1
|
Chew WX, Nédélec F, Surrey T. Molecular design principles for bipolar spindle organization by two opposing motors. Proc Natl Acad Sci U S A 2025; 122:e2422190122. [PMID: 40117309 PMCID: PMC11962486 DOI: 10.1073/pnas.2422190122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/04/2025] [Indexed: 03/23/2025] Open
Abstract
During cell division in animal cells, a bipolar spindle assembles to segregate the chromosomes. Various motor proteins with different properties are essential for spindle self-organization. The minimal set of components required to organize dynamic microtubules into a bipolar network remains however unknown. Here, we use computer simulations to explore whether two types of microtubule-crosslinking motors with opposite directionality can organize dynamic microtubules into bipolar spindles in three-dimensional space around a local microtubule nucleation source. We find that two motors are indeed sufficient, provided their properties resemble the main human spindle motors kinesin-5 and dynein, revealing the core mechanism of spindle self-organization. It is based on the synergistic interplay of a slow plus-directed symmetric motor and a fast minus-directed asymmetric motor. A hypothetical symmetric minus-directed motor can also support spindle formation together with kinesin-5, but only in a limited and unphysiological parameter range. In agreement with its accessory role in human cells, a minus motor with human kinesin-14 properties does not assemble stable bipolar spindles together with kinesin-5. These results reveal fundamental principles for the self-organization of dynamic bipolar microtubule architectures and highlight how distinct molecular designs of mitotic motors are optimized for their task.
Collapse
Affiliation(s)
- Wei-Xiang Chew
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona08003, Spain
| | - François Nédélec
- Sainsbury Laboratory, University of Cambridge, CambridgeCB2 1LR, United Kingdom
| | - Thomas Surrey
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Barcelona08003, Spain
- Universitat Pompeu Fabra, Barcelona08010, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona08010, Spain
| |
Collapse
|
2
|
Rios MU, Stachera WE, Familiari NE, Brito C, Surrey T, Woodruff JB. In vitro reconstitution of minimal human centrosomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.02.20.639226. [PMID: 40027679 PMCID: PMC11870475 DOI: 10.1101/2025.02.20.639226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/05/2025]
Abstract
CDK5RAP2/CEP215 is a key pericentriolar material (PCM) protein that recruits microtubule-nucleating factors at human centrosomes. Using an in vitro reconstitution system, we show that CDK5RAP2 is sufficient to form micron-scale scaffolds around a nanometer-scale nucleator in a PLK-1-regulated manner. CDK5RAP2 assemblies recruited and activated gamma tubulin ring complexes (γ-TuRCs) which, in the presence of α/β tubulin, generated microtubule asters. We found that F75 in CDK5RAP2 is partially needed to recruit γ-TuRC yet is indispensable for γ-TuRC activation. Furthermore, our system recapitulated key features of centrosome-amplified cancer cells. CDK5RAP2 scaffolds selectively recruited the molecular motor KifC1/HSET, which enhanced concentration of α/β tubulin, microtubule polymerization, and clustering of the assemblies. Our results highlight the specificity and selectivity of in vitro generated CDK5RAP2 scaffolds and identify a minimal set of components required for human centrosome assembly and function. This minimal centrosome model offers a powerful tool for studying centrosome biology and dysfunction in human health and disease.
Collapse
Affiliation(s)
- Manolo U. Rios
- Dept. of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | | | - Nicole E. Familiari
- Dept. of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| | - Claudia Brito
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Thomas Surrey
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, Spain
| | - Jeffrey B. Woodruff
- Dept. of Cell Biology, UT Southwestern Medical Center, Dallas, TX 75390, USA
| |
Collapse
|
3
|
Geng Q, Bonilla A, Sandwith SN, Verhey KJ. Multi-kinesin clusters impart mechanical stress that reveals mechanisms of microtubule breakage in cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.31.635950. [PMID: 39974990 PMCID: PMC11838454 DOI: 10.1101/2025.01.31.635950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Microtubules are cytoskeletal filaments that provide structural support for numerous cellular processes. Despite their high rigidity, microtubules can be dramatically bent in cells and it is unknown how much force a microtubule can withstand before breaking. We find that liquid-liquid phase separation of the kinesin-3 motor KIF1C results in multi-kinesin clusters that entangle neighboring microtubules and impose a high level of mechanical stress that results in microtubule breakage and disassembly. Combining computational simulations and experiments, we show that microtubule fragmentation is enhanced by having a highly processive kinesin motor domain, a stiff clustering mechanism, and sufficient drag force on the microtubules. We estimate a rupture force for microtubules in cells of 70-120 pN, which is lower than previous estimates based on in vitro studies with taxol-stabilized microtubules. These results indicate that the presence of multiple kinesins on a cargo has the potential to cause microtubule breakage. We propose that mechanisms exist to protect microtubule integrity by releasing either the motor-cargo or motor-microtubule interaction, thereby preventing the accumulation of mechanical stress upon the engagement of multi-motor clusters with microtubules.
Collapse
Affiliation(s)
- Qi Geng
- Department of Molecular, Cellular, and Developmental Biology, University of Michigan, Ann Arbor, MI, USA
| | - Andres Bonilla
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Siara N Sandwith
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Kristen J Verhey
- Department of Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
- Cellular and Molecular Biology Program, University of Michigan Medical School, Ann Arbor, MI, USA
- Program in Biophysics, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Yildiz A. Mechanism and regulation of kinesin motors. Nat Rev Mol Cell Biol 2025; 26:86-103. [PMID: 39394463 DOI: 10.1038/s41580-024-00780-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/04/2024] [Indexed: 10/13/2024]
Abstract
Kinesins are a diverse superfamily of microtubule-based motors that perform fundamental roles in intracellular transport, cytoskeletal dynamics and cell division. These motors share a characteristic motor domain that powers unidirectional motility and force generation along microtubules, and they possess unique tail domains that recruit accessory proteins and facilitate oligomerization, regulation and cargo recognition. The location, direction and timing of kinesin-driven processes are tightly regulated by various cofactors, adaptors, microtubule tracks and microtubule-associated proteins. This Review focuses on recent structural and functional studies that reveal how members of the kinesin superfamily use the energy of ATP hydrolysis to transport cargoes, depolymerize microtubules and regulate microtubule dynamics. I also survey how accessory proteins and post-translational modifications regulate the autoinhibition, cargo binding and motility of some of the best-studied kinesins. Despite much progress, the mechanism and regulation of kinesins are still emerging, and unresolved questions can now be tackled using newly developed approaches in biophysics and structural biology.
Collapse
Affiliation(s)
- Ahmet Yildiz
- Physics Department, University of California at Berkeley, Berkeley, CA, USA.
- Department of Molecular and Cellular Biology, University of California at Berkeley, Berkeley, CA, USA.
| |
Collapse
|
5
|
Utzschneider C, Suresh B, Sciortino A, Gaillard J, Schaeffer A, Pattanayak S, Joanny JF, Blanchoin L, Théry M. Force balance of opposing diffusive motors generates polarity-sorted microtubule patterns. Proc Natl Acad Sci U S A 2024; 121:e2406985121. [PMID: 39589887 PMCID: PMC11626118 DOI: 10.1073/pnas.2406985121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Accepted: 08/26/2024] [Indexed: 11/28/2024] Open
Abstract
The internal organization of cells is largely determined by the architecture and orientation of the microtubule network. Microtubules serve as polar tracks for the selective transport of specific molecular motors toward either their plus or minus ends. How both motors reciprocally move microtubules and organize the network's arrangement and polarity is unknown. Here, we combined experiments on reconstituted systems and theory to study the interaction of microtubules with both plus- and minus-end directed motors bound to a fluid membrane. Depending on motor concentrations, the system could lead either to the constant transport of microtubules or to their alignment, stacking, and immobilization in regular bands that separate motors into domains of opposite polarities. In bands, microtubules shared the same polarity and segregated the two opposing motors accordingly. These regular patterns resulted from the balance of forces produced by the two motors as they walked in opposite directions along microtubules. The system was maintained in a dynamic steady state in which the directional transport of microtubule-bound motors compensates for the random diffusion of lipid-bound motors. The size of motor domains depended on their respective concentrations. The constant flow of motors allowed the system to respond to variations in motor concentrations by moving microtubules to adapt to the new force balance. The polar sorting and linear arrangement of microtubules associated with the segregation of motors of opposite polarity are typical of cellular architectures, which these data may help to better understand.
Collapse
Affiliation(s)
- Clothilde Utzschneider
- CytoMorpho Lab, Laboratoire de Physiologie Cellulaire et Végétale, UMR5168, Université Grenoble-Alpes, CEA, INRA, CNRS, Interdisciplinary Research Institute of Grenoble, Grenoble38054, France
| | - Bhagyanath Suresh
- CytoMorpho Lab, Chimie Biologie Innovation, UMR8132, Université Paris Sciences et Lettres, Ecole Supérieure de Physique et Chimie Industrielles de la Ville de Paris, CEA, CNRS, Institut Pierre Gilles De Gennes, Paris75005, France
| | - Alfredo Sciortino
- CytoMorpho Lab, Chimie Biologie Innovation, UMR8132, Université Paris Sciences et Lettres, Ecole Supérieure de Physique et Chimie Industrielles de la Ville de Paris, CEA, CNRS, Institut Pierre Gilles De Gennes, Paris75005, France
| | - Jérémie Gaillard
- CytoMorpho Lab, Laboratoire de Physiologie Cellulaire et Végétale, UMR5168, Université Grenoble-Alpes, CEA, INRA, CNRS, Interdisciplinary Research Institute of Grenoble, Grenoble38054, France
| | - Alexandre Schaeffer
- CytoMorpho Lab, Chimie Biologie Innovation, UMR8132, Université Paris Sciences et Lettres, Ecole Supérieure de Physique et Chimie Industrielles de la Ville de Paris, CEA, CNRS, Institut Pierre Gilles De Gennes, Paris75005, France
| | - Sudipta Pattanayak
- Collège de France, Université Paris Sciences et Lettres, Matière molle et biophysique, Paris75231, France
- Institut Curie, Université Paris Sciences et Lettres, Physique de la Cellule et Cancer, Paris Cedex 0574248, France
| | - Jean-François Joanny
- Collège de France, Université Paris Sciences et Lettres, Matière molle et biophysique, Paris75231, France
- Institut Curie, Université Paris Sciences et Lettres, Physique de la Cellule et Cancer, Paris Cedex 0574248, France
| | - Laurent Blanchoin
- CytoMorpho Lab, Laboratoire de Physiologie Cellulaire et Végétale, UMR5168, Université Grenoble-Alpes, CEA, INRA, CNRS, Interdisciplinary Research Institute of Grenoble, Grenoble38054, France
- CytoMorpho Lab, Chimie Biologie Innovation, UMR8132, Université Paris Sciences et Lettres, Ecole Supérieure de Physique et Chimie Industrielles de la Ville de Paris, CEA, CNRS, Institut Pierre Gilles De Gennes, Paris75005, France
| | - Manuel Théry
- CytoMorpho Lab, Laboratoire de Physiologie Cellulaire et Végétale, UMR5168, Université Grenoble-Alpes, CEA, INRA, CNRS, Interdisciplinary Research Institute of Grenoble, Grenoble38054, France
- CytoMorpho Lab, Chimie Biologie Innovation, UMR8132, Université Paris Sciences et Lettres, Ecole Supérieure de Physique et Chimie Industrielles de la Ville de Paris, CEA, CNRS, Institut Pierre Gilles De Gennes, Paris75005, France
| |
Collapse
|
6
|
Henkin G, Brito C, Plückthun A, Surrey T. Preparation of Polarity-Marked Microtubules Using a Plus-End Capping DARPin. Bio Protoc 2024; 14:e5109. [PMID: 39600974 PMCID: PMC11588424 DOI: 10.21769/bioprotoc.5109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 09/13/2024] [Accepted: 09/17/2024] [Indexed: 11/29/2024] Open
Abstract
The eukaryotic cytoskeleton is formed in part by microtubules, which are relatively rigid filaments with inherent structural polarity. One consequence of this polarity is that the two ends of a microtubule have different properties with important consequences for their cellular roles. These differences are often challenging to probe within the crowded environment of the cell. Fluorescence microscopy-based in vitro assays with purified proteins and stabilized microtubules have been used to characterize polarity-dependent and end-specific behaviors. These assays require ways to visualize the polarity of the microtubules, which has previously been achieved either by the addition of fluorescently tagged motor proteins with known directionality or by fluorescently polarity marking the microtubules themselves. However, classical polarity-marking protocols require a particular chemically modified tubulin and generate microtubules with chemically different plus and minus segments. These chemical differences in the segments may affect the behavior of interacting proteins of interest in an undesirable manner. We present here a new protocol that uses a previously characterized, reversibly binding microtubule plus-end capping protein, a designed ankyrin repeat protein (DARPin), to efficiently produce polarity-marked microtubules with different fluorescently labeled, but otherwise biochemically identical, plus- and minus-end segments. Key features • Produces polarity-marked microtubules with biochemically identical segments • Allows analysis of end-specific and polarity-dependent activities of purified microtubule-associated proteins • Requires purified microtubule plus-end capping DARPin (D1)2 • Concentrations optimized for porcine brain tubulin.
Collapse
Affiliation(s)
- Gil Henkin
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Carrer del Dr. Aiguader 88, Barcelona, Spain
| | - Cláudia Brito
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Carrer del Dr. Aiguader 88, Barcelona, Spain
| | - Andreas Plückthun
- University of Zurich, Department of Biochemistry, Zurich, Switzerland
| | - Thomas Surrey
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Carrer del Dr. Aiguader 88, Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig de Lluis Companys 23, Barcelona, Spain
| |
Collapse
|
7
|
Lim WM, Chew WX, Esposito Verza A, Pesenti M, Musacchio A, Surrey T. Regulation of minimal spindle midzone organization by mitotic kinases. Nat Commun 2024; 15:9213. [PMID: 39472429 PMCID: PMC11522559 DOI: 10.1038/s41467-024-53500-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Accepted: 10/11/2024] [Indexed: 11/02/2024] Open
Abstract
During cell division, the microtubule cytoskeleton undergoes dramatic cell cycle-driven reorganizations of its architecture. Coordinated by changes in the phosphorylation patterns of a multitude of microtubule associated proteins, the mitotic spindle first self-assembles to capture the chromosomes and then reorganizes in anaphase as the chromosomes are segregated. A key protein for this reorganization is PRC1 which is differentially phosphorylated by the mitotic kinases CDK1 and PLK1. How the phosphorylation state of PRC1 orchestrates spindle reorganization is not understood mechanistically. Here, we reconstitute in vitro the transition between metaphase and anaphase-like microtubule architectures triggered by the changes in PRC1 phosphorylation. We find that whereas PLK1 regulates its own recruitment by PRC1, CDK1 controls the affinity of PRC1 for antiparallel microtubule binding. Dephosphorylation of CDK1-phosphorylated PRC1 is required and sufficient to trigger the reorganization of a minimal anaphase midzone in the presence of the midzone length controlling kinesin KIF4A. These results demonstrate how phosphorylation-controlled affinity changes regulate the architecture of active microtubule networks, providing new insight into the mechanistic underpinnings of the cell cycle-driven reorganization of the central spindle during mitosis.
Collapse
Affiliation(s)
- Wei Ming Lim
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Carrer del Dr. Aiguader 88, Barcelona, Spain
| | - Wei-Xiang Chew
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Carrer del Dr. Aiguader 88, Barcelona, Spain
| | - Arianna Esposito Verza
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Marion Pesenti
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
| | - Andrea Musacchio
- Department of Mechanistic Cell Biology, Max Planck Institute of Molecular Physiology, Dortmund, Germany
- Max Planck School Matter to Life, Heidelberg, Germany
- Centre for Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, Essen, Germany
| | - Thomas Surrey
- Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Carrer del Dr. Aiguader 88, Barcelona, Spain.
- Universitat Pompeu Fabra (UPF), Barcelona, Spain.
- Catalan Institution for Research and Advanced Studies (ICREA), Passeig de Lluis Companys 23, Barcelona, Spain.
| |
Collapse
|
8
|
Skinner MW, Simington CJ, López-Jiménez P, Baran KA, Xu J, Dayani Y, Pryzhkova MV, Page J, Gómez R, Holland AJ, Jordan PW. Spermatocytes have the capacity to segregate chromosomes despite centriole duplication failure. EMBO Rep 2024; 25:3373-3405. [PMID: 38943004 PMCID: PMC11316026 DOI: 10.1038/s44319-024-00187-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/30/2024] Open
Abstract
Centrosomes are the canonical microtubule organizing centers (MTOCs) of most mammalian cells, including spermatocytes. Centrosomes comprise a centriole pair within a structurally ordered and dynamic pericentriolar matrix (PCM). Unlike in mitosis, where centrioles duplicate once per cycle, centrioles undergo two rounds of duplication during spermatogenesis. The first duplication is during early meiotic prophase I, and the second is during interkinesis. Using mouse mutants and chemical inhibition, we have blocked centriole duplication during spermatogenesis and determined that non-centrosomal MTOCs (ncMTOCs) can mediate chromosome segregation. This mechanism is different from the acentriolar MTOCs that form bipolar spindles in oocytes, which require PCM components, including gamma-tubulin and CEP192. From an in-depth analysis, we identified six microtubule-associated proteins, TPX2, KIF11, NuMA, and CAMSAP1-3, that localized to the non-centrosomal MTOC. These factors contribute to a mechanism that ensures bipolar MTOC formation and chromosome segregation during spermatogenesis when centriole duplication fails. However, despite the successful completion of meiosis and round spermatid formation, centriole inheritance and PLK4 function are required for normal spermiogenesis and flagella assembly, which are critical to ensure fertility.
Collapse
Affiliation(s)
- Marnie W Skinner
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | - Carter J Simington
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Pablo López-Jiménez
- Department of Biology, Autonomous University of Madrid, Madrid, Spain
- MRC Laboratory of Medical Sciences, London, W12 0NN, UK
| | - Kerstin A Baran
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jingwen Xu
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Yaron Dayani
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Marina V Pryzhkova
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine, Bethesda, MD, USA
| | - Jesús Page
- Department of Biology, Autonomous University of Madrid, Madrid, Spain
| | - Rocío Gómez
- Department of Biology, Autonomous University of Madrid, Madrid, Spain
| | - Andrew J Holland
- Department of Molecular Biology and Genetics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Philip W Jordan
- Department of Biochemistry and Molecular Biology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA.
- Department of Biochemistry and Molecular Biology, Uniformed Services University of the Health Sciences, Bethesda, MD, USA.
| |
Collapse
|
9
|
Najma B, Wei WS, Baskaran A, Foster PJ, Duclos G. Microscopic interactions control a structural transition in active mixtures of microtubules and molecular motors. Proc Natl Acad Sci U S A 2024; 121:e2300174121. [PMID: 38175870 PMCID: PMC10786313 DOI: 10.1073/pnas.2300174121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2023] [Accepted: 10/07/2023] [Indexed: 01/06/2024] Open
Abstract
Microtubules and molecular motors are essential components of the cellular cytoskeleton, driving fundamental processes in vivo, including chromosome segregation and cargo transport. When reconstituted in vitro, these cytoskeletal proteins serve as energy-consuming building blocks to study the self-organization of active matter. Cytoskeletal active gels display rich emergent dynamics, including extensile flows, locally contractile asters, and bulk contraction. However, it is unclear how the protein-protein interaction kinetics set their contractile or extensile nature. Here, we explore the origin of the transition from extensile bundles to contractile asters in a minimal reconstituted system composed of stabilized microtubules, depletant, adenosine 5'-triphosphate (ATP), and clusters of kinesin-1 motors. We show that the microtubule-binding and unbinding kinetics of highly processive motor clusters set their ability to end-accumulate, which can drive polarity sorting of the microtubules and aster formation. We further demonstrate that the microscopic time scale of end-accumulation sets the emergent time scale of aster formation. Finally, we show that biochemical regulation is insufficient to fully explain the transition as generic aligning interactions through depletion, cross-linking, or excluded volume interactions can drive bundle formation despite end-accumulating motors. The extensile-to-contractile transition is well captured by a simple self-assembly model where nematic and polar aligning interactions compete to form either bundles or asters. Starting from a five-dimensional organization phase space, we identify a single control parameter given by the ratio of the different component concentrations that dictates the material-scale organization. Overall, this work shows that the interplay of biochemical and mechanical tuning at the microscopic level controls the robust self-organization of active cytoskeletal materials.
Collapse
Affiliation(s)
- Bibi Najma
- Department of Physics, Brandeis University, Waltham, MA02453
| | - Wei-Shao Wei
- Department of Physics, Brandeis University, Waltham, MA02453
| | - Aparna Baskaran
- Department of Physics, Brandeis University, Waltham, MA02453
| | - Peter J. Foster
- Department of Physics, Brandeis University, Waltham, MA02453
| | | |
Collapse
|
10
|
Höök P, Lee YI, Sweeney HL. Myosin VI powers self-organization of branched contractile actin network. Biochem Biophys Res Commun 2024; 691:149329. [PMID: 38042035 DOI: 10.1016/j.bbrc.2023.149329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 11/23/2023] [Indexed: 12/04/2023]
Abstract
The actomyosin cytoskeletal network is responsible for a variety of fundamental cellular processes. Assembly and maintenance of actin networks involve an array of associated regulatory proteins for polymerization, branching, crosslinking and contractility-driven self-organization. In this study, we make the unexpected discovery in vitro that myosin VI and myosin X, motor proteins specialized in vesicle transport and filopodia formation, are capable of crosslinking and self-organizing actin into higher-order contractile structures in the absence of other actin-associated proteins. Moreover, myosin VI alone can initiate actin elongation and branching, and assemble branched force-generating networks from crosslinked actin polymers. Additional architectural control is provided by the actin crosslinking proteins α-actinin and fascin. Our data identify critical stages of tension-mediated connectivity in network development and provide a model system for further exploration of the nonequilibrium mechanics of actomyosin self-organization.
Collapse
Affiliation(s)
- Peter Höök
- Department of Pharmacology & Therapeutics and the Myology Institute, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - Young Il Lee
- Department of Pharmacology & Therapeutics and the Myology Institute, University of Florida College of Medicine, Gainesville, FL, 32610, USA
| | - H Lee Sweeney
- Department of Pharmacology & Therapeutics and the Myology Institute, University of Florida College of Medicine, Gainesville, FL, 32610, USA.
| |
Collapse
|
11
|
Wang Z, Servio P, Rey AD. Geometry-structure models for liquid crystal interfaces, drops and membranes: wrinkling, shape selection and dissipative shape evolution. SOFT MATTER 2023. [PMID: 38031449 DOI: 10.1039/d3sm01164j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2023]
Abstract
We review our recent contributions to anisotropic soft matter models for liquid crystal interfaces, drops and membranes, emphasizing validations with experimental and biological data, and with related theory and simulation literature. The presentation aims to illustrate and characterize the rich output and future opportunities of using a methodology based on the liquid crystal-membrane shape equation applied to static and dynamic pattern formation phenomena. The geometry of static and kinetic shapes is usually described with dimensional curvatures that co-mingle shape and curvedness. In this review, we systematically show how the application of a novel decoupled shape-curvedness framework to practical and ubiquitous soft matter phenomena, such as the shape of drops and tactoids and bending of evolving membranes, leads to deeper quantitative insights than when using traditional dimensional mean and Gaussian curvatures. The review focuses only on (1) statics of wrinkling and shape selection in liquid crystal interfaces and membranes; (2) kinetics and dissipative dynamics of shape evolution in membranes; and (3) computational methods for shape selection and shape evolution; due to various limitations other important topics are excluded. Finally, the outlook follows a similar structure. The main results include: (1) single and multiple wavelength corrugations in liquid crystal interfaces appear naturally in the presence of surface splay and bend orientation distortions with scaling laws governed by ratios of anchoring-to-isotropic tension energy; adding membrane elasticity to liquid crystal anchoring generates multiple scales wrinkling as in tulips; drops of liquid crystals encapsulates in membranes can adopt, according to the ratios of anchoring/tension/bending, families of shapes as multilobal, tactoidal, and serrated as observed in biological cells. (2) Mapping the liquid crystal director to a membrane unit normal. The dissipative shape evolution model with irreversible thermodynamics for flows dominated by bending rates, yields new insights. The model explains the kinetic stability of cylinders, while spheres and saddles are attractors. The model also adds to the evolving understanding of outer hair cells in the inner ear. (3) Computational soft matter geometry includes solving shape equations, trajectories on energy and orientation landscapes, and shape-curvedness evolutions on entropy production landscape with efficient numerical methods and adaptive approaches.
Collapse
Affiliation(s)
- Ziheng Wang
- Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, Québec, H3A 2B2, Canada.
| | - Phillip Servio
- Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, Québec, H3A 2B2, Canada.
| | - Alejandro D Rey
- Department of Chemical Engineering, McGill University, 3610 University Street, Montréal, Québec, H3A 2B2, Canada.
| |
Collapse
|
12
|
Henkin G, Brito C, Thomas C, Surrey T. The minus-end depolymerase KIF2A drives flux-like treadmilling of γTuRC-uncapped microtubules. J Cell Biol 2023; 222:e202304020. [PMID: 37615667 PMCID: PMC10450741 DOI: 10.1083/jcb.202304020] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Revised: 07/27/2023] [Accepted: 08/04/2023] [Indexed: 08/25/2023] Open
Abstract
During mitosis, microtubules in the spindle turn over continuously. At spindle poles, where microtubule minus ends are concentrated, microtubule nucleation and depolymerization, the latter required for poleward microtubule flux, happen side by side. How these seemingly antagonistic processes of nucleation and depolymerization are coordinated is not understood. Here, we reconstitute this coordination in vitro combining different pole-localized activities. We find that the spindle pole-localized kinesin-13 KIF2A is a microtubule minus-end depolymerase, in contrast to its paralog MCAK. Due to its asymmetric activity, KIF2A still allows microtubule nucleation from the γ-tubulin ring complex (γTuRC), which serves as a protective cap shielding the minus end against KIF2A binding. Efficient γTuRC uncapping requires the combined action of KIF2A and a microtubule severing enzyme, leading to treadmilling of the uncapped microtubule driven by KIF2A. Together, these results provide insight into the molecular mechanisms by which a minimal protein module coordinates microtubule nucleation and depolymerization at spindle poles consistent with their role in poleward microtubule flux.
Collapse
Affiliation(s)
- Gil Henkin
- Centre for Genomic Regulation(CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | - Cláudia Brito
- Centre for Genomic Regulation(CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
| | | | - Thomas Surrey
- Centre for Genomic Regulation(CRG), Barcelona Institute of Science and Technology (BIST), Barcelona, Spain
- Universitat Pompeu Fabra (UPF), Barcelona, Spain
- ICREA, Barcelona, Spain
| |
Collapse
|
13
|
Valdez VA, Neahring L, Petry S, Dumont S. Mechanisms underlying spindle assembly and robustness. Nat Rev Mol Cell Biol 2023; 24:523-542. [PMID: 36977834 PMCID: PMC10642710 DOI: 10.1038/s41580-023-00584-0] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2023] [Indexed: 03/30/2023]
Abstract
The microtubule-based spindle orchestrates chromosome segregation during cell division. Following more than a century of study, many components and pathways contributing to spindle assembly have been described, but how the spindle robustly assembles remains incompletely understood. This process involves the self-organization of a large number of molecular parts - up to hundreds of thousands in vertebrate cells - whose local interactions give rise to a cellular-scale structure with emergent architecture, mechanics and function. In this Review, we discuss key concepts in our understanding of spindle assembly, focusing on recent advances and the new approaches that enabled them. We describe the pathways that generate the microtubule framework of the spindle by driving microtubule nucleation in a spatially controlled fashion and present recent insights regarding the organization of individual microtubules into structural modules. Finally, we discuss the emergent properties of the spindle that enable robust chromosome segregation.
Collapse
Affiliation(s)
| | - Lila Neahring
- Department of Bioengineering & Therapeutic Sciences, UCSF, San Francisco, CA, USA
- Developmental & Stem Cell Biology Graduate Program, UCSF, San Francisco, CA, USA
| | - Sabine Petry
- Molecular Biology, Princeton University, Princeton, NJ, USA.
| | - Sophie Dumont
- Department of Bioengineering & Therapeutic Sciences, UCSF, San Francisco, CA, USA.
- Developmental & Stem Cell Biology Graduate Program, UCSF, San Francisco, CA, USA.
- Department of Biochemistry & Biophysics, UCSF, San Francisco, CA, USA.
- Chan Zuckerberg Biohub, San Francisco, CA, USA.
| |
Collapse
|
14
|
Gouveia B, Setru SU, King MR, Hamlin A, Stone HA, Shaevitz JW, Petry S. Acentrosomal spindles assemble from branching microtubule nucleation near chromosomes in Xenopus laevis egg extract. Nat Commun 2023; 14:3696. [PMID: 37344488 PMCID: PMC10284841 DOI: 10.1038/s41467-023-39041-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Accepted: 05/08/2023] [Indexed: 06/23/2023] Open
Abstract
Microtubules are generated at centrosomes, chromosomes, and within spindles during cell division. Whereas microtubule nucleation at the centrosome is well characterized, much remains unknown about where, when, and how microtubules are nucleated at chromosomes. To address these questions, we reconstitute microtubule nucleation from purified chromosomes in meiotic Xenopus egg extract and find that chromosomes alone can form spindles. We visualize microtubule nucleation near chromosomes using total internal reflection fluorescence microscopy to find that this occurs through branching microtubule nucleation. By inhibiting molecular motors, we find that the organization of the resultant polar branched networks is consistent with a theoretical model where the effectors for branching nucleation are released by chromosomes, forming a concentration gradient that spatially biases branching microtbule nucleation. In the presence of motors, these branched networks are ultimately organized into functional spindles, where the number of emergent spindle poles scales with the number of chromosomes and total chromatin area.
Collapse
Affiliation(s)
- Bernardo Gouveia
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Sagar U Setru
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA
| | - Matthew R King
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Aaron Hamlin
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Howard A Stone
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, 08544, USA
| | - Joshua W Shaevitz
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA
- Department of Physics, Princeton University, Princeton, NJ, 08544, USA
| | - Sabine Petry
- Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA.
| |
Collapse
|
15
|
Shamipour S, Hofmann L, Steccari I, Kardos R, Heisenberg CP. Yolk granule fusion and microtubule aster formation regulate cortical granule translocation and exocytosis in zebrafish oocytes. PLoS Biol 2023; 21:e3002146. [PMID: 37289834 DOI: 10.1371/journal.pbio.3002146] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 05/03/2023] [Indexed: 06/10/2023] Open
Abstract
Dynamic reorganization of the cytoplasm is key to many core cellular processes, such as cell division, cell migration, and cell polarization. Cytoskeletal rearrangements are thought to constitute the main drivers of cytoplasmic flows and reorganization. In contrast, remarkably little is known about how dynamic changes in size and shape of cell organelles affect cytoplasmic organization. Here, we show that within the maturing zebrafish oocyte, the surface localization of exocytosis-competent cortical granules (Cgs) upon germinal vesicle breakdown (GVBD) is achieved by the combined activities of yolk granule (Yg) fusion and microtubule aster formation and translocation. We find that Cgs are moved towards the oocyte surface through radially outward cytoplasmic flows induced by Ygs fusing and compacting towards the oocyte center in response to GVBD. We further show that vesicles decorated with the small Rab GTPase Rab11, a master regulator of vesicular trafficking and exocytosis, accumulate together with Cgs at the oocyte surface. This accumulation is achieved by Rab11-positive vesicles being transported by acentrosomal microtubule asters, the formation of which is induced by the release of CyclinB/Cdk1 upon GVBD, and which display a net movement towards the oocyte surface by preferentially binding to the oocyte actin cortex. We finally demonstrate that the decoration of Cgs by Rab11 at the oocyte surface is needed for Cg exocytosis and subsequent chorion elevation, a process central in egg activation. Collectively, these findings unravel a yet unrecognized role of organelle fusion, functioning together with cytoskeletal rearrangements, in orchestrating cytoplasmic organization during oocyte maturation.
Collapse
Affiliation(s)
- Shayan Shamipour
- Institute of Science and Technology Austria, Klosterneuburg, Austria
- Department of Molecular Life Sciences, University of Zurich, Zurich, Switzerland
| | - Laura Hofmann
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Irene Steccari
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | - Roland Kardos
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | | |
Collapse
|
16
|
Gires PY, Thampi M, Krauss SW, Weiss M. Exploring generic principles of compartmentalization in a developmental in vitro model. Development 2023; 150:286676. [PMID: 36647820 DOI: 10.1242/dev.200851] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 01/03/2023] [Indexed: 01/18/2023]
Abstract
Self-organization of cells into higher-order structures is key for multicellular organisms, for example via repetitive replication of template-like founder cells or syncytial energids. Yet, very similar spatial arrangements of cell-like compartments ('protocells') are also seen in a minimal model system of Xenopus egg extracts in the absence of template structures and chromatin, with dynamic microtubule assemblies driving the self-organization process. Quantifying geometrical features over time, we show here that protocell patterns are highly organized with a spatial arrangement and coarsening dynamics similar to that of two-dimensional foams but without the long-range ordering expected for hexagonal patterns. These features remain invariant when enforcing smaller protocells by adding taxol, i.e. patterns are dominated by a single, microtubule-derived length scale. Comparing our data to generic models, we conclude that protocell patterns emerge by simultaneous formation of randomly assembling protocells that grow at a uniform rate towards a frustrated arrangement before fusion of adjacent protocells eventually drives coarsening. The similarity of protocell patterns to arrays of energids and cells in developing organisms, but also to epithelial monolayers, suggests generic mechanical cues to drive self-organized space compartmentalization.
Collapse
Affiliation(s)
- Pierre-Yves Gires
- Experimental Physics I, University of Bayreuth, Universitätsstrasse 30, D-95447 Bayreuth, Germany
| | - Mithun Thampi
- Experimental Physics I, University of Bayreuth, Universitätsstrasse 30, D-95447 Bayreuth, Germany
| | - Sebastian W Krauss
- Experimental Physics I, University of Bayreuth, Universitätsstrasse 30, D-95447 Bayreuth, Germany
| | - Matthias Weiss
- Experimental Physics I, University of Bayreuth, Universitätsstrasse 30, D-95447 Bayreuth, Germany
| |
Collapse
|
17
|
Banks RA, Galstyan V, Lee HJ, Hirokawa S, Ierokomos A, Ross TD, Bryant Z, Thomson M, Phillips R. Motor processivity and speed determine structure and dynamics of microtubule-motor assemblies. eLife 2023; 12:e79402. [PMID: 36752605 PMCID: PMC10014072 DOI: 10.7554/elife.79402] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 02/07/2023] [Indexed: 02/09/2023] Open
Abstract
Active matter systems can generate highly ordered structures, avoiding equilibrium through the consumption of energy by individual constituents. How the microscopic parameters that characterize the active agents are translated to the observed mesoscopic properties of the assembly has remained an open question. These active systems are prevalent in living matter; for example, in cells, the cytoskeleton is organized into structures such as the mitotic spindle through the coordinated activity of many motor proteins walking along microtubules. Here, we investigate how the microscopic motor-microtubule interactions affect the coherent structures formed in a reconstituted motor-microtubule system. This question is of deeper evolutionary significance as we suspect motor and microtubule type contribute to the shape and size of resulting structures. We explore key parameters experimentally and theoretically, using a variety of motors with different speeds, processivities, and directionalities. We demonstrate that aster size depends on the motor used to create the aster, and develop a model for the distribution of motors and microtubules in steady-state asters that depends on parameters related to motor speed and processivity. Further, we show that network contraction rates scale linearly with the single-motor speed in quasi-one-dimensional contraction experiments. In all, this theoretical and experimental work helps elucidate how microscopic motor properties are translated to the much larger scale of collective motor-microtubule assemblies.
Collapse
Affiliation(s)
- Rachel A Banks
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Vahe Galstyan
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Heun Jin Lee
- Department of Applied Physics, California Institute of TechnologyPasadenaUnited States
| | - Soichi Hirokawa
- Department of Applied Physics, California Institute of TechnologyPasadenaUnited States
| | | | - Tyler D Ross
- Department of Computing and Mathematical Science, California Institute of TechnologyPasadenaUnited States
| | - Zev Bryant
- Department of Bioengineering, Stanford UniversityStanfordUnited States
| | - Matt Thomson
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
| | - Rob Phillips
- Division of Biology and Biological Engineering, California Institute of TechnologyPasadenaUnited States
- Department of Applied Physics, California Institute of TechnologyPasadenaUnited States
- Department of Physics, California Institute of TechnologyPasadenaUnited States
| |
Collapse
|
18
|
Chew WX, Henkin G, Nédélec F, Surrey T. Effects of microtubule length and crowding on active microtubule network organization. iScience 2023; 26:106063. [PMID: 36852161 PMCID: PMC9958361 DOI: 10.1016/j.isci.2023.106063] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 12/12/2022] [Accepted: 01/20/2023] [Indexed: 01/28/2023] Open
Abstract
Active filament networks can organize into various dynamic architectures driven by cross-linking motors. Densities and kinetic properties of motors and microtubules have been shown previously to determine active microtubule network self-organization, but the effects of other control parameters are less understood. Using computer simulations, we study here how microtubule lengths and crowding effects determine active network architecture and dynamics. We find that attractive interactions mimicking crowding effects or long microtubules both promote the formation of extensile nematic networks instead of asters. When microtubules are very long and the network is highly connected, a new isotropically motile network state resembling a "gliding mesh" is predicted. Using in vitro reconstitutions, we confirm the existence of this gliding mesh experimentally. These results provide a better understanding of how active microtubule network organization can be controlled, with implications for cell biology and active materials in general.
Collapse
Affiliation(s)
- Wei-Xiang Chew
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr Aiguader 88, 08003 Barcelona, Spain
| | - Gil Henkin
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr Aiguader 88, 08003 Barcelona, Spain
| | - François Nédélec
- Sainsbury Laboratory, University of Cambridge, 47 Bateman Street, Cambridge CB2 1LR, UK,Corresponding author
| | - Thomas Surrey
- Centre for Genomic Regulation (CRG), Barcelona Institute of Science and Technology (BIST), Dr Aiguader 88, 08003 Barcelona, Spain,ICREA, Passeig de Lluis Companys 23, 08010 Barcelona, Spain,Corresponding author
| |
Collapse
|
19
|
Striebel M, Brauns F, Frey E. Length Regulation Drives Self-Organization in Filament-Motor Mixtures. PHYSICAL REVIEW LETTERS 2022; 129:238102. [PMID: 36563230 DOI: 10.1103/physrevlett.129.238102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/10/2022] [Indexed: 06/17/2023]
Abstract
Cytoskeletal networks form complex intracellular structures. Here we investigate a minimal model for filament-motor mixtures in which motors act as depolymerases and thereby regulate filament length. Combining agent-based simulations and hydrodynamic equations, we show that resource-limited length regulation drives the formation of filament clusters despite the absence of mechanical interactions between filaments. Even though the orientation of individual remains fixed, collective filament orientation emerges in the clusters, aligned orthogonal to their interfaces.
Collapse
Affiliation(s)
- Moritz Striebel
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Theresienstrasse 37, D-80333 Munich, Germany
| | - Fridtjof Brauns
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Theresienstrasse 37, D-80333 Munich, Germany
| | - Erwin Frey
- Arnold Sommerfeld Center for Theoretical Physics and Center for NanoScience, Department of Physics, Ludwig-Maximilians-Universität München, Theresienstrasse 37, D-80333 Munich, Germany
- Max Planck School Matter to Life, Hofgartenstraße 8, D-80539 Munich, Germany
| |
Collapse
|
20
|
Matković J, Ghosh S, Ćosić M, Eibes S, Barišić M, Pavin N, Tolić IM. Kinetochore- and chromosome-driven transition of microtubules into bundles promotes spindle assembly. Nat Commun 2022; 13:7307. [PMID: 36435852 PMCID: PMC9701229 DOI: 10.1038/s41467-022-34957-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Accepted: 11/11/2022] [Indexed: 11/28/2022] Open
Abstract
Mitotic spindle assembly is crucial for chromosome segregation and relies on bundles of microtubules that extend from the poles and overlap in the middle. However, how these structures form remains poorly understood. Here we show that overlap bundles arise through a network-to-bundles transition driven by kinetochores and chromosomes. STED super-resolution microscopy reveals that PRC1-crosslinked microtubules initially form loose arrays, which become rearranged into bundles. Kinetochores promote microtubule bundling by lateral binding via CENP-E/kinesin-7 in an Aurora B-regulated manner. Steric interactions between the bundle-associated chromosomes at the spindle midplane drive bundle separation and spindle widening. In agreement with experiments, theoretical modeling suggests that bundles arise through competing attractive and repulsive mechanisms. Finally, perturbation of overlap bundles leads to inefficient correction of erroneous kinetochore-microtubule attachments. Thus, kinetochores and chromosomes drive coarsening of a uniform microtubule array into overlap bundles, which promote not only spindle formation but also chromosome segregation fidelity.
Collapse
Affiliation(s)
- Jurica Matković
- grid.4905.80000 0004 0635 7705Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Subhadip Ghosh
- grid.4808.40000 0001 0657 4636Department of Physics, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Mateja Ćosić
- grid.4905.80000 0004 0635 7705Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| | - Susana Eibes
- grid.417390.80000 0001 2175 6024Cell Division and Cytoskeleton, Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Marin Barišić
- grid.417390.80000 0001 2175 6024Cell Division and Cytoskeleton, Danish Cancer Society Research Center, Copenhagen, Denmark ,grid.5254.60000 0001 0674 042XDepartment of Cellular and Molecular Medicine, Faculty of Health Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Nenad Pavin
- grid.4808.40000 0001 0657 4636Department of Physics, Faculty of Science, University of Zagreb, Zagreb, Croatia
| | - Iva M. Tolić
- grid.4905.80000 0004 0635 7705Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia
| |
Collapse
|
21
|
Guru A, Saravanan S, Sharma D, Narasimha M. The microtubule end-binding proteins EB1 and Patronin modulate the spatiotemporal dynamics of myosin and pattern pulsed apical constriction. Development 2022; 149:284823. [PMID: 36440630 DOI: 10.1242/dev.199759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Accepted: 10/31/2022] [Indexed: 11/29/2022]
Abstract
Apical constriction powers amnioserosa contraction during Drosophila dorsal closure. The nucleation, movement and dispersal of apicomedial actomyosin complexes generates pulsed apical constrictions during early closure. Persistent apicomedial and circumapical actomyosin complexes drive unpulsed constrictions that follow. Here, we show that the microtubule end-binding proteins EB1 and Patronin pattern constriction dynamics and contraction kinetics by coordinating the balance of actomyosin forces in the apical plane. We find that microtubule growth from moving Patronin platforms governs the spatiotemporal dynamics of apicomedial myosin through the regulation of RhoGTPase signaling by transient EB1-RhoGEF2 interactions. We uncover the dynamic reorganization of a subset of short non-centrosomally nucleated apical microtubules that surround the coalescing apicomedial myosin complex, trail behind it as it moves and disperse as the complex dissolves. We demonstrate that apical microtubule reorganization is sensitive to Patronin levels. Microtubule depolymerization compromised apical myosin enrichment and altered constriction dynamics. Together, our findings uncover the importance of reorganization of an intact apical microtubule meshwork, by moving Patronin platforms and growing microtubule ends, in enabling the spatiotemporal modulation of actomyosin contractility and, through it, apical constriction.
Collapse
Affiliation(s)
- Anwesha Guru
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai 400005, India
| | - Surat Saravanan
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai 400005, India
| | - Deepanshu Sharma
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai 400005, India
| | - Maithreyi Narasimha
- Department of Biological Sciences, Tata Institute of Fundamental Research, Colaba, Mumbai 400005, India
| |
Collapse
|
22
|
Abstract
Kinesin-14s constitute a subfamily of the large superfamily of adenosine triphosphate-dependent microtubule-based motor proteins. Kinesin-14s have the motor domain at the C-terminal end of the peptide, playing key roles during spindle assembly and maintenance. Some of them are nonprocessive motors, whereas others can move processively on microtubules. Here, we take budding yeast Cik1-Kar3 and human HSET as examples to study theoretically the dynamics of the processive kinesin-14 motor moving on the single microtubule under load, the dynamics of the motor coupled with an Ndc80 protein moving on the single microtubule, the dynamics of the motor moving in microtubule arrays, and so on. The dynamics of the nonprocessive Drosophila Ncd motor is also discussed. The studies explain well the available experimental data and, moreover, provide predicted results. We show that the processive kinesin-14 motors can move efficiently in microtubule arrays toward the minus ends, and after reaching the minus ends, they can stay there stably, thus performing the function of organizing the microtubules in the bipolar spindle into polar arrays at the spindle poles.
Collapse
Affiliation(s)
- Ping Xie
- Key Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing100190, China
| |
Collapse
|
23
|
Morphological growth dynamics, mechanical stability, and active microtubule mechanics underlying spindle self-organization. Proc Natl Acad Sci U S A 2022; 119:e2209053119. [PMID: 36282919 PMCID: PMC9636915 DOI: 10.1073/pnas.2209053119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The spindle is a dynamic intracellular structure self-organized from microtubules and microtubule-associated proteins. The spindle’s bipolar morphology is essential for the faithful segregation of chromosomes during cell division, and it is robustly maintained by multifaceted mechanisms. However, abnormally shaped spindles, such as multipolar spindles, can stochastically arise in a cell population and cause chromosome segregation errors. The physical basis of how microtubules fail in bipolarization and occasionally favor nonbipolar assembly is poorly understood. Here, using live fluorescence imaging and quantitative shape analysis in
Xenopus
egg extracts, we find that spindles of varied shape morphologies emerge through nonrandom, bistable self-organization paths, one leading to a bipolar and the other leading to a multipolar phenotype. The bistability defines the spindle’s unique morphological growth dynamics linked to each shape phenotype and can be promoted by a locally distorted microtubule flow that arises within premature structures. We also find that bipolar and multipolar spindles are stable at the steady-state in bulk but can infrequently switch between the two phenotypes. Our microneedle-based physical manipulation further demonstrates that a transient force perturbation applied near the assembled pole can trigger the phenotypic switching, revealing the mechanical plasticity of the spindle. Together with molecular perturbation of kinesin-5 and augmin, our data propose the physical and molecular bases underlying the emergence of spindle-shape variation, which influences chromosome segregation fidelity during cell division.
Collapse
|
24
|
Sasanpour M, Achiriloaie DH, Lee G, Leech G, Hendija M, Lindsay KA, Ross JL, McGorty RJ, Robertson-Anderson RM. Reconstituting and Characterizing Actin-Microtubule Composites with Tunable Motor-Driven Dynamics and Mechanics. J Vis Exp 2022:10.3791/64228. [PMID: 36094259 PMCID: PMC10290881 DOI: 10.3791/64228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023] Open
Abstract
The composite cytoskeleton, comprising interacting networks of semiflexible actin filaments and rigid microtubules, restructures and generates forces using motor proteins such as myosin II and kinesin to drive key processes such as migration, cytokinesis, adhesion, and mechanosensing. While actin-microtubule interactions are key to the cytoskeleton's versatility and adaptability, an understanding of their interplay with myosin and kinesin activity is still nascent. This work describes how to engineer tunable three-dimensional composite networks of co-entangled actin filaments and microtubules that undergo active restructuring and ballistic motion, driven by myosin II and kinesin motors, and are tuned by the relative concentrations of actin, microtubules, motor proteins, and passive crosslinkers. Protocols for fluorescence labeling of the microtubules and actin filaments to most effectively visualize composite restructuring and motion using multi-spectral confocal imaging are also detailed. Finally, the results of data analysis methods that can be used to quantitatively characterize non-equilibrium structure, dynamics, and mechanics are presented. Recreating and investigating this tunable biomimetic platform provides valuable insight into how coupled motor activity, composite mechanics, and filament dynamics can lead to myriad cellular processes from mitosis to polarization to mechano-sensation.
Collapse
Affiliation(s)
| | - Daisy H Achiriloaie
- Department of Physics and Biophysics, University of San Diego; W. M. Keck Science Department, Scripps College, Pitzer College, and Claremont McKenna College
| | - Gloria Lee
- Department of Physics and Biophysics, University of San Diego
| | - Gregor Leech
- Department of Physics and Biophysics, University of San Diego
| | - Maya Hendija
- Department of Physics and Biophysics, University of San Diego
| | | | | | - Ryan J McGorty
- Department of Physics and Biophysics, University of San Diego
| | | |
Collapse
|
25
|
Henkin G, Chew WX, Nédélec F, Surrey T. Cross-linker design determines microtubule network organization by opposing motors. Proc Natl Acad Sci U S A 2022; 119:e2206398119. [PMID: 35960844 PMCID: PMC9388136 DOI: 10.1073/pnas.2206398119] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 06/03/2022] [Indexed: 12/02/2022] Open
Abstract
During cell division, cross-linking motors determine the architecture of the spindle, a dynamic microtubule network that segregates the chromosomes in eukaryotes. It is unclear how motors with opposite directionality coordinate to drive both contractile and extensile behaviors in the spindle. Particularly, the impact of different cross-linker designs on network self-organization is not understood, limiting our understanding of self-organizing structures in cells but also our ability to engineer new active materials. Here, we use experiment and theory to examine active microtubule networks driven by mixtures of motors with opposite directionality and different cross-linker design. We find that although the kinesin-14 HSET causes network contraction when dominant, it can also assist the opposing kinesin-5 KIF11 to generate extensile networks. This bifunctionality results from HSET's asymmetric design, distinct from symmetric KIF11. These findings expand the set of rules underlying patterning of active microtubule assemblies and allow a better understanding of motor cooperation in the spindle.
Collapse
Affiliation(s)
- Gil Henkin
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
- The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Wei-Xiang Chew
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
| | - François Nédélec
- Sainsbury Laboratory, University of Cambridge, Cambridge CB2 1LR, United Kingdom
| | - Thomas Surrey
- Centre for Genomic Regulation, Barcelona Institute of Science and Technology, 08003 Barcelona, Spain
- The Francis Crick Institute, London NW1 1AT, United Kingdom
- Catalan Institution for Research and Advanced Studies (ICREA), Barcelona, 08010 Spain
| |
Collapse
|
26
|
Guo W, Sun S, Sanchez JE, Lopez-Hernandez AE, Ale TA, Chen J, Afrin T, Qiu W, Xie Y, Li L. Using a comprehensive approach to investigate the interaction between Kinesin-5/Eg5 and the microtubule. Comput Struct Biotechnol J 2022; 20:4305-4314. [PMID: 36051882 PMCID: PMC9396395 DOI: 10.1016/j.csbj.2022.08.020] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 08/01/2022] [Accepted: 08/08/2022] [Indexed: 01/02/2023] Open
Abstract
Kinesins are microtubule-based motor proteins that play important roles ranging from intracellular transport to cell division. Human Kinesin-5 (Eg5) is essential for mitotic spindle assembly during cell division. By combining molecular dynamics (MD) simulations with other multi-scale computational approaches, we systematically studied the interaction between Eg5 and the microtubule. We find the electrostatic feature on the motor domains of Eg5 provides attractive interactions to the microtubule. Additionally, the folding and binding energy analysis reveals that the Eg5 motor domain performs its functions best when in a weak acidic environment. Molecular dynamics analyses of hydrogen bonds and salt bridges demonstrate that, on the binding interfaces of Eg5 and the tubulin heterodimer, salt bridges play the most significant role in holding the complex. The salt bridge residues on the binding interface of Eg5 are mostly positive, while salt bridge residues on the binding interface of tubulin heterodimer are mostly negative. Such salt bridge residue distribution is consistent with electrostatic potential calculations. In contrast, the interface between α and β-tubulins is dominated by hydrogen bonds rather than salt bridges. Compared to the Eg5/α-tubulin interface, the Eg5/β-tubulin interface has a greater number of salt bridges and higher occupancy for salt bridges. This asymmetric salt bridge distribution may play a significant role in Eg5's directionality. The residues involved in hydrogen bonds and salt bridges are identified in this work and may be helpful for anticancer drug design.
Collapse
Affiliation(s)
- Wenhan Guo
- Computational Science Program, University of Texas at El Paso, El Paso, TX, USA
| | - Shengjie Sun
- Computational Science Program, University of Texas at El Paso, El Paso, TX, USA
| | - Jason E. Sanchez
- Computational Science Program, University of Texas at El Paso, El Paso, TX, USA
| | | | - Tolulope A. Ale
- Computational Science Program, University of Texas at El Paso, El Paso, TX, USA
| | - Jiawei Chen
- Department of Physics, University of Texas at El Paso, El Paso, TX, USA
| | - Tanjina Afrin
- Department of Physics, University of Texas at El Paso, El Paso, TX, USA
- Department of Physics, Oregon State University, Corvallis, OR, USA
| | - Weihong Qiu
- Department of Physics, Oregon State University, Corvallis, OR, USA
| | - Yixin Xie
- Department of Information Technology, Kennesaw State University, Kennesaw, GA, USA
| | - Lin Li
- Computational Science Program, University of Texas at El Paso, El Paso, TX, USA
- Department of Physics, University of Texas at El Paso, El Paso, TX, USA
| |
Collapse
|
27
|
Lemma B, Mitchell NP, Subramanian R, Needleman DJ, Dogic Z. Active Microphase Separation in Mixtures of Microtubules and Tip-Accumulating Molecular Motors. PHYSICAL REVIEW. X 2022; 12:031006. [PMID: 36643940 PMCID: PMC9835929 DOI: 10.1103/physrevx.12.031006] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Mixtures of filaments and molecular motors form active materials with diverse dynamical behaviors that vary based on their constituents' molecular properties. To develop a multiscale of these materials, we map the nonequilibrium phase diagram of microtubules and tip-accumulating kinesin-4 molecular motors. We find that kinesin-4 can drive either global contractions or turbulentlike extensile dynamics, depending on the concentrations of both microtubules and a bundling agent. We also observe a range of spatially heterogeneous nonequilibrium phases, including finite-sized radial asters, 1D wormlike chains, extended 2D bilayers, and system-spanning 3D active foams. Finally, we describe intricate kinetic pathways that yield microphase separated structures and arise from the inherent frustration between the orientational order of filamentous microtubules and the positional order of tip-accumulating molecular motors. Our work reveals a range of novel active states. It also shows that the form of active stresses is not solely dictated by the properties of individual motors and filaments, but is also contingent on the constituent concentrations and spatial arrangement of motors on the filaments.
Collapse
Affiliation(s)
- Bezia Lemma
- Physics Department, Harvard University, Cambridge, Massachusetts 02138, USA
- Physics Department, Brandeis University, Waltham, Massachusetts 02453, USA
- Physics Department, University of California, Santa Barbara, California 93106, USA
| | - Noah P. Mitchell
- Physics Department, University of California, Santa Barbara, California 93106, USA
- Kavli Institute for Theoretical Physics, University of California, Santa Barbara, California 93106, USA
| | - Radhika Subramanian
- Molecular Biology Department, Massachusetts General Hospital Boston, Massachusetts 02114, USA
- Genetics Department, Harvard Medical School, Boston, Massachusetts 02115, USA
| | - Daniel J. Needleman
- John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge, Massachusetts 02138, USA
- Molecular and Cellular Biology Department, Harvard University, Cambridge, Massachusetts 02138, USA
- Center for Computational Biology, Flatiron Institute, New York, New York 10010, USA
| | - Zvonimir Dogic
- Physics Department, Brandeis University, Waltham, Massachusetts 02453, USA
- Physics Department, University of California, Santa Barbara, California 93106, USA
- Biomolecular Science and Engineering Department, University of California, Santa Barbara, California 93106, USA
| |
Collapse
|
28
|
Imasaki T, Kikkawa S, Niwa S, Saijo-Hamano Y, Shigematsu H, Aoyama K, Mitsuoka K, Shimizu T, Aoki M, Sakamoto A, Tomabechi Y, Sakai N, Shirouzu M, Taguchi S, Yamagishi Y, Setsu T, Sakihama Y, Nitta E, Takeichi M, Nitta R. CAMSAP2 organizes a γ-tubulin-independent microtubule nucleation centre through phase separation. eLife 2022; 11:77365. [PMID: 35762204 PMCID: PMC9239687 DOI: 10.7554/elife.77365] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Accepted: 05/24/2022] [Indexed: 11/24/2022] Open
Abstract
Microtubules are dynamic polymers consisting of αβ-tubulin heterodimers. The initial polymerization process, called microtubule nucleation, occurs spontaneously via αβ-tubulin. Since a large energy barrier prevents microtubule nucleation in cells, the γ-tubulin ring complex is recruited to the centrosome to overcome the nucleation barrier. However, a considerable number of microtubules can polymerize independently of the centrosome in various cell types. Here, we present evidence that the minus-end-binding calmodulin-regulated spectrin-associated protein 2 (CAMSAP2) serves as a strong nucleator for microtubule formation by significantly reducing the nucleation barrier. CAMSAP2 co-condensates with αβ-tubulin via a phase separation process, producing plenty of nucleation intermediates. Microtubules then radiate from the co-condensates, resulting in aster-like structure formation. CAMSAP2 localizes at the co-condensates and decorates the radiating microtubule lattices to some extent. Taken together, these in vitro findings suggest that CAMSAP2 supports microtubule nucleation and growth by organizing a nucleation centre as well as by stabilizing microtubule intermediates and growing microtubules. Cells are able to hold their shape thanks to tube-like structures called microtubules that are made of hundreds of tubulin proteins. Microtubules are responsible for maintaining the uneven distribution of molecules throughout the cell, a phenomenon known as polarity that allows cells to differentiate into different types with various roles. A protein complex called the γ-tubulin ring complex (γ-TuRC) is necessary for microtubules to form. This protein helps bind the tubulin proteins together and stabilises microtubules. However, recent research has found that in highly polarized cells such as neurons, which have highly specialised regions, microtubules can form without γ-TuRC. Searching for the proteins that could be filling in for γ-TuRC in these cells some evidence has suggested that a group known as CAMSAPs may be involved, but it is not known how. To characterize the role of CAMSAPs, Imasaki, Kikkawa et al. studied how one of these proteins, CAMSAP2, interacts with tubulins. To do this, they reconstituted both CAMSAP2 and tubulins using recombinant biotechnology and mixed them in solution. These experiments showed that CAMSAP2 can help form microtubules by bringing together their constituent proteins so that they can bind to each other more easily. Once microtubules start to form, CAMSAP2 continues to bind to them, stabilizing them and enabling them to grow to full size. These results shed light on how polarity is established in cells such as neurons, muscle cells, and epithelial cells. Additionally, the ability to observe intermediate structures during microtubule formation can provide insights into the processes that these structures are involved in.
Collapse
Affiliation(s)
- Tsuyoshi Imasaki
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan.,JST, PRESTO, Saitama, Japan.,RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Satoshi Kikkawa
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Shinsuke Niwa
- Frontier Research Institute for Interdisciplinary Sciences, Tohoku University, Sendai, Japan
| | - Yumiko Saijo-Hamano
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Hideki Shigematsu
- RIKEN SPring-8 Center, Hyogo, Japan.,Japan Synchrotron Radiation Research Institute (JASRI), Hyogo, Japan
| | - Kazuhiro Aoyama
- Materials and Structural Analysis, Thermo Fisher Scientific, Tokyo, Japan.,Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Osaka, Japan
| | - Kaoru Mitsuoka
- Research Center for Ultra-High Voltage Electron Microscopy, Osaka University, Osaka, Japan
| | - Takahiro Shimizu
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Mari Aoki
- RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Ayako Sakamoto
- RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Yuri Tomabechi
- RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Naoki Sakai
- RIKEN SPring-8 Center, Hyogo, Japan.,Japan Synchrotron Radiation Research Institute (JASRI), Hyogo, Japan
| | - Mikako Shirouzu
- RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| | - Shinya Taguchi
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yosuke Yamagishi
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Tomiyoshi Setsu
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Yoshiaki Sakihama
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | - Eriko Nitta
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan
| | | | - Ryo Nitta
- Division of Structural Medicine and Anatomy, Department of Physiology and Cell Biology, Kobe University Graduate School of Medicine, Kobe, Japan.,RIKEN Center for Biosystems Dynamics Research, Yokohama, Japan
| |
Collapse
|
29
|
Ansari S, Yan W, Lamson A, Shelley MJ, Glaser MA, Betterton MD. Active condensation of filaments under spatial confinement. FRONTIERS IN PHYSICS 2022; 10:897255. [PMID: 38116396 PMCID: PMC10730113 DOI: 10.3389/fphy.2022.897255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2023]
Abstract
Living systems exhibit self-organization, a phenomenon that enables organisms to perform functions essential for life. The interior of living cells is a crowded environment in which the self-assembly of cytoskeletal networks is spatially constrained by membranes and organelles. Cytoskeletal filaments undergo active condensation in the presence of crosslinking motor proteins. In past studies, confinement has been shown to alter the morphology of active condensates. Here, we perform simulations to explore systems of filaments and crosslinking motors in a variety of confining geometries. We simulate spatial confinement imposed by hard spherical, cylindrical, and planar boundaries. These systems exhibit non-equilibrium condensation behavior where crosslinking motors condense a fraction of the overall filament population, leading to coexistence of vapor and condensed states. We find that the confinement lengthscale modifies the dynamics and condensate morphology. With end-pausing crosslinking motors, filaments self-organize into half asters and fully-symmetric asters under spherical confinement, polarity-sorted bilayers and bottle-brush-like states under cylindrical confinement, and flattened asters under planar confinement. The number of crosslinking motors controls the size and shape of condensates, with flattened asters becoming hollow and ring-like for larger motor number. End pausing plays a key role affecting condensate morphology: systems with end-pausing motors evolve into aster-like condensates while those with non-end-pausing crosslinking motor proteins evolve into disordered clusters and polarity-sorted bundles.
Collapse
Affiliation(s)
- Saad Ansari
- Department of Physics, University of Colorado Boulder, Colorado, USA
| | - Wen Yan
- Center for Computational Biology, Flatiron Institute, New York, USA
| | - Adam Lamson
- Center for Computational Biology, Flatiron Institute, New York, USA
| | - Michael J. Shelley
- Center for Computational Biology, Flatiron Institute, New York, USA
- Courant Institute, New York University, New York, USA
| | - Matthew A. Glaser
- Department of Physics, University of Colorado Boulder, Colorado, USA
- Center for Computational Biology, Flatiron Institute, New York, USA
| | - Meredith D. Betterton
- Department of Physics, University of Colorado Boulder, Colorado, USA
- Center for Computational Biology, Flatiron Institute, New York, USA
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado Boulder, Colorado, USA
| |
Collapse
|
30
|
Verwei HN, Lee G, Leech G, Petitjean II, Koenderink GH, Robertson-Anderson RM, McGorty RJ. Quantifying Cytoskeleton Dynamics Using Differential Dynamic Microscopy. J Vis Exp 2022:10.3791/63931. [PMID: 35781524 PMCID: PMC10398790 DOI: 10.3791/63931] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/05/2023] Open
Abstract
Cells can crawl, self-heal, and tune their stiffness due to their remarkably dynamic cytoskeleton. As such, reconstituting networks of cytoskeletal biopolymers may lead to a host of active and adaptable materials. However, engineering such materials with precisely tuned properties requires measuring how the dynamics depend on the network composition and synthesis methods. Quantifying such dynamics is challenged by variations across the time, space, and formulation space of composite networks. The protocol here describes how the Fourier analysis technique, differential dynamic microscopy (DDM), can quantify the dynamics of biopolymer networks and is particularly well suited for studies of cytoskeleton networks. DDM works on time sequences of images acquired using a range of microscopy modalities, including laser-scanning confocal, widefield fluorescence, and brightfield imaging. From such image sequences, one can extract characteristic decorrelation times of density fluctuations across a span of wave vectors. A user-friendly, open-source Python package to perform DDM analysis is also developed. With this package, one can measure the dynamics of labeled cytoskeleton components or of embedded tracer particles, as demonstrated here with data of intermediate filament (vimentin) networks and active actin-microtubule networks. Users with no prior programming or image processing experience will be able to perform DDM using this software package and associated documentation.
Collapse
Affiliation(s)
- Hannah N Verwei
- Cell Biology, Neurobiology and Biophysics, Department of Biology, Faculty of Science, Utrecht University
| | - Gloria Lee
- Department of Physics and Biophysics, University of San Diego
| | - Gregor Leech
- Department of Physics and Biophysics, University of San Diego
| | - Irene Istúriz Petitjean
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology
| | - Gijsje H Koenderink
- Department of Bionanoscience, Kavli Institute of Nanoscience Delft, Delft University of Technology
| | | | | |
Collapse
|
31
|
Sarfati G, Maitra A, Voituriez R, Galas JC, Estevez-Torres A. Crosslinking and depletion determine spatial instabilities in cytoskeletal active matter. SOFT MATTER 2022; 18:3793-3800. [PMID: 35521993 DOI: 10.1039/d2sm00130f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Active gels made of cytoskeletal proteins are valuable materials with attractive non-equilibrium properties such as spatial self-organization and self-propulsion. At least four typical routes to spatial patterning have been reported to date in different types of cytoskeletal active gels: bending and buckling instabilities in extensile systems, and global and local contraction instabilities in contractile gels. Here we report the observation of these four instabilities in a single type of active gel and we show that they are controlled by two parameters: the concentrations of ATP and depletion agent. We demonstrate that as the ATP concentration decreases, the concentration of passive motors increases until the gel undergoes a gelation transition. At this point, buckling is selected against bending, while global contraction is favored over local ones. Our observations are coherent with a hydrodynamic model of a viscoelastic active gel where the filaments are crosslinked with a characteristic time that diverges as the ATP concentration decreases. Our work thus provides a unified view of spatial instabilities in cytoskeletal active matter.
Collapse
Affiliation(s)
- Guillaume Sarfati
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin, (LJP), F-75005 Paris, France.
| | - Ananyo Maitra
- Laboratoire de Physique Théorique et Modélisation, CNRS UMR 8089, CY Cergy Paris, Université, F-95302 Cergy-Pontoise Cedex, France
| | - Raphael Voituriez
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin, (LJP), F-75005 Paris, France.
- Sorbonne Université, CNRS, Laboratoire de Physique Théorique de la Matière Condensée, (LPTMC), F-75005 Paris, France
| | - Jean-Christophe Galas
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin, (LJP), F-75005 Paris, France.
| | - André Estevez-Torres
- Sorbonne Université, CNRS, Institut de Biologie Paris-Seine (IBPS), Laboratoire Jean Perrin, (LJP), F-75005 Paris, France.
| |
Collapse
|
32
|
Chang C, He X, Di R, Wang X, Han M, Liang C, Chu M. Thyroid Transcriptomic Profiling Reveals the Follicular Phase Differential Regulation of lncRNA and mRNA Related to Prolificacy in Small Tail Han Sheep with Two FecB Genotypes. Genes (Basel) 2022; 13:849. [PMID: 35627234 PMCID: PMC9141851 DOI: 10.3390/genes13050849] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Revised: 05/05/2022] [Accepted: 05/07/2022] [Indexed: 11/16/2022] Open
Abstract
Long non-coding RNA (lncRNA) accounts for a large proportion of RNA in animals. The thyroid gland has been established as an important gland involved in animal reproduction, however, little is known of its gene expression patterns and potential roles in the sheep. Herein, RNA-Seq was used to detect reproduction-related differentially expressed lncRNAs (DELs) and mRNAs (DEGs) in the follicular phase (FT) FecBBB (MM) and FecB++ (ww) genotypes of Small Tail Han (STH) sheep thyroids. Overall, 29 DELs and 448 DEGs in thyroid between MM and ww sheep were screened. Moreover, GO and KEGG enrichment analysis showed that targets of DELs and DEGs were annotated in biological transitions, such as cell cycle, oocyte meiosis and methylation, which in turn affect reproductive performance in sheep. In addition, we constructed co-expression and networks of lncRNAs-mRNAs. Specifically, XLOC_075176 targeted MYB, XLOC_014695 targeted VCAN, 106991527 targeted CASR, XLOC_075176 targeted KIFC1, XLOC_360232 targeted BRCA2. All these differential lncRNAs and mRNAs expression profiles in the thyroid provide a new resource for elucidating the regulatory mechanism underlying STH sheep prolificacy.
Collapse
Affiliation(s)
- Cheng Chang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.C.); (X.H.); (R.D.); (X.W.)
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China;
| | - Xiaoyun He
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.C.); (X.H.); (R.D.); (X.W.)
| | - Ran Di
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.C.); (X.H.); (R.D.); (X.W.)
| | - Xiangyu Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.C.); (X.H.); (R.D.); (X.W.)
| | - Miaoceng Han
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China;
| | - Chen Liang
- College of Animal Science, Shanxi Agricultural University, Jinzhong 030801, China;
| | - Mingxing Chu
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Ministry of Agriculture and Rural Affairs, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (C.C.); (X.H.); (R.D.); (X.W.)
| |
Collapse
|
33
|
Hernández-Del-Valle M, Valencia-Expósito A, López-Izquierdo A, Casanova-Ferrer P, Tarazona P, Martín-Bermudo MD, Míguez DG. A coarse-grained approach to model the dynamics of the actomyosin cortex. BMC Biol 2022; 20:90. [PMID: 35459165 PMCID: PMC9034637 DOI: 10.1186/s12915-022-01279-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Accepted: 03/11/2022] [Indexed: 01/21/2023] Open
Abstract
Background The dynamics of the actomyosin machinery is at the core of many important biological processes. Several relevant cellular responses such as the rhythmic compression of the cell cortex are governed, at a mesoscopic level, by the nonlinear interaction between actin monomers, actin crosslinkers, and myosin motors. Coarse-grained models are an optimal tool to study actomyosin systems, since they can include processes that occur at long time and space scales, while maintaining the most relevant features of the molecular interactions. Results Here, we present a coarse-grained model of a two-dimensional actomyosin cortex, adjacent to a three-dimensional cytoplasm. Our simplified model incorporates only well-characterized interactions between actin monomers, actin crosslinkers and myosin, and it is able to reproduce many of the most important aspects of actin filament and actomyosin network formation, such as dynamics of polymerization and depolymerization, treadmilling, network formation, and the autonomous oscillatory dynamics of actomyosin. Conclusions We believe that the present model can be used to study the in vivo response of actomyosin networks to changes in key parameters of the system, such as alterations in the attachment of actin filaments to the cell cortex. Supplementary Information The online version contains supplementary material available at (10.1186/s12915-022-01279-2).
Collapse
Affiliation(s)
- Miguel Hernández-Del-Valle
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Madrid, 28049, Spain.,IFIMAC, Fac. de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain.,Instituto Nicolás Cabrera, Fac. de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain.,Fisica de la Materia Condensada, Fac. de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Andrea Valencia-Expósito
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/CSIC/JA, Carretera de Utrera km 1, Seville, 41013, Spain
| | - Antonio López-Izquierdo
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Madrid, 28049, Spain.,IFIMAC, Fac. de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain.,Instituto Nicolás Cabrera, Fac. de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain.,Fisica de la Materia Condensada, Fac. de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Pau Casanova-Ferrer
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Madrid, 28049, Spain.,IFIMAC, Fac. de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain.,Instituto Nicolás Cabrera, Fac. de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain.,Fisica de la Materia Condensada, Fac. de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Pedro Tarazona
- IFIMAC, Fac. de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain.,Instituto Nicolás Cabrera, Fac. de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain.,Fisica Teórica de la Materia Condensada, Fac. de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain
| | - Maria D Martín-Bermudo
- Centro Andaluz de Biología del Desarrollo, Universidad Pablo de Olavide/CSIC/JA, Carretera de Utrera km 1, Seville, 41013, Spain
| | - David G Míguez
- Centro de Biología Molecular Severo Ochoa, Universidad Autónoma de Madrid, Madrid, 28049, Spain. .,IFIMAC, Fac. de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain. .,Instituto Nicolás Cabrera, Fac. de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain. .,Fisica de la Materia Condensada, Fac. de Ciencias, Universidad Autónoma de Madrid, Madrid, 28049, Spain.
| |
Collapse
|
34
|
Balasubramaniam L, Mège RM, Ladoux B. Active nematics across scales from cytoskeleton organization to tissue morphogenesis. Curr Opin Genet Dev 2022; 73:101897. [DOI: 10.1016/j.gde.2021.101897] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 12/07/2021] [Accepted: 12/21/2021] [Indexed: 11/28/2022]
|
35
|
Basaran M, Yaman YI, Yüce TC, Vetter R, Kocabas A. Large-scale orientational order in bacterial colonies during inward growth. eLife 2022; 11:72187. [PMID: 35254257 PMCID: PMC8963879 DOI: 10.7554/elife.72187] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 02/24/2022] [Indexed: 11/30/2022] Open
Abstract
During colony growth, complex interactions regulate the bacterial orientation, leading to the formation of large-scale ordered structures, including topological defects, microdomains, and branches. These structures may benefit bacterial strains, providing invasive advantages during colonization. Active matter dynamics of growing colonies drives the emergence of these ordered structures. However, additional biomechanical factors also play a significant role during this process. Here, we show that the velocity profile of growing colonies creates strong radial orientation during inward growth when crowded populations invade a closed area. During this process, growth geometry sets virtual confinement and dictates the velocity profile. Herein, flow-induced alignment and torque balance on the rod-shaped bacteria result in a new stable orientational equilibrium in the radial direction. Our analysis revealed that the dynamics of these radially oriented structures, also known as aster defects, depend on bacterial length and can promote the survival of the longest bacteria around localized nutritional hotspots. The present results indicate a new mechanism underlying structural order and provide mechanistic insights into the dynamics of bacterial growth on complex surfaces.
Collapse
Affiliation(s)
| | - Y Ilker Yaman
- Department of Physics, Koç University, Istanbul, Turkey
| | | | - Roman Vetter
- Department of Biosystems Science and Engineering, ETH Zurich, Basel, Switzerland
| | - Askin Kocabas
- Department of Physics, Koç University, Istanbul, Turkey
| |
Collapse
|
36
|
Berezney J, Goode BL, Fraden S, Dogic Z. Extensile to contractile transition in active microtubule-actin composites generates layered asters with programmable lifetimes. Proc Natl Acad Sci U S A 2022; 119:e2115895119. [PMID: 35086931 PMCID: PMC8812548 DOI: 10.1073/pnas.2115895119] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 12/21/2021] [Indexed: 12/15/2022] Open
Abstract
We study a reconstituted composite system consisting of an active microtubule network interdigitated with a passive network of entangled F-actin filaments. Increasing the concentration of filamentous actin controls the emergent dynamics, inducing a transition from turbulent-like flows to bulk contractions. At intermediate concentrations, where the active stresses change their symmetry from anisotropic extensile to isotropic contracting, the composite separates into layered asters that coexist with the background turbulent fluid. Contracted onion-like asters have a radially extending microtubule-rich cortex that envelops alternating layers of microtubules and F-actin. These self-regulating structures undergo internal reorganization, which appears to minimize the surface area and maintain the ordered layering, even when undergoing aster merging events. Finally, the layered asters are metastable structures. Their lifetime, which ranges from minutes to hours, is encoded in the material properties of the composite. These results challenge the current models of active matter. They demonstrate self-organized dynamical states and patterns evocative of those observed in the cytoskeleton do not require precise biochemical regulation, but can arise from purely mechanical interactions of actively driven filamentous materials.
Collapse
Affiliation(s)
- John Berezney
- Department of Physics, Brandeis University, Waltham, MA 02454
| | - Bruce L Goode
- Department of Biology, Brandeis University, Waltham, MA 02454
| | - Seth Fraden
- Department of Physics, Brandeis University, Waltham, MA 02454
| | - Zvonimir Dogic
- Department of Physics, Brandeis University, Waltham, MA 02454;
- Department of Physics, University of California, Santa Barbara, CA 93106
- Biomolecular Science and Engineering Program, University of California, Santa Barbara, CA 93106
| |
Collapse
|
37
|
Yan W, Ansari S, Lamson A, Glaser MA, Blackwell R, Betterton MD, Shelley M. Toward the cellular-scale simulation of motor-driven cytoskeletal assemblies. eLife 2022; 11:74160. [PMID: 35617115 PMCID: PMC9135453 DOI: 10.7554/elife.74160] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 04/24/2022] [Indexed: 11/17/2022] Open
Abstract
The cytoskeleton - a collection of polymeric filaments, molecular motors, and crosslinkers - is a foundational example of active matter, and in the cell assembles into organelles that guide basic biological functions. Simulation of cytoskeletal assemblies is an important tool for modeling cellular processes and understanding their surprising material properties. Here, we present aLENS (a Living Ensemble Simulator), a novel computational framework designed to surmount the limits of conventional simulation methods. We model molecular motors with crosslinking kinetics that adhere to a thermodynamic energy landscape, and integrate the system dynamics while efficiently and stably enforcing hard-body repulsion between filaments. Molecular potentials are entirely avoided in imposing steric constraints. Utilizing parallel computing, we simulate tens to hundreds of thousands of cytoskeletal filaments and crosslinking motors, recapitulating emergent phenomena such as bundle formation and buckling. This simulation framework can help elucidate how motor type, thermal fluctuations, internal stresses, and confinement determine the evolution of cytoskeletal active matter.
Collapse
Affiliation(s)
- Wen Yan
- Center for Computational Biology, Flatiron InstituteNew YorkUnited States
| | - Saad Ansari
- Department of Physics, University of Colorado BoulderBoulderUnited States
| | - Adam Lamson
- Center for Computational Biology, Flatiron InstituteNew YorkUnited States,Department of Physics, University of Colorado BoulderBoulderUnited States
| | - Matthew A Glaser
- Department of Physics, University of Colorado BoulderBoulderUnited States
| | - Robert Blackwell
- Center for Computational Biology, Flatiron InstituteNew YorkUnited States
| | - Meredith D Betterton
- Center for Computational Biology, Flatiron InstituteNew YorkUnited States,Department of Physics, University of Colorado BoulderBoulderUnited States,Department of Molecular, Cellular, and Developmental Biology, University of Colorado BoulderBoulderUnited States
| | - Michael Shelley
- Center for Computational Biology, Flatiron InstituteNew YorkUnited States,Courant Institute, New York UniversityNew YorkUnited States
| |
Collapse
|
38
|
Balasubramaniam L, Mège RM, Ladoux B. Active forces modulate collective behaviour and cellular organization. C R Biol 2021; 344:325-335. [DOI: 10.5802/crbiol.65] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Accepted: 10/28/2021] [Indexed: 11/24/2022]
|
39
|
Senoussi A, Galas JC, Estevez-Torres A. Programmed mechano-chemical coupling in reaction-diffusion active matter. SCIENCE ADVANCES 2021; 7:eabi9865. [PMID: 34919433 PMCID: PMC8682988 DOI: 10.1126/sciadv.abi9865] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
Embryo morphogenesis involves a complex combination of self-organization mechanisms that generate a great diversity of patterns. However, classical in vitro patterning experiments explore only one self-organization mechanism at a time, thus missing coupling effects. Here, we conjugate two major out-of-equilibrium patterning mechanisms—reaction-diffusion and active matter—by integrating dissipative DNA/enzyme reaction networks within an active gel composed of cytoskeletal motors and filaments. We show that the strength of the flow generated by the active gel controls the mechano-chemical coupling between the two subsystems. This property was used to engineer a synthetic material where contractions trigger chemical reaction networks both in time and space, thus mimicking key aspects of the polarization mechanism observed in C. elegans oocytes. We anticipate that reaction-diffusion active matter will promote the investigation of mechano-chemical transduction and the design of new materials with life-like properties.
Collapse
|
40
|
Neahring L, Cho NH, Dumont S. Opposing motors provide mechanical and functional robustness in the human spindle. Dev Cell 2021; 56:3006-3018.e5. [PMID: 34614397 DOI: 10.1016/j.devcel.2021.09.011] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/27/2021] [Accepted: 09/13/2021] [Indexed: 11/30/2022]
Abstract
At each cell division, the spindle self-organizes from microtubules and motors. In human spindles, the motors dynein and Eg5 generate contractile and extensile stress, respectively. Inhibiting dynein or its targeting factor NuMA leads to unfocused, turbulent spindles, and inhibiting Eg5 leads to monopoles; yet, bipolar spindles form when both are inhibited together. What, then, are the roles of these opposing motors? Here, we generate NuMA/dynein- and Eg5-doubly inhibited spindles that not only attain a typical metaphase shape and size but also undergo anaphase. However, these spindles have reduced microtubule dynamics and are mechanically fragile, fracturing under force. Furthermore, they exhibit lagging chromosomes and a dramatic left-handed twist at anaphase. Thus, although these opposing motors are not required for spindle shape, they are essential to its mechanical and functional robustness. This work suggests a design principle whereby opposing active stresses provide robustness to force-generating cellular structures.
Collapse
Affiliation(s)
- Lila Neahring
- Department of Bioengineering & Therapeutic Sciences, UCSF, San Francisco, CA 94158, USA; Developmental & Stem Cell Biology Graduate Program, UCSF, San Francisco, CA 94143, USA.
| | - Nathan H Cho
- Department of Bioengineering & Therapeutic Sciences, UCSF, San Francisco, CA 94158, USA; Tetrad Graduate Program, UCSF, San Francisco, CA 94158, USA
| | - Sophie Dumont
- Department of Bioengineering & Therapeutic Sciences, UCSF, San Francisco, CA 94158, USA; Developmental & Stem Cell Biology Graduate Program, UCSF, San Francisco, CA 94143, USA; Tetrad Graduate Program, UCSF, San Francisco, CA 94158, USA; Department of Biochemistry & Biophysics, UCSF, San Francisco, CA 94158, USA; Chan Zuckerberg Biohub, San Francisco, CA 94158, USA.
| |
Collapse
|
41
|
Physics of liquid crystals in cell biology. Trends Cell Biol 2021; 32:140-150. [PMID: 34756501 DOI: 10.1016/j.tcb.2021.09.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 09/28/2021] [Accepted: 09/30/2021] [Indexed: 11/21/2022]
Abstract
The past decade has witnessed a rapid growth in understanding of the pivotal roles of mechanical stresses and physical forces in cell biology. As a result, an integrated view of cell biology is evolving, where genetic and molecular features are scrutinised hand in hand with physical and mechanical characteristics of cells. Physics of liquid crystals has emerged as a burgeoning new frontier in cell biology over the past few years, fuelled by an increasing identification of orientational order and topological defects in cell biology, spanning scales from subcellular filaments to individual cells and multicellular tissues. Here, we provide an account of the most recent findings and developments, together with future promises and challenges in this rapidly evolving interdisciplinary research direction.
Collapse
|
42
|
Fiorenza SA, Steckhahn DG, Betterton MD. Modeling spatiotemporally varying protein-protein interactions in CyLaKS, the Cytoskeleton Lattice-based Kinetic Simulator. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:105. [PMID: 34406510 PMCID: PMC10202044 DOI: 10.1140/epje/s10189-021-00097-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 06/21/2021] [Indexed: 05/24/2023]
Abstract
Interaction of cytoskeletal filaments, motor proteins, and crosslinking proteins drives important cellular processes such as cell division and cell movement. Cytoskeletal networks also exhibit nonequilibrium self-assembly in reconstituted systems. An emerging problem in cytoskeletal modeling and simulation is spatiotemporal alteration of the dynamics of filaments, motors, and associated proteins. This can occur due to motor crowding, obstacles along the filament, motor interactions and direction switching, and changes, defects, or heterogeneity in the filament binding lattice. How such spatiotemporally varying cytoskeletal filaments and motor interactions affect their collective properties is not fully understood. We developed the Cytoskeleton Lattice-based Kinetic Simulator (CyLaKS) to investigate such problems. The simulation model builds on previous work by incorporating motor mechanochemistry into a simulation with many interacting motors and/or associated proteins on a discretized lattice. CyLaKS also includes detailed balance in binding kinetics, movement, and lattice heterogeneity. The simulation framework is flexible and extensible for future modeling work and is available on GitHub for others to freely use or build upon. Here we illustrate the use of CyLaKS to study long-range motor interactions, microtubule lattice heterogeneity, motion of a heterodimeric motor, and how changing crosslinker number affects filament separation.
Collapse
Affiliation(s)
- Shane A Fiorenza
- Department of Physics, University of Colorado Boulder, Boulder, USA
| | | | | |
Collapse
|
43
|
Mercadante DL, Manning AL, Olson SD. Modeling reveals cortical dynein-dependent fluctuations in bipolar spindle length. Biophys J 2021; 120:3192-3210. [PMID: 34197801 DOI: 10.1016/j.bpj.2021.05.030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 04/26/2021] [Accepted: 05/18/2021] [Indexed: 10/21/2022] Open
Abstract
Proper formation and maintenance of the mitotic spindle is required for faithful cell division. Although much work has been done to understand the roles of the key molecular components of the mitotic spindle, identifying the consequences of force perturbations in the spindle remains a challenge. We develop a computational framework accounting for the minimal force requirements of mitotic progression. To reflect early spindle formation, we model microtubule dynamics and interactions with major force-generating motors, excluding chromosome interactions that dominate later in mitosis. We directly integrate our experimental data to define and validate the model. We then use simulations to analyze individual force components over time and their relationship to spindle dynamics, making it distinct from previously published models. We show through both model predictions and biological manipulation that rather than achieving and maintaining a constant bipolar spindle length, fluctuations in pole-to-pole distance occur that coincide with microtubule binding and force generation by cortical dynein. Our model further predicts that high dynein activity is required for spindle bipolarity when kinesin-14 (HSET) activity is also high. To the best of our knowledge, our results provide novel insight into the role of cortical dynein in the regulation of spindle bipolarity.
Collapse
Affiliation(s)
- Dayna L Mercadante
- Bioinformatics and Computational Biology Program, Worcester, Massachusetts
| | - Amity L Manning
- Department of Biology and Biotechnology, Worcester, Massachusetts.
| | - Sarah D Olson
- Department of Mathematical Sciences, Worcester Polytechnic Institute, Worcester, Massachusetts.
| |
Collapse
|
44
|
Gai Y, Cook B, Setru S, Stone HA, Petry S. Confinement size determines the architecture of Ran-induced microtubule networks. SOFT MATTER 2021; 17:5921-5931. [PMID: 34041514 PMCID: PMC8958645 DOI: 10.1039/d1sm00045d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The organization of microtubules (MTs) is critical for cells during interphase and mitosis. During mitotic spindle assembly, MTs are made and organized around chromosomes in a process regulated by RanGTP. The role of RanGTP has been explored in Xenopus egg extracts, which are not limited by a cell membrane. Here, we investigated whether cell-sized confinements affect the assembly of RanGTP-induced MT networks in Xenopus egg extracts. We used microfluidics to encapsulate extracts within monodisperse extract-in-oil droplets. Importantly, we find that the architecture of Ran-induced MT networks depends on the droplet diameter and the Ran concentration, and differs from structures formed in bulk extracts. Our results highlight that both MT nucleation and physical confinement play critical roles in determining the spatial organization of the MT cytoskeleton.
Collapse
Affiliation(s)
- Ya Gai
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, USA.
| | - Brian Cook
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| | - Sagar Setru
- Lewis-Sigler Institute of Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Howard A Stone
- Department of Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, USA.
| | - Sabine Petry
- Department of Molecular Biology, Princeton University, Princeton, NJ, USA.
| |
Collapse
|
45
|
Bermudez JG, Deiters A, Good MC. Patterning Microtubule Network Organization Reshapes Cell-Like Compartments. ACS Synth Biol 2021; 10:1338-1350. [PMID: 33988978 DOI: 10.1021/acssynbio.0c00575] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Eukaryotic cells contain a cytoskeletal network comprised of dynamic microtubule filaments whose spatial organization is highly plastic. Specialized microtubule architectures are optimized for different cell types and remodel with the oscillatory cell cycle. These spatially distinct microtubule networks are thought to arise from the activity and localization of microtubule regulators and motors and are further shaped by physical forces from the cell boundary. Given complexities and redundancies of a living cell, it is challenging to disentangle the separate biochemical and physical contributions to microtubule network organization. Therefore, we sought to develop a minimal cell-like system to manipulate and spatially pattern the organization of cytoskeletal components in real-time, providing an opportunity to build distinct spatial structures and to determine how they are shaped by or reshape cell boundaries. We constructed a system for induced spatial patterning of protein components within cell-sized emulsion compartments and used it to drive microtubule network organization in real-time. We controlled dynamic protein relocalization using small molecules and light and slowed lateral diffusion within the lipid monolayer to create stable micropatterns with focused illumination. By fusing microtubule interacting proteins to optochemical dimerization domains, we directed the spatial organization of microtubule networks. Cortical patterning of polymerizing microtubules leads to symmetry breaking and forces that dramatically reshape the compartment. Our system has applications in cell biology to characterize the contributions of biochemical components and physical boundary conditions to microtubule network organization. Additionally, active shape control has uses in protocell engineering and for augmenting the functionalities of synthetic cells.
Collapse
Affiliation(s)
- Jessica G. Bermudez
- Bioengineering Graduate Program, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Alexander Deiters
- Chemistry Department, University of Pittsburgh, Pittsburgh, Pennsylvania 15260, United States
| | - Matthew C. Good
- Bioengineering Graduate Program, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Cell and Developmental Biology Department, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Bioengineering Department, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
46
|
Sahu S, Herbst L, Quinn R, Ross JL. Crowder and surface effects on self-organization of microtubules. Phys Rev E 2021; 103:062408. [PMID: 34271669 DOI: 10.1103/physreve.103.062408] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 05/14/2021] [Indexed: 12/30/2022]
Abstract
Microtubules are an essential physical building block of cellular systems. They are organized using specific crosslinkers, motors, and influencers of nucleation and growth. With the addition of antiparallel crosslinkers, microtubule self-organization patterns go through a transition from fanlike structures to homogeneous tactoid condensates in vitro. Tactoids are reminiscent of biological mitotic spindles, the cell division machinery. To create these organizations, we previously used polymer crowding agents. Here we study how altering the properties of the crowders, such as type, size, and molecular weight, affects microtubule organization. Comparing simulations with experiments, we observe a scaling law associated with the fanlike patterns in the absence of crosslinkers. Tactoids formed in the presence of crosslinkers show variable length, depending on the crowders. We correlate the subtle differences to filament contour length changes, affected by nucleation and growth rate changes induced by the polymers in solution. Using quantitative image analysis, we deduce that the tactoids differ from traditional liquid crystal organization, as they are limited in width irrespective of crowders and surfaces, and behave as solidlike condensates.
Collapse
Affiliation(s)
- Sumon Sahu
- Department of Physics, Syracuse University, Syracuse, New York 13244, USA
| | - Lena Herbst
- Department of Microbiology, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
| | - Ryan Quinn
- Department of Biochemistry and Molecular Biology, University of Massachusetts Amherst, Amherst, Massachusetts 01003, USA
| | - Jennifer L Ross
- Department of Physics, Syracuse University, Syracuse, New York 13244, USA
| |
Collapse
|
47
|
Mani N, Wijeratne SS, Subramanian R. Micron-scale geometrical features of microtubules as regulators of microtubule organization. eLife 2021; 10:e63880. [PMID: 34114950 PMCID: PMC8195601 DOI: 10.7554/elife.63880] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Accepted: 06/02/2021] [Indexed: 12/20/2022] Open
Abstract
The organization of micron-sized, multi-microtubule arrays from individual microtubules is essential for diverse cellular functions. The microtubule polymer is largely viewed as a passive building block during the organization process. An exception is the 'tubulin code' where alterations to tubulin at the amino acid level can influence the activity of microtubule-associated proteins. Recent studies reveal that micron-scale geometrical features of individual microtubules and polymer networks, such as microtubule length, overlap length, contact angle, and lattice defects, can also regulate the activity of microtubule-associated proteins and modulate polymer dynamics. We discuss how the interplay between such geometrical properties of the microtubule lattice and the activity of associated proteins direct multiple aspects of array organization, from microtubule nucleation and coalignment to specification of array dimensions and remodeling of dynamic networks. The mechanisms reviewed here highlight micron-sized features of microtubules as critical parameters to be routinely investigated in the study of microtubule self-organization.
Collapse
Affiliation(s)
- Nandini Mani
- Department of Molecular Biology, Massachusetts General HospitalBostonUnited States
- Department of Genetics, Harvard Medical SchoolBostonUnited States
| | - Sithara S Wijeratne
- Department of Molecular Biology, Massachusetts General HospitalBostonUnited States
- Department of Genetics, Harvard Medical SchoolBostonUnited States
| | - Radhika Subramanian
- Department of Molecular Biology, Massachusetts General HospitalBostonUnited States
- Department of Genetics, Harvard Medical SchoolBostonUnited States
| |
Collapse
|
48
|
Lamson AR, Moore JM, Fang F, Glaser MA, Shelley MJ, Betterton MD. Comparison of explicit and mean-field models of cytoskeletal filaments with crosslinking motors. THE EUROPEAN PHYSICAL JOURNAL. E, SOFT MATTER 2021; 44:45. [PMID: 33779863 PMCID: PMC8220871 DOI: 10.1140/epje/s10189-021-00042-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2021] [Accepted: 02/20/2021] [Indexed: 05/17/2023]
Abstract
In cells, cytoskeletal filament networks are responsible for cell movement, growth, and division. Filaments in the cytoskeleton are driven and organized by crosslinking molecular motors. In reconstituted cytoskeletal systems, motor activity is responsible for far-from-equilibrium phenomena such as active stress, self-organized flow, and spontaneous nematic defect generation. How microscopic interactions between motors and filaments lead to larger-scale dynamics remains incompletely understood. To build from motor-filament interactions to predict bulk behavior of cytoskeletal systems, more computationally efficient techniques for modeling motor-filament interactions are needed. Here, we derive a coarse-graining hierarchy of explicit and continuum models for crosslinking motors that bind to and walk on filament pairs. We compare the steady-state motor distribution and motor-induced filament motion for the different models and analyze their computational cost. All three models agree well in the limit of fast motor binding kinetics. Evolving a truncated moment expansion of motor density speeds the computation by [Formula: see text]-[Formula: see text] compared to the explicit or continuous-density simulations, suggesting an approach for more efficient simulation of large networks. These tools facilitate further study of motor-filament networks on micrometer to millimeter length scales.
Collapse
Affiliation(s)
- Adam R Lamson
- Department of Physics, University of Colorado Boulder, Boulder, USA.
| | - Jeffrey M Moore
- Department of Physics, University of Colorado Boulder, Boulder, USA
| | - Fang Fang
- Courant Institute, New York University, New York, USA
| | - Matthew A Glaser
- Department of Physics, University of Colorado Boulder, Boulder, USA
| | - Michael J Shelley
- Courant Institute, New York University, New York, USA
- Center for Computational Biology, Flatiron Institute, New York, USA
| | | |
Collapse
|
49
|
Shamipour S, Caballero-Mancebo S, Heisenberg CP. Cytoplasm's Got Moves. Dev Cell 2021; 56:213-226. [PMID: 33321104 DOI: 10.1016/j.devcel.2020.12.002] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/22/2020] [Accepted: 11/30/2020] [Indexed: 01/01/2023]
Abstract
Cytoplasm is a gel-like crowded environment composed of various macromolecules, organelles, cytoskeletal networks, and cytosol. The structure of the cytoplasm is highly organized and heterogeneous due to the crowding of its constituents and their effective compartmentalization. In such an environment, the diffusive dynamics of the molecules are restricted, an effect that is further amplified by clustering and anchoring of molecules. Despite the crowded nature of the cytoplasm at the microscopic scale, large-scale reorganization of the cytoplasm is essential for important cellular functions, such as cell division and polarization. How such mesoscale reorganization of the cytoplasm is achieved, especially for large cells such as oocytes or syncytial tissues that can span hundreds of micrometers in size, is only beginning to be understood. In this review, we will discuss recent advances in elucidating the molecular, cellular, and biophysical mechanisms by which the cytoskeleton drives cytoplasmic reorganization across different scales, structures, and species.
Collapse
Affiliation(s)
- Shayan Shamipour
- Institute of Science and Technology Austria, Klosterneuburg, Austria
| | | | | |
Collapse
|
50
|
Fan G, Sun L, Meng L, Hu C, Wang X, Shi Z, Hu C, Han Y, Yang Q, Cao L, Zhang X, Zhang Y, Song X, Xia S, He B, Zhang S, Wang C. The ATM and ATR kinases regulate centrosome clustering and tumor recurrence by targeting KIFC1 phosphorylation. Nat Commun 2021; 12:20. [PMID: 33397932 PMCID: PMC7782532 DOI: 10.1038/s41467-020-20208-x] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Accepted: 11/18/2020] [Indexed: 12/31/2022] Open
Abstract
Drug resistance and tumor recurrence are major challenges in cancer treatment. Cancer cells often display centrosome amplification. To maintain survival, cancer cells achieve bipolar division by clustering supernumerary centrosomes. Targeting centrosome clustering is therefore considered a promising therapeutic strategy. However, the regulatory mechanisms of centrosome clustering remain unclear. Here we report that KIFC1, a centrosome clustering regulator, is positively associated with tumor recurrence. Under DNA damaging treatments, the ATM and ATR kinases phosphorylate KIFC1 at Ser26 to selectively maintain the survival of cancer cells with amplified centrosomes via centrosome clustering, leading to drug resistance and tumor recurrence. Inhibition of KIFC1 phosphorylation represses centrosome clustering and tumor recurrence. This study identified KIFC1 as a prognostic tumor recurrence marker, and revealed that tumors can acquire therapeutic resistance and recurrence via triggering centrosome clustering under DNA damage stresses, suggesting that blocking KIFC1 phosphorylation may open a new vista for cancer therapy.
Collapse
Affiliation(s)
- Guangjian Fan
- Translational Medicine Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 201620, Shanghai, China
| | - Lianhui Sun
- Translational Medicine Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 201620, Shanghai, China
| | - Ling Meng
- Department of Pulmonary and Critical Care Medicine, The Second Affiliated Hospital of Shandong First Medical University, 271000, Shandong, China
| | - Chen Hu
- Translational Medicine Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 201620, Shanghai, China
| | - Xing Wang
- Translational Medicine Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 201620, Shanghai, China
| | - Zhan Shi
- Translational Medicine Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 201620, Shanghai, China
| | - Congli Hu
- Translational Medicine Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 201620, Shanghai, China
| | - Yang Han
- Translational Medicine Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 201620, Shanghai, China
| | - Qingqing Yang
- Translational Medicine Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 201620, Shanghai, China
| | - Liu Cao
- Key Laboratory of Medical Cell Biology, College of Translational Medicine, China Medical University, 110000, Shenyang, China
| | - Xiaohong Zhang
- Department of Oncology, Karmanos Cancer Institute, Wayne State University School of Medicine, 4100 John R., Detroit, MI, 48201, USA
| | - Yan Zhang
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 201620, Shanghai, China
| | - Xianmin Song
- Department of Hematology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 201620, Shanghai, China
| | - Shujie Xia
- Department of Urology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine; Institute of Urology, Shanghai Jiao Tong University, 200080, Shanghai, China
| | - Baokun He
- Department of Gastroenterology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 201620, Shanghai, China
| | - Shengping Zhang
- Translational Medicine Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 201620, Shanghai, China.
| | - Chuangui Wang
- Translational Medicine Center, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, 201620, Shanghai, China.
| |
Collapse
|