1
|
Zou H, Huang X, Xiao W, He H, Liu S, Zeng H. Recent advancements in bacterial anti-phage strategies and the underlying mechanisms altering susceptibility to antibiotics. Microbiol Res 2025; 295:128107. [PMID: 40023108 DOI: 10.1016/j.micres.2025.128107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 02/12/2025] [Accepted: 02/16/2025] [Indexed: 03/04/2025]
Abstract
The rapid spread of multidrug-resistant bacteria and the challenges in developing new antibiotics have brought renewed international attention to phage therapy. However, in bacteria-phage co-evolution, the rapid development of bacterial resistance to phage has limited its clinical application. This review consolidates the latest advancements in research on anti-phage mechanisms, encompassing strategies such as systems associated with reduced nicotinamide adenine dinucleotide (NAD+) to halt the propagation of the phage, symbiotic bacteria episymbiont-mediated modulation of gene expression in host bacteria to resist phage infection, and defence-related reverse transcriptase (DRT) encoded by bacteria to curb phage infections. We conduct an in-depth analysis of the underlying mechanisms by which bacteria undergo alterations in antibiotic susceptibility after developing phage resistance. We also discuss the remaining challenges and promising directions for phage-based therapy in the future.
Collapse
Affiliation(s)
- Huanhuan Zou
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Xiaoyi Huang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Wenyue Xiao
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Haoxuan He
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Shenshen Liu
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China
| | - Haiyan Zeng
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou 510006, China.
| |
Collapse
|
2
|
López-Pérez J, Cortés P, Campoy S, Erill I, Llagostera M. Deciphering the Causes of IbfA-Mediated Abortive Infection in the P22-like Phage UAB_Phi20. Int J Mol Sci 2025; 26:4918. [PMID: 40430055 PMCID: PMC12111858 DOI: 10.3390/ijms26104918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2025] [Revised: 05/07/2025] [Accepted: 05/15/2025] [Indexed: 05/29/2025] Open
Abstract
The study of bacterial defense mechanisms against phages is becoming increasingly relevant due to their impact on the effectiveness of phage therapy. Employing a multifaceted approach that combines bioinformatics, molecular microbiology, TEM microscopy, and conventional microbiology techniques, here, we identify the ibfA gene as a novel defense factor targeting the virulent phage UAB_Phi20, acquired by Salmonella Typhimurium through lateral transfer on the IncI1α conjugative plasmid pUA1135 after oral phage therapy in broilers. IbfA, a two-domain protein containing ATPase and TOPRIM domains, significantly reduces UAB_Phi20 productivity, as indicated by decreased EOP, ECOI, and a diminished burst size, potentially reducing cellular viability without causing observable lysis. Our results indicate that IbfA enhances the transcription of early genes, including the antirepressor ant, which inhibits the C2 repressor of the lytic cycle. This may cause an imbalance in Cro/C2 concentration, leading to the observed reduction in the transcription of late genes encoding structural and cellular lysis proteins, and resulting in the abortion of UAB_Phi20 infection.
Collapse
Affiliation(s)
- Júlia López-Pérez
- Molecular Microbiology Group, Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain; (J.L.-P.); (S.C.); (M.L.)
| | - Pilar Cortés
- Molecular Microbiology Group, Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain; (J.L.-P.); (S.C.); (M.L.)
| | - Susana Campoy
- Molecular Microbiology Group, Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain; (J.L.-P.); (S.C.); (M.L.)
| | - Ivan Erill
- Departament d’Enginyeria de la Informació i de les Comunicacions Àrea de Ciències de la Computació i Intel·ligència Artificial, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain;
| | - Montserrat Llagostera
- Molecular Microbiology Group, Departament de Genètica i de Microbiologia, Universitat Autònoma de Barcelona, 08193 Cerdanyola del Vallès, Barcelona, Spain; (J.L.-P.); (S.C.); (M.L.)
| |
Collapse
|
3
|
Brenes LR, Laub MT. E. coli prophages encode an arsenal of defense systems to protect against temperate phages. Cell Host Microbe 2025:S1931-3128(25)00154-4. [PMID: 40409266 DOI: 10.1016/j.chom.2025.04.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2024] [Revised: 03/21/2025] [Accepted: 04/30/2025] [Indexed: 05/25/2025]
Abstract
In recent years, dozens of anti-phage defense systems have been identified. However, efforts to find these systems have focused predominantly on lytic phages, leaving defense against temperate phages poorly understood. Here, we isolated 33 temperate phages from a diverse collection of E. coli to create a library of single lysogens, which were tested for defense against the same set of temperate phages. We found that the majority of lysogens offer protection against at least one additional phage from the collection, often displaying broad defense against various phages. Defense efficacy varies based on growth media and host background, suggesting that some systems are context dependent. Using an iterative deletion-based strategy, we identify 17 systems responsible for the prophage-encoded defense, including 5 toxin-antitoxin modules. Collectively, our work uncovers a diverse array of phage-phage interactions and indicates that temperate phages encode a previously unrecognized arsenal of anti-phage defense systems.
Collapse
Affiliation(s)
- Lucas R Brenes
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Michael T Laub
- Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA; Howard Hughes Medical Institute, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| |
Collapse
|
4
|
Bürmann F, Clifton B, Koekemoer S, Wilkinson OJ, Kimanius D, Dillingham MS, Löwe J. Mechanism of DNA capture by the MukBEF SMC complex and its inhibition by a viral DNA mimic. Cell 2025; 188:2465-2479.e14. [PMID: 40168993 DOI: 10.1016/j.cell.2025.02.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2024] [Revised: 12/18/2024] [Accepted: 02/26/2025] [Indexed: 04/03/2025]
Abstract
Ring-like structural maintenance of chromosome (SMC) complexes are crucial for genome organization and operate through mechanisms of DNA entrapment and loop extrusion. Here, we explore the DNA loading process of the bacterial SMC complex MukBEF. Using cryoelectron microscopy (cryo-EM), we demonstrate that ATP binding opens one of MukBEF's three potential DNA entry gates, exposing a DNA capture site that positions DNA at the open neck gate. We discover that the gp5.9 protein of bacteriophage T7 blocks this capture site by DNA mimicry, thereby preventing DNA loading and inactivating MukBEF. We propose a comprehensive and unidirectional loading mechanism in which DNA is first captured at the complex's periphery and then ingested through the DNA entry gate, powered by a single cycle of ATP hydrolysis. These findings illuminate a fundamental aspect of how ubiquitous DNA organizers are primed for genome maintenance and demonstrate how this process can be disrupted by viruses.
Collapse
Affiliation(s)
- Frank Bürmann
- MRC Laboratory of Molecular Biology, Structural Studies, Francis Crick Avenue, Cambridge CB2 0QH, UK; University of Oxford, Department of Biochemistry, South Parks Road, Oxford OX1 3QU, UK.
| | - Bryony Clifton
- University of Bristol, School of Biochemistry, DNA:Protein Interactions Unit, Bristol BS8 1TD, UK
| | - Sophie Koekemoer
- University of Bristol, School of Biochemistry, DNA:Protein Interactions Unit, Bristol BS8 1TD, UK
| | - Oliver J Wilkinson
- University of Bristol, School of Biochemistry, DNA:Protein Interactions Unit, Bristol BS8 1TD, UK
| | - Dari Kimanius
- MRC Laboratory of Molecular Biology, Structural Studies, Francis Crick Avenue, Cambridge CB2 0QH, UK; CZ Imaging Institute, 3400 Bridge Parkway, Redwood City, CA 94065, USA
| | - Mark S Dillingham
- University of Bristol, School of Biochemistry, DNA:Protein Interactions Unit, Bristol BS8 1TD, UK.
| | - Jan Löwe
- MRC Laboratory of Molecular Biology, Structural Studies, Francis Crick Avenue, Cambridge CB2 0QH, UK.
| |
Collapse
|
5
|
Silas S, Carion H, Makarova KS, Laderman ES, Todeschini T, Kumar P, Johnson M, Bocek M, Nobrega FL, Koonin EV, Bondy-Denomy J. Activation of bacterial programmed cell death by phage inhibitors of host immunity. Mol Cell 2025; 85:1838-1851.e10. [PMID: 40315827 DOI: 10.1016/j.molcel.2025.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 03/04/2025] [Accepted: 04/07/2025] [Indexed: 05/04/2025]
Abstract
Bacterial and archaeal viruses are replete with diverse uncharacterized accessory genes (AGs), which likely interface with host processes. However, large-scale discovery of virus AG functions remains challenging. Here, we developed an integrated computational and experimental discovery platform to identify viral AGs and assign functions. We show that multiple AGs activate unexpected programmed cell death (PCD) activity of distinct restriction-modification (R-M) systems. We describe an exapted type I R-M decoy that kills the host upon sensing several different anti-defense AGs and a self-guarded type III R-M system that restricts phages but also induces PCD when bound by anti-R-M proteins. Other phage counter-defense genes additionally activate non-R-M-based abortive infection systems encoded by prophages. This defense strategy creates a conundrum: lose AGs and be exposed to immunity or keep AGs and trigger PCD. Strategies employed by viruses to avoid this double bind could be an important factor in virus evolution that remains to be explored.
Collapse
Affiliation(s)
- Sukrit Silas
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA; Gladstone Institute of Virology, J. David Gladstone Institutes, San Francisco, CA 94158, USA.
| | - Héloïse Carion
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Kira S Makarova
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Eric S Laderman
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Thomas Todeschini
- School of Biological Sciences, University of Southampton, Southampton, UK
| | | | - Matthew Johnson
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA
| | - Michael Bocek
- Twist Biosciences, South San Francisco, CA 94080, USA
| | - Franklin L Nobrega
- School of Biological Sciences, University of Southampton, Southampton, UK
| | - Eugene V Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Joseph Bondy-Denomy
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94158, USA; Innovative Genomics Institute, Berkeley, CA 94720, USA; Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94158, USA.
| |
Collapse
|
6
|
Song XY, Xia Y, Zhang JT, Liu YJ, Qi H, Wei XY, Hu H, Xia Y, Liu X, Ma YF, Jia N. Bacterial reverse transcriptase synthesizes long poly-A-rich cDNA for antiphage defense. Science 2025:eads4639. [PMID: 40310939 DOI: 10.1126/science.ads4639] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 01/27/2025] [Accepted: 04/22/2025] [Indexed: 05/03/2025]
Abstract
Prokaryotic defense-associated reverse transcriptases (DRTs) were recently identified with antiviral functions; however, their functional mechanisms remain largely unexplored. Here we show that DRT9 forms a hexameric complex with its upstream non-coding RNA (ncRNA) to mediate antiphage defense by inducing cell growth arrest via abortive infection. Upon phage infection, the phage-encoded ribonucleotide reductase NrdAB complex elevates intracellular dATP levels, activating DRT9 to synthesize long, poly-A-rich single-stranded cDNA, which likely sequesters the essential phage SSB protein and disrupts phage propagation. We further determined the cryo-electron microscopy structure of the DRT9-ncRNA hexamer complex, providing mechanistic insights into its cDNA synthesis. These findings highlight the diversity of RT-based antiviral defense mechanisms, expand our understanding of RT biological functions, and provide a structural basis for developing DRT9-based biotechnological tools.
Collapse
Affiliation(s)
- Xin-Yi Song
- Department of Biochemistry, SUSTech Homeostatic Medicine Institute, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yushan Xia
- Department of Biochemistry, SUSTech Homeostatic Medicine Institute, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Jun-Tao Zhang
- Department of Biochemistry, SUSTech Homeostatic Medicine Institute, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yu-Jun Liu
- Department of Biochemistry, SUSTech Homeostatic Medicine Institute, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Hua Qi
- Department of Biochemistry, SUSTech Homeostatic Medicine Institute, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Xin-Yang Wei
- Department of Biochemistry, SUSTech Homeostatic Medicine Institute, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Hailiang Hu
- Department of Biochemistry, SUSTech Homeostatic Medicine Institute, School of Medicine, Southern University of Science and Technology, Shenzhen, China
| | - Yu Xia
- School of Environmental Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xue Liu
- Department of Pathogen Biology, Base for International Science and Technology Cooperation: Carson Cancer Stem Cell Vaccines R&D Center, International Cancer Center,Shenzhen University Medical School, Shenzhen, Guangdong, China
| | - Ying-Fei Ma
- Laboratory of Quantitative Synthetic Biology, Shenzhen Institute of Synthetic Biology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, Guangdong, China
| | - Ning Jia
- Department of Biochemistry, SUSTech Homeostatic Medicine Institute, School of Medicine, Southern University of Science and Technology, Shenzhen, China
- Shenzhen Key Laboratory of Cell Microenvironment, Guangdong Provincial Key Laboratory of Cell Microenvironment and Disease Research, Southern University of Science and Technology, Shenzhen, Guangdong, China
- Key University Laboratory of Metabolism and Health of Guangdong, Institute for Biological Electron Microscopy, Southern University of Science and Technology, Shenzhen, Guangdong, China
| |
Collapse
|
7
|
Drebes Dörr NC, Lemopoulos A, Blokesch M. Exploring Mobile Genetic Elements in Vibrio cholerae. Genome Biol Evol 2025; 17:evaf079. [PMID: 40302206 PMCID: PMC12082036 DOI: 10.1093/gbe/evaf079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 04/22/2025] [Accepted: 04/25/2025] [Indexed: 05/02/2025] Open
Abstract
Members of the bacterial species Vibrio cholerae are known both as prominent constituents of marine environments and as the causative agents of cholera, a severe diarrheal disease. While strains responsible for cholera have been extensively studied over the past century, less is known about their environmental counterparts, despite their contributions to the species' pangenome. This study analyzed the genome compositions of 46 V. cholerae strains, including pandemic and nonpandemic, toxigenic, and environmental variants, to investigate the diversity of mobile genetic elements (MGEs), embedded bacterial defense systems, and phage-associated signatures. Our findings include both conserved and novel MGEs across strains, pointing to shared evolutionary pathways and ecological niches. The defensome analysis revealed a wide array of antiphage/antiplasmid mechanisms, extending well beyond the traditional CRISPR-Cas and restriction-modification systems. This underscores the dynamic arms race between V. cholerae and MGEs and suggests that nonpandemic strains may act as reservoirs for emerging defense strategies. Moreover, the study showed that MGEs are integrated into genomic hotspots, which may serve as critical platforms for the exchange of defense systems, thereby enhancing V. cholerae's adaptive capabilities against phage attacks and other invading MGEs. Overall, this research offers new insights into V. cholerae's genetic complexity and potential adaptive strategies, offering a better understanding of the differences between environmental strains and their pandemic counterparts, as well as the possible evolutionary pathways that led to the emergence of pandemic strains.
Collapse
Affiliation(s)
- Natália C Drebes Dörr
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Alexandre Lemopoulos
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| |
Collapse
|
8
|
Yao F, He J, Nyaruaba R, Wei H, Li Y. Unveiling the role of phages in shaping the periodontal microbial ecosystem. mSystems 2025; 10:e0020125. [PMID: 40152610 PMCID: PMC12013270 DOI: 10.1128/msystems.00201-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2025] [Accepted: 02/25/2025] [Indexed: 03/29/2025] Open
Abstract
The oral microbiome comprises various species and plays a crucial role in maintaining the oral ecosystem and host health. Phages are an important component of the periodontal microbiome, yet our understanding of periodontal phages remains limited. Here, we investigated oral periodontal phages using various advanced bioinformatics tools based on genomes of key periodontitis pathogens. Prophages were found to encode various auxiliary genes that potentially enhance host survival and pathogenicity, including genes involved in carbohydrate metabolism, antibiotic resistance, and immune modulation. We observed cross-species transmission among prophages with a complex network of phage-bacteria interactions. Our findings suggest that prophages play a crucial role in shaping the periodontal microbial ecosystem, influencing microbial community dynamics and the progression of periodontitis.IMPORTANCEIn the context of periodontitis, the ecological dynamics of the microbiome are largely driven by interactions between bacteria and their phages. While the impact of prophages on regulating oral pathogens has been increasingly recognized, their role in modulating periodontal disease remains underexplored. This study reveals that prophages within key periodontitis pathogens contribute significantly to virulence factor dissemination, antibiotic resistance, and host metabolism. By influencing the metabolic capabilities and survival strategies of their bacterial hosts, prophages may act as critical regulators of microbial communities in the oral cavity. Understanding these prophage-mediated interactions is essential not only for unraveling the mechanisms of periodontal disease progression but also for developing innovative therapeutic approaches that target the microbial ecosystem at the genetic level. These insights emphasize the need for more comprehensive studies on the ecological risks posed by prophages in shaping microbial pathogenicity and resistance.
Collapse
Affiliation(s)
- Fangfang Yao
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology Wuhan University, Wuhan, Hubei, China
| | - Jiajun He
- CAS-Key Laboratory of Synthetic Biology, CAS Center for Excellence in Molecular Plant Sciences, Institute of Plant Physiology and Ecology, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Raphael Nyaruaba
- WHP Innovation Lab, Wuhan Institute of Virology Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Hongping Wei
- WHP Innovation Lab, Wuhan Institute of Virology Chinese Academy of Sciences, Wuhan, Hubei, China
| | - Yuhong Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology Wuhan University, Wuhan, Hubei, China
| |
Collapse
|
9
|
Yuping L, Guan L, Becher I, Makarova KS, Cao X, Hareendranath S, Guan J, Stein F, Yang S, Boergel A, Lapouge K, Remans K, Agard D, Savitski M, Typas A, Koonin EV, Feng Y, Bondy-Denomy J. Jumbo phage killer immune system targets early infection of nucleus-forming phages. Cell 2025; 188:2127-2140.e21. [PMID: 40112800 DOI: 10.1016/j.cell.2025.02.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 12/24/2024] [Accepted: 02/20/2025] [Indexed: 03/22/2025]
Abstract
Jumbo bacteriophages of the ϕKZ-like family assemble a lipid-based early phage infection (EPI) vesicle and a proteinaceous nucleus-like structure during infection. These structures protect the phage from nucleases and may create selective pressure for immunity mechanisms targeting this specific phage family. Here, we identify "jumbo phage killer" (Juk), a two-component immune system that terminates infection of ϕKZ-like phages, suppressing the expression of early phage genes and preventing phage DNA replication and phage nucleus assembly while saving the cell. JukA (formerly YaaW) rapidly senses the EPI vesicle by binding to an early-expressed phage protein, gp241, and then directly recruits JukB. The JukB effector structurally resembles a pore-forming toxin and destabilizes the EPI vesicle. Functional anti-ϕKZ JukA homologs are found across bacterial phyla, associated with diverse effectors. These findings reveal a widespread defense system that specifically targets early events executed by ϕKZ-like jumbo phages prior to phage nucleus assembly.
Collapse
Affiliation(s)
- Li Yuping
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94403, USA.
| | - Linlin Guan
- State Key Laboratory of Green Biomanufacturing, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Isabelle Becher
- European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Kira S Makarova
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Xueli Cao
- State Key Laboratory of Green Biomanufacturing, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Surabhi Hareendranath
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94403, USA
| | - Jingwen Guan
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94403, USA
| | - Frank Stein
- European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Siqi Yang
- State Key Laboratory of Green Biomanufacturing, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Arne Boergel
- European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Karine Lapouge
- European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Kim Remans
- European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - David Agard
- The Chan-Zuckerberg Institute for Advanced Biological Imaging and the Department of Biochemistry, University of California, San Francisco, San Francisco, CA 94143, USA
| | - Mikhail Savitski
- European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Athanasios Typas
- European Molecular Biology Laboratory (EMBL), Meyerhofstraße 1, 69117 Heidelberg, Germany
| | - Eugene V Koonin
- Computational Biology Branch, Division of Intramural Research, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| | - Yue Feng
- State Key Laboratory of Green Biomanufacturing, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| | - Joseph Bondy-Denomy
- Department of Microbiology and Immunology, University of California, San Francisco, San Francisco, CA 94403, USA; Quantitative Biosciences Institute, University of California, San Francisco, San Francisco, CA 94403, USA.
| |
Collapse
|
10
|
Gerdes K. Mono- and multidomain defense toxins of the RelE/ParE superfamily. mBio 2025; 16:e0025825. [PMID: 39998207 PMCID: PMC11980606 DOI: 10.1128/mbio.00258-25] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2025] [Accepted: 02/03/2025] [Indexed: 02/26/2025] Open
Abstract
Toxin-antitoxin (TA) modules are widely distributed across prokaryotes, often existing in large numbers despite their associated fitness costs. Most type II TA modules are bicistronic operons encoding a monodomain toxin and its cognate protein antitoxin. The RelE/ParE superfamily encompasses toxins with a conserved Barnase-EndoU-ColicinE5/D-RelE (BECR) fold. Yet, their cellular targets differ remarkably: RelE toxins function as ribosome-dependent RNases, while ParE toxins act as DNA gyrase inhibitors. Using a comprehensive bioinformatics approach, this study analyzed 13 BECR-fold toxin families as classified in the Pfam database. Intriguingly, the ParE family was found to include a subcluster of mRNA-cleaving toxins, challenging its conventional role as solely DNA-targeting. This study identified a novel tripartite operon encoding a PtuA-like defense ATPase, a homolog of type IV restriction endonucleases, and a RelE homolog, suggesting a coordinated role in defense mechanisms. Multidomain BECR-fold toxins, including transmembrane variants, were also discovered, extending the functional repertoire of type II TA modules to membrane-associated systems. These findings clarify the evolutionary relationships and functional diversity within the RelE/ParE superfamily and discover novel, putative defense systems that can now be investigated experimentally.IMPORTANCEToxin-antitoxin modules play critical roles in prokaryotic survival and adaptation, contributing to genome stabilization and defense against phages and invading plasmids. The RelE/ParE superfamily exemplifies the structural and functional diversity of these systems, with members targeting distinct cellular processes, such as translation and DNA supercoiling. By elucidating the relationships among the 13 BECR-fold toxin families, this study enhances our understanding of microbial resistance mechanisms and reveals potential new opportunities for research into prokaryotic defense and regulation. These insights may have significant implications for medical and biotechnological applications, particularly in understanding bacterial responses to genetic invaders.
Collapse
|
11
|
Dance A. Microbial warfare brought us CRISPR. What big breakthroughs could be next? Nature 2025; 640:306-308. [PMID: 40205205 DOI: 10.1038/d41586-025-01065-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
|
12
|
George JT, Burman N, Wilkinson RA, de Silva S, McKelvey-Pham Q, Buyukyoruk M, Dale A, Landman H, Graham A, DeLuca SZ, Wiedenheft B. Structural basis of antiphage defense by an ATPase-associated reverse transcriptase. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.26.645336. [PMID: 40196496 PMCID: PMC11974896 DOI: 10.1101/2025.03.26.645336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Reverse transcriptases (RTs) have well-established roles in the replication and spread of retroviruses and retrotransposons. However, recent evidence suggests that RTs have been conscripted by cells for diverse roles in antiviral defense. Here we determine structures of a type I-A retron, which explain how RNA, DNA, RT, HNH-nuclease and four molecules of an SMC-family ATPase assemble into a 364 kDa complex that provides phage defense. We show that phage-encoded nucleases trigger degradation of the retron-associated DNA, leading to disassembly of the retron and activation of the HNH nuclease. The HNH nuclease cleaves tRNASer, stalling protein synthesis and arresting viral replication. Taken together, these data reveal diverse and paradoxical roles for RTs in the perpetuation and elimination of genetic parasites.
Collapse
Affiliation(s)
- Jerrin Thomas George
- Montana State University, Bozeman, Department of Microbiology and Cell Biology, Bozeman, Montana 59717, USA
| | - Nathaniel Burman
- Montana State University, Bozeman, Department of Microbiology and Cell Biology, Bozeman, Montana 59717, USA
| | - Royce A. Wilkinson
- Montana State University, Bozeman, Department of Microbiology and Cell Biology, Bozeman, Montana 59717, USA
| | - Senuri de Silva
- Montana State University, Bozeman, Department of Microbiology and Cell Biology, Bozeman, Montana 59717, USA
| | - Quynh McKelvey-Pham
- Montana State University, Bozeman, Department of Microbiology and Cell Biology, Bozeman, Montana 59717, USA
| | - Murat Buyukyoruk
- Montana State University, Bozeman, Department of Microbiology and Cell Biology, Bozeman, Montana 59717, USA
| | - Adelaide Dale
- Montana State University, Bozeman, Department of Microbiology and Cell Biology, Bozeman, Montana 59717, USA
| | - Hannah Landman
- Montana State University, Bozeman, Department of Microbiology and Cell Biology, Bozeman, Montana 59717, USA
| | - Ava Graham
- Montana State University, Bozeman, Department of Microbiology and Cell Biology, Bozeman, Montana 59717, USA
| | - Steven Z. DeLuca
- Montana State University, Bozeman, Department of Microbiology and Cell Biology, Bozeman, Montana 59717, USA
| | - Blake Wiedenheft
- Montana State University, Bozeman, Department of Microbiology and Cell Biology, Bozeman, Montana 59717, USA
| |
Collapse
|
13
|
Cui Y, Dai Z, Ouyang Y, Fu C, Wang Y, Chen X, Yang K, Zheng S, Wang W, Tao P, Guan Z, Zou T. Bacterial Hachiman complex executes DNA cleavage for antiphage defense. Nat Commun 2025; 16:2604. [PMID: 40097437 PMCID: PMC11914072 DOI: 10.1038/s41467-025-57851-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 03/04/2025] [Indexed: 03/19/2025] Open
Abstract
Bacteria have developed a variety of immune systems to combat phage infections. The Hachiman system is a novel prokaryotic antiphage defense system comprising HamA and HamB proteins, which contains the DUF1837 and helicase domains, respectively. However, the defense mechanism remains only partially understood. Here, we present the cryo-electron microscopy (cryo-EM) structure of the Hachiman defense system featuring a fusion of Cap4 nuclease domain within HamA. Further structure analysis indicates that the DUF1837 domain on HamA resembles the PD-(D/E)XK nuclease but lacks active sites. Bioinformatics analysis reveals that catalytically inactive DUF1837 domains often recruit other functional domains to fulfill anti-phage defense. HamA interacts with HamB to form a heterodimer HamAB to mediate ATP hydrolysis and execute DNA cleavage, thus implementing antiphage defense. Our findings elucidate the structural basis of the Hachiman defense complex, highlighting the critical roles of the helicase and nuclease in prokaryotic immunity.
Collapse
Affiliation(s)
- Yongqing Cui
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Zhikang Dai
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yufei Ouyang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Chunyang Fu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Yanjing Wang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Xueting Chen
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Kaiyue Yang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Shuyue Zheng
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Wenwen Wang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Pan Tao
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China
| | - Zeyuan Guan
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
| | - Tingting Zou
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, China.
| |
Collapse
|
14
|
Paauw M, Schravesande WEW, Taks NW, Rep M, Pfeilmeier S, van den Burg HA. Evolution of a vascular plant pathogen is associated with the loss of CRISPR-Cas and an increase in genome plasticity and virulence genes. Curr Biol 2025; 35:954-969.e5. [PMID: 39933516 DOI: 10.1016/j.cub.2025.01.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 11/08/2024] [Accepted: 01/03/2025] [Indexed: 02/13/2025]
Abstract
A major question in infectious disease research is how bacteria have evolved into highly niche-adapted pathogens with efficient host infection strategies. The plant pathogenic bacterium Xanthomonas campestris is subdivided into pathovars that occupy two distinct niches of the same plant leaf: the vasculature and the mesophyll tissue. Using a pangenome comparison of 94 X. campestris isolates, we discovered that the vasculature-infecting pathovar emerged in one monophyletic clade, has lost its CRISPR-Cas system, and showed an increase in both genomic plasticity and acquisition of virulence factors, such as type III effector proteins, compared with the ancestral pathovar. In addition, we show that the CRISPR spacers of isolates belonging to the ancestral pathovar map to plasmids that circulate in Xanthomonas populations and encode high numbers of transposons and virulence factors, suggesting that CRISPR-Cas restricts gene flow toward this pathovar. Indeed, we demonstrate experimentally reduced plasmid uptake in a CRISPR-Cas-encoding isolate. Based on our data, we propose that the loss of the CRISPR-Cas system was a pivotal step in X. campestris evolution by facilitating increased genome dynamics and the emergence of the vasculature-adapted X. campestris pathovar campestris, a major pathogen of Brassica crops.
Collapse
Affiliation(s)
- Misha Paauw
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Willem E W Schravesande
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands; Rijk Zwaan Breeding B.V., Burgemeester Crezéelaan 40, 2678 ZG De Lier, the Netherlands
| | - Nanne W Taks
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Martijn Rep
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Sebastian Pfeilmeier
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands
| | - Harrold A van den Burg
- Molecular Plant Pathology, Swammerdam Institute for Life Sciences, Faculty of Science, University of Amsterdam, Science Park 904, 1098 XH Amsterdam, the Netherlands; Rijk Zwaan Breeding B.V., Burgemeester Crezéelaan 40, 2678 ZG De Lier, the Netherlands.
| |
Collapse
|
15
|
Mariano G, Deme JC, Readshaw JJ, Grobbelaar MJ, Keenan M, El-Masri Y, Bamford L, Songra S, Blower TR, Palmer T, Lea SM. Modularity of Zorya defense systems during phage inhibition. Nat Commun 2025; 16:2344. [PMID: 40057510 PMCID: PMC11890865 DOI: 10.1038/s41467-025-57397-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/17/2025] [Indexed: 05/13/2025] Open
Abstract
Bacteria have evolved an extraordinary diversity of defense systems against bacteriophage (phage) predation. However, the molecular mechanisms underlying these anti-phage systems often remain elusive. Here, we provide mechanistic and structural insights into Zorya phage defense systems. Using cryo-EM structural analyses, we show that the Zorya type I and II core components, ZorA and ZorB, assemble in a 5:2 complex that is similar to inner-membrane ion-driven, rotary motors that power flagellar rotation, type 9 secretion, gliding and the Ton nutrient uptake systems. The ZorAB complex has an elongated cytoplasmic tail assembled by bundling the C-termini of the five ZorA subunits. Mutagenesis demonstrates that peptidoglycan binding by the periplasmic domains of ZorB, the structured cytoplasmic tail of ZorA, and ion flow through the motor is important for function in both type I and II systems. Furthermore, we identify ZorE as the effector module of the Zorya II system, possessing nickase activity. Our work reveals the molecular basis of the activity of Zorya systems and highlights the ZorE nickase as crucial for population-wide immunity in the type II system.
Collapse
Affiliation(s)
- Giuseppina Mariano
- Department of Microbial Sciences, Faculty of Health and Medical Sciences, University of Glasgow, Guildford, UK.
- School of Infection and Immunity, University of Glasgow, Glasgow, UK.
| | - Justin C Deme
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, USA.
| | | | | | - Mackenzie Keenan
- Department of Microbial Sciences, Faculty of Health and Medical Sciences, University of Glasgow, Guildford, UK
| | - Yasmin El-Masri
- Department of Microbial Sciences, Faculty of Health and Medical Sciences, University of Glasgow, Guildford, UK
| | - Lindsay Bamford
- Department of Microbial Sciences, Faculty of Health and Medical Sciences, University of Glasgow, Guildford, UK
| | - Suraj Songra
- Department of Microbial Sciences, Faculty of Health and Medical Sciences, University of Glasgow, Guildford, UK
| | - Tim R Blower
- Department of Biosciences, Durham University, Durham, UK
| | - Tracy Palmer
- Microbes in Health and Disease Theme, Newcastle University Biosciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Susan M Lea
- Center for Structural Biology, Center for Cancer Research, National Cancer Institute, NIH, Frederick, MD, USA.
| |
Collapse
|
16
|
Blasco L, Ibarguren-Quiles C, López-Causape C, Armán L, Barrio-Pujante A, Bleriot I, Pacios O, Fernández-García L, Ortiz-Cartagena C, Cantόn R, Oliver A, Tomás M. Study of the probability of resistance to phage infection in a collection of clinical isolates of Ps eudomonas aeruginosa in relation to the presence of Pf phages. Microbiol Spectr 2025; 13:e0301024. [PMID: 39907445 PMCID: PMC11878078 DOI: 10.1128/spectrum.03010-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/15/2025] [Indexed: 02/06/2025] Open
Abstract
Pseudomonas aeruginosa is a bacterial pathogen that is a major cause of lung infections in cystic fibrosis (CF) and other patients. Isolates of P. aeruginosa from CF patients commonly carry filamentous phages (Pf phages), which constitute a family of temperate phages known to be related to biofilm production and antibiotic sequestration. In this study, we identified 12 new Pf phage genomes in a collection of clinical isolates of P. aeruginosa from CF patients. Study of the anti-phage defense systems in the bacterial isolates revealed the presence of 89 such systems, of which eight were encoded in the Pf phage genomes. Finally, although a weak relation between resistance to phage infection and the number of anti-phage defense systems was detected, it was observed that the phage resistance was related to the presence of Pf phages and the anti-phage defense systems encoded in these phages.IMPORTANCEBacteria harbor a wide range of defense mechanisms to avoid phage infections that hamper the application of phage therapy because they can lead to the rapid acquisition of phage resistance. In this study, eight anti-phage defense systems were found in the genome of 12 Pf phages that were presents in 56% of the CF isolates of P. aeruginosa. The high prevalence of these phages underlines the importance of our findings about newly discovered filamentous phages and the role of these phages in resistance to phage infections. Thus, the knowledge of the anti-defense system in the Pf phage genomes could be useful in assessing the possible application of phage therapy to treat an infectious disease.
Collapse
Affiliation(s)
- Lucía Blasco
- Grupo de Microbiología Traslacional y Multidisciplinar (MicroTM)-Servicio de Microbiología Instituto de Investigación Biomédica A Coruña (INIBIC); Hospital A Coruña (CHUAC); Universidad de A Coruña (UDC), A Coruña, Spain
- Grupo de Estudio de los Mecanismos de Resistencia Antimicrobiana (GEMARA) formando parte de la Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (SEIMC), Madrid, Spain
- MEPRAM, Proyecto de Medicina de Precisión contra las resistencias Antimicrobianas, Madrid, Spain
| | - Clara Ibarguren-Quiles
- Grupo de Microbiología Traslacional y Multidisciplinar (MicroTM)-Servicio de Microbiología Instituto de Investigación Biomédica A Coruña (INIBIC); Hospital A Coruña (CHUAC); Universidad de A Coruña (UDC), A Coruña, Spain
- Grupo de Estudio de los Mecanismos de Resistencia Antimicrobiana (GEMARA) formando parte de la Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (SEIMC), Madrid, Spain
| | - Carla López-Causape
- Grupo de Estudio de los Mecanismos de Resistencia Antimicrobiana (GEMARA) formando parte de la Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (SEIMC), Madrid, Spain
- MEPRAM, Proyecto de Medicina de Precisión contra las resistencias Antimicrobianas, Madrid, Spain
- Servicio de Microbiología, Hospital Universitario Son Espases-IdISBa, Palma de Mallorca, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - Lucía Armán
- Grupo de Microbiología Traslacional y Multidisciplinar (MicroTM)-Servicio de Microbiología Instituto de Investigación Biomédica A Coruña (INIBIC); Hospital A Coruña (CHUAC); Universidad de A Coruña (UDC), A Coruña, Spain
- Grupo de Estudio de los Mecanismos de Resistencia Antimicrobiana (GEMARA) formando parte de la Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (SEIMC), Madrid, Spain
| | - Antonio Barrio-Pujante
- Grupo de Microbiología Traslacional y Multidisciplinar (MicroTM)-Servicio de Microbiología Instituto de Investigación Biomédica A Coruña (INIBIC); Hospital A Coruña (CHUAC); Universidad de A Coruña (UDC), A Coruña, Spain
- Grupo de Estudio de los Mecanismos de Resistencia Antimicrobiana (GEMARA) formando parte de la Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (SEIMC), Madrid, Spain
| | - Inés Bleriot
- Grupo de Microbiología Traslacional y Multidisciplinar (MicroTM)-Servicio de Microbiología Instituto de Investigación Biomédica A Coruña (INIBIC); Hospital A Coruña (CHUAC); Universidad de A Coruña (UDC), A Coruña, Spain
- Grupo de Estudio de los Mecanismos de Resistencia Antimicrobiana (GEMARA) formando parte de la Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (SEIMC), Madrid, Spain
| | - Olga Pacios
- Grupo de Microbiología Traslacional y Multidisciplinar (MicroTM)-Servicio de Microbiología Instituto de Investigación Biomédica A Coruña (INIBIC); Hospital A Coruña (CHUAC); Universidad de A Coruña (UDC), A Coruña, Spain
- Grupo de Estudio de los Mecanismos de Resistencia Antimicrobiana (GEMARA) formando parte de la Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (SEIMC), Madrid, Spain
| | - Laura Fernández-García
- Grupo de Microbiología Traslacional y Multidisciplinar (MicroTM)-Servicio de Microbiología Instituto de Investigación Biomédica A Coruña (INIBIC); Hospital A Coruña (CHUAC); Universidad de A Coruña (UDC), A Coruña, Spain
- Grupo de Estudio de los Mecanismos de Resistencia Antimicrobiana (GEMARA) formando parte de la Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (SEIMC), Madrid, Spain
| | - Concha Ortiz-Cartagena
- Grupo de Microbiología Traslacional y Multidisciplinar (MicroTM)-Servicio de Microbiología Instituto de Investigación Biomédica A Coruña (INIBIC); Hospital A Coruña (CHUAC); Universidad de A Coruña (UDC), A Coruña, Spain
- Grupo de Estudio de los Mecanismos de Resistencia Antimicrobiana (GEMARA) formando parte de la Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (SEIMC), Madrid, Spain
| | - Rafael Cantόn
- Grupo de Estudio de los Mecanismos de Resistencia Antimicrobiana (GEMARA) formando parte de la Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (SEIMC), Madrid, Spain
- MEPRAM, Proyecto de Medicina de Precisión contra las resistencias Antimicrobianas, Madrid, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
- Servicio de Microbiología, Hospital Universitario Ramón y Cajal and Instituto Ramón y Cajal de Investigación Sanitaria (IRYCIS), Madrid, Spain
| | - Antonio Oliver
- Grupo de Estudio de los Mecanismos de Resistencia Antimicrobiana (GEMARA) formando parte de la Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (SEIMC), Madrid, Spain
- MEPRAM, Proyecto de Medicina de Precisión contra las resistencias Antimicrobianas, Madrid, Spain
- Servicio de Microbiología, Hospital Universitario Son Espases-IdISBa, Palma de Mallorca, Spain
- CIBER de Enfermedades Infecciosas (CIBERINFEC), Instituto de Salud Carlos III, Madrid, Spain
| | - María Tomás
- Grupo de Microbiología Traslacional y Multidisciplinar (MicroTM)-Servicio de Microbiología Instituto de Investigación Biomédica A Coruña (INIBIC); Hospital A Coruña (CHUAC); Universidad de A Coruña (UDC), A Coruña, Spain
- Grupo de Estudio de los Mecanismos de Resistencia Antimicrobiana (GEMARA) formando parte de la Sociedad Española de Enfermedades Infecciosas y Microbiología Clínica (SEIMC), Madrid, Spain
- MEPRAM, Proyecto de Medicina de Precisión contra las resistencias Antimicrobianas, Madrid, Spain
| |
Collapse
|
17
|
Zou X, Mo Z, Wang L, Chen S, Lee SY. Overcoming Bacteriophage Contamination in Bioprocessing: Strategies and Applications. SMALL METHODS 2025; 9:e2400932. [PMID: 39359025 DOI: 10.1002/smtd.202400932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 09/14/2024] [Indexed: 10/04/2024]
Abstract
Bacteriophage contamination has a devastating impact on the viability of bacterial hosts and can significantly reduce the productivity of bioprocesses in biotechnological industries. The consequences range from widespread fermentation failure to substantial economic losses, highlighting the urgent need for effective countermeasures. Conventional prevention methods, which focus primarily on the physical removal of bacteriophages from equipment, bioprocess units, and the environment, have proven ineffective in preventing phage entry and contamination. The coevolutionary dynamics between phages and their bacterial hosts have spurred the development of a diverse repertoire of antiviral defense mechanisms within microbial communities. These naturally occurring defense strategies can be harnessed through genetic engineering to convert phage-sensitive hosts into robust, phage-resistant cell factories, providing a strategic approach to mitigate the threats posed by bacteriophages to industrial bacterial processes. In this review, an overview of the various defense strategies and immune systems that curb the propagation of bacteriophages and highlight their applications in fermentation bioprocesses to combat phage contamination is provided. Additionally, the tactics employed by phages to circumvent these defense strategies are also discussed, as preventing the emergence of phage escape mutants is a key component of effective contamination management.
Collapse
Affiliation(s)
- Xuan Zou
- Intensive Care Unit, Shenzhen Key Laboratory of Microbiology in Genomic Modification & Editing and Application, Shenzhen Institute of Translational Medicine, Medical Innovation Technology Transformation Center of Shenzhen Second People's Hospital, Shenzhen Univeristy Medical School, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518035, China
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Synthetic Biology Research Center, Shenzhen University, Shenzhen, Guangdong, 518035, China
| | - Ziran Mo
- Department of Respiratory Diseases, Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, Guangdong, 518026, China
- Department of Gastroenterology, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Taikang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Lianrong Wang
- Department of Respiratory Diseases, Institute of Pediatrics, Shenzhen Children's Hospital, Shenzhen, Guangdong, 518026, China
- Department of Gastroenterology, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Taikang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Shi Chen
- Intensive Care Unit, Shenzhen Key Laboratory of Microbiology in Genomic Modification & Editing and Application, Shenzhen Institute of Translational Medicine, Medical Innovation Technology Transformation Center of Shenzhen Second People's Hospital, Shenzhen Univeristy Medical School, The First Affiliated Hospital of Shenzhen University, Shenzhen, Guangdong, 518035, China
- Synthetic Biology Research Center, Shenzhen University, Shenzhen, Guangdong, 518035, China
- Department of Gastroenterology, Hubei Clinical Center and Key Laboratory of Intestinal and Colorectal Disease, Ministry of Education Key Laboratory of Combinatorial Biosynthesis and Drug Discovery, Taikang Center for Life and Medical Sciences, Zhongnan Hospital of Wuhan University, School of Pharmaceutical Sciences, Wuhan University, Wuhan, 430071, China
| | - Sang Yup Lee
- Metabolic and Biomolecular Engineering National Research Laboratory, Department of Chemical and Biomolecular Engineering (BK21 four), KAIST Institute for BioCentury, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
- Systems Metabolic Engineering and Systems Healthcare Cross-Generation Collaborative Laboratory, KAIST, Daejeon, 34141, Republic of Korea
- BioProcess Engineering Research Center and BioInformatics Research Center, KAIST, Daejeon, 34141, Republic of Korea
- Graduate School of Engineering Biology, KAIST, Daejeon, 34141, Republic of Korea
| |
Collapse
|
18
|
Wein T, Millman A, Lange K, Yirmiya E, Hadary R, Garb J, Melamed S, Amitai G, Dym O, Steinruecke F, Hill AB, Kranzusch PJ, Sorek R. CARD domains mediate anti-phage defence in bacterial gasdermin systems. Nature 2025; 639:727-734. [PMID: 39880956 DOI: 10.1038/s41586-024-08498-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Accepted: 12/05/2024] [Indexed: 01/31/2025]
Abstract
Caspase recruitment domains (CARDs) and pyrin domains are important facilitators of inflammasome activity and pyroptosis1. Following pathogen recognition by nucleotide binding-domain, leucine-rich, repeat-containing (NLR) proteins, CARDs recruit and activate caspases, which, in turn, activate gasdermin pore-forming proteins to induce pyroptotic cell death2. Here we show that CARD domains are present in defence systems that protect bacteria against phage. The bacterial CARD domain is essential for protease-mediated activation of certain bacterial gasdermins, which promote cell death once phage infection is recognized. We further show that multiple anti-phage defence systems use CARD domains to activate a variety of cell death effectors, and that CARD domains mediate protein-protein interactions in these systems. We find that these systems are triggered by a conserved immune-evasion protein used by phages to overcome the bacterial defence system RexAB3, demonstrating that phage proteins inhibiting one defence system can activate another. Our results suggest that CARD domains represent an ancient component of innate immune systems conserved from bacteria to humans, and that CARD-dependent activation of gasdermins is shared in organisms across the tree of life.
Collapse
Affiliation(s)
- Tanita Wein
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Adi Millman
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Katharina Lange
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Erez Yirmiya
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Romi Hadary
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Jeremy Garb
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Sarah Melamed
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Gil Amitai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Orly Dym
- Department of Life Science Core Facilities, Weizmann Institute of Science, Rehovot, Israel
| | | | - Aidan B Hill
- Department of Microbiology, Harvard Medical School, Boston, Ma, USA
- Deparment of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Philip J Kranzusch
- Department of Microbiology, Harvard Medical School, Boston, Ma, USA.
- Deparment of Cancer Immunology and Virology, Dana-Farber Cancer Institute, Boston, MA, USA.
- Parker Institute for Cancer Immunotherapy at Dana-Farber Cancer Institute, Boston, MA, USA.
| | - Rotem Sorek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
19
|
Zhu K, Shang K, Wang L, Yu X, Hua L, Zhang W, Qin B, Wang J, Gao X, Zhu H, Cui S. Activation of the bacterial defense-associated sirtuin system. Commun Biol 2025; 8:297. [PMID: 39994439 PMCID: PMC11850899 DOI: 10.1038/s42003-025-07743-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 02/14/2025] [Indexed: 02/26/2025] Open
Abstract
The NADase activity of the defense-associated sirtuins (DSRs) is activated by the phage tail tube protein (TTP). Herein, we report cryo-EM structures of a free-state Bacillus subtilis DSR2 tetramer and a fragment of the tetramer, a phage SPR tail tube, and two DSR2-TTP complexes. DSR2 contains an N-terminal SIR2 domain, a middle domain (MID) and a C-terminal domain (CTD). The DSR2 CTD harbors the α-solenoid tandem-repeats like the HEAT-repeat proteins. DSR2 assembles into a tetramer with four SIR2 clustered at the center, and two intertwined MID-CTD chains flank the SIR2 core. SPR TTPs self-assemble into a tube-like complex. Upon DSR2 binding, the D1 domain of SPR TTP is captured between the HEAT-repeats domains of DSR2, which conflicts with TTPs self-assembly. Binding of TTPs induces conformational changes in DSR2 tetramer, resulting in increase of the NAD+ pocket volume in SIR2, thus activates the NADase activity and leads to cellular NAD+ depletion.
Collapse
Affiliation(s)
- Kaixiang Zhu
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Kun Shang
- Yanan medical college of Yanan university, Yanan, China
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China
| | - Linyue Wang
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Xia Yu
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-resistant Tuberculosis Research Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Lei Hua
- Yanan medical college of Yanan university, Yanan, China
| | - Weihe Zhang
- National Clinical Laboratory on Tuberculosis, Beijing Key Laboratory for Drug-resistant Tuberculosis Research Beijing Chest Hospital, Capital Medical University, Beijing Tuberculosis and Thoracic Tumor Institute, Beijing, China
| | - Bo Qin
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Jia Wang
- Beijing Advanced Innovation Center for Structural Biology, Tsinghua-Peking Joint Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing, China
| | - Xiaopan Gao
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
- State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| | - Hongtao Zhu
- Beijing National Laboratory for Condensed Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
- Songshan Lake Materials Laboratory, Dongguan, China.
| | - Sheng Cui
- NHC Key Laboratory of Systems Biology of Pathogens, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
- Key Laboratory of Pathogen Infection Prevention and Control (Ministry of Education), National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
- State Key Laboratory of Respiratory Health and Multimorbidity, National Institute of Pathogen Biology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China.
| |
Collapse
|
20
|
Wang K, Young TL, Chen J, Tsai SN, Xu Y, Varley AJ, Solek NC, Gong F, Lu RXZ, Hubbard BP, Li B. A Reverse Transcription Nucleic-Acid-Based Barcoding System for In Vivo Measurement of Lipid Nanoparticle mRNA Delivery. ACS BIO & MED CHEM AU 2025; 5:35-41. [PMID: 39990951 PMCID: PMC11843327 DOI: 10.1021/acsbiomedchemau.4c00081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 01/25/2025] [Accepted: 01/27/2025] [Indexed: 02/25/2025]
Abstract
Lipid nanoparticles (LNPs) are the most extensively validated clinical delivery vehicles for mRNA therapeutics, exemplified by their widespread use in the mRNA COVID-19 vaccines. The pace of lipid nanoparticle (LNP) development for mRNA therapeutics is restricted by the limitations of existing methods for large-scale LNP screening. To address this challenge, we developed Quantitative Analysis of Reverse Transcribed Barcodes (QuART), a novel nucleic-acid-based system for measuring LNP functional delivery in vivo. QuART uses a bacterial retron reverse transcription system to couple functional mRNA delivery into the cytoplasm with a cDNA barcode readout. Our results demonstrate that QuART can be used to identify functional mRNA delivery both in vitro in cell culture and in vivo in mice. Multiplexing of QuART could enable high-throughput screening of LNP formulations, facilitating the rapid discovery of promising LNP candidates for mRNA therapeutics.
Collapse
Affiliation(s)
- Kevin
C. Wang
- Leslie
Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Tiana L. Young
- Leslie
Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Jingan Chen
- Institute
of Biomedical Engineering, University of
Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Shannon N. Tsai
- Leslie
Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Yue Xu
- Leslie
Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Andrew J. Varley
- Leslie
Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Nicholas C. Solek
- Institute
of Biomedical Engineering, University of
Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Fanglin Gong
- Institute
of Biomedical Engineering, University of
Toronto, Toronto, Ontario M5S 3G9, Canada
| | - Rick X. Z. Lu
- Leslie
Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
| | - Basil P. Hubbard
- Leslie
Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
- Department
of Pharmacology and Toxicology, University
of Toronto, Toronto, Ontario M5G 2C8, Canada
| | - Bowen Li
- Leslie
Dan Faculty of Pharmacy, University of Toronto, Toronto, Ontario M5S 3M2, Canada
- Institute
of Biomedical Engineering, University of
Toronto, Toronto, Ontario M5S 3G9, Canada
- Department
of Chemistry, University of Toronto, Toronto, Ontario M5G 1L7, Canada
- Princess
Margaret Cancer Center, University Health
Network, Toronto, Ontario M5G 2C1, Canada
| |
Collapse
|
21
|
Loeff L, Walter A, Rosalen GT, Jinek M. DNA end sensing and cleavage by the Shedu anti-phage defense system. Cell 2025; 188:721-733.e17. [PMID: 39742808 DOI: 10.1016/j.cell.2024.11.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 07/31/2024] [Accepted: 11/19/2024] [Indexed: 01/04/2025]
Abstract
The detection of molecular patterns associated with invading pathogens is a hallmark of innate immune systems. Prokaryotes deploy sophisticated host defense mechanisms in innate anti-phage immunity. Shedu is a single-component defense system comprising a putative nuclease SduA. Here, we report cryoelectron microscopy (cryo-EM) structures of apo- and double-stranded DNA (dsDNA)-bound tetrameric SduA assemblies, revealing that the N-terminal domains of SduA form a clamp that recognizes free DNA ends. End binding positions the DNA over the PD-(D/E)XK nuclease domain, resulting in dsDNA nicking at a fixed distance from the 5' end. The end-directed DNA nicking activity of Shedu prevents propagation of linear DNA in vivo. Finally, we show that phages escape Shedu immunity by suppressing their recombination-dependent DNA replication pathway. Taken together, these results define the antiviral mechanism of Shedu systems, underlining the paradigm that recognition of pathogen-specific nucleic acid structures is a conserved feature of innate immunity across all domains of life.
Collapse
Affiliation(s)
- Luuk Loeff
- Department of Biochemistry, University of Zurich, Zurich, Switzerland.
| | - Alexander Walter
- Department of Biochemistry, University of Zurich, Zurich, Switzerland
| | | | - Martin Jinek
- Department of Biochemistry, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
22
|
Mayo-Muñoz D, Li H, Mestre MR, Pinilla-Redondo R. The role of noncoding RNAs in bacterial immunity. Trends Microbiol 2025; 33:208-222. [PMID: 39396887 DOI: 10.1016/j.tim.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 09/18/2024] [Accepted: 09/18/2024] [Indexed: 10/15/2024]
Abstract
The evolutionary arms race between bacteria and phages has driven the development of diverse anti-phage defense mechanisms. Recent studies have identified noncoding RNAs (ncRNAs) as key players in bacteria-phage conflicts, including CRISPR-Cas, toxin-antitoxin (TA), and reverse transcriptase (RT)-based defenses; however, our understanding of their roles in immunity is still emerging. In this review, we explore the multifaceted roles of ncRNAs in bacterial immunity, offering insights into their contributions to defense and anti-defense mechanisms, their influence on immune regulatory networks, and potential biotechnological applications. Finally, we highlight key outstanding questions in the field to spark future research directions.
Collapse
Affiliation(s)
- David Mayo-Muñoz
- Department of Microbiology and Immunology, University of Otago, Dunedin, New Zealand
| | - Huijuan Li
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Mario Rodríguez Mestre
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark
| | - Rafael Pinilla-Redondo
- Section of Microbiology, University of Copenhagen, Universitetsparken 15, 2100 Copenhagen, Denmark.
| |
Collapse
|
23
|
Blazanin M, Moore J, Olsen S, Travisano M. Fight Not Flight: Parasites Drive the Bacterial Evolution of Resistance, Not Escape. Am Nat 2025; 205:125-136. [PMID: 39913937 DOI: 10.1086/733414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/07/2025]
Abstract
AbstractIn the face of ubiquitous threats from parasites, hosts can evolve strategies to resist infection or to altogether avoid parasitism, for instance by avoiding behavior that could expose them to parasites or by dispersing away from local parasite threats. At the microbial scale, bacteria frequently encounter viral parasites, bacteriophages. While bacteria are known to utilize a number of strategies to resist infection by phages and can have the capacity to avoid moving toward phage-infected cells, it is unknown whether bacteria can evolve dispersal to escape from phages. To answer this question, we combined experimental evolution and mathematical modeling. Experimental evolution of the bacterium Pseudomonas fluorescens in environments with differing spatial distributions of the phage Phi2 revealed that the host bacteria evolved resistance depending on parasite distribution but did not evolve dispersal to escape parasite infection. Simulations using parameterized mathematical models of bacterial growth and swimming motility showed that this is a general finding: while increased dispersal is adaptive in the absence of parasites, in the presence of parasites that fitness benefit disappears and resistance becomes adaptive, regardless of the spatial distribution of parasites. Together, these experiments suggest that parasites should rarely, if ever, drive the evolution of bacterial escape via dispersal.
Collapse
|
24
|
Mutte SK, Barendse P, Ugarte PB, Swarts DC. Distribution of bacterial DNA repair proteins and their co-occurrence with immune systems. Cell Rep 2025; 44:115110. [PMID: 39752253 DOI: 10.1016/j.celrep.2024.115110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/20/2024] [Accepted: 12/03/2024] [Indexed: 02/01/2025] Open
Abstract
Bacteria encode various DNA repair pathways to maintain genome integrity. However, the high degree of homology between DNA repair proteins or their domains hampers accurate identification. Here, we describe a stringent search strategy to identify DNA repair proteins and provide a systematic analysis of taxonomic distribution and co-occurrence of DNA repair proteins involved in RecA-dependent homologous recombination. Our results reveal the widespread presence of RecA, SSB, and RecOR proteins and phyla-specific distribution for the DNA repair complexes RecBCD, AddAB, and AdnAB. Furthermore, we report co-occurrences of DNA repair proteins with immune systems, including specific CRISPR-Cas subtypes, prokaryotic Argonautes (pAgos), dGTPases, GAPS2, and Wadjet. Our results imply that while certain DNA repair proteins and immune systems might function in conjunction, no immune system strictly relies on a specific DNA repair protein. As such, these findings offer an updated perspective on the distribution of DNA repair systems and their connection to immune systems in bacteria.
Collapse
Affiliation(s)
- Sumanth K Mutte
- Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, the Netherlands; MyGen Informatics, 6706 JE Wageningen, the Netherlands
| | - Patrick Barendse
- Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, the Netherlands
| | | | - Daan C Swarts
- Laboratory of Biochemistry, Wageningen University, 6708 WE Wageningen, the Netherlands.
| |
Collapse
|
25
|
Zhang Z, Todeschini TC, Wu Y, Kogay R, Naji A, Rodriguez JC, Mondi R, Kaganovich D, Taylor DW, Bravo JPK, Teplova M, Amen T, Koonin EV, Patel DJ, Nobrega FL. Kiwa is a bacterial membrane-embedded defence supercomplex activated by phage-induced membrane changes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.02.26.530102. [PMID: 39896579 PMCID: PMC11785009 DOI: 10.1101/2023.02.26.530102] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/04/2025]
Abstract
Bacteria and archaea deploy diverse, sophisticated defence systems to counter virus infection, yet many immunity mechanisms remain poorly understood. Here, we characterise the Kiwa defence system as a membrane-associated supercomplex that senses changes in the membrane induced by phage infection and plasmid conjugation. This supercomplex, comprising KwaA tetramers bound to KwaB dimers, as its basic repeating unit, detects structural stress via KwaA, activating KwaB, which binds ejected phage DNA through its DUF4868 domain, stalling phage DNA replication forks and thus disrupting replication and late transcription. We show that phage-encoded DNA mimic protein Gam, which inhibits RecBCD, also targets Kiwa through KwaB recognition. However, Gam binding to one defence system precludes its inhibition of the other. These findings reveal a distinct mechanism of bacterial immune coordination, where sensing of membrane disruptions and inhibitor partitioning enhance protection against phages and plasmids.
Collapse
Affiliation(s)
- Zhiying Zhang
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
- Shared first authors
| | - Thomas C. Todeschini
- School of Biological Sciences, University of Southampton, SO17 1BJ Southampton, UK
- Shared first authors
- Current address: RNA Therapeutics Institute, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Yi Wu
- School of Biological Sciences, University of Southampton, SO17 1BJ Southampton, UK
- Shared first authors
| | - Roman Kogay
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Ameena Naji
- School of Biological Sciences, University of Southampton, SO17 1BJ Southampton, UK
- Current address: School of Molecular and Cellular Biology, University of Leeds, Leeds LS2 9JT, UK
| | | | - Rupavidhya Mondi
- School of Biological Sciences, University of Southampton, SO17 1BJ Southampton, UK
- Current address: The William Harvey Research Institute, Barts and The London School of Medicine, Queen Mary University of London, Charterhouse Square, London EC1M 6BQ, UK
| | - Daniel Kaganovich
- School of Biological Sciences, University of Southampton, SO17 1BJ Southampton, UK
| | - David W. Taylor
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
- Interdisciplinary Life Sciences Graduate Programs, Austin, TX 78712, USA
- Center for Systems and Synthetic Biology, University of Texas at Austin, Austin, TX, 78712, USA
- LIVESTRONG Cancer Institutes, Dell Medical School, Austin, TX, 78712, USA
| | - Jack P. K. Bravo
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
- Current address: Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Marianna Teplova
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Triana Amen
- School of Biological Sciences, University of Southampton, SO17 1BJ Southampton, UK
| | - Eugene V. Koonin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, Maryland, USA
| | - Dinshaw J. Patel
- Structural Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Franklin L. Nobrega
- School of Biological Sciences, University of Southampton, SO17 1BJ Southampton, UK
| |
Collapse
|
26
|
Park SK, Guo M, Stamos JL, Kim W, Lee S, Zhang YJ, Lambowitz AM. Structural basis for the evolution of a domesticated group II intron-like reverse transcriptase to function in host cell DNA repair. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.14.632616. [PMID: 39868158 PMCID: PMC11761039 DOI: 10.1101/2025.01.14.632616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
A previous study found that a domesticated bacterial group II intron-like reverse transcriptase (G2L4 RT) functions in double-strand break repair (DSBR) via microhomology-mediated end joining (MMEJ) and that a mobile group II intron-encoded RT has a basal DSBR activity that uses conserved structural features of non-LTR-retroelement RTs. Here, we determined G2L4 RT apoenzyme and snap-back DNA synthesis structures revealing novel structural adaptations that optimized its cellular function in DSBR. These included a unique RT3a structure that stabilizes the apoenzyme in an inactive conformation until encountering an appropriate substrate; a longer N-terminal extension/RT0-loop with conserved residues that together with a modified active site favors strand annealing; and a conserved dimer interface that localizes G2L4 RT homodimers to DSBR sites with both monomers positioned for MMEJ. Our findings reveal how a non-LTR-retroelement RT evolved a dedicated cellular function and suggest new ways of optimizing these RTs for genome engineering applications.
Collapse
Affiliation(s)
| | | | - Jennifer L. Stamos
- Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, TX 78712, USA
| | - Wantae Kim
- Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, TX 78712, USA
| | - Sidae Lee
- Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, TX 78712, USA
| | - Y. Jessie Zhang
- Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, TX 78712, USA
| | - Alan M. Lambowitz
- Departments of Molecular Biosciences and Oncology, University of Texas at Austin, Austin, TX 78712, USA
| |
Collapse
|
27
|
Bae HW, Choi SY, Ki HJ, Cho YH. Pseudomonas aeruginosa as a model bacterium in antiphage defense research. FEMS Microbiol Rev 2025; 49:fuaf014. [PMID: 40240293 PMCID: PMC12035536 DOI: 10.1093/femsre/fuaf014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 04/09/2025] [Accepted: 04/15/2025] [Indexed: 04/18/2025] Open
Abstract
Bacteriophages, or phages, depend on their bacterial hosts for proliferation, leading to a coevolutionary relationship characterized by on-going arms races, where bacteria evolve diverse antiphage defense systems. The development of in silico methods and high-throughput screening techniques has dramatically expanded our understanding of bacterial antiphage defense systems, enormously increasing the known repertoire of the distinct mechanisms across various bacterial species. These advances have revealed that bacterial antiphage defense systems exhibit a remarkable level of complexity, ranging from highly conserved to specialized mechanisms, underscoring the intricate nature of bacterial antiphage defense systems. In this review, we provide a concise snapshot of antiphage defense research highlighting two preponderantly commandeered approaches and classification of the known antiphage defense systems. A special focus is placed on the model bacterial pathogen, Pseudomonas aeruginosa in antiphage defense research. We explore the complexity and adaptability of these systems, which play crucial roles in genome evolution and adaptation of P. aeruginosa in response to an arsenal of diverse phage strains, emphasizing the importance of this organism as a key emerging model bacterium in recent antiphage defense research.
Collapse
Affiliation(s)
- Hee-Won Bae
- Program of Biopharmaceutical Science, Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do 13488, Korea
| | - Shin-Yae Choi
- Program of Biopharmaceutical Science, Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do 13488, Korea
| | - Hyeong-Jun Ki
- Program of Biopharmaceutical Science, Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do 13488, Korea
| | - You-Hee Cho
- Program of Biopharmaceutical Science, Department of Pharmacy, College of Pharmacy and Institute of Pharmaceutical Sciences, CHA University, Gyeonggi-do 13488, Korea
| |
Collapse
|
28
|
Crawford K, Khan A, Lopez S, Goodarzi H, Shipman S. High throughput variant libraries and machine learning yield design rules for retron gene editors. Nucleic Acids Res 2025; 53:gkae1199. [PMID: 39658047 PMCID: PMC11754653 DOI: 10.1093/nar/gkae1199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 11/14/2024] [Accepted: 11/19/2024] [Indexed: 12/12/2024] Open
Abstract
The bacterial retron reverse transcriptase system has served as an intracellular factory for single-stranded DNA in many biotechnological applications. In these technologies, a natural retron non-coding RNA (ncRNA) is modified to encode a template for the production of custom DNA sequences by reverse transcription. The efficiency of reverse transcription is a major limiting step for retron technologies, but we lack systematic knowledge of how to improve or maintain reverse transcription efficiency while changing the retron sequence for custom DNA production. Here, we test thousands of different modifications to the Retron-Eco1 ncRNA and measure DNA production in pooled variant library experiments, identifying regions of the ncRNA that are tolerant and intolerant to modification. We apply this new information to a specific application: the use of the retron to produce a precise genome editing donor in combination with a CRISPR-Cas9 RNA-guided nuclease (an editron). We use high-throughput libraries in Saccharomyces cerevisiae to additionally define design rules for editrons. We extend our new knowledge of retron DNA production and editron design rules to human genome editing to achieve the highest efficiency Retron-Eco1 editrons to date.
Collapse
Affiliation(s)
- Kate D Crawford
- Gladstone Institute of Data Science and Biotechnology, 1650 Owens St, San Francisco, CA 94158, USA
- Graduate Program in Bioengineering, University of California, San Francisco and Berkeley, 1700 Fourth St, San Francisco, CA 94158, USA
| | - Asim G Khan
- Gladstone Institute of Data Science and Biotechnology, 1650 Owens St, San Francisco, CA 94158, USA
| | - Santiago C Lopez
- Gladstone Institute of Data Science and Biotechnology, 1650 Owens St, San Francisco, CA 94158, USA
- Graduate Program in Bioengineering, University of California, San Francisco and Berkeley, 1700 Fourth St, San Francisco, CA 94158, USA
| | - Hani Goodarzi
- Arc Institute, 3181 Porter Dr, Palo Alto, CA 94304, USA
- Department of Biochemistry and Biophysics, University of California, San Francisco, 600 16th Street, San Francisco, CA 94158, USA
- Department of Urology, University of California, San Francisco, 400 Parnassus Ave, San Francisco, CA 94143, USA
| | - Seth L Shipman
- Gladstone Institute of Data Science and Biotechnology, 1650 Owens St, San Francisco, CA 94158, USA
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, 600 16th Street, San Francisco, CA 94158, USA
- Chan Zuckerberg Biohub San Francisco, 499 Illinois St, San Francisco, CA 94158, USA
| |
Collapse
|
29
|
Yi W, Zhu N, Peng Z, Chu X, Sun H, Song L, Guo Z, Pain A, Luo Z, Guan Q. In silico characterization of defense system hotspots in Acinetobacter spp. Commun Biol 2025; 8:39. [PMID: 39794449 PMCID: PMC11723918 DOI: 10.1038/s42003-025-07459-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 01/03/2025] [Indexed: 01/13/2025] Open
Abstract
The bacteria-phage arm race drives the evolution of diverse bacterial defenses. This study identifies and characterizes the defense hotspots in Acinetobacter baumannii using a reference-free approach. Among 4383 high-quality genomes, we found a total of 17,430 phage defense systems and with 54.54% concentrated in 21 hotspots. These hotspots exhibit distinct preferences for different defense systems, and co-occurrence patterns suggest synergistic interactions. Additionally, the mobile genetic elements are abundant around these hotspots, likely facilitating horizontal transfer and evolution of defense systems. The number of hotspots increases in species phylogenetically closer to Acinetobacter baumannii, but the number of defense systems per hotspot varies due to particular selective pressures. These findings provide critical insights into the genetic organization of phage defense systems, contributing to a broader understanding of bacterial immunity and the evolutionary dynamics that shape Acinetobacter genomes. This knowledge lays the foundation for developing targeted interventions to combat antibiotic resistance Acinetobacter baumannii.
Collapse
Affiliation(s)
- Wenjing Yi
- Bioinformatics Laboratory, Infectious Diseases and Pathogen Biology Center, The First Hospital of Jilin University, Changchun, China
| | - Ning Zhu
- Bioinformatics Laboratory, Infectious Diseases and Pathogen Biology Center, The First Hospital of Jilin University, Changchun, China
| | - Zhihan Peng
- Department of Respiratory Medicine, Infectious Diseases and Pathogen Biology Center, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Xiao Chu
- Department of Respiratory Medicine, Infectious Diseases and Pathogen Biology Center, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Haotian Sun
- Department of Respiratory Medicine, Infectious Diseases and Pathogen Biology Center, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Lei Song
- Department of Respiratory Medicine, Infectious Diseases and Pathogen Biology Center, State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, The First Hospital of Jilin University, Changchun, China
| | - Zhimin Guo
- Department of Laboratory Medicine, Infectious Diseases and Pathogen Biology Center, The First Hospital of Jilin University, Changchun, China
| | - Arnab Pain
- Pathogen Genomics Laboratory, Biological and Environmental Sciences and Engineering, King Abdullah University of Science and Technology, 23955-6900, Jeddah, Makkah, Saudi Arabia
| | - Zhaoqing Luo
- Department of Biological Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Qingtian Guan
- Bioinformatics Laboratory, Infectious Diseases and Pathogen Biology Center, The First Hospital of Jilin University, Changchun, China.
| |
Collapse
|
30
|
Tesson F, Huiting E, Wei L, Ren J, Johnson M, Planel R, Cury J, Feng Y, Bondy-Denomy J, Bernheim A. Exploring the diversity of anti-defense systems across prokaryotes, phages and mobile genetic elements. Nucleic Acids Res 2025; 53:gkae1171. [PMID: 39657785 PMCID: PMC11724313 DOI: 10.1093/nar/gkae1171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 10/30/2024] [Accepted: 12/06/2024] [Indexed: 12/12/2024] Open
Abstract
The co-evolution of prokaryotes, phages and mobile genetic elements (MGEs) has driven the diversification of defense and anti-defense systems alike. Anti-defense proteins have diverse functional domains, sequences and are typically small, creating a challenge to detect anti-defense homologs across prokaryotic and phage genomes. To date, no tools comprehensively annotate anti-defense proteins within a desired sequence. Here, we developed 'AntiDefenseFinder'-a free open-source tool and web service that detects 156 anti-defense systems of one or more proteins in any genomic sequence. Using this dataset, we identified 47 981 anti-defense systems distributed across prokaryotes and their viruses. We found that some genes co-localize in 'anti-defense islands', including Escherichia coli T4 and Lambda phages, although many appear standalone. Eighty-nine per cent anti-defense systems localize only or preferentially in MGE. However, >80% of anti-Pycsar protein 1 (Apyc1) resides in nonmobile regions of bacterial genomes. Evolutionary analysis and biochemical experiments revealed that Apyc1 likely originated in bacteria to regulate cyclic nucleotide (cNMP) signaling, but phage co-opted Apyc1 to overcome cNMP-utilizing defenses. With the AntiDefenseFinder tool, we hope to facilitate the identification of the full repertoire of anti-defense systems in MGEs, the discovery of new protein functions and a deeper understanding of host-pathogen arms race.
Collapse
Affiliation(s)
- Florian Tesson
- Institut Pasteur, CNRS UMR3525, Molecular Diversity of Microbes Lab, 25-28 rue du Docteur Roux, 75015, Paris, France
| | - Erin Huiting
- Department of Microbiology and Immunology, University of California San Francisco, Genentech Hall Room N372E UCSF Mail Code 2200 600 16th Street San Francisco, San Francisco, CA 94158, USA
| | - Linlin Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beisanhuan EastRoad 15, Chaoyang Distract, 100029 Beijing, China
| | - Jie Ren
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Ministry of Agriculture, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, 2 Yuanmingyuan W Rd, Haidian District, 100091 Beijing, China
| | - Matthew Johnson
- Department of Microbiology and Immunology, University of California San Francisco, Genentech Hall Room N372E UCSF Mail Code 2200 600 16th Street San Francisco, San Francisco, CA 94158, USA
| | - Rémi Planel
- Bioinformatics and Biostatistics Hub, Institut Pasteur, Université Paris Cité, 25-28 rue du Docteur Roux, 75015,Paris, France
| | - Jean Cury
- Institut Pasteur, CNRS UMR3525, Molecular Diversity of Microbes Lab, 25-28 rue du Docteur Roux, 75015, Paris, France
| | - Yue Feng
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beisanhuan EastRoad 15, Chaoyang Distract, 100029 Beijing, China
| | - Joseph Bondy-Denomy
- Department of Microbiology and Immunology, University of California San Francisco, Genentech Hall Room N372E UCSF Mail Code 2200 600 16th Street San Francisco, San Francisco, CA 94158, USA
- Quantitative Biosciences Institute, University of California San Francisco, 1700 4th St, San Francisco, CA 94158, USA
| | - Aude Bernheim
- Institut Pasteur, CNRS UMR3525, Molecular Diversity of Microbes Lab, 25-28 rue du Docteur Roux, 75015, Paris, France
| |
Collapse
|
31
|
Luo R, Ma G, Yu Q, Tian Z, Man Q, Shu X, Liu X, Shi Y, Zhang L, Wang J. Multidrug-resistant ST11-KL64 hypervirulent Klebsiella pneumoniae with multiple bla- genes isolated from children's blood. Front Pediatr 2025; 12:1450201. [PMID: 39834491 PMCID: PMC11743731 DOI: 10.3389/fped.2024.1450201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 12/09/2024] [Indexed: 01/22/2025] Open
Abstract
Introduction Hypervirulent carbapenem-resistant Klebsiella pneumoniae (hv-CRKP) poses an increasing public health risk due to its high treatment difficulty and associated mortality, especially in bone marrow transplant (BMT) patients. The emergence of strains with multiple resistance mechanisms further complicates the management of these infections. Methods We isolated and characterized a novel ST11-KL64 hv-CRKP strain from a pediatric bone marrow transplantation patient. Antimicrobial susceptibility testing was performed to determine resistance patterns. Comprehensive genomic analysis was conducted to identify plasmid types, virulence factors, and antimicrobial resistance genes, as well as potential resistance mechanisms associated with mutations and plasmid-mediated variants. Results The isolated hv-CRKP strain exhibited multidrug resistance to carbapenem, tigecycline, and polymyxin. Genomic analysis revealed that the IncHI1B/repB plasmid carried virulence factors (rmpA, ΔrmpA2, iucABCD, iutA), while IncFII/IncR and IncFII plasmids harbored resistance genes [bla C T X - M - 6 5 , bla T E M - 1 B , rmtB, bla S H V - 1 2 , bla K P C - 2 , qnrS1, bla L A P - 2 , sul2, dfrA14, tet(A), tet(R)]. The coexistence of bla C T X - M - 6 5 , bla T E M - 1 B , bla S H V - 1 2 , bla L A P - 2 ,and bla K P C - 2 in one hv-CRKP strain is exceptionally rare. Additionally, the Tet(A)-S251A variant in the conjugative plasmid pTET-4 may confer tigecycline resistance. Mutations in MgrB, PhoPQ, and PmrABCDK were identified as potential contributors to increased polymyxin resistance. Interestingly, plasmid-encoded restriction-modification systems and Retron regions were identified, which could potentially confer phage resistance. Discussion The combination of virulence and antimicrobial resistance factors in the ST11-KL64 hv-CRKP strain represents a significant challenge for treating immunocompromised pediatric patients. Particularly concerning is the resistance to polymyxin and tigecycline, which are often last-resort treatments for multidrug-resistant infections. The findings highlight the urgent need for effective surveillance, infection control measures, and novel therapeutic strategies to manage such hypervirulent and multidrug-resistant pathogens.
Collapse
Affiliation(s)
- Rongmu Luo
- Department of Hematology, Aerospace Center Hospital, Beijing, China
- Department of Hematology, China Aerospace Science & Industry Corporation 731 Hospital, Beijing, China
| | - Guannan Ma
- Medical Research Center, Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Hangzhou, China
| | - Qian Yu
- Medical Research Center, Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Hangzhou, China
| | - Zhengqin Tian
- Department of Hematology, Aerospace Center Hospital, Beijing, China
| | - Qihang Man
- Department of Hematology, Aerospace Center Hospital, Beijing, China
| | - Xiangrong Shu
- Department of Hematology, China Aerospace Science & Industry Corporation 731 Hospital, Beijing, China
| | - Xuetong Liu
- Medical Research Center, Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Hangzhou, China
| | - Yupeng Shi
- Medical Research Center, Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Hangzhou, China
| | - Lei Zhang
- Medical Research Center, Key Laboratory of Digital Technology in Medical Diagnostics of Zhejiang Province, Hangzhou, China
| | - Jingbo Wang
- Department of Hematology, Aerospace Center Hospital, Beijing, China
| |
Collapse
|
32
|
Caigoy JC, Shimamoto T, Ishida Y, Ahmed AM, Miyoshi SI, Shimamoto T. Genetic Characterization of a Novel Retron Element Isolated from Vibrio mimicus. Microbiol Immunol 2025; 69:1-9. [PMID: 39558231 DOI: 10.1111/1348-0421.13181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 10/03/2024] [Accepted: 10/27/2024] [Indexed: 11/20/2024]
Abstract
Bacterial reverse transcriptase coding gene (RT) is essential for the production of a small satellite DNA-RNA complex called multicopy single-stranded DNA (msDNA). In this study, we found a novel retron, retron-Vmi1 (Vm85) from Vibrio mimicus. The retron is comprised of the msr-msd region, orf323, and the ret gene, a genetic organization similar to Salmonella's retron-Sen2 (St85). The protein sequence of the RNA-directed DNA polymerase (RT-Vmi1) is highly homologous to the RTs of Vibrio metoecus, Vibrio parahaemolyticus, and Vibrio vulnificus. Phylogenetic and protein sequence similarity analysis of retron-Vmi1 ORF323 and RT revealed a close relatedness to retron-Sen2. We found that retron-Vmi1 was inserted in the dusA gene, similar to the insertion of the retron-Vpa1 (Vp96) of V. parahaemolyticus AQ3354, suggesting that retrons can be transferred via the tRNA gene. These results are the first convincing evidence that retron is moving across species. The neighboring genes of retron-Vmi1 shared high homology with the genetic environment of V. parahaemolyticus and V. vulnificus retrons. We also found two junction points within the retron-Vmi1 and the dusA gene suggesting that retron-Vmi1 was inserted into this site in a two-step manner.
Collapse
Affiliation(s)
- Jant Cres Caigoy
- Laboratory of Food Microbiology and Hygiene, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Toshi Shimamoto
- Laboratory of Food Microbiology and Hygiene, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| | - Yojiro Ishida
- Department of Structural Biology, Protein Technologies Center, St. Jude Children's Research Hospital, Memphis, Tennessee, USA
| | - Ashraf M Ahmed
- Department of Bacteriology, Mycology and Immunology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El-Sheikh, Egypt
| | - Shin-Ichi Miyoshi
- Graduate School of Medicine Dentistry and Pharmaceutical Sciences, School of Pharmaceutical Sciences, Okayama University, Okayama, Japan
- Research Center for Intestinal Health Science, Okayama University, Okayama, Japan
| | - Tadashi Shimamoto
- Laboratory of Food Microbiology and Hygiene, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Japan
| |
Collapse
|
33
|
Cummins T, Songra S, Garrett SR, Blower TR, Mariano G. Multi-conflict islands are a widespread trend within Serratia spp. Cell Rep 2024; 43:115055. [PMID: 39661517 DOI: 10.1016/j.celrep.2024.115055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 09/12/2024] [Accepted: 11/20/2024] [Indexed: 12/13/2024] Open
Abstract
Bacteria carry numerous anti-phage systems in "defense islands" or hotspots. Recent studies have delineated the content and boundaries of these islands in various species, revealing instances of islands that encode additional factors, including antibiotic resistance genes, stress genes, type VI secretion system (T6SS)-dependent effectors, and virulence factors. Our study identifies three defense islands in the Serratia genus with a mixed cargo of anti-phage systems, virulence factors, and different types of anti-bacterial modules, revealing a widespread trend of co-accumulation that extends beyond T6SS-dependent effectors to colicins and contact-dependent inhibition systems. We further report the identification of four distinct anti-phage system/subtypes, including a previously unreported Toll/interleukin (IL)-1 receptor (TIR)-domain-containing system with population-wide immunity, and two loci co-opting a predicted T6SS-related protein for phage defense. This study enhances our understanding of the protein domains that can be co-opted for phage defense, resulting in a highly diversified anti-phage arsenal.
Collapse
Affiliation(s)
- Thomas Cummins
- Department of Microbial Sciences, School of Biosciences, University of Surrey, Guildford, Surrey, UK
| | - Suraj Songra
- Department of Microbial Sciences, School of Biosciences, University of Surrey, Guildford, Surrey, UK
| | - Stephen R Garrett
- Michael DeGroote Institute for Infectious Disease Research, McMaster University, Hamilton, ON L8S 4K1, Canada; Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, ON L8S 4K1, Canada
| | - Tim R Blower
- Department of Biosciences, Durham University, Stockton Road, Durham, UK
| | - Giuseppina Mariano
- Department of Microbial Sciences, School of Biosciences, University of Surrey, Guildford, Surrey, UK.
| |
Collapse
|
34
|
Xu X, Gu P. Overview of Phage Defense Systems in Bacteria and Their Applications. Int J Mol Sci 2024; 25:13316. [PMID: 39769080 PMCID: PMC11676413 DOI: 10.3390/ijms252413316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/07/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
As natural parasites of bacteria, phages have greatly contributed to bacterial evolution owing to their persistent threat. Diverse phage resistance systems have been developed in bacteria during the coevolutionary process with phages. Conversely, phage contamination has a devastating effect on microbial fermentation, resulting in fermentation failure and substantial economic loss. Accordingly, natural defense systems derived from bacteria can be employed to obtain robust phage-resistant host cells that can overcome the threats posed by bacteriophages during industrial bacterial processes. In this review, diverse phage resistance mechanisms, including the remarkable research progress and potential applications, are systematically summarized. In addition, the development prospects and challenges of phage-resistant bacteria are discussed. This review provides a useful reference for developing phage-resistant bacteria.
Collapse
Affiliation(s)
| | - Pengfei Gu
- School of Biological Science and Technology, University of Jinan, Jinan 250022, China;
| |
Collapse
|
35
|
Shore SFH, Leinberger FH, Fozo EM, Berghoff BA. Type I toxin-antitoxin systems in bacteria: from regulation to biological functions. EcoSal Plus 2024; 12:eesp00252022. [PMID: 38767346 PMCID: PMC11636113 DOI: 10.1128/ecosalplus.esp-0025-2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Accepted: 04/11/2024] [Indexed: 05/22/2024]
Abstract
Toxin-antitoxin systems are ubiquitous in the prokaryotic world and widely distributed among chromosomes and mobile genetic elements. Several different toxin-antitoxin system types exist, but what they all have in common is that toxin activity is prevented by the cognate antitoxin. In type I toxin-antitoxin systems, toxin production is controlled by an RNA antitoxin and by structural features inherent to the toxin messenger RNA. Most type I toxins are small membrane proteins that display a variety of cellular effects. While originally discovered as modules that stabilize plasmids, chromosomal type I toxin-antitoxin systems may also stabilize prophages, or serve important functions upon certain stress conditions and contribute to population-wide survival strategies. Here, we will describe the intricate RNA-based regulation of type I toxin-antitoxin systems and discuss their potential biological functions.
Collapse
Affiliation(s)
- Selene F. H. Shore
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Florian H. Leinberger
- Institute for Microbiology and Molecular Biology, Justus-Liebig University, Giessen, Germany
| | - Elizabeth M. Fozo
- Department of Microbiology, University of Tennessee, Knoxville, Tennessee, USA
| | - Bork A. Berghoff
- Institute for Microbiology and Molecular Biology, Justus-Liebig University, Giessen, Germany
| |
Collapse
|
36
|
Jdeed G, Morozova VV, Tikunova NV. Genome Analysis of Anti-Phage Defense Systems and Defense Islands in Stenotrophomonas maltophilia: Preservation and Variability. Viruses 2024; 16:1903. [PMID: 39772210 PMCID: PMC11680222 DOI: 10.3390/v16121903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 11/29/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
Anti-phage defense systems are widespread in bacteria due to the latter continuous adaptation to infection by bacteriophages (phages). Stenotrophomonas maltophilia has a high degree of intrinsic antibiotic resistance, which makes phage therapy relevant for the treatment of infections caused by this species. Studying the array of anti-phage defense systems that could be found in S. maltophilia helps in better adapting the phages to the systems present in the pathogenic bacteria. Pangenome analysis of the available S. maltophilia strains with complete genomes that were downloaded from GenBank, including five local genomes, indicated a wide set of 72 defense systems and subsystems that varied between the strains. Seven of these systems were present in more than 20% of the studied genomes and the proteins encoded by the systems were variable in most of the cases. A total of 27 defense islands were revealed where defense systems were found; however, more than 60% of the instances of systems were found in four defense islands. Several elements linked to the transfer of these systems were found. No obvious associations between the pattern of distribution of the anti-phage defense systems of S. maltophilia and the phylogenetic features or the isolation site were found.
Collapse
Affiliation(s)
- Ghadeer Jdeed
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Prosp. Lavrentieva 8, Novosibirsk 630090, Russia;
| | | | - Nina V. Tikunova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Prosp. Lavrentieva 8, Novosibirsk 630090, Russia;
| |
Collapse
|
37
|
Murtazalieva K, Mu A, Petrovskaya A, Finn RD. The growing repertoire of phage anti-defence systems. Trends Microbiol 2024; 32:1212-1228. [PMID: 38845267 DOI: 10.1016/j.tim.2024.05.005] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 05/10/2024] [Accepted: 05/13/2024] [Indexed: 12/06/2024]
Abstract
The biological interplay between phages and bacteria has driven the evolution of phage anti-defence systems (ADSs), which evade bacterial defence mechanisms. These ADSs bind and inhibit host defence proteins, add covalent modifications and deactivate defence proteins, degrade or sequester signalling molecules utilised by host defence systems, synthesise and restore essential molecules depleted by bacterial defences, or add covalent modifications to phage molecules to avoid recognition. Overall, 145 phage ADSs have been characterised to date. These ADSs counteract 27 of the 152 different bacterial defence families, and we hypothesise that many more ADSs are yet to be discovered. We discuss high-throughput approaches (computational and experimental) which are indispensable for discovering new ADSs and the limitations of these approaches. A comprehensive characterisation of phage ADSs is critical for understanding phage-host interplay and developing clinical applications, such as treatment for multidrug-resistant bacterial infections.
Collapse
Affiliation(s)
- Khalimat Murtazalieva
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, UK; University of Cambridge, Cambridge, UK
| | - Andre Mu
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, UK; Sanger Institute, Wellcome Trust Genome Campus, Hinxton, UK
| | - Aleksandra Petrovskaya
- Nencki Institute of Experimental Biology, Warsaw, Poland; University of Copenhagen, Copenhagen, Denmark
| | - Robert D Finn
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Hinxton, UK.
| |
Collapse
|
38
|
Ni Y, Wang Y, Shi X, Yu F, Ruan Q, Tian N, He J, Wang X. Reducing competition between msd and genomic DNA improves retron editing efficiency. EMBO Rep 2024; 25:5316-5330. [PMID: 39501049 PMCID: PMC11624263 DOI: 10.1038/s44319-024-00311-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/20/2024] [Accepted: 10/25/2024] [Indexed: 12/08/2024] Open
Abstract
Retrons, found in bacteria and used for defense against phages, generate a unique molecule known as multicopy single-stranded DNA (msDNA). This msDNA mimics Okazaki fragments during DNA replication, making it a promising tool for targeted gene editing in prokaryotes. However, existing retron systems often exhibit suboptimal editing efficiency. Here, we identify the msd gene in Escherichia coli, which encodes the noncoding RNA template for msDNA synthesis and carries the homologous sequence of the target gene to be edited, as a critical bottleneck. Sequence homology causes the msDNA to bind to the msd gene, thereby reducing its efficiency in editing the target gene. To address this issue, we engineer a retron system that tailors msDNA to the leading strand of the plasmid containing the msd gene. This strategy minimizes msd gene editing and reduces competition with target genes, significantly increasing msDNA availability. Our optimized system achieves very high retron editing efficiency, enhancing performance and expanding the potential for in vivo techniques that rely on homologous DNA synthesis.
Collapse
Affiliation(s)
- Yuyang Ni
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
- College of Life Sciences, Shangrao Normal University, Shangrao, 334001, P. R. China
| | - Yifei Wang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Xinyu Shi
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Fan Yu
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Qingmin Ruan
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Na Tian
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Jin He
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China
| | - Xun Wang
- National Key Laboratory of Agricultural Microbiology, College of Life Science and Technology, Huazhong Agricultural University, Wuhan, 430070, P. R. China.
| |
Collapse
|
39
|
Zheng C, Furukawa C, Liu J, Sankaran S, Lin H, Munugeti N, Wang M, Smith GR. Debunking the dogma that RecBCD nuclease destroys phage. Genetics 2024:iyae199. [PMID: 39605281 DOI: 10.1093/genetics/iyae199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 10/30/2024] [Accepted: 11/26/2024] [Indexed: 11/29/2024] Open
Abstract
For decades, it has been repeatedly claimed that the potent bacterial helicase-nuclease RecBCD (exonuclease V) destroys foreign (non-self) DNA, such as that of phages, but repairs and recombines cellular (self) DNA. While this would constitute a strong host-survival mechanism, no phage destroyed by RecBCD is ever specified in those claims. To determine which phages are destroyed by RecBCD, we searched for phage isolates that grow on Escherichia coli ΔrecBCD but not on recBCD+. In contrast to the prevailing claim, we found none among >80 new isolates from nature and >80 from previous collections. Based on these and previous observations, we conclude that RecBCD repairs broken DNA that can recombine but destroys DNA that cannot recombine and recycles the nucleotides.
Collapse
Affiliation(s)
- Clarence Zheng
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA
| | - Curtis Furukawa
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 916 145th Pl, NE Bellevue, WA 98007
| | - Jerry Liu
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 16347 NE 12th Pl, Bellevue, WA 98008
| | - Srishti Sankaran
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA Brown University, Providence, RI
| | - Han Lin
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 4654 SE Bakken Ct, Port Orchard, WA 98366
| | - Nidhi Munugeti
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 1117 141st Pl NE, Bellevue, WA, 98005
| | - Meranda Wang
- Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 13450 NE 12th Pl, Bellevue, WA 98005
| | - Gerald R Smith
- Fred Hutchinson Cancer Center, 1100 Fairview Avenue North, Seattle, WA 98109
| |
Collapse
|
40
|
Haseltine WA, Patarca R. The RNA Revolution in the Central Molecular Biology Dogma Evolution. Int J Mol Sci 2024; 25:12695. [PMID: 39684407 DOI: 10.3390/ijms252312695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2024] [Revised: 11/24/2024] [Accepted: 11/25/2024] [Indexed: 12/18/2024] Open
Abstract
Human genome projects in the 1990s identified about 20,000 protein-coding sequences. We are now in the RNA revolution, propelled by the realization that genes determine phenotype beyond the foundational central molecular biology dogma, stating that inherited linear pieces of DNA are transcribed to RNAs and translated into proteins. Crucially, over 95% of the genome, initially considered junk DNA between protein-coding genes, encodes essential, functionally diverse non-protein-coding RNAs, raising the gene count by at least one order of magnitude. Most inherited phenotype-determining changes in DNA are in regulatory areas that control RNA and regulatory sequences. RNAs can directly or indirectly determine phenotypes by regulating protein and RNA function, transferring information within and between organisms, and generating DNA. RNAs also exhibit high structural, functional, and biomolecular interaction plasticity and are modified via editing, methylation, glycosylation, and other mechanisms, which bestow them with diverse intra- and extracellular functions without altering the underlying DNA. RNA is, therefore, currently considered the primary determinant of cellular to populational functional diversity, disease-linked and biomolecular structural variations, and cell function regulation. As demonstrated by RNA-based coronavirus vaccines' success, RNA technology is transforming medicine, agriculture, and industry, as did the advent of recombinant DNA technology in the 1980s.
Collapse
Affiliation(s)
- William A Haseltine
- Access Health International, 384 West Lane, Ridgefield, CT 06877, USA
- Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY 11030, USA
| | - Roberto Patarca
- Access Health International, 384 West Lane, Ridgefield, CT 06877, USA
- Feinstein Institutes for Medical Research, 350 Community Dr, Manhasset, NY 11030, USA
| |
Collapse
|
41
|
Guo Y, Lin S, Chen R, Gu J, Tang K, Nie Z, Huang Z, Weng J, Lin J, Liu T, Waldor MK, Wang X. A reverse transcriptase controls prophage genome reduction to promote phage dissemination in Pseudomonas aeruginosa biofilms. Cell Rep 2024; 43:114883. [PMID: 39427316 DOI: 10.1016/j.celrep.2024.114883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/30/2024] [Accepted: 10/01/2024] [Indexed: 10/22/2024] Open
Abstract
Filamentous bacteriophages play a critical role in biofilm formation and virulence in the opportunistic pathogen Pseudomonas aeruginosa. Here, studies of the filamentous Pf4 prophage life cycle within P. aeruginosa biofilms revealed that the prophage-encoded reverse transcriptase (RT) regulates phage genome dynamics. The RT and the non-coding RNA PhrD collaborate to edit the Pf4 phage genome to generate superinfective Pf4 variants capable of rapid propagation within biofilms by preserving genes essential for virion assembly and reconstituting a promoter for the phage excisionase gene. Mutant cells emerge in biofilms where intact Pf4 prophages are replaced by these reduced-genome phage variants, further enhancing virion production. The discovery of RT's role in phage genome reduction expands understanding of RT functions and of the versatility of phage biology and its impact on microbial community dynamics within biofilms.
Collapse
Affiliation(s)
- Yunxue Guo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119 Haibin Road, Nansha District, Guangzhou 511458, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119 Haibin Road, Nansha District, Guangzhou 511458, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shituan Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119 Haibin Road, Nansha District, Guangzhou 511458, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Ran Chen
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119 Haibin Road, Nansha District, Guangzhou 511458, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119 Haibin Road, Nansha District, Guangzhou 511458, China
| | - Jiayu Gu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119 Haibin Road, Nansha District, Guangzhou 511458, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Kaihao Tang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119 Haibin Road, Nansha District, Guangzhou 511458, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119 Haibin Road, Nansha District, Guangzhou 511458, China
| | - Zhaolong Nie
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119 Haibin Road, Nansha District, Guangzhou 511458, China
| | - Zixian Huang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119 Haibin Road, Nansha District, Guangzhou 511458, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Juehua Weng
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119 Haibin Road, Nansha District, Guangzhou 511458, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianzhong Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119 Haibin Road, Nansha District, Guangzhou 511458, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Tianlang Liu
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119 Haibin Road, Nansha District, Guangzhou 511458, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Matthew K Waldor
- Department of Microbiology, Harvard Medical School, 77 Avenue Louis Pasteur, Boston, MA 02115, USA; Division of Infectious Diseases, Brigham and Women's Hospital, 15 Francis Street, Boston, MA 02115, USA; Howard Hughes Medical Institute, 181 Longwood Avenue, Boston, MA 02115, USA
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No. 1119 Haibin Road, Nansha District, Guangzhou 511458, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No. 1119 Haibin Road, Nansha District, Guangzhou 511458, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
42
|
Liu W, Pan Y, Zhang Y, Dong C, Huang L, Lian J. Decoding retrons: Breakthroughs in RT-DNA production and genome editing. Cell Chem Biol 2024; 31:1869-1871. [PMID: 39577396 DOI: 10.1016/j.chembiol.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/24/2024]
Abstract
Retrons are notable for their anti-phage defense functions and genome engineering applications. However, only a few retrons have been well characterized. In the August issue of Nature Biotechnology, Khan et al.1 present hundreds of experimentally studied retrons, which are critical for bacterial immunity research and retron-based genome engineering technologies.
Collapse
Affiliation(s)
- Wenqian Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & State Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; BGI Research, Hangzhou 310030, China
| | - Yingjia Pan
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & State Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310000, China
| | - Yu Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & State Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; BGI Research, Hangzhou 310030, China
| | - Chang Dong
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & State Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310000, China
| | - Lei Huang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & State Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310000, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education & State Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310000, China.
| |
Collapse
|
43
|
Béchon N, Tal N, Stokar-Avihail A, Savidor A, Kupervaser M, Melamed S, Amitai G, Sorek R. Diversification of molecular pattern recognition in bacterial NLR-like proteins. Nat Commun 2024; 15:9860. [PMID: 39543107 PMCID: PMC11564622 DOI: 10.1038/s41467-024-54214-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 11/01/2024] [Indexed: 11/17/2024] Open
Abstract
Antiviral STANDs (Avs) are bacterial anti-phage proteins evolutionarily related to immune pattern recognition receptors of the NLR family. Type 2 Avs proteins (Avs2) were suggested to recognize the phage large terminase subunit as a signature of phage infection. Here, we show that Avs2 from Klebsiella pneumoniae (KpAvs2) can recognize several different phage proteins as signature for infection. While KpAvs2 recognizes the large terminase subunit of Seuratvirus phages, we find that to protect against Dhillonvirus phages, KpAvs2 recognizes a different phage protein named KpAvs2-stimulating protein 1 (Ksap1). KpAvs2 directly binds Ksap1 to become activated, and phages mutated in Ksap1 escape KpAvs2 defense despite encoding an intact terminase. We further show that KpAvs2 protects against a third group of phages by recognizing another protein, Ksap2. Our results exemplify the evolutionary diversification of molecular pattern recognition in bacterial Avs2, and show that a single pattern recognition receptor evolved to recognize different phage-encoded proteins.
Collapse
Affiliation(s)
- Nathalie Béchon
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Nitzan Tal
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | | | - Alon Savidor
- de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Meital Kupervaser
- de Botton Institute for Protein Profiling, The Nancy and Stephen Grand Israel National Center for Personalized Medicine, Weizmann Institute of Science, Rehovot, Israel
| | - Sarah Melamed
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Gil Amitai
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel
| | - Rotem Sorek
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel.
| |
Collapse
|
44
|
Liu W, Pan Y, Zhang Y, Dong C, Huang L, Lian J. Intracellularly synthesized ssDNA for continuous genome engineering. Trends Biotechnol 2024:S0167-7799(24)00293-2. [PMID: 39537537 DOI: 10.1016/j.tibtech.2024.10.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2024] [Revised: 10/11/2024] [Accepted: 10/17/2024] [Indexed: 11/16/2024]
Abstract
Despite the prevalence of genome editing tools, there are still some limitations in dynamic and continuous genome editing. In vivo single-stranded DNA (ssDNA)-mediated genome mutation has emerged as a valuable and promising approach for continuous genome editing. In this review, we summarize the various types of intracellular ssDNA production systems and notable achievements in genome engineering in both prokaryotic and eukaryotic cells. We also review progress in the development of applications based on retron-based systems, which have demonstrated significant potential in molecular recording, multiplex genome editing, high-throughput functional variant screening, and gene-specific continuous in vivo evolution. Furthermore, we discuss the major challenges of ssDNA-mediated continuous genome editing and its prospects for future applications.
Collapse
Affiliation(s)
- Wenqian Liu
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and State Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; BGI Research, Hangzhou 310030, China
| | - Yingjia Pan
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and State Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310000, China
| | - Yu Zhang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and State Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; BGI Research, Hangzhou 310030, China
| | - Chang Dong
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and State Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310000, China
| | - Lei Huang
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and State Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310000, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education and State Key Laboratory of Biobased Transportation Fuel Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China; ZJU-Hangzhou Global Scientific and Technological Innovation Center, Zhejiang University, Hangzhou 310000, China.
| |
Collapse
|
45
|
Azam AH, Kondo K, Chihara K, Nakamura T, Ojima S, Nie W, Tamura A, Yamashita W, Sugawara Y, Sugai M, Cui L, Takahashi Y, Watashi K, Kiga K. Evasion of antiviral bacterial immunity by phage tRNAs. Nat Commun 2024; 15:9586. [PMID: 39528469 PMCID: PMC11555353 DOI: 10.1038/s41467-024-53789-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Accepted: 10/18/2024] [Indexed: 11/16/2024] Open
Abstract
Retrons are bacterial genetic elements that encode a reverse transcriptase and, in combination with toxic effector proteins, can serve as antiphage defense systems. However, the mechanisms of action of most retron effectors, and how phages evade retrons, are not well understood. Here, we show that some phages can evade retrons and other defense systems by producing specific tRNAs. We find that expression of retron-Eco7 effector proteins (PtuA and PtuB) leads to degradation of tRNATyr and abortive infection. The genomes of T5 phages that evade retron-Eco7 include a tRNA-rich region, including a highly expressed tRNATyr gene, which confers protection against retron-Eco7. Furthermore, we show that other phages (T1, T7) can use a similar strategy, expressing a tRNALys, to counteract a tRNA anticodon defense system (PrrC170).
Collapse
Affiliation(s)
- Aa Haeruman Azam
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Kohei Kondo
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashi Murayama, Tokyo, Japan
| | - Kotaro Chihara
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Tomohiro Nakamura
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Shinjiro Ojima
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Wenhan Nie
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Azumi Tamura
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Wakana Yamashita
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Yo Sugawara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashi Murayama, Tokyo, Japan
| | - Motoyuki Sugai
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Higashi Murayama, Tokyo, Japan
| | - Longzhu Cui
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke-shi, Tochigi, Japan
| | - Yoshimasa Takahashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Koichi Watashi
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan
| | - Kotaro Kiga
- Research Center for Drug and Vaccine Development, National Institute of Infectious Diseases, Shinjuku, Tokyo, Japan.
- Division of Bacteriology, Department of Infection and Immunity, School of Medicine, Jichi Medical University, Shimotsuke-shi, Tochigi, Japan.
| |
Collapse
|
46
|
Costa P, Pereira C, Romalde JL, Almeida A. A game of resistance: War between bacteria and phages and how phage cocktails can be the solution. Virology 2024; 599:110209. [PMID: 39186863 DOI: 10.1016/j.virol.2024.110209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/12/2024] [Accepted: 08/14/2024] [Indexed: 08/28/2024]
Abstract
While phages hold promise as an antibiotic alternative, they encounter significant challenges in combating bacterial infections, primarily due to the emergence of phage-resistant bacteria. Bacterial defence mechanisms like superinfection exclusion, CRISPR, and restriction-modification systems can hinder phage effectiveness. Innovative strategies, such as combining different phages into cocktails, have been explored to address these challenges. This review delves into these defence mechanisms and their impact at each stage of the infection cycle, their challenges, and the strategies phages have developed to counteract them. Additionally, we examine the role of phage cocktails in the evolving landscape of antibacterial treatments and discuss recent studies that highlight the effectiveness of diverse phage cocktails in targeting essential bacterial receptors and combating resistant strains.
Collapse
Affiliation(s)
- Pedro Costa
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Carla Pereira
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| | - Jesús L Romalde
- Department of Microbiology and Parasitology, CRETUS & CIBUS - Faculty of Biology, University of Santiago de Compostela, CP 15782 Santiago de Compostela, Spain.
| | - Adelaide Almeida
- CESAM, Department of Biology, University of Aveiro, Campus Universitário de Santiago, 3810-193 Aveiro, Portugal.
| |
Collapse
|
47
|
González-Delgado A, Lopez SC, Rojas-Montero M, Fishman CB, Shipman SL. Simultaneous multi-site editing of individual genomes using retron arrays. Nat Chem Biol 2024; 20:1482-1492. [PMID: 38982310 PMCID: PMC11512673 DOI: 10.1038/s41589-024-01665-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Accepted: 06/06/2024] [Indexed: 07/11/2024]
Abstract
During recent years, the use of libraries-scale genomic manipulations scaffolded on CRISPR guide RNAs have been transformative. However, these existing approaches are typically multiplexed across genomes. Unfortunately, building cells with multiple, nonadjacent precise mutations remains a laborious cycle of editing, isolating an edited cell and editing again. The use of bacterial retrons can overcome this limitation. Retrons are genetic systems composed of a reverse transcriptase and a noncoding RNA that contains an multicopy single-stranded DNA, which is reverse transcribed to produce multiple copies of single-stranded DNA. Here we describe a technology-termed a multitron-for precisely modifying multiple sites on a single genome simultaneously using retron arrays, in which multiple donor-encoding DNAs are produced from a single transcript. The multitron architecture is compatible with both recombineering in prokaryotic cells and CRISPR editing in eukaryotic cells. We demonstrate applications for this approach in molecular recording, genetic element minimization and metabolic engineering.
Collapse
Affiliation(s)
| | - Santiago C Lopez
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
- Graduate Program in Bioengineering, University of California, San Francisco and Berkeley, San Francisco, CA, USA
| | | | - Chloe B Fishman
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA
| | - Seth L Shipman
- Gladstone Institute of Data Science and Biotechnology, San Francisco, CA, USA.
- Department of Bioengineering and Therapeutic Sciences, University of California, San Francisco, CA, USA.
- Chan Zuckerberg Biohub-San Francisco, San Francisco, CA, USA.
| |
Collapse
|
48
|
Wang Y, Wang C, Guan Z, Cao J, Xu J, Wang S, Cui Y, Wang Q, Chen Y, Yin Y, Zhang D, Liu H, Sun M, Jin S, Tao P, Zou T. DNA methylation activates retron Ec86 filaments for antiphage defense. Cell Rep 2024; 43:114857. [PMID: 39395169 DOI: 10.1016/j.celrep.2024.114857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/08/2024] [Accepted: 09/25/2024] [Indexed: 10/14/2024] Open
Abstract
Retrons are a class of multigene antiphage defense systems typically consisting of a retron reverse transcriptase, a non-coding RNA, and a cognate effector. Although triggers for several retron systems have been discovered recently, the complete mechanism by which these systems detect invading phages and mediate defense remains unclear. Here, we focus on the retron Ec86 defense system, elucidating its modes of activation and mechanisms of action. We identified a phage-encoded DNA cytosine methyltransferase (Dcm) as a trigger of the Ec86 system and demonstrated that Ec86 is activated upon multicopy single-stranded DNA (msDNA) methylation. We further elucidated the structure of a tripartite retron Ec86-effector filament assembly that is primed for activation by Dcm and capable of hydrolyzing nicotinamide adenine dinucleotide (NAD+). These findings provide insights into the retron Ec86 defense mechanism and underscore an emerging theme of antiphage defense through supramolecular complex assemblies.
Collapse
Affiliation(s)
- Yanjing Wang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Chen Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Zeyuan Guan
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jie Cao
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Jia Xu
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuangshuang Wang
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongqing Cui
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Qiang Wang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yibei Chen
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongqi Yin
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Delin Zhang
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Hongbo Liu
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Ming Sun
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Shuangxia Jin
- National Key Laboratory of Crop Genetic Improvement, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China
| | - Pan Tao
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| | - Tingting Zou
- National Key Laboratory of Agricultural Microbiology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan 430070, China.
| |
Collapse
|
49
|
Chen J, Nilsen ED, Chitboonthavisuk C, Mo CY, Raman S. Systematic, high-throughput characterization of bacteriophage gene essentiality on diverse hosts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.10.617714. [PMID: 39416107 PMCID: PMC11482910 DOI: 10.1101/2024.10.10.617714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Understanding core and conditional gene essentiality is crucial for decoding genotype-phenotype relationships in organisms. We present PhageMaP, a high-throughput method to create genome-scale phage knockout libraries for systematically assessing gene essentiality in bacteriophages. Using PhageMaP, we generate gene essentiality maps across hundreds of genes in the model phage T7 and the non-model phage Bas63, on diverse hosts. These maps provide fundamental insights into genome organization, gene function, and host-specific conditional essentiality. By applying PhageMaP to a collection of anti-phage defense systems, we uncover phage genes that either inhibit or activate eight defenses and offer novel mechanistic hypotheses. Furthermore, we engineer synthetic phages with enhanced infectivity by modular transfer of a PhageMaP-discovered defense inhibitor from Bas63 to T7. PhageMaP is generalizable, as it leverages homologous recombination, a universal cellular process, for locus-specific barcoding. This versatile tool advances bacteriophage functional genomics and accelerates rational phage design for therapy.
Collapse
Affiliation(s)
- Jackie Chen
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Erick D Nilsen
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | | | - Charlie Y Mo
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
| | - Srivatsan Raman
- Department of Biochemistry, University of Wisconsin-Madison, Madison, Wisconsin, USA
- Department of Bacteriology, University of Wisconsin-Madison, Madison, WI, USA
- Department of Chemical and Biological Engineering, University of Wisconsin-Madison, Madison, WI, USA
| |
Collapse
|
50
|
Tang S, Conte V, Zhang DJ, Žedaveinytė R, Lampe GD, Wiegand T, Tang LC, Wang M, Walker MWG, George JT, Berchowitz LE, Jovanovic M, Sternberg SH. De novo gene synthesis by an antiviral reverse transcriptase. Science 2024; 386:eadq0876. [PMID: 39116258 PMCID: PMC11758365 DOI: 10.1126/science.adq0876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 07/17/2024] [Indexed: 08/10/2024]
Abstract
Defense-associated reverse transcriptase (DRT) systems perform DNA synthesis to protect bacteria against viral infection, but the identities and functions of their DNA products remain largely unknown. We show that DRT2 systems encode an unprecedented immune pathway that involves de novo gene synthesis through rolling circle reverse transcription of a noncoding RNA (ncRNA). Programmed template jumping on the ncRNA generates a concatemeric cDNA, which becomes double-stranded upon viral infection. This DNA product constitutes a protein-coding, nearly endless open reading frame (neo) gene whose expression leads to potent cell growth arrest, restricting the viral infection. Our work highlights an elegant expansion of genome coding potential through RNA-templated gene creation and challenges conventional paradigms of genetic information encoded along the one-dimensional axis of genomic DNA.
Collapse
Affiliation(s)
- Stephen Tang
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Valentin Conte
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Dennis J. Zhang
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Rimantė Žedaveinytė
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - George D. Lampe
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Tanner Wiegand
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Lauren C. Tang
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Megan Wang
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Matt W. G. Walker
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Jerrin Thomas George
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| | - Luke E. Berchowitz
- Department of Genetics and Development, Columbia University, New York, NY, USA
- Taub Institute for Research on Alzheimer's and the Aging Brain, New York, NY, USA
| | - Marko Jovanovic
- Department of Biological Sciences, Columbia University, New York, NY, USA
| | - Samuel H. Sternberg
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA
| |
Collapse
|