1
|
Li L, Xu L, Liao W, Wang P, Xu M, Li B, Zhang M. circCEP70 encoded protein inhibits the progression of hepatocellular carcinoma. Cell Mol Life Sci 2025; 82:174. [PMID: 40272569 DOI: 10.1007/s00018-025-05651-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 02/14/2025] [Accepted: 03/06/2025] [Indexed: 04/25/2025]
Abstract
Cirrhosis is closely related to hepatocellular carcinoma (HCC), however, the regulation of circular RNA (circRNA) in HCC with cirrhotic background has not yet been well illustrated. In this study, high throughput circRNA sequencing was applied to identified candidate circRNAs in HCC samples with cirrhotic background. The biological function of candidate circRNA was validated in both in vitro and in vivo settings. Additionally, Alphafold 3, mass spectrometry analysis and immunofluorescence were employed to investigate the underlying mechanisms involved. We found circCEP70 exhibited significantly higher expression levels in cirrhotic HCC samples and showed a positive correlation with improved prognosis. The RNA binding protein U2AF2 was found to suppress the expression of circCEP70 in cirrhosis patients. In vitro and in vivo experiments, including CCK-8, EdU, plate cloning, transwell, scratch, subcutaneous tumor formation, liver metastasis in situ, and lung metastasis assays confirmed the anti-carcinogenic effects. Mechanistically, circCEP70 encoded a novel protein named CEP70-160aa, which interacted with PKM2 and hindered its translocation into the nucleus. This interaction led to reduce STAT3 phosphorylation in the nucleus, thus inhibiting HCC proliferation and metastasis. In cirrhotic microenvironment, circCEP70 prevented HCC proliferation and metastasis through PKM2/STAT3 axis, and RNA binding protein U2AF2 could inhibit circCEP70 expression.
Collapse
Affiliation(s)
- Lian Li
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Liangliang Xu
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Wenwei Liao
- Department of Thoracic Surgery, the Second Clinical Medical College, Jinan University (Shenzhen People's Hospital), Shenzhen, 518020, China
- The First Affiliated Hospital, Jinan University, Guangzhou, 510630, China
| | - Peng Wang
- Department of Burns, Sichuan Academy of Medical Science, Sichuan Provincial People'S Hospital, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610072, China
| | - Mingqing Xu
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
- Department of Hepato-Pancreato-Biliary Surgery, Meishan City People'S Hospital, Meishan Hospital of West China Hospital, Sichuan University, Meishan, 620010, China
| | - Bo Li
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Ming Zhang
- Division of Liver Surgery, Department of General Surgery, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
2
|
Kirio K, Patop IL, Anduaga AM, Harris J, Pamudurti N, Su TN, Martel C, Kadener S. Circular RNAs exhibit exceptional stability in the aging brain and serve as reliable age and experience indicators. Cell Rep 2025; 44:115485. [PMID: 40184256 DOI: 10.1016/j.celrep.2025.115485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2024] [Revised: 02/05/2025] [Accepted: 03/07/2025] [Indexed: 04/06/2025] Open
Abstract
Circular RNAs (circRNAs) increase in the brain with age across various animal systems. To elucidate the reasons behind this phenomenon, we profile circRNAs from fly heads at six time points throughout their lifespan. Our results reveal a linear increase in circRNA levels with age, independent of changes in mRNA levels, overall transcription, intron retention, or host gene splicing, demonstrating that the age-related accumulation is due to high stability rather than increased biogenesis. This remarkable stability suggests that circRNAs can serve as markers of environmental experience. Indeed, flies exposed to a 10-day regimen at 29°C exhibit higher levels of specific circRNAs even 6 weeks after returning to standard conditions, indicating that circRNAs can reveal past environmental stimuli. Moreover, half-life measurements show circRNA stability exceeding 20 days, with some displaying virtually no degradation. These findings underscore the remarkable stability of circRNAs in vivo and their potential as markers for stress and life experiences.
Collapse
Affiliation(s)
- Ken Kirio
- Biology Department, Brandeis University, Waltham, MA 02454, USA
| | | | | | - Jenna Harris
- Biology Department, Brandeis University, Waltham, MA 02454, USA
| | | | - The Nandar Su
- Biology Department, Brandeis University, Waltham, MA 02454, USA
| | - Claire Martel
- Biology Department, Brandeis University, Waltham, MA 02454, USA
| | | |
Collapse
|
3
|
Kim H, Lee YY, Kim VN. The biogenesis and regulation of animal microRNAs. Nat Rev Mol Cell Biol 2025; 26:276-296. [PMID: 39702526 DOI: 10.1038/s41580-024-00805-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/28/2024] [Indexed: 12/21/2024]
Abstract
MicroRNAs (miRNAs) are small, yet profoundly influential, non-coding RNAs that base-pair with mRNAs to induce RNA silencing. Although the basic principles of miRNA biogenesis and function have been established, recent breakthroughs have yielded important new insights into the molecular mechanisms of miRNA biogenesis. In this Review, we discuss the metazoan miRNA biogenesis pathway step-by-step, focusing on the key biogenesis machinery, including the Drosha-DGCR8 complex (Microprocessor), exportin-5, Dicer and Argonaute. We also highlight newly identified cis-acting elements and their impact on miRNA maturation, informed by advanced high-throughput and structural studies, and discuss recently discovered mechanisms of clustered miRNA processing, target recognition and target-directed miRNA decay (TDMD). Lastly, we explore multiple regulatory layers of miRNA biogenesis, mediated by RNA-protein interactions, miRNA tailing (uridylation or adenylation) and RNA modifications.
Collapse
Affiliation(s)
- Haedong Kim
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
- Department of Genome Sciences, University of Washington, Seattle, WA, USA
| | - Young-Yoon Lee
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea
| | - V Narry Kim
- Center for RNA Research, Institute for Basic Science, Seoul, Republic of Korea.
- School of Biological Sciences, Seoul National University, Seoul, Republic of Korea.
| |
Collapse
|
4
|
Kelly D, Bicker S, Winterer J, Nanda P, Germain PL, Dieterich C, Schratt G. A functional screen uncovers circular RNAs regulating excitatory synaptogenesis in hippocampal neurons. Nat Commun 2025; 16:3040. [PMID: 40155636 PMCID: PMC11953392 DOI: 10.1038/s41467-025-58070-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 03/11/2025] [Indexed: 04/01/2025] Open
Abstract
Circular RNAs (circRNAs) are an expanding class of largely unexplored RNAs which are prominently enriched in the mammalian brain. Here, we systematically interrogate their role in excitatory synaptogenesis of rat hippocampal neurons using RNA interference. Thereby, we identify seven circRNAs as negative regulators of excitatory synapse formation, many of which contain high-affinity microRNA binding sites. Knockdown of one of these candidates, circRERE, promotes the formation of electrophysiologically silent synapses. Mechanistically, circRERE knockdown results in a preferential upregulation of synaptic mRNAs containing binding sites for miR-128-3p. Overexpression of circRERE stabilizes miR-128-3p and rescues exaggerated synapse formation upon circRERE knockdown in a miR-128-3p binding site-specific manner. Overall, our results uncover circRERE-mediated stabilization of miR-128-3p as a means to restrict the formation of silent excitatory synaptic co-clusters and more generally implicate circRNA-dependent microRNA regulation in the control of synapse development and function.
Collapse
Affiliation(s)
- Darren Kelly
- Laboratory of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, ETH Zürich, Zurich, Switzerland
| | - Silvia Bicker
- Laboratory of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, ETH Zürich, Zurich, Switzerland
| | - Jochen Winterer
- Laboratory of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, ETH Zürich, Zurich, Switzerland
| | - Prakruti Nanda
- Laboratory of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, ETH Zürich, Zurich, Switzerland
| | - Pierre-Luc Germain
- Laboratory of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, ETH Zürich, Zurich, Switzerland
- Laboratory of Molecular and Behavioural Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, ETH Zürich, Zurich, Switzerland
- Lab of Statistical Bioinformatics, IMLS, University of Zürich, Zurich, Switzerland
| | - Christoph Dieterich
- Section of Bioinformatics and Systems Cardiology, Department of Internal Medicine III and Klaus Tschira Institute for Integrative Computational Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Gerhard Schratt
- Laboratory of Systems Neuroscience, Institute for Neuroscience, Department of Health Science and Technology, ETH Zürich, Zurich, Switzerland.
| |
Collapse
|
5
|
Seida M, Ogami K, Yoshino S, Suzuki HI. Fine Regulation of MicroRNAs in Gene Regulatory Networks and Pathophysiology. Int J Mol Sci 2025; 26:2861. [PMID: 40243428 PMCID: PMC11988966 DOI: 10.3390/ijms26072861] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 03/19/2025] [Accepted: 03/20/2025] [Indexed: 04/18/2025] Open
Abstract
MicroRNAs (miRNAs) are ~22-nucleotide small non-coding RNAs that play critical roles in gene regulation. The discovery of miRNAs in Caenorhabditis elegans in 1993 by the research groups of Victor Ambros and Gary Ruvkun opened a new era in RNA research. Typically, miRNAs act as negative regulators of gene expression by binding to complementary sequences within the 3' untranslated regions of their target mRNAs. This interaction results in translational repression and/or target destabilization. The expression levels and activities of miRNAs are fine-tuned by multiple factors, including the miRNA biogenesis pathway, variability in target recognition, super-enhancers, post-transcriptional modifications, and target-directed miRNA degradation. Together, these factors form complex mechanisms that govern gene regulation and underlie several pathological conditions, including Argonaute syndrome, genetic diseases driven by super-enhancer-associated miRNAs, and miRNA-deadenylation-associated bone marrow failure syndromes. In addition, as miRNA genes have evolved rapidly in vertebrates, miRNA regulation in the brain is characterized by several unique features. In this review, we summarize recent insights into the role of miRNAs in human diseases, focusing on miRNA biogenesis; regulatory mechanisms, such as super-enhancers; and the impact of post-transcriptional modifications. By exploring these mechanisms, we highlight the intricate and multifaceted roles of miRNAs in health and disease.
Collapse
Affiliation(s)
- Mayu Seida
- Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Koichi Ogami
- Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Seiko Yoshino
- Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
| | - Hiroshi I. Suzuki
- Division of Molecular Oncology, Center for Neurological Diseases and Cancer, Nagoya University Graduate School of Medicine, Nagoya 466-8550, Japan
- Institute for Glyco-core Research (iGCORE), Nagoya University, Nagoya 464-8601, Japan
- Center for One Medicine Innovative Translational Research (COMIT), Nagoya University, Nagoya 464-8601, Japan
- Inamori Research Institute for Science (InaRIS), Kyoto 600-8411, Japan
| |
Collapse
|
6
|
Chen P, Zhang J, Wu S, Zhang X, Zhou W, Guan Z, Tang H. CircRNAs: a novel potential strategy to treat breast cancer. Front Immunol 2025; 16:1563655. [PMID: 40176810 PMCID: PMC11961433 DOI: 10.3389/fimmu.2025.1563655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Accepted: 02/20/2025] [Indexed: 04/04/2025] Open
Abstract
Breast cancer is among the most prevalent malignant tumors worldwide, with triple-negative breast cancer (TNBC) being the most aggressive subtype and lacking effective treatment options. Circular RNAs (circRNAs) are noncoding RNAs that play crucial roles in the development of tumors, including breast cancer. This article examines the progress of research on circRNAs in breast cancer, focusing on four main areas: 1) breast cancer epidemiology, classification, and treatment; 2) the structure, discovery process, characteristics, formation, and functions of circRNAs; 3) the expression, mechanisms, clinical relevance, and recent advances in the study of circRNAs in breast cancer cells and the immune microenvironment, particularly in TNBC; and 4) the challenges and future prospects of the use of circRNAs in BC research.
Collapse
Affiliation(s)
- Pangzhou Chen
- The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China
| | - Jinhui Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Song Wu
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Xiaoyu Zhang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wen Zhou
- The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China
| | - Ziyun Guan
- The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China
| | - Hailin Tang
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
7
|
Lan M, Qin S, Wei J, Wu L, Lu Z, Huang W. The SLC26A4-AS1/NTRK2 axis in breast cancer: insights into the ceRNA network and implications for prognosis and immune microenvironment. Discov Oncol 2025; 16:329. [PMID: 40090984 PMCID: PMC11911282 DOI: 10.1007/s12672-025-02080-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2024] [Accepted: 03/05/2025] [Indexed: 03/19/2025] Open
Abstract
Breast cancer is a leading malignancy in women, with mortality disparities between developed and underdeveloped regions. Accumulating evidence suggests that the competitive endogenous RNA (ceRNA) regulatory networks play paramount roles in various human cancers. However, the complexity and behavior characteristics of the ceRNA network in breast cancer progression have not been fully elucidated. The expression profiles of three RNAs (long non-coding RNAs [lncRNAs], microRNAs [miRNAs], and mRNAs) were extracted from breast cancer and adjacent samples were sourced from the TCGA database. The SLC26A4-AS1- hsa-miR-19a-3p-NTRK2 ceRNA network related to the prognosis of breast cancer was obtained by performing bioinformatics analysis. Importantly, we identified the SLC26A4-AS1/NTRK2 axis within the ceRNA network through correlation analysis and found it to be a potential prognostic model in clinical outcomes based on Cox regression analysis. Moreover, methylation analysis suggests that the aberrant downregulation of the SLC26A4-AS1/NTRK2 axis might be attributed to hypermethylation at specific sites. Immune infiltration analysis indicates that the SLC26A4-AS1/NTRK2 axis may have implications for the alteration of the tumor immune microenvironment and the emergence and progression of immune evasion in breast cancer. Finally, we validated the expression of SLC26A4-AS1-hsa-miR-19a-3p-NTRK2 in breast cancer cell lines. In summary, the present study posits that the SLC26A4-AS1/NTRK2 axis, based on the ceRNA network, could be a novel and significant prognostic factor associated with breast cancer diagnosis and outcomes.
Collapse
Affiliation(s)
- Mengqiu Lan
- Liuzhou Municipal Liutie Central Hospital, Liuzhou, 545007, Guangxi, China
| | - Shuang Qin
- Liuzhou Municipal Liutie Central Hospital, Liuzhou, 545007, Guangxi, China
| | - Jingjing Wei
- Liuzhou Municipal Liutie Central Hospital, Liuzhou, 545007, Guangxi, China
| | - Lihong Wu
- Liuzhou Municipal Liutie Central Hospital, Liuzhou, 545007, Guangxi, China
| | - Zhenni Lu
- Liuzhou Municipal Liutie Central Hospital, Liuzhou, 545007, Guangxi, China
| | - Wenjie Huang
- Department of Reproductive Medicine, Guangzhou Women and Children'S Medical Center Liuzhou Hospital, Liuzhou, 545616, Guangxi, China.
- Department of Reproductive Medicine, Liuzhou Maternity and Child Healthcare Hospital, Liuzhou, 545001, Guangxi, China.
| |
Collapse
|
8
|
Quiobe SP, Kalirad A, Röseler W, Witte H, Wang Y, Rödelsperger C, Sommer RJ. EBAX-1/ZSWIM8 destabilizes miRNAs, resulting in transgenerational inheritance of a predatory trait. SCIENCE ADVANCES 2025; 11:eadu0875. [PMID: 40073139 PMCID: PMC11900880 DOI: 10.1126/sciadv.adu0875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 02/06/2025] [Indexed: 03/14/2025]
Abstract
Environmental influences on traits and associated transgenerational epigenetic inheritance have widespread implications but remain controversial and underlying mechanisms poorly understood. We introduce long-term environmental induction experiments on alternative diets in Pristionchus pacificus, a nematode exhibiting mouth-form plasticity including predation, by propagating 110 isogenic lines for 101 generations with associated food-reversal experiments. We found dietary induction and subsequent transgenerational inheritance of the predatory morph and identified a role of ubiquitin ligase EBAX-1/ZSWIM8 in this process. Ppa-ebax-1 mutants are transgenerational inheritance defective, and Ppa-EBAX-1 destabilizes the clustered microRNA family miR-2235a/miR-35. Deletions of a cluster of 44 identical miR-2235a copies resulted in precocious and extended transgenerational inheritance of the predatory morph. These findings indicate that EBAX-1/ZSWIM8 destabilizes miRNAs, resulting in transgenerational inheritance, suggesting a role for target-directed miRNA degradation.
Collapse
Affiliation(s)
- Shiela Pearl Quiobe
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Max-Planck Ring 9, Tübingen, 72076, Germany
| | - Ata Kalirad
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Max-Planck Ring 9, Tübingen, 72076, Germany
| | - Waltraud Röseler
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Max-Planck Ring 9, Tübingen, 72076, Germany
| | - Hanh Witte
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Max-Planck Ring 9, Tübingen, 72076, Germany
| | - Yinan Wang
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Max-Planck Ring 9, Tübingen, 72076, Germany
| | - Christian Rödelsperger
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Max-Planck Ring 9, Tübingen, 72076, Germany
| | - Ralf J. Sommer
- Department for Integrative Evolutionary Biology, Max Planck Institute for Biology Tübingen, Max-Planck Ring 9, Tübingen, 72076, Germany
| |
Collapse
|
9
|
El-Ashmawy NE, Khedr EG, Darwish RT, Ibrahim AO. Competing endogenous RNAs network and therapeutic implications: New horizons in disease research. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2025; 1868:195073. [PMID: 39631541 DOI: 10.1016/j.bbagrm.2024.195073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2024] [Revised: 11/17/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
Different diseases may arise from the dysregulation of non-coding RNAs (ncRNAs), which regulation is necessary for maintaining cellular homeostasis. ncRNAs are regulated by transcriptional, post-transcriptional, translational and post-translational processes. Post-transcriptional regulation of gene expression is carried out by microRNAs (miRNAs), a class of small ncRNA molecules, which can identify their target sites by a brief nucleotide sequence, known as the miRNA response element (MRE), present on the miRNA seed sequence and the target transcript. This binding between miRNAs and targets can regulate the gene expression through inhibition of translation or degradation of target messenger RNA (mRNA). The transcripts that share MREs can be involved in competition for the central miRNA pool, which could have an indirect impact on each other's regulation. This competition network is called competing endogenous RNAs network (ceRNET). Many ncRNAs, including circular RNA, pseudogene, and long non-coding RNA, as well as mRNA, a coding RNA transcript, make up ceRNET. These components play a crucial role in post-transcriptional regulation and are involved in the diagnosis and treatment of many pathological disorders. The mechanism of ceRNET and its essential components, as well as their therapeutic implications in different diseases such as cancer, diabetes mellitus, neurological, cardiovascular, hepatic and respiratory disorders were covered in this review.
Collapse
Affiliation(s)
- Nahla E El-Ashmawy
- Biochemistry Department, Faculty of Pharmacy, Tanta University, 31527, Egypt; Department of Pharmacology and Biochemistry, Faculty of Pharmacy, The British University in Egypt, El Sherouk City, Cairo 11837, Egypt
| | - Eman G Khedr
- Biochemistry Department, Faculty of Pharmacy, Tanta University, 31527, Egypt
| | - Renad T Darwish
- Biochemistry Department, Faculty of Pharmacy, Tanta University, 31527, Egypt
| | - Amera O Ibrahim
- Biochemistry Department, Faculty of Pharmacy, Tanta University, 31527, Egypt.
| |
Collapse
|
10
|
Wang Q, Niu G, Liu Z, Toma MA, Geara J, Bian X, Zhang L, Piipponen M, Li D, Wang A, Sommar P, Xu Landén N. Circular RNA circASH1L(4,5) protects microRNA-129-5p from target-directed microRNA degradation in human skin wound healing. Br J Dermatol 2025; 192:468-480. [PMID: 39422230 DOI: 10.1093/bjd/ljae405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 10/11/2024] [Accepted: 10/14/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Skin wound healing involves a complex gene expression programme that remains largely undiscovered in humans. Circular RNAs (circRNAs) and microRNAs (miRNAs) are key players in this process. OBJECTIVES To understand the functions and potential interactions of circRNAs and miRNAs in human skin wound healing. METHODS CircRNA, linear RNA and miRNA expression in human acute and chronic wounds were analysed with RNA sequencing and quantitative reverse transcription polymerase chain reaction. The roles of circASH1L(4,5) and miR-129-5p were studied in human primary keratinocytes (proliferation and migration assays, microarray analysis) and ex vivo wound models (histological analysis). The interaction between circASH1L(4,5) and miR-129-5p was examined using luciferase reporter and RNA pulldown assays. RESULTS We identified circASH1L(4,5) and its interaction with miR-129-5p, both of which increased during human skin wound healing. Unlike typical miRNA sponging, circASH1L enhanced miR-129 stability and silencing activity by protecting it from target-directed degradation triggered by NR6A1 mRNA. Transforming growth factor-β signalling - crucial in wound healing - promoted circASH1L expression while suppressing NR6A1, thereby increasing the abundance of miR-129 at the post-transcriptional level. CircASH1L and miR-129 enhanced keratinocyte migration and proliferation, crucial processes for the re-epithelialization of human wounds. CONCLUSIONS Our study uncovered a novel role for circRNAs as protectors of miRNAs and highlights the importance of regulated miRNA degradation in skin wound healing.
Collapse
Affiliation(s)
- Qizhang Wang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases and Department of Oral and Maxillofacial Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, Sichuan, China
| | - Guanglin Niu
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Zhuang Liu
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Maria A Toma
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Jennifer Geara
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Xiaowei Bian
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Letian Zhang
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Minna Piipponen
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Dongqing Li
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
- Key Laboratory of Basic and Translational Research on Immune-Mediated Skin Diseases, Chinese Academy of Medical Sciences, Nanjing, China
- Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Aoxue Wang
- Department of Dermatology, The Second Hospital of Dalian Medical University, College of Integrative Medicine, Dalian, China
| | - Pehr Sommar
- Department of Plastic and Reconstructive Surgery, Karolinska University Hospital, Stockholm, Sweden
- Department of Molecular Medicine and Surgery, Karolinska Institutet, Stockholm, Sweden
| | - Ning Xu Landén
- Dermatology and Venereology Division, Department of Medicine Solna, Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
11
|
Jenks KR, Cai Y, Nayan ME, Tsimring K, Li K, Zepeda JC, Heller GR, Delepine C, Shih J, Yuan S, Zhu Y, Wang Y, Duan Y, Fu AKY, Ku T, Yun DH, Chung K, Mellios N, Sur M, Ip JPK. The noncoding circular RNA circHomer1 regulates synaptic development and experience-dependent plasticity in mouse visual cortex. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.07.19.603416. [PMID: 39091722 PMCID: PMC11291094 DOI: 10.1101/2024.07.19.603416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Circular RNAs (circRNAs) are a class of closed-loop, single stranded RNAs whose expression is particularly enriched in the brain. Despite this enrichment and evidence that the expression of circRNAs are altered by synaptic development and in response to synaptic plasticity in vitro, the regulation by and function of the majority of circRNAs in experience-dependent plasticity in vivo remain unexplored. Here, we employed transcriptome-wide analysis comparing differential expression of both mRNAs and circRNAs in juvenile mouse primary visual cortex (V1) following monocular deprivation (MD), a model of experience-dependent developmental plasticity. Among the differentially expressed mRNAs and circRNAs following 3-day MD, the circular and the activity-dependent mRNA forms of the Homer1 gene, circHomer1 and Homer1a respectively, were of interest as their expression changed in opposite directions: circHomer1 expression increased while the expression of Homer1a decreased following 3-day MD. Knockdown of circHomer1 delayed the depression of closed-eye responses normally observed after 3-day MD. circHomer1-knockdown also led to a reduction in average dendritic spine size prior to MD but critically there was no further reduction after 3-day MD, consistent with impaired structural plasticity. circHomer1-knockdown also prevented the reduction of surface AMPA receptors after 3-day MD. Synapse-localized puncta of the AMPA receptor endocytic protein Arc increased in volume after MD but were smaller in circHomer1-knockdown neurons, suggesting that circHomer1 knockdown impairs experience-dependent AMPA receptor endocytosis. Thus, the expression of multiple circRNAs are regulated by experience-dependent developmental plasticity, and our findings highlight the essential role of circHomer1 in V1 synaptic development and experience-dependent plasticity.
Collapse
Affiliation(s)
- Kyle R. Jenks
- Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
- These authors contributed equally
| | - Ying Cai
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
- These authors contributed equally
| | - Marvin Eduarte Nayan
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
- These authors contributed equally
| | - Katya Tsimring
- Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Keji Li
- Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - José C. Zepeda
- Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Gregg R. Heller
- Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Chloe Delepine
- Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Jennifer Shih
- Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Shiyang Yuan
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Yao Zhu
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
| | - Ye Wang
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Yangyang Duan
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Amy K. Y. Fu
- Division of Life Science, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, China
| | - Taeyun Ku
- Graduate School of Medical Science and Engineering, Korea Advanced Institute of Science and Technology, Daejeon, Korea
| | - Dae Hee Yun
- Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Kwanghun Chung
- Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Nikolaos Mellios
- Circular Genomics Inc, Albuquerque, New Mexico, 87110, USA
- Previously at: University of New Mexico, Department of Neurosciences, Albuquerque, New Mexico, 87131, USA
| | - Mriganka Sur
- Department of Brain and Cognitive Sciences, The Picower Institute for Learning and Memory, Massachusetts Institute of Technology, Cambridge, Massachusetts, 02139, USA
| | - Jacque Pak Kan Ip
- School of Biomedical Sciences, The Chinese University of Hong Kong, Hong Kong, China
- Gerald Choa Neuroscience Institute, The Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
12
|
Xu Q, Liu D, Zhu LQ, Su Y, Huang HZ. Long non-coding RNAs as key regulators of neurodegenerative protein aggregation. Alzheimers Dement 2025; 21:e14498. [PMID: 39936251 DOI: 10.1002/alz.14498] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/26/2024] [Accepted: 12/02/2024] [Indexed: 02/13/2025]
Abstract
The characteristic events in neurodegenerative diseases (NDDs) encompass protein misfolding, aggregation, accumulation, and their related cellular dysfunction, synaptic function loss. While distinct proteins are implicated in the pathological processes of different NDDs, the process of protein misfolding and aggregation remains notably similar across various conditions. Specifically, proteins undergo misfolding into beta-folded (β-folded) conformation, resulting in the formation of insoluble amyloid proteins. Despite advancements in comprehending protein aggregation, certain facets of this intricate process remain incompletely elucidated. In recent years, the concept that long non-coding RNAs (lncRNAs) contribute to protein aggregation has gained recognition. LncRNAs influence the formation of protein aggregates by facilitating protein overexpression through the regulation of gene transcription and translation, inhibiting protein degradation via lysosomal and autophagic pathways, and targeting aberrant modifications and phase transitions of proteins. A better understanding of the relationship between lncRNAs and aberrant protein aggregation is an important step in dissecting the underlying molecular mechanisms and will contribute to the discovery of new therapeutic targets and strategies. HIGHLIGHTS: NDDs are marked by protein misfolding, aggregation, and accumulation, leading to cellular dysfunction and loss of synaptic function. Despite different proteins being involved in various NDDs, the process of misfolding into β-folded conformations and forming insoluble amyloid proteins is consistent across conditions. The role of lncRNAs in protein aggregation has gained attention, as they regulate gene transcription and translation, inhibit protein degradation, and target aberrant protein modifications. Understanding the link between lncRNAs and protein aggregation is crucial for uncovering molecular mechanisms and developing new therapeutic targets.
Collapse
Affiliation(s)
- Qi Xu
- Department of Neurology, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - Dan Liu
- Department of Genetics, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ling-Qiang Zhu
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Ying Su
- Department of Neurology, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| | - He-Zhou Huang
- Department of Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
- Department of Anesthesiology Department, Union Hospital, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
13
|
Vasilev F, Mihajlović AI, Rémillard-Labrosse G, FitzHarris G. Long-lived cytokinetic bridges coordinate sister-cell elimination in mouse embryos. Dev Cell 2025:S1534-5807(25)00002-4. [PMID: 39862857 DOI: 10.1016/j.devcel.2025.01.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 08/14/2024] [Accepted: 01/03/2025] [Indexed: 01/27/2025]
Abstract
Apoptosis is a key feature of preimplantation development, but whether it occurs in a cell-autonomous or coordinated manner was unknown. Here, we report that plasma membrane abscission, the final step of cell division, is profoundly delayed in early mouse embryos such that a cytokinetic bridge is maintained for the vast majority of the following interphase. Early embryos thus consist of many pairs of sister cells connected by stable cytokinetic bridges that allow them to share diffusible molecules. We show that apoptotic regulators are shared through cytokinetic bridges and that these bridges ensure that if one cell enters apoptosis, its sister cell does as well. Long-lived cytokinetic bridges are thus a previously unappreciated form of cell-cell communication within the mouse embryo that coordinate the clearance of pairs of cells with similar developmental histories.
Collapse
Affiliation(s)
- Filip Vasilev
- Centre de recherche du Centre Hospitalier de I'Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada
| | - Aleksandar I Mihajlović
- Centre de recherche du Centre Hospitalier de I'Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada
| | | | - Greg FitzHarris
- Centre de recherche du Centre Hospitalier de I'Université de Montréal (CRCHUM), Montréal, QC H2X 0A9, Canada; Department of Obstetrics and Gynaecology, and Department of Pathology and Cell Biology, Université de Montréal, Montréal, QC H3T 1C5, Canada.
| |
Collapse
|
14
|
Shu Y, Wu X, Zhang D, Jiang S, Ma W. Exploring the Mechanisms of Iron Overload-Induced Liver Injury in Rats Based on Transcriptomics and Proteomics. BIOLOGY 2025; 14:81. [PMID: 39857310 PMCID: PMC11761193 DOI: 10.3390/biology14010081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Revised: 01/12/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025]
Abstract
Iron is a trace element that is indispensable for the growth and development of animals. Excessive iron supplementation may lead to iron overload and elevated reactive oxygen species (ROS) production in animals, causing cellular damage. Nevertheless, the precise mechanism by which iron overload causes cell injury remains to be fully elucidated. In this study, 16 male SD rats aged 6 to 7 weeks were randomly assigned to either a control group (CON) or an iron overload group (IO). Rats in the iron overload group received 150 mg/kg iron dextran injections every three days for a duration of four weeks. The results indicated that iron treatment with iron dextran significantly increased the scores of steatosis (p < 0.05) and inflammation (p < 0.05) in the NAS score. The integrated transcriptomic and proteomic analysis suggests that HO-1 and Lnc286.2 are potentially significant in iron overload-induced liver injury in rats. In vitro experiments utilizing ferric ammonium citrate (FAC) were conducted to establish an iron overload model in rat liver-derived BRL-3A cells. The result found that FAC treatment can significantly increase the BRL-3A cell's Fe2+ content (p < 0.05), ROS (p < 0.01), lipid ROS (p < 0.01) levels, and the expression of the HO-1 gene and protein (p < 0.01), aligning with proteomic and transcriptomic findings. HO-1 inhibition can significantly decrease BRL-3A cell vitality (p < 0.01) and promote ROS (p < 0.05) and lipid ROS (p < 0.01), thus aggravating FAC-induced BRL-3A cell iron overload damage. Using the agonist of HO-1 agonist cobalt protoporphyrin (CoPP) to induce HO-1 overexpression can significantly alleviate the decrease in FAC-induced BRL-3A cell viability (p < 0.01), ROS (p < 0.01), and lipid ROS (p < 0.01). In addition, siLnc286.2 treatment can increase HO-1 expression, alleviate the decline of FAC-induced BRL-3A cell activity, and increase lipid ROS (p < 0.05) content. In conclusion, the findings of this study suggest that by suppressing the expression of Lnc286.2, we can enhance the expression of HO-1, which in turn alleviates lipid peroxidation in cells and increases their antioxidant capacity, thereby exerting a protective effect against liver cell injury induced by iron overload.
Collapse
Affiliation(s)
- Yujia Shu
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Y.S.); (X.W.); (D.Z.); (S.J.)
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, China
| | - Xuanfu Wu
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Y.S.); (X.W.); (D.Z.); (S.J.)
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, China
| | - Dongxu Zhang
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Y.S.); (X.W.); (D.Z.); (S.J.)
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, China
| | - Shuxia Jiang
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Y.S.); (X.W.); (D.Z.); (S.J.)
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, China
- Shanghai Frontiers Science Research Center for Druggability of Cardiovascular Noncoding RNA, Institute for Frontier Medical Technology, School of Chemistry and Chemical Engineering, Shanghai University of Engineering Science, Shanghai 201620, China
| | - Wenqiang Ma
- Key Laboratory of Animal Physiology and Biochemistry, Ministry of Agriculture and Rural Affairs, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing 210095, China; (Y.S.); (X.W.); (D.Z.); (S.J.)
- MOE Joint International Research Laboratory of Animal Health & Food Safety, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
15
|
Fahim SA, Ragheb M, Fayed IH, Osama A, Karam A, Magdeldin S, Metwale R, Elsayed MDAA, Abdellatif A, Sadek HA, El Sobky SA, El-Ekiaby N, Fawzy IO, Abdelaziz AI. Interaction Between Malat1 and miR-499-5p Regulates Meis1 Expression and Function with a Net Impact on Cell Proliferation. Cells 2025; 14:125. [PMID: 39851553 PMCID: PMC11764005 DOI: 10.3390/cells14020125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2024] [Revised: 12/15/2024] [Accepted: 12/17/2024] [Indexed: 01/26/2025] Open
Abstract
Meis1 is a transcription factor involved in numerous functions including development and proliferation and has been previously shown to harness cell cycle progression. In this study, we used in silico analysis to predict that miR-499-5p targets Meis1 and that Malat1 sponges miR-499-5p. For the first time, we demonstrated that the overexpression of miR-499-5p led to the downregulation of Meis1 mRNA and protein in C166 cells by directly binding to its 3'UTR. Moreover, knocking down Malat1 increased miR-499-5p expression, subsequently suppressing Meis1. Through BrdU incorporation assay, we showed that the knockdown of Malat1, Meis1, or mimicking with miR-499-5p promoted cell proliferation. Enrichment analyses on proteins identified via mass spectrometry after manipulating Malat1, miR-499-5p, or Meis1 revealed a multitude of differentially expressed proteins related to cell cycle, cell division, and key pathways like Wnt and mTOR, essential for cell proliferation. Collectively, our findings confirm that Malat1 sponges miR-499-5p, regulating Meis1, and that Malat1/miR-499-5p/Meis1 could potentially form an axis that has a pivotal influence on cellular proliferation.
Collapse
Affiliation(s)
- Salma A. Fahim
- School of Medicine, Newgiza University (NGU), Giza 12577, Egypt
- Biotechnology Program, American University in Cairo, Cairo 11835, Egypt
| | - Manon Ragheb
- School of Medicine, Newgiza University (NGU), Giza 12577, Egypt
- Biotechnology Program, American University in Cairo, Cairo 11835, Egypt
| | | | - Aya Osama
- Proteomics and Metabolomics Unit, Basic Research Department, Children’s Cancer Hospital 57357 Cairo, (CCHE-57357), Cairo 11562, Egypt
| | - Ahmed Karam
- Proteomics and Metabolomics Unit, Basic Research Department, Children’s Cancer Hospital 57357 Cairo, (CCHE-57357), Cairo 11562, Egypt
| | - Sameh Magdeldin
- Proteomics and Metabolomics Unit, Basic Research Department, Children’s Cancer Hospital 57357 Cairo, (CCHE-57357), Cairo 11562, Egypt
- Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia 41522, Egypt
| | - Rana Metwale
- School of Medicine, Newgiza University (NGU), Giza 12577, Egypt
| | - Mohamed Dief Allah Abdalmoneam Elsayed
- School of Medicine, Newgiza University (NGU), Giza 12577, Egypt
- Department of Anatomy and Embryology, Faculty of Medicine, Cairo University, Cairo 11562, Egypt
| | - Ahmed Abdellatif
- Biotechnology Program, American University in Cairo, Cairo 11835, Egypt
| | - Hesham A. Sadek
- Division of Cardiology, University of Arizona College of Medicine, Tucson, AR 85721, USA
- Division of Cardiology, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 85004, USA
| | | | - Nada El-Ekiaby
- School of Medicine, Newgiza University (NGU), Giza 12577, Egypt
| | | | | |
Collapse
|
16
|
Margvelani G, Maquera K, Welden J, Rodgers D, Stamm S. Translation of circular RNAs. Nucleic Acids Res 2025; 53:gkae1167. [PMID: 39660652 PMCID: PMC11724312 DOI: 10.1093/nar/gkae1167] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/04/2024] [Accepted: 11/08/2024] [Indexed: 12/12/2024] Open
Abstract
Circular RNAs (circRNAs) are covalently closed RNAs that are present in all eukaryotes tested. Recent RNA sequencing (RNA-seq) analyses indicate that although generally less abundant than messenger RNAs (mRNAs), over 1.8 million circRNA isoforms exist in humans, much more than the number of currently known mRNA isoforms. Most circRNAs are generated through backsplicing that depends on pre-mRNA structures, which are influenced by intronic elements, for example, primate-specific Alu elements, leading to species-specific circRNAs. CircRNAs are mostly cytosolic, stable and some were shown to influence cells by sequestering miRNAs and RNA-binding proteins. We review the increasing evidence that circRNAs are translated into proteins using several cap-independent translational mechanisms, that include internal ribosomal entry sites, N6-methyladenosine RNA modification, adenosine to inosine RNA editing and interaction with the eIF4A3 component of the exon junction complex. CircRNAs are translated under conditions that favor cap-independent translation, notably in cancer and generate proteins that are shorter than mRNA-encoded proteins, which can acquire new functions relevant in diseases.
Collapse
Affiliation(s)
- Giorgi Margvelani
- University of Kentucky, Molecular and Cellular Biochemistry, 741 South Limestone, Lexington, KY 40503, USA
| | | | - Justin Ralph Welden
- University of Kentucky, Molecular and Cellular Biochemistry, 741 South Limestone, Lexington, KY 40503, USA
| | - David W Rodgers
- University of Kentucky, Molecular and Cellular Biochemistry, 741 South Limestone, Lexington, KY 40503, USA
| | - Stefan Stamm
- University of Kentucky, Molecular and Cellular Biochemistry, 741 South Limestone, Lexington, KY 40503, USA
| |
Collapse
|
17
|
Ng B, Avey DR, Lopes KDP, Fujita M, Vialle RA, Vyas H, Kearns NA, Tasaki S, Iatrou A, Tissera SD, Chang TH, Xu J, Yu C, Sultan F, Menon V, Gaiteri C, De Jager PL, Bennett DA, Wang Y. Spatial Expression of Long Non-Coding RNAs in Human Brains of Alzheimer's Disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2024.10.27.620550. [PMID: 39554066 PMCID: PMC11565709 DOI: 10.1101/2024.10.27.620550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Long non-coding RNAs (lncRNAs) are critical regulators of physiological and pathological processes, with their dysregulation increasingly implicated in aging and Alzheimer's disease (AD). Using spatial transcriptomics, we analyzed 78 postmortem brain sections from 21 ROSMAP participants to map the spatial expression of lncRNAs in the dorsolateral prefrontal cortex of aged human brains. Compared to mRNAs, lncRNAs exhibited greater subregion-specific expression, with enrichment in antisense and lincRNA biotypes. Network analysis identified 193 gene modules across eight subregions, including lncRNA-enriched modules involved in critical biological processes. We also identified AD differentially expressed (DE) lncRNAs, which showed greater subregion specificity than AD DE mRNAs. Gene set enrichment analysis highlighted the involvement of these AD DE lncRNAs in epigenetic regulation and chromatin remodeling, including enrichment for HDAC target genes such as OIP5-AS1. Statistical modeling suggested that interactions between OIP5-AS1 and HDAC proteins, particularly HDAC11, were associated with tau tangles in excitatory neurons and plaque burden in microglia. This study provides a comprehensive resource of lncRNA spatial expression in the aged human brain and uncovers potential functional roles of lncRNAs in AD pathogenesis.
Collapse
|
18
|
Stubna MW, Shukla A, Bartel DP. Widespread destabilization of Caenorhabditis elegans microRNAs by the E3 ubiquitin ligase EBAX-1. RNA (NEW YORK, N.Y.) 2024; 31:51-66. [PMID: 39433399 DOI: 10.1261/rna.080276.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 09/30/2024] [Indexed: 10/23/2024]
Abstract
MicroRNAs (miRNAs) associate with Argonaute (AGO) proteins to form complexes that direct mRNA repression. miRNAs are also the subject of regulation. For example, some miRNAs are destabilized through a pathway in which pairing to specialized transcripts recruits the ZSWIM8 E3 ubiquitin ligase, which polyubiquitinates AGO, leading to its degradation and exposure of the miRNA to cellular nucleases. Here, we found that 22 miRNAs in Caenorhabditis elegans are sensitive to loss of EBAX-1, the ZSWIM8 ortholog in nematodes, implying that these 22 miRNAs might be subject to this pathway of target-directed miRNA degradation (TDMD). The impact of EBAX-1 depended on the developmental stage, with the greatest effect on the miRNA pool (14.5%) observed in L1 larvae, and the greatest number of different miRNAs affected (17) observed in germline-depleted adults. The affected miRNAs included the miR-35-42 family, as well as other miRNAs among the least stable in the worm, suggesting that TDMD is a major miRNA-destabilization pathway in the worm. The excess miR-35-42 molecules that accumulated in ebax-1 mutants caused increased repression of their predicted target mRNAs and underwent 3' trimming over time. In general, however, miRNAs sensitive to EBAX-1 loss had no consistent pattern of either trimming or tailing. Replacement of the 3' region of miR-43 substantially reduced EBAX-1 sensitivity, a result that differed from that observed previously for miR-35. Together, these findings broaden the implied biological scope of TDMD-like regulation of miRNA stability in animals, and indicate that a role for miRNA 3' sequences is variable in the worm.
Collapse
Affiliation(s)
- Michael W Stubna
- Howard Hughes Medical Institute, Cambridge, Massachusetts 02142, USA
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | - Aditi Shukla
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
| | - David P Bartel
- Howard Hughes Medical Institute, Cambridge, Massachusetts 02142, USA
- Whitehead Institute for Biomedical Research, Cambridge, Massachusetts 02142, USA
- Department of Biology, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| |
Collapse
|
19
|
Hiers NM, Li L, Li T, Sheng P, Wang Y, Traugot CM, Yao M, Xie M. An endogenous cluster of target-directed microRNA degradation sites induces decay of distinct microRNA families. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.11.627053. [PMID: 39713366 PMCID: PMC11661237 DOI: 10.1101/2024.12.11.627053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
While much is known about miRNA biogenesis and canonical miRNA targeting, relatively less is understood about miRNA decay. The major miRNA decay pathway in metazoans is mediated through target-directed miRNA degradation (TDMD), in which certain RNAs can "trigger" miRNA decay. All known triggers for TDMD base pair with the miRNA seed, and extensively base pair on the miRNA 3' end, a pattern that supposedly induces a TDMD-competent conformational change of Argonaute (Ago), allowing for miRNA turnover. Here, we utilized Ago1-CLASH to find that the Drosophila transcript Kah contains at least two triggers, a "trigger cluster", against miR-9b and the miR-279 family. One of these triggers contains minimal/non-canonical 3' end base pairing but is still sufficient to induce TDMD of the entire miR-279 family. We found that these clustered triggers likely lack cooperativity, the minimal 3' pairing is required for miR-279 family turnover, and probed the in-cell RNA structure of the Kah trigger cluster. Overall, this study expands the list of endogenous triggers and the unexpectedly complex regulatory network governing miRNA degradation.
Collapse
Affiliation(s)
- Nicholas M. Hiers
- Department of Biochemistry and Molecular Biology, University of
Florida, Gainesville, FL, 32610, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL,
32610, USA
| | - Lu Li
- Department of Biochemistry and Molecular Biology, University of
Florida, Gainesville, FL, 32610, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL,
32610, USA
| | - Tianqi Li
- Department of Biochemistry and Molecular Biology, University of
Florida, Gainesville, FL, 32610, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL,
32610, USA
| | - Peike Sheng
- Department of Biochemistry and Molecular Biology, University of
Florida, Gainesville, FL, 32610, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL,
32610, USA
| | - Yuzhi Wang
- Department of Biochemistry and Molecular Biology, University of
Florida, Gainesville, FL, 32610, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL,
32610, USA
| | - Conner M. Traugot
- Department of Biochemistry and Molecular Biology, University of
Florida, Gainesville, FL, 32610, USA
- UF Genetics Institute, University of Florida, Gainesville, FL,
32610, USA
| | - Michael Yao
- Department of Biochemistry and Molecular Biology, University of
Florida, Gainesville, FL, 32610, USA
| | - Mingyi Xie
- Department of Biochemistry and Molecular Biology, University of
Florida, Gainesville, FL, 32610, USA
- UF Health Cancer Center, University of Florida, Gainesville, FL,
32610, USA
- UF Genetics Institute, University of Florida, Gainesville, FL,
32610, USA
| |
Collapse
|
20
|
Ortega JA, Liang Z, Xu JK, Gottwein E. Retargeting target-directed microRNA-decay sites to highly expressed viral or cellular miRNAs. Nucleic Acids Res 2024; 52:14171-14183. [PMID: 39588775 DOI: 10.1093/nar/gkae1103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 10/21/2024] [Accepted: 10/25/2024] [Indexed: 11/27/2024] Open
Abstract
MicroRNAs (miRNAs) are pervasive regulators of gene expression, necessitating the development of tools to inhibit individual miRNAs for functional studies or therapeutic targeting. Specialized base-pairing configurations between a miRNA and an RNA target site can trigger the degradation of the targeting miRNA through target-directed miRNA decay (TDMD). Previous work has identified several natural sites that induce TDMD of specific miRNAs. We explored retargeting known TDMD sites for the inhibition of heterologous miRNAs, including several encoded by Kaposi's Sarcoma-associated herpesvirus (KSHV). We focused particularly on miR-K11, a viral mimic of the oncogenic miRNA miR-155. miRNA pairing architectures based on the TDMD site in the long non-coding RNA Cyrano outperformed other retargeted sites. Cyrano-like inhibitors were specific for viral miR-K11 over cellular miR-155 and vice versa. Lentiviral delivery of a Cyrano-like miR-K11 inhibitor into KSHV-transformed primary effusion lymphoma (PEL) cells impaired their viability, showing that miR-K11 promotes KSHV-dependent PEL cell survival. Surprisingly, inactivation of ZSWIM8, a key mediator of TDMD, did not substantially affect miRNA inhibition by retargeted Cyrano-based inhibitors in 293T or PEL cells. Together, our results demonstrate the feasibility of retargeting natural TDMD sites to highly expressed viral or cellular miRNAs and further define features of effective encoded miRNA inhibitors.
Collapse
Affiliation(s)
- Jesus A Ortega
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Tarry 6-735, Chicago, IL 60611, USA
| | - Ziyan Liang
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Tarry 6-735, Chicago, IL 60611, USA
| | - Junpeng Kenny Xu
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Tarry 6-735, Chicago, IL 60611, USA
| | - Eva Gottwein
- Department of Microbiology-Immunology, Northwestern University, Feinberg School of Medicine, Tarry 6-735, Chicago, IL 60611, USA
| |
Collapse
|
21
|
Maatouk N, Kurdi A, Marei S, Nasr R, Talhouk R. CircRNAs and miRNAs: Key Player Duo in Breast Cancer Dynamics and Biomarkers for Breast Cancer Early Detection and Prevention. Int J Mol Sci 2024; 25:13056. [PMID: 39684767 DOI: 10.3390/ijms252313056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/15/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Breast cancer (BC) remains a significant global health issue, necessitating advanced molecular approaches for early detection and prevention. This review delves into the roles of microRNAs (miRNAs) and circular RNAs (circRNAs) in BC, highlighting their potential as non-invasive biomarkers. Utilizing in silico tools and databases, we propose a novel methodology to establish mRNA/circRNA/miRNA axes possibly indicative of early detection and possible prevention. We propose that during early tumor initiation, some changes in oncogene or tumor suppressor gene expression (mRNA) are mirrored by alterations in corresponding circRNAs and reciprocal changes in sponged miRNAs affecting tumorigenesis pathways. We used two Gene Expression Omnibus (GEO) datasets and identified five mRNA/circRNA/miRNA axes as early possible tumor initiation biomarkers. We further validated the proposed axes through a Kaplan-Meier (KM) plot and enrichment analysis of miRNA expression using patient data. Evaluating coupled differential expression of circRNAs and miRNAs in body fluids or exosomes provides greater confidence than assessing either, with more axes providing even greater confidence. The proposed methodology not only improves early BC detection reliability but also has applications for other cancers, enhancing preventive measures.
Collapse
Affiliation(s)
- Nour Maatouk
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut 11-0236, Lebanon
| | - Abdallah Kurdi
- Department of Biochemistry and Molecular Genetics, Faculty of Medicine, American University of Beirut, Beirut 11-0236, Lebanon
| | - Sarah Marei
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut 11-0236, Lebanon
| | - Rihab Nasr
- Department of Anatomy, Cell Biology and Physiological Sciences, Faculty of Medicine, American University of Beirut, Beirut 11-0236, Lebanon
| | - Rabih Talhouk
- Department of Biology, Faculty of Arts and Sciences, American University of Beirut, Beirut 11-0236, Lebanon
| |
Collapse
|
22
|
Li J, Wang X. Functional roles of conserved lncRNAs and circRNAs in eukaryotes. Noncoding RNA Res 2024; 9:1271-1279. [PMID: 39036601 PMCID: PMC11260338 DOI: 10.1016/j.ncrna.2024.06.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 06/14/2024] [Accepted: 06/24/2024] [Indexed: 07/23/2024] Open
Abstract
Long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) have emerged as critical regulators in essentially all biological processes across eukaryotes. They exert their functions through chromatin remodeling, transcriptional regulation, interacting with RNA-binding proteins (RBPs), serving as microRNA sponges, etc. Although non-coding RNAs are typically more species-specific than coding RNAs, a number of well-characterized lncRNA (such as XIST and NEAT1) and circRNA (such as CDR1as and ciRS-7) are evolutionarily conserved. The studies on conserved lncRNA and circRNAs across multiple species could facilitate a comprehensive understanding of their roles and mechanisms, thereby overcoming the limitations of single-species studies. In this review, we provide an overview of conserved lncRNAs and circRNAs, and summarize their conserved roles and mechanisms.
Collapse
Affiliation(s)
- Jingxin Li
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, The RNA Institute, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China (UTSC), Hefei, 230027, Anhui, China
| | - Xiaolin Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of USTC, The RNA Institute, School of Basic Medical Sciences, Division of Life Science and Medicine, University of Science and Technology of China (UTSC), Hefei, 230027, Anhui, China
| |
Collapse
|
23
|
Chen LL, Kim VN. Small and long non-coding RNAs: Past, present, and future. Cell 2024; 187:6451-6485. [PMID: 39547208 DOI: 10.1016/j.cell.2024.10.024] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/13/2024] [Accepted: 10/15/2024] [Indexed: 11/17/2024]
Abstract
Since the introduction of the central dogma of molecular biology in 1958, various RNA species have been discovered. Messenger RNAs transmit genetic instructions from DNA to make proteins, a process facilitated by housekeeping non-coding RNAs (ncRNAs) such as small nuclear RNAs (snRNAs), ribosomal RNAs (rRNAs), and transfer RNAs (tRNAs). Over the past four decades, a wide array of regulatory ncRNAs have emerged as crucial players in gene regulation. In celebration of Cell's 50th anniversary, this Review explores our current understanding of the most extensively studied regulatory ncRNAs-small RNAs and long non-coding RNAs (lncRNAs)-which have profoundly shaped the field of RNA biology and beyond. While small RNA pathways have been well documented with clearly defined mechanisms, lncRNAs exhibit a greater diversity of mechanisms, many of which remain unknown. This Review covers pivotal events in their discovery, biogenesis pathways, evolutionary traits, action mechanisms, functions, and crosstalks among ncRNAs. We also highlight their roles in pathophysiological contexts and propose future research directions to decipher the unknowns of lncRNAs by leveraging lessons from small RNAs.
Collapse
Affiliation(s)
- Ling-Ling Chen
- Key Laboratory of RNA Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China; School of Life Science and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China; New Cornerstone Science Laboratory, Shenzhen, China.
| | - V Narry Kim
- Center for RNA Research, Institute for Basic Science, Seoul 08826, Korea; School of Biological Sciences, Seoul National University, Seoul 08826, Korea.
| |
Collapse
|
24
|
Niu X, Zhang J, Zhang J, Bai L, Hu S, Zhang Z, Bai M. Lipid Nanoparticle-Mediated Oip5-as1 Delivery Preserves Mitochondrial Function in Myocardial Ischemia/Reperfusion Injury by Inhibiting the p53 Pathway. ACS APPLIED MATERIALS & INTERFACES 2024; 16:61565-61582. [PMID: 39485791 DOI: 10.1021/acsami.4c10032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Myocardial ischemia/reperfusion (MI/R) injury, a major contributor to poor prognosis in patients with acute myocardial infarction, currently lacks effective therapeutic strategies in clinical practice. The long noncoding RNA (lncRNA) Oip5-as1 can regulate various cellular processes, such as cell proliferation, differentiation, and survival. Oip5-as1 may have potential as a therapeutic target for MI/R injury as its upregulated expression has been associated with reduced infarct size and improved cardiac function in animal models, although how to effectively and safely overexpress Oip5-as1 in vivo remains unclear. Lipid nanoparticles (LNPs) are a versatile technology for targeted drug delivery in numerous therapeutic applications. Herein, we aimed to assess the therapeutic efficacy and safety of LNPs coloaded with Oip5-as1 and a cardiomyocyte-specific binding peptide (LNP@Oip5-as1@CMP) in a murine model of MI/R injury. To achieve this, LNP@Oip5-as1@CMP was synthesized via ethanol injection method. The structural components of LNP@Oip5-as1@CMP were physicochemically analyzed. A hypoxia/reoxygenation (H/R) model in HL-1 cells and coronary artery ligation in mice were used to simulate MI/R injury. Our results demonstrated that LNPs designed for cardiomyocyte targeting and efficient Oip5-as1 delivery were successfully synthesized. In HL-1 cells, LNP@Oip5-as1@CMP treatment significantly reduced mitochondrial apoptosis caused by H/R injury. In the murine MI/R model, the intravenous administration of LNP@Oip5-as1@CMP significantly decreased myocardial infarct size and improved cardiac function. Mechanistic investigations revealed that Oip5-as1 delivery inhibited the p53 signaling pathway. However, the cardioprotective effects of Oip5-as1 were abrogated by administrating Nutlin-3a, a p53 activator. Furthermore, no signs of major organ damage were detected after LNP@Oip5-as1@CMP injection. Our study reveals the therapeutic potential of LNPs for targeted Oip5-as1 delivery in mitigating MI/R injury. These findings pave the way for advanced targeted treatments in cardiovascular diseases, emphasizing the promise of lncRNA-based therapies.
Collapse
Affiliation(s)
- Xiaowei Niu
- Department of Cardiology, The First Hospital of Lanzhou University; Gansu Key Laboratory of Cardiovascular Diseases; Gansu Clinical Medical Research Center for Cardiovascular Diseases, The First School of Clinical Medicine of Lanzhou University, No. 1, Donggang West Road, Chengguan District, Lanzhou, Gansu 730000, China
| | - Jing Zhang
- Department of Cardiology, The First Hospital of Lanzhou University; Gansu Key Laboratory of Cardiovascular Diseases; Gansu Clinical Medical Research Center for Cardiovascular Diseases, The First School of Clinical Medicine of Lanzhou University, No. 1, Donggang West Road, Chengguan District, Lanzhou, Gansu 730000, China
| | - Jingjing Zhang
- Medical Genetics Center, Gansu Provincial Central Hospital/Gansu Provincial Maternity and Child-Care Hospital, Gansu Provincial Clinical Research Center for Birth Defects and Rare Diseases, No. 143, North Road, Qilihe District, Lanzhou, Gansu 730000, China
| | - Lu Bai
- Department of Cardiology, The First Hospital of Lanzhou University; Gansu Key Laboratory of Cardiovascular Diseases; Gansu Clinical Medical Research Center for Cardiovascular Diseases, The First School of Clinical Medicine of Lanzhou University, No. 1, Donggang West Road, Chengguan District, Lanzhou, Gansu 730000, China
| | - Shuwen Hu
- Department of Cardiology, The First Hospital of Lanzhou University; Gansu Key Laboratory of Cardiovascular Diseases; Gansu Clinical Medical Research Center for Cardiovascular Diseases, The First School of Clinical Medicine of Lanzhou University, No. 1, Donggang West Road, Chengguan District, Lanzhou, Gansu 730000, China
| | - Zheng Zhang
- Department of Cardiology, The First Hospital of Lanzhou University; Gansu Key Laboratory of Cardiovascular Diseases; Gansu Clinical Medical Research Center for Cardiovascular Diseases, The First School of Clinical Medicine of Lanzhou University, No. 1, Donggang West Road, Chengguan District, Lanzhou, Gansu 730000, China
| | - Ming Bai
- Department of Cardiology, The First Hospital of Lanzhou University; Gansu Key Laboratory of Cardiovascular Diseases; Gansu Clinical Medical Research Center for Cardiovascular Diseases, The First School of Clinical Medicine of Lanzhou University, No. 1, Donggang West Road, Chengguan District, Lanzhou, Gansu 730000, China
| |
Collapse
|
25
|
Verwilt J, Vromman M. Current Understandings and Open Hypotheses on Extracellular Circular RNAs. WILEY INTERDISCIPLINARY REVIEWS. RNA 2024; 15:e1872. [PMID: 39506237 DOI: 10.1002/wrna.1872] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 09/21/2024] [Accepted: 09/23/2024] [Indexed: 11/08/2024]
Abstract
Circular RNAs (circRNAs) are closed RNA loops present in humans and other organisms. Various circRNAs have an essential role in diseases, including cancer. Cells can release circRNAs into the extracellular space of adjacent biofluids and can be present in extracellular vesicles. Due to their circular nature, extracellular circRNAs (excircRNAs) are more stable than their linear counterparts and are abundant in many biofluids, such as blood plasma and urine. circRNAs' link with disease suggests their extracellular counterparts have high biomarker potential. However, circRNAs and the extracellular space are challenging research domains, as they consist of complex biological systems plagued with nomenclature issues and a wide variety of protocols with different advantages and disadvantages. Here, we summarize what is known about excircRNAs, the current challenges in the field, and what is needed to improve extracellular circRNA research.
Collapse
Affiliation(s)
- Jasper Verwilt
- Department of Biomedical Sciences, University of Antwerp, Antwerp, Belgium
- Complex Genetics of Alzheimer's Disease Group, VIB Center for Molecular Neurology, Antwerp, Belgium
| | - Marieke Vromman
- CNRS UMR3244 (Dynamics of Genetic Information), Sorbonne University, PSL University, Institut Curie, Centre de Recherche, Paris, France
| |
Collapse
|
26
|
Palmer M, Leo A, Atyeo N, Tomacari C, Nguyen X, Papp B. Conserved linear motif within the immediate early protein ORF45 promotes its engagement with KSHV lytic cycle-promoting forkhead transcription factors, FOXK1 and FOXK2. J Virol 2024; 98:e0088624. [PMID: 39287387 PMCID: PMC11494905 DOI: 10.1128/jvi.00886-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024] Open
Abstract
Kaposi's sarcoma-associated herpesvirus (KSHV) is a gammaherpesvirus that can cause several cancers, such as Kaposi sarcoma and primary effusion lymphoma (PEL). We and others have recently demonstrated that Forkhead box (FOX) transcription factors can be dysregulated by KSHV, and they can affect KSHV infection. Herein, we focus on dissecting the role of two FOXK subfamily members, FOXK1 and FOXK2, in the KSHV life cycle. FOXK proteins are key host regulators of cellular functions, yet their role in KSHV infection remains unknown. Here, we demonstrated that both FOXK proteins are essential for efficient KSHV lytic reactivation in PEL cells. FOXK1 and FOXK2 are unique as they are the only FOX proteins that contain a Forkhead-associated (FHA) domain. The FHA domain is a specialized protein binding domain that recognizes a short linear serine/threonine-rich (S/T) motif. Through an unbiased motif survey, we found that KSHV viral protein ORF45 and its gammaherpesvirus homologs contain a putative FHA-binding motif. ORF45 is an immediate early tegument protein, vital for lytic reactivation and virus production. We demonstrated that ORF45 uses its novel conserved motif to interact with the FHA domain containing FOXK factors in the nucleus of infected cells. A single-point mutation of the conserved threonine residue in the motif within ORF45 abolished the ORF45-FOXK1/2 interaction. Our data indicates that FOXK proteins interact with ORF45 homologs encoded by murine gammaherpesvirus 68 (MHV68) and Rhesus macaque rhadinovirus (RRV), and that the FHA domains of FOXK proteins are sufficient for their interactions, highlighting a conserved mechanism.IMPORTANCEThe dysregulation of Forkhead transcription factors contributes to many different human diseases, including cancers, but their impact on herpesvirus lifecycle and pathogenesis is less understood. Our study uncovers a critical pro-lytic function of the FOXK subfamily and its requirement for KSHV lytic reactivation in PEL. We found that FOXK proteins bind to a key immediate early KSHV protein ORF45 using its novel short linear S/T motif. Notably, even though ORF45 homologs in gammaherpesviruses are highly diverse, we identified a similar S/T short linear motif in ORF45 homologs and also showed an evolutionary conserved interaction between FOXK proteins and ORF45 homologs of MHV68 and RRV. Our study provides a basis for future studies in animal models to evaluate the role of FOXK proteins and the impact of their interactions with ORF45 in gammaherpesvirus infection and pathogenesis. Targeting these interactions could allow a novel way to limit gammaherpesvirus infections.
Collapse
Affiliation(s)
- Marley Palmer
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Alessandro Leo
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Natalie Atyeo
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Christiana Tomacari
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Xuan Nguyen
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
| | - Bernadett Papp
- Department of Oral Biology, University of Florida College of Dentistry, Gainesville, Florida, USA
- Genetics Institute, University of Florida, Gainesville, Florida, USA
- Health Cancer Center, University of Florida, Gainesville, Florida, USA
- Informatics Institute, University of Florida, Gainesville, Florida, USA
- Center for Orphaned Autoimmune Disorders, University of Florida, Gainesville, Florida, USA
| |
Collapse
|
27
|
Liu CX, Yang L, Chen LL. Dynamic conformation: Marching toward circular RNA function and application. Mol Cell 2024; 84:3596-3609. [PMID: 39366349 DOI: 10.1016/j.molcel.2024.08.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/01/2024] [Accepted: 08/15/2024] [Indexed: 10/06/2024]
Abstract
Circular RNA is a group of covalently closed, single-stranded transcripts with unique biogenesis, stability, and conformation that play distinct roles in modulating cellular functions and also possess a great potential for developing circular RNA-based therapies. Importantly, due to its circular conformation, circular RNA generates distinct intramolecular base pairing that is different from the linear transcript. In this perspective, we review how circular RNA conformation can affect its turnover and modes of action, as well as what factors can modulate circular RNA conformation. We also discuss how understanding circular RNA conformation can facilitate learning about their functions as well as the remaining technological issues to further address their conformation. These efforts will ultimately inform the design of circular RNA-based platforms for biomedical applications.
Collapse
Affiliation(s)
- Chu-Xiao Liu
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China
| | - Li Yang
- Center for Molecular Medicine, Children's Hospital of Fudan University and Shanghai Key Laboratory of Medical Epigenetics, International Laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Ling-Ling Chen
- Key Laboratory of RNA Innovation, Science and Engineering, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, China; New Cornerstone Science Laboratory, Shenzhen, China; School of Life Science and Technology, ShanghaiTech University, Shanghai, China.
| |
Collapse
|
28
|
Mehta SL, Arruri V, Vemuganti R. Role of transcription factors, noncoding RNAs, epitranscriptomics, and epigenetics in post-ischemic neuroinflammation. J Neurochem 2024; 168:3430-3448. [PMID: 38279529 PMCID: PMC11272908 DOI: 10.1111/jnc.16055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/28/2024]
Abstract
Post-stroke neuroinflammation is pivotal in brain repair, yet persistent inflammation can aggravate ischemic brain damage and hamper recovery. Following stroke, specific molecules released from brain cells attract and activate central and peripheral immune cells. These immune cells subsequently release diverse inflammatory molecules within the ischemic brain, initiating a sequence of events, including activation of transcription factors in different brain cell types that modulate gene expression and influence outcomes; the interactive action of various noncoding RNAs (ncRNAs) to regulate multiple biological processes including inflammation, epitranscriptomic RNA modification that controls RNA processing, stability, and translation; and epigenetic changes including DNA methylation, hydroxymethylation, and histone modifications crucial in managing the genic response to stroke. Interactions among these events further affect post-stroke inflammation and shape the depth of ischemic brain damage and functional outcomes. We highlighted these aspects of neuroinflammation in this review and postulate that deciphering these mechanisms is pivotal for identifying therapeutic targets to alleviate post-stroke dysfunction and enhance recovery.
Collapse
Affiliation(s)
- Suresh L. Mehta
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Vijay Arruri
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
| | - Raghu Vemuganti
- Department of Neurological Surgery, University of Wisconsin, Madison, WI, USA
- William S. Middleton Veterans Hospital, Madison, WI, USA
| |
Collapse
|
29
|
Wang J, Gao H, Fu P, Lin L, Wang L, Han Y. Knockdown of LncRNA-HAGLR restrains the viability and motility of pancreatic cancer via miR-625-5p/TAF15 axis in vitro and in vivo. Heliyon 2024; 10:e37254. [PMID: 39309830 PMCID: PMC11415852 DOI: 10.1016/j.heliyon.2024.e37254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 08/28/2024] [Accepted: 08/29/2024] [Indexed: 09/25/2024] Open
Abstract
Dysregulation of long non-coding RNAs (lncRNAs) has been strongly involved to the development of pancreatic cancer (PC). However, the potential mechanisms by which lncRNA regulate PC development still need to be further explored. We attempted to elucidate the functional role and regulatory mechanism of lncRNA HAGLR on PC progression in vitro and vivo. RT-qPCR, Western blot, RNA pull-down, luciferase reporter assay, RNA immunoprecipitation assay, CCK-8 assay, EdU assay, flow cytometry, transwell assay and xenograft tumor experiment were performed in this study. We found that the expressions of HAGLR and TAF15 were increased in PC tissues and cells. HAGLR silencing restrained the PC cell growth and invasion, but induced cell apoptosis. Moreover, HAGLR targeted miR-625-5p to modulate the expression of TAF15. HAGLR overexpression partially eliminated the suppressive effect of TAF15 depletion on PC cell growth and the stimulative effect on apoptosis. In vivo assays showed that HAGLR knockdown inhibited PC cell growth by regulating the TAF15 expression. These findings suggest HAGLR could facilitate PC cell malignant behaviors through regulating the TAF15 expression, demonstrating that HAGLR might be a valuable target for the PC treatment.
Collapse
Affiliation(s)
- Jiafu Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Huiqi Gao
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Peng Fu
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Lin Lin
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Lifan Wang
- Department of Nuclear Medicine, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| | - Yue Han
- Department of Ultrasound, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
30
|
Poliseno L, Lanza M, Pandolfi PP. Coding, or non-coding, that is the question. Cell Res 2024; 34:609-629. [PMID: 39054345 PMCID: PMC11369213 DOI: 10.1038/s41422-024-00975-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 04/30/2024] [Indexed: 07/27/2024] Open
Abstract
The advent of high-throughput sequencing uncovered that our genome is pervasively transcribed into RNAs that are seemingly not translated into proteins. It was also found that non-coding RNA transcripts outnumber canonical protein-coding genes. This mindboggling discovery prompted a surge in non-coding RNA research that started unraveling the functional relevance of these new genetic units, shaking the classic definition of "gene". While the non-coding RNA revolution was still taking place, polysome/ribosome profiling and mass spectrometry analyses revealed that peptides can be translated from non-canonical open reading frames. Therefore, it is becoming evident that the coding vs non-coding dichotomy is way blurrier than anticipated. In this review, we focus on several examples in which the binary classification of coding vs non-coding genes is outdated, since the same bifunctional gene expresses both coding and non-coding products. We discuss the implications of this intricate usage of transcripts in terms of molecular mechanisms of gene expression and biological outputs, which are often concordant, but can also surprisingly be discordant. Finally, we discuss the methodological caveats that are associated with the study of bifunctional genes, and we highlight the opportunities and challenges of therapeutic exploitation of this intricacy towards the development of anticancer therapies.
Collapse
Affiliation(s)
- Laura Poliseno
- Oncogenomics Unit, Core Research Laboratory, ISPRO, Pisa, Italy.
- Institute of Clinical Physiology, CNR, Pisa, Italy.
| | - Martina Lanza
- Oncogenomics Unit, Core Research Laboratory, ISPRO, Pisa, Italy
- Institute of Clinical Physiology, CNR, Pisa, Italy
- University of Siena, Siena, Italy
| | - Pier Paolo Pandolfi
- Department of Molecular Biotechnology and Health Sciences, Molecular Biotechnology Center, University of Turin, Torino, Italy.
- Renown Institute for Cancer, Nevada System of Higher Education, Reno, NV, USA.
| |
Collapse
|
31
|
Tang W, Du X, Wu Z, Nie Z, Yu C, Gao Y. circ-Erbb2ip from adipose-derived mesenchymal stem cell-derived exosomes promotes wound healing in diabetic mice by inducing the miR-670-5p/Nrf1 axis. Cell Signal 2024; 121:111245. [PMID: 38849105 DOI: 10.1016/j.cellsig.2024.111245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 03/16/2024] [Accepted: 06/04/2024] [Indexed: 06/09/2024]
Abstract
BACKGROUND To investigate the mechanism of exosomes (Exo) secretion by hypoxic pretreated adipose-derived mesenchymal stem cells (ADSCs) promoting skin wound healing in diabetic (DM) mice. METHODS High-throughput sequencing was used to investigate abnormal expression of circRNA in hypoxic pretreatment ADSCs exosome (HExo) and ADSCs exosome (Exo). Bioinformatics analysis and luciferase reporting analysis were used to clarify the interacted relationship among circRNA, miRNA and mRNA. EPCs cells were employ to analysis the ROS, inflammatory cytokines expression, angiogenic differentiation function under hypoxic condition by using immunofluorescence, ELISA detection and tube forming experiment. DM ulceration mice model were constructed and the therapeutic effect of Exo were detected using immunohistochemistry, immunofluorescence. RESULTS The result show that HExo have more treatment effect than Exo in promotes cutaneous wound healing of DM mice. High-throughput sequencing found that circ-Erbb2ip play a role in HExo mediated tissues repair. Downregulation circ-Erbb2ip decreased the therapeutic effect of HExo to wound healing in diabetic mice. Bioinformatics analysis and luciferase reporting analysis confirmed that both miR-670-5p and Nrf1 were downstream targets of circ-Erbb2ip. Downregulation of Nrf1 or overexpression of miR-670-5p reversed the protective effect of circ-Erbb2ip to EPCs after exposure to high glucose microenvironment. Upregulation circ-Erbb2ip increased the therapeutic effect of Exo to wound healing in diabetic mice by increased angiogenesis and decreased ROS, inflammatory cytokines expression. CONCLUSION In conclusion, ADSC-Exos containing circ-Erbb2ip promotes wound healing by targeting miR-670-5p/Nrf1 pathway, and their effects in promoting soft tissue wound healing warrant further study.
Collapse
Affiliation(s)
- Wenbo Tang
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, China; The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Xiaoying Du
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, China; The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Zifu Wu
- The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Zhonglin Nie
- The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, China
| | - Chaowen Yu
- The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, China.
| | - Yong Gao
- The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510632, China; The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui 233000, China.
| |
Collapse
|
32
|
Hama Faraj GS, Hussen BM, Abdullah SR, Fatih Rasul M, Hajiesmaeili Y, Baniahmad A, Taheri M. Advanced approaches of the use of circRNAs as a replacement for cancer therapy. Noncoding RNA Res 2024; 9:811-830. [PMID: 38590433 PMCID: PMC10999493 DOI: 10.1016/j.ncrna.2024.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 03/18/2024] [Accepted: 03/29/2024] [Indexed: 04/10/2024] Open
Abstract
Cancer is a broad name for a group of diseases in which abnormal cells grow out of control and are characterized by their complexity and recurrence. Although there has been progress in cancer therapy with the entry of precision medicine and immunotherapy, cancer incidence rates have increased globally. Non-coding RNAs in the form of circular RNAs (circRNAs) play crucial roles in the pathogenesis, clinical diagnosis, and therapy of different diseases, including cancer. According to recent studies, circRNAs appear to serve as accurate indicators and therapeutic targets for cancer treatment. However, circRNAs are promising candidates for cutting-edge cancer therapy because of their distinctive circular structure, stability, and wide range of capabilities; many challenges persist that decrease the applications of circRNA-based cancer therapeutics. Here, we explore the roles of circRNAs as a replacement for cancer therapy, highlight the main challenges facing circRNA-based cancer therapies, and discuss the key strategies to overcome these challenges to improve advanced innovative therapies based on circRNAs with long-term health effects.
Collapse
Affiliation(s)
- Goran Sedeeq Hama Faraj
- Department of Medical Laboratory Science, Komar University of Science and Technology, Sulaymaniyah, 46001, Iraq
| | - Bashdar Mahmud Hussen
- Department of Biomedical Sciences, College of Science, Cihan University-Erbil, Erbil, Kurdistan Region, 44001, Iraq
- Department of Clinical Analysis, College of Pharmacy, Hawler Medical University, Erbil, Kurdistan Region, 44001, Iraq
| | - Snur Rasool Abdullah
- Medical Laboratory Science, Lebanese French University, Erbil, Kurdistan Region, 44001, Iraq
| | - Mohammed Fatih Rasul
- Department of Pharmaceutical Basic Science, Faculty of Pharmacy, Tishk International University, Erbil, Kurdistan Region, Iraq
| | | | - Aria Baniahmad
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
| | - Mohammad Taheri
- Institute of Human Genetics, Jena University Hospital, Jena, Germany
- Urology and Nephrology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| |
Collapse
|
33
|
McJunkin K, Gottesman S. What goes up must come down: off switches for regulatory RNAs. Genes Dev 2024; 38:597-613. [PMID: 39111824 PMCID: PMC11368247 DOI: 10.1101/gad.351934.124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/22/2024]
Abstract
Small RNAs base pair with and regulate mRNA translation and stability. For both bacterial small regulatory RNAs and eukaryotic microRNAs, association with partner proteins is critical for the stability and function of the regulatory RNAs. We review the mechanisms for degradation of these RNAs: displacement of the regulatory RNA from its protein partner (in bacteria) or destruction of the protein and its associated microRNAs (in eukaryotes). These mechanisms can allow specific destruction of a regulatory RNA via pairing with a decay trigger RNA or function as global off switches by disrupting the stability or function of the protein partner.
Collapse
Affiliation(s)
- Katherine McJunkin
- Laboratory of Cellular and Developmental Biology, National Institute of Diabetes and Digestive and Kidney Diseases Intramural Research Program, Bethesda, Maryland 20892, USA;
| | - Susan Gottesman
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, Maryland 20892, USA
| |
Collapse
|
34
|
Chen HF, Wu KJ. LncRNAs and asymmetric cell division: The epigenetic mechanisms. Biomed J 2024; 48:100774. [PMID: 39059582 PMCID: PMC12001117 DOI: 10.1016/j.bj.2024.100774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2024] [Revised: 07/16/2024] [Accepted: 07/24/2024] [Indexed: 07/28/2024] Open
Abstract
Asymmetric cell division (ACD) plays a pivotal role in development, tissue homeostasis, and stem cell maintenance. Emerging evidence suggests that long non-coding RNAs (lncRNAs) are key regulators of ACD, orchestrating the intricate molecular machinery that governs cell fate determination. This review summarizes current literature to elucidate the diverse roles of lncRNAs in modulating ACD across various biological contexts. The regulatory mechanisms of asymmetric cell division mediated by lncRNAs, including their interactions with protein effectors, epigenetic regulation, and subcellular localization are explored. Additionally, we discuss the implications of dysregulated lncRNAs in mediating ACD that lead to tumorigenesis. By integrating findings from diverse experimental models and cell types, this review provides insights into the multifaceted roles of lncRNAs in governing asymmetric cell division, shedding light on fundamental biological processes. Further research in this area may lead to the development of novel therapies targeting dysregulated lncRNAs to restore proper cell division and function. The knowledge of lncRNAs regulating ACD could potentially revolutionize the field of regenerative medicine and cancer therapy by targeting specific lncRNAs involved in ACD. By unraveling the complex interactions between lncRNAs and cellular processes, the potential novel opportunities for precision medicine approaches may be uncovered.
Collapse
Affiliation(s)
- Hsiao-Fan Chen
- Graduate Institutes of Biomedical Sciences, China Medical University, Taichung, Taiwan; Graduate Institutes of Cell Biology, China Medical University, Taichung, Taiwan.
| | - Kou-Juey Wu
- Cancer Genome Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
| |
Collapse
|
35
|
Morales-Vicente DA, Tahira AC, Woellner-Santos D, Amaral MS, Berzoti-Coelho MG, Verjovski-Almeida S. The Human Developing Cerebral Cortex Is Characterized by an Elevated De Novo Expression of Long Noncoding RNAs in Excitatory Neurons. Mol Biol Evol 2024; 41:msae123. [PMID: 38913688 PMCID: PMC11221658 DOI: 10.1093/molbev/msae123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 06/12/2024] [Accepted: 06/14/2024] [Indexed: 06/26/2024] Open
Abstract
The outstanding human cognitive capacities are computed in the cerebral cortex, a mammalian-specific brain region and the place of massive biological innovation. Long noncoding RNAs have emerged as gene regulatory elements with higher evolutionary turnover than mRNAs. The many long noncoding RNAs identified in neural tissues make them candidates for molecular sources of cerebral cortex evolution and disease. Here, we characterized the genomic and cellular shifts that occurred during the evolution of the long noncoding RNA repertoire expressed in the developing cerebral cortex and explored putative roles for these long noncoding RNAs in the evolution of the human brain. Using transcriptomics and comparative genomics, we comprehensively annotated the cortical transcriptomes of humans, rhesus macaques, mice, and chickens and classified human cortical long noncoding RNAs into evolutionary groups as a function of their predicted minimal ages. Long noncoding RNA evolutionary groups showed differences in expression levels, splicing efficiencies, transposable element contents, genomic distributions, and transcription factor binding to their promoters. Furthermore, older long noncoding RNAs showed preferential expression in germinative zones, outer radial glial cells, and cortical inhibitory (GABAergic) neurons. In comparison, younger long noncoding RNAs showed preferential expression in cortical excitatory (glutamatergic) neurons, were enriched in primate and human-specific gene co-expression modules, and were dysregulated in neurodevelopmental disorders. These results suggest different evolutionary routes for older and younger cortical long noncoding RNAs, highlighting old long noncoding RNAs as a possible source of molecular evolution of conserved developmental programs; conversely, we propose that the de novo expression of primate- and human-specific young long noncoding RNAs is a putative source of molecular evolution and dysfunction of cortical excitatory neurons, warranting further investigation.
Collapse
Affiliation(s)
- David A Morales-Vicente
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, Brazil
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Ana C Tahira
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, Brazil
| | - Daisy Woellner-Santos
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, Brazil
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Murilo S Amaral
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, Brazil
| | - Maria G Berzoti-Coelho
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, Brazil
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| | - Sergio Verjovski-Almeida
- Laboratório de Ciclo Celular, Instituto Butantan, São Paulo, Brazil
- Departamento de Bioquímica, Instituto de Química, Universidade de São Paulo, São Paulo, Brazil
| |
Collapse
|
36
|
Zacharjasz J, Sztachera M, Smuszkiewicz M, Piwecka M. Micromanaging the neuroendocrine system - A review on miR-7 and the other physiologically relevant miRNAs in the hypothalamic-pituitary axis. FEBS Lett 2024; 598:1557-1575. [PMID: 38858179 DOI: 10.1002/1873-3468.14948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 05/16/2024] [Accepted: 05/20/2024] [Indexed: 06/12/2024]
Abstract
The hypothalamic-pituitary axis is central to the functioning of the neuroendocrine system and essential for regulating physiological and behavioral homeostasis and coordinating fundamental body functions. The expanding line of evidence shows the indispensable role of the microRNA pathway in regulating the gene expression profile in the developing and adult hypothalamus and pituitary gland. Experiments provoking a depletion of miRNA maturation in the context of the hypothalamic-pituitary axis brought into focus a prominent involvement of miRNAs in neuroendocrine functions. There are also a few individual miRNAs and miRNA families that have been studied in depth revealing their crucial role in mediating the regulation of fundamental processes such as temporal precision of puberty timing, hormone production, fertility and reproduction capacity, and energy balance. Among these miRNAs, miR-7 was shown to be hypothalamus-enriched and the top one highly expressed in the pituitary gland, where it has a profound impact on gene expression regulation. Here, we review miRNA profiles, knockout phenotypes, and miRNA interaction (targets) in the hypothalamic-pituitary axis that advance our understanding of the roles of miRNAs in mammalian neurosecretion and related physiology.
Collapse
Affiliation(s)
- Julian Zacharjasz
- Department of Non-coding RNAs, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Marta Sztachera
- Department of Non-coding RNAs, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Michał Smuszkiewicz
- Department of Non-coding RNAs, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| | - Monika Piwecka
- Department of Non-coding RNAs, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Poznań, Poland
| |
Collapse
|
37
|
Cerda-Jara CA, Kim SJ, Thomas G, Farsi Z, Zolotarov G, Dube G, Deter A, Bahry E, Georgii E, Woehler A, Piwecka M, Rajewsky N. miR-7 controls glutamatergic transmission and neuronal connectivity in a Cdr1as-dependent manner. EMBO Rep 2024; 25:3008-3039. [PMID: 38831125 PMCID: PMC11239925 DOI: 10.1038/s44319-024-00168-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 04/12/2024] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
The circular RNA (circRNA) Cdr1as is conserved across mammals and highly expressed in neurons, where it directly interacts with microRNA miR-7. However, the biological function of this interaction is unknown. Here, using primary cortical murine neurons, we demonstrate that stimulating neurons by sustained depolarization rapidly induces two-fold transcriptional upregulation of Cdr1as and strong post-transcriptional stabilization of miR-7. Cdr1as loss causes doubling of glutamate release from stimulated synapses and increased frequency and duration of local neuronal bursts. Moreover, the periodicity of neuronal networks increases, and synchronicity is impaired. Strikingly, these effects are reverted by sustained expression of miR-7, which also clears Cdr1as molecules from neuronal projections. Consistently, without Cdr1as, transcriptomic changes caused by miR-7 overexpression are stronger (including miR-7-targets downregulation) and enriched in secretion/synaptic plasticity pathways. Altogether, our results suggest that in cortical neurons Cdr1as buffers miR-7 activity to control glutamatergic excitatory transmission and neuronal connectivity important for long-lasting synaptic adaptations.
Collapse
Affiliation(s)
- Cledi A Cerda-Jara
- Laboratory for Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Hannoversche Str. 28, 10115, Berlin, Germany
| | - Seung Joon Kim
- Laboratory for Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Hannoversche Str. 28, 10115, Berlin, Germany
| | - Gwendolin Thomas
- Laboratory for Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Hannoversche Str. 28, 10115, Berlin, Germany
| | - Zohreh Farsi
- Light Microscopy Platform, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Hannoversche Str. 28, 10115, Berlin, Germany
| | - Grygoriy Zolotarov
- Laboratory for Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Hannoversche Str. 28, 10115, Berlin, Germany
| | - Giuliana Dube
- Laboratory for Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Hannoversche Str. 28, 10115, Berlin, Germany
| | - Aylina Deter
- Laboratory for Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Hannoversche Str. 28, 10115, Berlin, Germany
| | - Ella Bahry
- Helmholtz Imaging, Max-Delbrück-Center for Molecular Medicine, Berlin, Germany Hannoversche Str. 28, 10115, Berlin, Germany
| | - Elisabeth Georgii
- Helmholtz AI, Helmholtz Zentrum München, Ingolstädter Landstraße 1, D-85764, Neuherberg, Germany
| | - Andrew Woehler
- Light Microscopy Platform, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Hannoversche Str. 28, 10115, Berlin, Germany
| | - Monika Piwecka
- Department of Non-Coding RNAs, Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| | - Nikolaus Rajewsky
- Laboratory for Systems Biology of Gene Regulatory Elements, Berlin Institute for Medical Systems Biology, Max Delbrück Center for Molecular Medicine, Hannoversche Str. 28, 10115, Berlin, Germany.
| |
Collapse
|
38
|
Qiao M, Yang H, Liu L, Yu T, Wang H, Chen X, Zhang Y, Duan A, Lyu S, Wu S, Xiao J, Li B. Chronic Lead Exposure in Adult Mice: Associations with miR-671/CDR1as Regulation, NF-κB Signaling, and Alzheimer's Disease-like Pathology. TOXICS 2024; 12:410. [PMID: 38922090 PMCID: PMC11209093 DOI: 10.3390/toxics12060410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/17/2024] [Accepted: 05/30/2024] [Indexed: 06/27/2024]
Abstract
Long-term exposure to lead (Pb) can result in chronic damage to the body through accumulation in the central nervous system (CNS) leading to neurodegenerative diseases, such as Alzheimer's disease (AD). This study delves into the intricate role of miR-671/CDR1as regulation in the etiology of AD-like lesions triggered by chronic Pb exposure in adult mice. To emulate the chronic effects of Pb, we established a rodent model spanning 10 months of controlled Pb administration, dividing 52 C57BL/6J mice into groups receiving varying concentrations of Pb (1, 2, or 4 g/L) alongside an unexposed control. Blood Pb levels were monitored using serum samples to ensure accurate dosing and to correlate with observed toxicological outcomes. Utilizing the Morris water maze, a robust behavioral assay for assessing cognitive functions, we documented a dose-dependent decline in learning and memory capabilities among the Pb-exposed mice. Histopathological examination of the hippocampal tissue revealed tell-tale signs of AD-like neurodegeneration, characterized by the accumulation of amyloid plaques and neurofibrillary tangles. At the molecular level, a significant upregulation of AD-associated genes, namely amyloid precursor protein (APP), β-secretase 1 (BACE1), and tau, was observed in the hippocampal tissue of Pb-exposed mice. This was accompanied by a corresponding surge in the protein levels of APP, BACE1, amyloid-β (Aβ), and phosphorylated tau (p-tau), further implicating Pb in the dysregulation of these key AD markers. The expression of CDR1as, a long non-coding RNA implicated in AD pathogenesis, was found to be suppressed in Pb-exposed mice. This observation suggests a potential mechanistic link between Pb-induced neurotoxicity and the dysregulation of the CDR1as/miR-671 axis, which warrants further investigation. Moreover, our study identified a dose-dependent alteration in the intracellular and extracellular levels of the transcription factor nuclear factor-kappa B (NF-κB). This finding implicates Pb in the modulation of NF-κB signaling, a pathway that plays a pivotal role in neuroinflammation and neurodegeneration. In conclusion, our findings underscored the deleterious effects of Pb exposure on the CNS, leading to the development of AD-like pathology. The observed modulation of NF-κB signaling and miR-671/CDR1as regulation provides a plausible mechanistic framework for understanding the neurotoxic effects of Pb and its potential contribution to AD pathogenesis.
Collapse
Affiliation(s)
- Mengyun Qiao
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- Department of Toxicology, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- Key Laboratory of Chemical Safety and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Haitao Yang
- Key Laboratory of Environmental Medicine and Engineering, Ministry of Education, School of Public Health, Southeast University, Nanjing 210009, China
| | - Li Liu
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- Department of Toxicology, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- Key Laboratory of Chemical Safety and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Tao Yu
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- Department of Toxicology, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- Key Laboratory of Chemical Safety and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Haihua Wang
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- Department of Toxicology, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- Key Laboratory of Chemical Safety and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Xiao Chen
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- Department of Toxicology, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- Key Laboratory of Chemical Safety and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Yi Zhang
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- Department of Toxicology, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- Key Laboratory of Chemical Safety and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Airu Duan
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- Department of Toxicology, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- Key Laboratory of Chemical Safety and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Shujun Lyu
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- Department of Toxicology, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- Key Laboratory of Chemical Safety and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Siyu Wu
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- Department of Toxicology, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- Key Laboratory of Chemical Safety and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Jingwei Xiao
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- Department of Toxicology, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- Key Laboratory of Chemical Safety and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| | - Bin Li
- State Key Laboratory of Trauma and Chemical Poisoning, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- Department of Toxicology, National Institute for Occupational Health and Poison Control, Chinese Center for Disease Control and Prevention, Beijing 100050, China
- Key Laboratory of Chemical Safety and Health, Chinese Center for Disease Control and Prevention, Beijing 100050, China
| |
Collapse
|
39
|
Zeinelabdeen Y, Abaza T, Yasser MB, Elemam NM, Youness RA. MIAT LncRNA: A multifunctional key player in non-oncological pathological conditions. Noncoding RNA Res 2024; 9:447-462. [PMID: 38511054 PMCID: PMC10950597 DOI: 10.1016/j.ncrna.2024.01.011] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/27/2023] [Accepted: 01/14/2024] [Indexed: 03/22/2024] Open
Abstract
The discovery of non-coding RNAs (ncRNAs) has unveiled a wide range of transcripts that do not encode proteins but play key roles in several cellular and molecular processes. Long noncoding RNAs (lncRNAs) are specific class of ncRNAs that are longer than 200 nucleotides and have gained significant attention due to their diverse mechanisms of action and potential involvement in various pathological conditions. In the current review, the authors focus on the role of lncRNAs, specifically highlighting the Myocardial Infarction Associated Transcript (MIAT), in non-oncological context. MIAT is a nuclear lncRNA that has been directly linked to myocardial infarction and is reported to control post-transcriptional processes as a competitive endogenous RNA (ceRNA) molecule. It interacts with microRNAs (miRNAs), thereby limiting the translation and expression of their respective target messenger RNA (mRNA) and regulating protein expression. Yet, MIAT has been implicated in other numerous pathological conditions such as other cardiovascular diseases, autoimmune disease, neurodegenerative diseases, metabolic diseases, and many others. In this review, the authors emphasize that MIAT exhibits distinct expression patterns and functions across different pathological conditions and is emerging as potential diagnostic, prognostic, and therapeutic agent. Additionally, the authors highlight the regulatory role of MIAT and shed light on the involvement of lncRNAs and specifically MIAT in various non-oncological pathological conditions.
Collapse
Affiliation(s)
- Yousra Zeinelabdeen
- Molecular Genetics Research Team, Molecular Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), Cairo, 11835, Egypt
- Faculty of Medical Sciences/UMCG, University of Groningen, Antonius Deusinglaan 1, Groningen, 9713 AV, the Netherlands
| | - Tasneem Abaza
- Molecular Genetics Research Team, Molecular Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), Cairo, 11835, Egypt
- Biotechnology and Biomolecular Biochemistry Program, Faculty of Science, Cairo University, Cairo, Egypt
| | - Montaser Bellah Yasser
- Bioinformatics Group, Center for Informatics Sciences (CIS), School of Information Technology and Computer Science (ITCS), Nile University, Giza, Egypt
| | - Noha M. Elemam
- Clinical Sciences Department, College of Medicine, University of Sharjah, Sharjah, United Arab Emirates
- Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
| | - Rana A. Youness
- Molecular Genetics Research Team, Molecular Biology and Biochemistry Department, Faculty of Biotechnology, German International University (GIU), Cairo, 11835, Egypt
| |
Collapse
|
40
|
Giusti SA, Pino NS, Pannunzio C, Ogando MB, Armando NG, Garrett L, Zimprich A, Becker L, Gimeno ML, Lukin J, Merino FL, Pardi MB, Pedroncini O, Di Mauro GC, Durner VG, Fuchs H, de Angelis MH, Patop IL, Turck CW, Deussing JM, Vogt Weisenhorn DM, Jahn O, Kadener S, Hölter SM, Brose N, Giesert F, Wurst W, Marin-Burgin A, Refojo D. A brain-enriched circular RNA controls excitatory neurotransmission and restricts sensitivity to aversive stimuli. SCIENCE ADVANCES 2024; 10:eadj8769. [PMID: 38787942 PMCID: PMC11122670 DOI: 10.1126/sciadv.adj8769] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 04/22/2024] [Indexed: 05/26/2024]
Abstract
Circular RNAs (circRNAs) are a large class of noncoding RNAs. Despite the identification of thousands of circular transcripts, the biological significance of most of them remains unexplored, partly because of the lack of effective methods for generating loss-of-function animal models. In this study, we focused on circTulp4, an abundant circRNA derived from the Tulp4 gene that is enriched in the brain and synaptic compartments. By creating a circTulp4-deficient mouse model, in which we mutated the splice acceptor site responsible for generating circTulp4 without affecting the linear mRNA or protein levels, we were able to conduct a comprehensive phenotypic analysis. Our results demonstrate that circTulp4 is critical in regulating neuronal and brain physiology, modulating the strength of excitatory neurotransmission and sensitivity to aversive stimuli. This study provides evidence that circRNAs can regulate biologically relevant functions in neurons, with modulatory effects at multiple levels of the phenotype, establishing a proof of principle for the regulatory role of circRNAs in neural processes.
Collapse
Affiliation(s)
- Sebastian A. Giusti
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)–CONICET–Partner Institute of the Max Planck Society, Buenos Aires, Argentina
- Molecular Neurobiology, Max Planck Institute of Psychiatry, Munich, Germany
| | - Natalia S. Pino
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Camila Pannunzio
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)–CONICET–Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Mora B. Ogando
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)–CONICET–Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Natalia G. Armando
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)–CONICET–Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Lillian Garrett
- German Mouse Clinic, Helmholtz Zentrum München, Munich, Germany
| | - Annemarie Zimprich
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- German Mouse Clinic, Helmholtz Zentrum München, Munich, Germany
- Chair of Developmental Genetics, Munich School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Lore Becker
- German Mouse Clinic, Helmholtz Zentrum München, Munich, Germany
| | - Maria L. Gimeno
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)–CONICET–Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Jeronimo Lukin
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)–CONICET–Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Florencia L. Merino
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)–CONICET–Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - M. Belen Pardi
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)–CONICET–Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Olivia Pedroncini
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)–CONICET–Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Giuliana C. Di Mauro
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)–CONICET–Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | | | - Helmut Fuchs
- German Mouse Clinic, Helmholtz Zentrum München, Munich, Germany
| | - Martin Hrabe de Angelis
- German Mouse Clinic, Helmholtz Zentrum München, Munich, Germany
- Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | | | - Christoph W. Turck
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| | - Jan M. Deussing
- Molecular Neurogenetics, Max Planck Institute of Psychiatry, Munich, Germany
| | - Daniela M. Vogt Weisenhorn
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- Chair of Developmental Genetics, Munich School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
| | - Olaf Jahn
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Department of Psychiatry and Psychotherapy, University Medical Center Göttingen, Georg-August-University, Göttingen, Germany
| | | | - Sabine M. Hölter
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Nils Brose
- Department of Molecular Neurobiology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Florian Giesert
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Munich, Germany
- Chair of Developmental Genetics, Munich School of Life Sciences Weihenstephan, Technical University of Munich, Freising, Germany
- Munich Cluster of Systems Neurology (SyNergy), Munich, Germany
- German Center for Neurodegenerative Diseases (DZNE) Site Munich, Munich, Germany
| | - Antonia Marin-Burgin
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)–CONICET–Partner Institute of the Max Planck Society, Buenos Aires, Argentina
| | - Damian Refojo
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA)–CONICET–Partner Institute of the Max Planck Society, Buenos Aires, Argentina
- Molecular Neurobiology, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
41
|
Nahar S, Morales Moya LJ, Brunner J, Hendriks GJ, Towbin B, Hauser Y, Brancati G, Gaidatzis D, Großhans H. Dynamics of miRNA accumulation during C. elegans larval development. Nucleic Acids Res 2024; 52:5336-5355. [PMID: 38381904 PMCID: PMC11109986 DOI: 10.1093/nar/gkae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/01/2024] [Accepted: 02/06/2024] [Indexed: 02/23/2024] Open
Abstract
Temporally and spatially controlled accumulation underlies the functions of microRNAs (miRNAs) in various developmental processes. In Caenorhabditis elegans, this is exemplified by the temporal patterning miRNAs lin-4 and let-7, but for most miRNAs, developmental expression patterns remain poorly resolved. Indeed, experimentally observed long half-lives may constrain possible dynamics. Here, we profile miRNA expression throughout C. elegans postembryonic development at high temporal resolution, which identifies dynamically expressed miRNAs. We use mathematical models to explore the underlying mechanisms. For let-7, we can explain, and experimentally confirm, a striking stepwise accumulation pattern through a combination of rhythmic transcription and stage-specific regulation of precursor processing by the RNA-binding protein LIN-28. By contrast, the dynamics of several other miRNAs cannot be explained by regulation of production rates alone. Specifically, we show that a combination of oscillatory transcription and rhythmic decay drive rhythmic accumulation of miR-235, orthologous to miR-92 in other animals. We demonstrate that decay of miR-235 and additional miRNAs depends on EBAX-1, previously implicated in target-directed miRNA degradation (TDMD). Taken together, our results provide insight into dynamic miRNA decay and establish a resource to studying both the developmental functions of, and the regulatory mechanisms acting on, miRNAs.
Collapse
Affiliation(s)
- Smita Nahar
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
| | | | - Jana Brunner
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Gert-Jan Hendriks
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
| | - Benjamin Towbin
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
- University of Bern, Bern, Switzerland
| | - Yannick P Hauser
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Giovanna Brancati
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Dimos Gaidatzis
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
- SIB Swiss Institute of Bioinformatics, Basel, Switzerland
| | - Helge Großhans
- Friedrich Miescher Institute for Biomedical Research (FMI), Basel, Switzerland
- University of Basel, Basel, Switzerland
| |
Collapse
|
42
|
Kotagama K, Grimme AL, Braviner L, Yang B, Sakhawala R, Yu G, Benner LK, Joshua-Tor L, McJunkin K. Catalytic residues of microRNA Argonautes play a modest role in microRNA star strand destabilization in C. elegans. Nucleic Acids Res 2024; 52:4985-5001. [PMID: 38471816 PMCID: PMC11109956 DOI: 10.1093/nar/gkae170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 02/22/2024] [Accepted: 02/27/2024] [Indexed: 03/14/2024] Open
Abstract
Many microRNA (miRNA)-guided Argonaute proteins can cleave RNA ('slicing'), even though miRNA-mediated target repression is generally cleavage-independent. Here we use Caenorhabditis elegans to examine the role of catalytic residues of miRNA Argonautes in organismal development. In contrast to previous work, mutations in presumed catalytic residues did not interfere with development when introduced by CRISPR. We find that unwinding and decay of miRNA star strands is weakly defective in the catalytic residue mutants, with the largest effect observed in embryos. Argonaute-Like Gene 2 (ALG-2) is more dependent on catalytic residues for unwinding than ALG-1. The miRNAs that displayed the greatest (albeit minor) dependence on catalytic residues for unwinding tend to form stable duplexes with their star strand, and in some cases, lowering duplex stability alleviates dependence on catalytic residues. While a few miRNA guide strands are reduced in the mutant background, the basis of this is unclear since changes were not dependent on EBAX-1, an effector of Target-Directed miRNA Degradation (TDMD). Overall, this work defines a role for the catalytic residues of miRNA Argonautes in star strand decay; future work should examine whether this role contributes to the selection pressure to conserve catalytic activity of miRNA Argonautes across the metazoan phylogeny.
Collapse
Affiliation(s)
- Kasuen Kotagama
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA
| | - Acadia L Grimme
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA
- Johns Hopkins University Department of Biology, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Leah Braviner
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Bing Yang
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA
| | - Rima M Sakhawala
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA
- Johns Hopkins University Department of Biology, 3400 N. Charles Street, Baltimore, MD 21218, USA
| | - Guoyun Yu
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA
| | - Lars Kristian Benner
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA
| | - Leemor Joshua-Tor
- Cold Spring Harbor Laboratory, One Bungtown Road, Cold Spring Harbor, NY 11724, USA
| | - Katherine McJunkin
- Laboratory of Cellular and Developmental Biology, NIDDK Intramural Research Program, 50 South Drive, Bethesda, MD 20892, USA
| |
Collapse
|
43
|
Bermudez-Santana CI, Gallego-Gómez JC. Toward a Categorization of Virus-ncRNA Interactions in the World of RNA to Disentangle the Tiny Secrets of Dengue Virus. Viruses 2024; 16:804. [PMID: 38793685 PMCID: PMC11125801 DOI: 10.3390/v16050804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/26/2024] Open
Abstract
In recent years, the function of noncoding RNAs (ncRNAs) as regulatory molecules of cell physiology has begun to be better understood. Advances in viral molecular biology have shown that host ncRNAs, cellular factors, and virus-derived ncRNAs and their interplay are strongly disturbed during viral infections. Nevertheless, the folding of RNA virus genomes has also been identified as a critical factor in regulating canonical and non-canonical functions. Due to the influence of host ncRNAs and the structure of RNA viral genomes, complex molecular and cellular processes in infections are modulated. We propose three main categories to organize the current information about RNA-RNA interactions in some well-known human viruses. The first category shows examples of host ncRNAs associated with the immune response triggered in viral infections. Even though miRNAs introduce a standpoint, they are briefly presented to keep researchers moving forward in uncovering other RNAs. The second category outlines interactions between virus-host ncRNAs, while the third describes how the structure of the RNA viral genome serves as a scaffold for processing virus-derived RNAs. Our grouping may provide a comprehensive framework to classify ncRNA-host-cell interactions for emerging viruses and diseases. In this sense, we introduced them to organize DENV-host-cell interactions.
Collapse
Affiliation(s)
- Clara Isabel Bermudez-Santana
- Computational and theoretical RNomics Group, Center of Excellence in Scientific Computing, Universidad Nacional de Colombia, Bogotá 111321, Colombia
| | - Juan Carlos Gallego-Gómez
- Grupo de Medicina de Traslación, Facultad de Medicina, Universidad de Antioquia, Medellín 050010, Colombia;
| |
Collapse
|
44
|
Liang P, Yang X, Long R, Li Y, Wang Z, Yang P, Liang Y. Association between Mir-17-92 gene promoter polymorphisms and depression in a Chinese population. BMC Med Genomics 2024; 17:123. [PMID: 38711022 PMCID: PMC11075371 DOI: 10.1186/s12920-024-01894-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 04/25/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Depression is a common chronic debilitating disease with a heavy social burden. single nucleotide polymorphisms (SNPs) can affect the function of microRNAs (miRNAs), which is in turn associated with neurological diseases. However, the association between SNPs located in the promoter region of miR-17-92 and the risk of depression remains unclear. Therefore, we investigated the association between rs982873, rs9588884 and rs1813389 polymorphisms in the promoter region of miR-17-92 and the incidence of depression in a Chinese population. METHODS we used GWAS (Genome-wide association study) and NCBI (National Center for Biotechnology Information) to screen three SNPs in the miR-17-92 cluster binding sites. A case-control study (including 555 cases and 541 controls) was conducted to investigate the relationship between the SNPs and risk of depression in different regions of China. The gene sequencing ii was used to genotype the collected blood samples. RESULTS the following genotypes were significantly associated with a reduced risk of depression: rs982873 TC (TC vs. TT: OR = 0.72, 95% CI, 0.54-0.96, P = 0.024; TC/CC vs. TT: OR = 0.74, 95% Cl, 0.56-0.96, P = 0.025); CG genotype of rs9588884 (CG vs. CC: OR = 0.74, 95% CI, 0.55-0.98, P = 0.033; CG/GG vs. CC: OR = 0.75, 95% Cl, 0.57-0.98, P = 0.036); and AG genotype of rs1813389 (AG vs. AA: OR = 0.75, 95% CI, 0.57-1.00, P = 0.049; AG/GG vs. AA: OR = 0.76, 95% Cl, 0.59-1.00, P = 0.047). Stratified analysis showed that there was no significant correlation between the three SNPS and variables such as family history of suicidal tendency (P > 0.05). CONCLUSIONS our findings suggest that rs982873, rs9588884, and rs1813389 polymorphisms may be associated with protective factors for depression.
Collapse
Affiliation(s)
- Peng Liang
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, 610500, Sichuan, P.R. China
| | - Xue Yang
- Department of Geriatric psychiatry, the First Special Hospital in Harbin, Harbin, P.R. China
| | - Rui Long
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, 610500, Sichuan, P.R. China
| | - Yue Li
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, 610500, Sichuan, P.R. China
| | - Ziling Wang
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, 610500, Sichuan, P.R. China
| | - Pingliang Yang
- Department of Anesthesiology, The First Affiliated Hospital of Chengdu Medical College, Chengdu, P.R. China.
| | - Yundan Liang
- Department of Pathology and Pathophysiology, School of Basic Medical Sciences, Chengdu Medical College, Chengdu, 610500, Sichuan, P.R. China.
| |
Collapse
|
45
|
Li X, Hernandez I, Koyuncu S, Kis B, Häggblad M, Lidemalm L, Abbas AA, Bendegúz S, Göblös A, Brautigam L, Lucas JJ, Carreras-Puigvert J, Hühn D, Pircs K, Vilchez D, Fernandez-Capetillo O. The anti-leprosy drug clofazimine reduces polyQ toxicity through activation of PPARγ. EBioMedicine 2024; 103:105124. [PMID: 38701619 PMCID: PMC11088276 DOI: 10.1016/j.ebiom.2024.105124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Revised: 04/03/2024] [Accepted: 04/04/2024] [Indexed: 05/05/2024] Open
Abstract
BACKGROUND PolyQ diseases are autosomal dominant neurodegenerative disorders caused by the expansion of CAG repeats. While of slow progression, these diseases are ultimately fatal and lack effective therapies. METHODS A high-throughput chemical screen was conducted to identify drugs that lower the toxicity of a protein containing the first exon of Huntington's disease (HD) protein huntingtin (HTT) harbouring 94 glutamines (Htt-Q94). Candidate drugs were tested in a wide range of in vitro and in vivo models of polyQ toxicity. FINDINGS The chemical screen identified the anti-leprosy drug clofazimine as a hit, which was subsequently validated in several in vitro models. Computational analyses of transcriptional signatures revealed that the effect of clofazimine was due to the stimulation of mitochondrial biogenesis by peroxisome proliferator-activated receptor gamma (PPARγ). In agreement with this, clofazimine rescued mitochondrial dysfunction triggered by Htt-Q94 expression. Importantly, clofazimine also limited polyQ toxicity in developing zebrafish and neuron-specific worm models of polyQ disease. INTERPRETATION Our results support the potential of repurposing the antimicrobial drug clofazimine for the treatment of polyQ diseases. FUNDING A full list of funding sources can be found in the acknowledgments section.
Collapse
Affiliation(s)
- Xuexin Li
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-171 21, Stockholm, Sweden
| | - Ivó Hernandez
- Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain
| | - Seda Koyuncu
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Balázs Kis
- HCEMM-SU, Neurobiology and Neurodegenerative Diseases Research Group, Budapest, Hungary; Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Maria Häggblad
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-171 21, Stockholm, Sweden
| | - Louise Lidemalm
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-171 21, Stockholm, Sweden
| | - Anna A Abbas
- HCEMM-SU, Neurobiology and Neurodegenerative Diseases Research Group, Budapest, Hungary; Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Sramkó Bendegúz
- HCEMM-SU, Neurobiology and Neurodegenerative Diseases Research Group, Budapest, Hungary; Institute of Translational Medicine, Semmelweis University, Budapest, Hungary
| | - Anikó Göblös
- Centre of Excellence for Interdisciplinary Research, Development and Innovation, University of Szeged, H-6720, Szeged, Hungary
| | - Lars Brautigam
- Zebrafish Core Facility, Karolinska Institute, S-171 21, Stockholm, Sweden
| | - Jose J Lucas
- Center for Molecular Biology, "Severo Ochoa" (CBMSO) CSIC/UAM, Madrid, 28049, Spain; Networking Research Center on Neurodegenerative Diseases (CIBERNED), Instituto de Salud Carlos III, Madrid, Spain
| | - Jordi Carreras-Puigvert
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-171 21, Stockholm, Sweden
| | - Daniela Hühn
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-171 21, Stockholm, Sweden
| | - Karolina Pircs
- HCEMM-SU, Neurobiology and Neurodegenerative Diseases Research Group, Budapest, Hungary; Institute of Translational Medicine, Semmelweis University, Budapest, Hungary; Laboratory of Molecular Neurogenetics, Department of Experimental Medical Science, Wallenberg Neuroscience Center and Lund Stem Cell Center, BMC A11, Lund University, Lund, Sweden
| | - David Vilchez
- Cologne Excellence Cluster for Cellular Stress Responses in Aging-Associated Diseases (CECAD), Faculty of Medicine, University of Cologne and University Hospital Cologne, Cologne, Germany
| | - Oscar Fernandez-Capetillo
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, S-171 21, Stockholm, Sweden; Genomic Instability Group, Spanish National Cancer Research Centre (CNIO), Madrid, 28029, Spain.
| |
Collapse
|
46
|
Li B, Ding Y, Huo C, Ren S, Chen S, He H, Li S, Wang X, Cen M, Yang H, Li J. Targeting Circ-OCAC suppress oral squamous cell carcinoma progression. Oral Dis 2024; 30:2202-2218. [PMID: 37485985 DOI: 10.1111/odi.14687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 06/24/2023] [Accepted: 07/10/2023] [Indexed: 07/25/2023]
Abstract
OBJECTIVES Circular RNAs (circRNAs), with their multilevel and versatile regulation, have emerged as promising targets for treating complex and heterogeneous malignancies such as oral squamous cell carcinoma (OSCC). It is crucial to explore the function of key circRNAs and elucidate the underlying mechanisms to establish an effective in vivo delivery system to better utilize circRNAs as cancer treatment strategies. MATERIALS AND METHODS circRNA (circ-OCAC) was identified as significantly downregulated in tumor samples compared to paracancerous tissues by RNA-seq analysis of eight pairs of OSCC tissues. Functional experiments of circ-OCAC were performed both in vitro and in vivo. The interactions between circ-OCAC and miR-411-5p were clarified by RNA pull down and RNA immunoprecipitation (RIP) assays. RESULTS We observed that circ-OCAC inhibits OSCC growth and metastasis by blocking the PI3K/Akt signaling pathway. To translate this observation in vivo, a pH-responsive nanoparticle (pNP) was developed to target circ-OCAC. Our results confirmed the advantages of the pNP-circ-OCAC system: high tumor enrichment capacity and good biosafety, which resulted in a significantly enhanced antitumor effect. CONCLUSIONS This study demonstrated that targeting circ-OCAC serves as a promising potential therapeutic strategy for OSCC.
Collapse
Affiliation(s)
- Bowen Li
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Yuxun Ding
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
- Longgang E.N.T. Hospital & Shenzhen Key Laboratory of E.N.T, Institute of E.N.T, Shenzhen, Guangdong, China
| | - Chuying Huo
- Department of Gynecological Oncology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Siqi Ren
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Suling Chen
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Haizhang He
- Department of Pathology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
| | - Shurui Li
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xiaojuan Wang
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Meifeng Cen
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hongyu Yang
- Department of Oral and Maxillofacial Surgery, Peking University Shenzhen Hospital, Shenzhen, Guangdong, China
| | - Jinsong Li
- Department of Oral and Maxillofacial Surgery, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Guangdong-Hong Kong Joint Laboratory for RNA Medicine, Medical Research Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
47
|
Fuchs Wightman F, Lukin J, Giusti S, Soutschek M, Bragado L, Pozzi B, Pierelli M, González P, Fededa J, Schratt G, Fujiwara R, Wilusz J, Refojo D, de la Mata M. Influence of RNA circularity on Target RNA-Directed MicroRNA Degradation. Nucleic Acids Res 2024; 52:3358-3374. [PMID: 38381063 PMCID: PMC11014252 DOI: 10.1093/nar/gkae094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 01/03/2024] [Accepted: 01/30/2024] [Indexed: 02/22/2024] Open
Abstract
A subset of circular RNAs (circRNAs) and linear RNAs have been proposed to 'sponge' or block microRNA activity. Additionally, certain RNAs induce microRNA destruction through the process of Target RNA-Directed MicroRNA Degradation (TDMD), but whether both linear and circular transcripts are equivalent in driving TDMD is unknown. Here, we studied whether circular/linear topology of endogenous and artificial RNA targets affects TDMD. Consistent with previous knowledge that Cdr1as (ciRS-7) circular RNA protects miR-7 from Cyrano-mediated TDMD, we demonstrate that depletion of Cdr1as reduces miR-7 abundance. In contrast, overexpression of an artificial linear version of Cdr1as drives miR-7 degradation. Using plasmids that express a circRNA with minimal co-expressed cognate linear RNA, we show differential effects on TDMD that cannot be attributed to the nucleotide sequence, as the TDMD properties of a sequence often differ when in a circular versus linear form. By analysing RNA sequencing data of a neuron differentiation system, we further detect potential effects of circRNAs on microRNA stability. Our results support the view that RNA circularity influences TDMD, either enhancing or inhibiting it on specific microRNAs.
Collapse
Affiliation(s)
- Federico Fuchs Wightman
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires 1428, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires 1428, Argentina
| | - Jerónimo Lukin
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Godoy Cruz 2390, C1425FQD Buenos Aires 1425, Argentina
| | - Sebastián A Giusti
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Godoy Cruz 2390, C1425FQD Buenos Aires 1425, Argentina
| | - Michael Soutschek
- Lab of Systems Neuroscience, D-HEST Institute for Neuroscience, ETH Zürich 8092, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, ETH Zürich 8092, Switzerland
| | - Laureano Bragado
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires 1428, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires 1428, Argentina
| | - Berta Pozzi
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires 1428, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires 1428, Argentina
- Institute of Cell Biology, University of Bern, Bern 3012, Switzerland
| | - María L Pierelli
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales, Buenos Aires 1428, Argentina
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires 1428, Argentina
| | - Paula González
- Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo A. Ugalde”, IIB-UNSAM, IIBIO-CONICET, Universidad Nacional de San Martín, Buenos Aires 1650, Argentina
| | - Juan P Fededa
- Instituto de Investigaciones Biotecnológicas “Dr. Rodolfo A. Ugalde”, IIB-UNSAM, IIBIO-CONICET, Universidad Nacional de San Martín, Buenos Aires 1650, Argentina
| | - Gerhard Schratt
- Lab of Systems Neuroscience, D-HEST Institute for Neuroscience, ETH Zürich 8092, Switzerland
- Neuroscience Center Zurich, ETH Zurich and University of Zurich, ETH Zürich 8092, Switzerland
| | - Rina Fujiwara
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX77030, USA
| | - Jeremy E Wilusz
- Verna and Marrs McLean Department of Biochemistry and Molecular Pharmacology, Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX77030, USA
| | - Damián Refojo
- Instituto de Investigación en Biomedicina de Buenos Aires (IBioBA) - CONICET - Partner Institute of the Max Planck Society, Godoy Cruz 2390, C1425FQD Buenos Aires 1425, Argentina
- Max Planck Institute of Psychiatry, Munich, Germany
| | - Manuel de la Mata
- CONICET-Universidad de Buenos Aires, Instituto de Fisiología, Biología Molecular y Neurociencias (IFIBYNE), Buenos Aires 1428, Argentina
- Universidad de Buenos Aires, Facultad de Ciencias Exactas y Naturales. Departamento de Fisiología, Biología Molecular y Celular, Buenos Aires 1428, Argentina
| |
Collapse
|
48
|
Wei Y, Lei J, Peng Y, Chang H, Luo T, Tang Y, Wang L, Wen H, Volpe G, Liu L, Han L. Expression characteristics and potential function of non-coding RNA in mouse cortical cells. Front Mol Neurosci 2024; 17:1365978. [PMID: 38660385 PMCID: PMC11040102 DOI: 10.3389/fnmol.2024.1365978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Non-coding RNAs (ncRNAs) play essential regulatory functions in various physiological and pathological processes in the brain. To systematically characterize the ncRNA profile in cortical cells, we downloaded single-cell SMART-Seq v4 data of mouse cerebral cortex. Our results revealed that the ncRNAs alone are sufficient to define the identity of most cortical cell types. We identified 1,600 ncRNAs that exhibited cell type specificity, even yielding to distinguish microglia from perivascular macrophages with ncRNA. Moreover, we characterized cortical layer and region specific ncRNAs, in line with the results by spatial transcriptome (ST) data. By constructing a co-expression network of ncRNAs and protein-coding genes, we predicted the function of ncRNAs. By integrating with genome-wide association studies data, we established associations between cell type-specific ncRNAs and traits related to neurological disorders. Collectively, our study identified differentially expressed ncRNAs at multiple levels and provided the valuable resource to explore the functions and dysfunctions of ncRNAs in cortical cells.
Collapse
Affiliation(s)
- Yanrong Wei
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI Research, Hangzhou, China
| | - Junjie Lei
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI Research, Hangzhou, China
| | | | | | | | - Yuanchun Tang
- BGI Research, Hangzhou, China
- BGI College & Henan Institute of Medical and Pharmaceutical Sciences, Zhengzhou University, Zhengzhou, China
| | | | - Huiying Wen
- BGI Research, Hangzhou, China
- School of Biology and Biological Engineering, South China University of Technology, Guangzhou, China
| | - Giacomo Volpe
- Hematology and Cell Therapy Unit, IRCCS–Istituto Tumori ‘Giovanni Paolo II’, Bari, Italy
| | - Longqi Liu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
- BGI Research, Hangzhou, China
| | - Lei Han
- BGI Research, Hangzhou, China
- BGI Research, Shenzhen, China
| |
Collapse
|
49
|
Srinivas T, Siqueira E, Guil S. Techniques for investigating lncRNA transcript functions in neurodevelopment. Mol Psychiatry 2024; 29:874-890. [PMID: 38145986 PMCID: PMC11176085 DOI: 10.1038/s41380-023-02377-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/05/2023] [Accepted: 12/12/2023] [Indexed: 12/27/2023]
Abstract
Long noncoding RNAs (lncRNAs) are sequences of 200 nucleotides or more that are transcribed from a large portion of the mammalian genome. While hypothesized to have a variety of biological roles, many lncRNAs remain largely functionally uncharacterized due to unique challenges associated with their investigation. For example, some lncRNAs overlap with other genomic loci, are expressed in a cell-type-specific manner, and/or are differentially processed at the post-transcriptional level. The mammalian CNS contains a vast diversity of lncRNAs, and lncRNAs are highly abundant in the mammalian brain. However, interrogating lncRNA function in models of the CNS, particularly in vivo, can be complex and challenging. Here we review the breadth of methods used to investigate lncRNAs in the CNS, their merits, and the understanding they can provide with respect to neurodevelopment and pathophysiology. We discuss remaining challenges in the field and provide recommendations to assay lncRNAs based on current methods.
Collapse
Affiliation(s)
- Tara Srinivas
- Josep Carreras Leukaemia Research Institute (IJC), 08916, Badalona, Barcelona, Catalonia, Spain
| | - Edilene Siqueira
- Josep Carreras Leukaemia Research Institute (IJC), 08916, Badalona, Barcelona, Catalonia, Spain
| | - Sonia Guil
- Josep Carreras Leukaemia Research Institute (IJC), 08916, Badalona, Barcelona, Catalonia, Spain.
- Germans Trias i Pujol Health Science Research Institute, 08916, Badalona, Barcelona, Catalonia, Spain.
| |
Collapse
|
50
|
Scoyni F, Sitnikova V, Giudice L, Korhonen P, Trevisan DM, Hernandez de Sande A, Gomez-Budia M, Giniatullina R, Ugidos IF, Dhungana H, Pistono C, Korvenlaita N, Välimäki NN, Kangas SM, Hiltunen AE, Gribchenko E, Kaikkonen-Määttä MU, Koistinaho J, Ylä-Herttuala S, Hinttala R, Venø MT, Su J, Stoffel M, Schaefer A, Rajewsky N, Kjems J, LaPierre MP, Piwecka M, Jolkkonen J, Giniatullin R, Hansen TB, Malm T. ciRS-7 and miR-7 regulate ischemia-induced neuronal death via glutamatergic signaling. Cell Rep 2024; 43:113862. [PMID: 38446664 DOI: 10.1016/j.celrep.2024.113862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 11/30/2023] [Accepted: 02/08/2024] [Indexed: 03/08/2024] Open
Abstract
Brain functionality relies on finely tuned regulation of gene expression by networks of non-coding RNAs (ncRNAs) such as the one composed by the circular RNA ciRS-7 (also known as CDR1as), the microRNA miR-7, and the long ncRNA Cyrano. We describe ischemia-induced alterations in the ncRNA network both in vitro and in vivo and in transgenic mice lacking ciRS-7 or miR-7. Our data show that cortical neurons downregulate ciRS-7 and Cyrano and upregulate miR-7 expression during ischemia. Mice lacking ciRS-7 exhibit reduced lesion size and motor impairment, while the absence of miR-7 alone results in increased ischemia-induced neuronal death. Moreover, miR-7 levels in pyramidal excitatory neurons regulate neurite morphology and glutamatergic signaling, suggesting a potential molecular link to the in vivo phenotype. Our data reveal the role of ciRS-7 and miR-7 in modulating ischemic stroke outcome, shedding light on the pathophysiological function of intracellular ncRNA networks in the brain.
Collapse
Affiliation(s)
- Flavia Scoyni
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70221 Kuopio, Finland.
| | - Valeriia Sitnikova
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70221 Kuopio, Finland
| | - Luca Giudice
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70221 Kuopio, Finland
| | - Paula Korhonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70221 Kuopio, Finland
| | - Davide M Trevisan
- Department of Biosciences and Nutrition, Karolinska Institute, 17177 Stockholm, Sweden
| | | | - Mireia Gomez-Budia
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70221 Kuopio, Finland
| | - Raisa Giniatullina
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70221 Kuopio, Finland
| | - Irene F Ugidos
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70221 Kuopio, Finland
| | - Hiramani Dhungana
- Neuroscience Center, University of Helsinki, 00290 Helsinki, Finland
| | - Cristiana Pistono
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70221 Kuopio, Finland
| | - Nea Korvenlaita
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70221 Kuopio, Finland
| | - Nelli-Noora Välimäki
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70221 Kuopio, Finland
| | | | - Anniina E Hiltunen
- Medical Research Center Oulu and Research Unit of Clinical Medicine, University of Oulu and Oulu University Hospital, 90014 Oulu, Finland
| | - Emma Gribchenko
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70221 Kuopio, Finland
| | - Minna U Kaikkonen-Määttä
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70221 Kuopio, Finland
| | - Jari Koistinaho
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70221 Kuopio, Finland; Neuroscience Center, University of Helsinki, 00290 Helsinki, Finland
| | - Seppo Ylä-Herttuala
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70221 Kuopio, Finland
| | - Reetta Hinttala
- Biocenter Oulu, University of Oulu, 90014 Oulu, Finland; Medical Research Center Oulu and Research Unit of Clinical Medicine, University of Oulu and Oulu University Hospital, 90014 Oulu, Finland
| | - Morten T Venø
- Omiics ApS, 8200 Aarhus, Denmark; Interdisciplinary Nanoscience Center, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Junyi Su
- Interdisciplinary Nanoscience Center, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Markus Stoffel
- Institute of Molecular Health Sciences, ETH Zurich, 8093 Zürich, Switzerland
| | - Anne Schaefer
- Departments of Neuroscience and Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6504, USA; Max Planck Institute, Biology of Ageing, 50931 Cologne, Germany
| | - Nikolaus Rajewsky
- Systems Biology of Gene Regulatory Elements, Max Delbrück Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin Institute for Medical Systems Biology (BIMSB), 10115 Berlin, Germany
| | - Jørgen Kjems
- Interdisciplinary Nanoscience Center, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Mary P LaPierre
- Institute of Molecular Health Sciences, ETH Zurich, 8093 Zürich, Switzerland
| | - Monika Piwecka
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, 61-704 Poznan, Poland
| | - Jukka Jolkkonen
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70221 Kuopio, Finland
| | - Rashid Giniatullin
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70221 Kuopio, Finland
| | - Thomas B Hansen
- Interdisciplinary Nanoscience Center, Department of Molecular Biology and Genetics, Aarhus University, 8000 Aarhus, Denmark
| | - Tarja Malm
- A.I. Virtanen Institute for Molecular Sciences, University of Eastern Finland, 70221 Kuopio, Finland.
| |
Collapse
|