing of synapses which underlies tonotopic map refinement. However, the mechanisms by which patterned activity regulates synaptic refinement in the MNTB-LSO pathway are still poorly understood. To address this question, we recorded from LSO neurons in slices from prehearing mice while stimulating MNTB afferents with stimulation patterns that mimicked those present in vivo. We found that these semi-natural stimulation patterns reliably elicited a novel form of long-term potentiation (LTP) of MNTB-LSO synapses. Stimulation patterns that lacked the characteristic high-frequency (200 Hz) component of prehearing spike activity failed to elicit potentiation. LTP was calcium dependent, required the activation of both g-protein coupled GABAB and metabotropic glutamate receptors and involved an increase in postsynaptic glycine receptor-mediated currents. Our results provide a possible mechanism linking spontaneous spike bursts to tonotopic map refinement and further highlight the importance of the co-release of GABA and glutamate from immature glycinergic MNTB terminals.
Collapse
|
50
|
LIN28B/ let-7 control the ability of neonatal murine auditory supporting cells to generate hair cells through mTOR signaling. Proc Natl Acad Sci U S A 2020; 117:22225-22236. [PMID: 32826333 DOI: 10.1073/pnas.2000417117] [Citation(s) in RCA: 40] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Mechano-sensory hair cells within the inner ear cochlea are essential for the detection of sound. In mammals, cochlear hair cells are only produced during development and their loss, due to disease or trauma, is a leading cause of deafness. In the immature cochlea, prior to the onset of hearing, hair cell loss stimulates neighboring supporting cells to act as hair cell progenitors and produce new hair cells. However, for reasons unknown, such regenerative capacity (plasticity) is lost once supporting cells undergo maturation. Here, we demonstrate that the RNA binding protein LIN28B plays an important role in the production of hair cells by supporting cells and provide evidence that the developmental drop in supporting cell plasticity in the mammalian cochlea is, at least in part, a product of declining LIN28B-mammalian target of rapamycin (mTOR) activity. Employing murine cochlear organoid and explant cultures to model mitotic and nonmitotic mechanisms of hair cell generation, we show that loss of LIN28B function, due to its conditional deletion, or due to overexpression of the antagonistic miRNA let-7g, suppressed Akt-mTOR complex 1 (mTORC1) activity and renders young, immature supporting cells incapable of generating hair cells. Conversely, we found that LIN28B overexpression increased Akt-mTORC1 activity and allowed supporting cells that were undergoing maturation to de-differentiate into progenitor-like cells and to produce hair cells via mitotic and nonmitotic mechanisms. Finally, using the mTORC1 inhibitor rapamycin, we demonstrate that LIN28B promotes supporting cell plasticity in an mTORC1-dependent manner.
Collapse
|