1
|
Zhang Y, Gao L, Shi Z, Wu Q, Miao X. Paper-based electrochemiluminescence telomerase activity detection using hybridization chain reaction and CRISPR/Cas12a dual signal amplification. Bioelectrochemistry 2025; 164:108916. [PMID: 39904299 DOI: 10.1016/j.bioelechem.2025.108916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2024] [Revised: 01/22/2025] [Accepted: 01/25/2025] [Indexed: 02/06/2025]
Abstract
Sensitive telomerase activity detection becomes particularly significance since the important value of it in early cancer diagnosis as a potential biomarker. Herein, we developed a paper-based analytical devices (PADs) for telomerase activity detection, using positively charged Au@luminol nanoparticles ((+)Au@luminol NPs) as electrochemiluminescence (ECL) signal probe coupling with hybridization chain reaction (HCR) and CRISPR/Cas12a dual signal amplification. Firstly, the initial strong ECL signal was obtained based on the electrostatic adsorption of (+)Au@luminol NPs onto the surface of HCR double-stranded hybrid aggregates. In the presence of telomerase, the primer was efficiently elongated with telomeric repeats of (TTAGGG)n to release activator DNA and trigger the CRISPR/Cas12a, which can prevent the happen of HCR and the adsorption of (+)Au@luminol NPs through cleaving the capture probe on the electrode surface, such results directly inducing the decrease of the ECL signal that was proportional to telomerase concentration, due to the efficient signal amplification of HCR and CRISPR/Cas12a, a low detection limit of 2.3 cells/mL for telomerase could be detected. Moreover, the sensor realized the effective application for telomerase extracts analysis in human serum samples, making it possess potential application value for telomerase activity assays in cancer diagnostics.
Collapse
Affiliation(s)
- Yun Zhang
- Department of Pharmacy, Changzhi Medical College, Shanxi 046012 China.
| | - Liang Gao
- Heji Hospital Affiliated to Changzhi Medical College, Shanxi 046012 China
| | - Zhe Shi
- Department of Pharmacy, Changzhi Medical College, Shanxi 046012 China
| | - Qiong Wu
- Department of Pharmacy, Changzhi Medical College, Shanxi 046012 China
| | - Xiangmin Miao
- School of Life Science, Jiangsu Normal University, Xuzhou 221116 China
| |
Collapse
|
2
|
Wang M, Liu K, Bao W, Hang B, Chen X, Zhu X, Li G, Liu L, Xiang H, Hu H, Lu Y, Song Z, Chen J, Wang Y. Gut microbiota protect against colorectal tumorigenesis through lncRNA Snhg9. Dev Cell 2025; 60:1008-1017.e7. [PMID: 39755115 DOI: 10.1016/j.devcel.2024.12.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 09/30/2024] [Accepted: 12/05/2024] [Indexed: 01/06/2025]
Abstract
The intestinal microbiota is a key environmental factor in the development of colorectal cancer (CRC). Here, we report that, in the context of mild colonic inflammation, the microbiota protects against colorectal tumorigenesis in mice. This protection is achieved by microbial suppression of the long non-coding RNA (lncRNA) Snhg9. Snhg9 promotes tumor growth through inhibition of the tumor suppressor p53. Snhg9 suppresses p53 activity by dissociating the p53 deacetylase sirtuin 1 (SIRT1) from the cell cycle and apoptosis regulator 2 (CCAR2). Consequently, the depletion of the microbiota by antibiotics causes upregulation of Snhg9 and accelerates CRC progression. Moreover, Snhg9 is functionally conserved. Human SNHG9 promotes tumor growth via the same mechanism as mouse Snhg9, despite their low sequence similarity.
Collapse
Affiliation(s)
- Meng Wang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease of The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, Zhejiang, China
| | - Kailin Liu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease of The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, Zhejiang, China
| | - Wu Bao
- Zhejiang Provincial Key Laboratory of Pancreatic Disease of The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, Zhejiang, China
| | - Bingqing Hang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease of The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, Zhejiang, China
| | - Xianjiong Chen
- Zhejiang Provincial Key Laboratory of Pancreatic Disease of The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, Zhejiang, China
| | - Xinyi Zhu
- Zhejiang Provincial Key Laboratory of Pancreatic Disease of The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, Zhejiang, China
| | - Guifang Li
- Zhejiang Provincial Key Laboratory of Pancreatic Disease of The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, Zhejiang, China
| | - Lihong Liu
- Department of Radiation Oncology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China
| | - Haoyi Xiang
- Department of Colorectal Surgery and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China
| | - Hai Hu
- Breast Cancer Center, Zhejiang Cancer Hospital, Hangzhou Institute of Medicine, Chinese Academy of Sciences, Hangzhou 310022, Zhejiang, China
| | - Yanhui Lu
- School of Nursing, Peking University, Beijing 100191, China
| | - Zhangfa Song
- Department of Colorectal Surgery and Key Laboratory of Biotherapy of Zhejiang Province, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310016, Zhejiang, China.
| | - Jiaxin Chen
- Department of Breast Surgery and Key Laboratory of Tumor Microenvironment and Immune Therapy of Zhejiang Province, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, Zhejiang, China.
| | - Yuhao Wang
- Zhejiang Provincial Key Laboratory of Pancreatic Disease of The First Affiliated Hospital, Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310029, Zhejiang, China; Cancer Center, Zhejiang University, Hangzhou 310029, Zhejiang, China; Institute of Fundamental and Transdisciplinary Research, Zhejiang University, Hangzhou 310029, Zhejiang, China.
| |
Collapse
|
3
|
Shah R, Yan W, Rigal J, Mullin S, Fan L, McGregor L, Krueger A, Renaud N, Byrnes A, Thomas JR. Photoaffinity enabled transcriptome-wide identification of splice modulating small molecule-RNA binding events in native cells. RSC Chem Biol 2025:d4cb00266k. [PMID: 40226337 PMCID: PMC11986670 DOI: 10.1039/d4cb00266k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Accepted: 03/20/2025] [Indexed: 04/15/2025] Open
Abstract
Splice modulating small molecules have been developed to promote the U1 snRNP to engage with pre-mRNAs with strong and altered sequence preference. Transcriptomic profiling of bulk RNA from compound treated cells enables detection of RNAs impacted; however, it is difficult to delineate whether transcriptional changes are a consequence of direct compound treatment or trans-acting effects. To identify RNA targets that bind directly with splice modulating compounds, we deployed a photoaffinity labeling (PAL)-based Chem-CLIP approach. Through this workflow, we identify the telomerase lncRNA (TERC) as a previously unknown target of this class of clinically relevant small molecules. Using cellular ΔSHAPE-MaP, we orthogonally validate and further define the compound binding site as likely to be the conserved CR4/5 domain. Additionally, a thorough analysis of the PAL-based Chem-CLIP data reveals that considering competed RNAs, irrespective of magnitude of enrichment, adds a rich dimension of hit calling.
Collapse
Affiliation(s)
- Raven Shah
- Novartis Biomedical Research, Discovery Sciences Cambridge MA USA
| | - Wanlin Yan
- Novartis Biomedical Research, Discovery Sciences Cambridge MA USA
| | - Joyce Rigal
- Novartis Biomedical Research, Discovery Sciences Cambridge MA USA
| | - Steve Mullin
- Novartis Biomedical Research, Discovery Sciences Cambridge MA USA
| | - Lin Fan
- Novartis Biomedical Research, Discovery Sciences Cambridge MA USA
| | - Lynn McGregor
- Novartis Biomedical Research, Discovery Sciences Cambridge MA USA
| | - Andrew Krueger
- Novartis Biomedical Research, Discovery Sciences Cambridge MA USA
| | - Nicole Renaud
- Novartis Biomedical Research, Discovery Sciences Cambridge MA USA
| | - Andrea Byrnes
- Novartis Biomedical Research, Discovery Sciences Cambridge MA USA
| | - Jason R Thomas
- Novartis Biomedical Research, Discovery Sciences Cambridge MA USA
| |
Collapse
|
4
|
Day JK, Palmero BJ, Allred AL, Li J, Hooda FB, Witte G, Dejneka AM, Sandler AM, Kirk KE. Trafficking of the telomerase RNA using a novel genetic approach. PLoS One 2025; 20:e0313178. [PMID: 40173139 PMCID: PMC11964246 DOI: 10.1371/journal.pone.0313178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Accepted: 02/09/2025] [Indexed: 04/04/2025] Open
Abstract
Telomeres are specialized nucleoprotein structures situated at eukaryotic chromosome ends, vital for preserving genetic information during cell replication. Telomerase, a holoenzyme composed of telomerase reverse transcriptase and an RNA template component, is responsible for elongating telomeric DNA. The intracellular trafficking of the telomerase RNA (TER) varies, either staying in the nucleus or exiting to the cytoplasm, depending on the organism. For example, in Saccharomyces cerevisiae, the RNA template is exported to the cytoplasm, whereas in mammalian cells and protozoa, it remains within the nucleus. Aspergillus nidulans, a filamentous fungus, offers an outstanding model for investigating telomeres and telomerase due to its characterized telomerase components, exceptionally short and tightly regulated telomeres, and innovative heterokaryon rescue technique. To determine the pathway of telomerase RNA trafficking in A. nidulans, we leveraged its unique capabilities to exist in both uni- and multi-nucleate states within a heterokaryon. This involved creating a TER knockout A. nidulans strain (TERΔ) and examining the resulting colonies for signs of heterokaryon formation. Heterokaryons would imply the export of TER from one nucleus and its import into a TERΔ nucleus. Interestingly, the TERΔ strain consistently failed to produce heterokaryons, instead giving rise to likely diploid colonies. This surprising finding strongly implies that telomerase assembly predominantly takes place within the nucleus of A. nidulans, distinguishing it from the biogenesis and trafficking pattern observed in yeast.
Collapse
Affiliation(s)
- Jessica K. Day
- Department of Biology, Lake Forest College, Lake Forest, Illinois, United States of America
| | - Brett J. Palmero
- Department of Biology, Lake Forest College, Lake Forest, Illinois, United States of America
| | - Amanda L. Allred
- Department of Biology, Lake Forest College, Lake Forest, Illinois, United States of America
| | - Junya Li
- Department of Biology, Lake Forest College, Lake Forest, Illinois, United States of America
| | - Fatima B. Hooda
- Department of Biology, Lake Forest College, Lake Forest, Illinois, United States of America
| | - Graeme Witte
- Department of Biology, Lake Forest College, Lake Forest, Illinois, United States of America
| | - Alexandra M. Dejneka
- Department of Biology, Lake Forest College, Lake Forest, Illinois, United States of America
| | - Anna M. Sandler
- Department of Biology, Lake Forest College, Lake Forest, Illinois, United States of America
| | - Karen E. Kirk
- Department of Biology, Lake Forest College, Lake Forest, Illinois, United States of America
| |
Collapse
|
5
|
Ghosh S, Nguyen MT, Choi HE, Stahl M, Kühn AL, Van der Auwera S, Grabe HJ, Völzke H, Homuth G, Myers SA, Hogaboam CM, Noth I, Martinez FJ, Petsko GA, Glimcher LH. RIOK2 transcriptionally regulates TRiC and dyskerin complexes to prevent telomere shortening. Nat Commun 2024; 15:7138. [PMID: 39164231 PMCID: PMC11335878 DOI: 10.1038/s41467-024-51336-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 08/02/2024] [Indexed: 08/22/2024] Open
Abstract
Telomere shortening is a prominent hallmark of aging and is emerging as a characteristic feature of Myelodysplastic Syndromes (MDS) and Idiopathic Pulmonary Fibrosis (IPF). Optimal telomerase activity prevents progressive shortening of telomeres that triggers DNA damage responses. However, the upstream regulation of telomerase holoenzyme components remains poorly defined. Here, we identify RIOK2, a master regulator of human blood cell development, as a critical transcription factor for telomere maintenance. Mechanistically, loss of RIOK2 or its DNA-binding/transactivation properties downregulates mRNA expression of both TRiC and dyskerin complex subunits that impairs telomerase activity, thereby causing telomere shortening. We further show that RIOK2 expression is diminished in aged individuals and IPF patients, and it strongly correlates with shortened telomeres in MDS patient-derived bone marrow cells. Importantly, ectopic expression of RIOK2 alleviates telomere shortening in IPF patient-derived primary lung fibroblasts. Hence, increasing RIOK2 levels prevents telomere shortening, thus offering therapeutic strategies for telomere biology disorders.
Collapse
Affiliation(s)
- Shrestha Ghosh
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
- Department of Immunology, Harvard Medical School, Boston, MA, USA.
| | - Mileena T Nguyen
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
- Yale University, New Haven, CT, USA
| | - Ha Eun Choi
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Maximilian Stahl
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Annemarie Luise Kühn
- Department for Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
| | - Sandra Van der Auwera
- Department for Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
| | - Hans J Grabe
- Department for Psychiatry and Psychotherapy, University Medicine Greifswald, Greifswald, Germany
- German Center for Neurodegenerative Diseases (DZNE), Site Rostock/Greifswald, Greifswald, Germany
| | - Henry Völzke
- Institute for Community Medicine, University Medicine Greifswald, Greifswald, Germany
- German Centre for Cardiovascular Research (DZHK), Partner Site Greifswald, Greifswald, Germany
| | - Georg Homuth
- Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald, Germany
| | | | - Cory M Hogaboam
- Women's Guild Lung Institute, Department of Medicine, Cedars-Sinai Medical Center, Los Angeles, CA, USA
| | - Imre Noth
- Division of Pulmonary and Critical Care Medicine, University of Virginia, Charlottesville, VA, USA
| | - Fernando J Martinez
- Division of Pulmonary and Critical Care Medicine, Weill Cornell Medicine, New York, NY, USA
| | - Gregory A Petsko
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Laurie H Glimcher
- Department of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
- Department of Immunology, Harvard Medical School, Boston, MA, USA.
- Department of Medicine, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
6
|
Zuo H, Ru Y, Gao X, Chen H, Yan Y, Ma X, Liu X, Wang Y. Small Molecules Blocking the Assembly of TCAB1 and Telomerase Complexes: Lead Discovery and Biological Activity. ACS Med Chem Lett 2024; 15:1205-1212. [PMID: 39140071 PMCID: PMC11318020 DOI: 10.1021/acsmedchemlett.4c00310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 07/17/2024] [Accepted: 07/22/2024] [Indexed: 08/15/2024] Open
Abstract
The vast majority of tumor cells maintain the length of the telomeres through a telomerase-dependent maintenance mechanism, allowing for unlimited proliferation. TCAB1 is indispensable for the correct assembly of telomerase complexes and the delivery of telomerase to the telomere. Therefore, this study aimed to explore small molecules capable of interfering with the assembly of TCAB1 and the telomerase complex as novel efficient telomerase inhibitors. Through virtual screening, biological evaluation, and the confirmation of target engagement, the potential ligands of TCAB1 effectively inhibiting telomerase activity were discovered. Among them, compound 9 exhibited telomerase inhibitory activity at a two-digit nanomolar level (IC50 = 0.03 μM), which was dramatically enhanced in comparison with the previously reported telomerase inhibitors. This research, based on the blockage of telomerase assembly through disturbing TCAB1, provides a novel strategy and a potential target for telomerase inhibitor discovery.
Collapse
Affiliation(s)
- Haojie Zuo
- School
of Pharmacy, Anhui University of Chinese
Medicine, Hefei 230012, China
| | - Yiming Ru
- School
of Pharmacy, Anhui University of Chinese
Medicine, Hefei 230012, China
| | - Xiuxiu Gao
- School
of Pharmacy, Anhui University of Chinese
Medicine, Hefei 230012, China
| | - Hui Chen
- School
of Pharmacy, Anhui University of Chinese
Medicine, Hefei 230012, China
| | - Yaoyao Yan
- School
of Pharmacy, Anhui University of Chinese
Medicine, Hefei 230012, China
| | - Xiaodong Ma
- School
of Pharmacy, Anhui University of Chinese
Medicine, Hefei 230012, China
- Department
of Medicinal Chemistry, Anhui Academy of
Chinese Medicine, Hefei 230012, China
| | - Xinhua Liu
- School
of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yang Wang
- School
of Pharmacy, Anhui University of Chinese
Medicine, Hefei 230012, China
- Department
of Medicinal Chemistry, Anhui Academy of
Chinese Medicine, Hefei 230012, China
| |
Collapse
|
7
|
Hasegawa K, Zhao Y, Garbuzov A, Corces MR, Neuhöfer P, Gillespie VM, Cheung P, Belk JA, Huang YH, Wei Y, Chen L, Chang HY, Artandi SE. Clonal inactivation of TERT impairs stem cell competition. Nature 2024; 632:201-208. [PMID: 39020172 PMCID: PMC11291281 DOI: 10.1038/s41586-024-07700-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 06/11/2024] [Indexed: 07/19/2024]
Abstract
Telomerase is intimately associated with stem cells and cancer, because it catalytically elongates telomeres-nucleoprotein caps that protect chromosome ends1. Overexpression of telomerase reverse transcriptase (TERT) enhances the proliferation of cells in a telomere-independent manner2-8, but so far, loss-of-function studies have provided no evidence that TERT has a direct role in stem cell function. In many tissues, homeostasis is shaped by stem cell competition, a process in which stem cells compete on the basis of inherent fitness. Here we show that conditional deletion of Tert in the spermatogonial stem cell (SSC)-containing population in mice markedly impairs competitive clone formation. Using lineage tracing from the Tert locus, we find that TERT-expressing SSCs yield long-lived clones, but that clonal inactivation of TERT promotes stem cell differentiation and a genome-wide reduction in open chromatin. This role for TERT in competitive clone formation occurs independently of both its reverse transcriptase activity and the canonical telomerase complex. Inactivation of TERT causes reduced activity of the MYC oncogene, and transgenic expression of MYC in the TERT-deleted pool of SSCs efficiently rescues clone formation. Together, these data reveal a catalytic-activity-independent requirement for TERT in enhancing stem cell competition, uncover a genetic connection between TERT and MYC and suggest that a selective advantage for stem cells with high levels of TERT contributes to telomere elongation in the male germline during homeostasis and ageing.
Collapse
Affiliation(s)
- Kazuteru Hasegawa
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Yang Zhao
- Center for Personal Dynamic Regulomes, Stanford, CA, USA
| | - Alina Garbuzov
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - M Ryan Corces
- Center for Personal Dynamic Regulomes, Stanford, CA, USA
| | - Patrick Neuhöfer
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Victoria M Gillespie
- Nuclear Dynamics and Cancer Program, Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Peggie Cheung
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Julia A Belk
- Department of Computer Science, Stanford University, Stanford, CA, USA
| | | | - Yuning Wei
- Center for Personal Dynamic Regulomes, Stanford, CA, USA
| | - Lu Chen
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
- Nuclear Dynamics and Cancer Program, Cancer Epigenetics Institute, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Howard Y Chang
- Center for Personal Dynamic Regulomes, Stanford, CA, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA, USA
| | - Steven E Artandi
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
8
|
Davis JA, Chakrabarti K. Molecular and Evolutionary Analysis of RNA-Protein Interactions in Telomerase Regulation. Noncoding RNA 2024; 10:36. [PMID: 38921833 PMCID: PMC11206666 DOI: 10.3390/ncrna10030036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/30/2024] [Accepted: 06/10/2024] [Indexed: 06/27/2024] Open
Abstract
Telomerase is an enzyme involved in the maintenance of telomeres. Telomere shortening due to the end-replication problem is a threat to the genome integrity of all eukaryotes. Telomerase inside cells depends on a myriad of protein-protein and RNA-protein interactions to properly assemble and regulate the function of the telomerase holoenzyme. These interactions are well studied in model eukaryotes, like humans, yeast, and the ciliated protozoan known as Tetrahymena thermophila. Emerging evidence also suggests that deep-branching eukaryotes, such as the parasitic protist Trypanosoma brucei require conserved and novel RNA-binding proteins for the assembly and function of their telomerase. In this review, we will discuss telomerase regulatory pathways in the context of telomerase-interacting proteins, with special attention paid to RNA-binding proteins. We will discuss these interactors on an evolutionary scale, from parasitic protists to humans, to provide a broader perspective on the extensive role that protein-protein and RNA-protein interactions play in regulating telomerase activity in eukaryotes.
Collapse
Affiliation(s)
| | - Kausik Chakrabarti
- Department of Biological Sciences, University of North Carolina at Charlotte, Charlotte, NC 28223, USA;
| |
Collapse
|
9
|
Lee YH, Hass EP, Campodonico W, Lee YK, Lasda E, Shah J, Rinn J, Hwang T. Massively parallel dissection of RNA in RNA-protein interactions in vivo. Nucleic Acids Res 2024; 52:e48. [PMID: 38726866 PMCID: PMC11162807 DOI: 10.1093/nar/gkae334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 04/10/2024] [Accepted: 04/16/2024] [Indexed: 06/11/2024] Open
Abstract
Many of the biological functions performed by RNA are mediated by RNA-binding proteins (RBPs), and understanding the molecular basis of these interactions is fundamental to biology. Here, we present massively parallel RNA assay combined with immunoprecipitation (MPRNA-IP) for in vivo high-throughput dissection of RNA-protein interactions and describe statistical models for identifying RNA domains and parsing the structural contributions of RNA. By using custom pools of tens of thousands of RNA sequences containing systematically designed truncations and mutations, MPRNA-IP is able to identify RNA domains, sequences, and secondary structures necessary and sufficient for protein binding in a single experiment. We show that this approach is successful for multiple RNAs of interest, including the long noncoding RNA NORAD, bacteriophage MS2 RNA, and human telomerase RNA, and we use it to interrogate the hitherto unknown sequence or structural RNA-binding preferences of the DNA-looping factor CTCF. By integrating systematic mutation analysis with crosslinking immunoprecipitation, MPRNA-IP provides a novel high-throughput way to elucidate RNA-based mechanisms behind RNA-protein interactions in vivo.
Collapse
Affiliation(s)
- Yu Hsuan Lee
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Evan P Hass
- Department of Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA
| | - Will Campodonico
- Department of Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA
| | - Yong Kyu Lee
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
| | - Erika Lasda
- Department of Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA
| | - Jaynish S Shah
- Department of Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA
| | - John L Rinn
- Department of Biochemistry and BioFrontiers Institute, University of Colorado, Boulder, CO 80309, USA
| | - Taeyoung Hwang
- Lieber Institute for Brain Development, Johns Hopkins Medical Campus, Baltimore, MD 21205, USA
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| |
Collapse
|
10
|
Chen B, Weng Y, Li M, Bian Z, Tao Y, Zhou W, Lu H, He S, Liao R, Huang J, Wang Q, Xu M, Ge Y, Cao W, Lei M, Zhang Y. LINC02454-CCT complex interaction is essential for telomerase activity and cell proliferation in head and neck squamous cell carcinoma. Cancer Lett 2024; 588:216734. [PMID: 38401886 DOI: 10.1016/j.canlet.2024.216734] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/03/2024] [Accepted: 02/13/2024] [Indexed: 02/26/2024]
Abstract
Telomerase activity is upregulated in head and neck squamous cell carcinoma (HNSCC), yet its regulatory mechanisms remain unclear. Here, we identified a cancer-specific lncRNA (LINC02454) associated with poor prognosis by using LncRNA chip of our HNSCC cohorts and external datasets. Through employing negative-stain transmission electron microscopy (NS-TEM), we discovered an interaction between LINC02454 and CCT complex which would augment telomerase activity for maintaining telomere homeostasis. Supporting this, in the telomerase repeat amplification protocol (TRAP) assay and quantitative fluorescence in situ hybridization (Q-FISH) analysis, LINC02454 depletion significantly reduced telomerase activity and shortened telomere length. Consistently, pathways related to telomerase, mitosis, and apoptosis were significantly impacted upon LINC02454 knockdown in RNAseq analysis. Functionally, LINC02454-deficient cells exhibited a more significant senescence phenotype in β-galactosidase staining, cell cycle, and apoptosis assays. We further confirmed the role of LINC02454 in HNSCC proliferation through a combination of in vitro and in vivo experiments. The therapeutic potential of targeting LINC02454 was verified by adenovirus-shRNA approach in HNSCC patient-derived xenograft (PDX) models. In summary, our findings provided valuable insights into the molecular mechanisms of HNSCC tumorigenesis and potential targets for future treatment modalities.
Collapse
Affiliation(s)
- Biying Chen
- Department of Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, China; Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
| | - Yue Weng
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Mingyue Li
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhouliang Bian
- Department of Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, China; Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
| | - Ye Tao
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wenkai Zhou
- Department of Oral Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China
| | - Hong Lu
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Shufang He
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Rijing Liao
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jie Huang
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qian Wang
- Department of Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, China; Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
| | - Ming Xu
- Department of Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, China; Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China
| | - Yunhui Ge
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Wei Cao
- Department of Oral Maxillofacial-Head Neck Oncology, Shanghai Ninth People's Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, 200011, China.
| | - Ming Lei
- Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China; State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Yanjie Zhang
- Department of Oncology, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 201900, China; Shanghai Institute of Precision Medicine, Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200125, China.
| |
Collapse
|
11
|
Ghanim GE, Sekne Z, Balch S, van Roon AMM, Nguyen THD. 2.7 Å cryo-EM structure of human telomerase H/ACA ribonucleoprotein. Nat Commun 2024; 15:746. [PMID: 38272871 PMCID: PMC10811338 DOI: 10.1038/s41467-024-45002-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 01/03/2024] [Indexed: 01/27/2024] Open
Abstract
Telomerase is a ribonucleoprotein (RNP) enzyme that extends telomeric repeats at eukaryotic chromosome ends to counterbalance telomere loss caused by incomplete genome replication. Human telomerase is comprised of two distinct functional lobes tethered by telomerase RNA (hTR): a catalytic core, responsible for DNA extension; and a Hinge and ACA (H/ACA) box RNP, responsible for telomerase biogenesis. H/ACA RNPs also have a general role in pseudouridylation of spliceosomal and ribosomal RNAs, which is critical for the biogenesis of the spliceosome and ribosome. Much of our structural understanding of eukaryotic H/ACA RNPs comes from structures of the human telomerase H/ACA RNP. Here we report a 2.7 Å cryo-electron microscopy structure of the telomerase H/ACA RNP. The significant improvement in resolution over previous 3.3 Å to 8.2 Å structures allows us to uncover new molecular interactions within the H/ACA RNP. Many disease mutations are mapped to these interaction sites. The structure also reveals unprecedented insights into a region critical for pseudouridylation in canonical H/ACA RNPs. Together, our work advances understanding of telomerase-related disease mutations and the mechanism of pseudouridylation by eukaryotic H/ACA RNPs.
Collapse
Affiliation(s)
| | - Zala Sekne
- MRC Laboratory of Molecular Biology, Cambridge, CB2 0QH, UK
| | | | | | | |
Collapse
|
12
|
Klump BM, Schmidt JC. Advances in understanding telomerase assembly. Biochem Soc Trans 2023; 51:2093-2101. [PMID: 38108475 PMCID: PMC10754283 DOI: 10.1042/bst20230269] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/30/2023] [Accepted: 12/04/2023] [Indexed: 12/19/2023]
Abstract
Telomerase is a complex ribonucleoprotein scaffolded by the telomerase RNA (TR). Telomere lengthening by telomerase is essential to maintain the proliferative potential of stem cells and germ cells, and telomerase is inappropriately activated in the majority of cancers. Assembly of TR with its 12 protein co-factors and the maturation of the 5'- and 3'-ends of TR have been the focus of intense research efforts over the past two decades. High-resolution Cryo-EM structures of human telomerase, high-throughput sequencing of the 3' end of TR, and live cell imaging of various telomerase components have significantly advanced our understanding of the molecular mechanisms that govern telomerase biogenesis, yet many important questions remain unaddressed. In this review, we will summarize these recent advances and highlight the remaining key questions with the ultimate goal of targeting telomerase assembly to suppress telomere maintenance in cancer cells or to promote telomerase activity in patients affected by telomere shortening disorders.
Collapse
Affiliation(s)
- Basma M. Klump
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, U.S.A
- College of Osteopathic Medicine, Michigan State University, East Lansing, MI, U.S.A
- Cell and Molecular Biology Graduate Program, College of Natural Sciences, Michigan State University, East Lansing, MI, U.S.A
| | - Jens C. Schmidt
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, U.S.A
- Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University, East Lansing, MI, U.S.A
| |
Collapse
|
13
|
Pei J, Zhang J, Wang XD, Kim C, Yu Y, Cong Q. Impact of Asp/Glu-ADP-ribosylation on protein-protein interaction and protein function. Proteomics 2023; 23:e2200083. [PMID: 36453556 PMCID: PMC10362910 DOI: 10.1002/pmic.202200083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 09/12/2022] [Accepted: 11/10/2022] [Indexed: 12/04/2022]
Abstract
PARylation plays critical role in regulating multiple cellular processes such as DNA damage response and repair, transcription, RNA processing, and stress response. More than 300 human proteins have been found to be modified by PARylation on acidic residues, that is, Asp (D) and Glu (E). We used the deep-learning tool AlphaFold to predict protein-protein interactions (PPIs) and their interfaces for these proteins based on coevolution signals from joint multiple sequence alignments (MSAs). AlphaFold predicted 260 confident PPIs involving PARylated proteins, and about one quarter of these PPIs have D/E-PARylation sites in their predicted PPI interfaces. AlphaFold predictions offer novel insights into the mechanisms of PARylation regulations by providing structural details of the PPI interfaces. D/E-PARylation sites have a preference to occur in coil regions and disordered regions, and PPI interfaces containing D/E-PARylation sites tend to occur between short linear sequence motifs in disordered regions and globular domains. The hub protein PCNA is predicted to interact with more than 20 proteins via the common PIP box motif and the structurally variable flanking regions. D/E-PARylation sites were found in the interfaces of key components of the RNA transcription and export complex, the SF3a spliceosome complex, and H/ACA and C/D small nucleolar ribonucleoprotein complexes, suggesting that systematic PARylation have a profound effect in regulating multiple RNA-related processes such as RNA nuclear export, splicing, and modification. Finally, PARylation of SUMO2 could modulate its interaction with CHAF1A, thereby representing a potential mechanism for the cross-talk between PARylation and SUMOylation in regulation of chromatin remodeling.
Collapse
Affiliation(s)
- Jimin Pei
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Jing Zhang
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Xu-Dong Wang
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Chiho Kim
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Yonghao Yu
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University Irving Medical Center, New York, New York 10032, United States
| | - Qian Cong
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, TX, USA
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
14
|
Qin P, Huang H, Wang J, Jiang T, Zeng N, Wang Q, He Y, Zhou Y. The mechanism of LSM2 in the progression of live hepatocellular carcinoma was analyzed based on bioinformatics. Med Oncol 2023; 40:276. [PMID: 37612479 DOI: 10.1007/s12032-023-02152-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Accepted: 08/07/2023] [Indexed: 08/25/2023]
Abstract
Comprehensive analysis of the expression and probable function of LSM2 in Live hepatocellular carcinoma (LIHC), and validation via in vitro experiments. Integrated use of database resources to examine the differential expression, survival prognosis, clinicopathological characteristics, and functional enrichment of LSM2 in LIHC. The expression level of LSM2 in LIHC tissues and adjacent tissues was proven via immunohistochemical staining. The biological function of LSM2 in LIHC was detected by cell proliferation, cell cloning, cell scratch, cell migration, and invasion experiments in vitro. TIMER 2.0 and GEPIA indicated that LSM2 was highly expressed in cancers and was strongly associated with survival rates in LIHC, cholangiocarcinoma, breast cancer, and renal clear cell carcinoma. LSM2 was highly expressed in LIHC, which was closely associated to the clinicopathological characteristics of patients, and the overall survival rate and disease-free survival rate of patients with high expression of LSM2 were lower than those with low expression of LSM2. Functional enrichment results revealed that LSM2 was involved to ribosome formation, DNA replication, cell cycle, metabolic processes, JAK-STAT signaling pathways, and FoxO signaling pathways. Knockdown of LSM2 inhibited the proliferation, migration, and invasion of LIHC cells in vitro experiments. LSM2 was highly expressed in LIHC and was related to a poor prognosis. Knockdown of LSM2 could inhibit the proliferation, migration, and invasion of LIHC cells.
Collapse
Affiliation(s)
- Peifang Qin
- Institute of Pathogenic Biology, Guilin Medical University, Guilin, 541004, China
- Department of Clinical Laboratory, Guigang City People's Hospital, Guigang, Guangxi, 537100, China
- Guangxi Medical and Health Key Disciplines Infectious Diseases Key Disciplines, The Second Affiliated Hospital of Guilin Medical College, Guilin, 541004, China
| | - Haitao Huang
- Institute of Pathogenic Biology, Guilin Medical University, Guilin, 541004, China
| | - Jiahui Wang
- Institute of Pathogenic Biology, Guilin Medical University, Guilin, 541004, China
| | - Tingting Jiang
- Institute of Pathogenic Biology, Guilin Medical University, Guilin, 541004, China
| | - Nannan Zeng
- Department of Physiology, Guilin Medical University, Guilin, 541004, China
| | - Qi Wang
- Department of Physiology, Guilin Medical University, Guilin, 541004, China
| | - Yulin He
- Institute of Pathogenic Biology, Guilin Medical University, Guilin, 541004, China.
| | - Yali Zhou
- Institute of Pathogenic Biology, Guilin Medical University, Guilin, 541004, China.
- Guangxi Medical and Health Key Disciplines Infectious Diseases Key Disciplines, The Second Affiliated Hospital of Guilin Medical College, Guilin, 541004, China.
| |
Collapse
|
15
|
Klump BM, Perez GI, Patrick EM, Adams-Boone K, Cohen SB, Han L, Yu K, Schmidt JC. TCAB1 prevents nucleolar accumulation of the telomerase RNA to facilitate telomerase assembly. Cell Rep 2023; 42:112577. [PMID: 37267110 PMCID: PMC10569210 DOI: 10.1016/j.celrep.2023.112577] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/27/2023] [Accepted: 05/12/2023] [Indexed: 06/04/2023] Open
Abstract
Localization of a variety of RNAs to non-membrane-bound cellular compartments such as nucleoli and Cajal bodies is critical for their stability and function. The molecular mechanisms that underly the recruitment and exclusion of RNAs from these phase-separated organelles is incompletely understood. Telomerase is a ribonucleoprotein composed of the reverse transcriptase protein telomerase reverse transcriptase (TERT), the telomerase RNA (TR), and several auxiliary proteins, including TCAB1. Here we show that in the absence of TCAB1, a large fraction of TR is tightly bound to the nucleolus, while TERT is largely excluded from the nucleolus, reducing telomerase assembly. This suggests that nuclear compartmentalization by the non-membrane-bound nucleolus counteracts telomerase assembly, and TCAB1 is required to retain TR in the nucleoplasm. Our work provides insight into the mechanism and functional consequences of RNA recruitment to organelles formed by phase separation and demonstrates that TCAB1 plays an important role in telomerase assembly.
Collapse
Affiliation(s)
- Basma M Klump
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, USA; College of Osteopathic Medicine, Michigan State University, East Lansing, MI, USA; Cellular and Molecular Biology Graduate Program, College of Natural Sciences, Michigan State University, East Lansing, MI, USA
| | - Gloria I Perez
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, USA
| | - Eric M Patrick
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, USA
| | - Kate Adams-Boone
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, USA
| | - Scott B Cohen
- Children's Medical Research Institute and University of Sydney, Westmead, NSW 2145, Australia
| | - Li Han
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Kefei Yu
- Department of Microbiology and Molecular Genetics, Michigan State University, East Lansing, MI, USA
| | - Jens C Schmidt
- Institute for Quantitative Health Sciences and Engineering, Michigan State University, East Lansing, MI, USA; Department of Obstetrics, Gynecology, and Reproductive Biology, Michigan State University, East Lansing, MI, USA.
| |
Collapse
|
16
|
Sun Y, Dong Q, Yang H, Song W, Zhou H. CuS quantum dots activated DNAzyme for ratiometric electrochemical detection of telomerase activity. Anal Chim Acta 2023; 1248:340884. [PMID: 36813453 DOI: 10.1016/j.aca.2023.340884] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 01/17/2023] [Accepted: 01/21/2023] [Indexed: 01/24/2023]
Abstract
Telomerase activity detection has attracted much attention concerning its importance for early cancer diagnosis. Here, we established a ratiometric electrochemical biosensor for telomerase detection based on CuS quantum dots (CuS QDs) dependent DNAzyme-regulated dual signals. The telomerase substrate probe was used as the linker to combine the DNA fabricated magnetic beads and CuS QDs. In this way, telomerase extended the substrate probe with repeated sequence to from hairpin structure, releasing CuS QDs as an input to DNAzyme modified electrode. DNAzyme was cleaved with high current of ferrocene (Fc) and low current of methylene blue (MB). On the basis of the obtained ratiometric signals, telomerase activity detection was achieved in the range of 1.0 × 10-12-1.0 × 10-6 IU/L, with the limit of detection down to 2.75 × 10-14 IU/L. Moreover, telomerase activity from HeLa extracts was also tested to verify the clinical application.
Collapse
Affiliation(s)
- Yujie Sun
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Qi Dong
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Huan Yang
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China
| | - Weiling Song
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| | - Hong Zhou
- Key Laboratory of Optic-electric Sensing and Analytical Chemistry for Life Science, MOE, Shandong Key Laboratory of Biochemical Analysis, Key Laboratory of Analytical Chemistry for Life Science in Universities of Shandong, College of Chemistry and Molecular Engineering, Qingdao University of Science and Technology, Qingdao, 266042, PR China.
| |
Collapse
|
17
|
Davis JA, Reyes AV, Nitika, Saha A, Wolfgeher DJ, Xu SL, Truman AW, Li B, Chakrabarti K. Proteomic analysis defines the interactome of telomerase in the protozoan parasite, Trypanosoma brucei. Front Cell Dev Biol 2023; 11:1110423. [PMID: 37009488 PMCID: PMC10061497 DOI: 10.3389/fcell.2023.1110423] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Accepted: 03/03/2023] [Indexed: 03/17/2023] Open
Abstract
Telomerase is a ribonucleoprotein enzyme responsible for maintaining the telomeric end of the chromosome. The telomerase enzyme requires two main components to function: the telomerase reverse transcriptase (TERT) and the telomerase RNA (TR), which provides the template for telomeric DNA synthesis. TR is a long non-coding RNA, which forms the basis of a large structural scaffold upon which many accessory proteins can bind and form the complete telomerase holoenzyme. These accessory protein interactions are required for telomerase activity and regulation inside cells. The interacting partners of TERT have been well studied in yeast, human, and Tetrahymena models, but not in parasitic protozoa, including clinically relevant human parasites. Here, using the protozoan parasite, Trypanosoma brucei (T. brucei) as a model, we have identified the interactome of T. brucei TERT (TbTERT) using a mass spectrometry-based approach. We identified previously known and unknown interacting factors of TbTERT, highlighting unique features of T. brucei telomerase biology. These unique interactions with TbTERT, suggest mechanistic differences in telomere maintenance between T. brucei and other eukaryotes.
Collapse
Affiliation(s)
- Justin A. Davis
- Department of Biological Sciences, University of North Carolina, Charlotte, NC, United States
| | - Andres V. Reyes
- Department of Plant Biology and Carnegie Mass Spectrometry Facility, Carnegie Institution for Science, Stanford, CA, United States
| | - Nitika
- Department of Biological Sciences, University of North Carolina, Charlotte, NC, United States
| | - Arpita Saha
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Arts and Sciences, Cleveland State University, Cleveland, OH, United States
| | - Donald J. Wolfgeher
- Department of Molecular Genetics and Cell Biology, The University of Chicago, Chicago, IL, United States
| | - Shou-Ling Xu
- Department of Plant Biology and Carnegie Mass Spectrometry Facility, Carnegie Institution for Science, Stanford, CA, United States
| | - Andrew W. Truman
- Department of Biological Sciences, University of North Carolina, Charlotte, NC, United States
| | - Bibo Li
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Arts and Sciences, Cleveland State University, Cleveland, OH, United States
| | - Kausik Chakrabarti
- Department of Biological Sciences, University of North Carolina, Charlotte, NC, United States
| |
Collapse
|
18
|
Shepelev N, Dontsova O, Rubtsova M. Post-Transcriptional and Post-Translational Modifications in Telomerase Biogenesis and Recruitment to Telomeres. Int J Mol Sci 2023; 24:5027. [PMID: 36902458 PMCID: PMC10003056 DOI: 10.3390/ijms24055027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 03/08/2023] Open
Abstract
Telomere length is associated with the proliferative potential of cells. Telomerase is an enzyme that elongates telomeres throughout the entire lifespan of an organism in stem cells, germ cells, and cells of constantly renewed tissues. It is activated during cellular division, including regeneration and immune responses. The biogenesis of telomerase components and their assembly and functional localization to the telomere is a complex system regulated at multiple levels, where each step must be tuned to the cellular requirements. Any defect in the function or localization of the components of the telomerase biogenesis and functional system will affect the maintenance of telomere length, which is critical to the processes of regeneration, immune response, embryonic development, and cancer progression. An understanding of the regulatory mechanisms of telomerase biogenesis and activity is necessary for the development of approaches toward manipulating telomerase to influence these processes. The present review focuses on the molecular mechanisms involved in the major steps of telomerase regulation and the role of post-transcriptional and post-translational modifications in telomerase biogenesis and function in yeast and vertebrates.
Collapse
Affiliation(s)
- Nikita Shepelev
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117437, Russia
- Chemistry Department and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Olga Dontsova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117437, Russia
- Chemistry Department and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
- Skolkovo Institute of Science and Technology, Moscow 121205, Russia
| | - Maria Rubtsova
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry, Russian Academy of Sciences, Moscow 117437, Russia
- Chemistry Department and Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow 119234, Russia
| |
Collapse
|
19
|
Nelson N, Feurstein S, Niaz A, Truong J, Holien JK, Lucas S, Fairfax K, Dickinson J, Bryan TM. Functional genomics for curation of variants in telomere biology disorder associated genes: A systematic review. Genet Med 2023; 25:100354. [PMID: 36496180 DOI: 10.1016/j.gim.2022.11.021] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
PURPOSE Patients with an underlying telomere biology disorder (TBD) have variable clinical presentations, and they can be challenging to diagnose clinically. A genomic diagnosis for patients presenting with TBD is vital for optimal treatment. Unfortunately, many variants identified during diagnostic testing are variants of uncertain significance. This complicates management decisions, delays treatment, and risks nonuptake of potentially curative therapies. Improved application of functional genomic evidence may reduce variants of uncertain significance classifications. METHODS We systematically searched the literature for published functional assays interrogating TBD gene variants. When possible, established likely benign/benign and likely pathogenic/pathogenic variants were used to estimate the assay sensitivity, specificity, positive predictive value, negative predictive value, and odds of pathogenicity. RESULTS In total, 3131 articles were screened and 151 met inclusion criteria. Sufficient data to enable a PS3/BS3 recommendation were available for TERT variants only. We recommend that PS3 and BS3 can be applied at a moderate and supportive level, respectively. PS3/BS3 application was limited by a lack of assay standardization and limited inclusion of benign variants. CONCLUSION Further assay standardization and assessment of benign variants are required for optimal use of the PS3/BS3 criterion for TBD gene variant classification.
Collapse
Affiliation(s)
- Niles Nelson
- The Menzies Institute for Medical Research, College of Health and Medicine, The University of Tasmania, Hobart, Tasmania, Australia; Department of Molecular Medicine, The Royal Hobart Hospital, Hobart, Tasmania, Australia; Department of Molecular Haematology, The Peter MacCallum Cancer Centre, Melbourne, Victoria, Australia.
| | - Simone Feurstein
- Section of Hematology, Oncology, and Rheumatology, Department of Internal Medicine, Heidelberg University Hospital, Heidelberg, Germany
| | - Aram Niaz
- Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, New South Wales, Australia
| | - Jia Truong
- School of Science, STEM College, RMIT University, Bundoora, Victoria, Australia
| | - Jessica K Holien
- School of Science, STEM College, RMIT University, Bundoora, Victoria, Australia
| | - Sionne Lucas
- The Menzies Institute for Medical Research, College of Health and Medicine, The University of Tasmania, Hobart, Tasmania, Australia
| | - Kirsten Fairfax
- The Menzies Institute for Medical Research, College of Health and Medicine, The University of Tasmania, Hobart, Tasmania, Australia
| | - Joanne Dickinson
- The Menzies Institute for Medical Research, College of Health and Medicine, The University of Tasmania, Hobart, Tasmania, Australia
| | - Tracy M Bryan
- Children's Medical Research Institute, Faculty of Medicine and Health, University of Sydney, Westmead, New South Wales, Australia
| |
Collapse
|
20
|
Revy P, Kannengiesser C, Bertuch AA. Genetics of human telomere biology disorders. Nat Rev Genet 2023; 24:86-108. [PMID: 36151328 DOI: 10.1038/s41576-022-00527-z] [Citation(s) in RCA: 68] [Impact Index Per Article: 34.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/11/2022] [Indexed: 01/24/2023]
Abstract
Telomeres are specialized nucleoprotein structures at the ends of linear chromosomes that prevent the activation of DNA damage response and repair pathways. Numerous factors localize at telomeres to regulate their length, structure and function, to avert replicative senescence or genome instability and cell death. In humans, Mendelian defects in several of these factors can result in abnormally short or dysfunctional telomeres, causing a group of rare heterogeneous premature-ageing diseases, termed telomeropathies, short-telomere syndromes or telomere biology disorders (TBDs). Here, we review the TBD-causing genes identified so far and describe their main functions associated with telomere biology. We present molecular aspects of TBDs, including genetic anticipation, phenocopy, incomplete penetrance and somatic genetic rescue, which underlie the complexity of these diseases. We also discuss the implications of phenotypic and genetic features of TBDs on fundamental aspects related to human telomere biology, ageing and cancer, as well as on diagnostic, therapeutic and clinical approaches.
Collapse
Affiliation(s)
- Patrick Revy
- INSERM UMR 1163, Laboratory of Genome Dynamics in the Immune System, Equipe Labellisée Ligue Nationale contre le Cancer, Paris, France.
- Université Paris Cité, Imagine Institute, Paris, France.
| | - Caroline Kannengiesser
- APHP Service de Génétique, Hôpital Bichat, Paris, France
- Inserm U1152, Université Paris Cité, Paris, France
| | - Alison A Bertuch
- Departments of Paediatrics and Molecular & Human Genetics, Baylor College of Medicine, Houston, TX, USA
| |
Collapse
|
21
|
Chen L, Roake CM, Maccallini P, Bavasso F, Dehghannasiri R, Santonicola P, Mendoza-Ferreira N, Scatolini L, Rizzuti L, Esposito A, Gallotta I, Francia S, Cacchione S, Galati A, Palumbo V, Kobin MA, Tartaglia G, Colantoni A, Proietti G, Wu Y, Hammerschmidt M, De Pittà C, Sales G, Salzman J, Pellizzoni L, Wirth B, Di Schiavi E, Gatti M, Artandi S, Raffa GD. TGS1 impacts snRNA 3'-end processing, ameliorates survival motor neuron-dependent neurological phenotypes in vivo and prevents neurodegeneration. Nucleic Acids Res 2022; 50:12400-12424. [PMID: 35947650 PMCID: PMC9757054 DOI: 10.1093/nar/gkac659] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 07/21/2022] [Indexed: 12/24/2022] Open
Abstract
Trimethylguanosine synthase 1 (TGS1) is a highly conserved enzyme that converts the 5'-monomethylguanosine cap of small nuclear RNAs (snRNAs) to a trimethylguanosine cap. Here, we show that loss of TGS1 in Caenorhabditis elegans, Drosophila melanogaster and Danio rerio results in neurological phenotypes similar to those caused by survival motor neuron (SMN) deficiency. Importantly, expression of human TGS1 ameliorates the SMN-dependent neurological phenotypes in both flies and worms, revealing that TGS1 can partly counteract the effects of SMN deficiency. TGS1 loss in HeLa cells leads to the accumulation of immature U2 and U4atac snRNAs with long 3' tails that are often uridylated. snRNAs with defective 3' terminations also accumulate in Drosophila Tgs1 mutants. Consistent with defective snRNA maturation, TGS1 and SMN mutant cells also exhibit partially overlapping transcriptome alterations that include aberrantly spliced and readthrough transcripts. Together, these results identify a neuroprotective function for TGS1 and reinforce the view that defective snRNA maturation affects neuronal viability and function.
Collapse
Affiliation(s)
- Lu Chen
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
- Cancer Signaling and Epigenetics Program and Cancer Epigenetics Institute, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Caitlin M Roake
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Paolo Maccallini
- Dipartimento di Biologia e Biotecnologie, Sapienza University of Rome, Rome, Italy
| | - Francesca Bavasso
- Dipartimento di Biologia e Biotecnologie, Sapienza University of Rome, Rome, Italy
| | - Roozbeh Dehghannasiri
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| | | | - Natalia Mendoza-Ferreira
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, 50931 Cologne, Germany
| | - Livia Scatolini
- Dipartimento di Biologia e Biotecnologie, Sapienza University of Rome, Rome, Italy
| | - Ludovico Rizzuti
- Dipartimento di Biologia e Biotecnologie, Sapienza University of Rome, Rome, Italy
| | | | - Ivan Gallotta
- Institute of Genetics and Biophysics, IGB-ABT, CNR, Naples, Italy
| | - Sofia Francia
- IFOM-The FIRC Institute of Molecular Oncology, Milan, Italy
- Istituto di Genetica Molecolare, CNR-Consiglio Nazionale delle Ricerche, Pavia, Italy
| | - Stefano Cacchione
- Dipartimento di Biologia e Biotecnologie, Sapienza University of Rome, Rome, Italy
| | - Alessandra Galati
- Dipartimento di Biologia e Biotecnologie, Sapienza University of Rome, Rome, Italy
| | - Valeria Palumbo
- Dipartimento di Biologia e Biotecnologie, Sapienza University of Rome, Rome, Italy
| | - Marie A Kobin
- Cancer Signaling and Epigenetics Program and Cancer Epigenetics Institute, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
| | - Gian Gaetano Tartaglia
- Dipartimento di Biologia e Biotecnologie, Sapienza University of Rome, Rome, Italy
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome 00161, Italy
- Center for Human Technology, Fondazione Istituto Italiano di Tecnologia (IIT), Genoa 16152, Italy
| | - Alessio Colantoni
- Dipartimento di Biologia e Biotecnologie, Sapienza University of Rome, Rome, Italy
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome 00161, Italy
- Center for Human Technology, Fondazione Istituto Italiano di Tecnologia (IIT), Genoa 16152, Italy
| | - Gabriele Proietti
- Center for Life Nano- & Neuro-Science, Fondazione Istituto Italiano di Tecnologia (IIT), Rome 00161, Italy
- Center for Human Technology, Fondazione Istituto Italiano di Tecnologia (IIT), Genoa 16152, Italy
| | - Yunming Wu
- Cancer Signaling and Epigenetics Program and Cancer Epigenetics Institute, Institute for Cancer Research, Fox Chase Cancer Center, Philadelphia, PA 19111, USA
- Department of Biology, Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Matthias Hammerschmidt
- Institute for Zoology, Developmental Biology, University of Cologne, 50674 Cologne, Germany
| | | | - Gabriele Sales
- Department of Biology, University of Padova, Padua, Italy
| | - Julia Salzman
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Biomedical Data Science, Stanford University, Stanford, CA 94305, USA
| | - Livio Pellizzoni
- Center for Motor Neuron Biology and Disease, Columbia University, NY 10032, USA
- Department of Pathology and Cell Biology, Columbia University, NY 10032, USA
- Department of Neurology, Columbia University, NY 10032, USA
| | - Brunhilde Wirth
- Institute of Human Genetics, Center for Molecular Medicine Cologne, Institute for Genetics, University of Cologne, 50931 Cologne, Germany
- Center for Rare Diseases, University Hospital of Cologne, University of Cologne, 50931 Cologne, Germany
| | - Elia Di Schiavi
- Institute of Biosciences and BioResources, IBBR, CNR, Naples, Italy
- Institute of Genetics and Biophysics, IGB-ABT, CNR, Naples, Italy
| | - Maurizio Gatti
- Dipartimento di Biologia e Biotecnologie, Sapienza University of Rome, Rome, Italy
- Istituto di Biologia e Patologia Molecolari (IBPM) del CNR, Rome, Italy
| | - Steven E Artandi
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Grazia D Raffa
- Dipartimento di Biologia e Biotecnologie, Sapienza University of Rome, Rome, Italy
| |
Collapse
|
22
|
Yuan X, Yuan H, Zhang N, Liu T, Xu D. Thyroid carcinoma-featured telomerase activation and telomere maintenance: Biology and translational/clinical significance. Clin Transl Med 2022; 12:e1111. [PMID: 36394204 PMCID: PMC9670192 DOI: 10.1002/ctm2.1111] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 10/26/2022] [Accepted: 10/30/2022] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Telomerase is a ribonucleoprotein complex consisting of a catalytic component telomerase reverse transcriptase (TERT), internal RNA template and other co-factors, and its essential function is to synthesize telomeric DNA, repetitive TTAGGG sequences at the termini of linear chromosomes. Telomerase is silent in normal human follicular thyroid cells, primarily due to the TERT gene being tightly repressed. During the development and progression of thyroid carcinomas (TCs), TERT induction and telomerase activation is in general required to maintain telomere length, thereby conferring TC cells with immortal and aggressive phenotypes. METHODS The genomic alterations of the TERT loci including TERT promoter's gain-of-function mutations, copy number gain, fusion and rearrangements, have recently been identified in TCs as mechanisms to induce TERT expression and to activate telomerase. Importantly, numerous studies have consistently shown that TERT promoter mutations and TERT expression occur in all TC subtypes, and are robustly associated with TC malignancy, aggressiveness, treatment failure and poor outcomes. Therefore, the assessment of TERT promoter mutations and TERT expression is highly valuable in TC diagnostics, prognosis, treatment decision, and follow-up design. In addition, the TERT promoter is frequently hypermethylated in TC cells and tumors, which is required to activate TERT transcription and telomerase. Dysregulation of other components in the telomerase complex similarly upregulate telomerase. Moreover, shortened telomeres lead to altered gene expression and metabolism, thereby actively promoting TC aggressiveness. Here we summarize recent findings in TCs to provide the landscape of TC-featured telomere/telomerase biology and discuss underlying implications in TC precision medicine. CONCLUSION Mechanistic insights into telomerase activation and TERT induction in TCs are important both biologically and clinically. The TERT gene aberration and expression-based molecular classification of TCs is proposed, and for such a purpose, the standardization of the assay and evaluation system is required. Moreover, the TERT-based system and 2022 WHO TC classification may be combined to improve TC care.
Collapse
Affiliation(s)
- Xiaotian Yuan
- Laboratory Animal CenterShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanChina
| | - Huiyang Yuan
- Department of UrologyQilu HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Ning Zhang
- Department of Breast SurgeryGeneral Surgery, Qilu Hospital of Shandong UniversityJinanChina
| | - Tiantian Liu
- Department of PathologySchool of Basic Medical SciencesCheeloo College of MedicineShandong UniversityJinanChina
| | - Dawei Xu
- Department of MedicineDivision of HematologyBioclinicum and Center for Molecular Medicine (CMM)Karolinska Institutet and Karolinska University Hospital SolnaStockholmSweden
| |
Collapse
|
23
|
Wang J, Dai M, Xing X, Wang X, Qin X, Huang T, Fang Z, Fan Y, Xu D. Genomic, epigenomic, and transcriptomic signatures for telomerase complex components: a pan-cancer analysis. Mol Oncol 2022; 17:150-172. [PMID: 36239411 PMCID: PMC9812836 DOI: 10.1002/1878-0261.13324] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 09/18/2022] [Accepted: 10/13/2022] [Indexed: 02/03/2023] Open
Abstract
Telomerase activation is required for malignant transformation. Recent advances in high-throughput technologies have enabled the generation of complex datasets, thus providing alternative approaches to exploring telomerase biology more comprehensively, which has proven to be challenging due to the need for laborious assays required to test for telomerase activity. To solve these issues, several groups have analyzed TCGA pan-cancer tumor datasets by investigating telomerase reverse transcriptase (TERT), the catalytic subunit for telomerase activity, or its surrogates. However, telomerase is a multiunit complex containing not only TERT, but also numerus cofactors required for telomerase function. Here we determined genomic and molecular alterations of 10 well-characterized telomerase components in the TCGA and CCLE datasets. We calculated a telomerase score (TS) based on their expression profiles and clustered tumors into low, high, and intermediate subtypes. To validate the in silico analysis result, we used immunoblotting and telomerase assays. High TS subtypes were significantly associated with stemness, proliferation, epithelial to mesenchymal transition, hyperactivation of oncogenic signaling pathways, shorter patient survival, and infiltration of dysfunctional T-cells or poor response to immunotherapy. Copy number alterations in 10 telomerase components were widespread and associated with the level of their expression. Surprisingly, primary tumors and cancer cell lines frequently displayed a homozygous deletion of the TCAB1 gene, encoding a telomerase protein essential for telomerase trafficking, assembling, and function, as previously reported. However, tumors or cells carrying a TCAB1 deletion still exhibited telomerase activity comparable to or even higher than their wildtype counterparts. Collectively, applying telomerase component-based TS in complex datasets provided a robust tool for telomerase analyses. Our findings also reveal a tight connection between telomerase and other oncogenic signaling pathways; TCAB1 may acts as a dispensable telomerase component. Moreover, TS may serve as a useful biomarker to predict patient outcomes and response to immunotherapy.
Collapse
Affiliation(s)
- Jing Wang
- Department of Urologic Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina
| | - Mingkai Dai
- Division of Hematology, Department of Medicine, Bioclinicum and Center for Molecular MedicineKarolinska Institutet and Karolinska University Hospital SolnaStockholmSweden
| | - Xiangling Xing
- Division of Hematology, Department of Medicine, Bioclinicum and Center for Molecular MedicineKarolinska Institutet and Karolinska University Hospital SolnaStockholmSweden
| | - Xing Wang
- Department of Urology SurgeryThe First Affiliated Hospital of USTC, Wannan Medical collegeWuhuChina
| | - Xin Qin
- Department of UrologyQilu Hospital of Shandong UniversityJinanChina
| | - Tao Huang
- Department of Urologic Oncology, The First Affiliated Hospital of USTC, Division of Life Sciences and MedicineUniversity of Science and Technology of ChinaHefeiChina,Department of Urology SurgeryThe First Affiliated Hospital of USTC, Wannan Medical collegeWuhuChina
| | - Zhiqing Fang
- Department of UrologyQilu Hospital of Shandong UniversityJinanChina
| | - Yidong Fan
- Department of UrologyQilu Hospital of Shandong UniversityJinanChina
| | - Dawei Xu
- Division of Hematology, Department of Medicine, Bioclinicum and Center for Molecular MedicineKarolinska Institutet and Karolinska University Hospital SolnaStockholmSweden
| |
Collapse
|
24
|
Martemucci G, Portincasa P, Di Ciaula A, Mariano M, Centonze V, D'Alessandro AG. Oxidative stress, aging, antioxidant supplementation and their impact on human health: An overview. Mech Ageing Dev 2022; 206:111707. [PMID: 35839856 DOI: 10.1016/j.mad.2022.111707] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Revised: 07/06/2022] [Accepted: 07/10/2022] [Indexed: 12/12/2022]
Abstract
Aging is characterized by a progressive loss of tissue and organ function due to genetic and environmental factors, nutrition, and lifestyle. Oxidative stress is one the most important mechanisms of cellular senescence and increased frailty, resulting in several age-linked, noncommunicable diseases. Contributing events include genomic instability, telomere shortening, epigenetic mechanisms, reduced proteome homeostasis, altered stem-cell function, defective intercellular communication, progressive deregulation of nutrient sensing, mitochondrial dysfunction, and metabolic unbalance. These complex events and their interplay can be modulated by dietary habits and the ageing process, acting as potential measures of primary and secondary prevention. Promising nutritional approaches include the Mediterranean diet, the intake of dietary antioxidants, and the restriction of caloric intake. A comprehensive understanding of the ageing processes should promote new biomarkers of risk or diagnosis, but also beneficial treatments oriented to increase lifespan.
Collapse
Affiliation(s)
- Giovanni Martemucci
- Department of Agricultural and Environmental Sciences, University of Bari Aldo Moro, Via G. Amendola, 165/A, 70126 Bari, Italy
| | - Piero Portincasa
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Agostino Di Ciaula
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy.
| | - Michele Mariano
- Unità Operativa Complessa di Radiodiagnostica Universitaria, Policlinico di Bari, Piazza Giulio Cesare, 11, 70124 Bari, Italy
| | - Vincenzo Centonze
- Clinica Medica "A. Murri", Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Bari, Italy
| | - Angela Gabriella D'Alessandro
- Department of Agricultural and Environmental Sciences, University of Bari Aldo Moro, Via G. Amendola, 165/A, 70126 Bari, Italy
| |
Collapse
|
25
|
Rubtsova M, Dontsova O. How Structural Features Define Biogenesis and Function of Human Telomerase RNA Primary Transcript. Biomedicines 2022; 10:biomedicines10071650. [PMID: 35884955 PMCID: PMC9313293 DOI: 10.3390/biomedicines10071650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/06/2022] [Accepted: 07/06/2022] [Indexed: 11/16/2022] Open
Abstract
Telomerase RNA has been uncovered as a component of the telomerase enzyme, which acts as a reverse transcriptase and maintains the length of telomeres in proliferated eukaryotic cells. Telomerase RNA is considered to have major functions as a template for telomeric repeat synthesis and as a structural scaffold for telomerase. However, investigations of its biogenesis and turnover, as well as structural data, have provided evidence of functions of telomerase RNA that are not associated with telomerase activity. The primary transcript produced from the human telomerase RNA gene encodes for the hTERP protein, which presents regulatory functions related to autophagy, cellular proliferation, and metabolism. This review focuses on the specific features relating to the biogenesis and structure of human telomerase RNA that support the existence of an isoform suitable for functioning as an mRNA. We believe that further investigation into human telomerase RNA biogenesis mechanisms will provide more levels for manipulating cellular homeostasis, survival, and transformation mechanisms, and may contribute to a deeper understanding of the mechanisms of aging.
Collapse
Affiliation(s)
- Maria Rubtsova
- Department of Chemistry, A.N. Belozersky Institute of Physico Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
- Correspondence:
| | - Olga Dontsova
- Department of Chemistry, A.N. Belozersky Institute of Physico Chemical Biology, Lomonosov Moscow State University, 119991 Moscow, Russia;
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry of the Russian Academy of Sciences, 117997 Moscow, Russia
- Center of Life Sciences, Skolkovo Institute of Science and Technology, Skolkovo, 121205 Moscow, Russia
| |
Collapse
|
26
|
Alessandrini I, Percio S, Naghshineh E, Zuco V, Stacchiotti S, Gronchi A, Pasquali S, Zaffaroni N, Folini M. Telomere as a Therapeutic Target in Dedifferentiated Liposarcoma. Cancers (Basel) 2022; 14:2624. [PMID: 35681604 PMCID: PMC9179266 DOI: 10.3390/cancers14112624] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/20/2022] [Accepted: 05/23/2022] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Well-differentiated (WD)/dedifferentiated (DD) liposarcoma (LPS) accounts for ~60% of retroperitoneal sarcomas. WDLPS and DDLPS divergently evolve from a common precursor and are both marked by the amplification of the 12q13-q15 region, leading to the abnormal expression of MDM2, CDK4, and HMGA2 genes. DDLPS is a non-lipogenic disease associated with aggressive clinical behavior. Patients have limited therapeutic options, especially for advanced disease, and their outcome remains largely unsatisfactory. This evidence underlines the need for identifying and validating DDLPS-specific actionable targets to design novel biology-driven therapies. METHODS Following gene expression profiling of DDLPS clinical specimens, we observed the up-regulation of "telomere maintenance" (TMM) pathways in paired DD and WD components of DDLPS. Considering the relevance of TMM for LPS onset and progression, the activity of a telomeric G-quadruplex binder (RHPS4) was assessed in DDLPS patient-derived cell lines. RESULTS Equitoxic concentrations of RHPS4 in DDLPS cells altered telomeric c-circle levels, induced DNA damage, and resulted in the accumulation of γ-H2AX-stained micronuclei. This evidence was paralleled by an RHPS4-mediated reduction of in vitro cell migration and induction of apoptosis/autophagy. CONCLUSIONS Our findings support telomere as an intriguing therapeutic target in DDLPS and suggest G-quadruplex binders as innovative therapeutic agents.
Collapse
Affiliation(s)
- Irene Alessandrini
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via G.A. Amadeo 42, 20133 Milan, Italy; (I.A.); (S.P.); (E.N.); (V.Z.); (S.P.)
| | - Stefano Percio
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via G.A. Amadeo 42, 20133 Milan, Italy; (I.A.); (S.P.); (E.N.); (V.Z.); (S.P.)
| | - Eisa Naghshineh
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via G.A. Amadeo 42, 20133 Milan, Italy; (I.A.); (S.P.); (E.N.); (V.Z.); (S.P.)
| | - Valentina Zuco
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via G.A. Amadeo 42, 20133 Milan, Italy; (I.A.); (S.P.); (E.N.); (V.Z.); (S.P.)
| | - Silvia Stacchiotti
- Adult Mesenchymal Tumor and Rare Cancer Unit, Department of Cancer Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Venezian 1, 20133 Milan, Italy;
| | - Alessandro Gronchi
- Sarcoma Service, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Venezian 1, 20133 Milan, Italy;
| | - Sandro Pasquali
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via G.A. Amadeo 42, 20133 Milan, Italy; (I.A.); (S.P.); (E.N.); (V.Z.); (S.P.)
- Sarcoma Service, Department of Surgery, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via Venezian 1, 20133 Milan, Italy;
| | - Nadia Zaffaroni
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via G.A. Amadeo 42, 20133 Milan, Italy; (I.A.); (S.P.); (E.N.); (V.Z.); (S.P.)
| | - Marco Folini
- Molecular Pharmacology Unit, Department of Applied Research and Technological Development, Fondazione IRCCS Istituto Nazionale dei Tumori di Milano, Via G.A. Amadeo 42, 20133 Milan, Italy; (I.A.); (S.P.); (E.N.); (V.Z.); (S.P.)
| |
Collapse
|
27
|
KLF4 regulates TERT expression in alveolar epithelial cells in pulmonary fibrosis. Cell Death Dis 2022; 13:435. [PMID: 35508454 PMCID: PMC9068714 DOI: 10.1038/s41419-022-04886-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 04/14/2022] [Accepted: 04/25/2022] [Indexed: 12/14/2022]
Abstract
Idiopathic pulmonary fibrosis (IPF) was considered as a telomere-mediated disease. TERT and TERC correlated with telomere length. Although telomerase gene mutations were associated with IPF, majority patients did not carry mutations. The mechanism by which telomerase expression was regulated in IPF are still unclear. In this study, we aimed to delineate the mechanisms that how TERT protein expression were regulated in alveolar epithelial cells (AECs) in pulmonary fibrosis. Here, we found that P16, P21 and fibrosis markers (αSMA and Collagen-I) were prominently increased in lung tissues of IPF patients and bleomycin-induced mouse models, while the expression of KLF4 and TERT were decreased in AECs. In vivo experiments, AAV-6 vectors mediated KLF4 over-expression with specific SP-C promoter was constructed. Over-expression of KLF4 in AECs could protect TERT expression and suppress the development of pulmonary fibrosis in bleomycin-induced mouse models. In the mechanism exploration of TERT regulation, KLF4 and TERT were both down-regulated in bleomycin-induced senescent MLE-12 and BEAS-2B cells. Compared with control group, small-interfering RNA targeting KLF4 significantly reduced the TERT expression and telomerase activity, while overexpression of KLF4 can increased the expression of TERT and telomerase activity in senescent AECs. Furthermore, ChIP showed that KLF4 protein could bind to the TERT promoter region in MLE-12 cells, suggesting that KLF4 could implicate in pathogenesis of lung fibrosis through regulating TERT transcription in AECs. Taken together, this study identified that KLF4 might be a promising potential target for further understanding the mechanism and developing novel strategy for the treatment of lung fibrosis in IPF.
Collapse
|
28
|
姚 羽, 刘 炜, 周 茂, 邱 廷, 王 琨. [Effect of WRAP53 β Targeted Co-Inhibitory Pathways Based on Comprehensive Bioinformatics Analysis in Treating Squamous Cell Carcinoma of the Head and Neck]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2022; 53:457-465. [PMID: 35642155 PMCID: PMC10409416 DOI: 10.12182/20220560208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Indexed: 06/15/2023]
Abstract
Objective To investigate the association between WD40-encoding RNA antisense to p53 ( WRAP53 β), a telomerase new core subunit, and the clinical, genomic and immune infiltration characteristics of squamous cell carcinoma of the head and neck (HNSC), and to explore for potential joint targeted therapy of HNSC. Methods Tumor IMmune Estimation Resource (TIMER) online modules were adopted to predict the association between WRAP53 β expression and the clinical features, oncogene, and immune infiltration of HNSC in the Cancer Genome Atlas (TCGA) cohort. Tumor Immune Single-cell Hub (TISCH) was used to analyze WRAP53 β expression at the single cell level. Analysis of the small molecule inhibitors potentially targeting WRAP53 β was carried out by Computational Analysis of REsistance (CARE). In the in vitro verification experiment, recombinant lentiviral particles with the sh WRAP53 β sequence were synthesized. Then, the oral squamous cell carcinoma cell line Cal27 (the sh WRAP53 βgroup) stably expressing sh WRAP53 β were constructed, and two control groups were set up (the shNC group consisting of Cal27 cells added with lentiviral particles containing non-specific control sequences and the Con group consisting of untreated Cal27 cells). MTT assay was done to examine the proliferation of cells in the three groups. Cellular immunofluorescence assay was done for further qualitative examination of the expression of P53 protein in the cells of the sh WRAP53 β group and the shNC group. Western blot was done to measure the expression of WRAP53β and γ-H2AX, a DNA damage protein, in the 18 th, 23 rd and 28 th passages of the sh WRAP53 β group and the shNC group. Finally, specimens of 13 cases of oral squamous cell carcinoma and 7 cases of oral mucosal inflammation were collected, and the expression of WRAP53β and γ-H2AX in the clinical specimens of oral squamous cell carcinoma was verified with immunohistochemistry. Resluts TIMER analysis revealed that the expression level of WRAP53 β in HNSC tissues was significantly higher than that in normal tissues. There was a significant positive correlation between WRAP53 β expression and multiple genes in the p53 pathway, including CCNB1, CCNB2 and CDK1. Although no significant correlation between WRAP53 β expression and infiltrating immune cells was found, WRAP53 β was significantly positively correlated with the inflammatory factors IFN-γ and IL23A, and negatively correlated with IL-1A and IL-6 in HPV-positive carcinoma of the head and neck. TISCH single cell sequencing datasets also showed higher expression of WRAP53 β in malignant cells, and very low or zero expression in immune cells. According to the CARE scores, the most potent WRAP53 β co-inhibitory drugs were ATM, CDK1 and MDM4 targeted inhibitors. In vitro cell experiments showed that the proliferation ability of Cal27 cells decreased significantly in the sh WRAP53 β group as compared with that of the control group between Day 5 and Day 7 ( P<0.05). Furthermore, the expression of P53 decreased significantly in the sh WRAP53 β group. As compared with the control group, the expression of WRAP53β in sh WRAP53 β group significantly decreased in the 18 th, 23 rd and 28 th passages ( P<0.05), while γ-H2AX expression only decreased in the 18 th and 28 th passages ( P<0.05) according to the results of Western blot. Clinical specimens showed rather high positive expression rate of γ-H2AX in oral squamous cell carcinoma tissues (12/13), while the expression of WRAP53β was not detected in oral mucositis samples (0/7). Conclusions WRAP53 β showed significantly higher expression level in HSNC, and was significantly associated with p53 pathway genes. ATM, CDK1 and MDM4 inhibitors may be potential WRAP53 β co-inhibitory agents. RNA interference of WRAP53 β expression may cause inhibition of DNA damage, thereby indicating therapeutic potential for HNSC.
Collapse
Affiliation(s)
- 羽菲 姚
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 炜 刘
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 茂林 周
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 廷亮 邱
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
| | - 琨 王
- 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 四川大学华西口腔医院 (成都 610041)State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
- 四川大学华西口腔医学基础国家级实验教学示范中心 (成都 610041)National Demonstration Center for Experimental Stomatology Education, West China School of Stomatology, Sichuan University, Chengdu 610041, China
| |
Collapse
|
29
|
Liu T, Long Q, Li L, Gan H, Hu X, Long H, Yang L, Pang P, Wang S, Deng W. The NRF2-dependent transcriptional axis, XRCC5/hTERT drives tumor progression and 5-Fu insensitivity in hepatocellular carcinoma. Mol Ther Oncolytics 2022; 24:249-261. [PMID: 35071747 PMCID: PMC8762376 DOI: 10.1016/j.omto.2021.12.012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 12/17/2021] [Indexed: 12/25/2022] Open
Abstract
Human telomerase reverse transcriptase (hTERT) is highly expressed in many tumors and is essential for tumorigenesis and metastasis in multiple cancers. However, the molecular mechanisms underlying its high expression level in hepatocellular carcinoma (HCC) remain unclear. In this study, we identified X-ray repair cross-complementing 5 (XRCC5), a novel hTERT promoter-binding protein in HCC cells, using biotin-streptavidin-agarose pull-down assay. We found that XRCC5 was highly expressed in HCC cells, in which it transcriptionally upregulated hTERT. Functionally, the transgenic expression of XRCC5 promoted HCC progression and 5-fluorouracil resistance, whereas short hairpin RNA knockdown of XRCC5 had converse effects in vitro and in vivo. Moreover, hTERT overexpression reversed XRCC5 knockdown- or 5-fluorouracil (5-Fu)-mediated HCC inhibition. Mechanistically, nuclear-factor-erythroid-2-related factor 2 (NRF2) interacted with XRCC5, which in turn upregulated hTERT. However, the upregulation was insignificant when NRF2 was reduced, suggesting that the XRCC5-mediated hTERT expression was NRF2 dependent. The HCC patients with high expression levels of XRCC5 and hTERT had shorter overall survival times compared with those with low XRCC5 and hTERT levels in their tumor tissues. Collectively, our study demonstrates the molecular mechanisms of the XRCC5/NRF2/hTERT signaling in HCC metastasis, which will aid in the identification of novel strategies for the diagnosis and treatment of HCC.
Collapse
Affiliation(s)
- Tianze Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, China
- The Cancer Center of The Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai 519000, China
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, Zhuhai 519000, China
| | - Qian Long
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, China
| | - Luting Li
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, Zhuhai 519000, China
- Department of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Hairun Gan
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, Zhuhai 519000, China
- Department of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Xinyan Hu
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, Zhuhai 519000, China
- Department of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Haoyu Long
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, Zhuhai 519000, China
- Department of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Lukun Yang
- Department of Anesthesiology, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000 China
| | - Pengfei Pang
- Guangdong Provincial Key Laboratory of Biomedical Imaging and Guangdong Provincial Engineering Research Center of Molecular Imaging, Zhuhai 519000, China
- Department of Interventional Medicine, The Fifth Affiliated Hospital of Sun Yat-sen University, Zhuhai 519000, China
| | - Siyang Wang
- The Cancer Center of The Fifth Affiliated Hospital Sun Yat-sen University, Zhuhai 519000, China
| | - Wuguo Deng
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou 510060, China
| |
Collapse
|
30
|
Bergstrand S, O'Brien EM, Coucoravas C, Hrossova D, Peirasmaki D, Schmidli S, Dhanjal S, Pederiva C, Siggens L, Mortusewicz O, O'Rourke JJ, Farnebo M. Small Cajal body-associated RNA 2 (scaRNA2) regulates DNA repair pathway choice by inhibiting DNA-PK. Nat Commun 2022; 13:1015. [PMID: 35197472 PMCID: PMC8866460 DOI: 10.1038/s41467-022-28646-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 01/25/2022] [Indexed: 12/20/2022] Open
Abstract
Evidence that long non-coding RNAs (lncRNAs) participate in DNA repair is accumulating, however, whether they can control DNA repair pathway choice is unknown. Here we show that the small Cajal body-specific RNA 2 (scaRNA2) can promote HR by inhibiting DNA-dependent protein kinase (DNA-PK) and, thereby, NHEJ. By binding to the catalytic subunit of DNA-PK (DNA-PKcs), scaRNA2 weakens its interaction with the Ku70/80 subunits, as well as with the LINP1 lncRNA, thereby preventing catalytic activation of the enzyme. Inhibition of DNA-PK by scaRNA2 stimulates DNA end resection by the MRN/CtIP complex, activation of ATM at DNA lesions and subsequent repair by HR. ScaRNA2 is regulated in turn by WRAP53β, which binds this RNA, sequestering it away from DNA-PKcs and allowing NHEJ to proceed. These findings reveal that RNA-dependent control of DNA-PK catalytic activity is involved in regulating whether the cell utilizes NHEJ or HR. Proper repair of DNA double-strand breaks is essential for genomic stability. Here, the authors report that a long non-coding RNA, scaRNA2, inhibits DNA-PK and thereby regulates the choice between error-prone NHEJ and error-free HR DNA repair.
Collapse
Affiliation(s)
- Sofie Bergstrand
- Department of Biosciences and Nutrition, Neo, Karolinska Institutet, Stockholm, Sweden
| | - Eleanor M O'Brien
- Department of Cell and Molecular biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Christos Coucoravas
- Department of Cell and Molecular biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Dominika Hrossova
- Department of Cell and Molecular biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Dimitra Peirasmaki
- Department of Cell and Molecular biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Sandro Schmidli
- Department of Cell and Molecular biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Soniya Dhanjal
- Department of Cell and Molecular biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Chiara Pederiva
- Department of Cell and Molecular biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Lee Siggens
- Department of Biosciences and Nutrition, Neo, Karolinska Institutet, Stockholm, Sweden
| | - Oliver Mortusewicz
- Department of Oncology and Pathology, SciLife, Karolinska Institutet, Stockholm, Sweden
| | - Julienne J O'Rourke
- Department of Cell and Molecular biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden
| | - Marianne Farnebo
- Department of Biosciences and Nutrition, Neo, Karolinska Institutet, Stockholm, Sweden. .,Department of Cell and Molecular biology, Biomedicum, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
31
|
Harish B, Wang J, Hayden EJ, Grabe B, Hiller W, Winter R, Royer CA. Hidden intermediates in Mango III RNA aptamer folding revealed by pressure perturbation. Biophys J 2022; 121:421-429. [PMID: 34971617 PMCID: PMC8822612 DOI: 10.1016/j.bpj.2021.12.037] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2021] [Revised: 11/12/2021] [Accepted: 12/23/2021] [Indexed: 02/03/2023] Open
Abstract
Fluorescent RNA aptamers have the potential to enable routine quantitation and localization of RNA molecules and serve as models for understanding biologically active aptamers. In recent years, several fluorescent aptamers have been selected and modified to improve their properties, revealing that small changes to the RNA or the ligands can modify significantly their fluorescent properties. Although structural biology approaches have revealed the bound, ground state of several fluorescent aptamers, characterization of low-abundance, excited states in these systems is crucial to understanding their folding pathways. Here we use pressure as an alternative variable to probe the suboptimal states of the Mango III aptamer with both fluorescence and NMR spectroscopy approaches. At moderate KCl concentrations, increasing pressure disrupted the G-quadruplex structure of the Mango III RNA and led to an intermediate with lower fluorescence. These observations indicate the existence of suboptimal RNA structural states that still bind the TO1-biotin fluorophore and moderately enhance fluorescence. At higher KCl concentration as well, the intermediate fluorescence state was populated at high pressure, but the G-quadruplex remained stable at high pressure, supporting the notion of parallel folding and/or binding pathways. These results demonstrate the usefulness of pressure for characterizing RNA folding intermediates.
Collapse
Affiliation(s)
| | - Jinqiu Wang
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy
| | - Eric J Hayden
- Department of Biology, Boise State University, Boise
| | - Bastian Grabe
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Wolf Hiller
- Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Roland Winter
- Physical Chemistry I - Biophysical Chemistry, Department of Chemistry and Chemical Biology, TU Dortmund University, Dortmund, Germany
| | - Catherine A Royer
- Department of Biological Sciences, Rensselaer Polytechnic Institute, Troy.
| |
Collapse
|
32
|
Vaidyanathan S, Baik R, Chen L, Bravo DT, Suarez CJ, Abazari SM, Salahudeen AA, Dudek AM, Teran CA, Davis TH, Lee CM, Bao G, Randell SH, Artandi SE, Wine JJ, Kuo CJ, Desai TJ, Nayak JV, Sellers ZM, Porteus MH. Targeted replacement of full-length CFTR in human airway stem cells by CRISPR-Cas9 for pan-mutation correction in the endogenous locus. Mol Ther 2022; 30:223-237. [PMID: 33794364 PMCID: PMC8753290 DOI: 10.1016/j.ymthe.2021.03.023] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 02/23/2021] [Accepted: 03/25/2021] [Indexed: 01/07/2023] Open
Abstract
Cystic fibrosis (CF) is a monogenic disease caused by impaired production and/or function of the CF transmembrane conductance regulator (CFTR) protein. Although we have previously shown correction of the most common pathogenic mutation, there are many other pathogenic mutations throughout the CF gene. An autologous airway stem cell therapy in which the CFTR cDNA is precisely inserted into the CFTR locus may enable the development of a durable cure for almost all CF patients, irrespective of the causal mutation. Here, we use CRISPR-Cas9 and two adeno-associated viruses (AAVs) carrying the two halves of the CFTR cDNA to sequentially insert the full CFTR cDNA along with a truncated CD19 (tCD19) enrichment tag in upper airway basal stem cells (UABCs) and human bronchial epithelial cells (HBECs). The modified cells were enriched to obtain 60%-80% tCD19+ UABCs and HBECs from 11 different CF donors with a variety of mutations. Differentiated epithelial monolayers cultured at air-liquid interface showed restored CFTR function that was >70% of the CFTR function in non-CF controls. Thus, our study enables the development of a therapy for almost all CF patients, including patients who cannot be treated using recently approved modulator therapies.
Collapse
Affiliation(s)
| | - Ron Baik
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Lu Chen
- Department of Internal Medicine, Stanford University, Stanford, CA 94305, USA; Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dawn T Bravo
- Department of Otolaryngology-Head and Neck Surgery, Stanford, CA 94305, USA
| | - Carlos J Suarez
- Department of Pathology, Stanford University, Stanford, CA 94305, USA
| | - Shayda M Abazari
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Ameen A Salahudeen
- Department of Internal Medicine, Stanford University, Stanford, CA 94305, USA
| | - Amanda M Dudek
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | | | - Timothy H Davis
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Ciaran M Lee
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Gang Bao
- Department of Bioengineering, Rice University, Houston, TX 77030, USA
| | - Scott H Randell
- Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Steven E Artandi
- Department of Internal Medicine, Stanford University, Stanford, CA 94305, USA; Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA; Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Jeffrey J Wine
- Department of Psychology, Stanford University, Stanford, CA 94305, USA
| | - Calvin J Kuo
- Department of Internal Medicine, Stanford University, Stanford, CA 94305, USA
| | - Tushar J Desai
- Department of Internal Medicine, Stanford University, Stanford, CA 94305, USA
| | - Jayakar V Nayak
- Department of Otolaryngology-Head and Neck Surgery, Stanford, CA 94305, USA
| | - Zachary M Sellers
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA
| | - Matthew H Porteus
- Department of Pediatrics, Stanford University, Stanford, CA 94305, USA.
| |
Collapse
|
33
|
Stem cells at odds with telomere maintenance and protection. Trends Cell Biol 2022; 32:527-536. [DOI: 10.1016/j.tcb.2021.12.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 11/23/2022]
|
34
|
Davis JA, Chakrabarti K. Telomerase ribonucleoprotein and genome integrity-An emerging connection in protozoan parasites. WILEY INTERDISCIPLINARY REVIEWS. RNA 2021; 13:e1710. [PMID: 34973045 DOI: 10.1002/wrna.1710] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Revised: 12/08/2021] [Accepted: 12/10/2021] [Indexed: 12/20/2022]
Abstract
Telomerase has an established role in telomere maintenance in eukaryotes. However, recent studies have begun to implicate telomerase in cellular roles beyond telomere maintenance. Specifically, evidence is emerging of cross-talks between telomerase mediated telomere homeostasis and DNA repair pathways. Telomere shortening due to the end replication problem is a constant threat to genome integrity in eukaryotic cells. This poses a particular problem in unicellular parasitic protists because their major virulence genes are located at the subtelomeric loci. Although telomerase is the major regulator of telomere lengthening in eukaryotes, it is less studied in the ancient eukaryotes, including clinically important human pathogens. Recent research is highlighting interplay between telomerase and the DNA damage response in human parasites. The importance of this interplay in pathogen virulence is only beginning to be illuminated, including the potential to highlight novel developmental regulation of telomerase in parasites who transition between multiple developmental stages throughout their life cycle. In this review, we will discuss the telomerase ribonucleoprotein enzyme and DNA repair pathways with emerging views in human parasites to give a broader perspective of the possible connection of telomere, telomerase, and DNA repair pathways across eukaryotic lineages and highlight their potential role in pathogen virulence. This article is categorized under: RNA Structure and Dynamics > Influence of RNA Structure in Biological Systems RNA Evolution and Genomics > RNA and Ribonucleoprotein Evolution RNA Interactions with Proteins and Other Molecules > Protein-RNA Interactions: Functional Implications.
Collapse
Affiliation(s)
| | - Kausik Chakrabarti
- University of North Carolina at Charlotte, Charlotte, North Carolina, USA
| |
Collapse
|
35
|
Dey A, Monroy-Eklund A, Klotz K, Saha A, Davis J, Li B, Laederach A, Chakrabarti K. In vivo architecture of the telomerase RNA catalytic core in Trypanosoma brucei. Nucleic Acids Res 2021; 49:12445-12466. [PMID: 34850114 PMCID: PMC8643685 DOI: 10.1093/nar/gkab1042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 10/11/2021] [Accepted: 10/15/2021] [Indexed: 01/07/2023] Open
Abstract
Telomerase is a unique ribonucleoprotein (RNP) reverse transcriptase that utilizes its cognate RNA molecule as a template for telomere DNA repeat synthesis. Telomerase contains the reverse transcriptase protein, TERT and the template RNA, TR, as its core components. The 5'-half of TR forms a highly conserved catalytic core comprising of the template region and adjacent domains necessary for telomere synthesis. However, how telomerase RNA folding takes place in vivo has not been fully understood due to low abundance of the native RNP. Here, using unicellular pathogen Trypanosoma brucei as a model, we reveal important regional folding information of the native telomerase RNA core domains, i.e. TR template, template boundary element, template proximal helix and Helix IV (eCR4-CR5) domain. For this purpose, we uniquely combined in-cell probing with targeted high-throughput RNA sequencing and mutational mapping under three conditions: in vivo (in WT and TERT-/- cells), in an immunopurified catalytically active telomerase RNP complex and ex vivo (deproteinized). We discover that TR forms at least two different conformers with distinct folding topologies in the insect and mammalian developmental stages of T. brucei. Also, TERT does not significantly affect the RNA folding in vivo, suggesting that the telomerase RNA in T. brucei exists in a conformationally preorganized stable structure. Our observed differences in RNA (TR) folding at two distinct developmental stages of T. brucei suggest that important conformational changes are a key component of T. brucei development.
Collapse
Affiliation(s)
- Abhishek Dey
- Department of Biological Sciences, University of North Carolina, Charlotte, NC 28223, USA
| | - Anais Monroy-Eklund
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kaitlin Klotz
- Department of Biological Sciences, University of North Carolina, Charlotte, NC 28223, USA
| | - Arpita Saha
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Sciences and Health Professions, Cleveland State University, Cleveland, OH 44115, USA
| | - Justin Davis
- Department of Biological Sciences, University of North Carolina, Charlotte, NC 28223, USA
| | - Bibo Li
- Center for Gene Regulation in Health and Disease, Department of Biological, Geological, and Environmental Sciences, College of Sciences and Health Professions, Cleveland State University, Cleveland, OH 44115, USA
| | - Alain Laederach
- Department of Biology, University of North Carolina, Chapel Hill, NC 27599, USA
| | - Kausik Chakrabarti
- To whom correspondence should be addressed. Tel: +1 704 687 1882; Fax: +1 704 687 1488;
| |
Collapse
|
36
|
Nguyen THD. Structural biology of human telomerase: progress and prospects. Biochem Soc Trans 2021; 49:1927-1939. [PMID: 34623385 PMCID: PMC8589416 DOI: 10.1042/bst20200042] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 12/28/2022]
Abstract
Telomerase ribonucleoprotein was discovered over three decades ago as a specialized reverse transcriptase that adds telomeric repeats to the ends of linear eukaryotic chromosomes. Telomerase plays key roles in maintaining genome stability; and its dysfunction and misregulation have been linked to different types of cancers and a spectrum of human genetic disorders. Over the years, a wealth of genetic and biochemical studies of human telomerase have illuminated its numerous fascinating features. Yet, structural studies of human telomerase have lagged behind due to various challenges. Recent technical developments in cryo-electron microscopy have allowed for the first detailed visualization of the human telomerase holoenzyme, revealing unprecedented insights into its active site and assembly. This review summarizes the cumulative work leading to the recent structural advances, as well as highlights how the future structural work will further advance our understanding of this enzyme.
Collapse
Affiliation(s)
- Thi Hoang Duong Nguyen
- Structural Studies Division, Medical Research Council Laboratory of Molecular Biology, Cambridge, U.K
| |
Collapse
|
37
|
Abstract
The majority of the mammalian genome is transcribed into non-coding RNAs, many of which co-evolve with RNA-binding proteins (RBPs) to function as biochemically defined and tractable ribonucleoproteins (RNPs). Here, we applied icSHAPE- a robust and versatile RNA structural probing pipeline- to endogenous RNPs purified from nuclei, providing base-resolution structural rationale for RNP activity and subcellular localization. Combining with genetic and biochemical reconstitutions, structural and functional alternations can be directly attributed to a given RBP without ambiguity. For complete details on the use and execution of this protocol, please refer to Chen et al. (2018).
Collapse
Affiliation(s)
- Lu Chen
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Howard Y. Chang
- Center for Personal Dynamic Regulomes, Stanford University, Stanford, CA 94305, USA
- Howard Hughes Medical Institute, Stanford University, Stanford, CA 94305, USA
| | - Steven E. Artandi
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
38
|
Nersisyan L, Simonyan A, Binder H, Arakelyan A. Telomere Maintenance Pathway Activity Analysis Enables Tissue- and Gene-Level Inferences. Front Genet 2021; 12:662464. [PMID: 33897770 PMCID: PMC8058386 DOI: 10.3389/fgene.2021.662464] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Accepted: 03/16/2021] [Indexed: 12/31/2022] Open
Abstract
Telomere maintenance is one of the mechanisms ensuring indefinite divisions of cancer and stem cells. Good understanding of telomere maintenance mechanisms (TMM) is important for studying cancers and designing therapies. However, molecular factors triggering selective activation of either the telomerase dependent (TEL) or the alternative lengthening of telomeres (ALT) pathway are poorly understood. In addition, more accurate and easy-to-use methodologies are required for TMM phenotyping. In this study, we have performed literature based reconstruction of signaling pathways for the ALT and TEL TMMs. Gene expression data were used for computational assessment of TMM pathway activities and compared with experimental assays for TEL and ALT. Explicit consideration of pathway topology makes bioinformatics analysis more informative compared to computational methods based on simple summary measures of gene expression. Application to healthy human tissues showed high ALT and TEL pathway activities in testis, and identified genes and pathways that may trigger TMM activation. Our approach offers a novel option for systematic investigation of TMM activation patterns across cancers and healthy tissues for dissecting pathway-based molecular markers with diagnostic impact.
Collapse
Affiliation(s)
- Lilit Nersisyan
- Bioinformatics Group, Institute of Molecular Biology, National Academy of Sciences, Yerevan, Armenia.,Pathverse, Yerevan, Armenia
| | - Arman Simonyan
- Bioinformatics Group, Institute of Molecular Biology, National Academy of Sciences, Yerevan, Armenia
| | - Hans Binder
- Interdisciplinary Center for Bioinformatics, University of Leipzig, Leipzig, Germany
| | - Arsen Arakelyan
- Bioinformatics Group, Institute of Molecular Biology, National Academy of Sciences, Yerevan, Armenia.,Pathverse, Yerevan, Armenia
| |
Collapse
|
39
|
Chen L, Roake CM, Galati A, Bavasso F, Micheli E, Saggio I, Schoeftner S, Cacchione S, Gatti M, Artandi SE, Raffa GD. Loss of Human TGS1 Hypermethylase Promotes Increased Telomerase RNA and Telomere Elongation. Cell Rep 2021; 30:1358-1372.e5. [PMID: 32023455 PMCID: PMC7156301 DOI: 10.1016/j.celrep.2020.01.004] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Revised: 11/09/2019] [Accepted: 12/31/2019] [Indexed: 02/08/2023] Open
Abstract
Biogenesis of the human telomerase RNA (hTR) involves a complex series of posttranscriptional modifications, including hypermethylation of the 5' mono-methylguanosine cap to a tri-methylguanosine cap (TMG). How the TMG cap affects hTR maturation is unknown. Here, we show that depletion of trimethylguanosine synthase 1 (TGS1), the enzyme responsible for cap hypermethylation, increases levels of hTR and telomerase. Diminished trimethylation increases hTR association with the cap-binding complex (CBC) and with Sm chaperone proteins. Loss of TGS1 causes an increase in accumulation of mature hTR in both the nucleus and the cytoplasm compared with controls. In TGS1 mutant cells, increased hTR assembles with telomerase reverse transcriptase (TERT) protein to yield elevated active telomerase complexes and increased telomerase activity, resulting in telomere elongation in cultured human cells. Our results show that TGS1-mediated hypermethylation of the hTR cap inhibits hTR accumulation, restrains levels of assembled telomerase, and limits telomere elongation.
Collapse
Affiliation(s)
- Lu Chen
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Caitlin M Roake
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Alessandra Galati
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Roma, Italy
| | - Francesca Bavasso
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Roma, Italy
| | - Emanuela Micheli
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Roma, Italy
| | - Isabella Saggio
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Roma, Italy
| | - Stefan Schoeftner
- Cancer Epigenetic Group, Laboratorio Nazionale Consorzio Interuniversitario Biotecnologie, Trieste, Italy
| | - Stefano Cacchione
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Roma, Italy
| | - Maurizio Gatti
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Roma, Italy; Istituto di Biologia e Patologia Molecolari (IBPM) del CNR, Roma, Italy
| | - Steven E Artandi
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Medicine, Stanford University School of Medicine, Stanford, CA 94305, USA; Department of Biochemistry, Stanford University School of Medicine, Stanford, CA 94305, USA.
| | - Grazia D Raffa
- Dipartimento di Biologia e Biotecnologie, Sapienza Università di Roma, Roma, Italy.
| |
Collapse
|
40
|
Qin J, Autexier C. Regulation of human telomerase RNA biogenesis and localization. RNA Biol 2021; 18:305-315. [PMID: 32813614 PMCID: PMC7954027 DOI: 10.1080/15476286.2020.1809196] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 08/03/2020] [Accepted: 08/08/2020] [Indexed: 12/16/2022] Open
Abstract
Maintenance of telomeres is essential for genome integrity and replicative capacity in eukaryotic cells. Telomerase, the ribonucleoprotein complex that catalyses telomere synthesis is minimally composed of a reverse transcriptase and an RNA component. The sequence and structural domains of human telomerase RNA (hTR) have been extensively characterized, while the regulation of hTR transcription, maturation, and localization, is not fully understood. Here, we provide an up-to-date review of hTR, with an emphasis on current breakthroughs uncovering the mechanisms of hTR maturation and localization.
Collapse
Affiliation(s)
- Jian Qin
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
- Jewish General Hospital, Lady Davis Institute, Montreal, Quebec, Canada
| | - Chantal Autexier
- Department of Anatomy and Cell Biology, McGill University, Montreal, Quebec, Canada
- Jewish General Hospital, Lady Davis Institute, Montreal, Quebec, Canada
| |
Collapse
|
41
|
Guo Y, Liu S, Yang H, Wang P, Feng Q. Proximity binding-triggered multipedal DNA walker for the electrochemiluminescence detection of telomerase activity. Anal Chim Acta 2021; 1144:68-75. [DOI: 10.1016/j.aca.2020.12.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 11/25/2020] [Accepted: 12/04/2020] [Indexed: 12/15/2022]
|
42
|
Grill S, Nandakumar J. Molecular mechanisms of telomere biology disorders. J Biol Chem 2021; 296:100064. [PMID: 33482595 PMCID: PMC7948428 DOI: 10.1074/jbc.rev120.014017] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2020] [Revised: 11/11/2020] [Accepted: 11/12/2020] [Indexed: 12/20/2022] Open
Abstract
Genetic mutations that affect telomerase function or telomere maintenance result in a variety of diseases collectively called telomeropathies. This wide spectrum of disorders, which include dyskeratosis congenita, pulmonary fibrosis, and aplastic anemia, is characterized by severely short telomeres, often resulting in hematopoietic stem cell failure in the most severe cases. Recent work has focused on understanding the molecular basis of these diseases. Mutations in the catalytic TERT and TR subunits of telomerase compromise activity, while others, such as those found in the telomeric protein TPP1, reduce the recruitment of telomerase to the telomere. Mutant telomerase-associated proteins TCAB1 and dyskerin and the telomerase RNA maturation component poly(A)-specific ribonuclease affect the maturation and stability of telomerase. In contrast, disease-associated mutations in either CTC1 or RTEL1 are more broadly associated with telomere replication defects. Yet even with the recent surge in studies decoding the mechanisms underlying these diseases, a significant proportion of dyskeratosis congenita mutations remain uncharacterized or poorly understood. Here we review the current understanding of the molecular basis of telomeropathies and highlight experimental data that illustrate how genetic mutations drive telomere shortening and dysfunction in these patients. This review connects insights from both clinical and molecular studies to create a comprehensive view of the underlying mechanisms that drive these diseases. Through this, we emphasize recent advances in therapeutics and pinpoint disease-associated variants that remain poorly defined in their mechanism of action. Finally, we suggest future avenues of research that will deepen our understanding of telomere biology and telomere-related disease.
Collapse
Affiliation(s)
- Sherilyn Grill
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA
| | - Jayakrishnan Nandakumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, Michigan, USA.
| |
Collapse
|
43
|
Codd V, Wang Q, Allara E, Musicha C, Kaptoge S, Stoma S, Jiang T, Hamby SE, Braund PS, Bountziouka V, Budgeon CA, Denniff M, Swinfield C, Papakonstantinou M, Sheth S, Nanus DE, Warner SC, Wang M, Khera AV, Eales J, Ouwehand WH, Thompson JR, Di Angelantonio E, Wood AM, Butterworth AS, Danesh JN, Nelson CP, Samani NJ. Polygenic basis and biomedical consequences of telomere length variation. Nat Genet 2021; 53:1425-1433. [PMID: 34611362 PMCID: PMC8492471 DOI: 10.1038/s41588-021-00944-6] [Citation(s) in RCA: 199] [Impact Index Per Article: 49.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2021] [Accepted: 08/18/2021] [Indexed: 02/08/2023]
Abstract
Telomeres, the end fragments of chromosomes, play key roles in cellular proliferation and senescence. Here we characterize the genetic architecture of naturally occurring variation in leukocyte telomere length (LTL) and identify causal links between LTL and biomedical phenotypes in 472,174 well-characterized UK Biobank participants. We identified 197 independent sentinel variants associated with LTL at 138 genomic loci (108 new). Genetically determined differences in LTL were associated with multiple biological traits, ranging from height to bone marrow function, as well as several diseases spanning neoplastic, vascular and inflammatory pathologies. Finally, we estimated that, at the age of 40 years, people with an LTL >1 s.d. shorter than the population mean had a 2.5-year-lower life expectancy compared with the group with ≥1 s.d. longer LDL. Overall, we furnish new insights into the genetic regulation of LTL, reveal wide-ranging influences of LTL on physiological traits, diseases and longevity, and provide a powerful resource available to the global research community.
Collapse
Affiliation(s)
- Veryan Codd
- grid.9918.90000 0004 1936 8411Department of Cardiovascular Sciences, University of Leicester, Leicester, UK ,grid.412925.90000 0004 0400 6581NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Qingning Wang
- grid.9918.90000 0004 1936 8411Department of Cardiovascular Sciences, University of Leicester, Leicester, UK ,grid.412925.90000 0004 0400 6581NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Elias Allara
- grid.5335.00000000121885934British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK ,grid.5335.00000000121885934National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK
| | - Crispin Musicha
- grid.9918.90000 0004 1936 8411Department of Cardiovascular Sciences, University of Leicester, Leicester, UK ,grid.412925.90000 0004 0400 6581NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Stephen Kaptoge
- grid.5335.00000000121885934British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK ,grid.5335.00000000121885934National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK ,grid.5335.00000000121885934British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK
| | - Svetlana Stoma
- grid.9918.90000 0004 1936 8411Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Tao Jiang
- grid.5335.00000000121885934British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Stephen E. Hamby
- grid.9918.90000 0004 1936 8411Department of Cardiovascular Sciences, University of Leicester, Leicester, UK ,grid.412925.90000 0004 0400 6581NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Peter S. Braund
- grid.9918.90000 0004 1936 8411Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Vasiliki Bountziouka
- grid.9918.90000 0004 1936 8411Department of Cardiovascular Sciences, University of Leicester, Leicester, UK ,grid.412925.90000 0004 0400 6581NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Charley A. Budgeon
- grid.9918.90000 0004 1936 8411Department of Cardiovascular Sciences, University of Leicester, Leicester, UK ,grid.412925.90000 0004 0400 6581NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK ,grid.1012.20000 0004 1936 7910School of Population and Global Health, University of Western Australia, Perth, Western Australia Australia
| | - Matthew Denniff
- grid.9918.90000 0004 1936 8411Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Chloe Swinfield
- grid.9918.90000 0004 1936 8411Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Manolo Papakonstantinou
- grid.9918.90000 0004 1936 8411Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Shilpi Sheth
- grid.9918.90000 0004 1936 8411Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Dominika E. Nanus
- grid.9918.90000 0004 1936 8411Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Sophie C. Warner
- grid.9918.90000 0004 1936 8411Department of Cardiovascular Sciences, University of Leicester, Leicester, UK
| | - Minxian Wang
- grid.66859.34Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA USA ,grid.32224.350000 0004 0386 9924Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA USA
| | - Amit V. Khera
- grid.66859.34Program in Medical and Population Genetics, Broad Institute of MIT and Harvard, Cambridge, MA USA ,grid.32224.350000 0004 0386 9924Center for Genomic Medicine, Massachusetts General Hospital, Boston, MA USA ,grid.38142.3c000000041936754XDepartment of Medicine, Harvard Medical School, Boston, MA USA ,grid.32224.350000 0004 0386 9924Cardiology Division, Department of Medicine, Massachusetts General Hospital, Boston, MA USA
| | - James Eales
- grid.5379.80000000121662407Division of Cardiovascular Sciences, University of Manchester, Manchester, UK
| | - Willem H. Ouwehand
- grid.5335.00000000121885934British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK ,grid.5335.00000000121885934Department of Haematology, University of Cambridge, Cambridge, UK ,grid.436365.10000 0000 8685 6563NHS Blood and Transplant, Cambridge, UK ,grid.52996.310000 0000 8937 2257University College London Hospitals NHS Foundation Trust, London, UK
| | - John R. Thompson
- grid.9918.90000 0004 1936 8411Department of Health Sciences, University of Leicester, Leicester, UK
| | - Emanuele Di Angelantonio
- grid.5335.00000000121885934British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK ,grid.5335.00000000121885934National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK ,grid.5335.00000000121885934British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK ,grid.10306.340000 0004 0606 5382Health Data Research UK Cambridge, Wellcome Sanger Institute, EMBL-European Bioinformatics Institute and University of Cambridge, Cambridge, UK
| | - Angela M. Wood
- grid.5335.00000000121885934British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK ,grid.5335.00000000121885934National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK ,grid.5335.00000000121885934British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK ,grid.10306.340000 0004 0606 5382Health Data Research UK Cambridge, Wellcome Sanger Institute, EMBL-European Bioinformatics Institute and University of Cambridge, Cambridge, UK ,grid.499548.d0000 0004 5903 3632The Alan Turing Institute, London, UK
| | - Adam S. Butterworth
- grid.5335.00000000121885934British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK ,grid.5335.00000000121885934National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK ,grid.5335.00000000121885934British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK ,grid.10306.340000 0004 0606 5382Health Data Research UK Cambridge, Wellcome Sanger Institute, EMBL-European Bioinformatics Institute and University of Cambridge, Cambridge, UK
| | - John N. Danesh
- grid.5335.00000000121885934British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK ,grid.5335.00000000121885934National Institute for Health Research Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK ,grid.5335.00000000121885934British Heart Foundation Centre of Research Excellence, University of Cambridge, Cambridge, UK ,grid.10306.340000 0004 0606 5382Health Data Research UK Cambridge, Wellcome Sanger Institute, EMBL-European Bioinformatics Institute and University of Cambridge, Cambridge, UK ,grid.10306.340000 0004 0606 5382Department of Human Genetics, Wellcome Sanger Institute, Hinxton, UK
| | - Christopher P. Nelson
- grid.9918.90000 0004 1936 8411Department of Cardiovascular Sciences, University of Leicester, Leicester, UK ,grid.412925.90000 0004 0400 6581NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| | - Nilesh J. Samani
- grid.9918.90000 0004 1936 8411Department of Cardiovascular Sciences, University of Leicester, Leicester, UK ,grid.412925.90000 0004 0400 6581NIHR Leicester Biomedical Research Centre, Glenfield Hospital, Leicester, UK
| |
Collapse
|
44
|
Palka C, Forino NM, Hentschel J, Das R, Stone MD. Folding heterogeneity in the essential human telomerase RNA three-way junction. RNA (NEW YORK, N.Y.) 2020; 26:1787-1800. [PMID: 32817241 PMCID: PMC7668248 DOI: 10.1261/rna.077255.120] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2020] [Accepted: 07/29/2020] [Indexed: 06/11/2023]
Abstract
Telomeres safeguard the genome by suppressing illicit DNA damage responses at chromosome termini. To compensate for incomplete DNA replication at telomeres, most continually dividing cells, including many cancers, express the telomerase ribonucleoprotein (RNP) complex. Telomerase maintains telomere length by catalyzing de novo synthesis of short DNA repeats using an internal telomerase RNA (TR) template. TRs from diverse species harbor structurally conserved domains that contribute to RNP biogenesis and function. In vertebrate TRs, the conserved regions 4 and 5 (CR4/5) fold into a three-way junction (TWJ) that binds directly to the telomerase catalytic protein subunit and is required for telomerase function. We have analyzed the structural properties of the human TR (hTR) CR4/5 domain using a combination of in vitro chemical mapping, secondary structural modeling, and single-molecule structural analysis. Our data suggest the essential P6.1 stem-loop within CR4/5 is not stably folded in the absence of the telomerase reverse transcriptase in vitro. Rather, the hTR CR4/5 domain adopts a heterogeneous ensemble of conformations. Finally, single-molecule FRET measurements of CR4/5 and a mutant designed to stabilize the P6.1 stem demonstrate that TERT binding selects for a structural conformation of CR4/5 that is not the dominant state of the TERT-free in vitro RNA ensemble.
Collapse
Affiliation(s)
- Christina Palka
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, USA
| | - Nicholas M Forino
- Department of Molecular, Cell, and Developmental Biology, University of California, Santa Cruz, California 95064, USA
| | - Jendrik Hentschel
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, USA
| | - Rhiju Das
- Biophysics Program, Stanford University, Stanford, California 94305, USA
- Department of Biochemistry, Stanford University, Stanford, California 94305, USA
- Department of Physics, Stanford University, Stanford, California 94305, USA
| | - Michael D Stone
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, California 95064, USA
- Center for Molecular Biology of RNA, University of California, Santa Cruz, California 95064, USA
| |
Collapse
|
45
|
Jiang X, Xing L, Chen Y, Qin R, Song S, Lu Y, Xie S, Wang L, Pu H, Gui X, Li T, Xu J, Li J, Jia S, Lu D. CircMEG3 inhibits telomerase activity by reducing Cbf5 in human liver cancer stem cells. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 23:310-323. [PMID: 33425489 PMCID: PMC7779543 DOI: 10.1016/j.omtn.2020.11.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 11/10/2020] [Indexed: 12/13/2022]
Abstract
Circular RNA (CircRNA) is a newly identified special class of non-coding RNA (ncRNA) that plays an important regulatory role in the progression of certain diseases. Herein, our results indicate that CircMEG3 is downregulated expression and negatively correlated with the expression of telomerase-related gene Cbf5 in human liver cancer. Moreover, CircMEG3 inhibits the growth of human liver cancer stem cells in vivo and in vitro. CircMEG3 inhibits the expression of m6A methyltransferase METTL3 dependent on HULC. Moreover, CircMEG3 inhibits the expression of Cbf5, a component of telomere synthetase H/ACA ribonucleoprotein (RNP; catalyst RNA pseudouracil modification) through METTL3 dependent on HULC. Thereby, CircMEG3 inhibits telomerase activity and shortens telomere lifespan dependent on HULC and Cbf5 in human liver cancer stem cell. Strikingly, increased Cbf5 abrogates the ability of CircMEG3 to inhibit malignant differentiation of human liver cancer stem cells. In summary, these observations provide important basic information for finding effective liver cancer therapeutic targets.
Collapse
Affiliation(s)
- Xiaoxue Jiang
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Libo Xing
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Yingjie Chen
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Rushi Qin
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Shuting Song
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Yanan Lu
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Sijie Xie
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Liyan Wang
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Hu Pu
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Xin Gui
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Tianming Li
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| | - Jie Xu
- School of Medicine, Tongji University, Shanghai 200092, China
| | - Jiao Li
- School of Medicine, Tongji University, Shanghai 200092, China
| | - Song Jia
- School of Medicine, Tongji University, Shanghai 200092, China
| | - Dongdong Lu
- Shanghai Putuo District People's Hospital, School of Life Science and Technology, Tongji University, Shanghai 200092, China
| |
Collapse
|
46
|
Nagpal N, Agarwal S. Telomerase RNA processing: Implications for human health and disease. Stem Cells 2020; 38:10.1002/stem.3270. [PMID: 32875693 PMCID: PMC7917152 DOI: 10.1002/stem.3270] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 08/11/2020] [Indexed: 11/11/2022]
Abstract
Telomeres are composed of repetitive DNA sequences that are replenished by the enzyme telomerase to maintain the self-renewal capacity of stem cells. The RNA component of human telomerase (TERC) is the essential template for repeat addition by the telomerase reverse transcriptase (TERT), and also serves as a scaffold for several factors comprising the telomerase ribonucleoprotein (RNP). Unique features of TERC regulation and function have been informed not only through biochemical studies but also through human genetics. Disease-causing mutations impact TERC biogenesis at several levels including RNA transcription, post-transcriptional processing, folding, RNP assembly, and trafficking. Defects in TERC reduce telomerase activity and impair telomere maintenance, thereby causing a spectrum of degenerative diseases called telomere biology disorders (TBDs). Deciphering mechanisms of TERC dysregulation have led to a broader understanding of noncoding RNA biology, and more recently points to new therapeutic strategies for TBDs. In this review, we summarize over two decades of work revealing mechanisms of human telomerase RNA biogenesis, and how its disruption causes human diseases.
Collapse
Affiliation(s)
- Neha Nagpal
- Division of Hematology/Oncology and Stem Cell Program, Boston Children’s Hospital, Boston, Massachusetts
- Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Initiative for RNA Medicine and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
- Harvard Stem Cell Institute, Boston, Massachusetts
| | - Suneet Agarwal
- Division of Hematology/Oncology and Stem Cell Program, Boston Children’s Hospital, Boston, Massachusetts
- Pediatric Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Initiative for RNA Medicine and Department of Pediatrics, Harvard Medical School, Boston, Massachusetts
- Harvard Stem Cell Institute, Boston, Massachusetts
| |
Collapse
|
47
|
Guterres AN, Villanueva J. Targeting telomerase for cancer therapy. Oncogene 2020; 39:5811-5824. [PMID: 32733068 PMCID: PMC7678952 DOI: 10.1038/s41388-020-01405-w] [Citation(s) in RCA: 143] [Impact Index Per Article: 28.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 07/02/2020] [Accepted: 07/23/2020] [Indexed: 12/20/2022]
Abstract
Telomere maintenance via telomerase reactivation is a nearly universal hallmark of cancer cells which enables replicative immortality. In contrast, telomerase activity is silenced in most adult somatic cells. Thus, telomerase represents an attractive target for highly selective cancer therapeutics. However, development of telomerase inhibitors has been challenging and thus far there are no clinically approved strategies exploiting this cancer target. The discovery of prevalent mutations in the TERT promoter region in many cancers and recent advances in telomerase biology has led to a renewed interest in targeting this enzyme. Here we discuss recent efforts targeting telomerase, including immunotherapies and direct telomerase inhibitors, as well as emerging approaches such as targeting TERT gene expression driven by TERT promoter mutations. We also address some of the challenges to telomerase-directed therapies including potential therapeutic resistance and considerations for future therapeutic applications and translation into the clinical setting. Although much work remains to be done, effective strategies targeting telomerase will have a transformative impact for cancer therapy and the prospect of clinically effective drugs is boosted by recent advances in structural models of human telomerase.
Collapse
Affiliation(s)
- Adam N Guterres
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA
| | - Jessie Villanueva
- Molecular and Cellular Oncogenesis Program, The Wistar Institute, Philadelphia, PA, USA.
- Melanoma Research Center, The Wistar Institute, Philadelphia, PA, USA.
| |
Collapse
|
48
|
Roake CM, Artandi SE. Regulation of human telomerase in homeostasis and disease. Nat Rev Mol Cell Biol 2020; 21:384-397. [PMID: 32242127 PMCID: PMC7377944 DOI: 10.1038/s41580-020-0234-z] [Citation(s) in RCA: 189] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2020] [Indexed: 12/14/2022]
Abstract
Telomerase is a ribonucleoprotein complex, the catalytic core of which includes the telomerase reverse transcriptase (TERT) and the non-coding human telomerase RNA (hTR), which serves as a template for the addition of telomeric repeats to chromosome ends. Telomerase expression is restricted in humans to certain cell types, and telomerase levels are tightly controlled in normal conditions. Increased levels of telomerase are found in the vast majority of human cancers, and we have recently begun to understand the mechanisms by which cancer cells increase telomerase activity. Conversely, germline mutations in telomerase-relevant genes that decrease telomerase function cause a range of genetic disorders, including dyskeratosis congenita, idiopathic pulmonary fibrosis and bone marrow failure. In this Review, we discuss the transcriptional regulation of human TERT, hTR processing, assembly of the telomerase complex, the cellular localization of telomerase and its recruitment to telomeres, and the regulation of telomerase activity. We also discuss the disease relevance of each of these steps of telomerase biogenesis.
Collapse
Affiliation(s)
- Caitlin M Roake
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA
| | - Steven E Artandi
- Stanford Cancer Institute, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, USA.
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, USA.
| |
Collapse
|
49
|
Human Telomerase RNA: Telomerase Component or More? Biomolecules 2020; 10:biom10060873. [PMID: 32517215 PMCID: PMC7355840 DOI: 10.3390/biom10060873] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Revised: 06/04/2020] [Accepted: 06/05/2020] [Indexed: 12/16/2022] Open
Abstract
Telomerase is a ribonucleoprotein complex that maintains the lengths of telomeres. Most studies of telomerase function have focused on the involvement of telomerase activation in the immortalization of cancer cells and cellular rejuvenation. However, some studies demonstrated that the results do not meet expectations for telomerase action in telomere maintenance. Recent results give reason to think that major telomerase components-the reverse transcriptase protein subunit and telomerase RNA-may participate in many cellular processes, including the regulation of apoptosis and autophagy, cell survival, pro-proliferative effects, regulation of gene expression, and protection against oxidative stress. However, the difficulties faced by scientist when researching telomerase component functions often reduce confidence in the minor effects observed in experiments. In this review, we focus on the analysis of the functions of telomerase components (paying more attention to the telomerase RNA component), both as a complex and as independent components, providing effects that are not associated with telomerase activity and telomere length maintenance. Despite the fact that the data on alternative roles of telomerase components look illusory, it would be wrong to completely reject the possibility of their involvement in other biological processes excluded from research/discussion. Investigations to improve the understanding of every aspect of the functioning of telomerase components will provide the basis for a more precise development of approaches to regulate cellular homeostasis, which is important for carcinogenesis and aging.
Collapse
|
50
|
Smith EM, Pendlebury DF, Nandakumar J. Structural biology of telomeres and telomerase. Cell Mol Life Sci 2020; 77:61-79. [PMID: 31728577 PMCID: PMC6986361 DOI: 10.1007/s00018-019-03369-x] [Citation(s) in RCA: 132] [Impact Index Per Article: 26.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 10/11/2019] [Accepted: 10/31/2019] [Indexed: 01/16/2023]
Abstract
Telomeres are protein-DNA complexes that protect chromosome ends from illicit ligation and resection. Telomerase is a ribonucleoprotein enzyme that synthesizes telomeric DNA to counter telomere shortening. Human telomeres are composed of complexes between telomeric DNA and a six-protein complex known as shelterin. The shelterin proteins TRF1 and TRF2 provide the binding affinity and specificity for double-stranded telomeric DNA, while the POT1-TPP1 shelterin subcomplex coats the single-stranded telomeric G-rich overhang that is characteristic of all our chromosome ends. By capping chromosome ends, shelterin protects telomeric DNA from unwanted degradation and end-to-end fusion events. Structures of the human shelterin proteins reveal a network of constitutive and context-specific interactions. The shelterin protein-DNA structures reveal the basis for both the high affinity and DNA sequence specificity of these interactions, and explain how shelterin efficiently protects chromosome ends from genome instability. Several protein-protein interactions, many provided by the shelterin component TIN2, are critical for upholding the end-protection function of shelterin. A survey of these protein-protein interfaces within shelterin reveals a series of "domain-peptide" interactions that allow for efficient binding and adaptability towards new functions. While the modular nature of shelterin has facilitated its part-by-part structural characterization, the interdependence of subunits within telomerase has made its structural solution more challenging. However, the exploitation of several homologs in combination with recent advancements in cryo-EM capabilities has led to an exponential increase in our knowledge of the structural biology underlying telomerase function. Telomerase homologs from a wide range of eukaryotes show a typical retroviral reverse transcriptase-like protein core reinforced with elements that deliver telomerase-specific functions including recruitment to telomeres and high telomere-repeat addition processivity. In addition to providing the template for reverse transcription, the RNA component of telomerase provides a scaffold for the catalytic and accessory protein subunits, defines the limits of the telomeric repeat sequence, and plays a critical role in RNP assembly, stability, and trafficking. While a high-resolution definition of the human telomerase structure is only beginning to emerge, the quick pace of technical progress forecasts imminent breakthroughs in this area. Here, we review the structural biology surrounding telomeres and telomerase to provide a molecular description of mammalian chromosome end protection and end replication.
Collapse
Affiliation(s)
- Eric M Smith
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Devon F Pendlebury
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jayakrishnan Nandakumar
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
- Program in Chemical Biology, University of Michigan, Ann Arbor, MI, 48109, USA.
| |
Collapse
|