1
|
Lösslein AK, Henneke P. Macrophage Differentiation and Metabolic Adaptation in Mycobacterial Infections. Annu Rev Immunol 2025; 43:423-450. [PMID: 40014665 DOI: 10.1146/annurev-immunol-082323-120757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
The adaptation of macrophages-the most common tissue-resident immune cells-to metabolic and microbial cues with high local variability is essential for the maintenance of organ integrity. In homeostasis, macrophages show largely predictable tissue-specific differentiation, as recently revealed by multidimensional methods. However, chronic infections with human-adapted pathogens substantially contribute to the differentiation complexity of tissue macrophages, which has been only partially resolved. Specifically, the response to mycobacterial species-which range from Mycobacterium tuberculosis (with highest specificity for humans, broad organ tropism, yet tissue-specific disease phenotypes) to environmental mycobacteria with humans as accidental hosts-may serve as a paradigm of tissue macrophage adaptation mechanisms. While mycobacterial species-specific tissue preferences are partially related to the mode of acquisition and pathogen characteristics, evolutionary convergence with macrophages driven by metabolic features of the target organ likely contributes to infection resistance and immunopathology. In this review, we unravel the mechanisms of tissue-specific macrophage differentiation and its limitations in mycobacterial infections.
Collapse
Affiliation(s)
- Anne Kathrin Lösslein
- Institute for Infection Prevention and Control, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany;
- Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Philipp Henneke
- Institute for Infection Prevention and Control, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany;
- Center for Chronic Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute for Immunodeficiency, Medical Center - University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| |
Collapse
|
2
|
Zhou J, Yang Y, Tian J, Liu C, Chen J, Yang M, Zhang M, Duan Y, Zhang T, Sun Y, Yu Q, Xia Z, Wan X, Duan W, Xu S. Diquat exposure causes brainstem demyelination by upregulating the mitochondrial calcium uniporter. JOURNAL OF HAZARDOUS MATERIALS 2025; 492:138063. [PMID: 40163990 DOI: 10.1016/j.jhazmat.2025.138063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Revised: 03/19/2025] [Accepted: 03/23/2025] [Indexed: 04/02/2025]
Abstract
Diquat (DQ) is a widely used new herbicide that poses a great threat to the environment, ecological systems and human health. Although the central nervous system (CNS) is a sensitive target of DQ exposure, the major brain regions, pathological changes and underlying mechanisms of DQ damage to the CNS remain obscure. We demonstrated that the brainstem was the primary region where DQ damaged the CNS. DQ exposure damaged both neurons and glial cells and disrupted neurotransmitter metabolism. DQ caused brainstem demyelination, as indicated by the loss of myelin sheaths, decreased levels of myelination biomarkers, and abnormal myelin morphology. Mechanistically, the expression of the mitochondrial calcium uniporter (MCU) was increased in the DQ-exposed brainstem, and MCU knockdown mice were less sensitive to DQ-induced demyelination and CNS injury by attenuating disturbances in brain energy metabolism via the AMPK pathway. Moreover, the inhibition of MCU efficiently improved DQ-induced mitochondrial dysfunction in vitro. Overall, this study is the first to reveal that the brainstem is the key injured brain region and that demyelination is the prominent pathological feature induced by DQ exposure. The MCU is a potential therapeutic target for DQ-induced demyelination and CNS injury. These novel findings expand our understanding of DQ-induced CNS injury and offer a promising therapeutic strategy.
Collapse
Affiliation(s)
- Jie Zhou
- Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China; National Emergency Response Team for Sudden Poisoning, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing 400060, China
| | - Yingli Yang
- Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China; National Emergency Response Team for Sudden Poisoning, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing 400060, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jiacheng Tian
- Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China; National Emergency Response Team for Sudden Poisoning, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing 400060, China
| | - Cong Liu
- Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China; National Emergency Response Team for Sudden Poisoning, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing 400060, China
| | - Jiafei Chen
- Department of Radiology, Southwest Hospital, Army Medical University (Third Military Medical University), Chongqing 400038, China
| | - Mei Yang
- Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China; National Emergency Response Team for Sudden Poisoning, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing 400060, China
| | - Mengran Zhang
- Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China; National Emergency Response Team for Sudden Poisoning, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing 400060, China; Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yu Duan
- Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China; National Emergency Response Team for Sudden Poisoning, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing 400060, China
| | - Tian Zhang
- Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China; National Emergency Response Team for Sudden Poisoning, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing 400060, China
| | - Yapei Sun
- Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China; National Emergency Response Team for Sudden Poisoning, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing 400060, China
| | - Qin Yu
- Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China; National Emergency Response Team for Sudden Poisoning, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing 400060, China
| | - Zhiqin Xia
- Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China; National Emergency Response Team for Sudden Poisoning, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing 400060, China
| | - Xinglin Wan
- Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China; National Emergency Response Team for Sudden Poisoning, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing 400060, China
| | - Weixia Duan
- Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China; National Emergency Response Team for Sudden Poisoning, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing 400060, China.
| | - Shangcheng Xu
- Chongqing Key Laboratory of Prevention and Treatment for Occupational Diseases and Poisoning, Chongqing 400060, China; National Emergency Response Team for Sudden Poisoning, The First Affiliated Hospital of Chongqing Medical and Pharmaceutical College, Chongqing 400060, China; School of Public Health, Chongqing Medical University, Chongqing 400016, China.
| |
Collapse
|
3
|
Yamaguchi N, Otsuna H, Eisenberg-Bord M, Ramakrishnan L. An Image Processing Tool for Automated Quantification of Bacterial Burdens in Zebrafish Larvae. Zebrafish 2025; 22:11-14. [PMID: 39718816 PMCID: PMC11971606 DOI: 10.1089/zeb.2024.0170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2024] Open
Abstract
Zebrafish larvae are used to model the pathogenesis of multiple bacteria. This transparent model offers the unique advantage of allowing quantification of fluorescent bacterial burdens (fluorescent pixel counts [FPC]) in vivo by facile microscopical methods, replacing enumeration of bacteria using time-intensive plating of lysates on bacteriological media. Accurate FPC measurements require laborious manual image processing to mark the outside borders of the animals so as to delineate the bacteria inside the animals from those in the culture medium that they are in. Here, we have developed an automated ImageJ/Fiji-based macro that accurately detects the outside borders of Mycobacterium marinum-infected larvae.
Collapse
Affiliation(s)
- Naoya Yamaguchi
- Department of Medicine, Molecular Immunity Unit, Cambridge Institute of Therapeutic Immunology and Infectious Diseases, University of Cambridge, Cambridge, UK
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Hideo Otsuna
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Michal Eisenberg-Bord
- Department of Medicine, Molecular Immunity Unit, Cambridge Institute of Therapeutic Immunology and Infectious Diseases, University of Cambridge, Cambridge, UK
- MRC Laboratory of Molecular Biology, Cambridge, UK
| | - Lalita Ramakrishnan
- Department of Medicine, Molecular Immunity Unit, Cambridge Institute of Therapeutic Immunology and Infectious Diseases, University of Cambridge, Cambridge, UK
- MRC Laboratory of Molecular Biology, Cambridge, UK
| |
Collapse
|
4
|
Rashidi M, Pitton Rissardo J, Byroju VV, Fornari Caprara AL, Rashidi F, Prathiraja O, Moharam H, Elendu CC, Bahar M, Jayasinghe M. Exploring the Neurological Manifestations of Leprosy: Clinical Insights and Implications. Cureus 2025; 17:e77799. [PMID: 39991405 PMCID: PMC11842611 DOI: 10.7759/cureus.77799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/21/2025] [Indexed: 02/25/2025] Open
Abstract
Leprosy is one of the neglected tropical diseases, and its elimination remains a public health problem globally. This manuscript comprehensively explores the neurological manifestations of leprosy, offering clinical insights and implications for the diagnosis, management, and understanding of this disease. Beginning with a review of historical context, etiology, and epidemiology, we delve into the pathophysiology of leprosy neuropathy, highlighting mechanisms of nerve damage and immune response. Peripheral nerve involvement, including sensory and motor deficits, nerve enlargement, and deformities, are discussed in detail, along with the challenges in diagnosis and management. Psychological and social implications of neurological deficits in leprosy are addressed, emphasizing the importance of holistic care and support. Emerging trends in neuroimaging and molecular diagnostics offer promising avenues for improved diagnosis and therapeutic interventions. Novel therapeutic strategies are identified to enhance treatment efficacy and prevent disability in leprosy neuropathy by targeting immunomodulatory pathways, antibacterial agents, and a personalized medicine approach.
Collapse
Affiliation(s)
| | | | - Vishnu V Byroju
- Neurology, Cooper Medical School of Rowan University, Camden, USA
| | | | | | | | - Hania Moharam
- Medicine and Surgery, Nanjing Medical University, Nanjing, CHN
| | | | - Mallak Bahar
- Medical Education, Nanjing Medical University, Nanjing, CHN
| | | |
Collapse
|
5
|
Geng H, Bao F, Wang C, Sun L, Xue X, Liu H, Zhang F. Interleukin-22 in Mycobacterium leprae-induced nerve injury. Br J Dermatol 2024; 192:171-173. [PMID: 39377361 DOI: 10.1093/bjd/ljae348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 07/15/2024] [Accepted: 09/11/2024] [Indexed: 10/09/2024]
Abstract
The neurotropism of Mycobacterium leprae is a unique characteristic that distinguishes it from other mycobacteria. However, the mechanism of peripheral nerve injury in leprosy is still unclear. In this study, immunohistochemistry and qPCR found that skin lesions from people with leprosy expressed IL-22 at a significantly higher rate than other mycobacterium-infected skin lesions, and that IL-22 was concentrated around the cutaneous nerves. Further investigation found that IL-22 is involved in leprosy by regulating neuroinflammation and promoting apoptosis via the JAK-STAT pathway.
Collapse
Affiliation(s)
- Hanqing Geng
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Fangfang Bao
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Chuan Wang
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Lele Sun
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiaotong Xue
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Hong Liu
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Furen Zhang
- Hospital for Skin Diseases, Shandong First Medical University, Jinan, Shandong, China
- Shandong Provincial Institute of Dermatology and Venereology, Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
6
|
Essien SA, Ahuja I, Eisenhoffer GT. Apoptotic extracellular vesicles carrying Mif regulate macrophage recruitment and compensatory proliferation in neighboring epithelial stem cells during tissue maintenance. PLoS Biol 2024; 22:e3002194. [PMID: 39495793 DOI: 10.1371/journal.pbio.3002194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 11/20/2024] [Accepted: 08/27/2024] [Indexed: 11/06/2024] Open
Abstract
Apoptotic cells can signal to neighboring cells to stimulate proliferation and compensate for cell loss to maintain tissue homeostasis. While apoptotic cell-derived extracellular vesicles (AEVs) can transmit instructional cues to mediate communication with neighboring cells, the molecular mechanisms that induce cell division are not well understood. Here, we show that macrophage migration inhibitory factor (Mif)-containing AEVs regulate compensatory proliferation via ERK signaling in epithelial stem cells of larval zebrafish. Time-lapse imaging showed efferocytosis of AEVs from dying epithelial stem cells by healthy neighboring stem cells. Proteomic and ultrastructure analysis of purified AEVs identified Mif localization on the AEV surface. Pharmacological inhibition or genetic mutation of Mif, or its cognate receptor CD74, decreased levels of phosphorylated ERK and compensatory proliferation in the neighboring epithelial stem cells. Disruption of Mif activity also caused decreased numbers of macrophages patrolling near AEVs, while depletion of the macrophage lineage resulted in a reduced proliferative response by the epithelial stem cells. We propose that AEVs carrying Mif directly stimulate epithelial stem cell repopulation and guide macrophages to cell non-autonomously induce localized proliferation to sustain overall cell numbers during tissue maintenance.
Collapse
Affiliation(s)
- Safia A Essien
- Genetics and Epigenetics Graduate Program, The University of Texas MD Anderson Cancer Center UT Health Houston Graduate School of Biomedical Sciences, Houston, Texas, United States of America
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| | - Ivanshi Ahuja
- Department of Biosciences, Rice University, Houston, Texas, United States of America
| | - George T Eisenhoffer
- Genetics and Epigenetics Graduate Program, The University of Texas MD Anderson Cancer Center UT Health Houston Graduate School of Biomedical Sciences, Houston, Texas, United States of America
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, Texas, United States of America
| |
Collapse
|
7
|
Silva MJA, Silva CS, Brasil TP, Alves AK, dos Santos EC, Frota CC, Lima KVB, Lima LNGC. An update on leprosy immunopathogenesis: systematic review. Front Immunol 2024; 15:1416177. [PMID: 39308868 PMCID: PMC11412872 DOI: 10.3389/fimmu.2024.1416177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2024] [Accepted: 08/22/2024] [Indexed: 09/25/2024] Open
Abstract
INTRODUCTION Leprosy is a chronic infectious condition and the main cause of neuropathy that occurs brought on by M. leprae. It is known that the biological characteristics of the human host, such as the immunological ones, have a higher influence on the pathology of this disease than the intrinsic mechanisms of the bacterium. The objective of this work was to review the scientific knowledge about the relationship between immunopathology and the severity of leprosy. METHODS A systematic review following the PRISMA 2020 recommendations was conducted in the PUBMED, LILACS, SciELO and Science Direct databases using articles in English, Portuguese or Spanish between January 2011 and May 2022 with the descriptors "Leprosy/Immunology", "Cytokines" and "Mycobacterium leprae". A methodological quality assessment was carried out using the JBI checklists. RESULTS A total of 49 articles were included. There is a relationship of greater severity of infection associated with lower release of MHC molecules in response to PGL-1 that inhibit the promotion of resolving T lymphocytes arising from dendritic cells (DCs) stimulation. In addition, the differentiation of macrophage phenotypes dependent on the activation of PRRs can define activation and the distinct type of T helper (Th) cells involved according to severity. Activated CD8+ T cells also have distinct types at the appropriate poles of the disease, and B cells show at the most severe pole of the LL, specific induction of IgA and more Treg-type CD8+ T cells that further contribute to T cell anergy. CONCLUSION Therefore, the adaptive immune system aggravates nerve damage and defines the type of leprosy, while the innate immune system is considerably more significant in the onset of nerve damage, symptomatic of the initial presentation of illness and in several critical immune responses, including inflammation and elimination of dead M. leprae.
Collapse
Affiliation(s)
- Marcos Jessé Abrahão Silva
- Postgraduate Program in Parasitic Biology in the Amazon (PPGBPA), University of Pará State (UEPA), Belém, Brazil
| | - Caroliny Soares Silva
- Postgraduate Program in Parasitic Biology in the Amazon (PPGBPA), University of Pará State (UEPA), Belém, Brazil
| | - Thiago Pinto Brasil
- Department of Biomedicine, Federal University of Ceará (UFC), Fortaleza, Brazil
| | - Ana Karoliny Alves
- Department of Biomedicine, Federal University of Ceará (UFC), Fortaleza, Brazil
| | | | - Cristiane Cunha Frota
- Department of Pathology and Legal Medicine, Faculty of Medicine, Federal University of Ceará (UFC), Fortaleza, Brazil
| | | | | |
Collapse
|
8
|
Yamaguchi N, Otsuna H, Eisenberg-Bord M, Ramakrishnan L. An Image Processing Tool for Automated Quantification of Bacterial Burdens in Zebrafish Larvae. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.08.16.608298. [PMID: 39229075 PMCID: PMC11370481 DOI: 10.1101/2024.08.16.608298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/05/2024]
Abstract
Zebrafish larvae are used to model the pathogenesis of multiple bacteria. This transparent model offers the unique advantage of allowing quantification of fluorescent bacterial burdens (fluorescent pixel counts: FPC) in vivo by facile microscopical methods, replacing enumeration of bacteria using time-intensive plating of lysates on bacteriological media. Accurate FPC measurements require laborious manual image processing to mark the outside borders of the animals so as to delineate the bacteria inside the animals from those in the culture medium that they are in. Here, we have developed an automated ImageJ/Fiji-based macro that accurately detect the outside borders of Mycobacterium marinum-infected larvae.
Collapse
Affiliation(s)
- Naoya Yamaguchi
- Molecular Immunity Unit, Cambridge Institute of Therapeutic Immunology and Infectious Diseases, Department of Medicine, University of Cambridge, CB2 0AW Cambridge, UK
- MRC Laboratory of Molecular Biology, CB2 0QH Cambridge, UK
- Equal contributions
| | - Hideo Otsuna
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
- Equal contributions
| | - Michal Eisenberg-Bord
- Molecular Immunity Unit, Cambridge Institute of Therapeutic Immunology and Infectious Diseases, Department of Medicine, University of Cambridge, CB2 0AW Cambridge, UK
- MRC Laboratory of Molecular Biology, CB2 0QH Cambridge, UK
| | - Lalita Ramakrishnan
- Molecular Immunity Unit, Cambridge Institute of Therapeutic Immunology and Infectious Diseases, Department of Medicine, University of Cambridge, CB2 0AW Cambridge, UK
- MRC Laboratory of Molecular Biology, CB2 0QH Cambridge, UK
| |
Collapse
|
9
|
Martínez-López MF, de Almeida CR, Fontes M, Mendes RV, Kaufmann SHE, Fior R. Macrophages directly kill bladder cancer cells through TNF signaling as an early response to BCG therapy. Dis Model Mech 2024; 17:dmm050693. [PMID: 39114912 PMCID: PMC11554267 DOI: 10.1242/dmm.050693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 06/09/2024] [Indexed: 11/13/2024] Open
Abstract
The Bacillus Calmette-Guérin (BCG) vaccine is the oldest cancer immunotherapeutic agent in use. Despite its effectiveness, its initial mechanisms of action remain largely unknown. Here, we elucidate the earliest cellular mechanisms involved in BCG-induced tumor clearance. We developed a fast preclinical in vivo assay to visualize in real time and at single-cell resolution the initial interactions among bladder cancer cells, BCG and innate immunity using the zebrafish xenograft model. We show that BCG induced the recruitment and polarization of macrophages towards a pro-inflammatory phenotype, accompanied by induction of the inflammatory cytokines tnfa, il1b and il6 in the tumor microenvironment. Macrophages directly induced apoptosis of human cancer cells through zebrafish TNF signaling. Macrophages were crucial for this response as their depletion completely abrogated the BCG-induced phenotype. Contrary to the general concept that macrophage anti-tumoral activities mostly rely on stimulating an effective adaptive response, we demonstrate that macrophages alone can induce tumor apoptosis and clearance. Thus, our results revealed an additional step to the BCG-induced tumor immunity model, while providing proof-of-concept experiments demonstrating the potential of this unique model to test innate immunomodulators.
Collapse
Affiliation(s)
| | | | - Márcia Fontes
- Champalimaud Research, Champalimaud Foundation, Av. Brasilia, Lisbon 1400-038, Portugal
| | - Raquel Valente Mendes
- Champalimaud Research, Champalimaud Foundation, Av. Brasilia, Lisbon 1400-038, Portugal
| | - Stefan H. E. Kaufmann
- Max Planck Institute for Infection Biology, Berlin 10117, Germany
- Max Planck Institute for Multidisciplinary Sciences, Göttingen 37077, Germany
- Hagler Institute for Advanced Study, Texas A&M University, College Station, TX 77843, USA
| | - Rita Fior
- Champalimaud Research, Champalimaud Foundation, Av. Brasilia, Lisbon 1400-038, Portugal
| |
Collapse
|
10
|
Johansen MD, Spaink HP, Oehlers SH, Kremer L. Modeling nontuberculous mycobacterial infections in zebrafish. Trends Microbiol 2024; 32:663-677. [PMID: 38135617 DOI: 10.1016/j.tim.2023.11.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 11/24/2023] [Accepted: 11/27/2023] [Indexed: 12/24/2023]
Abstract
The incidence of infections due to nontuberculous mycobacteria (NTM) has increased rapidly in recent years, surpassing tuberculosis in developed countries. Due to inherent antimicrobial resistance, NTM infections are particularly difficult to treat with low cure rates. There is an urgent need to understand NTM pathogenesis and to develop novel therapeutic approaches for the treatment of NTM diseases. Zebrafish have emerged as an excellent animal model due to genetic amenability and optical transparency during embryonic development, allowing spatiotemporal visualization of host-pathogen interactions. Furthermore, adult zebrafish possess fully functional innate and adaptive immunity and recapitulate important pathophysiological hallmarks of mycobacterial infection. Here, we report recent breakthroughs in understanding the hallmarks of NTM infections using the zebrafish model.
Collapse
Affiliation(s)
- Matt D Johansen
- Centre for Inflammation, Centenary Institute and University of Technology Sydney, Faculty of Science, School of Life Sciences, Sydney, NSW, Australia
| | - Herman P Spaink
- Institute of Biology, Leiden University, Leiden, The Netherlands
| | - Stefan H Oehlers
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| | - Laurent Kremer
- Centre National de la Recherche Scientifique, UMR 9004, Institut de Recherche en Infectiologie de Montpellier (IRIM), Université de Montpellier, 1919 Route de Mende, 34293, Montpellier, France; INSERM, IRIM, 34293 Montpellier, France.
| |
Collapse
|
11
|
Speirs ZC, Loynes CA, Mathiessen H, Elks PM, Renshaw SA, Jørgensen LVG. What can we learn about fish neutrophil and macrophage response to immune challenge from studies in zebrafish. FISH & SHELLFISH IMMUNOLOGY 2024; 148:109490. [PMID: 38471626 DOI: 10.1016/j.fsi.2024.109490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/06/2024] [Accepted: 02/23/2024] [Indexed: 03/14/2024]
Abstract
Fish rely, to a high degree, on the innate immune system to protect them against the constant exposure to potential pathogenic invasion from the surrounding water during homeostasis and injury. Zebrafish larvae have emerged as an outstanding model organism for immunity. The cellular component of zebrafish innate immunity is similar to the mammalian innate immune system and has a high degree of sophistication due to the needs of living in an aquatic environment from early embryonic stages of life. Innate immune cells (leukocytes), including neutrophils and macrophages, have major roles in protecting zebrafish against pathogens, as well as being essential for proper wound healing and regeneration. Zebrafish larvae are visually transparent, with unprecedented in vivo microscopy opportunities that, in combination with transgenic immune reporter lines, have permitted visualisation of the functions of these cells when zebrafish are exposed to bacterial, viral and parasitic infections, as well as during injury and healing. Recent findings indicate that leukocytes are even more complex than previously anticipated and are essential for inflammation, infection control, and subsequent wound healing and regeneration.
Collapse
Affiliation(s)
- Zoë C Speirs
- The Bateson Centre, School of Medicine and Population Health, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Catherine A Loynes
- The Bateson Centre, School of Medicine and Population Health, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Heidi Mathiessen
- Laboratory of Experimental Fish Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C., Denmark
| | - Philip M Elks
- The Bateson Centre, School of Medicine and Population Health, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Stephen A Renshaw
- The Bateson Centre, School of Medicine and Population Health, University of Sheffield, Firth Court, Western Bank, Sheffield, S10 2TN, UK
| | - Louise von Gersdorff Jørgensen
- Laboratory of Experimental Fish Models, Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg C., Denmark.
| |
Collapse
|
12
|
Li X, Ma Y, Li G, Jin G, Xu L, Li Y, Wei P, Zhang L. Leprosy: treatment, prevention, immune response and gene function. Front Immunol 2024; 15:1298749. [PMID: 38440733 PMCID: PMC10909994 DOI: 10.3389/fimmu.2024.1298749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 02/05/2024] [Indexed: 03/06/2024] Open
Abstract
Since the leprosy cases have fallen dramatically, the incidence of leprosy has remained stable over the past years, indicating that multidrug therapy seems unable to eradicate leprosy. More seriously, the emergence of rifampicin-resistant strains also affects the effectiveness of treatment. Immunoprophylaxis was mainly carried out through vaccination with the BCG but also included vaccines such as LepVax and MiP. Meanwhile, it is well known that the infection and pathogenesis largely depend on the host's genetic background and immunity, with the onset of the disease being genetically regulated. The immune process heavily influences the clinical course of the disease. However, the impact of immune processes and genetic regulation of leprosy on pathogenesis and immunological levels is largely unknown. Therefore, we summarize the latest research progress in leprosy treatment, prevention, immunity and gene function. The comprehensive research in these areas will help elucidate the pathogenesis of leprosy and provide a basis for developing leprosy elimination strategies.
Collapse
Affiliation(s)
- Xiang Li
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Yun Ma
- Chronic Infectious Disease Control Section, Nantong Center for Disease Control and Prevention, Nantong, China
| | - Guoli Li
- Department of Chronic Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Guangjie Jin
- Department of Chronic Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| | - Li Xu
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Yunhui Li
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Pingmin Wei
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
| | - Lianhua Zhang
- Department of Epidemiology and Health Statistics, School of Public Health, Southeast University, Nanjing, China
- Department of Chronic Infectious Disease Control and Prevention, Jiangsu Provincial Center for Disease Control and Prevention, Nanjing, China
| |
Collapse
|
13
|
Wang C, Liu T, Wang Z, Li W, Zhao Q, Mi Z, Xue X, Shi P, Sun Y, Zhang Y, Wang N, Bao F, Chen W, Liu H, Zhang F. IL-23/IL-23R Promote Macrophage Pyroptosis and T Helper 1/T Helper 17 Cell Differentiation in Mycobacterial Infection. J Invest Dermatol 2023; 143:2264-2274.e18. [PMID: 37187409 DOI: 10.1016/j.jid.2023.04.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 04/08/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023]
Abstract
Pathogen-induced epigenetic modifications can reshape anti-infection immune processes and control the magnitude of host responses. DNA methylation profiling has identified crucial aberrant methylation changes associated with diseases, thus providing biological insights into the roles of epigenetic factors in mycobacterial infection. In this study, we performed a genome-wide methylation analysis of skin biopsies from patients with leprosy and healthy controls. T helper 17 differentiation pathway was found to be significantly associated with leprosy through functional enrichment analysis. As a key gene in this pathway, IL-23R was found to be critical to mycobacterial immunity in leprosy, according to integrated analysis with DNA methylation, RNA sequencing, and GWASs. Functional analysis revealed that IL-23/IL-23R-enhanced bacterial clearance by activating caspase-1/GSDMD-mediated pyroptosis in a manner dependent on NLRP3 through signal transducer and activator of transcription 3 signaling in macrophages. Moreover, IL23/IL-23R promoted T helper 1 and T helper 17 cell differentiation and proinflammatory cytokine secretion, thereby increasing host bactericidal activity. IL-23R knockout attenuated the effects and increased susceptibility to mycobacterial infection mentioned earlier. These findings illustrate the biological functions of IL-23/IL-23R in modulating intracellular bacterial clearance in macrophages and further support their regulatory effects in T helper cell differentiation. Our study highlights that IL-23/IL-23R might serve as potential targets for the prevention and treatment of leprosy and other mycobacterial infections.
Collapse
Affiliation(s)
- Chuan Wang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Tingting Liu
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Zhenzhen Wang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Wenchao Li
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Qing Zhao
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Zihao Mi
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Xiaotong Xue
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Peidian Shi
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yonghu Sun
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Yuan Zhang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Na Wang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Fangfang Bao
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Wenjie Chen
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Hong Liu
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Furen Zhang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China.
| |
Collapse
|
14
|
Shin S, Choi EJ, Moon SW, Lee SB, Chung YJ, Lee SH. Leprosy-specific subsets of macrophages and Schwann cells identified by single-cell RNA-sequencing. Pathol Res Pract 2023; 250:154821. [PMID: 37757621 DOI: 10.1016/j.prp.2023.154821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 09/10/2023] [Accepted: 09/14/2023] [Indexed: 09/29/2023]
Abstract
In Mycobacterium leprae (M. leprae)-infection, inflammatory cells' subsets and dynamics as well as the interactions with Schwann cells have remained elusive. We investigated individual cells in M. leprae-inoculated nude mice by single-cell RNA-sequencing (scRNA-seq). For macrophages, we dissected two M1-like subsets and five M2-like subsets, where lipid-associated signatures were pervasive in both M1-like and M2-like subsets. There were four macrophage trajectories showing: (i) pro-inflammatory (M1), (ii) lipid metabolism-related (M2), (iii) anti-inflammatory (M2), and (iv) interferon-stimulated gene-related (M2) fates. They displayed early divergence without ever rejoining along the paths, suggesting simultaneous or continuous stimuli for macrophage activation in leprosy. The scRNA-seq predicted Schwann cell-macrophage interactions (Notch1-Jag1, Plxnb1-Sema4d interactions). An immature Schwann cell subset showing Tfap2a expression was identified, indicating Schwann cell dedifferentiation in leprosy tissues. Expressions of Notch1, Jag1, Plxnb1, Sema4d, and Tfap2a were validated in mouse or human leprosy tissues by immunohistochemistry. We identified both pro-inflammatory and inflammation-resolution signatures, where lipid-associated signatures were pervasive to the macrophages, representing leprosy-specific macrophage states for prolonged and repeated episodes of inflammation and resolution. Our study identified refined molecular states and interactions of macrophages and Schwann cells, suggesting novel insights into the pathogenesis of unhealed inflammation with neuropathy and potential therapeutic targets for leprosy.
Collapse
Affiliation(s)
- Sun Shin
- Departments of Microbiology, College of Medicine, The Catholic University of Korea, Republic of Korea; Integrated Research Center for Genome Polymorphism, College of Medicine, The Catholic University of Korea, Republic of Korea
| | - Eun Ji Choi
- Departments of Pathology, College of Medicine, The Catholic University of Korea, Republic of Korea
| | - Seong Won Moon
- Departments of Pathology, College of Medicine, The Catholic University of Korea, Republic of Korea; Departments of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Republic of Korea
| | - Seong-Beom Lee
- Institute of Hansen's Disease, College of Medicine, The Catholic University of Korea, Republic of Korea; Departments of Pathology, College of Medicine, The Catholic University of Korea, Republic of Korea
| | - Yeun-Jun Chung
- Departments of Microbiology, College of Medicine, The Catholic University of Korea, Republic of Korea; Integrated Research Center for Genome Polymorphism, College of Medicine, The Catholic University of Korea, Republic of Korea; Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Republic of Korea.
| | - Sug Hyung Lee
- Departments of Pathology, College of Medicine, The Catholic University of Korea, Republic of Korea; Departments of Biomedicine & Health Sciences, College of Medicine, The Catholic University of Korea, Republic of Korea; Cancer Evolution Research Center, College of Medicine, The Catholic University of Korea, Republic of Korea.
| |
Collapse
|
15
|
Ishizuka S, van Dijk JHM, Kawakita T, Miyamoto Y, Maeda Y, Goto M, Le Calvez G, Groot LM, Witte MD, Minnaard AJ, van der Marel GA, Ato M, Nagae M, Codée JDC, Yamasaki S. PGL-III, a Rare Intermediate of Mycobacterium leprae Phenolic Glycolipid Biosynthesis, Is a Potent Mincle Ligand. ACS CENTRAL SCIENCE 2023; 9:1388-1399. [PMID: 37521780 PMCID: PMC10375886 DOI: 10.1021/acscentsci.3c00040] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Indexed: 08/01/2023]
Abstract
Although leprosy (Hansen's disease) is one of the oldest known diseases, the pathogenicity of Mycobacterium leprae (M. leprae) remains enigmatic. Indeed, the cell wall components responsible for the immune response against M. leprae are as yet largely unidentified. We reveal here phenolic glycolipid-III (PGL-III) as an M. leprae-specific ligand for the immune receptor Mincle. PGL-III is a scarcely present trisaccharide intermediate in the biosynthetic pathway to PGL-I, an abundant and characteristic M. leprae glycolipid. Using activity-based purification, we identified PGL-III as a Mincle ligand that is more potent than the well-known M. tuberculosis trehalose dimycolate. The cocrystal structure of Mincle and a synthetic PGL-III analogue revealed a unique recognition mode, implying that it can engage multiple Mincle molecules. In Mincle-deficient mice infected with M. leprae, increased bacterial burden with gross pathologies were observed. These results show that PGL-III is a noncanonical ligand recognized by Mincle, triggering protective immunity.
Collapse
Affiliation(s)
- Shigenari Ishizuka
- Department
of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Laboratory
of Molecular Immunology, Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - J. Hessel M. van Dijk
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Tomomi Kawakita
- Department
of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, 4-2-1 Aobacho, Higashimurayama, Tokyo 189-0002, Japan
| | - Yuji Miyamoto
- Department
of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, 4-2-1 Aobacho, Higashimurayama, Tokyo 189-0002, Japan
| | - Yumi Maeda
- Department
of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, 4-2-1 Aobacho, Higashimurayama, Tokyo 189-0002, Japan
| | - Masamichi Goto
- Department
of Pathology, Kagoshima University Graduate
School of Medical and Dental Sciences, 8-35-1 Sakuragaoka, Kagoshima 890-8544, Japan
| | - Guillaume Le Calvez
- Stratingh
Institute for Chemistry, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - L. Melanie Groot
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Martin D. Witte
- Stratingh
Institute for Chemistry, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | - Adriaan J. Minnaard
- Stratingh
Institute for Chemistry, Nijenborgh 7, 9747 AG Groningen, The Netherlands
| | | | - Manabu Ato
- Department
of Mycobacteriology, Leprosy Research Center, National Institute of Infectious Diseases, 4-2-1 Aobacho, Higashimurayama, Tokyo 189-0002, Japan
| | - Masamichi Nagae
- Department
of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Laboratory
of Molecular Immunology, Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Jeroen D. C. Codée
- Leiden
Institute of Chemistry, Leiden University, Einsteinweg 55, 2333 CC Leiden, The Netherlands
| | - Sho Yamasaki
- Department
of Molecular Immunology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Laboratory
of Molecular Immunology, Immunology Frontier Research Center, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
- Center
for Infectious Disease Education and Research, Osaka University (CiDER), 3-1 Yamadaoka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
16
|
Lu D, Wang Y, Liu G, Wang S, Duan A, Wang Z, Wang J, Sun X, Wu Y, Wang Z. Armcx1 attenuates secondary brain injury in an experimental traumatic brain injury model in male mice by alleviating mitochondrial dysfunction and neuronal cell death. Neurobiol Dis 2023:106228. [PMID: 37454781 DOI: 10.1016/j.nbd.2023.106228] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/20/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023] Open
Abstract
Armcx1 is highly expressed in the brain and is located in the mitochondrial outer membrane of neurons, where it mediates mitochondrial transport. Mitochondrial transport promotes the removal of damaged mitochondria and the replenishment of healthy mitochondria, which is essential for neuronal survival after traumatic brain injury (TBI). This study investigated the role of Armcx1 and its potential regulator(s) in secondary brain injury (SBI) after TBI. An in vivo TBI model was established in male C57BL/6 mice via controlled cortical impact (CCI). Adeno-associated viruses (AAVs) with Armcx1 overexpression and knockdown were constructed and administered to mice via stereotactic cortical injection. Exogenous miR-223-3p mimic or inhibitor was transfected into cultured cortical neurons, which were then scratched to simulate TBI in vitro. It was found that Armcx1 expression decreased significantly, while miR-223-3p levels increased markedly in peri-lesion tissues after TBI. The overexpression of Armcx1 significantly reduced TBI-induced neurological dysfunction, neuronal cell death, mitochondrial dysfunction, and axonal injury, while the knockdown of Armcx1 had the opposite effect. Armcx1 was potentially a direct target of miR-223-3p. The miR-223-3p mimic obviously reduced the Armcx1 protein level, while the miR-223-3p inhibitor had the opposite effect. Finally, the miR-223-3p inhibitor dramatically improved mitochondrial membrane potential (MMP) and increased the total length of the neurites without affecting branching numbers. In summary, our results suggest that the decreased expression of Armcx1 protein in neurons after experimental TBI aggravates secondary brain injury, which may be regulated by miR-223-3p. Therefore, this study provides a potential therapeutic approach for treating TBI.
Collapse
Affiliation(s)
- Dengfeng Lu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Yi Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Guangjie Liu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Shixin Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Aojie Duan
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Zongqi Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Jing Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| | - Xiaoou Sun
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.
| | - Yu Wu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China.
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
17
|
Ma S, Mi Z, Wang Z, Sun L, Liu T, Shi P, Wang C, Xue X, Chen W, Wang Z, Yu Y, Zhang Y, Bao F, Wang N, Wang H, Xia Q, Liu H, Sun Y, Zhang F. Single-cell sequencing analysis reveals development and differentiation trajectory of Schwann cells manipulated by M. leprae. PLoS Negl Trop Dis 2023; 17:e0011477. [PMID: 37478057 PMCID: PMC10361531 DOI: 10.1371/journal.pntd.0011477] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 06/26/2023] [Indexed: 07/23/2023] Open
Abstract
BACKGROUND M. leprae preferentially infects Schwann cells (SCs) in the peripheral nerves leading to nerve damage and irreversible disability. Knowledge of how M. leprae infects and interacts with host SCs is essential for understanding mechanisms of nerve damage and revealing potential new therapeutic strategies. METHODOLOGY/PRINCIPAL FINDINGS We performed a time-course single-cell sequencing analysis of SCs infected with M. leprae at different time points, further analyzed the heterogeneity of SCs, subpopulations associated with M. leprae infection, developmental trajectory of SCs and validated by Western blot or flow cytometry. Different subpopulations of SCs exhibiting distinct genetic features and functional enrichments were present. We observed two subpopulations associated with M. leprae infection, a stem cell-like cell subpopulation increased significantly at 24 h but declined by 72 h after M. leprae infection, and an adipocyte-like cell subpopulation, emerged at 72 h post-infection. The results were validated and confirmed that a stem cell-like cell subpopulation was in the early stage of differentiation and could differentiate into an adipocyte-like cell subpopulation. CONCLUSIONS/SIGNIFICANCE Our results present a systematic time-course analysis of SC heterogeneity after infection by M. leprae at single-cell resolution, provide valuable information to understand the critical biological processes underlying reprogramming and lipid metabolism during M. leprae infection of SCs, and increase understanding of the disease-causing mechanisms at play in leprosy patients as well as revealing potential new therapeutic strategies.
Collapse
Affiliation(s)
- Shanshan Ma
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zihao Mi
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zhenzhen Wang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Lele Sun
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Tingting Liu
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Peidian Shi
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Chuan Wang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Xiaotong Xue
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Wenjie Chen
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Zhe Wang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yueqian Yu
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yuan Zhang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Fangfang Bao
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Na Wang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Honglei Wang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Qianqian Xia
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Hong Liu
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Yonghu Sun
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| | - Furen Zhang
- Shandong Provincial Hospital for Skin Diseases & Shandong Provincial Institute of Dermatology and Venereology, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, Shandong, China
| |
Collapse
|
18
|
Essien SA, Ahuja I, Eisenhoffer GT. Macrophage Migration Inhibitory Factor on Apoptotic Extracellular Vesicles Regulates Compensatory Proliferation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.14.544889. [PMID: 37398303 PMCID: PMC10312732 DOI: 10.1101/2023.06.14.544889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
Apoptotic cells can signal to neighboring cells to stimulate proliferation and compensate for cell loss to maintain tissue homeostasis. While apoptotic cell-derived extracellular vesicles (AEVs) can transmit instructional cues to mediate communication with neighboring cells, the molecular mechanisms that induce cell division are not well understood. Here we show that macrophage migration inhibitory factor (MIF)-containing AEVs regulate compensatory proliferation via ERK signaling in epithelial stem cells of larval zebrafish. Time-lapse imaging showed efferocytosis of AEVs from dying epithelial stem cells by healthy neighboring stem cells. Proteomic and ultrastructure analysis of purified AEVs identified MIF localization on the AEV surface. Pharmacological inhibition or genetic mutation of MIF, or its cognate receptor CD74, decreased levels of phosphorylated ERK and compensatory proliferation in the neighboring epithelial stem cells. Disruption of MIF activity also caused decreased numbers of macrophages patrolling near AEVs, while depletion of the macrophage lineage resulted in a reduced proliferative response by the epithelial stem cells. We propose that AEVs carrying MIF directly stimulate epithelial stem cell repopulation and guide macrophages to cell non-autonomously induce localized proliferation to sustain overall cell numbers during tissue maintenance.
Collapse
Affiliation(s)
- Safia A. Essien
- Genetics and Epigenetics Graduate Program, The University of Texas MD Anderson Cancer Center UT Health Houston Graduate School of Biomedical Sciences, Houston, TX
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Ivanshi Ahuja
- Department of Biosciences, Rice University, Houston TX
| | - George T. Eisenhoffer
- Genetics and Epigenetics Graduate Program, The University of Texas MD Anderson Cancer Center UT Health Houston Graduate School of Biomedical Sciences, Houston, TX
- Department of Genetics, University of Texas MD Anderson Cancer Center, Houston, TX
| |
Collapse
|
19
|
Gong Y, Wang J, Li F, Zhu B. Polysaccharides and glycolipids of Mycobacterium tuberculosis and their induced immune responses. Scand J Immunol 2023; 97:e13261. [PMID: 39008002 DOI: 10.1111/sji.13261] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 02/05/2023] [Accepted: 02/16/2023] [Indexed: 07/16/2024]
Abstract
Tuberculosis (TB) is a chronic infectious disease mainly caused by Mycobacterium tuberculosis (M. tuberculosis). The structures of polysaccharides and glycolipids at M. tuberculosis cell wall vary among different strains, which affect the physiology and pathogenesis of mycobacteria by activating or inhibiting innate and acquired immunity. Among them, some components such as lipomannan (LM) and lipoarabinomannan (LAM) activate innate immunity by recognizing some kinds of pattern recognition receptors (PRRs) like Toll-like receptors, while other components like mannose-capped lipoarabinomannan (ManLAM) could prevent innate immune responses by inhibiting the secretion of pro-inflammatory cytokines and maturation of phagosomes. In addition, many glycolipids can activate natural killer T (NKT) cells and CD1-restricted T cells to produce interferon-γ (IFN-γ). Furthermore, humoral immunity against cell wall components, such as antibodies against LAM, plays a role in immunity against M. tuberculosis infection. Cell wall polysaccharides and glycolipids of M. tuberculosis have potential applications as antigens and adjuvants for novel TB subunit vaccines.
Collapse
Affiliation(s)
- Yang Gong
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation & Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Juan Wang
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation & Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Fei Li
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation & Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
| | - Bingdong Zhu
- Gansu Provincial Key Laboratory of Evidence Based Medicine and Clinical Translation & Lanzhou Center for Tuberculosis Research, Institute of Pathogen Biology, School of Basic Medical Sciences, Lanzhou University, Lanzhou, China
- State Key Laboratory of Veterinary Etiological Biology, College of Veterinary Medicine, Lanzhou University, Lanzhou, China
| |
Collapse
|
20
|
Ramakrishnan L. Redefining tuberculosis: an interview with Lalita Ramakrishnan. Dis Model Mech 2023; 16:dmm050189. [PMID: 36951140 PMCID: PMC10073006 DOI: 10.1242/dmm.050189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2023] Open
Abstract
Professor Lalita Ramakrishnan is at the forefront of modern tuberculosis (TB) research. She has developed vital tools, most notably a robust zebrafish model, to study this disease, leading to seminal discoveries uncovering bacterial and host interactions throughout infection. Her group has harnessed this knowledge to develop new treatments for TB and shape clinical research. By unveiling these complex interactions, they have also improved our understanding of fundamental biology of macrophages and other infectious diseases, such as leprosy.
Collapse
Affiliation(s)
- Lalita Ramakrishnan
- Molecular Immunity Unit, Cambridge Institute of Therapeutic Immunology and Infectious Diseases, University of Cambridge, Cambridge CB2 OQH, UK, and MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge CB2 OQH, UK
| |
Collapse
|
21
|
Girardi KDCDV, Mietto BS, Dos Anjos Lima K, Atella GC, da Silva DS, Pereira AMR, Rosa PS, Lara FA. Phenolic glycolipid-1 of Mycobacterium leprae is involved in human Schwann cell line ST8814 neurotoxic phenotype. J Neurochem 2023; 164:158-171. [PMID: 36349509 DOI: 10.1111/jnc.15722] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Revised: 09/06/2022] [Accepted: 11/07/2022] [Indexed: 11/11/2022]
Abstract
Leprosy is a chronic infectious disease caused by Mycobacterium leprae infection in Schwann cells. Axonopathy is considered a hallmark of leprosy neuropathy and is associated with the irreversible motor and sensory loss seen in infected patients. Although M. leprae is recognized to provoke Schwann cell dedifferentiation, the mechanisms involved in the contribution of this phenomenon to neural damage remain unclear. In the present work, we used live M. leprae to infect the immortalized human Schwann cell line ST8814. The neurotoxicity of infected Schwann cell-conditioned medium (SCCM) was then evaluated in a human neuroblastoma cell lineage and mouse neurons. ST8814 Schwann cells exposed to M. leprae affected neuronal viability by deviating glial 14 C-labeled lactate, important fuel of neuronal central metabolism, to de novo lipid synthesis. The phenolic glycolipid-1 (PGL-1) is a specific M. leprae cell wall antigen proposed to mediate bacterial-Schwann cell interaction. Therefore, we assessed the role of the PGL-1 on Schwann cell phenotype by using transgenic M. bovis (BCG)-expressing the M. leprae PGL-1. We observed that BCG-PGL-1 was able to induce a phenotype similar to M. leprae, unlike the wild-type BCG strain. We next demonstrated that this Schwann cell neurotoxic phenotype, induced by M. leprae PGL-1, occurs through the protein kinase B (Akt) pathway. Interestingly, the pharmacological inhibition of Akt by triciribine significantly reduced free fatty acid content in the SCCM from M. leprae- and BCG-PGL-1-infected Schwann cells and, hence, preventing neuronal death. Overall, these findings provide novel evidence that both M. leprae and PGL-1, induce a toxic Schwann cell phenotype, by modifying the host lipid metabolism, resulting in profound implications for neuronal loss. We consider this metabolic rewiring a new molecular mechanism to be the basis of leprosy neuropathy.
Collapse
Affiliation(s)
| | - Bruno Siqueira Mietto
- Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Karoline Dos Anjos Lima
- Laboratório de Bioquímica de Lipídeos e Lipoproteínas, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Geórgia Correa Atella
- Laboratório de Bioquímica de Lipídeos e Lipoproteínas, Instituto de Bioquímica Médica, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Débora Santos da Silva
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | | | - Flavio Alves Lara
- Laboratório de Microbiologia Celular, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|
22
|
Sugawara-Mikami M, Tanigawa K, Kawashima A, Kiriya M, Nakamura Y, Fujiwara Y, Suzuki K. Pathogenicity and virulence of Mycobacterium leprae. Virulence 2022; 13:1985-2011. [PMID: 36326715 PMCID: PMC9635560 DOI: 10.1080/21505594.2022.2141987] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Leprosy is caused by Mycobacterium leprae (M. leprae) and M. lepromatosis, an obligate intracellular organism, and over 200,000 new cases occur every year. M. leprae parasitizes histiocytes (skin macrophages) and Schwann cells in the peripheral nerves. Although leprosy can be treated by multidrug therapy, some patients relapse or have a prolonged clinical course and/or experience leprosy reaction. These varying outcomes depend on host factors such as immune responses against bacterial components that determine a range of symptoms. To understand these host responses, knowledge of the mechanisms by which M. leprae parasitizes host cells is important. This article describes the characteristics of leprosy through bacteriology, genetics, epidemiology, immunology, animal models, routes of infection, and clinical findings. It also discusses recent diagnostic methods, treatment, and measures according to the World Health Organization (WHO), including prevention. Recently, the antibacterial activities of anti-hyperlipidaemia agents against other pathogens, such as M. tuberculosis and Staphylococcus aureus have been investigated. Our laboratory has been focused on the metabolism of lipids which constitute the cell wall of M. leprae. Our findings may be useful for the development of future treatments.
Collapse
Affiliation(s)
- Mariko Sugawara-Mikami
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan.,West Yokohama Sugawara Dermatology Clinic, Yokohama, Japan
| | - Kazunari Tanigawa
- Department of Molecular Pharmaceutics, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Akira Kawashima
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Mitsuo Kiriya
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Yasuhiro Nakamura
- Department of Molecular Pharmaceutics, Faculty of Pharma-Science, Teikyo University, Tokyo, Japan
| | - Yoko Fujiwara
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| | - Koichi Suzuki
- Department of Clinical Laboratory Science, Faculty of Medical Technology, Teikyo University, Tokyo, Japan
| |
Collapse
|
23
|
The Multiple Sclerosis Modulatory Potential of Natural Multi-Targeting Antioxidants. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27238402. [PMID: 36500494 PMCID: PMC9740750 DOI: 10.3390/molecules27238402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 11/25/2022] [Accepted: 11/29/2022] [Indexed: 12/05/2022]
Abstract
Multiple sclerosis (MS) is a complex neurodegenerative disease. Although its pathogenesis is rather vague in some aspects, it is well known to be an inflammatory process characterized by inflammatory cytokine release and oxidative burden, resulting in demyelination and reduced remyelination and axonal survival together with microglial activation. Antioxidant compounds are gaining interest towards the manipulation of MS, since they offer, in most of the cases, many benefits, due to their pleiotropical activity, that mainly derives from the oxidative stress decrease. This review analyzes research articles, of the last decade, which describe biological in vitro, in vivo and clinical evaluation of various categories of the most therapeutically applied natural antioxidant compounds, and some of their derivatives, with anti-MS activity. It also summarizes some of the main characteristics of MS and the role the reactive oxygen and nitrogen species may have in its progression, as well as their relation with the other mechanistic aspects of the disease, in order for the multi-targeting potential of those antioxidants to be defined and the source of origination of such activity explained. Antioxidant compounds with specific characteristics are expected to affect positively some aspects of the disease, and their potential may render them as effective candidates for neurological impairment reduction in combination with the MS treatment regimen. However, more studies are needed in order such antioxidants to be established as recommended treatment to MS patients.
Collapse
|
24
|
Levraud JP, Rawls JF, Clatworthy AE. Using zebrafish to understand reciprocal interactions between the nervous and immune systems and the microbial world. J Neuroinflammation 2022; 19:170. [PMID: 35765004 PMCID: PMC9238045 DOI: 10.1186/s12974-022-02506-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 06/01/2022] [Indexed: 11/10/2022] Open
Abstract
Animals rely heavily on their nervous and immune systems to perceive and survive within their environment. Despite the traditional view of the brain as an immunologically privileged organ, these two systems interact with major consequences. Furthermore, microorganisms within their environment are major sources of stimuli and can establish relationships with animal hosts that range from pathogenic to mutualistic. Research from a variety of human and experimental animal systems are revealing that reciprocal interactions between microbiota and the nervous and immune systems contribute significantly to normal development, homeostasis, and disease. The zebrafish has emerged as an outstanding model within which to interrogate these interactions due to facile genetic and microbial manipulation and optical transparency facilitating in vivo imaging. This review summarizes recent studies that have used the zebrafish for analysis of bidirectional control between the immune and nervous systems, the nervous system and the microbiota, and the microbiota and immune system in zebrafish during development that promotes homeostasis between these systems. We also describe how the zebrafish have contributed to our understanding of the interconnections between these systems during infection in fish and how perturbations may result in pathology.
Collapse
Affiliation(s)
- Jean-Pierre Levraud
- Université Paris-Saclay, CNRS, Institut Pasteur, Université Paris-Cité, Institut des Neurosciences Paris-Saclay, 91400, Saclay, France.
| | - John F. Rawls
- grid.26009.3d0000 0004 1936 7961Department of Molecular Genetics and Microbiology, Duke Microbiome Center, Duke University School of Medicine, 213 Research Drive, Durham, NC 27710 USA
| | - Anne E. Clatworthy
- grid.66859.340000 0004 0546 1623Broad Institute of MIT and Harvard, 415 Main Street, Cambridge, MA 02142 USA ,grid.32224.350000 0004 0386 9924Department of Molecular Biology and Center for Computational and Integrative Biology, Massachusetts General Hospital, 185 Cambridge Street, Boston, MA 02114 USA
| |
Collapse
|
25
|
Stream A, Madigan CA. Zebrafish: an underutilized tool for discovery in host-microbe interactions. Trends Immunol 2022; 43:426-437. [PMID: 35527182 PMCID: PMC11302990 DOI: 10.1016/j.it.2022.03.011] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 03/31/2022] [Accepted: 03/31/2022] [Indexed: 12/31/2022]
Abstract
Zebrafish are relatively new to the field of host-pathogen interactions, although they have been a valuable vertebrate model for decades in developmental biology and neuroscience. Transparent zebrafish larvae have most components of the human innate immune system, and adult zebrafish also produce cells of the adaptive immune system. Recent discoveries using zebrafish infection models include mechanisms of pathogen survival and host cell sensing of microbes. These discoveries were enabled by zebrafish technology, which is constantly evolving and providing new opportunities for immunobiology research. Recent tools include CRISPR/Cas9 mutagenesis, in vivo biotinylation, and genetically encoded biosensors. We argue that the zebrafish model - which remains underutilized in immunology - provides fertile ground for a new understanding of host-microbe interactions in a transparent host.
Collapse
Affiliation(s)
- Alexandra Stream
- Department of Biological Sciences, University of California San Diego (UCSD), San Diego, CA, USA
| | - Cressida A Madigan
- Department of Biological Sciences, University of California San Diego (UCSD), San Diego, CA, USA.
| |
Collapse
|
26
|
de Souza BJ, Mendes MA, Sperandio da Silva GM, Sammarco-Rosa P, de Moraes MO, Jardim MR, Sarno EN, Pinheiro RO, Mietto BS. Gene Expression Profile of Mycobacterium leprae Contribution in the Pathology of Leprosy Neuropathy. Front Med (Lausanne) 2022; 9:861586. [PMID: 35492305 PMCID: PMC9051340 DOI: 10.3389/fmed.2022.861586] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 03/14/2022] [Indexed: 11/23/2022] Open
Abstract
Peripheral neuropathy is the main cause of physical disability in leprosy patients. Importantly, the extension and pattern of peripheral damage has been linked to how the host cell will respond against Mycobacterium leprae (M. leprae) infection, in particular, how the pathogen will establish infection in Schwann cells. Interestingly, viable and dead M. leprae have been linked to neuropathology of leprosy by distinct mechanisms. While viable M. leprae promotes transcriptional modifications that allow the bacteria to survive through the use of the host cell's internal machinery and the subvert of host metabolites, components of the dead bacteria are associated with the generation of a harmful nerve microenvironment. Therefore, understanding the pathognomonic characteristics mediated by viable and dead M. leprae are essential for elucidating leprosy disease and its associated reactional episodes. Moreover, the impact of the viable and dead bacteria in Schwann cells is largely unknown and their gene signature profiling has, as yet, been poorly explored. In this study, we analyzed the early differences in the expression profile of genes involved in peripheral neuropathy, dedifferentiation and plasticity, neural regeneration, and inflammation in human Schwann cells challenged with viable and dead M. leprae. We substantiated our findings by analyzing this genetic profiling in human nerve biopsies of leprosy and non-leprosy patients, with accompanied histopathological analysis. We observed that viable and dead bacteria distinctly modulate Schwann cell genes, with emphasis to viable bacilli upregulating transcripts related to glial cell plasticity, dedifferentiation and anti-inflammatory profile, while dead bacteria affected genes involved in neuropathy and pro-inflammatory response. In addition, dead bacteria also upregulated genes associated with nerve support, which expression profile was similar to those obtained from leprosy nerve biopsies. These findings suggest that early exposure to viable and dead bacteria may provoke Schwann cells to behave differentially, with far-reaching implications for the ongoing neuropathy seen in leprosy patients, where a mixture of active and non-active bacteria are found in the nerve microenvironment.
Collapse
Affiliation(s)
| | - Mayara Abud Mendes
- Leprosy Laboratory, Oswaldo Cruz Institute, Fiocruz, Rio de Janeiro, Brazil
| | | | | | | | | | | | | | - Bruno Siqueira Mietto
- Laboratory of Cell Biology, Institute of Biological Sciences, Federal University of Juiz de Fora, Juiz de Fora, Brazil
- *Correspondence: Bruno Siqueira Mietto
| |
Collapse
|
27
|
Kumar M, Kumar N, Gurawa A, Kashyap S. Stereoselective Synthesis of
α
‐ʟ‐Rhamnopyranosides from ʟ‐Rhamnal Employing Ruthenium‐Catalysis. ChemistrySelect 2022. [DOI: 10.1002/slct.202200963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Manoj Kumar
- Carbohydrate Chemistry Research Laboratory (CCRL) Department of Chemistry Malaviya National Institute of Technology Jaipur (MNIT Jaipur) J. L. N. Marg Jaipur 302 017 INDIA
| | - Nitin Kumar
- Carbohydrate Chemistry Research Laboratory (CCRL) Department of Chemistry Malaviya National Institute of Technology Jaipur (MNIT Jaipur) J. L. N. Marg Jaipur 302 017 INDIA
| | - Aakanksha Gurawa
- Carbohydrate Chemistry Research Laboratory (CCRL) Department of Chemistry Malaviya National Institute of Technology Jaipur (MNIT Jaipur) J. L. N. Marg Jaipur 302 017 INDIA
| | - Sudhir Kashyap
- Carbohydrate Chemistry Research Laboratory (CCRL) Department of Chemistry Malaviya National Institute of Technology Jaipur (MNIT Jaipur) J. L. N. Marg Jaipur 302 017 INDIA
| |
Collapse
|
28
|
Tan LY, Komarasamy TV, James W, Balasubramaniam VRMT. Host Molecules Regulating Neural Invasion of Zika Virus and Drug Repurposing Strategy. Front Microbiol 2022; 13:743147. [PMID: 35308394 PMCID: PMC8931420 DOI: 10.3389/fmicb.2022.743147] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 02/15/2022] [Indexed: 11/13/2022] Open
Abstract
Zika virus (ZIKV) is a mosquito-borne, single-stranded RNA virus belonging to the genus Flavivirus. Although ZIKV infection is usually known to exhibit mild clinical symptoms, intrauterine ZIKV infections have been associated with severe neurological manifestations, including microcephaly and Guillain Barre syndrome (GBS). Therefore, it is imperative to understand the mechanisms of ZIKV entry into the central nervous system (CNS) and its effect on brain cells. Several routes of neuro-invasion have been identified, among which blood–brain barrier (BBB) disruption is the commonest mode of access. The molecular receptors involved in viral entry remain unknown; with various proposed molecular ZIKV-host interactions including potential non-receptor mediated cellular entry. As ZIKV invade neuronal cells, they trigger neurotoxic mechanisms via cell-autonomous and non-cell autonomous pathways, resulting in neurogenesis dysfunction, viral replication, and cell death, all of which eventually lead to microcephaly. Together, our understanding of the biological mechanisms of ZIKV exposure would aid in the development of anti-ZIKV therapies targeting host cellular and/or viral components to combat ZIKV infection and its neurological manifestations. In this present work, we review the current understanding of ZIKV entry mechanisms into the CNS and its implications on the brain. We also highlight the status of the drug repurposing approach for the development of potential antiviral drugs against ZIKV.
Collapse
Affiliation(s)
- Li Yin Tan
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
- Greenslopes Private Hospital, Greenslopes, QLD, Australia
| | - Thamil Vaani Komarasamy
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
| | - William James
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | - Vinod R. M. T. Balasubramaniam
- Infection and Immunity Research Strength, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway, Malaysia
- *Correspondence: Vinod R. M. T. Balasubramaniam,
| |
Collapse
|
29
|
de Oliveira JADP, de Athaide MM, Rahman AU, de Mattos Barbosa MG, Jardim MM, Moraes MO, Pinheiro RO. Kynurenines in the Pathogenesis of Peripheral Neuropathy During Leprosy and COVID-19. Front Cell Infect Microbiol 2022; 12:815738. [PMID: 35281455 PMCID: PMC8907883 DOI: 10.3389/fcimb.2022.815738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/27/2022] [Indexed: 11/18/2022] Open
Abstract
Inflammatory disorders are associated with the activation of tryptophan (TRYP) catabolism via the kynurenine pathway (KP). Several reports have demonstrated the role of KP in the immunopathophysiology of both leprosy and coronavirus disease 19 (COVID-19). The nervous system can be affected in infections caused by both Mycobacterium leprae and SARS-CoV-2, but the mechanisms involved in the peripheral neural damage induced by these infectious agents are not fully understood. In recent years KP has received greater attention due the importance of kynurenine metabolites in infectious diseases, immune dysfunction and nervous system disorders. In this review, we discuss how modulation of the KP may aid in controlling the damage to peripheral nerves and the effects of KP activation on neural damage during leprosy or COVID-19 individually and we speculate its role during co-infection.
Collapse
Affiliation(s)
| | | | - Atta Ur Rahman
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | | | - Marcia Maria Jardim
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- Department of Neurology, State University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Milton Ozório Moraes
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
| | - Roberta Olmo Pinheiro
- Leprosy Laboratory, Oswaldo Cruz Institute, Oswaldo Cruz Foundation, Rio de Janeiro, Brazil
- *Correspondence: Roberta Olmo Pinheiro,
| |
Collapse
|
30
|
Ngarka L, Siewe Fodjo JN, Aly E, Masocha W, Njamnshi AK. The Interplay Between Neuroinfections, the Immune System and Neurological Disorders: A Focus on Africa. Front Immunol 2022; 12:803475. [PMID: 35095888 PMCID: PMC8792387 DOI: 10.3389/fimmu.2021.803475] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 12/13/2021] [Indexed: 12/31/2022] Open
Abstract
Neurological disorders related to neuroinfections are highly prevalent in Sub-Saharan Africa (SSA), constituting a major cause of disability and economic burden for patients and society. These include epilepsy, dementia, motor neuron diseases, headache disorders, sleep disorders, and peripheral neuropathy. The highest prevalence of human immunodeficiency virus (HIV) is in SSA. Consequently, there is a high prevalence of neurological disorders associated with HIV infection such as HIV-associated neurocognitive disorders, motor disorders, chronic headaches, and peripheral neuropathy in the region. The pathogenesis of these neurological disorders involves the direct role of the virus, some antiretroviral treatments, and the dysregulated immune system. Furthermore, the high prevalence of epilepsy in SSA (mainly due to perinatal causes) is exacerbated by infections such as toxoplasmosis, neurocysticercosis, onchocerciasis, malaria, bacterial meningitis, tuberculosis, and the immune reactions they elicit. Sleep disorders are another common problem in the region and have been associated with infectious diseases such as human African trypanosomiasis and HIV and involve the activation of the immune system. While most headache disorders are due to benign primary headaches, some secondary headaches are caused by infections (meningitis, encephalitis, brain abscess). HIV and neurosyphilis, both common in SSA, can trigger long-standing immune activation in the central nervous system (CNS) potentially resulting in dementia. Despite the progress achieved in preventing diseases from the poliovirus and retroviruses, these microbes may cause motor neuron diseases in SSA. The immune mechanisms involved in these neurological disorders include increased cytokine levels, immune cells infiltration into the CNS, and autoantibodies. This review focuses on the major neurological disorders relevant to Africa and neuroinfections highly prevalent in SSA, describes the interplay between neuroinfections, immune system, neuroinflammation, and neurological disorders, and how understanding this can be exploited for the development of novel diagnostics and therapeutics for improved patient care.
Collapse
Affiliation(s)
- Leonard Ngarka
- Brain Research Africa Initiative (BRAIN), Yaoundé, Cameroon
- Neuroscience Lab, Faculty of Medicine & Biomedical Sciences, The University of Yaoundé I, Yaoundé, Cameroon
- Department of Neurology, Yaoundé Central Hospital, Yaoundé, Cameroon
| | - Joseph Nelson Siewe Fodjo
- Brain Research Africa Initiative (BRAIN), Yaoundé, Cameroon
- Global Health Institute, University of Antwerp, Antwerp, Belgium
| | - Esraa Aly
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Safat, Kuwait
| | - Willias Masocha
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Kuwait University, Safat, Kuwait
| | - Alfred K. Njamnshi
- Brain Research Africa Initiative (BRAIN), Yaoundé, Cameroon
- Neuroscience Lab, Faculty of Medicine & Biomedical Sciences, The University of Yaoundé I, Yaoundé, Cameroon
- Department of Neurology, Yaoundé Central Hospital, Yaoundé, Cameroon
| |
Collapse
|
31
|
Klowak M, Boggild AK. A review of nutrition in neuropathic pain of leprosy. Ther Adv Infect Dis 2022; 9:20499361221102663. [PMID: 35677111 PMCID: PMC9168857 DOI: 10.1177/20499361221102663] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Accepted: 05/03/2022] [Indexed: 11/15/2022] Open
Abstract
Leprosy is a neglected tropical disease (NTD) that continues to burden low- and middle-income countries (LMICs), despite being eliminated as a public health concern by the World Health Organization (WHO) in 2000. The causative agents, Mycobacterium leprae and Mycobacterium lepromatosis, affect nearly 200,000 individuals globally each year, with over 19,000 new cases detected in the Americas in 2020 alone. Canada has experienced an increasing incidence of leprosy, due to rising levels of travel and migration from endemic areas, reaching over 37,000 individuals with leprosy by the end of 2020. Patients experience a spectrum of signs and symptoms including hypopigmented cutaneous macules alongside peripheral neuropathy including peripheral neuropathic pain (PNP) and disabling sensory neuropathies. Despite the development of effective and curative therapeutics via multidrug therapy (MDT), many barriers to treatment adherence and effective immunological control of the pathogen challenge the care of patients with leprosy. Socioeconomic barriers, such as disability-related social stigma and often undiagnosed nutritional deficiencies, have resulted in heightened disease severity. PNP therapeutics are associated with significant side effects and remain ineffective as the majority of individuals will not experience a greater than 30% reduction of symptoms. Nutrient supplementation is known to be instrumental in reducing host oxidative stress, strengthening the immune system and mitigating comorbidities. Likewise, dietary lifestyle interventions known to be physiologically beneficial have recently emerged as powerful tools conferring neuroprotective effects, potentially mitigating PNP severity. However, a significant knowledge gap concerning the effect of adequate nutrition on host immunological control of leprosy and PNP severity exists. Further evaluation of this relationship will provide key insight into the pathogenesis of leprosy, strengthening the current body of literature.
Collapse
Affiliation(s)
- Michael Klowak
- Institute of Medical Science, University of
Toronto, Toronto, ON, Canada
| | - Andrea K. Boggild
- Tropical Disease Unit, Toronto General
Hospital, 200 Elizabeth Street, 13EN-218, Toronto, ON M5G 2C4, Canada
- Institute of Medical Science, University of
Toronto, Toronto, ON, Canada
- Department of Medicine, University of Toronto,
Toronto, ON, Canada
| |
Collapse
|
32
|
Jesus JBD, Sena CBCD, Macchi BDM, do Nascimento JLM. Cyclosporin A as an Alternative Neuroimmune Strategy to Control Neurites and Recover Neuronal Tissues in Leprosy. Neuroimmunomodulation 2022; 29:15-20. [PMID: 34350891 DOI: 10.1159/000517993] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 03/21/2020] [Indexed: 11/19/2022] Open
Abstract
Leprosy, also known as Hansen's disease, continues to have a substantial impact on infectious diseases throughout the world. Leprosy is a chronic granulomatous infection caused by Mycobacterium leprae and shows a wide clinical and immunopathological spectrum related to the immune response of the host. This disease affects the skin and other internal organs with a predilection to infect Schwann cells, which play an active role during axonal degeneration, affecting peripheral nerves and promoting neurological damage. This chronic inflammation influences immune function, leading to neuroimmune disorders. Leprosy is also associated with neuroimmune reactions, including type 1 (reverse) and type 2 (erythema nodosum leprosum) reactions, which are immune-mediated inflammatory complications that can occur during the disease and appear to worsen dramatically; these complications are the main concerns of patients. The reactions may induce neuritis and neuropathic pain that progressively worsen with irreversible deformity and disabilities responsible for the immunopathological damage and glial/neuronal death. However, the neuronal damage is not always associated with the reactional episode. Also, the efficacy in the treatment of reactions remains low because of the nonexistence of a specific treatment and missing informations about the immunopathogenesis of the reactional episode. There is increasing evidence that peripheral neuron dysfunction strongly depends on the activity of neurotrophins. The most important neurotrophin in leprosy is nerve growth factor (NGF), which is decreased in the course of leprosy, as well as the presence of autoantibodies against NGF in all clinical forms of leprosy and neuroimmune reactions. The levels of autoantibodies against NGF are decreased by the immunomodulatory activity of cyclosporin A, which mainly controls pain and improves motor function and sensitivity. Therefore, the suppression of anti-NGF and the regulation of NGF levels can be attractive targets for immunomodulatory treatment and for controlling the neuroimmune reactions of leprosy, although further studies are needed to clarify this point.
Collapse
Affiliation(s)
- Jessica Batista de Jesus
- Laboratory of Molecular and Cellular Neurochemistry, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
| | - Chubert Bernardo Castro de Sena
- Laboratory of Structural Biology, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- National Institute of Science and Technology in Neuroimmunomodulation (INCT - NIM), Rio de Janeiro, Brazil
| | - Barbarella de Matos Macchi
- Laboratory of Molecular and Cellular Neurochemistry, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- National Institute of Science and Technology in Neuroimmunomodulation (INCT - NIM), Rio de Janeiro, Brazil
| | - José Luiz Martins do Nascimento
- Laboratory of Molecular and Cellular Neurochemistry, Institute of Biological Sciences, Federal University of Pará, Belém, Brazil
- National Institute of Science and Technology in Neuroimmunomodulation (INCT - NIM), Rio de Janeiro, Brazil
- Graduation Program in Pharmaceutical Science, Federal University of Amapá, Macapá, Brazil
| |
Collapse
|
33
|
Pant DC, Nazarko TY. Selective autophagy: the rise of the zebrafish model. Autophagy 2021; 17:3297-3305. [PMID: 33228439 PMCID: PMC8632090 DOI: 10.1080/15548627.2020.1853382] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Accepted: 11/16/2020] [Indexed: 12/31/2022] Open
Abstract
Selective autophagy is a specific elimination of certain intracellular substrates by autophagic pathways. The most studied macroautophagy pathway involves tagging and recognition of a specific cargo by the autophagic membrane (phagophore) followed by the complete sequestration of targeted cargo from the cytosol by the double-membrane vesicle, autophagosome. Until recently, the knowledge about selective macroautophagy was minimal, but now there is a panoply of links elucidating how phagophores engulf their substrates selectively. The studies of selective autophagy processes have further stressed the importance of using the in vivo models to validate new in vitro findings and discover the physiologically relevant mechanisms. However, dissecting how the selective autophagy occurs yet remains difficult in living organisms, because most of the organelles are relatively inaccessible to observation and experimental manipulation in mammals. In recent years, zebrafish (Danio rerio) is widely recognized as an excellent model for studying autophagic processes in vivo because of its optical accessibility, genetic manipulability and translational potential. Several selective autophagy pathways, such as mitophagy, xenophagy, lipophagy and aggrephagy, have been investigated using zebrafish and still need to be studied further, while other selective autophagy pathways, such as pexophagy or reticulophagy, could also benefit from the use of the zebrafish model. In this review, we shed light on how zebrafish contributed to our understanding of these selective autophagy processes by providing the in vivo platform to study them at the organismal level and highlighted the versatility of zebrafish model in the selective autophagy field.Abbreviations: AD: Alzheimer disease; ALS: amyotrophic lateral sclerosis; Atg: autophagy-related; CMA: chaperone-mediated autophagy; CQ: chloroquine; HsAMBRA1: human AMBRA1; KD: knockdown; KO: knockout; LD: lipid droplet; MMA: methylmalonic acidemia; PD: Parkinson disease; Tg: transgenic.
Collapse
Affiliation(s)
- Devesh C. Pant
- Department of Biology, Georgia State University, Atlanta, GA, USA
| | - Taras Y. Nazarko
- Department of Biology, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
34
|
Varela M, Meijer AH. A fresh look at mycobacterial pathogenicity with the zebrafish host model. Mol Microbiol 2021; 117:661-669. [PMID: 34714579 PMCID: PMC9297993 DOI: 10.1111/mmi.14838] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 10/26/2021] [Indexed: 12/25/2022]
Abstract
The zebrafish has earned its place among animal models to study tuberculosis and other infections caused by pathogenic mycobacteria. This model host is especially useful to study the role of granulomas, the inflammatory lesions characteristic of mycobacterial disease. The optically transparent zebrafish larvae provide a window on the initial stages of granuloma development in the context of innate immunity. Application of fluorescent dyes and transgenic markers enabled real-time visualization of how innate immune mechanisms, such as autophagy and inflammasomes, are activated in infected macrophages and how propagating calcium signals drive communication between macrophages during granuloma formation. A combination of imaging, genetic, and chemical approaches has revealed that the interplay between macrophages and mycobacteria is the main driver of tissue dissemination and granuloma development, while neutrophils have a protective function in early granulomas. Different chemokine signaling axes, conserved between humans and zebrafish, have been shown to recruit macrophages permissive to mycobacterial growth, control their microbicidal capacity, drive their spreading and aggregation, and mediate granuloma vascularization. Finally, zebrafish larvae are now exploited to explore cell death processes, emerging as crucial factors in granuloma expansion. In this review, we discuss recent advances in the understanding of mycobacterial pathogenesis contributed by zebrafish models.
Collapse
Affiliation(s)
- Monica Varela
- Institute of Biology Leiden, Leiden University, Leiden, The Netherlands
| | | |
Collapse
|
35
|
Abstract
Neuropathy and related disabilities are the major medical consequences of leprosy, which remains a global medical concern. Despite major advances in understanding the mechanisms of M. leprae entry into peripheral nerves, most aspects of the pathogenesis of leprosy neuropathy remain poorly understood. Sensory loss is characteristic of leprosy, but neuropathic pain is sometimes observed. Effective anti-microbial therapy is available, but neuropathy remains a problem especially if diagnosis and treatment are delayed. Currently there is intense interest in post-exposure prophylaxis with single-dose rifampin in endemic areas, as well as with enhanced prophylactic regimens in some situations. Some degree of nerve involvement is seen in all cases and neuritis may occur in the absence of leprosy reactions, but acute neuritis commonly accompanies both Type 1 and Type 2 leprosy reactions and may be difficult to manage. A variety of established as well as new methods for the early diagnosis and assessment of leprosy neuropathy are reviewed. Corticosteroids offer the primary treatment for neuritis and for subclinical neuropathy in leprosy, but success is limited if nerve function impairment is present at the time of diagnosis. A candidate vaccine has shown apparent benefit in preventing nerve injury in the armadillo model. The development of new therapeutics for leprosy neuropathy is greatly needed.
Collapse
Affiliation(s)
- Gigi J Ebenezer
- Neurology/Cutaneous Nerve Laboratory, Johns Hopkins University, The John G Rangos Bldg, room: 440, 855 North Wolfe Street, Baltimore, MD, 21205, USA.
| | | |
Collapse
|
36
|
Rajme-Manzur D, Gollas-Galván T, Vargas-Albores F, Martínez-Porchas M, Hernández-Oñate MÁ, Hernández-López J. Granulomatous bacterial diseases in fish: An overview of the host's immune response. Comp Biochem Physiol A Mol Integr Physiol 2021; 261:111058. [PMID: 34419575 DOI: 10.1016/j.cbpa.2021.111058] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/26/2021] [Accepted: 08/17/2021] [Indexed: 11/15/2022]
Abstract
Bacterial diseases represent the main impediment to the development of fish aquaculture. Granulomatous diseases caused by bacteria lead to fish culture losses by high mortality rates and slow growth. Bacteria belonging to genera Streptococcus spp., Mycobacterium sp., Nocardia sp., Francisella sp., and Staphylococcus sp. have been implicated in the development of granulomatous processes. The granuloma formation and the fish's immune response continue to be the subject of scientific research. In fish, the first defense line is constituted by non-specific humoral factors through growth-inhibiting substances such as transferrin and antiproteases, or lytic effectors as lysozyme and antimicrobial peptides, and linking with non-specific phagocyte responses. If the first line is breached, fish produce antibody constituents for a specific humoral defense inhibiting bacterial adherence, as well as the mobilization of non-phagocytic host cells and counteracting toxins from bacteria. However, bacteria causing granulomatous diseases can be persistent microorganisms, difficult to eliminate that can cause chronic diseases, even using some immune system components to survive. Understanding the infectious process leading to granulomatosis and how the host's immune system responds against granulomatous diseases is crucial to know more about fish immunology and develop strategies to overcome granulomatous diseases.
Collapse
Affiliation(s)
- David Rajme-Manzur
- Centro de Investigación en Alimentación y Desarrollo, A.C. Coordinación de Ciencia y Tecnología de Alimentos de Origen Animal, Biology of Aquatic Organisms, Hermosillo, Sonora, Mexico
| | - Teresa Gollas-Galván
- Centro de Investigación en Alimentación y Desarrollo, A.C. Coordinación de Ciencia y Tecnología de Alimentos de Origen Animal, Biology of Aquatic Organisms, Hermosillo, Sonora, Mexico
| | - Francisco Vargas-Albores
- Centro de Investigación en Alimentación y Desarrollo, A.C. Coordinación de Ciencia y Tecnología de Alimentos de Origen Animal, Biology of Aquatic Organisms, Hermosillo, Sonora, Mexico
| | - Marcel Martínez-Porchas
- Centro de Investigación en Alimentación y Desarrollo, A.C. Coordinación de Ciencia y Tecnología de Alimentos de Origen Animal, Biology of Aquatic Organisms, Hermosillo, Sonora, Mexico.
| | - Miguel Ángel Hernández-Oñate
- CONACYT - Centro de Investigación en Alimentación y Desarrollo, A.C. Coordinación de Ciencia y Tecnología de Alimentos de Origen Vegetal, Hermosillo, Sonora, Mexico
| | - Jorge Hernández-López
- Centro de Investigaciones del Noroeste (CIBNOR), Unidad Hermosillo, Hermosillo, Sonora, Mexico
| |
Collapse
|
37
|
Gilpin TE, Walter FR, Herbath M, Sandor M, Fabry Z. Mycobacterium bovis Bacillus Calmette-Guérin-Infected Dendritic Cells Induce TNF-α-Dependent Cell Cluster Formation That Promotes Bacterial Dissemination through an In Vitro Model of the Blood-Brain Barrier. THE JOURNAL OF IMMUNOLOGY 2021; 207:1065-1077. [PMID: 34321229 DOI: 10.4049/jimmunol.2001094] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2020] [Accepted: 06/11/2021] [Indexed: 11/19/2022]
Abstract
CNS tuberculosis (CNSTB) is the most severe manifestation of extrapulmonary tuberculosis infection, but the mechanism of how mycobacteria cross the blood-brain barrier (BBB) is not well understood. In this study, we report a novel murine in vitro BBB model combining primary brain endothelial cells, Mycobacterium bovis bacillus Calmette-Guérin-infected dendritic cells (DCs), PBMCs, and bacterial Ag-specific CD4+ T cells. We show that mycobacterial infection limits DC mobility and also induces cellular cluster formation that has a similar composition to pulmonary mycobacterial granulomas. Within the clusters, infection from DCs disseminates to the recruited monocytes, promoting bacterial expansion. Mycobacterium-induced in vitro granulomas have been described previously, but this report shows that they can form on brain endothelial cell monolayers. Cellular cluster formation leads to cluster-associated damage of the endothelial cell monolayer defined by mitochondrial stress, disorganization of the tight junction proteins ZO-1 and claudin-5, upregulation of the adhesion molecules VCAM-1 and ICAM-1, and increased transmigration of bacteria-infected cells across the BBB. TNF-α inhibition reduces cluster formation on brain endothelial cells and mitigates cluster-associated damage. These data describe a model of bacterial dissemination across the BBB shedding light on a mechanism that might contribute to CNS tuberculosis infection and facilitate treatments.
Collapse
Affiliation(s)
- Trey E Gilpin
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI; and.,Graduate Training Program of Cellular and Molecular Pathology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| | - Fruzsina R Walter
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI; and
| | - Melinda Herbath
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI; and
| | - Matyas Sandor
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI; and
| | - Zsuzsanna Fabry
- Department of Pathology and Laboratory Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI; and .,Graduate Training Program of Cellular and Molecular Pathology, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
38
|
Wang Y, Fan X, Du L, Liu B, Xiao H, Zhang Y, Wu Y, Liu F, Chang YF, Guo X, He P. Scavenger receptor A1 participates in uptake of Leptospira interrogans serovar Autumnalis strain 56606v and inflammation in mouse macrophages. Emerg Microbes Infect 2021; 10:939-953. [PMID: 33929941 PMCID: PMC8153709 DOI: 10.1080/22221751.2021.1925160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
Leptospirosis, caused by pathogenic Leptospira species, has emerged as a widespread zoonotic disease worldwide. Macrophages mediate the elimination of pathogens through phagocytosis and cytokine production. Scavenger receptor A1 (SR-A1), one of the critical receptors mediating this process, plays a complicated role in innate immunity. However, the role of SR-A1 in the immune response against pathogenic Leptospira invasion is unknown. In the present study, we found that SR-A1 is an important nonopsonic phagocytic receptor on murine macrophages for Leptospira. However, intraperitoneal injection of leptospires into WT mice presented with more apparent jaundice, subcutaneous hemorrhaging, and higher bacteria burdens in blood and tissues than that of SR-A1-/- mice. Exacerbated cytokine and inflammatory mediator levels were also observed in WT mice and higher recruited macrophages in the liver than those of SR-A1-/- mice. Our findings collectively reveal that although beneficial in the uptake of Leptospira by macrophage, SR-A1 might be exploited by Leptospira to modulate inflammatory activation and increase the susceptibility of infection in the host. These results provide our new insights into the innate immune response during early infection by L. interrogans.
Collapse
Affiliation(s)
- Yanchun Wang
- Department of Medical Microbiology and Parasitology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Department of Clinical Laboratory, Fudan University Shanghai Cancer Center, Shanghai, People's Republic of China
| | - Xia Fan
- Department of Medical Microbiology and Parasitology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Lin Du
- Department of Medical Microbiology and Parasitology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Boyu Liu
- Department of Medical Microbiology and Parasitology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Haihan Xiao
- Department of Medical Microbiology and Parasitology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yan Zhang
- Department of Medical Microbiology and Parasitology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yunqiang Wu
- Department of Medical Microbiology and Parasitology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Fuli Liu
- Department of Medical Microbiology and Parasitology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yung-Fu Chang
- College of Veterinary Medicine, Cornell University, Ithaca, NY, USA
| | - Xiaokui Guo
- Key Laboratory of Parasite and Vector Biology, Ministry of Health; School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Ping He
- Department of Medical Microbiology and Parasitology, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.,Key Laboratory of Parasite and Vector Biology, Ministry of Health; School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
39
|
de Oliveira MF, Medeiros RCA, Mietto BS, Calvo TL, Mendonça APM, Rosa TLSA, da Silva DS, do Carmo de Vasconcelos KG, Pereira AMR, de Macedo CS, Pereira GMB, de Berrêdo Pinho Moreira M, Pessolani MCV, Moraes MO, Lara FA. Reduction of host cell mitochondrial activity as Mycobacterium leprae's strategy to evade host innate immunity. Immunol Rev 2021; 301:193-208. [PMID: 33913182 PMCID: PMC10084840 DOI: 10.1111/imr.12962] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/09/2021] [Accepted: 02/10/2021] [Indexed: 12/20/2022]
Abstract
Leprosy is a much-feared incapacitating infectious disease caused by Mycobacterium leprae or M lepromatosis, annually affecting roughly 200,000 people worldwide. During host-pathogen interaction, M leprae subverts the immune response, leading to development of disease. Throughout the last few decades, the impact of energy metabolism on the control of intracellular pathogens and leukocytic differentiation has become more evident. Mitochondria play a key role in regulating newly-discovered immune signaling pathways by controlling redox metabolism and the flow of energy besides activating inflammasome, xenophagy, and apoptosis. Likewise, this organelle, whose origin is probably an alphaproteobacterium, directly controls the intracellular pathogens attempting to invade its niche, a feature conquered at the expense of billions of years of coevolution. In the present review, we discuss the role of reduced host cell mitochondrial activity during M leprae infection and the consequential fates of M leprae and host innate immunity. Conceivably, inhibition of mitochondrial energy metabolism emerges as an overlooked and novel mechanism developed by M leprae to evade xenophagy and the host immune response.
Collapse
Affiliation(s)
- Marcus Fernandes de Oliveira
- Laboratório de Bioquímica de Resposta ao Estresse, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | - Bruno Siqueira Mietto
- Instituto de Ciências Biológicas, Universidade Federal de Juiz de Fora, Minas Gerais, Brazil
| | - Thyago Leal Calvo
- Laboratório de Hanseníase, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | - Ana Paula Miranda Mendonça
- Laboratório de Bioquímica de Resposta ao Estresse, Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | - Cristiana Santos de Macedo
- Laboratório de Microbiologia Celular, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
- Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| | | | | | | | | | - Flavio Alves Lara
- Laboratório de Microbiologia Celular, Fundação Oswaldo Cruz, Rio de Janeiro, RJ, Brazil
| |
Collapse
|
40
|
van Dijk JHM, van Hooij A, Groot LM, Geboers J, Moretti R, Verhard‐Seymonsbergen E, de Jong D, van der Marel GA, Corstjens PLAM, Codée JDC, Geluk A. Synthetic Phenolic Glycolipids for Application in Diagnostic Tests for Leprosy. Chembiochem 2021; 22:1487-1493. [PMID: 33332701 PMCID: PMC8248333 DOI: 10.1002/cbic.202000810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2020] [Revised: 12/16/2020] [Indexed: 01/06/2023]
Abstract
Point-of-care (POC) diagnostic tests for the rapid detection of individuals infected with Mycobacterium leprae, the causative pathogen of leprosy, represent efficient tools to guide therapeutic and prophylactic treatment strategies in leprosy control programs, thus positively contributing to clinical outcome and reducing transmission of this infectious disease. Levels of antibodies directed against the M. leprae-specific phenolic glycolipid I (PGL-I) closely correlate with an individual's bacterial load and a higher risk of developing leprosy. We describe herein the assembly of a set of PGL glycans carrying the characteristic phenol aglycon and featuring different methylation patterns. The PGL trisaccharides were applied to construct neoglycoproteins that were used to detect anti-PGL IgM antibodies in leprosy patients. ELISAs and quantitative lateral-flow assays based on up-converting nanoparticles (UCP-LFAs) showed that the generated PGL-I and PGL-II trisaccharide neoglycoconjugates can be applied for the detection of anti M. leprae IgM antibodies in POC tests.
Collapse
Affiliation(s)
- J. Hessel M. van Dijk
- Leiden Institute for ChemistryLeiden UniversityEinsteinweg 552333 CCLeiden (TheNetherlands
| | - Anouk van Hooij
- Department of Infectious DiseasesLeiden University Medical CenterAlbinusdreef 22333 ZALeiden (TheNetherlands
| | - L. Melanie Groot
- Leiden Institute for ChemistryLeiden UniversityEinsteinweg 552333 CCLeiden (TheNetherlands
| | - Jolijn Geboers
- Department of Infectious DiseasesLeiden University Medical CenterAlbinusdreef 22333 ZALeiden (TheNetherlands
| | - Rosita Moretti
- Department of Infectious DiseasesLeiden University Medical CenterAlbinusdreef 22333 ZALeiden (TheNetherlands
| | - Els Verhard‐Seymonsbergen
- Department of Infectious DiseasesLeiden University Medical CenterAlbinusdreef 22333 ZALeiden (TheNetherlands
| | - Danielle de Jong
- Department Cell and Chemical BiologyLeiden University Medical CenterAlbinusdreef 22333 ZALeiden (TheNetherlands
| | - Gijs A. van der Marel
- Leiden Institute for ChemistryLeiden UniversityEinsteinweg 552333 CCLeiden (TheNetherlands
| | - Paul L. A. M. Corstjens
- Department Cell and Chemical BiologyLeiden University Medical CenterAlbinusdreef 22333 ZALeiden (TheNetherlands
| | - Jeroen D. C. Codée
- Leiden Institute for ChemistryLeiden UniversityEinsteinweg 552333 CCLeiden (TheNetherlands
| | - Annemieke Geluk
- Department of Infectious DiseasesLeiden University Medical CenterAlbinusdreef 22333 ZALeiden (TheNetherlands
| |
Collapse
|
41
|
Strategies for drug target identification in Mycobacterium leprae. Drug Discov Today 2021; 26:1569-1573. [PMID: 33798649 DOI: 10.1016/j.drudis.2021.03.026] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Revised: 03/01/2021] [Accepted: 03/23/2021] [Indexed: 11/22/2022]
Abstract
Hansen's disease (HD), or leprosy, continues to be endemic in many parts of the world. Although multidrug therapy (MDT) is successful in curing a large number of patients, some of them abandon it because it is a long-term treatment. Therefore, identification of new drug targets in Mycobacterium leprae is considered of high importance. Here, we introduce an overview of in silico and in vitro studies that might be of help in this endeavor. The essentiality of M. leprae proteins is reviewed with discussion of flux balance analysis, gene expression, and knockout articles. Finally, druggability techniques are proposed for the validation of new M. leprae protein targets (see Fig. 1).
Collapse
|
42
|
van Hooij A, Geluk A. In search of biomarkers for leprosy by unraveling the host immune response to Mycobacterium leprae. Immunol Rev 2021; 301:175-192. [PMID: 33709405 PMCID: PMC8251784 DOI: 10.1111/imr.12966] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Accepted: 02/23/2021] [Indexed: 12/18/2022]
Abstract
Mycobacterium leprae, the causative agent of leprosy, is still actively transmitted in endemic areas reflected by the fairly stable number of new cases detected each year. Recognizing the signs and symptoms of leprosy is challenging, especially at an early stage. Improved diagnostic tools, based on sensitive and specific biomarkers, that facilitate diagnosis of leprosy are therefore urgently needed. In this review, we address the challenges that leprosy biomarker research is facing by reviewing cell types reported to be involved in host immunity to M leprae. These cell types can be associated with different possible fates of M leprae infection being either protective immunity, or pathogenic immune responses inducing nerve damage. Unraveling these responses will facilitate the search for biomarkers. Implications for further studies to disentangle the complex interplay between host responses that lead to leprosy disease are discussed, providing leads for the identification of new biomarkers to improve leprosy diagnostics.
Collapse
Affiliation(s)
- Anouk van Hooij
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| | - Annemieke Geluk
- Department of Infectious Diseases, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
43
|
Adams LB. Susceptibility and resistance in leprosy: Studies in the mouse model. Immunol Rev 2021; 301:157-174. [PMID: 33660297 PMCID: PMC8252540 DOI: 10.1111/imr.12960] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 02/01/2021] [Accepted: 02/02/2021] [Indexed: 12/24/2022]
Abstract
Leprosy is a chronic granulomatous infectious disease caused by the pathogen, Mycobacterium leprae, and the more recently discovered, M. lepromatosis. Described in 1873, M. leprae was among the first microorganisms to be proposed as a cause of a human infectious disease. As an obligate intracellular bacterium, it has still not thus far been reproducibly cultivated in axenic medium or cell cultures. Shepard's mouse footpad assay, therefore, was truly a breakthrough in leprosy research. The generation of immunosuppressed and genetically engineered mice, along with advances in molecular and cellular techniques, has since offered more tools for the study of the M. leprae–induced granuloma. While far from perfect, these new mouse models have provided insights into the immunoregulatory mechanisms responsible for the spectrum of this complex disease.
Collapse
Affiliation(s)
- Linda B Adams
- Department of Health and Human Services, Health Resources and Services Administration, Healthcare Systems Bureau, National Hansen's Disease Programs Laboratory Research Branch, Baton Rouge, LA, USA
| |
Collapse
|
44
|
Ordonez AA, Tucker EW, Anderson CJ, Carter CL, Ganatra S, Kaushal D, Kramnik I, Lin PL, Madigan CA, Mendez S, Rao J, Savic RM, Tobin DM, Walzl G, Wilkinson RJ, Lacourciere KA, Via LE, Jain SK. Visualizing the dynamics of tuberculosis pathology using molecular imaging. J Clin Invest 2021; 131:145107. [PMID: 33645551 PMCID: PMC7919721 DOI: 10.1172/jci145107] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Nearly 140 years after Robert Koch discovered Mycobacterium tuberculosis, tuberculosis (TB) remains a global threat and a deadly human pathogen. M. tuberculosis is notable for complex host-pathogen interactions that lead to poorly understood disease states ranging from latent infection to active disease. Additionally, multiple pathologies with a distinct local milieu (bacterial burden, antibiotic exposure, and host response) can coexist simultaneously within the same subject and change independently over time. Current tools cannot optimally measure these distinct pathologies or the spatiotemporal changes. Next-generation molecular imaging affords unparalleled opportunities to visualize infection by providing holistic, 3D spatial characterization and noninvasive, temporal monitoring within the same subject. This rapidly evolving technology could powerfully augment TB research by advancing fundamental knowledge and accelerating the development of novel diagnostics, biomarkers, and therapeutics.
Collapse
Affiliation(s)
- Alvaro A. Ordonez
- Center for Infection and Inflammation Imaging Research
- Center for Tuberculosis Research
- Department of Pediatrics, and
| | - Elizabeth W. Tucker
- Center for Infection and Inflammation Imaging Research
- Center for Tuberculosis Research
- Department of Anesthesiology and Critical Care Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | | | - Claire L. Carter
- Hackensack Meridian Health Center for Discovery and Innovation, Nutley, New Jersey, USA
| | - Shashank Ganatra
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Deepak Kaushal
- Southwest National Primate Research Center, Texas Biomedical Research Institute, San Antonio, Texas, USA
| | - Igor Kramnik
- Pulmonary Center, Department of Medicine, Boston University School of Medicine, Boston, Massachusets, USA
- National Emerging Infectious Diseases Laboratories, Boston University, Boston, Massachusetts, USA
| | - Philana L. Lin
- Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA
| | - Cressida A. Madigan
- Department of Biological Sciences, UCSD, San Diego, La Jolla, California, USA
| | - Susana Mendez
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Rockville, Maryland, USA
| | - Jianghong Rao
- Molecular Imaging Program at Stanford, Department of Radiology and Chemistry, Stanford University, Stanford, California, USA
| | - Rada M. Savic
- Department of Bioengineering and Therapeutic Sciences, School of Pharmacy and Medicine, UCSF, San Francisco, California, USA
| | - David M. Tobin
- Department of Molecular Genetics and Microbiology, Duke University, Durham, North Carolina, USA
| | - Gerhard Walzl
- SAMRC Centre for Tuberculosis Research, DST/NRF Centre of Excellence for Biomedical Tuberculosis Research, Division of Molecular Biology and Human Genetics, Faculty of Medicine and Health Sciences, Department of Biomedical Sciences, Stellenbosch University, Cape Town, South Africa
| | - Robert J. Wilkinson
- Department of Infectious Diseases, Imperial College London, London, United Kingdom
- Wellcome Centre for Infectious Diseases Research in Africa and Institute of Infectious Disease and Molecular Medicine, University of Cape Town, Cape Town, South Africa
- The Francis Crick Institute, London, United Kingdom
| | - Karen A. Lacourciere
- National Institute of Allergy and Infectious Diseases (NIAID), NIH, Rockville, Maryland, USA
| | - Laura E. Via
- Tuberculosis Research Section, Laboratory of Clinical Immunology and Microbiology, and Tuberculosis Imaging Program, Division of Intramural Research, NIAID, NIH, Bethesda, Maryland, USA
| | - Sanjay K. Jain
- Center for Infection and Inflammation Imaging Research
- Center for Tuberculosis Research
- Department of Pediatrics, and
| |
Collapse
|
45
|
Dubey A, Gaur R, Arela N, Singh V, Arora M, Sagar H, Kamal R, Natarajan M, Bhagyawant SS, Patil SA, Mohanty KK. Soluble mediators of immune significance in sera of leprosy patients. LEPROSY REV 2020. [DOI: 10.47276/lr.91.4.403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
|
46
|
Luo WY, Lu B, Zhou RY, Hu X, Wang J. Chemical Synthesis of the Trisaccharide Epitope of Phenolic Glycolipid-1 Surface Antigen from Mycobacterium leprae. J Org Chem 2020; 85:10973-10979. [PMID: 32806098 DOI: 10.1021/acs.joc.0c01088] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
PGL-1 epitope 1 bearing a p-aminoethylphenol group was efficiently synthesized by using linear synthetic routes. A method for efficient synthesis of oligosaccharides containing rhamnose rings was developed. The chemistry is flexible and could be used for the synthesis of other PGLs antigens. A biotinylated PGL-1 antigen 23 was synthesized and could be used as a probe for early detection of leprosy.
Collapse
Affiliation(s)
- Wan-Yue Luo
- School of Pharmacy, Library, Yancheng Teachers University, Hope Avenue South Road No. 2, Yancheng 224007, Jiangsu Province, P.R. China
| | - Bin Lu
- School of Pharmacy, Library, Yancheng Teachers University, Hope Avenue South Road No. 2, Yancheng 224007, Jiangsu Province, P.R. China
| | - Rong-Ye Zhou
- School of Pharmacy, Library, Yancheng Teachers University, Hope Avenue South Road No. 2, Yancheng 224007, Jiangsu Province, P.R. China
| | - Xiao Hu
- School of Pharmacy, Library, Yancheng Teachers University, Hope Avenue South Road No. 2, Yancheng 224007, Jiangsu Province, P.R. China
| | - Jin Wang
- School of Pharmacy, Library, Yancheng Teachers University, Hope Avenue South Road No. 2, Yancheng 224007, Jiangsu Province, P.R. China.,Université de Toulouse, Université Toulouse III - Paul Sabatier, 118 route de Narbonne, 31062 Toulouse, Cedex 9, France
| |
Collapse
|
47
|
Illuminating Macrophage Contributions to Host-Pathogen Interactions In Vivo: the Power of Zebrafish. Infect Immun 2020; 88:IAI.00906-19. [PMID: 32179583 DOI: 10.1128/iai.00906-19] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Macrophages are a key cell type in innate immunity. Years of in vitro cell culture studies have unraveled myriad macrophage pathways that combat pathogens and demonstrated how pathogen effectors subvert these mechanisms. However, in vitro cell culture studies may not accurately reflect how macrophages fit into the context of an innate immune response in whole animals with multiple cell types and tissues. Larval zebrafish have emerged as an intermediate model of innate immunity and host-pathogen interactions to bridge the gap between cell culture studies and mammalian models. These organisms possess an innate immune system largely conserved with that of humans and allow state-of-the-art genetic and imaging techniques, all in the context of an intact organism. Using larval zebrafish, researchers are elucidating the function of macrophages in response to many different infections, including both bacterial and fungal pathogens. The goal of this review is to highlight studies in zebrafish that utilized live-imaging techniques to analyze macrophage activities in response to pathogens. Recent studies have explored the roles of specific pathways and mechanisms in macrophage killing ability, explored how pathogens subvert these responses, identified subsets of macrophages with differential microbicidal activities, and implicated macrophages as an intracellular niche for pathogen survival and trafficking. Research using this model continues to advance our understanding of how macrophages, and specific pathways inside these cells, fit into complex multicellular innate immune responses in vivo, providing important information on how pathogens evade these pathways and how we can exploit them for development of treatments against microbial infections.
Collapse
|
48
|
Abstract
Innate immune cells destroy pathogens within a transient organelle called the phagosome. When pathogen-associated molecular patterns (PAMPs) displayed on the pathogen are recognized by Toll-like receptors (TLRs) on the host cell, it activates inducible nitric oxide synthase (NOS2) which instantly fills the phagosome with nitric oxide (NO) to clear the pathogen. Selected pathogens avoid activating NOS2 by concealing key PAMPs from their cognate TLRs. Thus, the ability to map NOS2 activity triggered by PAMPs can reveal critical mechanisms underlying pathogen susceptibility. Here, we describe DNA-based probes that ratiometrically report phagosomal and endosomal NO, and can be molecularly programmed to display precise stoichiometries of any desired PAMP. By mapping phagosomal NO produced in microglia of live zebrafish brains, we found that single-stranded RNA of bacterial origin acts as a PAMP and activates NOS2 by engaging TLR-7. This technology can be applied to study PAMP-TLR interactions in diverse organisms.
Collapse
|
49
|
Linnerz T, Hall CJ. The Diverse Roles of Phagocytes During Bacterial and Fungal Infections and Sterile Inflammation: Lessons From Zebrafish. Front Immunol 2020; 11:1094. [PMID: 32582182 PMCID: PMC7289964 DOI: 10.3389/fimmu.2020.01094] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Accepted: 05/06/2020] [Indexed: 12/23/2022] Open
Abstract
The immediate and natural reaction to both infectious challenges and sterile insults (wounds, tissue trauma or crystal deposition) is an acute inflammatory response. This inflammatory response is mediated by activation of the innate immune system largely comprising professional phagocytes (neutrophils and macrophages). Zebrafish (danio rerio) larvae possess many advantages as a model organism, including their genetic tractability and highly conserved innate immune system. Exploiting these attributes and the live imaging potential of optically transparent zebrafish larvae has greatly contributed to our understanding of how neutrophils and macrophages orchestrate the initiation and resolution phases of inflammatory responses. Numerous bacterial and fungal infection models have been successfully established using zebrafish as an animal model and studies investigating neutrophil and macrophage behavior to sterile insults have also provided unique insights. In this review we highlight how examining the larval zebrafish response to specific bacterial and fungal pathogens has uncovered cellular and molecular mechanisms behind a variety of phagocyte responses, from those that protect the host to those that are detrimental. We also describe how modeling sterile inflammation in larval zebrafish has provided an opportunity to dissect signaling pathways that control the recruitment, and fate, of phagocytes at inflammatory sites. Finally, we briefly discuss some current limitations, and opportunities to improve, the zebrafish model system for studying phagocyte biology.
Collapse
Affiliation(s)
- Tanja Linnerz
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| | - Christopher J Hall
- Department of Molecular Medicine and Pathology, Faculty of Medical and Health Sciences, University of Auckland, Auckland, New Zealand
| |
Collapse
|
50
|
Röltgen K, Pluschke G, Spencer JS, Brennan PJ, Avanzi C. The immunology of other mycobacteria: M. ulcerans, M. leprae. Semin Immunopathol 2020; 42:333-353. [PMID: 32100087 PMCID: PMC7224112 DOI: 10.1007/s00281-020-00790-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Accepted: 02/05/2020] [Indexed: 12/14/2022]
Abstract
Mycobacterial pathogens can be categorized into three broad groups: Mycobacterium tuberculosis complex causing tuberculosis, M. leprae and M. lepromatosis causing leprosy, and atypical mycobacteria, or non-tuberculous mycobacteria (NTM), responsible for a wide range of diseases. Among the NTMs, M. ulcerans is responsible for the neglected tropical skin disease Buruli ulcer (BU). Most pathogenic mycobacteria, including M. leprae, evade effector mechanisms of the humoral immune system by hiding and replicating inside host cells and are furthermore excellent modulators of host immune responses. In contrast, M. ulcerans replicates predominantly extracellularly, sheltered from host immune responses through the cytotoxic and immunosuppressive effects of mycolactone, a macrolide produced by the bacteria. In the year 2018, 208,613 new cases of leprosy and 2713 new cases of BU were reported to WHO, figures which are notoriously skewed by vast underreporting of these diseases.
Collapse
Affiliation(s)
- Katharina Röltgen
- Department of Pathology, Stanford School of Medicine, Stanford University, Stanford, CA, USA
| | - Gerd Pluschke
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland.
- University of Basel, Basel, Switzerland.
| | - John Stewart Spencer
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Patrick Joseph Brennan
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| | - Charlotte Avanzi
- Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
- Mycobacteria Research Laboratories, Department of Microbiology, Immunology and Pathology, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|